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Abstract

One of the postulates of evolutionary theory is competifmmimited resources. Pre-
vious studies show that there is a trade-off between yiettrate in resource utiliza-
tion and ATP production pathways, implying that differenétabolic strategies will
result in different competition outcomes. Two main metabstrategies used by micro-
organisms are respiration and fermentation. Respiratioximizes the efficiency of
ATP production, resulting in increased yields at the expenfsthe rate. In contrast,
fermentation is an inefficient ATP production strategy, ibutins at a higher rate. Our
goal was to study competition between fermentation andnaggm and find conditions,
such as resource availability, population and spatiattire, that favor dominance of
those strategies. We us&dccharomyces cerevisiaad Kluyveromyces lactisagged
with different fluorescent proteins as models for fermeatatind respiration, respec-
tively. We experimentally determined physiological paedens and used them in dy-
namic models of competition for resources in spatially hgereous (well-mixed) and
in spatially structured populations. The results show aatitipn dynamics in different
conditions and we discuss implications of those resulthédvolution of metabolic
strategies.
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Chapter 1

Introduction

1.1 Evolution and metabolism

The theory of evolution rests on three fundamental ideas:

1. Variability - individuals differ in terms of their phenotypic traits

2. Inheritance- some of the variability is based on differences in genatygred can
be passed from parents to offspring

3. Competition for resourcesenvironment contains less resources than are neces-
sary for the survival of all offspring

It follows that variants better adapted to competition fesaurces, and thus having a
higher probability of leaving offspring, will dominate ihe population.

Resources are needed for both maintenance (survival) anodregion. Therefore
harvesting them from the environment and transforming theabiomass and biolog-
ically useful energy is a fundamental characteristic oflialhg things. In contrast to
this universal principle, one can find individuals livingati kinds of ecological niches.
Most of these niches differ greatly with respect to envirental conditions, including
types and amounts of resources available. As a consequedigeent selective pres-
sures present in those niches, individuals living in thedhexhibit different modes of
metabolism (Table 1.1) and will respond to changes in theiirenments differently.
Over long enough periods of time, organisms become welltadap their respective
ecological niches.

Each individual interacts with its environment, it uptakesources from it and it
excretes metabolic by-products. This dynamically charigesabiotic factors of the
environment for other individuals, whether they belonghe same species or not.
Therefore, to fully understand the underlying metabolid ather adaptations, we must
consider and study competition for resources in evolutypaad ecological context.

Historically, theoretical and experimental studies okispecies interactions were
focused on plant and animal life. In the first part of the 2@htary, it was realized that

6



7 1.2 Metabolism and metabolic strategies

Table 1.1- Organisms by their carbon and energy source (from Bailey and OlI&6§19

Energy source
Carbon source Chemical Light
Heterotrophg Organic compouds Chemoheterotrophs Photoheterotrophs
Autotrophs | CO, Chemoautotrophs  Photoautotrophs

microorganisms are a good model for studying competitiorrésources and testing
ideas from theoretical ecology (Gause, 1932). Nowadagdjétd of microbial ecology

is expanding thanks to advances in microbiology, molechi@iogy, advent of meta-

genomics and realization that microorganisms, along wathpetition, engage in other
types of social behavior (West et al., 2006).

1.2 Metabolism and metabolic strategies

Metabolismis defined as the set of coordinated biochemical reactiond_&hninger
et al., 2004):

1. Obtaining energy from the environment

2. Building precursors required for macromolecules (necéeids, proteins, com-
plex carbohydrates)

3. Polymerizing precursors into macromolecules

4. Synthesizing and degrading other biomolecules (menaistaignal molecules...)

Metabolism, composed of thousands of enzymes respongibleatalyzing bio-
chemical reactions, is the link between external resouacelsthe inner workings of
the organism. Many biochemical reactions have been studigckat detail, and most
of them are remarkably well conserved over a wide range afispeNevertheless, the
same metabolic capabilities can lead to very different hggies, depending on the
way these reactions are regulated and the way enzyme simithesntrolled.

Depending on the source of carbon they use, living organtande divided in two
big groups (Table 1.1)Autotrophicorganisms use carbon dioxide from the atmosphere
as their carbon sourcéieterotrophicorganisms depend on relatively complex organic
compounds from their environment as a source of carbon. idélililar animals and
most microorganisms belong to this group. Most autotropinganisms obtain their
energy from sunlight while most heterotrophs get their gné&nom energy-rich organic
compounds produced by autotrophs.

Many organisms use glucose as the preferred carbon andyesmugee. Glucose
will usually be metabolized in the cytosol, in a pathway edljlycolysis The first
reaction of glycolysis is the uptake of glucose from the aoeflular medium and its
immediate phosphorylation. In a series of reactions glekphosphate is partially
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oxidized to a three-carbon molecul@yruvate This yields 2 molecules of ATP and 2
molecules of NADH in the process. The net reaction stoickeyndescribing glycoly-
sisis:

Glucose + 2 NAD + 2 ADP + 2 R — 2 pyruvate + 2 NADH + 2 H + 2 ATP + 2 H,O

To keep this process going, NADH needs to be reoxidized to NAThere are two
principal ways this can be done, lsrmentatioror respiration and the choice between
the two will decide the fate of pyruvate.

Respiration

Respiration ooxidative phosphorylatiors a process in which organic or reduced in-
organic compounds are oxidized by inorganic compounds.ukamyotes, molecular
oxygen is used as an oxidant. Respiration is biochemicalleroomplex than fermen-
tation. Organic compounds are first oxidized to£C®hile NAD™ is reduced to NADH.
NADH is then used as a source of electrons for reactionsvimvgkhe respiratory chain.
Proteins in the respiratory chain are membrane-bound amthegeductive potential of
NADH to pump proton ions across the membrane. As protonsareentrated on one
side of the membrane, this creates an electrochemical ntvatien gradiend and results
in aproton-motive force (PMFE)inally, PMF is used to drive the reaction in whigmP
synthasereates ATP from ADP and inorganic phosphate.

Respiration, where glucose is completely oxidized ta@0ad HO, results in bigger
decrease in free energy than fermentation. This resultsnaeh higher yield of ATP
per molecule of glucose. The net stoichiometric equatioxadative phosphorylation
in terms of glucose and oxygen consumption is:

Glucose + 6Q — 6CO, + 6 H,O

and in terms of ATP production is:
X ADP +x Pi + %02 +H™ + NADH — x ATP + H,O+ NAD™

wherex is also known a$/O ratio, a number of ATP molecules synthesized per atom
of oxygen consumed. This number varies between 1 and 3, deygeon the organism,
conditions and the cytochromes used in the respiratorynciidie maximal theoretical
yield of ATP molecules per molecule of glucose in respimatioll be 26-32 (Lehninger

et al., 2004), but in reality these yields are lower. Baccharomyces cerevisjahe
maximum is 16.5 mols of ATP formed from 1 mol of glucose, unther assumption
that there is no proton leakage (Famili et al., 2003).
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Fermentation

In fermentation, glucose is only partially catabolized.dEproducts of microbial fer-

mentative pathways include ethanol, lactate, butyric acid acetone. The simplest
type of fermentation is lactic fermentation, characterig&ir many tumors (Diaz-Ruiz

et al., 2009), muscles and lactic bacteria. Pyruvate isizagtinto lactate in a single

reaction. The net reaction of lactic fermentation is

Glucose + 2ADP + 2 P— 2 lactate + 2 ATP + 2 KO

In ethanol fermentation, which is characteristic &&accharomyces cerevisigs/ru-
vate is first decarboxylated to acetaldehyde, and then egbiacethanol, with simulta-
neous reoxidation of NADH to NAD. Starting from glucose, ethanol fermentation can
be summarized as

Glucose + 2ADP + 2 P— 2 ethanol + 2 ATP + 2 C®+ 2 H,O

Since ATP is needed for growth and reproduction, stratdgigsoduce it and their
characteristics (yield and rate) will have large evolusignconsequences for the organ-
ism (discussed in section 1.5).

1.3 Saccharomyces cerevisiae

The yeastSaccharomyces cerevisi@iggure 1.1) is a widely used and well-studied eu-
karyotic model organism in molecular biology. This is duetsohistorical importance
as an industrial organism in brewing industries as well asenience of using it in
laboratory settings, because of its:

1. rapid growth
2. ease of genetic manipulation
3. availability of peer-reviewed literature, kinetic dasaquences.

The genome oSaccharomyces cerevisiaeas the first eukaryotic genome to be
fully sequenced. It contains a set of sixteen chromosomtstixe total genome size of
12.052 Mb. More than 80% of its about 5780 protein-codingegdmave been function-
ally characterized (Dujon, 2010). In addition, a lot of noiarray-based transcriptomic
data, genome-wide function data, proteomic, interactcanid metabolomic data are
available. Since a lot of related yeast genomes have beeriseed Saccharomyces
cerevisiaehas become an important organisms for comparative genanitgor the
study of genomic evolution.
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Figure 1.1— Saccharomyces cerevisiaells

Physiology ofSaccharomyces cerevisiae

S. cerevisiaegan grow on different carbon sources (glucose, fructoggpse, maltose,
galactose, ethanol...), but glucose is a preferentialorasburce. The most striking fea-
ture of its physiology is the preference for fermentativeaabelism under fully aerobic
conditions (Crabtree, 1928, De Deken, 1966), termedCitadtree effec{table 1.2, fig-
ure 1.3). As a consequence of this, ethanol formation andbiomwass yields are the
characteristic o6accharomyces cerevisibatch cultivations on glucose.

Aerobic growth ofSaccharomyces cerevisiaan be established in carbon-limited
chemostat cultivations at low dilution rates. In this s&jt, the specific oxygen uptake
rate increases linearly with the dilution rate up to a caiticalue (around D=0.31).

At this rate the respiratory capacity becomes saturatediattter increase in dilution
rate results in an onset of fermentation rate and ethanaidbon.

Second, but related, phenomena in glucose metabolis®aotharomyces cere-
visiaeis glucose repressioar glucose controin media containing high glucose concen-
trations. Instead of utilizing different carbon sourcesirmedia simultaneously, yeast
cells do it sequentially starting with glucose. The switatmi utilization of glucose to
other carbon sources is followed by a lag phase, resultingauxic shift

Glucose repression acts on different levels of metabolismlganeously. The glu-
cose response influences:

1. transcription of different genes (repression of gene=siled for metabolism of
other carbon sources and genes involved in respiratorylboksan)

2. concentrations of intracellular metabolites

3. modification and degradation of enzymes

4. the stability of various mRNAs

The most studied effects of glucose control are those orrémsdriptional level. Glu-
cose influences (represses) the rate of transcription famaber of genes like SUC,
GAL, MAL that are needed for metabolism of sucrose, galactosd maltose, respec-
tively (Gancedo, 2008). It also causes accelerated pratealegradation of carrier
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proteins like maltose permease and galactose permeasee tBminduction of MAL
and GAL genes requires the presence of maltose and galactthsecytosol, this rep-
resents an additional level of repression for those patb\iéhein et al., 1998). Another
mechanism by which glucose exhibits its effects is direictlijyencing enzymatic activ-
ities. It has been found that it acts as a direct inhibitomhaltase and melibiase (Klein
et al., 1998).

Table 1.2— Regulatory phenomena in yeast sugar metabolism (Pronk et al., 1996)

Regulatory Definition
phenomenon
Crabtree effect | Aerobic alcoholic fermentation

Pasteur effect Suppression of alcoholic fermentation in aerobic condgio
Kluyver effect Absence of ethanol fermentation in oxygen-limited cormahis
Custers effect Oxygen requirement for alcoholic fermentation

1.4 Kluyveromyceslactis

YeastKluyveromyces lactifigure 1.2) is one of the six species from ieyveromyces
genus. Itis an ascomycetous budding yeast, justSikecharomyces cerevisiak can
be found in many diverse habitats, but many strains werenalig isolated from dairy
products. Being a dairy yeast, it is able to grow on lactosesaseecarbon source (Snoek
and Steensma, 2006), unlike most other yeaddtsyveromyces lactis becoming an in-
creasingly popular yeast with molecular biologists andiatdzhnological applications.
Some of the reasons for this include:

1. Availability of plasmids and other tools for genetic mauiations (Schaffrath and
Breunig, 2000, Zenke et al., 1993)

2. Finished nuclear and mitochondrial genome sequencioggs (Dujon et al.,
2004, Sherman et al., 2009, Zivanovic et al., 2005)

3. Close evolutionary relationship wigaccharomyces cerevisiteat enabled func-
tional annotation oKluyveromyces lactigenes

4. Specific physiology that results in high biomass and pmgtields in fully aerobic
cultivations

5. Interest in genetics and physiolojuyveromyces lactistrains that express pro-
teins toxic to other yeast species (Breunig and Steensma&) 200

Kluyveromyces lactigenome, which is about 10.6 Mb in size, is organized in six
chromosomes. It has approximately 5300 coding sequendesni@n et al., 2009).
Strains having the killer phenotype have cytoplasmic lingasmids that carry a gene
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Figure 1.2— Kluyveromyces lactisells

for zymocin, a glycoprotein toxic to a number of other yegstcses (Breunig and
Steensma, 2003).

Physiology ofKluyveromyces lactis

Kluyveromyces lactiss a Crabtree-negative aerobic respiro-fermentative yekds

a “petite-negative” yeast and abligate aerobg meaning that, while it can ferment
certain sugars, it is unable to grow in fully anaerobic ctinds. So far, 20 genes were
identified as required for anaerobic growtlfSaccharomyces cerevisjdrit their homo-
logues have not been found in tkéuyveromyces lactigenome (Snoek and Steensma,
2006).

