
Studying Software Architecture Design
Challenges, Best Practices and Main De-
cisions for Machine Learning Systems

Software Architecture Design best practices, challenges, and
main software architecture design decisions of Machine Learn-
ing Systems

Master’s thesis in Computer science and engineering

ROGER NAZIR

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2021

Master’s thesis 2021

Studying Software Architecture Design
Challenges, Best Practices and Main Decisions for

Machine Learning Systems

Software Architecture Design best practices, challenges, and main
software architecture design decisions of Machine Learning Systems

ROGER NAZIR

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2021

Studying Software Architecture Design Challenges, Best Practices and Main Deci-
sions for Machine Learning Systems
Software Architecture Design best practices, challenges, and main software archi-
tecture design decisions of Machine Learning Systems
ROGER NAZIR

© ROGER NAZIR, 2021.

Supervisor: Patrizio Pelliccione, Department of Computer Science and Engineering
Examiner: Gregory Gay, Department of Computer Science and Engineering

Master’s Thesis 2021
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

iv

Abstract:

Machine learning (ML) refers to statistical modeling techniques, which have recently

sparked interest in the ML applications and service industries. The continuous usage of ma-

chine learning necessitates addressing software architecture (SA) design challenges and re-

quires guidelines to overcome design issues. ML software system design in small and

especially in big software engineering projects is a collaborative decision-making process

in which software architect designers, researchers, and developers make design decisions.

After considering various design alternatives, the development team handles design issues,

examines the best design practices, and picks the main design decisions. In this paper, we

provided the common challenges, best design practices, and major decisions for designing

the software architecture of ML systems. The systematic literature approach (SLA), with

snowballing, is used to extract academic papers from four databases. The inclusion/exclu-

sion techniques helped to extract relevant articles according to research questions. Total 12

interviews were conducted from 9 countries across five continents with academic research-

ers and industrial professionals having a machine learning experience. Finally, SLR out-

comes and interview results are mapped. The mapped and unmapped data are discussed in

this study to get more insight into the software architecture design decision for machine

learning systems.

Keywords: Machine Learning, Software Architecture Design, Common Design Challenges,

Best Design Practices, Main Design Decisions

2

Acknowledgments:

I would like to offer my special thanks to supervisor Patrizio Pelliccione for his commitment

and for providing consistent and accurate feedback throughout the thesis process. I am very

grateful and express gratitude to my examiner, Gregory Gay, for the assistance, advice, and

guidance in completing this research work. I pay the heartfelt gratitude to my family for

their unconditional support during this journey. In the end, I want to acknowledge all prac-

titioners who have taken the time for their assistance with the collection of my data.

 Roger Nazir, Gothenburg, September 2021

3

4

 Contents

 List of Figures 6

 List of Tables 7

 Abbreviations 8

1 Introduction ..9

1.1 Overview ...9

1.2 Significance of the study ...10

2 Background ..11

2.1 Statement of the problem ...11

3 Related Work ..12

3.1 Review of the literature ..12

3.2 Summary of related work ...14

4 Methods ..15

4.1 Research question and/or Hypotheses ...15

4.2 The Design – Methods and Procedures ...15

4.2.1 Systematic Literature Review...16
4.2.2 Survey ...20

4.3 Comparison Validation: ..22
4.4 Validity Threats: ..22

5 Results ..25

5.1 SLR Data Analysis ...25

5.1.1 SLR RQ1 Common Challenges Codes, Theme, and Description26
5.1.2 SLR RQ2 Best Practices Codes, Theme, and Description31

5.1.3 SLR RQ3 Main Software Architecture Design Decisions Codes, Theme, and

Description ..39

5.2 Interview Data Analysis ...44

5.2.1 Interview Statistical Representation ...45
5.2.2 Interview RQ1 Common Challenges Codes and Themes48
5.2.3 Interview RQ2 Best Practices Codes and Themes ...50
5.2.4 Interview RQ3 Main Software Architecture Design Decisions Codes and

Themes ..52

6 Discussion ...56

6.1 Discussion ..56

6.1.1 SLR-Interview-RQ1 Common Challenges Mapping ...56

5

6.1.2 SLR-Interview-RQ2 Best Practices Mapping ..57
6.1.3 SLR-Interview-RQ3 Mian Software Architecture Design Decisions Mapping .59

7 Conclusion and Future Work ...61

7.1 Conclusion ...61

7.2 Future Work ...62

References 63

Appendix A 66

Primary Studies for SLR: ...66

Appendix B 70

Interview Invitation: ...70

Questions: ..72

6

 List of Tables

Table 1 Selected results from Databases. ... 19
Table 2 SLR Results of RQ1 .. 31

Table 3 SLR Results of RQ2 .. 39
Table 4 SLR Results of RQ3 .. 44
Table 5 Interview Statistic .. 46
Table 6 Interview Results of RQ1 .. 49

Table 7Interview Results of RQ2 ... 52
Table 8 Interview Results of RQ3 .. 54
Table 9 SLR plus Interview Results of RQ1 .. 56
Table 10 SLR plus Interview Results of RQ2 .. 58

