
Detection of malignant melanomas
using neural networks
Degree project report in Computer Science

Simon Länsberg
Anna Manfredsson

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CHALMERS UNIVERSITY OF TECHNOLOGY / UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2022
www.chalmers.se

www.chalmers.se

Degree project report 2022

Detection of malignant melanomas using neural
networks

Simon Länsberg
Anna Manfredsson

Department of Computer Science and Engineering
Chalmers University of Technology / University of Gothenburg

Gothenburg, Sweden 2022

Detection of malignant melanomas using neural networks
Simon Länsberg
Anna Manfredsson

© Simon Länsberg,
Anna Manfredsson, 2022. Supervisor: Björn Bergholm, Broccoli Engineering AB
Examiner: Lars Svensson, CSE Degree project report 2022
Department of Computer Science and Engineering
Chalmers University of Technology / University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX, template by Kyriaki Antoniadou-Plytaria
Printed by Chalmers Reproservice
Gothenburg, Sweden 2022

iv

Detection of malignant melanomas using neural networks
Department of Computer Science and Engineering
Chalmers University of Technology / University of Gothenburg

Abstract
Approximately 60 000 people in Sweden are diagnosed with skin cancer each year,
and around 500 of these patients die from their disease. There has been an increasing
number of skin cancer cases in Sweden every year. This coupled with the highly
stressed health care industry may result in a significant increase in mortality rates.
Therefore, in an effort to detect possible malignant lesions on the skin, an image
classification model was developed. The model in question was a convolutional
neural network, a type of deep learning that specialises in classifying image data.
In order to construct the dataset we used images found in the ISIC archives and
divided them into two classes, malignant and benign. Several attempts were made
before the best model was developed with a combination of transfer learning and
the loss function ADAM. The model demonstrated an average performance of 73%.
Using the Flutter framework it was possible to build an accompanying application
with which the model could be presented to the general public. Ultimately, the
app provided its users with the ability to take a picture of their lesion and then
receive an indication based on the recommendation provided by the model. The
connection between the application and the model was made possible through a
Firebase database and a Python script that housed the model.

Keywords: AI, Melanoma, CNN, Transfer Learning, Python, Flutter, Firebase.

v

Acknowledgements
We would like to express our deep gratitude to to Björn Bergholm, Broccoli Engi-
neering and all there employees for all their support and guidance throughout the
project. We would also like to extend our thanks to our supervisor Firooz Shahriari,
for his advice and assistance. Our grateful thanks are also extended to the other
degree project students at Broccoli, for all of their support.

viii

Glossary

ADAM Adaptive Moment Estimation. The loss function used for development of
AI model.

AI Artificial Intelligence. In essence AI is simulated human intelligence in machines.
API Application Programming Interface. Software that enables intermediary com-

munication between two applications.

CAD Computer Aided Diagnosis. Diagnosis assisted by computer related tools or
algorithms.

CNN Convolutional Neural Network. The network of choice for identifying poten-
tial malignant lesions.

CSV Comma-separated values. Data file using comma between each value.

DCNN Deep Convolutional Neural Network. The more advanced, i.e. deeper
version of CNN.

DOMMUDL Detection Of Malignant Melanomas Using Deep Learning. The
name of the project.

IDE Integrated development environment. The environment were the code is de-
veloped.

JSON JavaScript Object Notation. A lightweight data interchange format. It uses
human readable text to store or transmit data..

ML Machine Learning. A subset of AI.
MVSC Microsoft Visual Studio Code. The IDE tool for this project.

NN Neural Network. Discussed in section 4.1.

SDK Software Development Toolkit. The tools used to develop platforms and
applications.

TL Transfer Learning. Discussed in section 4.2.

ZIP Zipped archive. A compressed file format used for file storage.

ix

Glossary

x

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Purpose and goals . 2
1.2 Report Organization . 2

2 Method 3

3 Technical Background 5
3.1 Programming Languages . 5

3.1.1 Dart . 5
3.1.2 Python . 6

3.2 Platforms . 7
3.2.1 Flutter . 7
3.2.2 Firebase . 7

3.3 Graphics Cards . 8
3.4 Skin Lesions . 8

3.4.1 Malignant . 9
3.4.2 Benign . 10

4 Machine Learning Fundamentals 11
4.1 Deep learning and Neural networks 11
4.2 Transfer learning . 13

4.2.1 VGG-16 . 14
4.2.2 Mobilenetv2 . 14

5 Data 15
5.1 Data augmentation . 15
5.2 The importance of data quality . 16

6 Implementation 17
6.1 Hardware Installation . 17
6.2 Software installations and tests . 18
6.3 Anaconda and Jupyter . 18
6.4 The dataset . 19

xi

Contents

6.5 The Multiclass model . 21
6.6 Binary . 27
6.7 Working with the application . 33

6.7.1 Planning . 33
6.7.2 Setup . 34
6.7.3 Development . 34
6.7.4 Database setup . 35

7 Results 37
7.1 Model performance . 37
7.2 Script . 39
7.3 The application . 39

8 Ethics and Sustainability 41

9 Conclusion 43
9.1 Discussion . 43
9.2 Further research . 45

A The MobileNetV2 Model I

B Project GANTT schedule V

xii

List of Figures

3.1 Example of malignant melanoma. 9
3.2 Example of malignant basal cell carcinoma. 9
3.3 Example of malignant squamous cell carcinoma. 10
3.4 Example of benign nevi. 10
3.5 Example of benign dermatofibroma. 10

4.1 A basic sketch of a Neural Network. 12
4.2 Visualization of a convolutional layer. 13
4.3 The way a 3x3 filter ”Maxpool” the highest value for the next layer. . 13

5.1 Illustration of overfitting, underfitting, optimal performance. 15
5.2 Data augmentation effects on one of the data images. 16
5.3 Creation of duplicates from augmentation. 16

6.1 The final product. 18
6.2 The result of removing vignettes using the developed script. 21
6.3 Initial training (Left) versus the augmented training set (Right). . . . 24
6.4 Performance of TensorFlow model with 100 epochs and data augmen-

tation. 25
6.5 Performance of VGG-16 model with 100 epochs and data augmentation. 27
6.6 Comparison of the faulty and the correct model. 29
6.7 The best model was found by a combination of data augmentation

and dropout. 30
6.8 The 200 epoch model. 30
6.9 The attempts of a binary transfer model with VGG-16. 31
6.10 The base model that the DOMMUDL app will use. 32
6.11 Flowchart diagram of the application. 33

7.1 A table of different evaluations cases. 37
7.2 The TP and TN table of the two best models. 38
7.3 A preview of the application. 40

xiii

List of Figures

xiv

List of Tables

3.1 Price data of current GPU-price Vs MSRP. Source Techspot [1]. . . . 8

6.1 Summary of data left for each class after first round of sorting. 19
6.2 The final data set. 21
6.3 The Model. 22
6.4 The The model with added dropout layer. 25
6.5 The VGG-16 model with added top layer. 26
6.6 The binary model. 28

7.1 The two models compared. 38

xv

List of Tables

xvi

1
Introduction

The Swedish healthcare system is today very heavily burdened and the waiting times
for specialist procedures like operations are sometimes longer than the national care
guarantee set for health care in Sweden [2]. Regarding specialist procedures only 60
percentage of the patients received the care within the guaranteed 90 days during
2021 [3]. A possible way to aid in reducing these waiting times could be to, in
an early stage, filter out people who search for healthcare when they, in fact, are
healthy and just anxious about a hypothetical illness. These filters could help free
up vital time and resources that could be better spent on those who need them.
One area that is a potential candidate for such a filter is the assessment of potential
malignant melanomas that are benign nevus.

In Sweden, around 60,000 people are diagnosed with skin cancer every year,
and unfortunately, the number of cases increases each year. Of all those who are
diagnosed, around 500 people die each year. The amount of skin cancer cases are
exceptionally high compared to other countries [4]. In an attempt to shed some
further light on a rising problem and hopefully start decreasing the stress on the
Swedish health care system, an effort will be made to create an application that
could classify the potential malignant melanomas.

Henceforth this project will examine the possibility of training a model for image
analysis to distinguish between malignant melanoma and a benign nevus. Addi-
tionally, investigate if it is possible to develop an application where users can take
a photograph on their smartphone and receive a recommendation based on the re-
sults. A potential benefit of this project could be to free time from the health care
system by focusing on the areas mentioned above. Another effect of the project is to
contribute to better patient health by reducing the stress and anxiety levels involved
with potential malignant melanomas. Health care is a necessity for a sustainable
society, and any attempts at increasing the availability of healthcare could help aid
society in the long run.

Previous works in the field of malignant melanoma detection have been published
and present a wide variety of methods to achieve the best-performing systems. Two
publications, in particular, have served as a great source of inspiration for this
project, Fu’adah et al [5], and Naser-Esfahani et al [6]. Both studies present simi-
lar approaches to classifying potential malignant lesions using Convolutional Neural
Networks (CNN) and datasets built from the ISIC archives. Furthermore, the models
were developed to act as Computer-Aided Diagnoses (CAD) to be used ”in-house”
by medical professionals. This differs from the proposed purpose of the project (De-
tection of Malignant Melanomas Using Deep Learning (DOMMUDL)), that instead
will focus on providing the general public with a recommendation tool for poten-

1

1. Introduction

tial malignant melanomas. The results found from these studies are primarily from
Fu’adah et al [5], argues that the loss function Adam delivers the best performance
and will therefore be the loss function for the developed models in this project. The
studies attempted both Transfer Learning (TL) and creating a specialized Deep Con-
volutional Neural Network (DCNN) and seem to result in well-performing systems.
Therefore DOMMUDLs developing phase will utilize both these methods.

Considering this project will deal with medicine and potentially deadly diseases,
the goal is not to provide a complete diagnosis. Instead, a recommendation will
be issued. This recommendation will be based on how much the skin leisure in
question resembles the training material used. Furthermore, it needs to be stressed
that malignant melanomas are not the only type of skin cancer. Skin cancer is a
collective name for the uncontrolled growth of abnormal cells in the outermost layer
of the skin. These growths are included but are not limited to melanomas, basal
cell carcinomas, and squamous cell carcinomas. The current scope of this project
only allows for the detection of melanomas. As of right now, only a few attempts of
multi-class classification are planned to be performed during the developing phase.

1.1 Purpose and goals
With this project, the goal is to determine if, with the help of a photograph, it is
possible to distinguish between malignant melanoma and a benign nevus and provide
a recommendation with this information. In addition to this goal, it is desired to
examine if it is possible to train a model for image analysis of melanomas. If so, is
it possible to implement an application available for the general public?

1.2 Report Organization
To begin this report a description of the intended performance from an earlier stage
will be presented. Followed by a presentation of the different technologies applied,
such as the languages and platforms used. In addition, we will provide an explana-
tion of what skin lesions are since this may be helpful when reading the following
chapters. This project contains several complex concepts, most of which involve data
and machine learning. To further clarify these concepts, we will dedicate a section
to them. Detailed information on how the project was implemented and how the
steps were completed are presented below. By demonstrating the what, why, and
how of the project, we arrive at the result. Additionally, a section addressing ethical
and sustainability aspects of this subject will be included. In order to conclude the
study, we will discuss the results and explore further research possibilities.

2

2
Method

To achieve the goals for this project, the decision was made to split it into two main
parts that are to be developed in parallel with each other. The two parts are the
application and the Artificial Intelligence (AI) model. Due to previous experience, it
was decided to work in an agile manner. To satisfy this method a scrum board will
be set up using the online tool Trello, and online repositories will be used to house
the code. The agile way of working was based on continuous feedback from the
product owner which will be achieved by weekly meetings. Further, it was desired
to achieve as much functionality as possible each sprint, which was made possible by
working with all the different ”layers” of the project at the same time. To create a
well suited AI model possible a Convolutional Neural Network (CNN) will be used.
To guarantee that the model will be fine-tuned in a ”correct” manner extensive
research into the architecture of CNNs will be conducted. This research will then be
combined with several different tests to achieve the best performing model possible,
and aid in answering the question of whether malignant melanomas in fact could be
identified using a single photograph and a CNN-based classifier.

All collected data comes from medical sources and more data will not be collected
since it is impossible in the current situation. It is not ethical to collect data that
are not medically approved. Making data gathering an important part of the project
to make sustainable recommendations.