Compared toSaccharomyces cerevisjaeatch fermentations on glucose result in
much higher yields of biomass and little or no ethanol predud his is mostly because
of non-fermentative growth and partially due to an indueiblcohol dehydrogenase
that uptakes any ethanol that might be produced (SchafémathBreunig, 2000). In
carbon-limited chemostats, an increase in dilution raselte in a linear increase of
specific oxygen uptake rate. In contrast3accharomyces cerevisjabere is no shift
to respiro-fermentation at some critical dilution rate.

In wild-type K. lactis, and non-oxygen-limited conditions, all of pyruvate is icha
neled into the TCA cycle. This happens even in media with highcentrations of
glucose (Schaffrath and Breunig, 2000). The glycolytic ftightly regulated b)RAG
genesrag mutants do not show an impaired growth on glucose, indigdtiat pentose
phosphate pathway can bypass the block in glycolysis andibsynthetic activity can
be highly efficient even at low glycolytic fluxes (Breunig et, &000). Restriction of
glucose uptake and low glycolytic fluxes may also explain Whyyveromyces lactis
less sensitive to glucose repression tBaiccharomyces cerevisiad@omparison of pre-
ferred pathways in glucose metabolism betw8egerevisia@andK. lactisis shown in
figure 1.3.
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Figure 1.3— Comparison of primary carbon metabolisnSiaccharomyces cerevisiddue)
andKluyveromyces lacti¢red). Thickness of arrows indicates preferred pathways when
utilizing glucose.Saccharomyces cerevisigeeferably uses the glycolysis and conversion
of pyruvate to ethanoKluyveromyces lactigreferably uses the pentose phosphate pathway

and oxidizes pyruvate in the TCA cycle.
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1.5 Trade-off between rate in yield in metabolic path-
ways

In the course of evolution yeasts have optimized their moé&and behavioral charac-
teristics to adapt to the environment and maximize theie§itn Many adaptations come
with a price, and as a result the design of biological systsnikaught with different
trade-offs (Khersonsky et al., 2006, Lee et al., 2009, Tidkat al., 2008). Various
trade-offs in biochemical networks have been studied sitety in the past (Maclean
and Gudelj, 2006, Pfeiffer and Bonhoeffer, 2002, Pfeiffed &chuster, 2005, Pfeiffer
et al., 2001). Since reactions in metabolic networks uguaolve changes in free en-
ergy between substrates and products, some of these tifadzyo be deduced from the
first principles of thermodynamics (Pfeiffer and Bonhoef#02).

In heterotophic organisms, ATP is produced in pathwaysdegtade energy-rich
substrates, into products with lower free energy. The ret énergy difference of such
pathway is (Pfeiffer and Bonhoeffer, 2002)

AGNET _ AGSP _ ATPAGATP (1.1)

AGS~P is the free energy difference between the substrate andrilepfioduct in the
pathway AGATPis the free energy conserved in one mol of ATP afitf is the yield of
ATP. In order to maximize ATP yield, the entire differencefiee energy between the
substrate and the product can be converted to ATP. Howéusndsults inAGNET =
0. In this case the pathway is in thermodynamic equilibrimmeaning that no more
chemical work can be done by the pathway and the net reacterof the pathway is
zero. Consequently, the rate of ATP production is also zemth@ other hand, when
TP is not maximal AGNET < 0, and this results in driving the reactions of the entire
pathways forward. In summary, that it is impossible to mazerboth rate and yield in
a general ATP producing pathway.

A particular metabolic trade-off can be found when studyhmgdifference between
two specific ATP producing pathways found in nature. As dbsdr before, yeasts
produce ATP from sugars, and they do so by fermentation oegpyiration (section 1.2).
Ethanol fermentation is a fast way of producing ATP, with @ltgield of only 2 moles
of ATP per mol of consumed glucose. On the other hand, ragpiravhere glucose is
completely oxidized to C®and HO, results in a theoretical total yield of 26-32 moles
of ATP per mol glucose. In contrast to fermentation, resmraruns at a much lower
rate.

Two physical factors limit the rate of respiration. Firdtetdissolved oxygen con-
centration in the cell is what limits respiratory metabwliand, unlike intracellular glu-
cose concentrations, it is almost impossible for cells tulae it. Second, respiratory
enzymes in yeast are an integral part of the mitochondirahbmane. Since both the
number of mitochondria and the surface of the mitochondnambrane are spatially
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limited, concentrations of respiratory enzymes cannonbesiased easily (Conant and
Wolfe, 2007).

Switch from respiratory to fermentative metabolism usu&ldppens in oxygen-
limited condition, but some organisms, li&accharomyces cerevisjaase respiro-
fermentative metabolism even in fully aerobic conditiossction 1.3). Using both
pathways at the same time results in a lower net yield of ATihp@ecule of glucose
than when respiration is used exclusively.

This will have an impact on population dynamics, as the ratehach ATP synthe-
sized dictates the rate at which biomass is producedggeific growth rateSimilarly,
ATP yields dictate biomass yields: a reduction in ATP yieid wesult in a reduction of
biomass yield.

1.6 Metabolic trade-offs and evolutionary game theory

It's natural to ask why would organisms evolve to use a lefisiefit way of utiliz-
ing a resource that limits their growth. When an organism masx&@lusive access to
the resource, it's beneficial if this resource is used in tlostnefficient manner. For
example, individuals from species belonging to animal &mg that ingest food, and
thereby eliminate the effect of metabolic competition, tesspiration as an exclusive
metabolic strategy. However, resources found in naturasually shared by communi-
ties of mixed populations and there is a direct competitarrésources in the microbial
world. These populations will often be composed of orgasisvith different types of
metabolism, ometabolic strategies

Evolutionary game theorig a framework for studying frequency-dependent selec-
tion. It considers a population of different players (phigpes, strategies) that interact
randomly among themselves. Different strategies havereifit pay-offs which are in-
terpreted as fitness, and higher pay-offs mean higher raptivd success. In other
words, fitness from using a certain strategy (or phenotypiéilepend only on propor-
tions of others strategies in the population (Nowak, 2006a)

The Prisoner’s Dillema (PD) is a well-known game-theorsttoation that can be
applied to problems in biology (Smith, 1982). Two players choose between two
strategies: cooperation and defection. This results in diferent outcomes, depend-
ing on the combination that was chosen. Playing defecti@nag cooperation results
in the highest pay-off, called 'temptation’. At the samedimooperator gets the lowest
payoff from this situation, the 'sucker’ pay-off. If bothagyers cooperate, they get re-
ward’ and if both players defect, they get ‘punishment’ whiis lower than the reward.
This presents two problems for evolution of cooperativiBirst, the stable solution
(Nash equilibrium) is the defection of both players (Now2B06a), and they can never
increase their pay-off by switching to a cooperation. Seg¢anpopulation of coopera-
tors will be easy to invade by defectors.
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Yeasts do not interact directly when competing for glucbsethe metabolic strate-
gies they use can still be interpreted in the game-theocetitext. The trade-off be-
tween rate and yield in metabolic pathways has charadtsrief PD (Pfeiffer and
Schuster, 2005). The exclusive use of respiration will@ase the total yield of ATP
produced by the population before all the resources areucoed. Since higher ATP
yield will result in high biomass yield, the whole populatiwill benefit and will have
increased its average fitness. This makes respiratooperative strategyl he popula-
tion that uses fermentation will consume resources fastpeoduce ATP in a wasteful
manner. Individual rates will be high, but the total amouih&BP produced before all
the resources are consumed will be low. This makes fermentaselfish strategpr
defection.

Pure respiratory metabolism leads to high biomass yieldse Whole population
benefits from this cooperative behavior and this increases/erage fitness (‘reward’).
However, selfish use of resources leads to high individuzdis ('temptation’) through
high growth rate. In a population that is predominantly fentative, this inefficient
use of resources will reduce the overall fitness of the pdijmmahrough lower biomass
yields ('punishment’). A purely respiratory populationiMde easy to invade by the fast
growing fermenters (defectors) and it will get outcompefedcker’ payoff) (Pfeiffer
and Schuster, 2005). This situation is known astthgedy of the commor(see fig-
ure 4.9 in section 4.2.1). In summary, direct competitionlifmited resources favors
the selfish strategy and faster resource consumption rates.

Since cooperative strategies seem to be at a disadvantagye wging shared re-
sources, it is not trivial to explain the presence and eumtubf cooperative behavior.
One of the theories that tries to explain ikis selection theoryHamilton, 1963, West
et al., 2006). According to this theory, altruistic behandorected toward related indi-
viduals gives an indirect fitness, as relatives’ genes ane riikely to be passed on to
the next generation. Mathematically, this is expresseddamsilton’s rule cooperative
behavior is favored when

rb—c>0 (1.2)

wherec is the fitness cost of the altruistic behavibiis the benefit for the recipient of
the altruistic behavior andis the the genetic relatedness between the altruist and the
recipient.

A possible mechanism that enables cooperation of relatididuals in microbial
populations idimited dispersabf the population. This can have great importance for
microorganisms that colonize and reproduce in local areéscal population patches.
In this situation, any neighboring cells are more likely todbonal. As a consequence,
populations with rigid spatial structure should be coniecto cooperative behavior
(Kreft, 2004, West et al., 2006).
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1.7 Evolutionary history of yeasts

With about 40 yeast genomes sequenced so far, the invéstigdtyeast evolution on

the genomic level has been gaining a lot of attention in teedacade (Dujon, 2010).
An interesting pattern has emerged from the study of thoserges: yeasts that are
considered to be closely related (figure 1.4), even thosengeig to the same genus,
have genomes with surprisingly big differences. Rather beang a result of continuous
and subtle change, their genomes seem to have undergonebamoinabrupt changes.

Duplications have been suggested as one of the mechaniswisidty genomic and
physiological differences between related yeast can baiegul. Paralogoussequences
are those that appear in genomes as a result of gene dupliesgnts. These sequences
represent raw material on which natural selection can waslgne of the copies is no
longer under selective pressure. There are three ways &algul gene can lead to
new phenotypic traitsneo-functionalizationsub-functionalizatiorand anincrease in
gene dosage Neo-functionalization is the development of a new funttand sub-
functionalization is a division of labor between duplicateat leads to more specialized
functions. However, it has been shown that duplicationsenmadten result in novel
regulatory control than in a totally novel functions for glgs (Conant and Wolfe,
2008).

A whole-genome duplication (WGD) has been proposed as ongeafetasons for
genomic differences in yeast. As polyploidy is a catastiogient leading to repro-
ductive isolation (Greig, 2009) and increased metabolgt@Nagner, 2005), it would
have to confer a major evolutionary advantage for the oggator it to survive natural
selection. It was postulated that such an event would habte tollowed by the loss
of most of duplicated genes. Those that remain would diveygeeo-functionalization
or sub-functionalization, or have positive fitness effébteugh increased gene dosage
(Conant and Wolfe, 2008).

Clues for WGD event in evolution odaccharomyces cerevisidiest came from
studies of presence and distribution of duplicated blockg#s genome (Wolfe and
Shields, 1997). Further, and definite evidence came afteargteast genomes were
sequenced and the genomeSzfccharomyces cerevisiags compared to the genome
of Kluyveromyces waltiiKellis et al., 2004). It is currently unknown whether the WGD
event is the result of the duplication of the entire chronmosaset or a hybridization
event between two closely related yeast species (Conant alid,\®2007).

WGD had a major impact on the transcriptional network andIeggun in Saccha-
romyces cerevisiaghmels et al., 2005). Outside of WGD events, duplicationsiogle
genes involved in signalling and transcriptional regolatare rare (Wapinski et al.,
2007). It has also been shown that the WGD event was resperisibihe character-
istic physiology of yeast belonging ®accharomycegenus (Conant and Wolfe, 2007,
Merico et al., 2007). Duplicated genes increased the glofipost-WGD yeasts to me-
tabolize glucose and grow anaerobically in minimal mediab@ee-positive phenotype
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Figure 1.4— Phylogenetic tree of different yeast species (Sherman et al., 2009)
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and the presence of petite mutants are also associated with {M@rico et al., 2007).
How WGD events led to a fermentative instead of a respiratibegtyle can be
explained by the following three reasons (Conant and Wo(8;72

1. After WGD, the loss of other duplicated genes increaseddisage of glycolytic
enzymes, thereby increasing the glycolytic flux

2. Respiration scales differently from fermentation ancessllikely to be affected
by WGD. This is due to its limitation by oxygen concentratiow&patial factors.
In addition, some respiratory enzymes are coded in the hutodiral genome
which wasn’t duplicated

3. WGD happened when first fleshy fruits appeared, 65-144anijlears ago (God-
dard, 2008). Since fruits are rich in glucose (150-250 gthls meant the es-
tablishment of a new ecological niche where species withathikty to rapidly
consume glucose would have an advantage

1.8 Theory of niche construction

Through its metabolic activities organisms change theipeetive environments, and
directly or indirectly affect other members of the local ptggion. This is calledhiche
constructionor ecosystems engineeriri@oddard, 2008, Hastings et al., 2007, Jones
et al., 1994, 1997). For any trait involved in niche condinrcto have a role in evolu-
tion, it must be heritable and must have an influence on rejtog success or fitness.

Ethanol fermentation bysaccharomyces cerevisiae a typical example of niche
construction. At the beginning of traditional wine fermatins, fruits contain a va-
riety of yeast species, witBaccharomyces cerevisibaving low abundance. As the
fermentation proceed§. cerevisiaencreases in frequency while other yeasts decline
(Goddard, 2008). This occurs in spite of the fact that fertagon is costly and ineffi-
cient way of consuming glucose in the presence of oxygen.

