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Topic Modeling and Clustering for Analysis of Road Traffic Accidents

AGAZI MEKONNEN

SHAMSI ABDULLAYEV
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Abstract

In this thesis, we examined different approaches on how to cluster, summarise and
search accident descriptions in Swedish Traffic Accident Data Acquisition (STRADA)
dataset. One of the central questions in this project was that how to retrieve similar
documents if a query does not have any common words with relevant documents.
Another question is how to increase similarity between documents which describe
the same or similar scenarios in different words. We designed a new pre-processing
technique using keyword extraction and word embeddings to address these issues.
Theoretical and empirical results show the pre-processing technique employed im-
proved the results of the examined topic modeling, clustering and document ranking
methods.

Keywords: Machine Learning, Latent Dirichlet Allocation, Clustering, Probabilistic
Topic Models, Text Mining, Traffic Safety, Accident database



Acknowledgements

Foremost, we would like to thank our supervisor and examiner Dr. Selpi for her con-
tinuous support, motivation, patience and recommendations throughout the project.
Besides, we are thankful to our supervisor Jordanka Kovaceva who helped us under-
stand more regarding traffic safety and for her major input in shaping the report.

We would like to thank SAFER for providing us with a suitable working environment
for carrying out our thesis and presenting the opportunity to extend our knowledge
of traffic and vehicle safety.

Our deepest gratitude goes to our family, friends and everyone who was there sup-
porting us.

Last but not the least, we would like to thank the Swedish Institute and Chalmers
University of Technology for providing us with a scholarship opportunity to this
Master’s program.

Agazi Mekonnen, Shamsi Abdullayev
June 2017

vi






Contents

List of Figures

List of Tables

1

viil

Introduction
1.1 Motivation . . . . . . . ...
1.2 Goals and Challenges . . . . . . . .. .. .. ... L.
1.3 Scope . ...
1.4 Thesis Outline . . . . . . . ... .. .. .
Text Data
2.1 The Datasets . . . . . . . . . . . ...
2.2 From Text to Vectors . . . . . . . . .. .. Lo
221 Term Frequency . . . . . . . . . ... L
2.2.2  Inverse Document Frequency . . . . . . . ... ... ... ...
2.2.3 TFIDF Weighting . . . . .. .. ... ... ... ... ....
2.3 Word Embeddings . . . . . . ...
2.3.1 Co-occurrence Matrix . . . . . .. .. ... L.
2.3.2  Word2Vec: Distributed Representation of Words . . . . . . . .
2.4 Similarity Measures . . . . . . . .. ..
2.4.1 Euclidean Distance . . . . . . . ... ... ... ... .....
2.4.2 Cosine Similarity . . . . .. ... oo
2.4.3 Word Mover’s Distance . . . . . .. ... ... ... ... ..
2.5 Pre-processing . . . . . ...
2.5.1 Stop-word Removal . . . . . .. ... ... ... . ... ... .
2.5.2 Stemming . . . . ...
2.5.3 Lemmatisation . . .. ... ... ... ... .. ... ...,
2.5.4 Pruning Rare Terms . . . . . . ... ... ... .. .....
Methods
3.1 K-means . . . . . ...
3.1.1 K-means+4 . . . . ..o
3.1.2  Choosing the Number of Clusters . . . . . ... .. ... ...
3.2 Probabilistic Topic Models . . . . . . ... .. .. ... .. ... ...
3.2.1 Latent Dirichlet Allocation . . . . . . . ... ... ... ....
3.3 Keyword Expansion Approach . . . . . .. ... ... ...

ix



Contents

3.4 Dimensionality Reduction . . . .. .. ... ... ... ... .. ... 16
3.5  Ewvaluation Metrics . . . . . . . . . ... 17
3.5.1 F-Measure . . . . . . . . . . ... 17

3.5.2 RandIndex . ... ... .. ... ... ... ... ... 18

3.5.3 Silhouette Index . . . . . .. .. ... ... L 18

3.5.4 Calinski-Harabasz index . . . . . ... ... ... ..., ... 18

3.5.5 Evaluation of Probabilistic Topic Models . . . . . . . . .. .. 19

4 Experiments and Results 20
4.1 The Datasets . . . . . . .. ... 20
4.2 Pre-processing . . . . . . .. ... 21
4.2.1 Stop-word Removal . . . . . . . ... ... L 21

4.2.2 Lemmatisation . . . .. ... ... L 21

4.2.3 Pruning Rare Terms . . . . . . .. .. ... .. ... 21

4.2.4 How Pre-processing Affects Dimensionality . . . . . . .. . .. 21

4.3 Algorithms. . . . . . . . .. 22
4.3.1 Latent Dirichlet Allocation . . . . . . . ... ... ... .... 22

432 K-means . . . . . . . ... 23

4.3.3 Word Embeddings . . . . . ... ..o 23

4.3.4 Keyword Extraction . . . ... ... ... .00 24

4.3.5 Enriching the Data . . . . . . .. .. ... ... ... ..... 24

4.4  Selecting the Number of Clusters and Topics . . . . . . . . ... ... 25
4.5 Evaluation . . . . . . ... 26
4.5.1 Clustering Evaluation . . . . . . ... ... ... ... ..... 26

4.5.2 LDA Evaluation. . . . . .. ... .. ... .. ......... 28

4.5.3 Document Ranking Evaluation . .. .. ... ... ... ... 32

4.6 Discussion . . . . . . . ... 33

5 Conclusion 35
5.1 Future work . . . . . . . . . .. 36

A LDA topics 41
B Code Listings 47
C Perplexity values for different topics 52

ix



2.1
2.2

3.1

3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7

List of Figures

The skip-gram model with window size C . . . . . . . ... ... ... 6
Euclidean distance between document vectors . . . . . . .. ... .. 8
K-means at local optimum. The different shapes (circle, square, tri-

angle) indicate different clusters and the centoids are denoted by '+,

....................................... 12
Elbow Curve . . . . . . . . . . . . . 13
Data enrichment pipe-line . . . . ... .. ... ... ... 15
Projecting 2D data onto one-dimensional space . . . . ... ... .. 17
PCA reduced test data before and after enrichment . . . . . . . . .. 25
Elbow curves for dataset Pand H . . . . . . . ... ... ... ... 25
Perplexity values for choosing the number of topics . . . . . . . . .. 26
Confusion matrix for k-means with bigramson 7" . . . . . . . .. .. 27
Confusion matrix for k-means on enriched 7" . . . . . . . . . . .. .. 28
Perplexity results on H and Hg . . . . . . . . . .. .. .. ... ... 29

Perplexity resultson Pand P . . . . . . . .. .. ... ... .... 29



2.1

4.1
4.2
4.3
4.4
4.5

4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

4.14

Al

A2

A3

A4

C.1

List of Tables

Co-occurrence Matrix . . . . . . .. ... 5
The number of documents and unique words in dataset P and H . . 20
Gold standard clusters from 7. . . . . . . ... ... 20
Dimensionality reduction with different pre-processing techniques . . 22
K-means parameters . . . . . . . . ... L. 23
Words that are identified as related to "korsning" ("intersection’) and

"seriekrock" ('pileup’) by word embeddings . . . . . ... ... L. 23
Parameters for word embedding . . . . . .. .. ..o 24
Parameters keyword extraction . . . . .. ... ... ... ... 24
Evaluation of different algorithms on test set 7 . . . . . . . . . . .. 27
Evaluation with Calinski-Harabasz index on Dataset P and H . . . . 28
Sample topics for P . . . . . . ... 30
Sample topics for Hg . . . . . . . . ... 31
Evaluation of different ranking algorithms on test set 77 . . . . . . . 32
Evaluation of different ranking algorithms with no occurrence of query

words in relevant documents . . . . . .. .. oo 32
Running time of different ranking algorithms for a single query in

MacBook Air with processor 2,2 GHz Intel Core i7 and Memory 8GB 33

LDA topics for H. Top 10 most probable words are provided for each

topic . . . . e 41
LDA topics for Hg. Top 10 most probable words are provided for
each topic . . . . . . . . 42
LDA topics for P. Top 10 most probable words are provided for each
topic . . . . 43
LDA topics for Pg. Top 10 most probable words are provided for
each topic . . . . . . . .. 45
Perplexity for P, H, Pg,and Hg . . . . . . . . .. ... ... .... 52

X1



1

Introduction

1.1 Motivation

The ever-increasing digital data available today in the form of text has created a gap
between availability and usage. This vastness of the data makes finding, searching,
retrieving and summarising of information very cumbersome and challenging. For
instance, given a massive collection of documents, one might ask for the main idea
or theme of the text data. Therefore tools capable of searching, organising, and
summarising large collection of text documents are in demand.

Swedish Traffic Accident Data Acquisition (STRADA) is a relational database sys-
tem which is used by Swedish Transport Administration (STA) starting from the
year 2003 [17], to keep a record of all traffic accidents in Sweden. Every accident
registered in STRADA contains an accident description. Accident description at-
tribute consists of information about specific road traffic accident by the police and
hospital. It is inevitable that different people will describe similar traffic accidents in
different words and use different expressions. For instance, to write accident descrip-
tion about a traffic accident that occurred because of an icy road, various persons
could write it differently. One person might write, "an icy road was the cause of
the accident"', another person might comment "last night’s massive snowfall" as the
the cause traffic accident, yet another could write, "frozen road" as an accident de-
scription. These text data describe similar traffic accidents and can be categorised
under the same topic, say, icy road. However, if we try to search an accident that
occurred because of an icy road in the current system, we will only hit one result
instead of three.

Currently, one way of searching for relevant accidents is string matching using key-
words. This way of searching is not effective because rich data is lost [17]. According
to [17], finding the desired traffic accidents is challenging. Therefore, the problem
of finding similar kind of traffic accidents has created a challenge for traffic accident
analysis and research [17]. One cannot help in reducing traffic accident without
having the full picture of the accidents taking place in the country. To lessen the
frequency of road traffic accidents a thorough data analysis and acting upon the
result of the data analysis is vital.



1. Introduction

1.2 Goals and Challenges

This project aims at exploring the recent advancements in the area of text mining
and finding out how these advancements can be used for a short text collection.
Te goals of this project include:

« Finding a suitable way of clustering accident descriptions.

o Summarising the data using topic models.

e Finding a suitable document ranking algorithm which can work well on short

text collection.

The central challenge of this project is grouping similar scenarios to the same clus-
ter although they have been expressed in different ways or retrieving the correct
document set even though the query does not have any common word with rele-
vant documents. The short documents make it harder for document ranking, topic
modeling and clustering algorithms to produce an acceptable result due to lack of
information or sparsity. Hence, dealing with the sparsity of document vectors is
another challenge.

1.3 Scope

The scope includes using the existing algorithms to achieve the goals described in
the previous section. If the existing algorithms do not produce good results, some
adjustment may be made either in pre-processing step or to the algorithms. However,
the thesis does not include developing a new algorithm from scratch.

The data for experiments are limited to only accident descriptions of STRADA
database. The accident descriptions include some grammatical and spelling errors.
The correction of this errors will not be considered here.