To develop the application there were two good options of what language and
framework to use. Mainly used for application development are React native and
Flutter [7], due to previous experience in the Flutter framework it was chosen. There
were discussions about how to develop the communication between the application
and the machine learning model. The research of different database options con-
cluded with the use of Firebase, which communicates well with Flutter and is easy
to work with. Compared to other options, Firebase requires a low effort which is
helpful in a project of this size.

To receive an early oversight of the project work, a weekly schedule has been
made in the form of a GANTT schedule (See appendix B). This schedule is likely
to receive small changes and fine-tuning during the project, but the basic structure
is to remain during the entire process. The project work is planned to primarily
be conducted at the Broccoli Engineering offices but due to the current situation
brought on by the COVID-19 pandemic, efforts will be made to ensure the ability
to work from home.

3

2. Method

4

3
Technical Background

The following section will explain the concepts and tools used during this project.
Firstly, the different programming languages and tools for software development
will be presented, followed by the platforms utilized for the application and the
script implementation. Machine learning is quite demanding, especially in regards to
GPU(Graphics Processing Unit) memory. Therefore the GPU used for this project
will be presented and discussed in this chapter. Since this project also handles
several medical terms, these will be explained for a fundamental understanding to
follow through the report.

3.1 Programming Languages
The different languages used to develop the application will briefly be introduced
alongside their proposal for the project. Firstly, an introduction to the language dart,
which will be used for all the code in the application. Followed by a presentation
of Python, the primary language used for the script and machine learning model,
along with the specific libraries utilized.

3.1.1 Dart
Dart is the foundation of Flutter [8]. Developing apps in Flutter entail writing code
in the dart programming language. Dart was designed to work specifically well for
client programming, with the goal to be the most efficient language for multi-cross
platform development. It is specified for web and mobile development but could be
used for many use-cases. In Dart, there are similarities with Java, C++, C# and
JavaScript.

A typical dart code could look like this:
// Define a function.
void printInteger(int aNumber) {

print('The number is \$aNumber.'); // Print to console.
}

// This is where the app starts executing.
void main() {

var number = 42; // Declare and initialize a variable.
printInteger(number); // Call a function.

}

5

3. Technical Background

Dart is type-safe, ensuring that the variable’s value and static type always match,
also called static type checking. Dart also offers the option to set the type of a
variable to dynamic. These features and our experience leads to choosing Dart and
Flutter.

3.1.2 Python

Every aspect of the machine learning model has been coded in python. Python
was designed with code readability in mind which can be seen in both the language
constructs used and its object-oriented approach. Unlike other popular languages
like Java and C++, python uses significant indentation instead of the popular curly-
brace approach. This helps the program’s readability to be even more simplified and
straightforward [9].
def count_Ones(arr):

count = 0
for n in arr:

if n == 1:
count+=1

return count

a = [1,0,0,1,1,1,0,0,1]
print(count_Ones(a))
Output:
5

There are numerous libraries available for Python for any possible use case. It is
common to use Python when working with machine learning. Consequently, many
libraries have been created for this area, such as TensorFlow, Keras, Pandas, Pillow,
and openCV2.

TensorFlow is an open-source library developed for machine learning, created
to help ease the building and deployment of machine learning models, which are
otherwise very complex. It can help with acquiring data, training, serving predic-
tions, refining results, and more. Since the TensorFlow update 2.0, Keras API has
been used for model training and is the version used in this project. TensorFlow
uses dataflow graphs, a series of processing nodes, and describes how data moves
through a graph. Each of these nodes is represented by a mathematical operation.
The connection between the nodes each represents a multidimensional array, also
called a tensor. TensorFlow builds the app frameworks in python, and the mathe-
matical operations are executed in C++ binaries. Python only redirects the traffic
between the operations and the nodes and tensors, leading to better performance.
In summary, TensorFlow offers abstraction and solves all the background details of
machine learning [10].

TensorFlow is suited for larger projects and complex workflows. The library is
also easy to learn and pleasant to work with, which is, together with the other
qualities mentioned, a primary reason for its usage in this project.

6

3. Technical Background

3.2 Platforms

For this project, two platforms are used. Firstly, the application is entirely devel-
oped in Flutter, a framework created by Google based on dart as the programming
language. Secondly, Firebase will be presented as it is the database used.

3.2.1 Flutter

Flutter is a cross-platform framework, and there is one code base for developing
multiple apps, supporting both iOS, android, and the web. Flutter is built from
the code-language dart, Google’s programing language introduced in October 2011.
Flutter was launched in 2017, making it relatively new compared to other frame-
works and languages for app development, like React Native from 2015, Ionic in
2013, and Xamarin in 2011. Flutter consists of an SDK (Software Development
Kit) and a Framework, User Interface (UI) Library based on widgets. The widgets
are ready to use, and by using them, the app can have a similar look to a native app.
The widget library consists of sliders, buttons, and text inputs. It is also possible to
create a new widget for a specific need. Considering Flutter is relatively new, there
is a large community, and the framework is well documented [11].

3.2.2 Firebase

Firebase is a platform that helps build, improve and grow app development. Firebase
is also referred to as a tool-set, providing the tools app developers do not want to
have in focus. These tools are authentication, database, configuration, file storage,
analytics, and many more. Firebase was developed by Google and is maintained
fully by them. In other words, it is cloud-hosted [12]. Firebase provides a web
console for managing all their services. With a Google account, a user can create
a project and configure the desired app, either an android, an iOS or a web app.
After configuration the user can enable the functionalities wanted for that specific
project. For example Firebase offers authentication and if configured, it is possible
to manage all accounts in the Firebase web console. For this project, we utilized
two of Firebase’s database services, Firebase Storage and a Real-Time database. As
the name states, the real-time database updates in real-time. When time is crucial
and when data requires constant updates, the real-time database is necessary. The
Storage is a service for storing and loading files of different types and sizes. It
is an ideal service when there is a need to store images. The Google Developers
have created several instructions with examples in multiple code languages and a
documentation that is easy to use, making it an easy task to get started in Firebase.
Thanks to its user-friendly tools, Firebase is a good choice for this project where
alternatives might need more time and work, which the scope of this project can
not afford.

7

3. Technical Background

3.3 Graphics Cards
The training of machine learning algorithms and models is heavily reliant on the
available hardware. In an attempt to reduce the overall dead time generated by the
training of the AI model, a computer was specially designed for the project. One
major issue that arose during the design and selection of parts for the computer was
the ongoing global shortage of semiconductors. Semiconductors are used in several
computer components, with the worst affected component being the GPUs. The
shortage of semiconductors and the spike in interest in GPUs resulted in very few
GPUs being available for purchase. The cards that were being sold had an increased
price of sometimes up to 142 percent of the manufacturer’s suggested retail price.

Table 3.1: Price data of current GPU-price Vs MSRP. Source Techspot [1].

GPU MSRP eBay Average Price December 2021 Inflation
GeForce RTX 3090 $1500 $2882 92%

GeForce RTX 3080 Ti $1200 $1968 64%
GeForce RTX 3080 $700 $1584 142%

GeForce RTX 3070 Ti $600 $1268 111%

Furthermore, the chief executive of Intel predicts that the shortage will last for
”a year, or two” [13]. With these predictions combined with the availability of
GPUs, the decision was made to procure the best-suited GPU available at the time
of purchase (December 2021), and this card was the RTX 3080Ti.

When dealing with machine learning models, the memory of the GPUs is a crucial
feature. The selected card has 12 GB of DDR6X memory combined with 320 tensor
cores that excel at matrices equations frequently used during the development of
machine learning models. It is worth noting that the RTX 3080Ti is not a pure
workstation GPU since it is developed as a gaming GPU. The RTX A5000 is a
workstation GPU with similar performance, but the needs for this project did not
motivate the increased price of the A5000.

3.4 Skin Lesions
Skin lesions are widespread and can occur from birth. These are most often benign,
”a mild type of character that does not threaten health or life” [14]. However,
there are multiple types of malignant skin lesions, defined as ”tending to produce
death or deterioration” [15]. The malignant lesions, also labelled skin cancer, can
be highly dangerous and cause death, which compels a thorough diagnosis of all
skin lesions. A high medical discipline is required to distinguish between these skin
conditions [16]. There are only a few malignant lesions and benign lesions we focus
on in this project. The model will only detect and distinguish between the malignant
melanoma, basal cell carcinoma and squamous cell carcinoma, as well as the benign
nevus and dermatofibroma.

8

3. Technical Background

3.4.1 Malignant
Malignant skin lesions are dangerous and often life-threatening. There are three
types of cells in the top layer of the skin, where skin cancer usually starts. They
are basal cells, Squamous cells and Melanocytes. When old cells die, the basal cell’s
function produces new skin cells. During the formation of new cells, squamous cells
are shed [17]. While there are many types of malignant skin lesions, those mentioned
and covered in this report are melanoma, squamous cell carcinomas, and basal cell
carcinomas.

Melanomas are the most dangerous and aggressive type of skin cancer. Melanomas
develop in the melanocytes cells, which produce melanin. It is possible for an ordi-
nary nevus to transform into melanoma, but more commonly the melanoma occurs
from anywhere on the skin. Melanoma most typically appears on the breast, back
or legs. It can be challenging to spot since it often develops from a regular non-
dangerous skin lesion. The first signs of malignant melanomas are changes in an
existing lesion or the increase of colour or unusual growth on the skin [18]. Its
distinctive features are its irregular shape and non-consistent colouration, which
usually shifts between brown, black, red, pink, blue and white. Additionally, it is
often larger than 5 millimetres. If there are any signs of melanoma, it will be treated
immediately because of the danger it applies, and if detected early, physicians can
successfully treat it [19].

Figure 3.1: Example of malignant melanoma.

Another common malignant skin lesion is the Basal cell carcinomas. This type
of skin cancer originates in the basal cells and is usually caused by exposure to
sunlight. It is usually found on the head and neck since those areas receive much
sunlight. Basal cell carcinomas can resemble a sore and have one of the following
looks. Either a bump that looks shiny and transparent or a slightly raised lesion with
brown, black or blue spots. There is also a possibility of a white lesion resembling
a scar with wax or a flat patch that can grow very large over time [20].

Figure 3.2: Example of malignant basal cell carcinoma.

Squamous cell carcinomas are the third and last type of skin cancer that will
be covered in this report. They usually depend on excessive sunlight exposure and
are the second most common skin cancer. Squamous cell carcinomas can appear

9

3. Technical Background

anywhere on the body where the squamous cells exist and tend to grow and spread
rapidly. The most common places to find it is on the scalp, hands, ears and lips. This
type of skin cancer is usually not as dangerous as melanoma or basal cell carcinomas.
However, it can cause inconvenience when it grows or spreads [21]. Some sign of a
potential squamous cell carcinoma is a lump or a spot with either the skin colour or
a pale red. It can be covered by a firm scale and is occasionally sore from touch [22].

Figure 3.3: Example of malignant squamous cell carcinoma.

3.4.2 Benign
Benign skin lesions are harmless skin abnormalities. They appear often and can
sometimes be mistaken for malignant lesions, which provokes worry even if they
are non-dangerous marks. They also have the potential to become malignant and
should be carefully surveyed. The similar appearances of malignant and benign
marks cause difficulty distinguishing between them. Below is a short description of
the two benign lesions: nevi and dermatofibroma [23].

One of the most common skin lesions is a benign nevus, also known as a mole
or birthmark. A person can have around 10-40 nevi on their body, most of which
appear at a later age. Nevi are usually harmless, but they can change in appearance
and shape over time. On rare occasions, they can become malignant, which is why
they need to be closely monitored for changes [23].

Figure 3.4: Example of benign nevi.

Dermatofibroma is a non-life-threatening skin lesion. It is firm and has a brown
or brown-red colour. It often appears on the lower legs of women, though it can
also be seen on the arms [24]. Although characterized as benign, dermatofibroma
can be very painful. This skin lesion is often mistaken for malignant melanoma and
even though it usually does not require treatment, it can be removed if there are
symptoms or uncertainty about its benign nature [25].

Figure 3.5: Example of benign dermatofibroma.

10

4
Machine Learning Fundamentals

One of the core functions of this project stems in the classifying of potential melanomas.
To achieve this, machine learning model was used. The name ”Machine Learning”
is a straightforward explanation of what this technology does behind the scenes.
Applying these methods can effectively give a computer abilities, including but not
limited to seeing and identifying objects in real-time, understanding the meaning of
a written text, and making predictions based on historical data. In essence, the ML
model is given a collection of data related to the current field, a dataset. This data is
then split into a training set, and a validation set used to train the model’s abilities.
In the current application, a classification task is implemented and trained.