Table 11 SLR plus Interview Results of RQ3 .. 59

7

 List of Figures:

Figure 1 SLR Flow ... 16

Figure 2 Primary Studies Selection Process ... 20
Figure 3 Interview Participants Continents .. 22
Figure 4 Selected Papers Percentage in Four Databases .. 25
Figure 5 Interview participants Experience .. 47
Figure 6 Average Interviewee Experience ... 48

8

 Abbreviations

ML Machines Learning

SA Software Architecture

SLR Systemic Literature Review

RQ Research Question

RQ1 Research Question One

RQ2 Research Question two

RQ3 Research Question three

9

Chapter 1

 1

 Introduction

1.1 Overview

Machine learning contributes to statistical modeling approaches, which have created

recent interest in the marketplace of applications and services [1]. Software engineering

research into the use of ML technologies has expanded enormously and generated a wide

range of projects and publications, e.g. [2], [3], [4], [5], [6], [7], [8]. As a result, companies

that produce software witnessed increasing customers in their software systems that require

ML-based components and solutions [9]. ML solutions are used in several fields, including

computer defense, computational biology, autonomous vehicles, robotics, and the Internet

of Things (IoT). ML primarily depends on software engineering design techniques for its

deployment and success. [2].

The architecture design of an ML software project has a significant impact on its per-

formance. Designing the best software architecture design, on the other hand, is a very sub-

jective process that takes a long time and is heavily influenced by the architect’s

understanding and the reliability of the requirement engineering. The architecture design

understanding is generally not written because it is regarded as implicit knowledge by ar-

chitects or other stakeholders, and this knowledge gradually fades away. It’s particularly

relevant when designing software or machine learning products that necessitate making de-

cisions on various architecture design challenges, which often include choosing between

various design alternatives that have varying effects on a collection of functional properties

[10]. However, there is a systematic study analysis about how practitioners perceive and use

ML design decisions in the architecture of ML systems and applications.

This research aims to assess the current state of the art in how teams/architects manage

software architecture design decisions, including machine learning components. It’s essen-

tial to require knowledge while making design decisions for developing ML systems. Re-

searchers and experts are investigating best design practices in the software architecture

design for ML systems and further about the ML system’s complexity [2].

The software architecture design decision is defined as it’s an essential part of soft-

ware development. The various design decisions are made about processes, selection of

tools, methods, and appropriate techniques throughout the software development life cycle.

However, software architecture decisions are essential because many architecture decisions

are made early in the software development life cycle and have a significant influence. The

best design practices of ML systems encapsulate reusable solutions to solve common issues.

The best design practices can provide recommendations to follow when designing the ML

systems. On the other hand, the main design decisions are to find the best available design

solutions from literature and practitioners' perspectives. The main design decisions can be

the most appropriate/suitable design solution from other alternatives and carry more weight

in developing a successful system.

10

Much work has been done on ML mathematics, computer science, identified mathe-

matical challenges to develop ML systems. According to current findings [2], [3], [4], [5],

[6], [7], [8], not much work is done to investigate the best design decisions for ML tech-

niques, which are then classified and discussed. Thus, there is a gap in finding common

software architecture (SA) design challenges, best design practices, and especially the main

architecture design decisions for ML systems. Because of these concerns, the following

questions arise; what are common SA design challenges in ML systems? What are the best

practices in architecting and designing machine learning systems? What are the main soft-

ware architectural design decisions for ML systems?

To find the answers to the questions, I compiled common software architecture design

challenges, main design decisions, best practices in architecting and designing ML systems

based on academic literature on four databases and practitioner's perspectives. The system-

atic literature review is applied to selected databases along with snowballing. The interview

data are collected to get more knowledge for SA design decisions in ML systems. Both SLR

and interview data are mapped in tables for all three research questions (RQs), and un-

mapped data are also available in tables.

 However, ensuring the correctness of design decisions is not easy when architectural

design planning occurs at an early stage, making it complicated. The developers also require

a template recommendation to help by proposing appropriate design decisions [11]. This

study would help to evaluate the SA design practices, challenges, and major architecture

design decisions in the ML systems. For example, SLR and interview results findings state

that the most common challenges are ML system's architecture design is data management,

data pre-processing, and a lack of understanding of the company's needs. The most well-

known problem in machine learning systems is selecting irrelevant models and architectures

while making design decisions [12]. ML systems vary from software engineering systems

because ML systems mainly depend upon data input to provide usable results. These types

of concerns are beneficial while taking SA design decisions for ML systems. The results

and discussion chapters explain similar challenges, best design practices, and main SA de-

sign decisions.

This paper is organized as follows: Initially, I discussed the background in Chapter 2.

I explained the related work in Chapter 3. The methodology of the study is in Chapter 4. I

discussed the results in chapter 5 and concluded with general observations and future work

in chapter 7.