1.4 Thesis Outline

The rest of this thesis is outlined as follows. Chapter 2 describes the datasets,
vector representation of documents, word embeddings, document level similarities
and finally, it provides information about pre-processing techniques. Chapter 3
describes topic modelling, clustering algorithms and evaluation techniques for these
algorithms. Moreover, we describe our approach in this chapter. In Chapter 4, we
present the test results with different pre-processing techniques. This chapter also
includes discussion of the results. Finally, in Chapter 5 we summarise our work and
discuss future work.



2

Text Data

In this chapter, we discuss how to represent documents and words as a vector, pre-
processing techniques and similarity measures between a document and word pairs.

2.1 The Datasets

The datasets used for this project are acquired from STRADA information system.
Every recorded accident in STRADA has attributes such as report id, type of ac-
cident, the location of the accident by coordinates, accident description, date of
registration, etc. These accident reports are recorded by police and hospital from
the year 2003 to the year 2015.

There are two datasets which will be analysed in this project. The first dataset is
accident descriptions recorded by the police. It contains 223574 descriptions. The
second dataset is accident description recorded by hospitals, and it contains 448476
descriptions. All these descriptions are very short ranging from 1 to 5 sentences.
The accident descriptions will be referred as documents throughout this report.

2.2 From Text to Vectors

In pre-processing phase, documents have to be transformed from raw text into an
understandable form for algorithms. The trivial idea is constructing a unique vo-
cabulary from the text corpus. The vectorized document representation is a vector
which has a length of vocabulary, and each value in the vector is the number of oc-
currences of a word corresponding to its index. However, this simple model cannot
say anything about the importance of words in a document. The old yet powerful
technique is TFIDF weighting [12] which penalises insignificant words in documents.
The detailed explanation about TFIDF is given in Sections 2.2.1 - 2.2.2.

2.2.1 Term Frequency

Term frequency calculates how frequent a word occurs in a document. It is a vector
which has a size of vocabulary and contains a statistics about the number of occur-
rences of each word in a document. The Equation for computing term frequency of
term ¢ in document d is given below. tf; 4 is a number of occurrences of term ¢ in

3



2. Text Data

document d [11].

tf(t,d) =

{1 +log(tfra) i tfra>0 (2.1)

otherwise

Another technique for term frequency is Boolean frequency where ¢ f(¢,d) = 1 when
word occurs in a document, 0 otherwise. This method is usually used for short
documents [24]. The logarithm function is applied to tf; 4 because the relevance is
not linearly related to the number of occurrences of a word in a document.

2.2.2 Inverse Document Frequency

Inverse document frequency is computed by the following equation [11].

where df; is the number of documents which contain word ¢ and N is the size of
the corpus. The words which occur in most of documents are going to have low
IDF score, because these words are not specific to a particular document. Words
occurring in small number of documents will have high IDF score. Without the
logarithmic scale, word occurring only in one document is going to have inverse
document frequency of N which is not correct relation. Therefore this value is
scaled using logarithm function.

2.2.3 TFIDF Weighting

After computing the term frequency and inverse document frequency, the final
weight of the term ¢ in document d is computed by Equation 2.3 which is called
TFIDF weight of term ¢ in document d

wit, d) = tf(t,d) x idf; (2.3)

In order to compute the whole TFIDF matrix, the computation 2.3 is basically done
for each document and for each word in the vocabulary.

2.3 Word Embeddings

You shall know the word by the company it keeps
— John Rupert Firth

Machine learning algorithms require inputs as a fixed length feature. One of most
popular fixed-length feature for text is bag-of-words. However, this method com-
pletely ignores order and semantics of the words. According to the bag-of-words
approach, the words "crash", "accident" and "car" are equally distinct [16]. How-
ever, in the word embedding each word is expressed by a vector and similar words
end up with similar vectors. Word embedding algorithms capture this similarity
from the context of the word. Therefore, this approach is much more powerful than
traditional representation such as TFIDF.

4



2. Text Data

2.3.1 Co-occurrence Matrix

The co-occurrence matrix contains co-occurrence values for each word in a corpus
according to a window size. The window size of k will take k& words before and
k words after the given word as a context. For a text corpus and a window size,
the co-occurrence matrix can be computed by looking at context words of the given
word !. Assume a corpus contains the following sentences:

("I like Machine Learning","'l enjoy NLP",'T like deep learning")

Table 2.1 shows the co-occurrence matrix for above corpus with windows size 2.

Table 2.1: Co-occurrence Matrix

Vocabulary i like enjoy machine learning NLP deep
i 0 2 1 1 0 1 1
like 2 0 0 1 2 0 1
enjoy 1 0 0 0 0 0 0
machine 1 1 0 0 1 0 0
learning 0 2 0 1 0 0 1
NLP 10 1 0 0 0 0
deep 1 1 0 0 1 0 0

From the co-occurrence matrix we can see that similar words end up with simi-
lar vectors. However, computing the co-occurrence matrix is very inefficient for
large corpus. Another disadvantage is that the dimensionality of the matrix is very
high and machine learning algorithms cannot handle this. Therefore dimensionality
reduction (e.g. Singular Value Decomposition) is used on this matrix. If a new
document is added to the corpus, the whole dimensionality reduction has to be ap-
plied to the new corpus which has the complexity of O(mn?) for an m x n matrix.
Therefore, this kind of approach is not practical for large text corpus.

2.3.2 Word2Vec: Distributed Representation of Words

Word2Vec is a model which learns word vectors from a large text corpus using
two-layer shallow neural network [28]. CBOW (Continuous bag-of-word model) and
skip-gram are two types of Word2Vec. The skip-gram model takes a word as an
input and predicts the context words. However, the CBOW model takes context
words and predicts a word which is most likely to be in that context. This is used
in search engine predictions. The input and output words are represented as one-
hot vector. For instance, the unique vocabulary of text corpus contains N words.
The kth word is represented as an N dimensional vector with all zeros except the
position which corresponds to kth word.

In skip-gram model, a one-hot vector with /N dimensions is fed to two layers neural
network which has D nodes in hidden layer and C' output layer, where C'is a window
size (the algorithm takes context words as C words before or after the central word).
The weight vector from the input layer to the hidden layer is N x K dimensional

Thttps://cs224d.stanford.edu/lecture_notes/notes1.pdf



2. Text Data

matrix. Each row of this matrix contains vector representation of the corresponding
word. These vectors are learned step-by-step using gradient descent. Thus, the
model learns context words and the vector representation of words at the same
time. The similar words can be found using cosine similarity on the weight matrix.
Figure 2.1 shows the skip-gram model with C words in context. There are two weight

L

S

=
SUNQUISIP [ILIoURIniy

Figure 2.1: The skip-gram model with window size C

matrices YW and W’. The weight matrices are initialised to very small random values
before training the algorithm. The vector for hidden layer is computed by Equation
2.4.

h=W"z (2.4)

where z is A dimensional one-hot encoded vector which represents the input word.
Since all values of z are zero except the one which corresponds to the k' position,
the vector h will contain the k™ row of . In the next step, a score for each word
in vocabulary is computed by Equation 2.5.

u=W7"h (2.5)

The N dimensional vector u contains a score for each word in the vocabulary.
Equations 2.4 and 2.5 describe the forward-propagation process of neural network.
After forward-propagation, the values in vector u are fed to soft-max function to
turn the scores into probabilities.

exp(ulv.)
Zé'\il eXp(”?Uc)

where o is the index of outside word within a window size, c¢ is the index of center or
the input word, u, is the vector representation of word in index o and v, is the vector

p(olc) = (2.6)

6



2. Text Data

representation of center word. The objective of skip-gram model is maximising the
probability of a word in any context. This probability is calculated by Equation 2.7.

1:[ p(wesj|wy) (2.7)

k<j<k

where w; is any word in the vocabulary. Let us now simplify Equation 2.7 using log
likelihood. Equation 2.8 is the simplified version of 2.7 and maximising 2.7 is the
same as minimising 2.8. [18].

1
T

M=

J(0) = log; plwi ) (2.8)

t=1 —k<j<k

I
—

Now we have the cost function. In back-propagation we have to use derivatives to
optimise word vectors. If we get the derivative of 2.6 we will end up with Equation

2.9.
T

crp(ulv,)
uO U/m 29
D (29)

Equation 2.9 has to be computed in each gradient descent update. Therefore, it is
computationally impractical. In practice, negative sampling and hierarchical soft-
max is used to approximate the actual value.

2.4 Similarity Measures

The similarity measure is a metric for calculating the similarity of objects. Some-
times this can be Euclidean distance, the similarity between images or similarity
between two sentences. For latter case, the similarity is calculated using term
frequency and inverse document frequency or more advanced technique which is
described in Section 2.4.3.

2.4.1 FEuclidean Distance

Fuclidean distance is a distance between two points in space. It is also used ex-
tensively to compute the distance between two text documents. In this case, the
distance is computed using TFIDF vectors of documents. Given two text documents
d, and dp, and their TFIDF vectors t, and t, the Euclidean distance is computed by
the following equation [11].

De(ta, ty) = Z ta — ty|? (2.10)
where m is vocabulary size.
The figure 2.2 shows distance between document vectors a, b and c. In this distance

metric the vector b is equally distinct from vector a and c¢. But the documents a and
b are related to D;. On the other hand, the document c is related to D,. Therefore,

7



2. Text Data

the distance between a and b should not be equal to the distance between b and c.
This shows the weakness of Euclidean distance.

D
! b

Figure 2.2: Euclidean distance between document vectors

2.4.2 Cosine Similarity

Cosine similarity is used extensively in text mining to compute the similarity be-
tween text documents where the documents are represented as a weight vector. The
weight vector, in this case, is TFIDF. Given two vectors t; and t,, their similarity
is computed by the following equation [11].

tl'tg

= 2.11
o] * 16 (2.11)

similarity(ty, ts) = cos(6)

where 6 is angle between vectors t; and t,

2.4.3 Word Mover’s Distance

The main drawback of conventional distance measures is that they cannot capture
word level similarities. If two documents express the same meaning without any
common word, the similarity between these documents will be zero. These affects
the similarity of short text documents. Because it is more likely that documents
which contain a sentence do not have common words even if they talk about the
same issue. Another problem with traditional distance measures is, even documents
contain same words, there may be other similar words which is not taken into account
while computing the similarity. Therefore these distance measures are poor.

A metric called Word Mover’s Distance (WMD) overcomes the problems related to
traditional distance metrics. It uses word embedding to understand the similarity or
the distance between words. The distance between two words w and w’ is computed
by Equation 2.12.

c(w, w') = [V(w) = V(w| (2.12)

where the function V takes a word and returns the corresponding vector from given
word embeddings matrix. This distance is called word travel cost which is a building
block for document distances [14]. Let T" be a flow matrix where 7}; denotes how

8



2. Text Data

much word 7 in d flows to word j in d’. Computing the WMD is equivalent to the
following optimisation problem:

min Z Ti;c(i, j)

>
==

st. Y Ty=d;,Vie{l...,n} (2.13)
j=1
Y Ty =d;,¥je{l...,n}
=1

tf(k,d)

S ) and tf(k,d) is term frequency of word k in document d.
=1 ’

where d;, =

2.5 Pre-processing

Pre-processing is a crucial step in text mining. It is applied to the text data be-
fore vectorization. In this section, we discuss the pre-processing techniques such as
stop-word removal, stemming, lemmatisation and pruning. All these pre-processing
methods aim to remove noise or meaningless data from a corpus, and they all de-
crease the term space [29].