One hypothesis is that ethanol itself is the crucial factgibd the niche construc-
tion and the dominance &accharomyces cerevisidethanol is a general microbicidal
agent and may be related to reduction of frequencies ofSamtharomycespecies.
However, it has been shown that nSaccharomycespecies are tolerant to high con-
centrations of ethanol @ez-Nevado et al., 2006), higher than they produce thewsel
This indicates that the invasion of fruit-niche and nichastouction bySaccharomyces
cerevisiaemay have influenced their evolution as well, by selectionhigher ethanol
tolerance.

Another hypothesis suggests that the high glycolytic flust tre related high ATP
production yield related to fermentation by itself causesthance ofSaccharomyces
cerevisiag(Conant and Wolfe, 2007). The study of alcohol dehydrogenasggested
that ancient yeast used ethanol production in order to tedy8DH produced in gly-
colysis thereby increasing glycolytic rate (figure 1.3).dém yeasts started consuming
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accumulated alcohol when they acquired a duplicated cogyDai. This is estimated
to have happened in Cretaceous period, 65-144 million yegrgsection 1.7), at the
same time when first fleshy fruits appeared (Thomson et @520

The most startling realization is that niche constructignSaccharomyces cere-
visiaemay have influenced human metabolic and cultural evolutsowell. Consump-
tion of ethanol may have resulted in increased resistanits toxicity, and production
of bread and alcoholic beverages was a factor in the tramsfioon from nomadic to sta-
tionary lifestyle of humans (Goddard, 2008). To fully urgtand the evolution genomes
and metabolism, it is important to study species and theisiofogies in their ecologi-
cal context.
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Project summary

The goal of this project is to study dynamics and outcome offaetition for glucose be-
tween fermentative and respiratory metabolism by uSagcharomyces cerevisiaad
Kluyveromyces lactias models for these two strategies, respectively. The mags-q
tions of the project were:

1. How does the initial availability of resources (glucos#juence the metabolism
and growth of the mixed culture, and which metabolic sthaisgnore dominant
in environments with higher resource availability?

2. How does the spatial structure of the population influgheeutcome of compe-
tition between respiratory and fermentative metaboliatstyies?

To answer the first question, | performed the cultivationbath single and mixed
cultures ofSaccharomyces cerevisiaadKluyveromyces lactisBatch mixed cultures
were done with different initial glucose concentrationsatidition to this, | performed
carbon-limited and nitrogen-limited chemostat cultisas with mixed cultures to test
the competitive exclusion principle.

To tackle the second question, | used a modelling approakt, Fformulated a
dynamic model of fermentative and respiratory metaboliased on kinetic parameters
obtained fromSaccharomyces cerevisiaadKluyveromyces lactisultivations. | used
this model to study effects of resource availability, p@ian frequency- and density-
dependence on the outcome of competition. Following gdmeretic arguments that
spatial structure can promote cooperation in Prisonelésiana situations (Nowak and
May, 1992), | formulated an ecological model of competitianspatially structured
settings. In this model, the meta-population is dividea iltcal populations whose
dynamics of competition for resources were based on thehoktanodel. The main
idea in the spatial model is to describe the population dsgdevith a single parameter,
and to test how changes in this parameter influence the oetobthe competition in the
meta-population. The time-scales for local populationaiyits and meta-population
dynamics were separated by implementing a hybrid stochamsidelling approach.

21
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Materials And Methods

The experimental part of the project included constructbrSaccharomyces cere-
visiaeandKluyveromyces lactistrains tagged with fluorescent proteins. This was the
experimental strategy for distinguishing between the tvataiolic strategies in batch
and continuous competition experiments with mixed pojamast

The modelling part consisted of estimating parameterd®mntetabolic model and
using them to formulate and implement an ecological modereithe effects of spatial
structure on competition between the two metabolic typesheatested.

3.1 Strains

Escherichia coli

E. coliwas used for amplification of all plasmids. This was done hggforming com-
petent DHSt Escherichia colicells (Taylor et al., 1993). This strain has chromosomal
genotypghuA2A(argF-lacZ)U169 phoA ginV4®80 A(lacZ)M15 gyrA96 recAl relAl
endAl thi-1 hsdR17Competent cells were prepared using Inoue method (Inoue et a
1990) and stored at -80°C for further use.

Saccharomyces cerevisiae

The originalSaccharomyces cerevisiagain used in construction of fluorescent-tagged
Saccharomyces cerevisim@as CEN.PK113-5D (van Dijken JP et al., 2000). The rele-
vant genotype is MATa SUC2 MAL2-8c ura3-52. The phenotypéf $train is uracil
auxotrophy (Ura phenotype), meaning that CEN.PK113-5D is not able to grow in
minimal media without uracil supplementation. Plasmidsyag a URA3gene can
complement the uracil auxotrophy so transformants can biyeselected for on agar
plates with minimal media. Fluorescently tagggaccharomyces cerevisiagain used

22
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in all of the experiments in this project carried the p416-1EFP plasmid (Figure 3.1).

AmpR

p416-TEF-CFP

~  M13 origin
6215 bp

" Flori

ColE1 origin

/
TEF

Figure 3.1— p416-TEF-CFP, plasmid used to transfdBaccharomyces cerevisiae

Kluyveromyces lactis

The originalKluyveromyces lactistrain used, RUL1888 (kindly provided by prof. K.
Breunig, The Martin Luther University of Halle-Wittenbergyas also phenotypically
Ura~. The relevant genotype was MATura3 lac4::ura3 (Naumov, 2005). RUL1888
strain was originally derived from NRRL Y-1140, one of the widesedKluyveromyces
lactis strains, and the only one whose genome has been sequensddrttiBherman
et al., 2009). Fluorescently tagg#&tliyveromyces lactistrain used for all the cultiva-
tions carried the plasmid pKATUC41-TEF-YFP (Figure 3.2).

Strain maintenance

All yeast strains were grown in an incubator at 30°C, &sdherichia colistrains were
grown at 37°C. For short term storage (up to 4 weeks), stragre kept at 4°C on agar
plates. For long term storage, overnight cultures were dnxi¢h sterile glycerol (final
glycerol concentration was 15% (v/v)) and stored in -80°@-&ultures for all batch and
chemostat cultivations were prepared from freshly stréakatures ofSaccharomyces
cerevisiaeandKluyveromyces lactis
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pKATUC41-TEF-YFP
10477 bp

| lacZ"

'KICEN2 // Sy 'KARS12/ARS1

tet' P,
URA3'

Figure 3.2— pKATUC41-TEF-YFP, plasmid used to transfoktuyveromyces lactis

3.2 Media

E. coli media

Lysogeny brothI(B) media (Bertani, 1951, 2004) was prepared by dissolving tBe L
broth (Novagen, Madison, WI) in water according to the inginns given by the sup-
plier. This media was sterilized by autoclaving. LB mediaswaed to grow and prepare
competenk. coli cells. LB agar plates were prepared by adding 15 g/L agardkjer
Darmstadt, Germany) into LB mixture. This mixture was $itegd in the autoclave and
poured into plates. Plates were left to solidify for 24 h.

LB-Amp media was prepared by adding 100 mg/mL ampicillin (dghem GmbH,
Darmstadt, Germany) solution to the cold sterile LB mediae Tinal concentrations of
ampicillin in LB-Amp media was 100 pL/mL. LB-Amp plates wereepared in the
same way as LB agar plates, except that ampicilin was addezlmixture was poured
into plates immediately after adding ampicilin.

Yeast media

ComplexYPD media was used for growing auxotrophic mutants CEN.PK11%&58®
RUL1888 (Section 3.1). It was prepared by mixing 10 g/L yeastact (Sigma Aldrich,
St Louis, MO) and 20 g/L peptone (Merck, Darmstadt, Germanwater. This mixture
was sterilized in the autoclave. Glucose solution of 200wk prepared and autoclaved
separately to avoid Maillard reactions. The two solutiomsevmixed after they cooled
down and the final glucose concentration was 20 g/L.

YPD agar plates were prepared by adding 15 g/L agar to pepteast extract so-
lution. Sterile glucose solution was added for the final gikgcconcentration of 20 g/L
when the temperature was about 60°C. Plates were poured mgdrately after adding
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glucose and left to solidify for 24 hours.

Synthetic minimal media without uraciBD-ura) was used for selecting, maintain-
ing and growing yeast strains transformed with plasmidsyoay the URA3 selection
marker. It was prepared by mixing CSM-Ura (Formedium, Ndf@JK) with 6.7 g/L
of yeast nitrogen base without amino acids (Formedium)til8tglucose solution was
added for the final glucose concentrations of 20 g/L. SD-Uagep were prepared by
adding 15 g/L agar to the SD-ura solution. Sterile glucodetiem was added for the
final glucose concentration of 20 g/L when the temperatuiea@ut 60°C. Plates were
poured out immediately after adding glucose and left taddfylfor 24 hours.

Composition of minimal defined media (Verduyn et al., 1992} tas used for all
batch cultivations is listed in tables 3.1, 3.2 and 3.3.

Table 3.1- Composition of the minimal defined media

Compound Concentration
(NH4)2SOy 59/
KHoPOy 39/l
MgSOy- 7H,O 0.59/

trace element solution (Table 3.2) 1 mL/L

antifoam 204 (Sigma-Aldrich) 50 pL/L
vitamin solution (Table 3.3) 1 mL/L
glucose 20 g/l

Table 3.2— Composition of the trace element solution

Compound Concentration (g/L)
EDTA 15
ZnSQy- 7TH0 4.5
MnCl2-4H,0 0.8
CoChk-6H,0 0.3
CusQ-5H,0 0.3
NapoMo0O4-2H0 0.4
CaCbh-2H,0 4.5
FeSQ-7H0 3
H3BO3 1
Kl 0.1
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Table 3.3— Composition of the vitamin solution.

Compound Concentration (g/L)
d-Biotin 0.05
Calcium D(+)panothenate 1
Nicotinic acid 1
Myo-inositol 25
Thiamine HCI 1
Pyridoxine HCI 1
Para-amino benzoic acid 0.2

3.3 Strain Construction

3.3.1 Cloning strategy

Strain construction was done by transforming yeasts withglescopy plasmid carrying
fluorescent proteins under the constitutive promoter.rRilhgonstruction strategy was
to use the polymerase chain reaction (PCR) to amplify genefiumrescent proteins
and insert those genes into plasmids $accharomyces cerevisiaadKluyveromyces
lactis.

The plasmid forSaccharomyces cerevisiagas derived from pRS416-TEF-CYC
(Mumberg et al., 1995). This is an autonomously replicatiegtromeric plasmid. The
centromeric sequence ensures that yeast cells keep inatafry number. It is a shuttle
vector, meaning that it can be replicated and amplifie.iroli cells. The selection
marker forE. coliis Amp Ampgene codes fop-lactamase, an enzyme that degrades
antibiotics belonging to the lactame group. This allowgsibn of transformeé. coli
cells on LB-plates containing high concentrations of antipicilhe genetic marker used
for selecting yeast transformantsUf A3 Since yeast host cells are uracil auxotrophs,
only transformed cells can give rise to colonies on plategasning minimal synthetic
media without uracil (SD-ura).

The pRS416-TEF-CYC plasmid carries a TEF promoter and CYC textoi flank-
ing a multiple cloning site (MCS). Any gene cloned into the M®{ll be under the
control of the TEF promoter (Steiner and Philippsen, 1994)s promoter is a consti-
tutive promoter, meaning that it is unregulated and thatritfers continuous expression
of the gene. Cloned and purified CFP and YFP PCR products havecheed into
pRS416-TEF-CYC plasmid downstream of the TEF promoter.

PCR primers were designed to have restriction sites (seqadnighlighted in yel-
low in table 3.4) that correspond to the restriction sitethim multiple cloning site on
the carrier plasmid. The same restriction enzymes weretos#igestion both the insert
(PCR product with restriction sites) and the plasmid. Thissgated products with com-
patible sticky ends which were then ligated to create a fimali@r plasmid (figures 3.1
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and 3.2).

3.3.2 Saccharomyces cerevisiae plasmid construction

Vector NTI software was used for design and analysis of th@ens. Primers were
ordered from Sigma-Aldrich (table 3.4). PCR was used to dgngénes for fluorescent
proteins CFP, YFP and RFP from a pRK-2 plasmid (kindly providgdb Verena
Siewers from Chalmers University of Technology (Klica, 2))08

Table 3.4— Primer sequences and restriction enzymes used in plasmid construction. Se
guences recognized by restriction enzymes are marked in yellow.

Targeted gene Primer sequence (5> 3) Restriction site
AGACTA GGATCC ATGAGTAAAGGAGAAGAACTTTTCACTGG BamHI
CFP and YFP
TTAGTG ATCGAT TTATTTGTATAGTTCATCCATGCCATGTG Clal
REP AGACTA GGATCC ATGGCCTCCTCCGAGGACG BamHlI
GTCATT GAATTC TTAGGCGCCGGTGGAGTGG EcoRI

PCR was run with a Phusion High-Fidelity DNA Polymerase (Eymes, Espoo,
Finland) according to the protocol supplied by the manuifiagst The table 3.5 displays
concentrations of the components used for PCR reaction.

Table 3.5— PCR reagents

Component Final concentration
Template DNA (pRK-2) 1 ng
dNTP mix(200 mM of each dNTP) 10 mM
forward primer 0.5 uM
reverse primer 0.5uM
5x Phusion HF buffer 1x
Phusion polymerase 0.02 Ul

The PCR reactions were run on a MJ Mini thermocycler (Bio-Radctiles, CA,
U.S.) with the total reaction volume of 50 pL. The thermalfpecfor the reaction is
shown in table 3.6.