4.1 Deep learning and Neural networks

Deep learning is a subset of machine learning that is particularly useful for developing
this project. Deep learning can be viewed as an attempt to implement the learning
method used by the human brain but is not close to matching the human brain’s
performance yet [26]. Networks consisting of several, or at bare minimum three
layers are commonly used to enable deep learning. The layers in neural networks
always contain one input, and one output layer combined with the ”deep” part of
the network referring to the hidden layers found between them. The level of depth
in the network corresponds directly to the sum of hidden layers in the model.

11

4. Machine Learning Fundamentals

Figure 4.1: A basic sketch of a Neural Network.

As illustrated, the neural networks are built with several layers, each consisting of a
set of nodes with individual connections. In the case of neural networks, these nodes
can be considered individual linear regression models. These models are comprised
of some input data, a weight, and lastly, either a threshold or a bias. [27]

Given these attributes, each node produces a formula like the one found by IBM
[28].

m∑
i=1

WiXi + bias (4.1)

Where the output is given by:

output = f(x) =

1 if ∑m
i=1 WiXi + bias ≥ 0

0 if ∑m
i=1 WiXi + bias = 0

(4.2)

When the data is passed through the different layers of the network, the neurons
that have an output of one will be viewed as activated and therefore act as the input
for the next layer of the network. The way that data passes between the layers of
the model is referred to as feedforward, making the neural networks feedforward
networks.

Neural networks exist in different configurations that excel at select tasks, like the
Convolutional Neural Network (CNN), selected especially for this project because of
its excellent ability to deal with image-based data. The CNNs have different types
of ”layers” used when building models, some of the ones used for DOMMUDL are
the following: convolutional layers, pooling layers, and dropout layers.

The Convolutional layers used during this project are of the type 2D Convolu-
tional layers. These layers act as a sort of filtering layer. The layer takes an input
in the form of an image and abstracts the contents to a feature or activation map.
This abstraction is made by defining a filter of size n and then letting this filter
slide across the image and summarize each step into a new pixel in the output. The

12

4. Machine Learning Fundamentals

convolutional layers excel at dealing with image based task and are a crucial part of
the convolutional neural networks.

Figure 4.2: Visualization of a convolutional layer.

Pooling layers is a way to summarise the info from previous layers. In the layers
used to create the model, the type of pooling layers used was MaxPooling. These
layers contain a ”filter” like those used by convolutional layers, but instead of finding
patterns, they find the highest valued pixel and transfer it to the next layer.

Figure 4.3: The way a 3x3 filter ”Maxpool” the highest value for the next layer.

Since the projects dataset will be a small one there will be a risk for overfitting
when using a larger model, and therefore there is a need for a regularizer that
can reduce this. This is where the dropout layers come in. These layers work by
randomly ignoring, i.e., dropping a percentage of the nodes within the layers. This
random risk of ignoring nodes makes so that the model no longer can rely on a
single node when predicting, and must therefore spread the weights between the
nodes.This helps to reduce the overfitting since a high weight associated to a single
node is a sign of overfitting [29]. The frequency of dropped nodes is set when adding
the layer to the model.

4.2 Transfer learning
Transfer learning (TL) is a way of ”piggyback” the success of a previous model
and utilize it to improve another models performance. A more formal definition of
TL [30] is: If there exists a source domain, a source learning task, a target domain,
and a target learning task then the the goal of TL is to use the knowledge in the
source domain and the the source learning task to improve the performance of the
target domain and learning task. TL is a technique with increasing popularity and is
frequently used when dealing with image classification tasks [31] [32] [33]. Since TL

13

4. Machine Learning Fundamentals

is a option when only a small data amount is available [34], some attempts using TL
will be planed for both the multi class and binary model attempts. The following
sections will give a brief introduction to the different TL models included in the
planned TL attempts.

4.2.1 VGG-16
VGG-16 is a pretrained deep convolutional neural network (DCNN) based on the
sugestion of K. Simonyan and A. Zisserman 2015 paper [35], with the ”16” part of the
model names refers to the model depth being 16 layers. The model was trained on
the ImageNet dataset consisting of 1281167 labeled images [36]. The VGG models
were submitted to the ImageNet Large Scale Visual Recognition Challenge of 2014
were they displayed great performance and was the first runner up of this year.
VGG-16 has been used for several TL image classification tasks [37] [38] [39], this
was one of the contributing factors for selecting this model for the TL attempts.

4.2.2 Mobilenetv2
The mobilenetV2 is a Google developed DCNN originally designed for use in mobile
devices, but is still commonly used for image classification tasks [40] [41]. Just like
the previous VGG-16 model, mobileNetV2 has been pretrained on the ImageNet
dataset, and is downloaded with these weights when used for TL. Unlike the VGG
model, MobileNetsV2 is considerable deeper with 51 layers. This model would only
be used for the binary TL attempts since it was added later to the project and the
then current time frame would now allow it.

14

5
Data

Data is one of if not the most essential components when dealing with machine
learning because if we do not have any information to learn from, it is impossible to
create an AI model. Therefore, locating data well suited for this project was neces-
sary before the work to find a functioning model could begin. To satisfy the needs of
this project, the freely available database ISIC was selected. The International Skin
Imaging Collaboration was created to facilitate digital skin imagining in an attempt
to reduce the mortality of melanomas [42]. The ISIC archives contain over 60 000
images of different skin lesions ranging from malignant melanomas to benign nevi.
From this archive, the photos for all the datasets will be fetched.

5.1 Data augmentation
When working with neural networks there always exists a risk of poor generalization.
This is often a consequence of overfitting in the model. Overfitting means that the
model has trained to fit exactly to the available data and therefore can not perform
well on generalized test data. The opposite of this is referred to as underfitting and
it occurs when your model have not trained enough to find the required patterns
needed to predict accurately [43].

Figure 5.1: Illustration of overfitting, underfitting, optimal performance.

One way of minimising the overfitting of a model is to expand the dataset to
create a greater variation of samples. But if the data is limited like in this case, one
can instead utilize data augmentation. This method helps to expand the existing
data by augmenting its contents. Some of the more common ways this is done
include, flipping the images horizontally or vertically, shifting the color or contrast,
rotating a certain amount of degrees, or cropping the images by applying a zoom
factor [44] (See fig 5.2).

15

5. Data

Figure 5.2: Data augmentation effects on one of the data images.

However, the usage of data augmentation could end up lowering the performance
even further if not used properly. Per example if the augmentation includes rotating
and the angle of rotation is low enough the augmented images wold become dupli-
cates and therefore not contribute to the variation of data. This is illustrated in
figure 5.3.

Figure 5.3: Creation of duplicates from augmentation.

5.2 The importance of data quality
When dealing with machine learning the quality of the model is not the only key
factor for success. The quality of the data can, and will impact the final performance
of the model and therefore some consideration is required when creating the datasets.
Furthermore, it is crucial that the data used represents the models final use case, i.e.,
if a model for detecting Swedish road signs is developed one can not use a dataset
consisting of American road signs even though they both are examples of road signs.
The developed models intended use case was featuring cellphone taken images of
the potential malignant lesions, therefore the data set needed to be constructed of
cellphone taken images OR images taken in a similar way. Now the lack of data
representing the final use resulted in the use of medically taken images instead, since
they were the closest and only data available. Possible future attempts of recreation
could most likely gain performance if the dataset instead was created with cellphone
taken images instead.

When dealing with other models like, regression etc. it is good to filter out the
outliers of the data since they can affect the final performance of the models [45].
For the dataset used in this project the outliers could be compared to the images
containing other information than just the melanomas or nevi, like the images with
ink shapes etc. These images were treated like outliers and therefore removed from
the dataset. Other examples of images removed were the ones that not displayed
clear lesions, i.e, lesions found on the patients scalps, or simply images of quality so
poor that no distinct features could be identified. We will provide more information
regarding our data and data processing in the next chapter.

16

6
Implementation

Following is a description of how the major part of the project was implemented.
Observing the steps in order of their occurrence, the first process to notice is the
installation of the hardware for the model. After the decisions were made and the
order placed, the hardware needed to be installed. Once this was completed, both
the application and AI model could be developed. The different steps involved in
developing the application will be presented first, followed by the machine learning
model and the steps needed to implement it. Further, a script has been developed
to integrate these two parts, which will be discussed last.

6.1 Hardware Installation

Once all the components were delivered to the office the process could begin with
the construction of the computer. The start of building any computer is to install
the processor, followed by the ram, storage drives, and backplates required by the
processor cooler. The storage drive used for this computer was an M.2 Solid State
Drive or M.2 SSD. This type of hard drive requires no external power or cables and
is simply installed right into an availed M.2 slot in the motherboard. Once all these
components had been installed on the motherboard the next step was to install
the motherboard itself onto the case. Once the motherboard was fitted correctly
the cooler was installed and all the auxiliary cables from the case like power reset
and USB ports were installed. Now the GPU could be installed with its special
holder to avoid the weight of the card damaging the motherboard. To finalize the
computer all components were supplied with electricity from the power supply and
the installation and set up of drivers and operating systems could commence. In
figure 6.1 the project computer is visualized.

17

6. Implementation

Figure 6.1: The final product.

6.2 Software installations and tests

Once the computer setup was completed and all the essential software and tools were
working as intended, the process of finding a suitable model could begin. Different
models were created, tested, and finally evaluated during this task to meet the
project’s requirements. Other than the AI models, different supporting python
scripts were developed to aid the data sorting and prepossessing. This section will
present the development and deployment of the projects deep learning section.

6.3 Anaconda and Jupyter

As mentioned previously, only the essential software had been installed and con-
figured. A program was needed to create the link between the GPU and the IDE
used to research the different models. There are various ways to implement such
functions, but a virtual environment with TensorFlow and Cuda was created for this
project. The virtual environment was created using Anaconda’s package manager
through their Graphical User Interface, Conda Navigator. Other than the libraries
required to utilize the GPU, several other essential libraries were installed onto the
environment.

The IDE (Integrated Development Environment) of choice for trying out and
developing the models was Microsoft Visual Studio Code (MVSC) combined with
the Jupyter notebooks plugin. One of the main reasons for selecting this IDE and
plugin was the simplicity of using the virtual environment combined with Jupyter
and MVSC. No extra plugins or software was required, and the only thing needed
was to select the right environment and then run the code.

18

6. Implementation

6.4 The dataset
In the data section, the source of the images was introduced, and then it was time
to create of the dataset using said images. ISIC archives provided a few methods
to download the pictures. These included individually selecting the photos to use,
downloading the data via the ISIC API, or simply downloading the entire database
in one single ZIP file. These methods provided some pros and cons, but ultimately,
downloading the whole database was selected since it would be the most time-
efficient process. The entire database file totaled around 100GB and contained all
the 69500 images available. The first data-related problem occurred, namely, the
images were sorted by their provider and not the diagnosis or lesion type. Luckily
a CSV (Comma Separated Values) file containing the metadata for each image was
provided. Sorting these images manually would be an impossible task, and therefore
a method of sorting these images was needed. To satisfy this need, a two-step sorting
script was developed and used.

The two-step part of the script refers to the two main components that deal with
the split of the metadata and the split of images between the different classes of
lesions. The first subscript, ”CSV Sorter,” took the main CSV file containing all
the metadata and selected rows based on two parameters given by the function call.
These parameters were the diagnosis, type of lesion, and type of diagnosis. The
reason for the second parameter is that some of the nevi and melanomas were not
given a diagnosis, .i.e, malignant or benign. Therefore, the decision was made to
exclude the images of melanomas or nevi that were not confirmed to be malignant
or benign. The scope further supported this decision only to include data classed by
doctors. Once the desired type of lesion had been specified, the script would pick
out the rows, turn them into a separated data frame, and then convert the data into
a CSV file using the library pandas. Once finalized, the script was run once for each
of the five types of lesions found on ISIC and delivered the five new CSV files.

The next step was to split the images into the correct folders, a task solved by the
second subscript named ”Image Sorter.” Instead of providing the main metadata
CSV file, this script was given the newly created type-specific CSV files and a folder
containing the image archive. Using pandas to read the CSV file and the OS library
to only select the images for the specific class and remove the rest. The entire
process of developing and testing the scripts took one day, and the sorting process
could now be done in around 5 minutes, solving the task of sorting the archive data.

Table 6.1: Summary of data left for each class after first round of sorting.