2.5.1 Stop-word Removal

Stop-words are often removed from documents in the pre-processing phase. These
are words which have no lexical meaning and occur in documents very frequently.
The common words in documents are articles, pronouns, prepositions which do not
add any meaning to the sentences [22]. Usually, the previously defined stop list is
used to eliminate stop words from documents. However, in addition to pre-defined
stop-list corpus specific stop-words can be constructed based on word occurrence
statistics. This is done by adding words to stop-list which has document frequency
value more than a specified threshold [19]. This process is called automatic stop-
word generation.

2.5.2 Stemming

In documents, same words which have different suffixes are taken as entirely different
words. To avoid this stemming can be used. Stemming is eliminating the suffix of
the words, so that inflected words are reduced to the same term. For example, if
stemming is applied to the words "drives", "driving" and "driver", all of them will be
transformed to "drive'. No dictionary lookups are needed in stemming. Therefore,
sometimes inflected words may end up with a meaningless term. For instance, some
stemming algorithms reduce the word "navy" to "navi' which has no meaning 2.

2www.nltk.org
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2.5.3 Lemmatisation

Lemmatisation is reducing inflected words to their base using dictionary lookups. In
this case, the keys in the dictionary are inflected words and the value is the base of
that word. Therefore, this technique is more powerful than stemming. Unlike stem-
ming, the resulting word always has a meaning. However, applying lemmatisation
may be very costly for large text corpus because one dictionary look-up needed for
each word in the corpus. Therefore, the number of lookups is N x K where N is the
number of words in the corpus, and K is the length of the dictionary. Hash-maps
can be used to speed-up this since one look-up in hashmap is close to O(1).

2.5.4 Pruning Rare Terms

Pruning is eliminating rare words if their document frequency is less than some
pre-defined threshold. The idea behind pruning is rare terms do not represent the
clusters. However, they may add noise to the similarity measures [10]. Besides noise
removal, pruning rare words decreases the dimensionality of term space more than
other pre-processing techniques. The reason is a corpus usually contain many rare
words.

10
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Methods

In the previous chapter, we have seen vector representation of words and documents,
pre-processing techniques, and similarity measures. However, we still lack the data
organisation or grouping. In this chapter, we present clustering and topic modelling
algorithms. Furthermore, we present our method that improves the performance
of existing algorithms. We also include a dimensionality reduction technique and
evaluation measures for clustering and topic modeling.

3.1 K-means

K-means is the most popular clustering algorithm. It is very efficient and easy
to implement. The k-means algorithm belongs to a category of prototype-based
clustering. Prototype-based clustering means that each cluster has a representative
called centroid [25].

The algorithm contains the following steps. First, the cluster centroids are initialized
randomly and data points are assigned to the closest centroid. Next, The mean of
current clusters is computed and the chosen centroids are moved to the mean point.
This procedure is repeated until the centroids do not change. This state is called
convergence. Algorithm 1 describes this process.

Algorithm 1: K-means algorithm

Randomly initialize k centroids;
repeat
foreach data point i do
‘ assign ¢ to the closest centroid ;
end
foreach centroid 1 do
‘ 1 = the mean of data points assigned to p;
end

until Convergence;

The k-means algorithm can be described as simple optimization problem where the
best clustering corresponds to minimized intra-cluster sum of squared errors. This
error is computed by Equation 3.1.

n k
Error =33 w||z; — ] (3.1)

i=1j=1
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where n is the number of data points, % is the number of clusters, 1, is the centroid
for the cluster j, and w™) = 1 if ; € j, W) = 0 otherwise [25].

3.1.1 K-means+-+

One drawback of k-means algorithm is that its initialisation step is done uniformly
at random. This sometimes may lead to bad initialisation and thereby k-means may
result in wrong local optimum as shown in Figure 3.1a. K-means++ addresses this
issue. In K-means++ the centroids are chosen one by one. After selecting a centroid
the next one is selected with the following probability:

D(x)*
Zméé\? D(I)2
here D(z) is the shortest distance from a data point to already chosen centroid
and X is the set of data points. Therefore the data points which are close to the

already selected centroid is going to have a low probability of being selected as a
next centroid than data points which are far [2].

P= (3.2)
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Figure 3.1: K-means at local optimum. The different shapes (circle, square, tri-
angle) indicate different clusters and the centoids are denoted by '+
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Algorithm 2: K-means++ algorithm

Take one center ¢;, chosen uniformly at random from the dataset;
Take new center c¢;, choosing x € X’ with probability P;

Repeat the previous step until we have k centers;

Proceed as the standard k-means algorithm.

According to [2] k-means++ outperforms k-means algorithm both in time and ac-
curacy.

3.1.2 Choosing the Number of Clusters

Finding the number of clusters in a dataset is the main challenge in clustering. To
identify a value which is very close to an exact number of clusters is an open ques-
tion until now. However, to get a reasonable number of clusters internal clustering
validation techniques such as Calinski-Harabasz index and Silhouette index are used
[13]. This validation measures are based on within and between cluster distances.
The most famous method is elbow which uses within cluster sum of squared error
(distortion) to identify the number of clusters [25].

Figure 3.2 shows a curve which indicates how k-means error function changes when
we increase the number of clusters. By looking at Figure 3.2 we can say that 3 is
good choice for number of clusters. According to the figure, the error function is
decreasing slightly (for clusters > 3) when number of clusters is increased. That
is because, if we assign each data point to a cluster the error will be 0. However,
sometimes this method ends up with an ambiguous curve where it is hard to say
what is good number of clusters.
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Figure 3.2: Elbow Curve
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3.2 Probabilistic Topic Models

Probabilistic Topic Models are widely used in information retrieval and Natural
Language Processing. They can infer the hidden topic structure in a large text
corpus. Topic modeling algorithms does not need any prior labelling and the topics
emerge from analysis of the entire documents [5]. Unlike, clustering one document
can belong to many topics with different probabilities.

3.2.1 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is a type of topic model which assumes multiple
topics for a document. Topic is a distribution over a fixed vocabulary [5]. In each
topic the distribution of words are different. First, lets assume the topics are specified
before documents are generated. The documents are generated by the following
process. Initially random distribution of topics (K) are selected. For each word in
the document a random topic 7T is selected from K. Finally, a word is selected from
the topic T. This generative process is described by Algorithm 3 and Equation 3.3.

K D N
p(Brk, b1:0, z1:0, wi.p) = [[ p(B:) [T p(00) (1] P(zanlba)p(wan| Bk, zan))  (3.3)
i—1 d=1 -

where, (1. are the topics (each [y is a distribution over the vocabulary), 6, is the
topic proportions of document d (04, is topic proportion of topic k in document d),
24 is the topic assignment of dth document and z4,, is topic assignment of nth word
in the document d, wy,, is nth word in document d.

Algorithm 3: The generative process of each document

foreach Document in the corpus do
Randomly choose a distribution over topics

foreach word in the document do
Randomly choose a topic from the topic distribution

Randomly choose a word from the topic
end

end

The goal of topic modeling is to discover the topics from a collection of documents
automatically. The topics, per document topic distribution, per-word topic assign-
ment are all latent variables which can be inferred from documents. To compute
the hidden topic structure from documents the probability of the conditional distri-
bution of the hidden variables given the documents must be computed [5].

The computational problem of inferring the latent topics is equivalent to computing
the following probability.

p(ﬁl:k; 91:D7 21:D, wl:D)
p(wlzD)

p(ﬁl:ka el:Da Zl:D‘wlsD) = (34)
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In Formula 3.4 the numerator can be calculated straightforwardly using 3.3. How-
ever, computing the exact value of the denominator is a very difficult problem. It
can be computed by summing the joint distribution over every possible instantiation
of hidden topic structure which makes the problem intractable [5]. This probability
can be approximated using Gibbs sampling [5].

3.3 Keyword Expansion Approach

It is not a good idea to apply clustering directly to TFIDF matrix especially when
the documents are short. Therefore we need a more sophisticated pre-processing
technique. We designed new approach which is based on keyword expansion to
improve the clustering and topic modeling result. This method is a combination of
keyword extraction, word embeddings and clustering or topic modeling algorithm.
The overall procedure is as follows. First, the word embedding is trained on the
Word2Vec dataset. We call this dataset D,,. Then we extract keywords from the
train set using keyword extraction algorithm. After getting the keywords, we get top
n similar words to each input keyword using cosine similarity on word vectors which
are produced by word embeddings. Finally, the enrichment is done by appending
the similar words to each keyword which produces a new enriched dataset. Diagram
3.3 shows the overall pipeline of this approach.

Word vectors i imi ; f
Word2Vec Word2Vec v Getting top k su:mlgr words with cosine
train set similarity
[y
n
8 g
5 2
g T
-
= 3
=
c
®
a
£
w

Y

Keyword Extraction

Train Set i
Train Set Data Enrichment

Y

Clustering «+
Enriched data

Vectorizer

Ly

Topic Modelling

Figure 3.3: Data enrichment pipe-line

For a better illustration, let us look at how the enrichment function works. Let F be
the function which finds n similar words using word embeddings where n is specified
as a parameter. Equation 3.5 shows the output of the function F for a keyword k.

F(k,n) = {wy,ws, ws, .. wy } (3.5)
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If two keywords, ki and ky are related then F(ky,n) and F(k2, n) will have big over-
lap. Therefore, the documents enriched by these keywords will have high similarity.
The overall procedure is summarised by Algorithm 4.

Algorithm 4: Enrichment procedure of documents
Input : K, D,n
Output: D,

foreach d € D do
foreach k£ € K do
if £ € d then
| d=d+7"+ F(k,n)
end

end

add d to D,
end

In Algorithm 4, K is keyword list, D is original document corpus and n is the pa-
rameter to select top n similar words for each keyword. The dataset D,, can exactly
be the same as train set if train set contains enough data for word embeddings to
learn good word vectors. However, it can also be other data with similar context.
The accuracy of word embeddings increases as the dataset gets bigger. The idea of
enrichment is inspired by the paper [31]. However, it is the first time the enrichment
is done by word embeddings instead of a synonym dictionary. There are a couple
of advantages in using word embeddings instead of a synonym dictionary. Synonym
dictionary only contains a word which has the same meaning, not related words.
For instance, if some animal is a keyword, word embedding can find other animals
as related words which are not the case for synonym dictionary. In our case, this
will help to find all animal-related accidents. Another advantage is that the data is
expanded by the words which are occurred already in the text and hence it does not
increase the dimensionality of feature space. Moreover, this method decreases the
sparsity of vectors, and after enriching the documents, the data becomes more sep-
arable. Finally, it helps to reduce the distance between documents which describes
the same situation in different ways.

3.4 Dimensionality Reduction

The dimensionality reduction is projecting high dimensional data to lower subspace
and preserving the informativeness of the data. Many machine learning algorithms
cannot deal with high dimensional data. Therefore dimensionality reduction is used
to speed up the running time of these algorithms. Another application of dimen-
sionality reduction is for data visualisation. The data is projected into 2D or 3D
space; this helps to understand the data. If the data is well-separated, then one can
even identify the number of clusters using this method.