PCR products were checked for correct sizes by agarose géilogRoresis. Bands
with correct sizes were cut from the gel and purified using GIY¥A gel extraction
kit (GE Healthcare, Buckinghamshire, UK). Purified PCR prddand pRS416-TEF
plasmid were double digested using restriction enzymes.HBamd Clal were used for
CFP and YFP constructs, while BamHI and EcoRI were used for RFftrcah. FastDi-
gest restriction enzymes (Fermentas, Burlington, Canadeg waed for all restriction
reactions according to the protocol supplied by the manufac Digestion products
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Table 3.6— Thermal profile for the PCR reaction

Cycles Temperature(°C) Duration
1 98 30s
98 (denaturation) 10s
32 60 (annealing) 30s
72 (elongation) 30s
1 72 7 min
1 4 hold

were purified by agarose gel electrophoresis and DNA gebhetitm. Digested and
purified PCR product and linearized plasmid were ligatedgu3ih DNA ligase (Fer-
mentas). Ligation mixture was used to transform compdiestli cells according to the
Inoue method (Inoue et al., 1990). The plasmid was amplifiedrbwing colonies of
transformants in LB-Amp media overnight and purified from baeterial culture with
GeneJET Plasmid miniprep kit (Fermentas).

The final products were p41-6TEF-CFP, p416-TEF-YFP and pZEB-RFP plas-
mids. p416-TEF-CFP is shown in figure 3.1, the other plasmiifisranly in the se-
qguence of the gene for the fluorescent protein.

Purified plasmids were used for transformation of CEN.PK&D3zells. The trans-
formation was done using the standard LIAc/SS carrier DNE@Hnethod (Gietz and
Schiestl, 2007). Yeast transformants were grown in SD-w@diaovernight. Successful
cloning and expression of fluorescent proteins was confirdidil 4000B fluorescent
microscope (Leica, Wetzlar, Germany) (figure 3.3).

3.3.3 Kluyveromyeces lactis plasmid construction

Sequences on centromeric regionKadyveromyces lactishromosomes are different
from those found infSaccharomyces cerevisiado ensure transformation and stable
maintenance of the plasmids Kluyveromyces lactigells, a separate plasmid with
centromeric region characteristic Kf lactis was constructed. The original plasmid
pKATUCA41 (Zenke et al., 1993) was kindly provided by prof. KaBreuning. This
plasmid has a selection marker for ampicilin resistancélarg@amplification inE. coli.
The other marker on the plasmidUHRA3 used for complementing uracil auxotrophy
in RUL1888 cells (section 3.1).

Restriction enzymes Sacl (Fermentas) and Eagl (Ferments) wged to cut the
TEF-YFP-CYC cassette from the p416-TEF-YFP plasmid. Theesanzymes were
used to linearize pKATUCA41 and create sticky ends compatiitie TEF-YFP-CYC
cassette. Products of the digestion reaction were purifiejarose gel electrophoresis
and then ligated by T4 DNA ligase (Fermentas).
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The ligation mixture was used to transform competéntoli cells (section 3.1)
by using the Inoue method. Transformants were selected oAmB-plates and then
cultured in liquid LB-Amp media overnight for plasmid ampddition. Plasmid was
purified from the culture the next day using GeneJET Plasmidpmep kit (Fermen-
tas). Amplified plasmid pKATUC41-TEF-YFP (figure 3.2) wasnhesed to transform
RUL1888 strain. Transformation protocol was the same assémcharomyces cere-
visiae Transformants were selected on SD-ura agar plates. Sficceansformation
and gene expression were verified using the fluorescent saiope (figure 3.3) .

Figure 3.3 — Saccharomyces cerevisiégyan) andKluyveromyces lactigyellow) as seen
under the fluorescent microscope. CFP and YFP channels are @cerlay

3.4 Cultivations

3.4.1 Batch cultivations - single culture

All batch cultivations were done in duplicates in 2.5 L glaégsreactor vessels (App-
likon Biotechnology, Schiedam, The Netherlands)) with therking volume of 2 L.
Minimal defined media with 20 g/L glucose, whose compositgshown in table 3.1,
was used in pure culture cultivations. Media was preparedout glucose and vita-
mins and poured into vessels. Bioreactors were then seatiiiz the autoclave, and
glucose solution was autoclaved separately to avoid Mdilleactions. When vessels
and solutions cooled down, glucose was added along withithein solution.
Cultivation parameters were monitored with pH probes (pH wmasntained at 5
throughout the cultivation by adding 2 M KOH solution), dibs&ed oxygen (DO) probes
and temperature sensors. The temperature was kept coastd@tC. Inlet air was
sterilized by filtration. Aeration rate was set to 120 sL/taof which is the equivalent
of 1 unit of gas volume flow per one unit of liquid volume per i@ (vwm). Offgas
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passed through a condenser, and offgas @@l G concentrations were monitored by
the GA4 gas analyzer (DasGighlich, Germany). Bioreactors were equipped with two
disk-turbine impellers and the agitation rate was set torp@t

Inoculum was prepared by picking colonies from the freshrfrave than 3 days
old) SD-ura agar plates. Those colonies were transfere@@aril baffled shake flasks
containing 100 mL of the same media as bioreactors. Prereslivere grown overnight
at 30 °C on a shaker set to 150 rpm. Volume for inoculation veasa that the final
optical density at 600 nm (Q4gg) in the bioreactor is 0.01.

Sampling

The time of inoculation was set to be the zero time point otthlgvation. The sampling
procedure started after the initial lag phase (about 12dr #fe inoculation). Sampling
was done in intervals of about 1.5 to 2 hours during the exptislephase for both
Saccharomyces cerevisiaadKluyveromyces lactiand 2-3 h during the ethanol phase
for Saccharomyces cerevisiaé\t every time-point, a sample was taken for cellular
dry-weight measurement (3-7 mL, depending of the total deiisity). At the same
time, another sample was taken for measurement of extutarethetabolites (500 pL).
Cellular dry-weight was measured by filtering the cultureotiygh a polyethersulfone
membrane filters (Sartorius Stedim Biotech S.A., Aubagnanée) with pore size of
0.45 um. Pellets were washed with distilled water twiceteFsl with the pellet were
first dried in a microwave oven and then stored in the desicdat 48 hours before
weighing then.

The samples for extracellular metabolites were immedidiéred through a ni-
trocellulose filter with pore size of 0.45 um and the filtrat@svkept at -20°C until the
time of analysis. Rapid filtration was necessary to avoid ghdrnin metabolite con-
centrations after sampling. Analysis of extracellular abelites, glucose and ethanol,
was done with Dionex Ultimate3000 HPLC (Dionex, Sunnyvala, USA) on Aminex
HPX-87H lon Exchange Column (Bio-Rad, Hercules, CA, USA) at 45°C.

3.4.2 Batch cultivations - competition experiments

Batch cultivations with mixed cultures were prepared in thems way and performed
with the same operating parameters (gassing, agitationtgriperature, offgas mon-
itoring) as single cultivations. Media for cultivationstivi20 and 40 g/L glucose was
minimal defined media with composition shown in table 3.1. aVoid limitation for
other nutrients, cultivations with 150 g/L initial glucosere done in 4x concentrated
minimal defined media (table 3.7).
Pre-cultures oBaccharomyces cerevisiaedKluyveromyces lactisvere prepared

separately. Single colonies were picked up from SD-agdegland inoculated in 500
mL baffled shake flasks containing 100 mL of the same mediaoasdxstors and grown
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overnight at 30 °C on a shaker set to 150 rpm. Each of the stveais inoculated in the
bioreactor to the final O)p=0.005 and the total Of3g of the mixed culture was 0.01.
Sampling was done as described in section 3.4.1.

Table 3.7— x4 concentrated minimal defined medium

Compound Concentration
(NH4)2SOy 20 g/L
KH,POy, 12 g/L
MgSOy-7H,O 2g/L
trace element solution (table 3.2) 4 mL/L
antifoam 204 (Sigma-Aldrich) 50 pL/L
vitamin solution (table 3.3) 4 mL/L
glucose 150 g/L

3.4.3 Continuous cultivations - mixed cultures

Continuous cultivations were done in two conditions: carborited and nitrogen-
limited. Four cultivations were performed for each corditi All chemostat cultiva-
tions were run in 0.7 L bioreactor vessels (DasGip) with wagkvolumes of 0.5 L.
Bioreactors and media were prepared in the same way as da$dnilsection 3.4.1.
Bottles with feed media were prepared separately and feedt@ebzed by filtration.
Tables 3.8 and 3.9 show the initial and feed media compositi@ration was set to 1
vvm by using the gas flow of 30 sL/h, and all other conditionseaxthe same as with
single cultures. Inoculum was prepared like described ati@e 3.4.2. Cultivations
were run with all the parameters the same as for batch ctitiiva When the offgas
CO2 profiles showed diauxic shift, the initial batch phase was. After this initial
batch phase, feeding pumps were turned on and this was maskad beginning of the
chemostat cultivation.

Table 3.8— Carbon-limited media for continuous cultivation

Compound Feed | Initial media
(NH4)2SOy 59/L 59/L
KHoPOy 3 g/L 3 g/L
MgSQy- 7HO 0.59/L 0.5g/L
trace element solution (table 3.2)1 mL/L 1 mL/L

antifoam 204 (Sigma-Aldrich) | 50 pL /L 50 pL /L
vitamin solution (table 3.3) | 1 mL/L 1 mL/L
glucose 10 g/L 20 g/L
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Table 3.9— Nitrogen-limited media for continuous cultivation

Compound Feed | Initial media

(NH4)2504 1 g/L 1 g/L
KHoPOy 3 g/L 3 g/L

MgSQOy- 7HO 0.5g/L 0.59/L

KoSOy 5.3g/L 5.3g/L

trace element solution (table 3.2)1 mL/L 1 mL/L

antifoam 204 (Sigma-Aldrich) | 50 pL /L 50 pL /L
vitamin solution (table 3.3) | 1 mL/L 1 mL/L
glucose 80 g/L 20 g/L

Sampling and fluorescence measurements

Sampling for extracellular metabolites and dry-cell biesi\aas done as described in
section 3.4.1. Residual ammonia concentrations were nmesarnitrogen-limited
chemostats by using ammonia assay kit (Sigma-Aldrich) ralbeg the protocol sup-
plied by the manufacturer.

Population dynamics of the two yeast populations were roosit by using fluores-
cence measurements. Samples were taken from the bioreactavere transfered to
into opaque 96-well plates (Nunc). When needed, samples dieted with distilled
water to Oygo between 0.1 and 1.5 to avoid light scattering and non-spétifores-
cence due to high cell densities. Samples were preparecdaurgplicates in volumes
of 150 uL. Fluorescence was measured on the TECAN Safire2rgkadier with excita-
tion/emission wavelengths of 433/475 nm for YFP and 525fB8&FP. At the end of
the cultivation, wash-out of one species was confirmed Wigfluorescent microscope.

3.4.4 Analysis of physiological data and parameter estimation

All physiological parameters were calculated separatetyeich cultivation and ex-
pressed as the means over the duplicate experiments. Bignoags in the exponential
phase was assumed to follow the expression:

X(t) = XoeHmat (3.1)

whereX(t) is the biomass as a function of tim& biomass at the start of exponential
phasepmaxis the maximal specific growth rates anid time. Maximal specific growth
rates, were calculated by fitting the model 3.1 to the biordass from the exponential
phase of growth. Biomass yields on glucoggs were calculated by plotting the glucose
concentration as a function of biomass concentration. A Viuas obtained by linear
regression and the negative inverse of the slope was takegfps. Maximal specific
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glucose uptake rategz c were calculated as

Mmax
Yx/s

fcLc =

Volumetric oxygen uptake rate for each sampling paiat, was calculated as:

_ O%(inlet) — O%(offgas) Vo,
oz = 100 TR

whereVp, was the aeration rate in L/, was the temperaturd (= 303 K for all culti-
vations) andR is the ideal gas constarR & 0.08257 L amt K1 mol™1). The specific
oxygen uptake ratep,, was estimated by plotting th,, against total dry-cell weight
and using the slope of the line fitted to the data points. $ipemxygen requirement,
Yo/x Was calculated from

Yo/x Himax

Similarly, the volumetric CQ production rate for each sampling poimjg, was
calculated as: _
_ CO%(inlet) — CO%(offgas) Vco,

feo; = 100 TR

Using data from oxygen uptake and g@roduction rate is a reliable way to asses the
difference between the fermentative and respiratory noditab. Respiratory quotient
(RQ) in the glucose phase was calculated according to thdiequa

RQ= ¥ (3.2)
do,
and expressed as an average for pure and mixed cultures.ef@tion is character-
ized by higher rates of COproduction and this is indicated by an increase of the RQ
compared to respiratory metabolism.
In mixed cultures, the relative success of the two strasegi@s expressed as frac-
tional contribution of fermentative and respiratory metiggm to the growth of the total
population biomass (equation 3.11 in section 3.5.2).

3.5 Mathematical models

3.5.1 Monod model

The simplest way of modelling the microbial population dymnes is to use the “black-
box” representation of the cell. In this view, the substiatéaken up and converted
into biomass, with all the details of the metabolism comdinejust a small number
of parameters. In one of the simplest models, the populafiowth is assumed to be
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a function of the available substrate and to follow the Moeqgdation (Nielsen et al.,

2003): .
W(S) = Mmaxg K (3.3)

W is the growth rate at a specific substrate (glucose) corat@nrS, and Pmax IS
the maximal growth rate of the population when substrateoislimiting. Ks is the
concentration of glucose at which the population grows Hthe maximal growth rate.