Type Images
Nevus 27869

Melanoma 5597
Dermatofibroma 245

Basal cell carcinoma 3395
Squamous cell carcinoma 655

A visual inspection of the collected data (Table 6.1) revealed that several images

19

6. Implementation

displayed features other than the skin lesions desired by the data. The goal of the
data was only to contain the lesion and skin without any additional noise, and to
ensure that this goal was reached, a second round of sorting was required. A distinct
unwanted feature appeared within the melanomas class, a vignette surrounding the
”important features”; therefore, these images needed some editing.

The main reason that keeping this vignette was not possible is that the data
should be as similar to the use cases as possible. And since the usage is primarily
intended for cellphone taken images, the vignette needed to be removed from the test
data. An initial attempt to remove this data manually was made, but this quickly
proved to be an extremely time-consuming task. Each image needed around 20-30
seconds to have its vignette removed, and the total amount images that needed
editing totaled up to about 1600. If this task were to be performed manually, it
would take at least 8 hours of continuous editing. Therefore it was decided to utilize
the python libraries Pillow, CV2, and OS image editing tools to perform the edits
instead. Removing the vignettes involved cropping out a certain percentage of the
image edges. After some fine-tuning, it was found that the optimal rate to crop was
28 percent of the height and width form each of the images. This edit was made by
calculating the new start and end pixels for both the height and width, and for this
task, the following formula was used:

StartPixel = (Image_height ∗ 0.28) (6.1)

EndPixel = (Image_width − StartPixel) (6.2)

Since all the images shared width to height ratio of 1:1 we could use the same
variables for both height and width. Now that the start and end points were found
it was just to crop and save the edited image.

crop_img = img[StartPixel:EndPixel, StartPixel:EndPixel] #Crop the image
cv2.imwrite((name+'.jpg'), crop_img) #Save the image

Once tested and optimized, the script completed the edit of all the images in 70
seconds, including the time for developing the script. This task was solved under
two hours, proving to be the most time-efficient method of removing the vignettes
(See figure 6.2).

20

6. Implementation

Figure 6.2: The result of removing vignettes using the developed script.

The vignettes were the largest but not the only noise found during the inspection.
Some of the other most commonly occurring was the usage of pens to highlight or
circle the potential melanomas or simply images too noisy to find the lesions. These
images were discarded from the datasets, and the task was not big enough to require
the development of additional scripts.

After completing the second round of data sorting, the images were saved in
labeled folders, and a unique test set was created from around 10% of the data.
This test set will be kept separate from all the other data to ensure that it is new
data used to evaluate the model performance.

Table 6.2: The final data set.

Type Images Test set
Nevus 8000 800

Melanoma 5216 520
Dermatofibroma 243 24

Basal cell carcinoma 1698 170
Squamous cell carcinoma 371 37

6.5 The Multiclass model
Before the creation of a model could begin, a test model was set up and trained on
the computer. This was done for two main reasons: to validate that both the virtual
environment and the IDE did work as intended. The second is to get some experience
working with a machine learning model. The guide in question was made by the
authors who also created the TensorFlow library and included a step-by-step guide

21

6. Implementation

on the setup and training of a small CNN intended for multi-class classification [46].
The guide’s goal was to classify different flowers based on a TensorFlow-provided
data set of 3700 flowers. Once the manual had been implemented and would run as
intended, it was clear that the project’s computer could complete training in half
the time of google collab when using their GPU option.

When the basic CNN could run on the project computer, an attempt was made
to use the same sequential model, but this time to detect the skin lesions from the
procured dataset. This attempt aimed to see if the TensorFlow provided model
would function on the more difficult task of predicting the correct lesion. If this
attempt did not succeed, it would be regarded as a training round to get more
familiarized with developing and training a machine learning model. The sequential
model provided by the guide was built in a pattern that began with an input followed
by three rounds of convolutional layer and max-pooling. Lastly, the model would
flatten the outputs and follow up with one fully connected layer and the output
layer.

Table 6.3: The Model.

Layer (type) Output Shape Parameter
Input Image 128,128,3 0
Rescaling 128, 128, 3 0
Conv2D 128, 128, 16 448

MaxPooling2D 64, 64, 16 0
Conv2D 64, 64, 32 4640

MaxPooling2D 32, 32, 32 0
Conv2D 32, 32, 64 18496

MaxPooling2D 16, 16, 64 0
Flatten 16384 0
Dense 128 2097280
Dense 5 645

When the model was ready to be trained, the dataset had to be converted to
a format that the model could utilize, and this data had to be annotated since
this is not an unsupervised task. This converting was done by using the im-
age_dataset_from_directory function from the Keras utility library provided by
TensorFlow:

ds_train = train_datagen.flow_from_directory(
'data/',
target_size = (128, 128),
validation_split=0.25,
subset=''training'',
seed=123,
batch_size = 32

)

In this case, the ’data/’ image data was placed in a separate folder for each class

22

6. Implementation

of lesions within the given directory. The dataset ds_train would consist of five
classes and 80% of the available data. And the remaining 20% would be used to
create the validation set:

ds_val = train_datagen.flow_from_directory(
'data/',
target_size = (128, 128),
validation_split=0.25,
subset=''validation'',
seed=123,
batch_size = 32

)

Once completed, these codes provided the finalized dataset containing five classes
and a 75/25 training/validation split. The data is now divided into batches of 32,
and all the images have been re-scaled to have the height-width ratio 1:1 with the
measurements 128x128 pixels. Now that the dataset and model both were prepared,
the model training would begin, yet a new issue was observed when inspecting the
training times. From performing well compared to the times achieved by Google
Colab to taking around ten times the time per epoch. This proved to be an issue
concerning the selected virtual environment and was resolved relatively quickly.

The training was initially run for 50 epochs, and once completed, the performance
was visualized in a plot displaying the training accuracy versus the validation ac-
curacy. Further, this model was tested on the previously mentioned test set. The
issue found during the evaluation was that the model had a decent performance
on the training with around 93% but closer to 30% once evaluated on the test set.
As discussed in the data section data augmentation, a poor generalizing of the test
set could be a side effect of overfitting. Therefore it was decided to apply some
data augmentation to increase the size of the test data. The augmentation methods
added included rotation, horizontal flipping, and zoom. These augmentations were
added as a prepossessing step for the sequential model, and the training process was
run once again. And this time, it was run for an additional ten epochs to increase
the total to 60 epochs. The evaluated performance of both models is illustrated in
figure 6.3

23

6. Implementation

Figure 6.3: Initial training (Left) versus the augmented training set (Right).

A minor improvement was not detected in the augmented test set, but the gen-
eralization was again poor when evaluating the test set, still around 30%. At this
time, each training round took around 2.5 hours, the remaining time of the day was
spent tweaking the augmentation and retraining the model. After several attempts,
no improvements were made, and therefore the decision to try a total of one hundred
epochs was taken. With these epochs, a training time of around 5 hours was ex-
pected. The training went on without any issues, and the training accuracy reached
an impressive 96% (See fig 6.4). Yet, once the evaluation of the test set was made,
there was no real improvement in the model’s generalization for new data.

24

6. Implementation

Figure 6.4: Performance of TensorFlow model with 100 epochs and data
augmentation.

Two additional attempts were made for the 100 epochs trying to alter the data
augmentation, but this only led to a decrease in the already low performance of the
test set. Instead of further tweaking the augmentation of the training data now, an
extra layer would be added to the model. After the convolutions part, a dropout
layer was added to improve the performance further.

Table 6.4: The The model with added dropout layer.

Layer (type) Output Shape Parameter
Input Image 128,128,3 0
Rescaling 128, 128, 3 0
Conv2D 128, 128, 16 448

MaxPooling2D 64, 64, 16 0
Conv2D 64, 64, 32 4640

MaxPooling2D 32, 32, 32 0
Conv2D 32, 32, 64 18496

MaxPooling2D 16, 16, 64 0
Flatten 16384 0

Dropout 16, 16, 64 0
Dense 128 2097280
Dense 5 645

The model featuring dropout has been tested a total of 5 times, the first three
tests tested different dropout factors (0.2, 0.4, 0.6, 0.8), and the fifth time used
the ”best” performing model combined with augmentation. Neither of these models
could improve the results of the test sets, so the next step was to explore the options

25

6. Implementation

of using a pretrained model, so-called transfer learning to improve the performance
hopefully.

The chosen model for this task was the VGG-16 model (See fig 6.5), and only a
few tweaks had to be made to the available training data. The main feature that
required changing was the resolution of the data. Instead of the previous 128x128,
the VGG-16 instead required a 224x224 resolution. The data augmentation was
kept the same for this during these tests.

Table 6.5: The VGG-16 model with added top layer.

Layer (type) Output Shape Parameter
InputLayer 224, 224, 3 0
Conv2D 224, 224, 64 1792
Conv2D 224, 224, 64 36928

MaxPooling2D 112, 112, 64 0
Conv2D 112, 112, 128 73856
Conv2D 112, 112, 128 147584

MaxPooling2D 56, 56, 128 0
Conv2D 56, 56, 256 295168
Conv2D 56, 56, 256 590080
Conv2D 56, 56, 256 590080

MaxPooling2D 28, 28, 256 0
Conv2D 28, 28, 512 1180160
Conv2D 28, 28, 512 2359808
Conv2D 28, 28, 512 2359808

MaxPooling2D 14, 14, 512 0
Conv2D 14, 14, 512 2359808
Conv2D 14, 14, 512 2359808
Conv2D 14, 14, 512 2359808

MaxPooling2D 7, 7, 512 0
Flatten 25088 0
Dense 5 50178

Preparing a TL model requires a slightly different approach than the previous
sequential models. The first step is to download the model without including the
top part since this part will be added specifically for this project. Once downloaded
with the specification, Include top = false, and Image weights = ’Imagenets’, these
layers were ”locked” to ensure that they retain their pretrained values. Now the top
layers could be added. They consisted of a flattened layer to reshape the outputs,
followed by a fully connected layer and a final output layer shaped for the different
classes of skin lesions. And with that, the transfer learning was ready to commence.
The first test was only run on ten epochs to detect possible errors in the new model,
but no errors were detectable from the recorded performance. No further evaluation
was done after this initial test. Instead, a new training session was initiated for one
hundred epochs. Upon completion of this session, the model was evaluated in figure
6.5 only to present little to no improvements.

26

6. Implementation

Figure 6.5: Performance of VGG-16 model with 100 epochs and data
augmentation.

Since no significant improvement had been made with the multi-class models, the
choice was made to no longer pursue the idea of a multi-class model. and instead
shift the focus of the last project weeks to find a binary model that could differentiate
between benign and malignant lesions instead.

6.6 Binary
Once the focus was shifted to a binary model instead, a few alterations had to be
made, with the main changes being to the dataset. The previous data included all
the skin lesions separated by class, which did not fit the requirements for binary,
i.e., healthy or cancer. The main discussion regarding this change was how the new
dataset should be designed, should it ”just” be sorted, and have all malignant data
in one class and the benign in the other. Or completely disregard every class but
melanomas and nevus. The issue with including all the types of lesions was that not
all the lesions had equally serious health effects. Despite the different lesion’s health
effects, they all shared the same treatment protocol of being surgically removed to
ensure that they would not spread or metastasize to other parts of the body. With
this in mind, the decision was to build the malignant data set with all the lesions
whose treatment included surgical removal. While the benign data set would be
made from the nevi. Unlike the previous dataset, this data set is balanced, meaning
that every class was of the same volume. The construction of the binary dataset
was performed similarly to the previous one using the same method discussed in
section 6.5. The one difference was that the dataset creating method was set to
make a binary dataset instead of a categorical dataset. And just like when dealing
with the multiclass dataset, there was a reserved test set for the data to ensure that
the evaluation was made with new data.

27

6. Implementation

In regards to the model, the same structure was used as the one discussed in the
introduction [5]. With the main difference now being that the final output layer
only contained one node, i.e., malignant or benign. With these minor tweaks, the
models were now ready to be trained on our new binary structured dataset.

Table 6.6: The binary model.