Principal components analysis or PCA is by far the most widely used approach of
dimensionality reduction. In [4] PCA is defined as the orthogonal projection of the
data onto a lower dimensional subspace, such that the variance of the projected data
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is maximised. This means that PCA is an optimisation problem of finding the line
such that the variance of projected points is maximum (Figure 3.4).

Xa

pc

Figure 3.4: Projecting 2D data onto one-dimensional space

The first step in PCA algorithm computes a covariance matrix for a given data.
This matrix d x d matrix where d is the number of features contains pairwise co-
variances for each feature in a dataset. The covariance between two features vectors
is computed by Equation 3.6.
L & i
o = > — )~ ) (3)
(2

where p1; and g, are the means of feature j and k. To compute the covariance matrix
Equation 3.6 has to be computed for each pairwise feature vectors. After computing
the covariance matrix, it is decomposed into eigenvectors and eigenvalues. In order
to get k principal components, we have to get k eigenvectors which correspond to
top k eigenvalues.

3.5 Evaluation Metrics

Cluster evaluation measures the correctness of clustering result. There are two
kinds of cluster evaluation metrics which are called external and internal validation.
External validation measures the quality based on already labelled data called gold
standard clusters. Internal validity evaluates the result on information intrinsic to
the data alone. The latter is useful when there is no gold standard clusters or ground
truth available [27].

3.5.1 F-Measure

F-Measure is mapping based measure where each cluster k; € K is mapped to
c; € C. K is set of system-generated clusters, and C' is a set of naturally grouped
classes. Since F-Measure uses true labelling to evaluate clustering, it is an external
validation metric.

|i]
g max F(ci, k) (3.7)

F(C) =}

c,eC
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Recall(c;, k;) = W (3.8)
C;
N ks
Precision(c;, kj) = i Ok (3.9)
|5
Fles k) — 2 x Recall(c;, kj) x Precision(c;, k;) (3.10)

Recall(c;, kj) + Precision(c;, k;)

where S is the number of objects, Precision is the number of correct cluster results
divided by the number of all results, Recall is the number of correct cluster results
divided by the number of naturally correct results [30].

3.5.2 Rand Index

The Rand index is external validation scheme which computes the similarity between
system generated clusters and gold standard clusters and it is computed by the
following equation.

B |TP|+ |TN|

~ |TP|+|FP|+|FN|+|TN|

where T'P is a decision which assigns similar documents to the same cluster, T'V
is assignment of dissimilar documents to different cluster. FP is assignment of
dissimilar documents to the same cluster and F'N is assigning similar documents to
distinct clusters [23].

RI

(3.11)

3.5.3 Silhouette Index

Silhouette index (SI) is an intrinsic cluster evaluation method. It measures between
cluster separation and within cluster similarity. SI for a single sample ¢ is computed
by Equation 3.12.

b(i) — a(i)

max(a(), b(7))

where (i) is the average distance of data point ¢ to all data points of the same
cluster, and b(7) denotes the average distance of data point i to the data points of
closest cluster [1]. Based on Formula 3.12, the silhouette scores can be computed
for each individual cluster C;. This is computed by Equation 3.13 [1].

s(x;) = (3.12)

> s(w) (3.13)

Evaluating clusters is not the only application of SI. It is also used as a visualisation
tool for finding the number of clusters [25].

3.5.4 Calinski-Harabasz index

Calinski-Harabasz index is also an internal clustering validation technique. This
clustering technique is based on between and within cluster variance. Unlike Sil-
houette index, this evaluation metric can have any positive value. It is computed
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by Equation 3.14 [27].

_ trace(Sp) n—1
" trace(S,) n—k
where Sy is between cluster scatter matrix and S,, the within cluster scatter matrix,
n is the number of data points and k is the number of clusters and the function
trace(A) sums up the diagonal elements of matrix A.

CH

(3.14)

3.5.5 Evaluation of Probabilistic Topic Models

Most widely used measure to evaluate the performance of probabilistic topic models
is by computing perplexity. Perplexity is the probability of the test set, normalised
by the number of words [4]. The perplexity is used in text mining, natural lan-
guage processing and many other information retrieval areas. For a test set of M
documents, the perplexity is defined in [6] as:

(3.15)

il log p(wg)
251\4:1 Nd

perplexity(Dyes) = exp{ —

where N, is the number of words in the d** document of held-out test corpus Dyes
and wy is d document in the corpus. Lower perplexity score indicates a better
model.

Another widely used evaluation technique for machine learning models is cross-
validation. The intuition behind cross-validation as stated in [20] is, to split the
training data into K folds; then, for each fold k& € {1,..., K}, we train on all the
folds but the k’th, and test on the k’th, in a round-robin fashion. Cross-validation
can be applied with perplexity to estimate the error in a given model.
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4

Experiments and Results

This chapter presents the evaluation of clustering and Latent Dirichlet Allocation
with different pre-processing methods. We also evaluate the methods for document
ranking and provide information about the pre-processing parameters and how we
deal with sparse document vectors.

4.1 The Datasets

In this project we analysed two text corpus, the accident descriptions provided by
police and hospital. The detailed information of the text corpus is given in Section
2.1. The statistics of both datasets is depicted in Table 4.1.

Table 4.1: The number of documents and unique words in dataset P and H

Datasets #documents F#unique words
P 222375 71767
H 448476 81348

To test the quality of clusters we have constructed a test set containing 5485 doc-
uments from the dataset P. Then these 5485 documents are labelled into eight
different clusters. This is done by carefully examining each document and searching
words or combinations such as 'red light". The documents which can be put into
two or more clusters are deleted. Table 4.2 shows the cluster labels and number of
elements in each cluster. We will refer to this dataset as T'.

Table 4.2: Gold standard clusters from T°

Labels Cluster descriptions # documents
1 Collision with objects near the road (e.g. tree, fence) 855
2 Red light violation 665
3 Animal involved accidents 817
4 Accidents while turning 586
5 Chain accidents 321
6 Pedestrian involved accidents 748
7 Vehicle spinning 936
8 Accidents at intersections 257
Total 5485
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4.2 Pre-processing

This section contains information about how the pre-processing part is implemented
and how it affects dimensionality of document vectors.

4.2.1 Stop-word Removal

Stop-word removal is implemented using nltk stop-words [3]. The removal is done by
simply eliminating all words in documents which are in stop-list. Some words which
do not add any meaning to crash scenarios are also added to stop-list manually.

The corpus specific stop-words are eliminated by removing frequent terms. Frequent
terms affect the result badly although inverse document frequency penalises the fre-
quent terms. The intuition behind this is that half of the dataset cannot be about
the same situation. Therefore words occurring in more than half of the document
should not be important. For both datasets, we eliminated words which have docu-
ment frequency at least 25%. If we increase this value, the number of unique words
does not change.

4.2.2 Lemmatisation

For lemmatisation purposes, we used Saldo [15] which is an extensive electronic
lexicon resource for modern Swedish written language !. Saldo provides inflected
Swedish words and their reference root. The implementation is done by reducing the
inflected words to their root form. Stemming can also be used to reduce inflected
words to their stem. However, we could not find a good stemming package for
Swedish.

4.2.3 Pruning Rare Terms

Pruning is implemented by eliminating words which occurred less than some thresh-
old k. We evaluated the k-means algorithm with different pruning values ranging
from one to ten. We did not observe a major improvement by trying different prun-
ing values. However, with pruning value five we observed a dramatic reduction of
unique words on dataset P and H. The words which are removed by pruning mostly
contain spelling errors or they describe specific street names such as "Johanssgatan',
"Héstgatan", "Tromtogatan'.

4.2.4 How Pre-processing Affects Dimensionality

The dimensionality plays a major role in time performance of algorithms. The pre-
processing methods reduce term space and thereby the dimensionality. There are

Thttps://spraakbanken.gu.se/eng/resource/saldo
http://www.lexiconista.com/datasets/lemmatization/

21



4. Experiments and Results

71767 and 81348 unique words without pre-possessing in dataset P and H respec-
tively. The different pre-processing techniques affect this value differently (refer
Table 4.3). After applying all pre-processing techniques described in previous sec-
tions, we can decrease this value considerably and speed up the convergence of the
algorithms.

Table 4.3: Dimensionality reduction with different pre-processing techniques

pre-processing method #Unique words (P) #Unique words (H)
Stop-words 71733 81317
Lemmatisation 71721 76746
Pruning 14218 9746
Eliminating Frequent Words 71753 81345
After all pre-processing methods 12534 9746

The number of unique words is reduced to 12534 for dataset P and 9746 for H
after applying stop-words removal, lemmatisation, pruning and frequent word elim-
ination. As Table 4.3 indicates, the pruning affects dimensionality reduction more
than any other pre-processing method. The dimensionality after applying all pre-
processing methods is already reasonable regarding running time. Therefore, we will
not apply PCA to reduce the dimensionality.

4.3 Algorithms

We have used k-means on TFIDF term weighting scheme with unigrams, bigrams
and topic modeling. Furthermore, we have tried a combination of keyword extrac-
tion, word embeddings and clustering or topic modeling. For each of them, we get
different performance.

4.3.1 Latent Dirichlet Allocation

The LDA algorithm uses initial hyper-parameters o and 3 as described in Chapter
3. In addition to those hyperparameters, we need to specify the number of topics
and iterations for the algorithm to converge. We have experimented by varying the
value of o, # and the number of iterations. By setting the value of «, to be 0.5, 3 to
be 0.1, and the number of iteration of 1500 gave a good result regarding perplexity
and manual analysis.

Before applying the LDA algorithm documents are pre-processed. The prepossessing
phase includes changing to lowercase, stopword removal, punctuation and numbers.
Also, the Swedish lemmatisation is used for all datasets.

We have used python LDA package 2. This implementation of LDA uses Gibbs
sampling, which is the most commonly used sampling algorithm for topic modeling

[5].

2https://pypi.python.org/pypi/lda
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4.3.2 K-means

We have tried k-means with unigrams and n-grams. n-grams are co-occurred words
within window size n. If n is taken one and two, the model is called unigram and
bigram respectively. The bigrams are used to capture the phrases like "red light".
We also used k-means on the data which is processed differently. The processing
technique is discussed in Section 4.3.5. The selected parameters for k-means are
given in Table 4.4.

Table 4.4: K-means parameters

parameter value
initialization method k-means++
max_ iter 500

n_ init 20

e k-means++ - A smart initialisation method in order to speed up the con-
vergence of the algorithm is discussed in 3.1.1.

e max__iter - The number of iterations of k-means algorithm in a single run.
e« n__init - The number of initialisation of k-means with different centroids.

K-means is implemented using python scikit-learn package [7].

4.3.3 Word Embeddings

Given a set of documents, word embeddings can learn the word vectors for each word
in the document set. From the vectors, similar words can be identified using cosine
similarity. We used word embeddings to identify the similar words. For the dataset
P, it can capture similarity between words. However, if the dataset is larger, the
model can produce much better result. Therefore we decide to combine the datasets
P and H and give combined documents as an input to word embedding algorithm.
The word embedding is implemented using gensim ® package [26]. For instance, for
the words "korsning" ("intersection’) and "seriekrock’ ('pileup’) the word embedding
identified related words are very close to the given words (Table 4.5).