The dynamic balances for the biomass and substrate aralmbsaith the system
of ordinary differential equations:

dX
o puX (3.4)
dsS  pX

In the equation for the balance on substrafgs denotes biomass yield on substrate,
expressed in grams of dry-cell weight of biomass per granulb$tsate.

This model doesn’t capture any of the regulatory phenomeryaast. However, it
is possible to use it to model the population dynamics foaedd growth on glucose
for bothSaccharomyces cerevisiaadKluyveromyces lactis

3.5.2 Monod model and competition for resources

Monod model can be used to model the competition betweenoroiganisms for a
single limiting substrate. The way to describe competibetweemn species is to use
n equations of the form 3.3, each having its own set of kinedi@metersginay, Ksand
Yy/s: Growth rate for speciesis:

S

i (S) = = 3.6
M( ) Umaxl S+ Ks,i ( )

The system describing mass balance then becomes:

dX

ar HiXi (3.7)
ds DX

g 3.8

Biomass yield of the total population can be expressed as ao$uwontributions
from the two metabolic strategies or strains:

Yx/sﬁTot = 1:I:Yx/s,S‘,c‘|‘ fRYx/s,KI (3-9)
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where fg and fr are contributions ofractions of fermentativandrespiratory growth
to the growth of the total biomass, respectivalys scandY, sk are biomass yields on
glucose forSaccharomyces cerevisiaad Kluyveromyces lactjsespectively. fr can
be interpreted as the relative success of the fermentat@tabulism in mixed culture.
Because

fr=(1-fF) (3.10)

equation 3.9 can be rearranged to give an expression farlatihg fr:

Y. -,
fr— x/s,Tot — Yx/sKI (3.12)
Y/s,sc— Yx/sKI

To see how the two metabolic strategies perform with differesource availability,
the Monod model of competition of resources was simulatediiiferent initial glu-
cose concentrations. In this scenario, fractional coutidins of metabolic strategies
were used as measures of their relative success becausertbereasure was used to
estimate their relative success in the experimental part.

Another measure of fitness is tMalthusian parameterFor a single strain, this is
w=In % with N being the cell number at the start (initial) and at the endalfin
of the cultivation. The ratio of Malthusian parameters f@o tstrains is the measure of
their competitive fitness. IN(0) andN(1) denote initial and final population densities,
relative competitive fitness for straimvhen competing against strajican be expressed
as (De Visser et al., 2002)

This is the ratio of realized growth potentials from the stdrthe competition to the
point where all the glucose was consumed. Assuming thatittradss composition
stays the same over the course of competition for both cangpstrains, biomass con-
centrations can be used instead of population counts:

x

(Li
O)i
(1)
©)

In

x

W j = (3.12)

X

In

X

To test frequency- and density-dependence of the two gtesteMonod model of
competition was simulated for different initial densitigstal population biomass) and
different initial frequencies (fraction of the two straiimsthe total populations). In this
scenario, the competitive fitness was used as a measurdaraubeess.
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3.5.3 Modelling growth in oxygen-limited conditions

While the Monod equation captures the population dynaminsxed and pure cultures,
it doesn’t account for the fact that there might be limitirsgtrs other than glucose.
Monod model for single limiting substrate (equation 3.3) ba extended ta limiting
substrates:

S

M= Umaxig Kei 1S (3.13)

Oxygen is needed for the respiratory metabolism of glucasd,can be considered as
an additional substrate needed for the biomass growth.eShesolubility of oxygen
in most liquids is actually very low, oxygen availability pnaecome a limiting factor
for growth. This happens in cultures with very high cell dges. For this, an oxygen
concentration term is used in the equation 3.13 :

S o]
WS = Hmax¢Ks 0+ Ko (3.14)

In this model K, denotes the Monod constant for oxygen. For a complete gescri
tion of the system, equation for dynamic balance on oxygemded to equations for
balances for biomass growth and substrate:

dX

o X (3.15)
ds  uX

do

Parameters jla andY,/, are the volumetric oxygen mass transfer coefficient and
specific oxygen requirement for biomass. Note ¥at is the inverse of ,, the yield
of biomass on oxygenO* is the maximal concentration of dissolved oxygen in the
medium, 8 mg/L (Nielsen et al., 2003), whiis the actual dissolved oxygen concen-
tration.

3.5.4 Model for spatially structured meta-population

It was hypothesized that spatial structure might favor evafive metabolic strategy
(section 1.5). Competition for resources between respsatod fermenters in spatial
settings has been studied using individual-based modwethjding and lattice-based
models (Pfeiffer and Bonhoeffer, 2003) and three-dimeradibrofilm models (Kreft,
2004, Kreft et al., 2001). In contrast, the spatial modekdbed here is population-
based, i.e. population is assumed to be a continuous variabl
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In this spatial model, global or theeta-populations divided into a number of lo-
cal populations. Local populations are structured intoid gf patches. Each patch
contains resources (glucose), and is populateldlbyveromyces lactjsSaccharomyces
cerevisiae or both at the same time. Dynamics of the local populatigmsachics and
local resource utilization are modeled using the modelnilesd in section 3.5.1. Spa-
tial dynamics are modeled with stochastic events actingoal populationsmigration,
substrate influand local populatioextinction These stochastic events are modeled as
Poisson processes. The waiting time for each type of an éaenits own character-
istic exponential distribution. The consequence of thpetpf model is the separation
of timescales in the system: local dynamics are based on shwscales related to
metabolic rates, while global dynamics are governed by tsvieappening on longer
timescales. This is idea is schematically shown in figure 3.4

generate new waiting time

1 1 ..* ’
A A A A
. integrate ODEs .:. .:. .E. .E.
| | | | | >
ty t ty t3 ty
migration sgbstrate migration extinction
influx

Figure 3.4— Timescales in the hybrid stochastic spatial model. Migration (black triangle),
substrate influx (cyan triangle), and local population extinction (red ti&draye discrete
events modeled as Poisson processes. Waiting times between them arenggfiprdis-
tributed random variables. Local population and metabolic dynamics areleddoea set

of ordinary differential equations, essentially operating in continuous titeevials deter-
mined by two subsequent stochastic events.

Migration

For each migration event, a random patch is selected frongride This is the donor
patch. If the selected patch is populated, a fraction of thmufation is moved to one of
the neighboring patches. Each of the four neighboring eattias an equal probability
to be chosen as the destination patch. A periodic boundangiton applies to the
migration of patches on the edges of the grid. In other wdtdsgrid is topologically
a torus with Euclidean distances between patches. If thalatpn in the donor patch
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is mixed, only one of the strains is migrated to the neighigppatch. Probability of
a particular strain being migrated is proportional to thegfrency of that strain in the
donor patch. For the patch with coordinateg) this is

XiK_l
pMigrate| = X,KTJX,SC (3.18)
BIREAN
pMigrate’ = 1— pMigrate| (3.19)

where indiceé(isjC and Xin' denote locaBaccharomyces cerevisiaadKluyveromyces
lactis populations, respectively.

Substrate influx

For substrate influx event, a random patch is chosen fromrile §he substrate con-
centration in this is increased by:

S(i, §) = So(i, ) + Sinflux (3.20)

where &(i, j) is the substrate concentration in the patch before the astichevent
occurred andjux is the amount of glucose (in g/L) added to the patch.

Local extinction

Local extinction event is realized by randomly choosing ohthe patches in the grid.
If that patch is populated, the probability that the locapplation will survive an ex-
tinction event will depend on the local population densBpecifically, probability of
surviving depends on the negative exponent of the local agsm

pSurvivg; =1— e (XI5 (3.21)

where pSurviveis the probability of surviving.)(i*fj' and Xiﬂc are the local population
densities oKluyveromyces lactiandSaccharomyces cerevisigagSurviveas a function
of the local population density is shown in figure 3.5.

Simulation of the spatial model

The simulation of the spatial model can be summarized bydh@fing steps:

1. Initialize the world grid

(a) Randomly select patches to be initially populated
(b) All patches in the grid are initialized with the same amioof substrate
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Figure 3.5— Probability of surviving the local extinction event as a function of locady
lation density

2. Randomly generate exponentially distributed waitingesrfor the three stochas-
tic events (migration, substrate influx, extinction)

3. Repeat until one of the species is wiped out from the grichtif total simulation
time is exceeded

(a) Assign the shortest of the three waiting times to be thémwgaime until the
next stochastic event.

(b) Integrate the systems of ODEs describing local dynaroicall populated
patches in the time interval until the next stochastic evdgpdate local
population densities and substrate concentrations wilothputs from the
ODE solver

(c) Perform the stochastic event with the shortest waitimg t update popula-
tion and substrate grids

(d) Reduce the waiting times for stochastic events by thesethpme. Generate
new waiting time for the stochastic event performed in ttesation

The model was simulated for a range of parameters detergiihexmigration wait-
ing time. This was done to see how different population disglevalues affect the
outcome of competition in meta-populations. The model weem and simulated in
MATLAB ® (7.7.0, The MathWorks, 2008, Natick, MA). Variable order BBolver
odelb5swas used for integration of ODEs describing local dynamiise model was
simulated 100 times for each parameter value.

Parameters for the metabolic model were experimentallgradehed and can be
found in the table 4.1. Death rate kinetics are often assumbd negligible in models
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for homogeneous populations that are simulated for sharess, e.g. when mod-
elling a typical batch cultivation on glucose. However, spatial model is run over an
longer time-scale where population are faced with staswgperiods and where death
rate can influence the outcome of the model. This is why celttdevas included in
the spatial model. It was assumed that both species haveuthe specific death rate,
kg =0.01h1,

Experimental values for parameters specific for the spat@el (migration, sub-
strate and extinction waiting times) were not available. that reason, the values were
arbitrarily assigned, and are listed table 3.10. All parmealues, except for the mean
migration waiting time, were kept constant for all simubats.

Table 3.10— Parameters for the spatial model

Symbol Description Values
Grid size 10x 10
totalTime Total simulation time 15000 (h
klalnitialPatches Number of patches initially populated §luyveromyces lactis 10
scelnitialPatches Number of patches initially populated ISBaccharomyces cerevisiae 10
klalnitalBiomass Initial biomass forKluyveromyces lactiper patch 0.01 (g/L
scelnitalBiomass Initial biomass forSaccharomyces cerevisiper patch 0.01 (g/L
initalSubstrate Initial glucose concentration per patch 20 g/l
tmig Mean waiting time for the migration event 0.5-10 (h)
tsinflux Mean waiting time for the substrate influx event 10 (h
ter Mean waiting time for the extinction of the local patch 20(h)
sinflux Substrate added to a patch during substrate influx event eY (g

The results of simulation were analyzed to give average-tmgses foiSaccha-
romyces cerevisiaand Kluyveromyces lactibiomasses and frequencies in the meta-
population. The frequency &fluyveromyces lactis

XKI ,Tot

= 3.22
ta XK1 Tot + XscTot (3:22)

and the frequency ddaccharomyces cerevisiae
@sce=1—ia (3.23)

Spatial spread was calculated by counting the number ohpatoccupied by one
of the strategies and expressing them as ratio to total nuodmeipied patches. Ratio
of patches occupied gluyveromyces lactis:

#K. lactis patches
#K. lactis patchest #S. cerevisiagpatches

RR| = (3.24)

Ratio of patches occupied I8accharomyces cerevisiae

RRy:= 1— RR (3.25)
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The pseudo code can be found in the table 3.11. The compldeefoo MATLAB
scripts can be found in the appendix.

Table 3.11- Pseudo code for simulation of the spatial model

SET random pathes in populationGrid to initialPopulation
SET all patches in substrateGrid to initialSubstrate
GENERATE tMigration, tSInflux, tEradication from exponen tial distribution
SET interval to 20, totalTime to 15000
GENERATE time as a linearly spaced vector from 0 to totalTime
FOR i = 2 to length(time)
SET timeSlice to time(i) - time(i-1)
WHILE timeSlice > 0
SET timeToNextEvent to min(tMigration, tSInfulx, tEradic ation)
IF timeSlice < timeToNextEvent
SET timeSpan to [0 timeSlice]
INTEGRATE localDynamics for patches in populationGrid>0 w ith timeSpan
UPDATE populationGrid, substrateGrid
DECREASE tMigration, tSInflux, tEradication by timeSlice
SET timeSlice to 0

ELSE

SET timeSpan to [0 timeToNextEvent]

INTEGRATE localDynamics for patches in populationGrid>0 w ith timeSpan
UPDATE populationGrid, substrateGrid

DECREASE tMigration, tSInflux, tEradication by timeToNex tEvent

IF tSinflux is zero
ADD substrate to random patch in the substrateGrid
GENERATE tSInflux from exponential distribution
ELSE IF tMigration is zero
CALL migration script
GENERATE tMigration from exponential distribution
ELSE IF tEradication is zero
GENERATE randomPatchindex
CALCULATE probability of survival for randomPatchindex
CALCULATE probability of extinction
IF probability of extinction > probability of survival
SET populationGrid (randomPatchindex) to zero

END IF
GENERATE tEradication from exponential distribution
END IF
DECREASE timeSlice by timeToNextEvent

END IF

END WHILE

RECORD population values and number of occupied patches

END FOR
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Results

4.1 Experimental results

4.1.1 Batch cultivations - single cultures

Pure cultures oSaccharomyces cerevisiagad Kluyveromyces lactisvere grown in
batch fermentations in order to obtain physiological paetars for growth on glucose.
Figures 4.1a and 4.1b show the typical batch fermentatiofilgs on glucose foSac-
charomyces cerevisiandKluyveromyces lactis

25 25 ¢ 100

20 20 ¥ 80

15 15 60

10 —+—Biomass 40 10 —+—Biomass 40

—#-Glucose ~#-Glucose

5 EtOH 20 5 EtOH
—e—Dissolved 02 ii: : —o—Dissolved 02
0 4 al —i 0 0 # T

0 10 / 20 30 0 10 20 30 40
Time (h) Time (h)

(a) S. cerevisiae (b) K. lactis

Concentration (g/L)
% Dissolved oxygen
Concentration (g/L)
% Dissolved oxygen

20

Figure 4.1 — Fermentation profiles for aerobic batch cultivations of pbaecharomyces
cerevisiaeand Kluyveromyces lacticultures. (a) Representativ®accharomyces cere-
visiae single culture fermentation profile with initial glucose concentration 21 g/L. The
red arrow indicates the time point where glucose is depleted and diauxiglabifphase
preceding growth on ethanol) starts. (b) Represent#tisrgveromyces lactisingle culture
fermentation profile with initial glucose concentration 20 g/L. Ethanol is notiailated
during the cultivation indicating respiratory growth.