Layer (type) Output Shape Parameter
Input Image 128,128,3 0
Rescaling 128, 128, 3 0
Conv2D 128, 128, 16 448

MaxPooling2D 64, 64, 16 0
Conv2D 64, 64, 32 4640

MaxPooling2D 32, 32, 32 0
Conv2D 32, 32, 64 18496

MaxPooling2D 16, 16, 64 0
Flatten 16384 0
Dropout 16, 16, 64 0
Dense 128 2097280
Dense 1 645

The first round of training went without any noticeable incidents during the
training, and a total of 100 epochs were run. Yet some issues arose when the
evaluation was to commence. Firstly, the plot of the model accuracy appeared out
of order. Once it was time to evaluate the data on the test set, the model output
only gave the same prediction no matter the image provided. The initial idea was
that something was missing from the dataset or that the compilation of the dataset
had somehow failed. This proved to not be the case after re-compiling the data and
performing the training again since the result remained. Upon closer investigation,
it was instead revealed that the model’s output layer was to blame. The final fully
connected layer was added with the parameter ”numClasses,” just like the previous
models. But, since swapping from multiclass to binary, this variable had not been
tweaked and was still set to 5. Once this was changed to the correct value of 1, the
model was again trained, and this time the graph appeared more as expected (See
fig 6.6).

28

6. Implementation

Figure 6.6: Comparison of the faulty and the correct model.

The training accuracy of the binary models reached heights of around 90% from
using the model with a bare minimum of augmentation. The new binary model
proved to outperform the previous best performance with a new score of 56 %. In
comparison, this score is better than before, but it still needs to improve the poor
generalization. Therefore, the next attempt included a more aggressive deployment
of data augmentation. Other than the data augmentation, some tests were made
with the different dropout factors. Similar to the previous attempts of the multiclass,
the dropout factors ranged between 0.2 and 0.8. Combining these specifications led
to a total of 8 conducted training attempts, with four featuring the augmentation
and different factors of dropout and four just featuring the range of dropout. An
evaluation was made between each test, and the best-performing model was saved.
It was found that the best combination for this attempt was data augmentation and
a dropout factor of 0.6, which could achieve a training accuracy of around 95% and
an evaluation score of 56,7% (See fig 6.7).

29

6. Implementation

Figure 6.7: The best model was found by a combination of data augmentation
and dropout.

The plot from the dropout and data augmentation attempts did not present any
clear signs of overfitting, so an effort was made to train the model for an additional
100 epochs to see if this would aid the system’s generalization. The increase in epochs
leads to a rather time-consuming training, and therefore, this attempt would be the
last 200 epoch run before shifting towards a transfer learning approach instead. Once
completed, the 200 epoch attempt showed little to no improvement with either the
training accuracy of 95,7% (See fig 6.8) or the evaluation score of 57,1%. With this
result in mind, the focus was shifted toward transfer learning.

Figure 6.8: The 200 epoch model.

30

6. Implementation

After not achieving the needed results for the model, a second attempt with TL
was attempted. Unlike the previous results with multiclass, now a second transfer
model would be used as well. The second model, called MobilenetV2, required a
similar preprocessing of data as the one used for the VGG-16, with the main dif-
ference being that the images needed the 160x160 resolution instead of the 224x224
used by the VGG-16. The first model used for the test was the VGG-16, and all
preparations were made like the previous ones used for multiclass attempts. The
difference between these attempts is that the final output layer now only consists of
one node instead of five. Other than this, the model is identical to the previously
used one (See figure 6.5). For the first training attempts, 25 epochs were run only to
present a volatile system with a training accuracy of around 80-85 % and a test score
of 53 %. A second attempt was made to see if an increase in epochs could improve
these scores, but the poor model performance remained unchanged (See fig 6.9). A
few tweaks and different data augmentations were applied, and the training epochs
were rerun without improvement. Unable to increase the model performance above
a measly 54%, the decision to not pursue a VGG-16 solution further was made, and
instead, the project focus shifted to the MobilenetV2.

Figure 6.9: The attempts of a binary transfer model with VGG-16.

As mentioned previously, the MobilenetV2 model requires a different resolution
of the images, and therefore the dataset was recompiled with the new resolution.
Other than the training, a validation and test set was created. The training data was
augmented to create a more significant variance in the data and, hopefully, minimize
the risk of overfitting. The model then needed to be configured and prepared to
start the training, and this was done by following the general method discussed in
the previous sections and also used to create the VGG-16 transfer learning model.
Firstly, the MobilenetV2 model was downloaded, and the trainable layers of the
model were locked to preserve the pretrained weights. These weights were trained
using the dataset ”Imagenets,” the same dataset used for VGG-16. The output layer

31

6. Implementation

used was a fully connected layer consisting of one node, and instead of using a flatten
layer, global average pooling was utilized instead. Global average pooling is designed
to replace the flatten layer in CNNs and can also replace the fully connected layers
commonly used after flattening layers. The general pooling layers can not overfit,
unlike the fully connected layers, and are, therefore, a preferable option [47]. To see
the complete model, please see the appendix A.

Once all the necessary components were finalized, the training was ready to com-
mence. The selected settings for this attempt were first to perform a five epoch
test to find if the model was compiled correctly and proceed to the actual training
and evaluation. This test training was a success, and therefore the more extended
training sequence was prepared with a total of 40 epochs and using the previously
mentioned dataset. The training run was completed without any issues, and upon
first inspection, the plotted model values presented a low test accuracy compared to
the previously trained models. The MobilenetV2 model did only reach an accuracy
of 89%. Disregarding the lower test accuracy, the evaluation was done and presented
a new highest performing model with a test accuracy of 73% (See fig 6.10). This
new model was saved, and then further attempts were made to improve the per-
formance. These included applying more augmentation and increasing the training
duration. These factors were like previous attempts combined, and ten additional
training attempts were performed. Throughout these, the evaluations did not record
any performance higher than our base attempts for the MobilenetV2 model. The
current time frame of the project did not allow for much further development of
the model, and therefore the attempt was made to use the MobilenetV2 as the base
model for the application.

Figure 6.10: The base model that the DOMMUDL app will use.

32

6. Implementation

6.7 Working with the application
One goal of this project was to develop an application as the user interface. There
were several steps to go through to create this application. First, there was a
planning phase, to decide on tools to use and ways of working. After this phase,
it was time to set up the development environments. Lastly, the largest and most
time-consuming part, the development process, to develop the application.

6.7.1 Planning
Before developing the application, we had to make some preparations, such as plan-
ning the structure and design of the app, see figure 6.11. We decided to make
a simple application with only as many pages as necessary to implement all the
wanted functions. The necessary functions are to take a photo, upload it to the
database and then receive a recommendation.

Click on
camera
button

Open Camera

No

Yes

Permission to
use Camera Give Permission

Take photo

Upload Photo

No

Yes

Recommendation
done?

Show
recommendation

No

Save
recommendation?

Start

Start

No

Choose this
photo?

Preview photo
Take screenshot

Yes

Wait until done

Figure 6.11: Flowchart diagram of the application.

For the development of an application there are several frameworks available.
The idea was to create a publicly available application. To achieve this, we aimed
to develop the application on iOS and Android platforms. A possibility is to create
two apps for the different platforms, but this would be too time consuming. After
researching numerous types and considering their pros and cons, it was decided to
use Flutter, which is cross-platform, meaning writing one code for two applications.

33

6. Implementation

Another required feature is the communication between the application and the
machine learning model. For this, we needed a database. After investigating the
options of which database would be an appropriate choice, we decided to use Fire-
base. It was said to work effectively with both the Flutter framework and the AI
modelling. This seemed like an excellent choice seeing how easy was to learn [48].
For developing an iOS app, it is necessary to have a MacBook computer running on
Mac OS X version 10.8 or above since apple creates exclusively for their platform. A
MacBook Pro from 2019 with the proper specifications for app development was in
our possession. Hence this was the computer to be used. An Apple and an android
device were accessible, which was needed for device-testing and live-camera-usage-
testing later in the project.

6.7.2 Setup
After the planning phase, we started setting up The Flutter framework. The de-
velopers behind Flutter have developed a guide on how to initiate a project [49].
We followed this guide for the iOS operating system, and it was a straightforward
process. The Flutter SDK was installed on the MacBook by following the instruc-
tions. In order for Flutter to run, it requires both the android studio software and
the xcode software since it compiles for both platforms, these were installed as in-
structed. When creating a new project in Flutter, a template establishes. However,
this template code would not run and compile on the iOS simulator for some un-
known reason. Further on, we decided to test run only on the Android simulator to
keep up with the ML model development.

6.7.3 Development
When the frameworks had been installed, and the setup for the application finished,
we could start developing the application. A solution to the iOS compiling error was
identified, allowing the project to resume testing the application on both platforms.
A home-screen with a welcome message and a button with a camera icon was de-
signed using widgets from Flutter, predefined UI elements. By clicking this button,
the user will be redirected to a camera page. There are several plugins available for
the Flutter framework created by the community. One of these plugins is the Cam-
era, which allows the user to take a photo, either from the device’s camera or select
one from the device’s gallery. Implementing the Camera required permission from
the active user to utilize the camera. Changes were made in the specified settings
for Android and iOS to activate the permission dialogue, which asks the user for
permission when launching the camera. However, Apple does not allow for camera
usage in their simulator. As a result, testing was only conducted on Android phones.
When the camera function was implemented, compiling the application caused mul-
tiple errors. These errors depended on the simulation environment, allowing us to
ignore them until testing on an actual device.

When it was possible to take a photo, the question of which format the image
needed to be in emerged and if there was a required format or size for the model to
accept it. We concluded that having a square image in JPEG format was desirable.

34

6. Implementation

The image taken from a mobile device camera is more often or never square. To do
this translation, we cropped the image after it was taken. However, if a user took
an image where the mark was not centered, it could be accidentally cropped out of
the image. After many attempts at scaling the camera preview into a square and
ending up with a stretched image, we added layers on top of the camera preview to
indicate where the photo would be cropped so that the user would know and center
the mark. When the application allowed for taking a photo and the database was
entirely set up, we implemented a way to upload the image to the database. As
mentioned earlier, there are several Flutter plugins. One of them is the provider,
which primarily is an app state manager. In the application, we implemented a
Service layer, from heron out it will be called FireService, which handles all com-
munication with the database. Creating a provider for FireService would serve as a
bridge between the application’s front end and the database. The database setup is
explained in more detail in the next section.

Further, there had to be an interface for showing the recommendation, which
was implemented with a dialogue widget. To deal with the data usage integrity, we
had an idea of a question about image and data handling, and the user would be
required to approve using the functionality of the application. However, this was
not a priority, and there was not enough time.

6.7.4 Database setup
For this project a database was set up, and the platform Firebase was used during.
For Flutter usage the communication with Firebase requires installing the Firebase
by simply writing the following line in the system prompt inside the application root
folder.
flutter pub add firebase_core

When installed the application needs to be configured in the Firebase web console
[50], which is accessed with an account and a created project. There are instructions
for the configuration process for android and the iOS, which mainly consists of
downloading a JSON (JavaScript Object Notation) file and placing it in a specific
folder. After configuring the applications(android and iOS), the communication
with Firebase was possible.

For this project two steps were needed to communicate between the application
and the machine learning model. One to upload and temporarily store the images,
and another to read and write the recommendation on the image. The services used
were Firebase storage for image storing and Firebase Real-Time Database for the
recommendation. Thanks to Firebase being cloud hosted and having a user friendly
UI, the implementation was rather simple. The previously mentioned FireService
was intended as a communication with Firebase and the front-end of the application.
Since there were two databases in use, two methods for uploading the image were
created. Firstly, the service uploads an image to Firebase Storage, see code below.
Future<void> upload(File image) async {

if (await image.exists()) {
await _firestorage.ref(_storageName(image)).putFile(

image,

35

6. Implementation

);
} else {

print('no file exists');
}

}
Secondly, the application initiates a template reference in the real-time database

with the name of the uploaded image included. This made it possible for the script
to find the image to diagnose and connect it to where the recommendation was to
be set. The code looks as follows.

Future<void> setName(File image) async {
await _database.ref('images/${_refName(image)}').set({

''date'': ''d'',
''imgName'': _storageName(image),
''recomendation'': ''tbd'',
''time'': ''t''

});
}
All fields except the ”imgName” are later updated by the script with the correct

information. The FireService listens for changes in the ”recommendation” field and
fetches this change to display for the user of the application. The FireService also has
the responsibility to delete the image from Firebase, this is performed immediately
when a recommendation is fetched. In parallel with the application connection to
the Database, the script was configured. The implementation worked similarly by
first making configurations in the Firebase web console. As well as android and
iOS, Firebase also supports web applications, which was adapted for the script
connection. The process of establishing the connection for the script was similar to
the Flutter process, same steps were to be made, however in Python for the script.
Eventually, the database was setup, functional, with uploading images, reading and
writing text working unexpectedly quickly.