Table 4.5: Words that are identified as related to "korsning" (’intersection’) and
"seriekrock" ('pileup’) by word embeddings

Word related words according to word embeddings
korsning  vagkorsning, kors, korsn, cirkulationsplats, vajningsplikten
seriekrock kokrock, seriekollision, koolycka, kedjereaktion, kedjekrock

3https://radimrehurek.com/gensim /models/word2vec.html
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Table 4.6: Parameters for word embedding

parameter value
Number of neurons in the hidden layer 300
min-count 5)
Windows size 6

Table 4.6 shows the selected parameters for word embedding. The number of neurons
in the hidden layer is selected based on the original paper (Mikolov et.al [18]). The
words will be ignored which occur less than min-count. This helps to decrease the
computation time of word embeddings. Since the documents in the dataset are very
short the window size 6 is enough and by some manual inspection, we can see that
the result is reasonable in terms of word similarity.

4.3.4 Keyword Extraction

The keywords are essential in understanding the set of documents. We used key-
words in the approach described in 4.3.5. The keywords are extracted based on
document frequency values of terms. The words which have document frequency
between some specified thresholds are taken as keywords. This range for the datasets
P, H, T is specified in Table 4.7.

Table 4.7: Parameters keyword extraction

Dataset min df max df

T 300 1150
P 700 46698
H 700 94179

where min df and maz df stands for minimum and maximum document frequency.
This specified range for dataset T' provides the following keywords "ljus" ("light"),
"okdand" ("unknown'), "fotgingare" ("pedestrian'), "rod" ('red"), "hare'('"rabbit"),
"korsning" ("intersection”), "radjur" ("deer"), "seriekrock” ("pileup"), "bakifran" ("rear"),
"trad" ("tree’), "fara" ("few"), "u-sving" ("u-turn"), "rund" ("round"), "snurra" ("spin’),
"sladda" ("slide"), "djur" ("animal") which contains all of the cluster labels. In fact

if we increase the max df value the keyword list does not change. This is because
the stop words are removed before keyword extraction and words which occur more
than 21% of documents are not very important.

4.3.5 Enriching the Data

To enrich the data we first extracted the keywords as described in Section 4.3.4.
Next, we trained Word2Vec on the combined dataset P and H. The parameters
are taken exactly as stated in Section 4.3.3. The rest of the enrichment procedure
is done as described in Section 3.3. Furthermore, we took top 5 related words to
enrich the data.
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Figure 4.1a shows visualisation of PCA reduced TFIDF vectors of non-enriched
data and 4.1b is visualisation of enriched data. The separation in an enriched data
is much more explicit; one can even identify the number of clusters from the figure.
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(a) Before enrichment (b) After enrichment

Figure 4.1: PCA reduced test data before and after enrichment

We will refer to enriched dataset for P and H as Pr and Hg.

4.4 Selecting the Number of Clusters and Topics

We used elbow method to identify the number of clusters in dataset P and H. Figure
4.2 shows the elbow curves for this dataset. Both curves are close to ambiguous,
where one cannot easily find the number of clusters. However, for dataset P (4.2a)
the decrease in distortion becomes more steady after 40 clusters. Therefore we can
take 40 as a number of clusters for this dataset. For dataset H, we take a naive
approach. Already for 30 clusters, there are some repetitions in groups, and therefore
we have taken 30 clusters for this dataset.
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Figure 4.2: Elbow curves for dataset P and H
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To select the number of topics for topic modeling we used perplexity with cross-
validation. The tool used for this is the topic modeling package of R 4.

Figure 4.3 shows how perplexity changes when number of topics is increased. As it
can be seen from Figure 30 is a reasonable number of topic for all four datasets.
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Figure 4.3: Perplexity values for choosing the number of topics

4.5 Evaluation

This section includes the evaluation of clustering, topic modeling and document
ranking algorithms. Calinski-Harabasz, F-measure and ARI are used for the clus-
tering evaluation. The evaluation for document ranking is done using F-measure.
Furthermore, the evaluation of topic models is done by manual analysis and per-
plexity.

4.5.1 Clustering Evaluation

We have used external evaluation metrics such as F-measure, and Adjusted Rand
Index for the test set. However, since P and H are unlabelled, it is not possible

“https://cran.r-project.org/web/packages/1da/
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to evaluate the results on both datasets in an external manner. Therefore, we used
Calinski-Harabasz index to check the quality of the clusters.

Table 4.8: Evaluation of different algorithms on test set T’

Algorithm Precision Recall F-measure ARI

Kmeans with unigrams 0.8075 0.7910 0.7930 0.7954
Kmeans with bigrams 0.8263 0.8217 0.8092 0.7622
Kmeans on enriched data 0.9594 0.9593  0.9592 0.9139
LDA 0.7017 0.7276  0.7060 0.7899

LDA on enriched data 0.7938 0.7723 0.7763 0.7080

Confusion matrices for the dataset T" are shown in Figure 4.4 and 4.5 for the methods
k-means with bigrams (4.4) and k-means on enriched data (4.5).The numbers 1-8
correspond to cluster descriptions in Table 4.2. In confusion matrices the darker
the diagonal value the better the clustering result. However, in bigrams approach
there are some non-diagonal element with dark colour which shows the number of
documents included in the wrong cluster. For k-means on enriched data, there are
no many false positives as indicated in 4.5.
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Figure 4.4: Confusion matrix for k-means with bigrams on T’
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True label

Predicted label

Figure 4.5: Confusion matrix for k-means on enriched T

Internal evaluation is performed on dataset P and H. Table 4.9 shows the Calinski-
Harabasz values for different techniques.

Table 4.9: Evaluation with Calinski-Harabasz index on Dataset P and H

Algorithm P H T
Kmeans with unigrams 1490.7764 1400.1945 143.5178
Kmeans with bigrams 980.9094  1106.4575 110.264
Kmeans on enriched data 3445.5356 3569.7973 445.5300

As Table 4.9 indicates, for P, H, and T k-means on enriched data performed the
best and k-means on unigrams preformed better than bigram approach.

4.5.2 LDA Evaluation

The results from LDA algorithm are evaluated using perplexity and manual anal-
ysis of each topic. Manual analysis is done by examining each topic and the top
words closely. The evaluation method will not be heavily dependent on perplexity.
Perplexity is not selected as an ultimate evaluation method in this project for the fol-
lowing reasons. The primary factor is the lack of state-of-the-art evaluation method
for a topic model. As mentioned in [5], evaluation methods for topic modeling is
an active research area. Even though it is common to see perplexity used as an
evaluation method for topic modeling, the perplexity is not a good indicator of how
well the topic modeling algorithm fits the dataset [8]. Thus, we have supported the
perplexity evaluation with manual analysis. Besides, by inspecting each resulting
topics manually, we can tell if the purpose of the project is met.

As Figure 4.7 and 4.6 indicates, the perplexity values for Pr and Hg are lower than
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perplexity values for P and H respectively. Hence, based on the perplexity results
the enriched datasets fit more to the LDA algorithm than the original dataset. The
perplexity values are provided in Table C.1.

Figure 4.6: Perplexity results on H and Hg
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Figure 4.7: Perplexity results on P and Pg
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The topics for P and H contain a list of words where each word is associated with
a different traffic accident. Thus, the result was not fine grained. However, after
enriching datasets P and H the LDA algorithm produced good results. These topics
can group similar words together and provide a clear description of the accidents.
The following Table 4.10 contains few sample topics for Pg. All results are provided
in Appendix A.

In Table 4.10, Topic 2 describes accidents related to traffic barriers where all the top
words are related to each other. Another interesting result we observed by combing
both LDA and word embeddings is that it can manage to group ill-typed words to
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the same topic. This is indicated in Topic 14, which includes accidents happening
due to unknown reasons and there are no much details to tell about the crash. The
Swedish word "okénd" is wrongly spelt and the model was able to group misspelt
words to the same topic.

Table 4.10: Sample topics for Pg

Topics | Top ten words

2 vajerriacket vagricke sidoracket mittvajern vajerracke racke mit-
tracke broricket riacka mittbarridren skyddsracket

8 trafikljus gul rodljuset stoppljus rodljus trafiksignal ljussignal signal
ljus ljuda

14 oklar oforklarlig oférklarig synbar okénd obekant okont oknd out-
grundlig oldnd okand anledning

17 Ib filbyte inbromsning lastbil korfaltsbyte omkéring undanmanover
hogersving manéver omkorning

18 passera langas passerad svianga parallell ansluta permans mar-
tinssons passer elsa

20 kvinna flicka pojke person dam fotgingare gangare gangtrafikant
overgangstille obevakad

21 forare tappa kontroll fora mena forsoka mede hona viagbana fuktig
moddig isbelagd vat blota hala sparig omkull éta isig isskorpa

22 forare o6ga stark solljus lag fora solsken morgonsol kvéllssolen sol

23 hjort vildsvin rena radjur katta hare alga grévling dlgkalv algko

26 cyklist trel cykla cykelbana cykel part buss bussa mopedist omkull

non non

A pedestrian is described in the dataset as "woman", "man"; "boy", "girl" or "person".
Topic 20 of P tells about accidents involving pedestrians and the potential cause of
the accidents. All the words describing a pedestrian are among the most probable
words in Topic 20. Moreover, it also contains words such as "pedestrian crossing'
("overgangstalle') and "unattended" ("obevakad"). Therefore, we can infer that the
accident involving pedestrians are associated with the person crossing a road unat-
tended.

There is an interesting pattern in topics 21 and 22. These topics contain a clear
reason for the accident. In Topic 21 the accident happened because the driver lost
control. Topic 22 describes the poor vision problem where driver was not able to
see because of sunlight.

The LDA on Hg gave interesting results which can be handy for researchers in the
area of traffic safety. Sample topics for Hg is provided in Table 4.11. For instance,
we can consider Topic 2, which describes road traffic accidents involving a bicycle.
By observing the most probable words in this topic, one can tell that bicycle ac-
cident, and a bike lane with gravel have some connection. This hidden connection
can then help researchers and road safety experts devise a solution.

Another advantage of using enriched dataset is to include all similar words describ-
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ing the same accidents in the same topic; Topic 7 is a good example for this. Topic 7
includes all turning accidents such as left-turn, right-turn, U-turn. Similarly, Topic
13 which describes chain crashes. This crash type can be described using different
words which are included in the topic. This advantage helps us solves the very fun-
damental problem we raised at the beginning of this project.

Also, LDA algorithm with word2vec provided to the discovery of hidden topics
within the dataset. A good illustration for this is Topic 8 which encompasses doc-
uments which explain accidents that occurred while pedestrians are walking with a
dog. It is necessary to differentiate those result with topic 19, which talks about
accidents involving animals as well. In the later case, the animals are by themselves
causing the accidents, and there is no pedestrian involved in the majority of the
events.

All the relevant topics discovered by the LDA algorithm on original dataset P and
H are also uncovered in the results of dataset Pr and Hg. For instance in Pg, all
bicycle-related, motorbike-related accidents, traffic light accidents are grouped into
Topic 26, Topic 17 and Topic 8 respectively.

Finally, it is meriting to state that not all the topics resulted from the LDA on the
datasets are interpretable. While the majority of the Topics produced from dataset
Pr and Hg describe the data well and are coherent, there are some diverse topics.
For instance, in Hg Topic 4 and Topics 5 are a collection of different accidents. Sim-
ilarly, Topic 18 of Pg is a mixture of various accidents descriptions. This problem
gets worse in the case of dataset P and H.