42
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Figures 4.2a and 4.2b show they oxygen uptake angig@luction rate profiles for
singleSaccharomyces cerevisiaadKluyveromyces lactisultivations.
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Figure 4.2 - O, uptake and C@production rate profiles for aerobic batch cultivations of
pureSaccharomyces cerevisiaadKluyveromyces lactisultures. (a) Representati@ac-
charomyces cerevisiagngle culture profile with initial glucose concentration 21 g/L. (b)

RepresentativEluyveromyces lactisingle culture profile with initial glucose concentration
20 g/L.

The most striking difference between the physiology of thie strains is the pres-
ence of diauxic shift irBaccharomyces cerevisigeowth, which is absent in the case of
Kluyveromyces lactisultivation. Growth up to that point (indicated with the raatow
in figure 4.1) is characterized by accumulation of ethandte®hat point, glucose is
depleted from the medium. There is a second lag phase falltwyeontinued growth
and ethanol assimilation.

The length of the glucose phase is longer Kduyveromyces lactjsbut the to-
tal biomass yield at the end is higher than accharomyces cerevisjagven when
biomass yield at the end of the ethanol phase is taken intwuatc

Table 4.1—- Comparison of experimentally determined kinetic parame-
ters from single cultures

Parameter Saccharomyces cerevisiaé&luyveromyces lactis
Hmax 0.369+0.020 ht 0.309+0.060 ht

Yy/s 0.133+0.008 4%, 0.515:+0.007 4%
foLc 1538+ 1.24 500 9% 3.33+0.747 5%
Ks! 0.357 g/L 0.558 g/L

1 Estimated by fitting the Monod model to the experimental data
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Table 4.1 summarizes growth, biomass yield and glucos&kegarameters calcu-
lated from fermentation data. Oxygen requirement for ghoaftKluyveromyces lac-
tis was calculated to b¥, , = 28954+ 3261 mg/g. Kk was estimated to be 0.99 mg/L
by fitting the Monod model with oxygen limitation to the expeental data. These
values were used as parameters for the metabolic models.
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4.1.2 Batch cultivations - mixed cultures

The competition experiments betwe8accharomyces cerevisiamd Kluyveromyces
lactis with different initial glucose concentrations were donéhwnixed batch cultiva-
tions.

Figures 4.3a, 4.3b and 4.3c show typical batch fermentatiofiles for mixed cul-
tures ofSaccharomyces cerevisiaadKluyveromyces lactiat different initial glucose
concentrations. There is a significant amount of ethanallyored in all three condi-
tions, which shows the fermentative character of the mixétlires. On the other hand,
dissolved oxygen concentrations drop rapidly in the glacoisase due to respiratory
growth onKluyveromyces lactis

Table 4.2 summarizes growth, biomass yield and glucos&kearameters calcu-
lated from fermentation data of mixed cultures.
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Figure 4.3 — Profiles of mixed culture batch fermentations with different initial glucose
concentrations. Plotted biomass profiles correspond to the total biomassroixbd pop-
ulation
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Table 4.2— Comparison of experimentally determined kinetic parameters for mixed cultures
for different initial glucose concentrations

Initial glucose concentration

20 g/L

40 g/L

150 g/L

Mmax
Yx/s

F'cLc

0.399+0.012 h1
|
0.253+0.0095 ¢y
I gl
8.77+0.43 3 5ewH

0.3514+0.023 h!
|
0.207+0.0094 55w
I gl
9.45+ 0.75¢5ewH

0.330+0.008 h'?
I
0.155:+ 0.0054 5w
lgl
11.81+0.465pew,

Figure 4.4 is based on combined data from tables 4.1 and t4&RoWws the biomass
yield as a function of specific glucose uptake rates for siagid mixed cultures. Over-
all, in mixed cultures, increase of initial glucose availitp was accompanied by an
increase of glucose uptake rate and a decrease in total fsoyredds.

Biomass yield on glucose (g/g)

0,6 -
K. lactis
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0,4 -
0,3 - 20g/L
Il 40g/L
0,2 - —l—  150¢g/L .
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|—‘—.
0,1 -
0 T
0 4 8 12 16

Specific glucose uptake rate (mmol/g h)

Figure 4.4 — Rate versus yield trade-off in single and mixed cultures. Result from sin-
gle Saccharomyces cerevisiaalture represents fermentative metabolism and results from
Kluyveromyces lactisepresent respiratory metabolism. Mixed populations show a trend of
increasing fermentative character with an increase of initial glucosesotrations.

Comparison of biomass yields on glucose between single aredntiultures was
used for calculating the fraction of fermentative and rnetpry metabolism in the biomass
growth for the mixed cultures (equation 3.11 in section.5The results are shown in
figure 4.5b. Contribution of the fermentative growth the tovgth of the mixed culture
increases as glucose levels are increased.
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Figure 4.5 - Fermentation and respiration in mixed cultures. (a) Specific oxygen uptake
rates of the mixed culture in the glucose phase. Rates decrease with imgrghs

cose concentrations indicating a reduction of the respiratory metabolism imixiee cul-

ture. (b) Fractional contribution of fermentation and respiration to the bisgrasvth of the
mixed culture. Increased initial glucose concentrations result in an sedermentative
metabolism.

Since oxygen is needed for respiratory metabolism, spenifigen uptake rates can
show the how the mixed culture’s metabolism responds togd®gin glucose concen-
trations. Figure 4.5a shows that specific oxygen uptakes rd¢erease when glucose
levels are increased.

Additional results showing the increase in fermentativeaibelism in mixed cul-
tures come from measured RQ values in single and mixed csltdisplayed in fig-
ure 4.6.



Chapter 4. Results 48

Respiratory Quotient
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Figure 4.6— Average respiratory quotient (RQ) in single (blue bars) and mixed esl{ued
bars) for growth on glucose. Result from sin§leccharomyces cerevisieglture represents
RQ characteristic of fermentative metabolism and results tugveromyces lactisepre-
sent RQ for respiratory metabolism. Mixed populations show a trend ofdsitrg RQ with
an increase of initial glucose concentrations.
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4.1.3 Continuous cultivations

Competition in mixed continuous cultivation was done in carimited and nitrogen-
limited conditions. Results of competition for resourcesaigontinuous culture are
shown in figure 4.7. In both cases, the total biomass dentiys soughly the same
while the composition of the population changes. At the ehthe cultivation, both

cultures result in competitive exclusion of one of the sigai

In carbon-limited conditions (figure 4.7a), where glucoseahe growth-limiting
substrate, the decrease in YFP and simultaneous rise in Céifedaence shows that
Kluyveromyces lactigets washed out of the culture. Residual concentration abglel
in the media was 0228+ 0.0005 g/L.

Nitrogen-limited conditions (figure 4.7b), where ammoniisrgrowth-limiting sub-
strate, led to an opposite outcome. CFP fluorescence intelisppped indicating wash-
out of Saccharomyces cerevisid®m the culture. Since the wash-out of the CFP-
tagged cells was confirmed by fluorescence microscopy,uals@FP fluorescence at
the end of the cultivation can be explained by unspecific gemtknd fluorescence from
Kluyveromyces lactisells. The residual concentration of ammonia in the cultuas
75.3+31.8uM.
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Figure 4.7— Competition in chemostats leads to competitive exclusion, DEO" for both
conditions. Figure shows the profile of the continuous cultivation from tietwhere
feed pumps are turned on (marked as 0 h). (a) Competition in carbon-limitetitions
leads to wash-out dKluyveromyces lacti§YFP) and dominance ddaccharomyces cere-
visiae (CFP). (b) Competition in nitrogen-limited conditions leads to wash-o@&aufcha-
romyces cerevisia@CFP) and dominance #&fluyveromyces lactiéY FP).
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4.2 Simulation results

4.2.1 Competition in homogeneous environment

Simulation of the Monod model (section 3.5.1) based on expmtally determined
parameters from the table 4.1 showed tBatcharomyces cerevisihas a faster growth
rate tharKluyveromyces lactir all glucose concentrations (figure 4.8).

0.4F ‘ B

umax(S. cerevisiae) = 0.369 ht

Ho (K- lactis) = 0.309 h™*

——U(S) - S. cerevisiae
—(S) - K. lactis

p(™
£
|

0.1y —

1 1 1
0 10
Glucose concentration (g/L)

Figure 4.8— Comparison of growth rates f@accharomyces cerevisiaadKluyveromyces
lactis at different glucose concentratiorS8accharomyces cerevistzgs higher growth rate
thanKluyveromyces lacté all glucose concentrations. Simulations based on parameters
from the table 4.1

Figure 4.9 shows the results of simulations of the Monod rhémlesingle (sec-
tion 3.5.1) and mixed (section 3.5.2) populations. Sifleyveromyces lactipopula-
tion shows slower growth and slower sugar consumption, bigfzer biomass yield on
glucose than the pur8accharomyces cerevisigepulation. In mixed population the
situation is reversed. At the point when all the glucose ssconed, biomass yield of
Saccharomyces cerevisiesehigher than the biomass yield idfuyveromyces lactisThe
figure shows only the phase where biomass grows on glucode, twa diauxic shift is
omitted.

Figure 4.10 shows the how the choice of metabolic modeKiayveromyces lac-
tis influences the outcome of competition at different initifldapse concentrations.
When oxygen is treated as a limiting substrate, fermentégmomes even more domi-
nant in the mixed culture than in the case where only glucesensidered.

Another simulation was run to test how the frequency of saind the total popu-
lation density influence the competition. The simulatiorswlane with three different
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Figure 4.9 — Simulation of Monod model for growth on glucose and glucose consump-
tion dynamics of fermentative and respiratory strategy in single and mixedesit(Left)

In pure culture, the high-yielding respiratory strategyuf/veromyces lact)jss dominant.
(Right) The situation is reversed when respiration and fermentation congpéie fsame re-
source pool - in mixed culture, fast growing fermentea¢charomyces cerevisigggecomes
dominant and outgrows the respirer. This situation is called “the tragedy aiimmons”

population compositions (1:100, 1:1, and 100:1) and witlaltpopulation densities
ranging over four orders of magnitude. Figure 4.11 shows timnfitness of the fer-
menter depends on frequency and density in the two metatnolitels. With both mod-
els, Saccharomyces cerevisiaempetitive fitness is positive density-dependent. When
only glucose is limiting the growth dfluyveromyces lactisompetitive fithess dbac-
charomyces cerevisias positive frequency-dependent. When the metabolic mauntel
Kluyveromyces lacti;cludes oxygen limitation term, the competitive fithessSaic-
charomyces cerevisias negative frequency-dependent.
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Figure 4.10 — Fraction of fermentative growth in the growth of the total mixed
biomass as predicted by the twduyveromyces lactisnetabolic models. Both mod-

els predict dominance of the fermentative metabolism, but the dominance is mwre p
nounced if oxygen is a limiting substrate. Red line shows the outcome of competition
when growth ofKluyveromyces lactiss limited only by available glucose and oxygen:
ki = HmaxKi gesikesg- Blue line shows the outome of competition when growth on

Kluyveromyces lactis limited only by glucosep| = Hmaxki %S
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Figure 4.11— Competitive fithess oddaccharomyces cerevisias a function of initial fre-
guency and population density as a result of two models. Left plot shawdependence
for the model wher&luyveromyces lactigrowth is limited only by glucose concentration.
Right plot shows the simulation results for competition whelgyveromyces lactigrowth

is limited by both glucose and oxygen concentration.
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4.2.2 Competition in a spatially structured population

The stochastic model was used to study the effect of spatjallption structure and
population mixing on the outcome of the competition. Figdrg&2 shows the typical
output of the single simulation run of the model. It compahestwo levels of compe-
tition in the spatial model, the meta-population level amellbcal level.

Global dynamics Population structure (time=400 h)
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Figure 4.12— Sample plots showing the behavior of the spatial model. Left plot shows a
part of the time-course of average biomasseKlafveromyces lactigblue) andSaccha-
romyces cerevisia@ed) in the meta-population for one simulation run. Right plot shows
the spatial structure of the meta-population for one time point. Each basesygeone lo-

cal population. Height of a bar is the local population density in that patdhtencolor of

the bar indicates the population composition for that patch. Patches domiyaSeattha-
romyces cerevisia@@urple to red coded) tend to have a lower population density or biomass
than patches populated by putkiyveromyces lactipopulations (blue coded).