36

7
Results

In the introduction, it was mentioned that the project aimed to determine if a
machine learning model could be trained to distinguish between skin lesions. And
if it was possible to develop an application to reach the general population.

Despite obstacles that were encountered during this project, an AI model has
been developed and trained. However, this does not imply that the model can
distinguish between the skin lesions well, opening the question of how well the model
performs. In the following section, the success rate of the model will be discussed
in more detail. In addition to the model, the project also produced a functioning
application. Additionally, the script was successfully implemented, combining the
application and the model into one seamless system.

First the results of the two best performing models will be demonstrated. Sec-
ondly, the script working between the application and the model will be presented.
Finally, the application with all its functions will be illustrated.

7.1 Model performance
To evaluate the performance of the developed models, specific metrics needed to
be calculated for each attempt. Before these metrics could be found, the models
needed to perform their predictions on the 500 nevi and 508 melanomas test sets.
The projections were saved and split into one of four categories, True Positives (TP)
for melanomas predicted as such, False Negatives (FN) for melanomas predicted
as nevi, False Positives (FP) for nevi predicted as melanomas, and finally, True
Negatives (TN) for nevi predicted as such.

Figure 7.1: A table of different evaluations cases.

Once these results were recorded, the performance values were calculated for each
of the three metrics. Where accuracy represents the total percentage of correctly
predicted entries, recall represents the correct amount of TP within all the posi-

37

7. Results

tive predictions found (TP and FP). While precision shows, the relation of cases
predicted as malignant that indeed were malignant(Correct TP of TP and FP).

Accuracy = TP + TN
TP + TN + FP + FN (7.1)

Recall = TP
TP + FN (7.2)

Precision = TP
TP + FP (7.3)

The two models in question are both binary models, one was found by creating
a CNN from scratch (see figure 6.8) and the second one was found by utilizing
MobileNetV2 TL model (see figure 6.10). After applying the formula 7.1 - 7.3 to
both models and using the results of the recorded prediction in the following scores.

Table 7.1: The two models compared.

Model Accuracy Recall Precision
Second best model 57,1 % 18,7% 83,3 %

MobileNetV2 TL model 73% 63,78% 78,6%

Figure 7.2: The TP and TN table of the two best models.

The final selected model was found using a combination of data augmentation
and TL provided by the MobileNetV2 network. It reached a total accuracy of 73%
and outperformed the previously best model in every aspect except the precision
score. When comparing the models it is found that the model improved its ability
to classify malignant lesions (from 95 to 324) while losing some accuracy of benign
(from 481 to 412). This decrease in TN resulted in a drop in precision. Despite
this, the binary TL model was selected as the preferred model due to the higher
accuracy (73% versus 57,1%) and the improved ability to predict the malignant
lesions correctly.

One of the goals for this project was to find out if a model produced and trained
could identify and class suspected melanomas can now be argued as achieved. This is

38

7. Results

because the accuracy achieved in these attempts only reached 73% on the tests. This
accuracy could likely be increased with additional time and more data, something
that is not available at the time being. Taking this into consideration, this goal
should be regarded as met. Achieving this goal concludes the ML section of this
project.

7.2 Script
”Is it possible to implement an application available for the general public?” was one
of the questions asked during the early phases of DOMMUDLs development. And
yes, it was possible. One topic implicitly covered by this goal was how we implement
the link between our model and the application. Now, this may seem like a minor
part compared to the more significant undertakings of this project, but without this
link, the application would be nothing by an empty shell. Therefore, a script was
created to realize this crucial link. Thanks to the several Firebase features discussed
in 3.2.2, this was a straightforward process. Using the real-time database and web
application services, this link was implemented. It could now receive entries from
the application and provide them with a recommendation within milliseconds. An
initial concern was implementing a queue system for the entries. Still, it was later
revealed that this was not an issue since the queuing was dealt with automatically
by the real-time database. Furthermore, this functionality was utilized to queue
entries added to the database when the script was offline. This enabled them to
receive recommendations in a first in, first out manner once the script was online
again. Overall this script was a success and reached a speed better than initially
expected when it, without any issues, could predict and update around three entries
per second.

7.3 The application
The development resulted in a functional application with almost all the function-
ality we aimed for. When started, the application greets the user with a welcome
message, the user can click on the camera icon and take a photograph of their skin
mark. The user can also choose to read more information about skin lesions or how
we handle the data. When the user clicks the camera icon, a camera starts, and they
can take their photograph or choose an already taken one from the device’s gallery.
When they take a photograph, it is possible to make a new attempt. When the user
is content with an image, they click ”ask for a recommendation,” and a loading circle
appear. During this time, the application uploads the photograph to Firebase and
then listens for changes in the common field ”recommendation” where the machine
learning model is connected. When the model has made its image classification, it
will change this field, and the application receives an indication that there was a
change. This change is in the form of text, and the user will see a popup with the
image they uploaded and the text recommendation of what to do next. The user
then can save this as a screenshot on their phone. If not, the application goes back
to the start page, removing the image.

39

7. Results

Figure 7.3: A preview of the application.

Explained above is the complete life-cycle of the application in the finished version
and is runnable on an android simulator and an actual device in test mode. Due to
the cost of becoming an apple developer, there has been no testing on an iOS device.
Neither has there been testing on the iOS simulator since it does not have a camera
environment. Hence the application only theoretically works on the iOS platform.
However, when testing it on android, it works as expected. One goal for this project
was to create an application with the above-presented functionalities available for
the general public. The application is ready and has the potential to be launched
to the general public, which in the scope of this project is an acceptable result that
we consider successful.

40

8
Ethics and Sustainability

The purpose section briefly mentioned how this project could help society to become
more sustainable in the future. This argument is based on one of the 17 global goals
set by the UN [51]. The goal in question is the third goal and relates to good health
and well-being. As the project could enhance access to health care without abusing
the existing system, it could contribute to reaching the goal.

This project is not medically-based since the developers of this project do not
come from a medical background. Can a recommendation without this background
in medicine be trusted? The affected patients could be in a life-threatening sit-
uation, and this raises the question: Could it be ethically wrong to make these
recommendations using an AI model? One could argue that an AI model with the
right amount of data and time potentially is better than a human. However, in
order to collect the necessary data there might be the need for a collaboration with
the health industry.

Another potential issue is the privacy of the data providers. The data in the form
of photographs are the provider’s property unless explicit permission is given, which
results in difficulties when gathering necessary data. There is also the problem with
not violating the provider’s integrity when gathering data. The idea of this project
is to gather photographs from users in order to provide a recommendation. To keep
the users as safe and protected as possible there is an opportunity not to save any
photographs or information given.

41

8. Ethics and Sustainability

42

9
Conclusion

Throughout the course of this project, an AI model with the ability to differentiate
between benign and malignant skin lesions was created. However certain constraints,
mainly the lack of data and tight time frame of the project halted the development
once the model had reached an accuracy of 73%. Several different AI models have
been developed and evaluated using both models built from scratch and pretrained
models that enable TL. The best-performing model is found by utilizing TL with
the mobileNetV2 model. To further develop this model one would need an influx of
new medically assessed and preferably cellphone taken image data, combined with
a more extensive time frame, something left for potential further research.

Together with the goal to develop an AI model, the other main goal was to
find a way of distributing the model in such a way that it could reach the general
public. For this task, an android application was developed using the tools provided
by the Flutter framework. To enable the link between the application and the AI
model, a special script was designed and implemented once again using the Flutter
framework.

The necessary functions to provide the user with the AI recommendation were
implemented using the script and application. Therefore, we consider the application
and script successful. Even though a better-performing AI model would have been
desirable if this application was to be launched, it was just not possible to implement
with the given constraints. Taking these factors into consideration the results of the
said model are deemed satisfactory.

9.1 Discussion
Looking at the planning for this project, see appendix B, the majority of the time
was to be spent on development. In retrospect, the schedule coincides fairly closely
with the actual process. We managed the project well, using only the planned
weeks for planning and all the weeks for development. However, when it came
to writing the report, the actual time spent deviated slightly from the schedule.
Writing began later than anticipated and took significantly longer than expected.
To devote sufficient time to the development, writing was postponed, which resulted
in a heavy writing workload. While the plan was well thought out, the execution
could have been improved.

When working with machine learning, we spent a substantial amount of time
cleaning and sorting the data. These lengthy processes were caused by significant
levels of noise within the data. This could include images with too much hair cover-

43

9. Conclusion

ing the mark or other factors that obscure the mark. It proved to be more difficult
than anticipated to correctly sort the images since special scripts were developed
to avoid the long times required otherwise. Consequently, less time was available
for the development of models. The training of the models also required a remark-
able amount of time despite being provided with an enhanced graphics card, and a
powerful computer. The shortest training session lasted approximately three hours,
while the longest lasted eight hours. On average, they were given four hours of
training. The time we had left quickly elapsed, given that there are only eight hours
in a day. This comprehensive training process is another factor contributing to the
shortage of time for the development of models. We believe that this research is suc-
cessful based on our existing knowledge, as well as research conducted in the areas
of self-made models, transfer learning, tuning and more. Even though the outcome
is not flawless, we are pleased with the results.

Implementing the script, the communication link between the application and
the model, was surprisingly easy. The time set aside for this part was not utilized.
One possible explanation could be the use of Firebase which did not require the
development of triggers. The results show that many of the necessary functions
already exist in Firebase and are available for use. One example is the queuing
system. Before launching this project, we set out a goal of classifying an image in 10
seconds, which was considered the longest time possible before someone would lose
patience. The result, however, was a classification rate of three images per second.
In other words, our response time was less than 0.33 seconds for a single image,
exceeding our expectations. By developing the script in a short time, we were able
to devote a great deal of time to the complicated and time-consuming ML part.

The development of the application could have been more seamless. Working with
Apple devices presented several challenges. According to our results, the finalized
product has not been tested in the iOS environment, and at this time there is no
possibility of doing so. These issues were not anticipated or taken into consideration
at the outset of the project. The plan was to develop for both platforms. Despite
having the computer and necessary equipment, we discovered that this was not
possible. Prior to beginning the project, it may have been advantageous to review the
extent of the iOS simulator. By doing this, we would have been able to understand
the nuances of developing for iOS and the limitations related to using the camera.
Although there are several things to consider and several features we would like
to see in the application, we consider the application’s functionality on Android
satisfactory.

When working with machine learning, there are multiple ethical issues. Who is
responsible? What information is being collected? Has someone’s integrity been
violated? As a result of the model’s performance, it can be debated if it would
be ethical to use it to provide recommendations based on it. However, it may be
possible to advance the model with more time and more data and achieve better
performance. If the model performed better, the recommendations would be more
reliable, and other arguments could be enough to justify its use. As an example,
consider improvements in people’s health care as mentioned in the introduction and
the sustainability chapter. The issue of time recurs throughout the report. Addi-
tional time would enable the application to be improved further. The application

44

9. Conclusion

could be enhanced with improvements like better image managing and more back-
ground information about the lesions. Furthermore, the application could be tested
on an iOS device if an investment was made in the Apple developer program.

In the introduction, we present the health benefits this product could provide.
Such as lightening the workload of the health care system and decreasing people’s
worry about their potential skin cancer. Although the final product can be improved
in the future by spending additional time on model development, we do see that the
product has the potential to help relive the health care system. This will decrease
people’s worry about potential skin cancer, which was our aim.

9.2 Further research
To continue this project, we see the need for better performance in the machine
learning model, which needs more data and training. The data needed is images
that are analyzed and diagnosed by a doctor. To get such images, a possibility could
collaborate with a hospital to collect the data. After this train, a better model and
an app that the hospital can stand behind make it more trustworthy and usable.

The different types of malignant skin lesions have characteristics that differentiate
them. Mostly it has to do with the appearance, but sometimes it can matter when
they arrived or if something has changed recently, how big they are and if they have
grown, where on the body they are. Also, information about the mark holder can
be substantial, like the patients age and gender (see chapter 3.4.1). These are things
that doctors consider when detecting skin lesions. Could an AI improve by receiving
this kind of data about the image provider? If so, this gives for a further future
development possibility, where a user is given a chance to provide such important
information.