Table 4.11: Sample topics for Hg

Topics | Top ten words

2 cykla omkull cykel styre grusa framhjul flyga hjul grus cykelbana

4 viaduktsvaggen forsokteaka franmforvarande lastbilsida vilarin-
blandade snoskoterakning bakifan stannaallt hand toga

5 jaga vaga fora hem plotslig &ta jobb fart hel hinna arbete

7 tappa nedforsbacke sving hogerkurva hogersvang hogerving van-
sterkurva kurva svangen nerforsbacke

8 koppel omkull hund hést hundvalp schifer hunde hunder dragkarra

13 kobildning bilké ko bakomvarande bak rodljus bakomliggande

bakom okvall frordon bakifran stillastaende pakorda inblandad rus-
ningstrafik kokrock seriekrock kedjekrock trafikolycka rad

18 passera langas passerad svanga parallell ansluta permans mar-
tinssons passer elsa korsa soder cyklist viga oster mede gata fora
véster cykelbana

19 alga hjort djur radjur vildsvin kanin fora rav vild gravling hare
raddjur ruta framrutan vindruta framruta katta édlgkalv bakruta
krossa
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4.5.3 Document Ranking Evaluation

In this section, we will evaluate the following text ranking techniques.

o TFIDF based ranking: In TFIDF based ranking the similarity between
query and documents are computed by the dot product (cosine similarity) of
TFIDF vectors of query and document.

o TFIDF based ranking with query expansion: The query and documents
are enriched with keywords, and then we use TFIDF ranking as described
before.

« Ranking using Word Mover’s Distance (WMD): In WMD the similarity
is travel cost of words from query to a document, in this method documents
are ranked based on this similarity.

In all ranking methods, the search result is sorted in ascending order of similarity
values between documents and query. To evaluate the ranking algorithm we created
gold standard query document pairs from the dataset 7. We looked at the top
300 results of the search algorithm and calculated how many of them are in the
document set corresponding to the query.

Table 4.12: Evaluation of different ranking algorithms on test set T’

Algorithm Avg. precision Avg. recall Avg.F-measure
TFIDF 0.4382 0.4382 0.4382
TFIDF with query expansion (.7972 0.7972 0.7972
Ranking via WMD 0.2867 0.2867 0.2867

In Table 4.12 the average precision and recall values are the same. This is because
the size of retrieved documents is equal to the size of relevant documents. According
to the test results, WMD based approach has lowest F-score value. This method
cannot identify the important words as TFIDF. Therefore, it gives all words the
same importance. However, this method performs better than TFIDF when the
query is expressed with completely different words which the relevant documents
does not contain. Table 4.13 contains the precision, recall and F-score values for
few sample queries which does not have any occurrence in relevant documents. This
better explains how the methods work on different kind of queries.

Table 4.13: Evaluation of different ranking algorithms with no occurrence of query
words in relevant documents

Algorithm Avg. precision Avg. recall Avg.F-measure
TFIDF 0.0 0.0 0.0

TFIDF with query expansion 0.9881 0.9881 0.9881
Ranking via WMD 0.2360 0.2360 0.2360

In TFIDF based ranking the similarity between documents become nonzero if and
only if documents contain a common word. Since the query and relevant documents
do not have any common word this ranking algorithm cannot capture any relevant
documents and hence F-measure value becomes zero. The WMD algorithm may
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produce better results regarding F-measure with document pairs. However, the
experiments show that it does not work well on query document pairs probably
because the query can be very short and even a single word. As Table 4.13 shows,
the ranking via TFIDF with query expansion produced a result with high precision.
The running time of document ranking algorithms is crucial. Because users cannot
wait for query results too long. The running time of each ranking method for a
single query is provided in Table 4.14.

Table 4.14: Running time of different ranking algorithms for a single query in
MacBook Air with processor 2,2 GHz Intel Core i7 and Memory 8GB

Algorithm Time (s)
TFIDF 0.1452
TFIDF with query expansion 0.5066
Ranking via WMD 12.3445

The TFIDF ranking performed better than the query expansion approach because
it takes more times to enrich the query and documents than the document retrieval.
Furthermore, the WMD for a single query on over 3000 documents took 12 seconds
which is considerably expensive for query purposes. This method cannot be used
without reducing search space on the whole dataset.

4.6 Discussion

The STRADA database is well structured and each accident case is labelled. How-
ever, the accidents which are assigned to a fixed label, e.g., “single accident” may
actually link to many scenarios (e.g., "driver’s eyes-off-road", “too bright sun-light”).
Such information can only be gathered from the text description.

For other cases, there may be no fixed label to describe a certain type of accidents.
For example, there is no label called roadwork accidents in the database. Therefore,
retrieving roadwork accidents was very hard according to [17] and the author used
thirty different keywords for this purpose. The author has to think and find these
thirty keywords manually.

Another example can be accidents happening due to an icy road. There is no such
label in the database and this type of accidents can be under different labels such
as single-vehicle accident, rear-end collision, etc. Therefore, the task of retrieving
this kind of accidents becomes challenging; one has to search manually among the
free-text description using relevant keywords (in this case, e.g., “icy road”, “ice on

the roads”, “slippery road”). It is possible to make this process easier by employing
techniques such as topic models, clustering and document ranking.

We have observed that clustering can find scenarios which are not explicitly defined
as fixed labels in the database (e.g. "icy road", "multi-vehicle accidents", "weather
condition") and therefore hard to retrieve with a single relational database search.
After getting the groups, the analysis of specific crash scenario can be done by
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studying the corresponding cluster. Clustering can potentially decrease the time and
effort for doing this analysis. The crash reports, when clustered, can group accident
description that may have been under different labels previously in the database.
However, groups that we get from clustering may not represent the groupings we
like.

Unlike clustering, the topic modeling algorithm is better for summarising the data
and finding hidden topics. As discussed in Section 4.3.1, the topics identified by
LDA summarise well the specific crash scenarios. It contains different terms which
are related in context or meaning. Therefore, LDA topics highlight how similar
crash types have been expressed in different terms. Even some of them contain the
cause of accidents. The detailed analysis should be done by looking at most proba-
ble documents for these topics.

Document ranking method will provide search functionality for the dataset. As
discussed in 4.5.3, by query expansion it was possible to get a reasonable number
of accurate results. According to test results, this was the case even when query
and relevant documents are expressed in different words. This method will make
it easier to find specific accidents for which there is no fixed label describing them
and it is difficult to think of all possible keywords that can be associated with these
accidents. Ranking with query expansion overcomes this problem.

The keyword expansion method has the following limitations. Words which are
extracted by the keyword extraction algorithm may not necessarily be keywords.
Therefore, the method will give more weight to the unnecessary words and this will
lead clustering algorithm to produce a bad result. Also, some words in the datasets
can have a different meaning in different contexts. For instance, the word "woman'
which can either be "driver" or "pedestrian" may be associated more to "pedestrian”
as a result of word embeddings. Therefore, in the enrichment process, the word
woman will be expanded to a combination of words which are all related to "pedes-
trian". This is the case for documents where "woman" is used as "driver" as well. In
the latter case, the documents will be enriched by pedestrian related words which
is not desirable.

The use of text enrichment to tackle the problem of sparsity in short text has been
practised for some time. Many people have used external sources to make short text
documents longer and therefore reducing the sparsity. Banerjee et al. [10] propose
a method which uses Wikipedia as an external source to improve short text cluster-
ing. Hotho et al. [15] propose enrichment of short text documents using Wordnet
(lexical database of English)[12]. A keyword expansion method instead of enriching
every term is proposed by Wang et al. [7]. This method is similar to enrichment
method which has been used in this project. The difference is word embeddings
is used instead of synonym dictionary and keywords are extracted based on only
document frequency values. The advantage of our method is no external source is
needed if the datasets are large enough for word embeddings. Besides, our method
is more efficient in reducing sparsity since it does not increase term space by adding
new words.
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Conclusion

In this thesis, we explored how to cluster and summarise road traffic accident data
which are collected by police and hospitals. First, we examined the pre-processing
techniques such as pruning, stop-word removal and eliminating frequent words for
these datasets. We have done some parameter tuning to identify the pre-processing
parameters. It is observed that pruning helps to remove noise or unnecessary in-
formation from the data. Frequent term elimination removes non-expressive words.
Moreover, we used a state-of-the-art technique to get the word embeddings. This
is done by training a neural network on combined dataset P and H. We have seen
that the trained word embedding model is capable of identifying similar words in the
datasets. Besides, we explored the similarity measures to get the similarity between
word and document pairs.

We used k-means algorithm with different pre-processing techniques. Firstly, k-
means is used on unigrams and bigrams which produced similar results. However,
for the dataset P and H it seems that unigram approach worked better than bi-
grams. One possible reason can be, the dimensionality of the term space is very
high for bigram approach. Therefore, the TFIDF vectors end up to be sparse. Fur-
thermore, we came up with a new pre-processing technique which is based on word
embeddings. This technique is different in terms of enrichment via word embeddings
and keyword extraction using only document frequency instead of TFIDF values of
words. The advantages of using word embeddings over synonym dictionary were not
increasing the dimensionality of term space and reducing the sparsity of document
vectors. In addition, this pre-processing method helped to decrease the distance
between documents with similar scenarios which has been expressed with different
words. As our results indicate, after this processing the k-means performed well on
the test set. With internal validation of clustering we have verified that after this
pre-processing technique, the algorithm performed better than unigram and bigram
approach.

We also used Latent Dirichlet Allocation to summarise the data. LDA algorithm
is run on both enriched and non-enriched data. We have seen that after enriching
the data, LDA topics became much more expressive which collect similar words to-
gether. By looking at these topics, it is possible to tell what kind of crash scenario
the documents describe. However, this is not very explicit for the non-enriched
dataset which includes some diverse words in the topics.

We examined three document ranking techniques which are simple TFIDF based
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ranking, ranking via query expansion on enriched documents and Word Mover’s
Distance based method. Here query expansion approach outperformed the two
other methods regarding accuracy. However, concerning running time TFIDF rank-
ing retrieved the result faster.

Finally, we have tried clustering TFIDF weighted average of word vectors and dis-
tributed representation of document vectors [16]. By manual analysis, we have ob-
served that clustering via these techniques does not produce good results probably
because of the length of documents.

5.1 Future work

We have recognised that many words in the dataset are combined, or they are ill-
typed. One can use tokenisation and spell correction algorithms to fix these issues.
Since there is a possibility of relevant terms being ill-typed, it is expected that there
should be some improvements in clusters, topics and document ranking results.
Separating combined words will help to increase the similarity of documents which
contain the same combined word.

Performing document ranking on the whole dataset may be very slow, and the
number of documents is increasing each year. Therefore, to get fast query-search
results, one can use search space reduction techniques. A simple approach can be,
performing document ranking on a cluster that is very close to the query. Another
approach can be retrieving Approximate Nearest Neighbours [9] of a query.