Outcome of the competition in the spatially structured paton depended on the
dispersal or rigidity of the population, which is in this easodeled by the mean time
between stochastic migration events. This is shown in thedigl.13, where aver-
age biomass time courses are shown for three different trogravaiting time values.
With shorter times between migration eversccharomyces cerevisiagominated in
the meta-population, both measured by average biomasgegabis(occupancy) of the
world grid. As waiting times increasedluyveromyces lactisbecame dominant in
biomass and spread (figure 4.15).
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Spread ofKluyveromyces lactigs the ratio between patches occupiedkaylactis
and patches occupied IBaccharomyces cerevisiggomparison oKluyveromyces lac-
tis and Saccharomyces cerevisiapread in the meta-population at different migration
rates is show in the figure 4.14. Details of calculationsfeqéiencies and spatial spread
(ratio of occupied patches) are explained in section 3.5.4.

K. lactis biomass in the meta—population S. cerevisiae biomass in the meta—population
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Figure 4.13— Comparison of averageaccharomyces cerevisiaad Kluyveromyces lac-
tis biomasses in the meta-population - results for the simulation of the spatial model with

different average migration times. Each trajectory is calculated as the mé&&g sfmula-
tions.

More comprehensive results of the competition in the sjpatsructured popula-
tion are shown in figure 4.16. The exploration of the mean atign waiting time pa-
rameter space shows a trendSzEccharomyces cerevis@dmninance at shorter waiting

times, co-existence at intermediate waiting times, ldluyveromyces lactidomination
at longer waiting times.
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Figure 4.14— Comparison of number of patches occupie®bgcharomyces cerevisiard

Kluyveromyces lactisResults for the simulation of the spatial model with different average

migration times. Each trajectory is calculated as the mean of 100 simulations.
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Figure 4.15— Results shovKluyveromyces lactifrequencies in the meta-population and
the ratio of patches occupied. Results for the simulation of the spatial modediffgrent
average migration times. Each trajectory is calculated as the mean of 100 sinsilation
Calculation was done according to the equations 3.22 and 3.24
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Figure 4.16— Exploration of the migration waiting time parameter space. Each point cor-
responds to an averag@duyveromyces lactifrequency in the meta-population at the end
of the simulation resulting from the corresponding waiting times between migrat@rse
Increase of waiting time leads to an increas&limyveromyces lactifequencies.
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Discussion

5.1 Fermentation is dominant in homogeneous popula-
tions

The experimental part of this study shows that the fermmetabetabolism is a dom-
inant metabolic strategy for competition for glucose inlweixed population. High
glucose availability make this dominance is even more puoned.

5.1.1 Batch cultivations - single cultures

The comparison of physiological profiles f cerevisia@ndK. lactisfrom pure batch
cultivations (figure 4.1) shows a typical pattern of growth glucose for Crabtree-
positive (figure 4.1a) and Crabtree-negative (figure 4.1t This difference can
also be seen by comparing oxygen uptake and @@duction rate profiles in figure 4.2.

Although cultivation conditions are aerobic in both cagbs, distinction between
the two modes of metabolism is clear from ethanol conceatraturves and dissolved
oxygen measurementkluyveromyces lactissquires more oxygen during the glucose
phase because it is using respiratory mode of metabolismth®nother hand, growth
of Saccharomyces cerevisigcharacterized by accumulation of ethanol. This is the
hallmark of fermentative growthS. cerevisia®nly uses fully respiratory growth only
after all the glucose has been consumed and when ethanahbsdbe main carbon
source. A major metabolic change is needed for the switah feymentative to respi-
ratory metabolism and ethanol uptake. A second lag phasesdaring whichSaccha-
romyces cerevisiasynthesizes all the necessary enzymes (diauxic shift)s §étond
exponential growth phase explains the second peak oxygakaipnd CQ profiles in
figure 4.2a. In the pur&luyveromyces lactisultivation, there are only single peaks
in COy, production and oxygen uptake rates, and they show a shappaice all the
glucose in consumed (figure 4.2b).
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As expectedSaccharomyces cerevisiahows higher maximal growth rate on glu-
cose whileKluyveromyces lactibas a higher biomass vyield (table 4.Ks value for
Saccharomyces cerevisidesplayed in the table 4.1 is higher that what is reported for
wild-type S. cereviaisg€0.357 g/L compared to 0.180 g/L reported in Nielsen et al.
(2003)). This value might indeed be higher for the strairdusethe experiments. Al-
ternative explanation comes from studies of identifiapilift Monod parameters from
batch cultivation data: different sets of parameters shopralty good fit to the data, and
parameters estimated from the data coming from similar itond often show large
variability (Holmberg, 1982, Holmberg and Ranta, 1982). Relgas of the cause of
this discrepancy, it should be pointed out that experimantssimulations in this study
occur at glucose concentrations that are much higher thaKstbonstant for glucose.
Growth rates are close to the saturation part ofit® curve (figure 4.8), and the actual
value ofKg should not influence the outcome of competition in a qualgatnanner.

5.1.2 Batch cultivations - competition experiments

Physiological profiles of mixed cultures show mixed chaggstics of both types of
metabolism. In the glucose phase the ethanol accumulatisating fermentation. At
the same time, the dissolved oxygen levels drop faster ti@ndo in purely fermenta-
tive growth. The dissolved oxygen in cultivations with 4Q gihd 150 g/L of glucose
drops to levels where cells are in oxygen-limited condgiohhis happens even though
cultivation conditions are carefully monitored, and aisfgrged through the medium.

The dominance of fermentative type of metabolism can beredeby just con-
sidering the growth rate parameters from the table 4.1. thtiad, oxygen limitation
presents an additional problem for strains using respiyajoowth. It is impossible to
sustain maximal purely respiratory growth once the popariadensity reaches a certain
threshold and oxygen demand surpasses oxygen supply. sTiniegreement with the
negative frequency- and negative density-dependenceattpiratory growth in sim-
ulations that include oxygen limitation #fluyveromyces lactigrowth (section 5.1.4).
Oxygen-limitation due to high cell densities also expldins absence of the pattern
characteristic for diauxic shift in profiles of mixed cukasrwith 40 and 150 g/L glu-
cose.

Table 4.2 and figures 4.4 and 4.5b quantitatively show howethicultures com-
pare to pure cultures. Even at lower glucose concentra{@hg/L), fermentation is a
dominant strategy. It is important to note thdtiyveromyces lactisas an alcohol de-
hydrogenase enzymKJADHA4, that is induced by ethanol and is insensitive to glucose
repression (Breunig et al., 2000). This means that it is ablgtake ethanol even when
the glucose is present in the media. In other words, in amdit using glucose from
the mediaKluyveromyces lactigptakes and metabolizes ethanol produce&agcha-
romyces cerevisiaeExperimentally obtained values for biomass yields on ghecin
table 4.2 include th&luyveromyces lactibiomass produced by growth on ethanol.
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This means that the tru€luyveromyces lactibiomass yields, and consequently the
total mixed biomass yields on glucose, are lower than thbserwed experimentally
in mixed culture. Hence, considering just competition flarcgse, the true fraction of
fermentative growth should actually be higher than whah@s in figure 4.5b.

The decrease in respiratory metabolism in mixed culturesatso be seen by com-
paring specific oxygen uptake rates in figure 4.5a. The spemdfygen uptake rate
(sOUR) is expressed as the rate of oxygen in mmoles consunmegtgra of dry cell
weight per hour. Decrease in this number shows that theidractf the biomass that
uses respiratory metabolism decreases as glucose legetserased. Furthermore, the
SOUR values for mixed cultures in 40 g/L and 150 g/L are cal@ad only for the part
of glucose phase before the onset of oxygen limitation, nmgathat the dominance of
fermentation is larger still.

An additional evidence for dominance of fermentative melisn in competition
for glucose comes from comparison of RQ values of pure anddrexéures. This is
shown in figure 4.6. The higher the RQ value, the higher the @©duction rate com-
pared to oxygen uptake rate. This is a clear indication ahéstative metabolism.
The figure shows that mixed cultures have RQ values higher pl@e respiratory
(Kluyveromyces lact)sculture and that these values approach that of pure featent
culture Saccharomyces cerevisjae

5.1.3 Competition in chemostat culture

A well-known outcome of competition for a single resourcénsen species with dif-

ferent growth and resource uptake capabilities is the ctitiyeeexclusion of all species
but the one that is best adapted for that particular nicleedd, the competition experi-
ments betweeBaccharomyces cerevisiardKluyveromyces lactis chemostats result
in competitive exclusion.

Competition experiments in carbon-limited chemostat tesalcompetitive exclu-
sion of Kluyveromyces lactis This can be explained by the fact tHaé&ccharomyces
cerevisiaegrows faster tharKluyveromyces lactisit all glucose concentrations (fig-
ure 4.8). At dilution rate of D=0.11t, which is not enough to induce fermentation
(section 1.3), the growth and metabolismS#ccharomyces cerevisiaee respiratory.
RegardlessS. cerevisiaas able to grow faster thaKluyveromyces lactiand domi-
nate in the carbon-limited chemostat. One of the factoraaniting this outcome is the
higher specific glucose uptake rateS#ccharomyces cerevisia&his is not surprising,
asSaccharomyces cerevisibas six primary glucose transporters (Youk and van Oude-
naarden, 2009), and a total of 20 hexose transporters, 1hichvhave been shown
to facilitate glucose uptake (Breunig et al., 2000, Wieceoek al., 1999). Further-
more, affinities of glucose transportersSn cerevisiaeover a wide range of possible
glucose concentrations.. On the other hdfidyveromyces lactis a dairy yeasts, bet-
ter adapted for niches containing galactose and lactogeystound in dairy products
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(Schaffrath and Breunig, 2000).

The nitrogen-limited chemostat resulted in the oppositeaue, Kluyveromyces
lactis dominance and washout &accharomyces cerevisié®m the culture. Since
glucose is in excess, the competitive exclusion in this tardcomes from competition
for ammonia, rather than glucose. Residual concentraticamhonia found in the
chemostat aftebaccharomyces cerevisimewvashed out is lower than that found in pure
Saccharomyces cerevisiaeltivations at the same dilution rate (ter Schure et ab5)9
In other words Kluyveromyces lactiss more efficient in competing for nitrogen due
to its ability to uptake it even when it is scarce in the medaspiratory metabolism
results in high biomass yields and, since proteins are ameajostituent of biomass
(Nielsen et al., 2003), this places a high demand for an efftanitrogen metabolism
and uptake. However, it needs to be noted that nitrogen roktabin Kluyveromyces
lactis has not been thoroughly studied and further research isedetedfully explain
this result.

5.1.4 Resource availability, frequency and population density de-
termine the outcome of the competition

Two different metabolic models were used to study the edfe€resource availability,
population density and frequencies on the outcome of theosedcompetition in well-
mixed populations. The first model represents the situatibare the growth of both
species is limited only by glucose availability. The secomatlel includes the limitation

of Kluyveromyces lactisespiratory growth by oxygen. Both models show, as experi-
ments do, that fermentation is dominant and that the dorsa& more pronounced
as glucose levels are increased (figure 4.10). However, Isalféer with respect to
density- and frequency-dependence of the relative suatdhe two metabolic strate-
gies (table 5.1).

Table 5.1— Initial frequency and initial density dependence of competitive fitnesheof
two strategies

Glucose limitation | Glucose and oxygen limitation
Metabolism | Frequency Density Frequency Density
Fermentativeg Positive  Positive| Negative Positive
Respiratory | Positive  Negative Negative Negative

When Kluyveromyces lactigrowth was limited only by available glucose (equa-
tion 3.3), the dominance of fermentation comes from the gnaand glucose uptake
rates. Since fermentation is a strategy that gives highewtyr rate and higher glu-
cose uptake rateSaccharomyces cerevisi@@minates in the culture. This situation,
where one strain outcompetes the other because of its rapidfuimiting substrate is
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calledscramble competitiofHibbing et al., 2010). In this case, fermentation is posHi
frequency dependent and positive density-dependent. tNegkensity-dependence of
respiration means that efficient use of resources is favongdwhen the resources are
shared between a smaller number of individuals. This hast@en shown in competi-
tion models based on thermodynamic arguments (PfeiffeBamthoeffer, 2002).

WhenKluyveromyces lactigrowth is limited by both glucose and oxygen concen-
trations (equation 3.14), fermentation becomes neg#ftagiency dependent. In other
words, fermentation is more dominant when it is a rare sjsate the population. This
is a natural consequence of the oxygen requirement forreggpi: higher frequencies
and densities of respirers will sooner reach the criticgdytation density where they
get limited by available oxygen. Fermenters will invade antcompete these popula-
tions of respirers easier than the less dense populatiahsuth growing closer to their
maximal growth rate.

5.2 Limited population dispersal favors respiration

The stochastic model described in the section 3.5.4 was tasexplore the effect of
population dispersal on the outcome between strain thaglusese in an efficient and
slow manner (cooperative), and strains that use glucoseniasteful but fast manner
(selfish). The simulation results show that the intensitythaf population dispersal,
modeled by waiting times between migration events, doextthe outcome of long-
term competition in the global population (figures 4.13444.15 and 4.16).

The actual values of the mean migration time parametersrésaift in different
outcomes depend on the other “ecological” parameters usatbdel, most of which
are not know exactly. However, when all parameters all fixed @anly mean waiting
times between migration events are varied, simulatioritsestil show a definite change
in competition outcomes.

Frequent migration events lead to well-mixed meta-popaiat As a result, the
outcome of competition will be the same as in the experimantsin simulations with
no spatial structure imposed on the population - the feratmet strategists become
dominant and respiratory strategists get washed out of @ta4population or only make
a small fraction of it (figure 4.16). In simulations where ptggion dispersal is limited,
the opposite thing happens - respiratory strains becomeéndortn

In a spatially structured population, respiratory pogalag will have a higher prob-
ability of being surrounded by other respiratory populagi@and will get an advantage
of using resources efficiently. Low population yields offfenters have long-term dis-
advantage and make them more susceptible to cell death ealdpopulation extinc-
tions. This is a typical game-theoretic situation whereigpatructure enables locally
successful strategies to dominate in the meta-populatidghe long run (Nowak and
May, 1992). However, it should be noted that this is only thsecfor the “Prisoner’s
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dilemma” games, and that in games of other types spatialtsteimay inhibit coopera-

tion (Hauert and Doebeli, 2004). This result show that coajpee strategy can become
dominant even in the absence of factors like rationalityytoey of past interactions and
punishement (Nowak, 2006b).