45

9. Conclusion

46

Bibliography

[1] “GPU Availability and Pricing Update: December 2021.”
[2] 1177, “Vårdgaranti, URL: https://www.1177.se/sa-fungerar-varden/lagar-och-

bestammelser/vardgaranti/,” accessed: 2022-02-21. [Online]. Available: https:
//www.1177.se/sa-fungerar-varden/lagar-och-bestammelser/vardgaranti/

[3] SKR, “Väntetider i vården,” Sveriges Kommuner och Regioner, blog, accessed:
2022-02-21. [Online]. Available: https://skr.se/vantetiderivarden.46246.html

[4] Strålsäkerhetsmyndigheten, “Sverige har snart samma nivåer av
hudcancerfall som Australien,” accessed: 2022-02-21. [Online].
Available: https://www.stralsakerhetsmyndigheten.se/press/nyheter/2021/
sverige-har-snart-samma-nivaer-av-hudcancerfall-som-australien/

[5] Y. N. Fu’adah, N. C. Pratiwi, M. A. Pramudito, and N. Ibrahim, “Convolutional
Neural Network (CNN) for Automatic Skin Cancer Classification System,” in
IOP Conference Series: Materials Science and Engineering, vol. 982. IOP
Publishing, 2020, p. 012005.

[6] E. Nasr-Esfahani, S. Samavi, N. Karimi, S. M. R. Soroushmehr, M. H. Jafari,
K. Ward, and K. Najarian, “Melanoma detection by analysis of clinical images
using convolutional neural network,” in 2016 38th Annual International Con-
ference of the IEEE Engineering in Medicine and Biology Society (EMBC).
IEEE, 2016, pp. 1373–1376.

[7] J. Paul, “7 best frameworks libraries for cross-
platform android and ios apps in 2022,” accessed: 2022-
05-23. [Online]. Available: https://medium.com/javarevisited/
top-5-frameworks-to-create-cross-platform-android-and-ios-apps-in-2020-d02edf3d01f1

[8] Dart.dev, “Dart guides,” accessed: 2022-04-27. [Online]. Available: https:
//dart.dev/guides/language/language-tour

[9] Python, “General Python FAQ — Python 3.10.4 documentation,” Apr. 2022,
accessed: 2022-04-27. [Online]. Available: https://docs.python.org/3/faq/
general.html#what-is-python

[10] Simplilearn, “What is keras: The best introductory guide to keras,” accessed:
2022-05-11. [Online]. Available: https://www.infoworld.com/article/3278008/
what-is-tensorflow-the-machine-learning-library-explained.html

[11] G. Thomas, “What is flutter and why you should learn it in 2020,”
accessed: 2022-04-11. [Online]. Available: https://www.freecodecamp.org/
news/what-is-flutter-and-why-you-should-learn-it-in-2020/

[12] D. Stevenson, “What is firebase? the complete story, abridged,” accessed:
2022-04-13. [Online]. Available: https://medium.com/firebase-developers/
what-is-firebase-the-complete-story-abridged-bcc730c5f2c0

47

https://www.1177.se/sa-fungerar-varden/lagar-och-bestammelser/vardgaranti/
https://www.1177.se/sa-fungerar-varden/lagar-och-bestammelser/vardgaranti/
https://www.1177.se/sa-fungerar-varden/lagar-och-bestammelser/vardgaranti/
https://www.1177.se/sa-fungerar-varden/lagar-och-bestammelser/vardgaranti/
https://skr.se/vantetiderivarden.46246.html
https://www.stralsakerhetsmyndigheten.se/press/nyheter/2021/sverige-har-snart-samma-nivaer-av-hudcancerfall-som-australien/
https://www.stralsakerhetsmyndigheten.se/press/nyheter/2021/sverige-har-snart-samma-nivaer-av-hudcancerfall-som-australien/
https://iopscience.iop.org/article/10.1088/1757-899X/982/1/012005/meta
https://iopscience.iop.org/article/10.1088/1757-899X/982/1/012005/meta
https://ieeexplore.ieee.org/abstract/document/7590963
https://ieeexplore.ieee.org/abstract/document/7590963
https://medium.com/javarevisited/top-5-frameworks-to-create-cross-platform-android-and-ios-apps-in-2020-d02edf3d01f1
https://medium.com/javarevisited/top-5-frameworks-to-create-cross-platform-android-and-ios-apps-in-2020-d02edf3d01f1
https://dart.dev/guides/language/language-tour
https://dart.dev/guides/language/language-tour
https://docs.python.org/3/faq/general.html#what-is-python
https://docs.python.org/3/faq/general.html#what-is-python
https://www.infoworld.com/article/3278008/what-is-tensorflow-the-machine-learning-library-explained.html
https://www.infoworld.com/article/3278008/what-is-tensorflow-the-machine-learning-library-explained.html
https://www.freecodecamp.org/news/what-is-flutter-and-why-you-should-learn-it-in-2020/
https://www.freecodecamp.org/news/what-is-flutter-and-why-you-should-learn-it-in-2020/
https://medium.com/firebase-developers/what-is-firebase-the-complete-story-abridged-bcc730c5f2c0
https://medium.com/firebase-developers/what-is-firebase-the-complete-story-abridged-bcc730c5f2c0

Bibliography

[13] BBC, “Intel chief warns of two-year chip shortage,” BBC News, Jul. 2021.
[Online]. Available: https://www.bbc.com/news/technology-57996908

[14] Merriam-Webster.com, “Benign,” accessed: 2022-05-11. [Online]. Available:
https://www.merriam-webster.com/dictionary/benign#note-1

[15] ——, “Malignant,” accessed: 2022-05-11. [Online]. Available: https:
//www.merriam-webster.com/dictionary/malignant

[16] G. I. Henry, “Benign skin lesions,” accessed: 2022-05-11. [Online]. Available:
https://emedicine.medscape.com/article/1294801-overview

[17] T. A. C. S. medical and editorial content team, “What is melanoma skin
cancer?” accessed: 2022-05-11. [Online]. Available: https://www.cancer.org/
cancer/melanoma-skin-cancer/about/what-is-melanoma.html

[18] M. C. Staff, “Melanoma, symptoms and causes,” accessed: 2022-
05-11. [Online]. Available: https://www.mayoclinic.org/diseases-conditions/
melanoma/symptoms-causes/syc-20374884

[19] S. Schultz, “Malignt melanom – hudcancer,” accessed: 2022-05-11. [Online].
Available: https://www.1177.se/Vastra-Gotaland/sjukdomar--besvar/cancer/
cancerformer/malignt-melanom--hudcancer/

[20] M. C. Staff, “Basal cell carcinoma, symptoms and causes,” accessed: 2022-
05-11. [Online]. Available: https://www.mayoclinic.org/diseases-conditions/
basal-cell-carcinoma/symptoms-causes/syc-20354187

[21] ——, “Squamous cell carcinoma of the skin, symptoms and causes,”
accessed: 2022-05-11. [Online]. Available: https://www.mayoclinic.org/
diseases-conditions/squamous-cell-carcinoma/symptoms-causes/syc-20352480

[22] S. Schultz, “Skivepitelcancer – hudcancer,” accessed: 2022-05-11. [Online].
Available: https://www.1177.se/Vastra-Gotaland/sjukdomar--besvar/cancer/
cancerformer/skivepitelcancer--hudcancer/

[23] M. C. Staff, “Moles, symptoms and causes,” accessed: 2022-05-23.
[Online]. Available: https://www.mayoclinic.org/diseases-conditions/moles/
symptoms-causes/syc-20375200

[24] Åsa Schelin, “Godartade hudförändringar,” accessed: 2022-
05-12. [Online]. Available: https://www.1177.se/Vastra-Gotaland/
sjukdomar--besvar/hud-har-och-naglar/fodelsemarken-och-hudforandringar/
godartade-hudforandringar/

[25] T. M. LeLeux, “Pathology of benign melanocytic nevi,” accessed:
2022-05-12. [Online]. Available: https://emedicine.medscape.com/article/
1056742-overview

[26] IBM, “What is Deep Learning?” accessed: 2022-03-23. [Online]. Available:
https://www.ibm.com/cloud/learn/deep-learning

[27] C. M. Bishop, “Neural networks and their applications,” Review of scientific
instruments, vol. 65, no. 6, pp. 1803–1832, 1994.

[28] IBM, “What are Neural Networks?” accessed: 2022-03-23. [Online]. Available:
https://www.ibm.com/cloud/learn/neural-networks

[29] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting,” The
journal of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

48

https://www.bbc.com/news/technology-57996908
https://www.merriam-webster.com/dictionary/benign#note-1
https://www.merriam-webster.com/dictionary/malignant
https://www.merriam-webster.com/dictionary/malignant
https://emedicine.medscape.com/article/1294801-overview
https://www.cancer.org/cancer/melanoma-skin-cancer/about/what-is-melanoma.html
https://www.cancer.org/cancer/melanoma-skin-cancer/about/what-is-melanoma.html
https://www.mayoclinic.org/diseases-conditions/melanoma/symptoms-causes/syc-20374884
https://www.mayoclinic.org/diseases-conditions/melanoma/symptoms-causes/syc-20374884
https://www.1177.se/Vastra-Gotaland/sjukdomar--besvar/cancer/cancerformer/malignt-melanom--hudcancer/
https://www.1177.se/Vastra-Gotaland/sjukdomar--besvar/cancer/cancerformer/malignt-melanom--hudcancer/
https://www.mayoclinic.org/diseases-conditions/basal-cell-carcinoma/symptoms-causes/syc-20354187
https://www.mayoclinic.org/diseases-conditions/basal-cell-carcinoma/symptoms-causes/syc-20354187
https://www.mayoclinic.org/diseases-conditions/squamous-cell-carcinoma/symptoms-causes/syc-20352480
https://www.mayoclinic.org/diseases-conditions/squamous-cell-carcinoma/symptoms-causes/syc-20352480
https://www.1177.se/Vastra-Gotaland/sjukdomar--besvar/cancer/cancerformer/skivepitelcancer--hudcancer/
https://www.1177.se/Vastra-Gotaland/sjukdomar--besvar/cancer/cancerformer/skivepitelcancer--hudcancer/
https://www.mayoclinic.org/diseases-conditions/moles/symptoms-causes/syc-20375200
https://www.mayoclinic.org/diseases-conditions/moles/symptoms-causes/syc-20375200
https://www.1177.se/Vastra-Gotaland/sjukdomar--besvar/hud-har-och-naglar/fodelsemarken-och-hudforandringar/godartade-hudforandringar/
https://www.1177.se/Vastra-Gotaland/sjukdomar--besvar/hud-har-och-naglar/fodelsemarken-och-hudforandringar/godartade-hudforandringar/
https://www.1177.se/Vastra-Gotaland/sjukdomar--besvar/hud-har-och-naglar/fodelsemarken-och-hudforandringar/godartade-hudforandringar/
https://emedicine.medscape.com/article/1056742-overview
https://emedicine.medscape.com/article/1056742-overview
https://www.ibm.com/cloud/learn/deep-learning
https://www.ibm.com/cloud/learn/neural-networks
https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf?utm_content=buffer79b43&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer,

Bibliography

[30] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on
knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359, 2009. [Online].
Available: https://ieeexplore.ieee.org/document/5288526/authors#authors

[31] I. Kandel and M. Castelli, “Transfer learning with convolutional neural
networks for diabetic retinopathy image classification. A review,” Applied
Sciences, vol. 10, no. 6, p. 2021, 2020. [Online]. Available: https:
//www.mdpi.com/666280

[32] Y. Gao and K. M. Mosalam, “Deep transfer learning for image-based struc-
tural damage recognition,” Computer-Aided Civil and Infrastructure Engineer-
ing, vol. 33, no. 9, pp. 748–768, 2018.

[33] E. Deniz, A. Şengür, Z. Kadiroğlu, Y. Guo, V. Bajaj, and Ü. Budak, “Transfer
learning based histopathologic image classification for breast cancer detection,”
Health information science and systems, vol. 6, no. 1, pp. 1–7, 2018.

[34] R. Barman, S. Deshpande, S. Agarwal, U. Inamdar, M. Devare, and A. Patil,
“Transfer learning for small dataset,” in Proceedings of the National Conference
on Machine Learning, Mumbai, India, vol. 26, 2019.

[35] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[36] S. V. Lab, “ImageNet,” publisher: Stanford Vision Lab. [Online]. Available:
https://www.image-net.org/index.php

[37] T. Kaur and T. K. Gandhi, “Automated brain image classification based on
VGG-16 and transfer learning,” in 2019 International Conference on Informa-
tion Technology (ICIT). IEEE, 2019, pp. 94–98.