Short text analysis is an emerging research area. There are lots of new advancements
such as Word2Vec word embeddings and Global Word Vectors (GloVe) [21]. One
can also explore these techniques to get document vectors which can be used in
clustering.
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LDA topics

Table A.1: LDA topics for H. Top 10 most probable words are provided for each

topic

Topics Top 10 words

Topic 1 | halka, isfliack, is, snoa, sanda, trottoar, isig, sno, pga, gangvig

Topic 2 | cykel, styre, flyga, cykla, framhjul, landa, hoppa, hjul, fastna,
tvarstopp

Topic 3 | sla, ramla, huvud, ansikte, axel, asfalt, bakhuvud, falla, kni, mark

Topic 4 | halka, toga, hand, emot, ramla, isflick, ta, falla, arm, va

Topic 5 | omkull, cykla, falla, cykel, nedférsbacke, trottoarkant, trilla, ramla,
cykelolycka, tillstand

Topic 6 | moped, kord, valta, mc, omkull, glida, motorcykel, kurva, aka,
svanga

Topic 7 | kord, lastbil, bil, traktor, sida, mittracke, borja, km, slapa, mo-
torvag

Topic 8 | vag, kord, dike, vija, sladda, radjur, trada, aka, volta, kurva

Topic 9 | bil, stanna, kord, ljus, overgangsstalle, korsning, rod, gron, sliappa,
se

Topic 10 | sladda, dike, volta, rund, snurra, hamna, dka, vig, bil, tak

Topic 11 | pakord, bakifran, bil, stillastdende, kobildning, stanna, framfor-
varande, pakorda, seriekrock, rodljus

Topic 12 | bil, svinga, pata, kora, plotslig, fila, svingd, se, va, blinka

Topic 13 | buss, falla, bussa, ramla, springa, gata, pata, kliva, stiga, trappa

Topic 14 | oklar, olycka, handa, vag, anledning, okdnd, veta, minnas, pata,
troligen

Topic 15 | bil, pakord, ligga, hastighet, sida, korsa, Gvergangsstélle, gata,
bilist, fart

Topic 16 | se, ata, halla, titta, fart, smalla, kora, sena, forsoka, sida

Topic 17 | bil, passagerare, sitta, forare, km, patient, baka, kord, hastighet,
sida

Topic 18 | kord, krocka, vag, km, élga, stolpe, trada, sol, bil, blanda

Topic 19 | patient, va, sid, ho, landa, kné, skada, sla, axel, ond

Topic 20 | bil, korsning, kord, svanga, sida, se, svangd, kora, sid, korsa

Topic 21 | snubbla, falla, trottoar, trottoarkant, gata, kant, fotgingare,
ojamn, handlost, snava
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Topic 22 | tappa, hal, pga, kontroll, balans, vag, glida, vigbana, viglag, dalig
Topic 23 | bil, bromsa, framférvarande, hinna, kord, kraftig, bromsare, in-
bromsning, stanna, plotslig

Topic 24 | sta, bakifran, pakord, stilla, rondell, bil, pakorda, véinta, kora,
rodljus

Topic 25 | fot, trampa, hund, sned, falla, ramla, fastna, trottoarkant, vika,
ben

Topic 26 | km, kord, hastighet, cirka, bil, timme, vag, volta, enl, journal
Topic 27 | bil, mota, sid, krocka, fela, kollidera, korbana, frontalkrock, véija,
forare

Topic 28 | cykla, cykel, cyklist, cykelbana, ramla, falla, kompis, trilla, vélta,
cykelviagen

Topic 29 | aka, ramla, grusa, backa, 16sa, backe, fart, stena, nedfor, trilla
Topic 30 | vaga, hem, halka, jobb, parkering, arbete, skola, pavéig, hus, hamta

Table A.2: LDA topics for Hg. Top 10 most probable words are provided for each
topic

] Topics ‘ Top 10 words ‘

Topic 1 | uppfatta, upptéacka, uppmérksammad, observera, sig, notera,
marka, se, uppmarksam, uppmaéarksammade

Topic 2 | trilla, ramlare, ramla, vurpa, valta, falla, foll, stupa, ramalde, storta
Topic 3 | cykla, omkull, cykel, styre, grusa, framhjul, flyga, hjul, grus, cykel-
bana

Topic 4 | passera, passerad, blockera, enkelrikta, tillparkeringen, horndals,
vagalternativ, garagplanen, komliggande, korsa

Topic 5 | viaduktsviggen, forsokteaka, franmférvarande, lastbilsida, vilarin-
blandade, snoskoterakning, mede, bakifan, stannaallt, och

Topic 6 | jaga, vaga, fora, hem, plotslig, dta, jobb, fart, hel, hinna

Topic 7 | huvudled, utfart, stopplikt, korsn, véigskorsning, kors, fyrviagsko-
rsning, vagkorsning, korsning, stoppskylt

Topic 8 | tappa, nedférsbacke, svang, hogerkurva, hogersvang, hogervang,
vansterkurva, kurva, svingen, nerférsbacke

Topic 9 | koppel, omkull, hund, héast, hundvalp, schéfer, hunde, hunder,
dragkérra, egon

Topic 10 | overgangstalle, overgangstéllet, cyklist, person, jarnviagsovergang,
overfart, cykeloverfarten, cykeloverfart, overgangsstalle,
overgangsstallet

Topic 11 | km, ca, hastighet, volta, cirka, passagerare, timme, framférvarande,
kort, stillastaende

Topic 12 | stoppskylt, vagkorsning, rodljus, avfart, korsning, pafart, rondell,
bilko, cirkulationsplats, prakeringen

Topic 13 | cykel, cykla, jaga, fastna, fot, falla, hoppa, sla, sadel, pedal

Topic 14 | kobildning, bilko, ko, bakomvarande, bak, rodljus, bakomliggande,
bakom, okvall, frordon

42



A. LDA topics

Topic 15

filbyte, undanmandéver, hogersving, densamma, vanstersvang,
usvang, omkorning, omkornig, récka, vanstersva

Topic 16

snubbla, falla, buss, trottoarkant, trampa, sned, gata, fot, kliva,
bussa

Topic 17

spinna, vattenplaning, panik, punktering, motorstopp, slad, sladda,
retursladd, slapp, sladdoch

Topic 18

osandad, halkde, hlkade, halkolycka, glatta, halakde, slinta, ren,
kullig, halka

Topic 19

bldnda, 6gonen, solljus, skina, blendad, blandasdes, cykla, motljus,
sola, halvljus

Topic 20

alga, hjort, djur, radjur, vildsvin, kanin, fora, rdv, vild, gravling

Topic 21

mota, fela, kollision, frontalkrockat, fronta, frontalkolliderat,
frontalkolliderade, frontalkollision, frontalkrock, frontalkrockade

Topic 22

viaduktsvaggen, och, stannaallt, bakifan, mede, snoskoterakning,
vilarinblandade, lastbilsida, franmforvarande, forsokteaka

Topic 23

hala, blota, halkig, glashal, vatt, moddigt, hal, hallt, halrt, nalt

Topic 24

tvarnita, bromsa, nita, tvarbromsa, panikbromsa, bromsare,
stanna, inbromsning, veja, vija

Topic 25

sla, patient, oklar, huvud, omkull, cykla, axel, v, kna, ho

Topic 26

blankis, isgata, glansis, isflickar, isbana, is, isflack, isklump, iskant,
isvall

Topic 27

svanga, svangd, blinka, gira, svinger, svande, svangde, van-
stersvang, svagna, vanga

Topic 28

rodljuset, trafikljus, rodljus, gul, rorr, gront, rott, rod, trafiksignal,
stoppljus

Topic 29

framat, falla, framstupa, handlost, frammat, baklanges, framlanges,
bakat, sla, rygg

Topic 30

promenera, morgonpromenad, kvéallspromenad, promenad, falla,
ploga, joggingtur, skotta, sandning, salta

Table A.3: LDA topics for P. Top 10 most probable words are provided for each

topic

Topics Top 10 words

Topic 1 | bil, bakifran, pakord, stanna, slappa, tur, pakorning, forbi, kobild-
ning, sakta

Topic 2 | forare, se, dta, kora, hastighet, borja, km, halla, plotslig, stanna

Topic 3 | vaja, vag, forare, alga, kollision, undvika, radjur, forsoka, bil,
springa

Topic 4 | kord, okénd, anledning, vag, dike, sid, trada, singelolycka, satta,
darefter

Topic 5 | fotgdngare, 6vergangsstalle, pakord, ga, bussa, buss, 6vergangstélle,
gata, tr, kvinna

Topic 6 | plats, polis, skada, forare, avvika, person, lamna, patrull, smita,
ambulans
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Topic 7

bil, korsning, ljus, kollidera, rod, gron, krocka, kord, svinga,
trafikljus

Topic 8 | bil, sta, stilla, bakifran, stillastaende, tur, kord, vanta, denna, ko

Topic 9 | bil, moéta, korbana, kollidera, sid, fela, korfalt, motsatt, krocka,
mote

Topic 10 | bil, bromsa, hinna, stanna, bromsare, framférvarande, kraftig,
stoppa, bakomvarande, uppfatta

Topic 11 | cyklist, cykla, cykel, cykelbana, korsa, bilist, Overgangsstalle,
pakord, gata, gang

Topic 12 | bil, korsning, svinga, kora, korande, kollidera, norrut, séderut, rik-
tning, fardas

Topic 13 | bil, kord, sida, svangd, uppmarksammad, baka, varpa, bogsera,
foljd, ini

Topic 14 | fordon, kord, personbil, inblandad, kollidera, framférvarande, se-
riekrock, forare, samband, avstand

Topic 15 | bil, vaga, svanga, kora, sida, se, krocka, kollidera, korsa, denna

Topic 16 | 1b, lastbil, slédpa, korfalt, fila, traktor, sléap, byta, ligga, valta

Topic 17 | riktning, lv, fardas, norrut, soderut, avfart, hoja, framfora, strax,
km

Topic 18 | vagbana, sikta, sikte, rada, mork, kraftig, dagsljus, skymma, regna,
torr

Topic 19 | moped, mopedist, omkull, falla, passagerare, sla, mark, ramla,
skada, ramlare

Topic 20 | forare, tappa, kord, kontroll, vig, fordon, dike, somna, lyktstolpe,
trada

Topic 21 | bil, sladda, snurra, sid, darefter, rund, mittracke, aka, korfalt, vé-
gracke

Topic 22 | bil, svanga, vanstersviang, omkorning, paborja, 1lb, kollidera, sam-
band, denna, samtidig

Topic 23 | bil, korsning, kollision, kollidera, vajningsplikt, uppsta, iaktta, hu-
vudled, stopplikt, trafikant

Topic 24 | bil, parkera, kord, sta, backa, parkering, sol, backe, se, forare

Topic 25 | olycka, bil, kord, intraffa, forare, ske, reg, oklar, sakna, not

Topic 26 | mc, forare, kord, omkull, motorcykel, kurva, vélta, glida, bromsa,
tunga

Topic 27 | bil, kord, rondell, part, lamna, foretréade, kora, sida, refug, cirkula-
tionsplats

Topic 28 | vag, meter, dike, fortsitta, sid, trada, kord, bromsspar, aka,
déarefter