The positive correlation between success of respiratoayegfies, and spatial struc-
tures can be observed in nature. Biofilms are typical batteo@perative communi-
ties, they are both the result of cooperative behavior anthpte cooperative behavior
(Kreft, 2004). All multicellular lifeforms use respiratioas a main metabolic strategy
for production of ATP from glucose. Slow but efficient use afgpse is not under im-
mediate threat of invasion from selfish, fast-consumingviddals because foods are
ingested before they are digested. It has been suggestedotbgerative use of re-
sources in spatially structured setting is the primitiverfaf multi-cellularity and that
“true” multicellular organisms evolved from respiratomils that lost the ability to fully
detach from their parental cells (Pfeiffer and Bonhoeffé0)3.

Two notable exceptions to the use of respiratory metaboirstme multicellular
world are muscle cells and tumors. Muscle cells use fernigatanetabolism, that
yields lactate, whenever there is need to produce ATP atrfagtes than is possible
through the respiration. Tumor cells grow at faster ratesaae often limited by oxygen
availability. In addition to showing other selfish traitajors often use fermentative
pathways (Vazquez et al., 2010).
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Conclusion

This study shows how different characteristics of metano)iresource availability, pop-
ulation and spatial structure influence population dynanmenicrobial populations and
promote different metabolic strategies. In nature, thegrifations undergo fierce com-
petition for resources. Specific modes of metabolic regaiaind metabolism can be
optimized for maximizing efficiency (yields) or rate, butvee both at the same time.
The choice between those two will decide the outcome of cditiggeand will depend
on the evolutionary history and the ecological niche thaoigm has adapted to.

Our experiments show that maximization of growth and uptakes, as seen in fer-
mentative lifestyle, is a strategy that will lead to domicam well-mixed populations.
Abundance of glucose will make fermentative strategy everendominant. Increase
in fraction of fermentative metabolism with increased gk concentrations can be
compared to what happens in glucose-rich fleshy fruits dugthanol fermentation and
explains the dominance &accharomyces cerevisiaethis ecological niche. Although
fast glucose consumption, or scramble competition, is ghdar fermentation to be-
come dominant, respiration is further limited by oxygenuiegment.

The model of the spatially structured population shows thatrelative success of
fermentative and respiratory strategies will depend onirikensity of the population
mixing or dispersal. The simulations show that, althougimdpevashed-out from the
meta-population that are mixed at higher rate, respiremsbemome dominant in the
population when the population is less dispersed. In otloedsy rigid spatial popula-
tion structure can favor the dominance of the yield maxingziespiratory strategy and,
in general, promote cooperative behavior.
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Appendix A
Appendix - MATLAB code

Main script

This is the MATLAB code for the script that was used to explibre parameter space of
the mean waiting time between migration events.

tMigParameterSpace=[0.5 1:10];
for p=1:length(tMigParameterSpace)

fileName=[tMig’,num2str(tMigParameterSpace(p))];
if “(exist(dirName,'dir’))

mkdir(dirName);

end;

nSimulations=100; % run nSimulations for each parameter va lue

for r=1:nSimulations
clearvars -except tMigParameterSpace dirName nSimulatio ns rp;
worldx=10; % world dimensions
worldy=10;
totalTime=15000; % time in hours for total simulation run
snaplinterval=20; % record population densities every snap Interval hours
initialSubstrate=20; % initial glucose concentration in e ach patch
substratelnflux=20; % amount of substrate added on sinflux event
migrationMean=tMigParameterSpace(p); % waiting time for migration event

sinfluxMean=10; % waiting time for sinfulx event
eradicationMean=20; % waiting time for erradication event
nPatches=worldx*worldy;

klalnitialPatches=floor(nPatches/10); % number of patch es to populate with kla
scelnitialPatches=floor(nPatches/10); % number of patch es to populate with sce
klalnitialBiomass=0.01; % initial biomasses in g/L

scelnitialBiomass=0.01;

worldGrid=zeros(worldy,worldx); % grid of local populati ons, initialize to zero
substrateGrid=worldGrid;

substrateGrid(:)=initialSubstrate;

klaGrid=worldGrid; % grid of s.cerevisiae and k.lactis

sceGrid=worldGrid;

% populate k. lactis

popPatches=randperm(worldy*worldx); % generate random i ndices
klaGrid(popPatches(1:klalnitialPatches))=klalnitial Biomass;
% populate s. cerevisiae

popPatches=randperm(worldy*worldx); % generate random i ndices
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sceGrid(popPatches(1:scelnitialPatches))=scelnitial
worldGrid=klaGrid+sceGrid; % total cell population initi

%generate the initial stochastic times
tToMigration=random(’exp’,migrationMean);
tToSInflux=random(’exp’,sInfluxMean);
tToEradication=random('exp’,eradicationMean);

if “(mod(totalTime,snaplinterval))
time=0:snaplnterval:totalTime;

else
time=[0:snaplnterval:totalTime-mod(totalTime,snapin

end;

Y%vectors for storing the results of populations and populat

avgKlaPopulation=zeros(1,length(time));

avgKlaPopulation(1)= sum(sum(klaGrid))/nPatches;

avgScePopulation=zeros(1,length(time));

avgScePopulation(1)=sum(sum(sceGrid))/nPatches;

patchesKlaPopulated=zeros(1,length(time));

patchesKlaPopulated(1)=sum(sum(klaGrid>0));

patchesScePopulated=zeros(1,length(time));

patchesScePopulated(1)=sum(sum(sceGrid>0));

for i=2:length(time)
timeSlice=time(i)-time(i-1); % timeslice to run
while (abs(timeSlice)>1e-8)
timeToEvent=min([tToMigration tToSInflux tToEradicati
if (timeSlice<timeToEvent)
tSpan=[0 timeSlice];

count=sum(sum(world_ind));

% a time vector for taki

% time span for integration of local dy
world_ind=(worldGrid>1e-8); % save indices of population
% count populated patches

Biomass;
ally

ng snapshots

terval) totalTime];

ed patches

on));

namics
s with nonzero population

if “(count) %stop loop if no patches are populated

break
end;

initialValues=zeros(1,count*3); %create the vector of in

initialValues(1:3:end)=sceGrid(world_ind);
initialValues(2:3:end)=klaGrid(world_ind);
initialValues(3:3:end)=substrateGrid(world_ind);

components=1:count*3;

%update grids after integration
sceGrid(world_ind)=y(end,1:3:end);
klaGrid(world_ind)=y(end,2:3:end);
substrateGrid(world_ind)=y(end,3:3:end);
worldGrid=klaGrid+sceGrid;
tToMigration=tToMigration-timeSlice;
tToSInflux=tToSInflux-timeSlice;
tToEradication=tToEradication-timeSlice;
timeSlice=0;

else

tSpan=[0 timeToEvent];
world_ind=(worldGrid>1e-8);
count=sum(sum(world_ind));
if “(count)

break
end;
initialValues=zeros(1,count*3);
initialValues(1:3:end)=sceGrid(world_ind);

%count total number of state variab
options=odeset('NonNegative’,components); %disallow n
[t y]= odel5s(@IlocalDynamics, tSpan, initialValues,opti

%reduce waiting t

%time span for integration of local
%save indices of population
%count populated patches
%stop loop if no patches are populated

%create the vector of in

itial values for integration

les
egative states
ons); %integrate local population dynamics

ime for the amount of elapsed time:

dynamics

s with nonzero population

itial values for integration
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initialValues(2:3:end)=klaGrid(world_ind);
initialValues(3:3:end)=substrateGrid(world_ind);
components=1:.count*3;
options=odeset('NonNegative',components); %disallow n
[t y]= odel5s(@IlocalDynamics, tSpan, initialValues,opti
sceGrid(world_ind)=y(end,1:3:end); %update grids after
klaGrid(world_ind)=y(end,2:3:end);
substrateGrid(world_ind)=y(end,3:3:end);
worldGrid=klaGrid+sceGrid;
tToMigration=tToMigration-timeToEvent; %reduce waitin
tToSInflux=tToSInflux-timeToEvent;
tToEradication= tToEradication-timeToEvent;
Y%perform stochastic event (check which waiting time is zero
if (abs(tToSInflux)<le-8) %add substrate to random patch
randPatch=floor(rand()*nPatches)+1;
substrateGrid(randPatch(1))=substrateGrid(randPatch
tToSInflux=random(’exp’,sInfluxMean); %regenerate tim

elseif (abs(tToMigration)<le-8) %migrate cells
[klaGrid sceGrid]=migrate(klaGrid,sceGrid);
worldGrid=klaGrid+sceGrid;
tToMigration=random(’exp’,migrationMean);

elseif (abs(tToEradication)<le-8) %eradication event

randPatch=floor(rand()*nPatches)+1;
pEradicate=rand();

pSurvive=1-exp(-worldGrid(randPatch)); %calculate the

if (pEradicate>pSurvive)
klaGrid(randPatch)=0;
sceGrid(randPatch)=0;
worldGrid(randPatch)=0;
end;

tToEradication=random(‘'exp’,eradicationMean);

end;
timeSlice=timeSlice-timeToEvent;
end;

end; %end while loop (one timeSlice ended)
Y%record data
worldGrid=klaGrid+sceGrid;
avgKlaPopulation(i)= sum(sum(klaGrid))/nPatches;
avgScePopulation(i)=sum(sum(sceGrid))/nPatches;
patchesKlaPopulated(i)=sum(sum(klaGrid>0));
patchesScePopulated(i)=sum(sum(sceGrid>0));

if ((patchesScePopulated(i)+patchesKlaPopulated(i))< 1)
Y%stop loop if no patches are populated
break
end;
end;%end big loop, next time interval
%save results in a file
saveFile=[fileName, resultKla];
save(saveFile, 'avgKlaPopulation’, -ASCII', -append’ )
saveFile=[fileName,resultSce’;
save(saveFile, 'avgScePopulation’, "-ASCII’, -append’ )
saveFile=[fileName, resultKlaPatch];
save(saveFile, 'patchesKlaPopulated’, "-ASCII’, "-appe nd’);
saveFile=[fileName, resultScePatch’;
save(saveFile, 'patchesScePopulated’, -ASCII', -appe nd’);

if"(exist('simulationTime', file"))
saveFile="simulationTime’;
save(saveFile,'time’,-ASCII',-append’);
end;

egative states
ons);
integration

g time for the amount of elapsed time

(1))+substratelnflux;
e to the next substrate influx event

probability of surviving
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end; %end one simulation run

end; %end for one parameter value

%% Function for calculating local dynamics

function dydt=localDynamics(t,x)

Y%takes a vector of cell densities and substrate concentrati
%input vector: (sce, kla, substrate)

%metabolic parameters

muMax_sc=.369;

Yxs_sc=.138;

Ks_sc=.357;

muMax_kI=.309;

Yxs_kl=.536;

Ks_kl=.558;

kd=0.01;%death rate, the same for both

% state variables
dydt=zeros(length(x),1);
X_sc=x(1:3:end);
X_kl=x(2:3:end);
S=x(3:3:end);

mu_sce=muMax_sc.*(S./(Ks_sc+S)); % instantaneous growt
mu_kla=muMax_kl.*(S./(Ks_kI+S));

% dynamic balances for biomasses and substrate

for i=0:(length(X_sc)-1)
dydt(3*i+1)=(mu_sce(i+1)-kd)*X_sc(i+1);
dydt(3*i+2)=(mu_kla(i+1)-kd)*X_ki(i+1);
dydt(3*i+3)=-(mu_sce(i+1)*X_sc(i+1)/Yxs_sc + mu_klai

end;

%Function for population migration event

function [kla sce]=migrate(kla0,sce0)

kla=kla0;

sce=sce0;

fracMigrate=.1; %fraction of the donor population to migra
donorX=floor(size(kla0,2)*rand())+1; %choose random in
donorY=floor(size(kla0,1)*rand())+1;
randDirection=floor(rand()*4)+1; %randomly choose a dir
%1-left (x-1)

%2-right (x+1)

%3-up (y-1)

%4-down (y+1)
newX=donorX-(randDirection==1)+(randDirection==2);
newY=donorY-(randDirection==3)+(randDirection==4);

Y%periodic boundary conditions
newX(newX>size(kla0,2))=1;
newX(newX==0)=size(kla0,2);
newY (newY>size(kla0,1))=1;
newY(newY==0)=size(kla0,1);

%choose strain to move
klaFreg=kla0(donorY,donorX)/(kla0(donorY,donorX)+sc

on

h rates according to the Monod model

+L)X_KI(+1)/Yxs_KI);

te
dices

ection to migrate

e(donorY,donorX));
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randomsStrain=rand();

if (randomStrain>(1-klaFreq)) %move kla
klaTemp=kla(donorY,donorX)*fracMigrate;
kla(donorY,donorX)=kla(donorY,donorX)*(1-fracMigrat
kla(newY,newX)=kla(newY,newX)+klaTemp;

elseif (randomStrain<=(1-klaFreq)) %move sce
sceTemp=sce(donorY,donorX)*fracMigrate;
sce(donorY,donorX)=sce(donorY,donorX)*(1-fracMigrat
sce(newY,newX)=sce(newY,newX)+sceTemp;

end;
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