[38] S. S. Yadav and S. M. Jadhav, “Deep convolutional neural network based medi-
cal image classification for disease diagnosis,” Journal of Big Data, vol. 6, no. 1,
pp. 1–18, 2019.

[39] C. Sitaula and M. B. Hossain, “Attention-based VGG-16 model for COVID-
19 chest X-ray image classification,” Applied Intelligence, vol. 51, no. 5, pp.
2850–2863, 2021.

[40] R. Rokhana, W. Herulambang, and R. Indraswari, “Multi-Class Image Classi-
fication Based on MobileNetV2 for Detecting the Proper Use of Face Mask,” in
2021 International Electronics Symposium (IES). IEEE, 2021, pp. 636–641.

[41] C. Buiu, V.-R. Dănăilă, and C. N. Răduţă, “MobileNetV2 ensemble for
cervical precancerous lesions classification,” Processes, vol. 8, no. 5, p. 595,
2020. [Online]. Available: https://www.mdpi.com/717830

[42] ISIC, “Archive,” accessed: 2022-04-27. [Online]. Avail-
able: https://www.isic-archive.com/#!/topWithHeader/tightContentTop/
about/aboutIsicOverview

[43] IBM, “What is Overfitting?” accessed: 2022-04-28. [Online]. Available:
https://www.ibm.com/cloud/learn/overfitting

[44] MACHINE LEARNING A First Course for Engineers and Scientists, New
ed ed., Sweden.

[45] C. P. Chai, “The importance of data cleaning: Three visualization
examples,” Chance, vol. 33, no. 1, pp. 4–9, 2020. [Online]. Available:
https://www.mdpi.com/717830

49

https://ieeexplore.ieee.org/document/5288526/authors#authors
https://ieeexplore.ieee.org/document/5288526/authors#authors
https://www.mdpi.com/666280
https://www.mdpi.com/666280
https://www.mdpi.com/666280
https://www.mdpi.com/666280
https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12363
https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12363
https://link.springer.com/article/10.1007/s13755-018-0057-x
https://link.springer.com/article/10.1007/s13755-018-0057-x
https://www.researchgate.net/profile/Rahul-Barman-4/publication/333080572_Transfer_Learning_for_Small_Dataset/links/6050767e299bf1736746a546/Transfer-Learning-for-Small-Dataset.pdf
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://www.image-net.org/index.php
https://ieeexplore.ieee.org/document/9031952
https://ieeexplore.ieee.org/document/9031952
https://link.springer.com/article/10.1186/s40537-019-0276-2
https://link.springer.com/article/10.1186/s40537-019-0276-2
https://link.springer.com/article/10.1007/s10489-020-02055-x
https://link.springer.com/article/10.1007/s10489-020-02055-x
https://ieeexplore.ieee.org/document/9594022
https://ieeexplore.ieee.org/document/9594022
https://www.mdpi.com/717830
https://www.mdpi.com/717830
https://www.mdpi.com/717830
https://www.isic-archive.com/#!/topWithHeader/tightContentTop/about/aboutIsicOverview
https://www.isic-archive.com/#!/topWithHeader/tightContentTop/about/aboutIsicOverview
https://www.ibm.com/cloud/learn/overfitting
https://www.mdpi.com/717830
https://www.mdpi.com/717830
https://www.mdpi.com/717830

Bibliography

[46] Google, “Google Colaboratory,” accessed: 2022-05-14. [Online]. Avail-
able: https://colab.research.google.com/github/tensorflow/docs/blob/master/
site/en/tutorials/images/classification.ipynb#scrollTo=dC40sRITBSsQ

[47] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint
arXiv:1312.4400, 2013.

[48] V. Yadav, “Add firebase to flutter,” accessed: 2022-05-09. [Online]. Available:
https://viveky259259.medium.com/add-firebase-to-flutter-6bc9e2755284

[49] Flutter, “Flutter guide,” accessed: 2022-05-02. [Online]. Available: https:
//docs.flutter.dev/get-started/install/macos

[50] G. Developers, “Firebase, make your app the best it can be,” accessed:
2022-05-23. [Online]. Available: https://firebase.google.com

[51] D. o. E. United Nations and S. Affairs, “The 17 goals,” accessed: 2022-05-13.
[Online]. Available: https://sdgs.un.org/goals

50

https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/images/classification.ipynb#scrollTo=dC40sRITBSsQ
https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/images/classification.ipynb#scrollTo=dC40sRITBSsQ
https://viveky259259.medium.com/add-firebase-to-flutter-6bc9e2755284
https://docs.flutter.dev/get-started/install/macos
https://docs.flutter.dev/get-started/install/macos
https://firebase.google.com
https://sdgs.un.org/goals

A
The MobileNetV2 Model

Layer (type) Output Shape Parameter
InputLayer 160, 160, 3 0
Conv2D 80, 80, 32 864

BatchNormalization 80, 80, 32 128
ReLU 80, 80, 32 0
Depth 80, 80, 32 288

BatchNormalization 80, 80, 32 128
ReLU 80, 80, 32 0
Conv2D 80, 80, 16 512

BatchNormalization 80, 80, 16 64
Conv2D 80, 80, 96 1536

BatchNormalization 80, 80, 96 384
ReLU 80, 80, 96 0

ZeroPadding2D 81, 81, 96 0
DepthwiseConv2D 40, 40, 96 864
BatchNormalization 40, 40, 96 384

ReLU 40, 40, 96 0
Conv2D 40, 40, 24 2304

BatchNormalization 40, 40, 24 96
Conv2D 40, 40, 144 3456

BatchNormalization 40, 40, 144 576
ReLU 40, 40, 144 0

DepthwiseConv2D 40, 40, 144 1296
BatchNormalization 40, 40, 144 576

ReLU 40, 40, 144 0
Conv2D 40, 40, 24 3456

BatchNormalization 40, 40, 24 96
Add 40, 40, 24 0

Conv2D 40, 40, 144 3456
BatchNormalization 40, 40, 144 576

ReLU 40, 40, 144 0
ZeroPadding2D 41, 41, 144 0

DepthwiseConv2D 20, 20, 144 1296
BatchNormalization 20, 20, 144 576

ReLU 20, 20, 144 0

I

A. The MobileNetV2 Model

Conv2D 20, 20, 32 4608
BatchNormalization 20, 20, 32 128

Conv2D 20, 20, 192 6144
BatchNormalization 20, 20, 192 768

ReLU 20, 20, 192 0
DepthwiseConv2D 20, 20, 192 1728
BatchNormalization 20, 20, 192 768

ReLU 20, 20, 192 0
Conv2D 20, 20, 32 6144

BatchNormalizatio 20, 20, 32 128
Add 20, 20, 32 0

Conv2D 20, 20, 192 6144
BatchNormalization 20, 20, 192 768

ReLU 20, 20, 192 0
DepthwiseConv2D 20, 20, 192 1728
BatchNormalization 20, 20, 192 768

ReLU 20, 20, 192 0
Conv2D 20, 20, 32 6144

BatchNormalization 20, 20, 32 128
Add 20, 20, 32 0

Conv2D 20, 20, 192 6144
BatchNormalization 20, 20, 192 768

ReLU 20, 20, 192 0
ZeroPadding2D 21, 21, 192 0

DepthwiseConv2D 10, 10, 192 1728
BatchNormalization 10, 10, 192 768

ReLU 10, 10, 192 0
Conv2D 10, 10, 64 12288

BatchNormalization 10, 10, 64 256
Conv2D 10, 10, 384 24576

BatchNormalization 10, 10, 384 1536
ReLU 10, 10, 384 0

DepthwiseConv2D 10, 10, 384 3456
MatchNormalization 10, 10, 384 1536

ReLU 10, 10, 384 0
Conv2D 10, 10, 64 24576

BatchNormalization 10, 10, 64 256
Add 10, 10, 64 0

Conv2D 10, 10, 384 24576
BatchNormalization 10, 10, 384 1536

ReLU 10, 10, 384 0
DepthwiseConv2D 10, 10, 384 3456
BatchNormalization 10, 10, 384 1536

ReLU 10, 10, 384 0

II

A. The MobileNetV2 Model

Conv2D 10, 10, 64 24576
BatchNormalization 10, 10, 64 256

Add 10, 10, 64 0
Conv2D 10, 10, 384 24576

BatchNormalization 10, 10, 384 1536
ReLU 10, 10, 384 0

DepthwiseConv2D 10, 10, 384 3456
BatchNormalization 10, 10, 384 1536

ReLU 10, 10, 384 0
Conv2D 10, 10, 64 24576

BatchNormalization 10, 10, 64 256
Add 10, 10, 64 0

Conv2D 10, 10, 384 24576
BatchNormalization 10, 10, 384 1536

ReLU 10, 10, 384 0
DepthwiseConv2D 10, 10, 384 3456
BatchNormalization 10, 10, 384 1536

ReLU 10, 10, 384 0
Conv2D 10, 10, 96 36864

BatchNormalization 10, 10, 96 384
Conv2D 10, 10, 576 55296

BatchNormalization 10, 10, 576 2304
ReLU 10, 10, 576 0

DepthwiseConv2D 10, 10, 576 5184
BatchNormalization 10, 10, 576 2304

ReLU 10, 10, 576 0
Conv2D 10, 10, 96 55296

BatchNormalization 10, 10, 96 384
Add 10, 10, 96 0

Conv2D 10, 10, 576 55296
BatchNormalization 10, 10, 576 2304

ReLU 10, 10, 576 0
DepthwiseConv2D 10, 10, 576 5184
BatchNormalization 10, 10, 576 2304

ReLU 10, 10, 576 0
Conv2D 10, 10, 96 55296

BatchNormalization 10, 10, 96 384
Add 10, 10, 96 0

Conv2D 10, 10, 576 55296
BatchNormalization 10, 10, 576 2304

ReLU 10, 10, 576 0
ZeroPadding2D 11, 11, 576 0

DepthwiseConv2D 5, 5, 576 5184
BatchNormalization 5, 5, 576 2304

III

A. The MobileNetV2 Model

ReLU 5, 5, 576 0
Conv2D 5, 5, 160 92160

BatchNormalization 5, 5, 160 640
Conv2D 5, 5, 960 153600

BatchNormalization 5, 5, 960 3840
ReLU 5, 5, 960 0

DepthwiseConv2D 5, 5, 960 8640
BatchNormalization 5, 5, 960 3840

ReLU 5, 5, 960 0
Conv2D 5, 5, 160 153600

BatchNormalization 5, 5, 160 640
Add 5, 5, 160 0

Conv2D 5, 5, 960 153600
BatchNormalization 5, 5, 960 3840

ReLU 5, 5, 960 0
DepthwiseConv2D 5, 5, 960 8640
BatchNormalization 5, 5, 960 3840

ReLU 5, 5, 960 0
Conv2D 5, 5, 160 153600

BatchNormalization 5, 5, 160 640
Add 5, 5, 160 0

BatchNormalization 5, 5, 960 3840
ReLU 5, 5, 960 0

DepthwiseConv2D 5, 5, 960 8640
BatchNormalization 5, 5, 960 3840

ReLU 5, 5, 960 0
Conv2D 5, 5, 320 307200

BatchNormalization 5, 5, 320 1280
Conv2D 5, 5, 1280 409600

BatchNormalization 5, 5, 1280 5120
ReLU 5, 5, 1280 0

GlobalAveragePooling2D 1280 0
Dropout 1280 0
Dense 1 1281

IV

B
Project GANTT schedule

V

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
CHALMERS UNIVERSITY OF TECHNOLOGY / UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden
www.chalmers.se

www.chalmers.se

	List of Figures
	List of Tables
	Introduction
	Purpose and goals
	Report Organization

	Method
	Technical Background
	Programming Languages
	Dart
	Python

	Platforms
	Flutter
	Firebase

	Graphics Cards
	Skin Lesions
	Malignant
	Benign

	Machine Learning Fundamentals
	Deep learning and Neural networks
	Transfer learning
	VGG-16
	Mobilenetv2

	Data
	Data augmentation
	The importance of data quality

	Implementation
	Hardware Installation
	Software installations and tests
	Anaconda and Jupyter
	The dataset
	The Multiclass model
	Binary
	Working with the application
	Planning
	Setup
	Development
	Database setup

	Results
	Model performance
	Script
	The application

	Ethics and Sustainability
	Conclusion
	Discussion
	Further research

	The MobileNetV2 Model
	Project GANTT schedule