Topic 29 | dike, sladda, hamna, volta, vag, tak, sid, aka, vigbana, ligga
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Table A.4: LDA topics for Pg. Top 10 most probable words are provided for each

topic

Topics Top 10 words

Topic 1 | kollission, frontalkollision, sammanstétning, kollison, frontalkollis-
sion, krock, kollissionen, kollisonen, kollusion, kollition

Topic 2 | mede, foretrade, huvudled, stopplikt, hogerregel, vajningsplikten,
vajningplikt, vajninsplikt, vajningsplik, hogerreglen

Topic 3 | vajerracket, viagracke, sidordcket, mittvajern, vajerricke, racke, mit-
tracke, broréicket, racka, mittbarriaren

Topic 4 | hogerkurva, nedforsbacke, uppforsbacke, svacka, viansterbéj, hoger-
boj, vasterkurva, vansterkurva, kurva, kruvan

Topic 5 | mota, fela, norrgaende, mede, korbana, korfilt, moétande, mot-
gaende, hoger, motsta

Topic 6 | kungsgatan, stopplikt, fyrvagskorsning, korsn, kors, korsnignen,
cirkulationsplats, vagkorsning, rondell, korsning

Topic 7 | plats, forare, olycka, polis, skada, passagerare, mede, avvika, fora,
uppgift

Topic 8 | riktning, mede, lv, firdas, rv, viga, norrut, sdderut, framfora,
koérande

Topic 9 | trafikljus, gul, rodljuset, stoppljus, rodljus, trafiksignal, ljussignal,
signal, ljus, ljuda

Topic 10 | uppmérksammad, observera, uppfatta, upptacka, mérka, notera,
uppmérsammade, se, uppméarksamma, veta

Topic 11 | ca, forare, meter, mede, darefter, trada, km, volta, fortsitta, ratt

Topic 12 | framférvarande, bakdel, kobildning, baka, bak, bakpartiet, bakom-
varande, bakénde, baktill, bakanda

Topic 13 | snémodd, sndovader, dimma, modd, snoa, is, regna, snofall, regnig,
ishalka

Topic 14 | cirkulationsplats, vigkorsning, vajningsplikten, korsning, rondell,
tunnel, stoppskylt, samhélle, cirkulation, parkeringsomradet

Topic 15 | oklar, oférklarlig, oférklarig, synbar, okond, obekant, oként, oknd,
outgrundlig, olénd

Topic 16 | hastighet, sjukdom, misstanka, drabba, sjukdomsfall, oregistrerad,
mt, omkorningsolycka, halkolycka, skoterolycka

Topic 17 | extrem, underlag, vagunderlaget, mycken, vigbana, halkig, glashal,
blot, moddigt, moddiga

Topic 18 | 1b, filbyte, inbromsning, lastbil, korfaltsbyte, mede, omkoéring, un-
danmanover, hogersviang, manover

Topic 19 | passera, langas, passerad, svanga, parallell, ansluta, permans, mar-
tinssons, passer, elsa

Topic 20 | kasta, vattenplaning, panik, retursladd, sladda, motorstopp, bred-
sladd, bredstall, slad, saldd

Topic 21 | kvinna, flicka, pojke, person, dam, fotgangare, gangare, gang-
trafikant, overgangstalle, obevakad

45



. LDA topics

Topic 22

forare, tappa, kontroll, fora, mena, forsoka, mede, hona, vigbana,
fuktig

Topic 23

forare, 6ga, stark, solljus, lag, fora, solsken, morgonsol, kvéllssolen,
sol

Topic 24

hjort, vildsvin, rena, radjur, katta, hare, alga, gravling, algkalv,
algko

Topic 25

sikta, mede, gode, dagsljus, vagbana, mulen, siktférhallanden, finta,
skymning, sikte

Topic 26

sla, volta, varva, rotera, tumla, kringa, studsare, grad, halv, bak-
langes

Topic 27

cyklist, trel, cykla, cykelbana, cykel, part, buss, bussa, mopedist,
omkull

Topic 28

kasa, kana, trilla, tippa, kase, tippare, flyga, ramla, fara, fora

Topic 29

vanstersvang, korfaltsbyte, hogersvang, omkoring, rundpall, van-
stesvang, vanstervang, vasntersvang, usvang, vanstersvan

Topic 30

file, blinka, svinga, gira, svinge, svangd, sving, vanga, svaga,
svagna
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Listing B.1: Document Ranking by TFIDF, query expansion and WMD

def tfidf_search(query, documents, ref_documents, num_results):
""" Retrive results according to similarity in TFIDF wvectors of
query and document pairs

ref_documents - refference to ortiginal documents
mnimn

Q = 1list ()

Q.append(query)
vectorizer = TfidfVectorizer (max_df = 2000, min_df=30)

X = vectorizer.fit_transform(documents)
# Get tfidf wvector of test document
vect = vectorizer.transform(Q)

# cosine similarity

from sklearn.metrics.pairwise import cosine_similarity

query_vect = vect[0]

# dict contains pairwise similarities between query and
documents

# Key document: wvalue similarity

dict = {}

similarity = cosine_similarity(vect, X)

import numpy as np

S = similarity [0]

for i in range(len(documents)):
dict[i] = S[i]

# sort dictionary according to wvalues

import operator

ordered = sorted(dict.items(), key=operator.itemgetter (1),
reverse=True)

# return relevant results

query_result = list ()

for i in range(num_results):
res, _ = orderedl[il]
query_result.append(ref_documents [res])

return query_result

def query_expansion_search(query, documents, num_results,

isEnriched, w2vmodel):
niumn

isEnriched - (boolean) 4if False enrihch text
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def

W2vmodel - pre trained model, tf it %s None then the model
2s tratned on wl2v_train_set
miun
# Expand documents
if w2vmodel == None:
#train worlvec
from definitions import train_word2vec

vec, vocab, model = train_word2vec (w2v_train_set, 300, 6, 5)
else:
model = w2vmodel

# keyword exztraction:
from definitions import extract_keywords
keywords = extract_keywords (documents, 230, 1100)
from definitions import enrich_text
# enrich the query
(expanded_query, related_terms) = enrich_text ([queryl, [],
keywords ,5,model)

if isEnriched == False:
(final, related_terms) = enrich_text(documents, [], keywords
, 5, model)
result = tfidf_search(expanded_query[0], final, documents,

num_results)
return result

wmd_search(query, documents, num_results, model):
mninn

Rank according to Word Mover’s Distance and retrieve top
num_reuslts

model - pre-trained word embedding model
miun
dict = {}
for i in range(len(documents)):
dict[i] = model.wmdistance (query, documents[i])

# sort dictionary according to wvalues
import operator
oredered = sorted(dict.items (), key=operator.itemgetter (1))
# return relevant results
query_result = list ()
for i in range(num_results):
res, _ = orderedl[il]
query_result.append(documents [res])

return query_result

Listing B.2: Eliminating Stopwords

def

48
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Eliminate stopwords in a single document
nimnn
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A= 1]
for word in document.split():
if word not in stopList:
A.append (word)
return .join (A)

def eliminateStopWordsCorpus (corpus, stopList):

miun

Eliminate stopwords in whole document corpus
nunn
newCorpus = []
for document in corpus:
newCorpus.append(eliminateStopwordsDoc (document , stopList))
return newCorpus

Listing B.3: TFIDF vectorization of documents

from sklearn.feature_extraction.text import TfidfVectorizer
def tf_idf_vectorizer (docs, maxdf, mindf, ngram_range_):
- Get tfidf wectors for documents ’docs’, with params maz_df
and min_df
Returns a tuple of tfidf wvectors and vocabulary (tfidf,
vocab)

ngram_range_ 1S a tuple im sSome range e.q
namnn

vectorizer = TfidfVectorizer (max_df=maxdf, min_df=mindf,
ngram_range=ngram_range_)
tfidf _matrix = vectorizer.fit_transform(docs)

# Get the wocabulary

vocabulary_dict = vectorizer.vocabulary_

vocabulary = []

for (a, _) in vocabulary_dict.items ():
vocabulary.append(a.encode ( ))

return (tfidf_matrix, vocabulary)
Listing B.4: Training Word2Vec word embeddings

from gensim.models import Word2Vec

def train_word2vec(docs, num_hidden_layers, window_, mincount):
"t Train word2vec model to get word wectors,
returns a tupple of wocabulary and word vectors list
doc_1st = []
for doc in docs:
doc_1lst.append(doc.split())

w2v_model = Word2Vec(doc_lst, size=num_hidden_layers, window=
window_, min_count=mincount, workers=4)

vocabulary_tuple = w2v_model.vocab.items ()

vocabulary = 1list ()

for (a, _) in vocabulary_tuple:
vocabulary.append(a)
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word_vectors = []
for word in vocabulary:
word_vectors.append (w2v_model [word])

return (word_vectors, vocabulary, w2v_model)

Listing B.5: Keyword extraction and text enrichment

def extract_keywords (documents, low, high):

mnin
Keyword extractin based on document frequency values
Keywords are words with frequency values between low and
high
mnimnn
(a, keywords) = tf_idf_vectorizer (documents, high, low, (0,1))
return keywords

def enrich_text(documents, w2v_train_set, keywords,

50

n_related_terms, w2v_trained):

miun

Ezpanding text with related words in order to exzplicitly
separate 1t

from other documents.

1f text contains a sentence with keyword then it will be
expanded

by adding related words to that keyword to the sentence

nunn

if w2v_trained == None:
(vectors, vocab, model) = train_word2vec(w2v_train_set,
300, 6, 1)
else:
model = w2v_trained

# Getting related terms to the keywords
related_terms = []
related_terms_dict = {}

for item in keywords:
try:
a = model.most_similar(positive=[item], negative=[])
except KeyError:
print item

string = item
count = 0
for (i, _) in a:
string = string + + i

related_terms.append(string)
related_terms_dict[item] = string

documents_split = []
for doc in documents:



B. Code Listings

documents_split.append(doc.split())

# text enrichment
for doc in documents_split:
for i in range(len(doc)):
if doc[i] in expanded_keywords:
doc[i] = related_terms_dict[doc[i]]

final = []
for i in documents_split:
final.append( .join(i))

return (final, related_terms)
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Perplexity values for different
topics

Table C.1: Perplexity for P, H, Pg, and Hg

#Topics P H Pg Hg
2 388.0297 484.0261 599.5403 539.7443
5 316.7467 389.0353 380.5099 333.2821

10 279.0227 344.3034 266.6354 243.4594
15 265.1783  329.3884 223.5553 208.8286
20 257.6856 323.9852 197.3786 189.7355
25 255.2637 323.9608 182.8179 177.8984
30 253.7569 323.2362 176.3308 174.7421
40 254.1955 329.2791 166.1676 169.1734
45 255.7196 333.1078 164.1649 167.8493
20 257.0346 337.6669 164.8295 168.5603
%) 260.2828 342.9963 165.6192 169.8557
60 262.6959 346.7295 168.0868 172.1852
65 265.8622 352.0857 169.6564 172.8815
70 268.7501 356.9354 175.5590 176.0444
75 272.3882 362.0802 176.2387 177.7420
80 275.9963 368.0324 178.3309 180.8703
85 278.8546 373.3583 181.3648 183.1144
90 282.6494 379.8532 184.8324 184.8689
95 285.9792 384.9963 188.6076 187.4895
100 290.3668 391.6887 192.0175 190.0082
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