1.2 Significance of the study

This paper explored the software architecture design issues and their solutions. There is not

much data collected for the challenges, best design practices, and especially the main design

decision for the ML systems. According to my knowledge, no such paper was found which

collected the data for the main architecture design decisions for ML systems. The best prac-

tices and challenges for SA design in one article can help the software developer understand

the ML system’s designing difficulties. I hope this study can offer essential contributions in

future research work for combined challenges, best/wrong practices, and the main software

architectural design decisions for ML systems.

11

Chapter 2

 2

 Background

2.1 Statement of the problem

A software’s architecture acts as a blueprint for the system. It provides an abstraction for

managing system complexity and establishing a method for communication and coordina-

tion among components [10].

 Machine learning is an artificial intelligence (AI) technology that allows computers

to learn and improve from experience without being explicitly programmed automatically.

Machine learning is concerned with creating computer programs that can access data and

utilize it to learn independently. Machine learning systems predict output results by using

historical data as input.

 The process of conceptualizing software requirements and their translation into soft-

ware implementation is known as software design decisions. A series of architectural design

decisions influence the system's quality, performance, maintainability, and overall success.

Failure to consider common design problems can compromise your system. The software

architecture design process establishes a plan that considers the user requirements as chal-

lenges and identifies optimal solutions when developing the software. Software architecture

designing decisions play a crucial role in guiding management practices during the growth

and maintenance of software systems [5], [13]. Design practices are also formally recog-

nized as architecture design decisions by encapsulating reusable responses to issues that

frequently arise in the software architecture design of machine learning systems.

 It is important to deal with poor architectural design choices that result in inadequate

ML systems, which would be very expensive and impossible to correct later.

12

Chapter 3

 3

 Related Work

3.1 Review of the literature

The work in [1] reports a case study on software engineering for machine learning at Mi-

crosoft. The authors came up with the typical nine-staged process informed by prior expe-

riences developing AI applications and data science tools in a paper. Moreover, in a

questionnaire, the replies from 551 software engineers validated these challenges.

Hironori Washizaki [2] performed a systematic literature review on both academic

and grey literature to collect the design patterns for ML systems. The authors used ten aca-

demic scholar papers and 25 grey documents and presented the preliminary findings of SLR

to find design patterns in ML.

Another paper by Hironori Washizaki [14] focuses on product quality attributes,

model quality attributes prediction, and ML pattern Pi. During their literature analysis, the

authors discovered and studied 15 ML trends. Forty-three percent of respondents of surveys

said the authors had reused previous solutions in the form of internal guidelines or trends.

The study recommended that existing ML patterns be more widely used if promoted within

the ML community.

Watanabe Yasuhiro’s [7] survey extracted ML system’s design patterns; the authors

performed the systemic preliminary analysis of the literature on ML system’s implementa-

tion. Their survey included practitioners and grey literature. Results from this study high-

lighted 33 design patterns of ML systems.

P. Avgeriou and U. Zdun [9] surveyed general architecture and design patterns and

focused on object-oriented design. In a paper, the authors discussed; architectural patterns

are a vital concept in software architecture. Finding and applying the appropriate architec-

tural patterns in practice remains largely ad hoc and unsystematic. The authors proposed a

pattern language that superset existing architectural pattern collections and categorizations

[9].

In software development, architecture design decisions can provide reusable and re-

cording solutions to fundamental design problems. Gang of Four (GoF) [3], the design paper

presented the findings of a mapping survey of approximately 120 primary studies to provide

an analysis of (GoF) style pattern science. The author's most active research areas tend to

be pattern recognition and the impact of GoF trends on software quality attributes. [3]

Computer engineers generally use design trends to create complicated structures. The

most active themes in design patterns are pattern creation, pattern mining, and pattern use.

Art of design pattern paper [8] summarized research activities for researchers seeking to

penetrate this field on design trends. The final supplementary thesis for related purposes

only mentions the four style trends of the Gang of Four. It concludes that architecture trends

can be divided into six separate subjects for study [8].

13

Other papers discussed the architecture design or design patterns for a limited domain,

such as the multi-agent application system (MAS), which indicates the lack of overview for

MAS patterns [4]. Likewise, IoT design Patterns [15], analyze many reported architectural

IoT improvements and describe multi-dimensional design trends. The work [6] proposes

security design patterns and explains the importance of understanding the security area nec-

essary to adapt suitable design decisions for a particular problem context.

Wang Juguo [16] proposes a scenario-based architecture for artificial intelligence

software reliability design. The authors divided the scenario into both parts that are envi-

ronmental scenarios and structure scenarios. Both types of procedures are taken into ac-

count in the context. The software assesses and forecasts its quantitative reliability

depending on the framework. So, the article presented the reliability of a pattern recognition

system that could be evaluated and predicted with the design and scenario-based analysis to

allow it to be eligible in safety-sensitive applications.

Mayer Ruben [17] emphasizes Deep Learning (DL); the papers focus on the scalabil-

ity of DL systems that must continue to be enhanced to improve DL performance. The au-

thors performed a detailed and comprehensive survey of challenges, methods, and resources

for flexible DL on distributed facilities. These are DL infrastructures, parallel DL training

approaches, multi-tenant resource planning, training, and model data management. The au-

thors also reviewed and evaluated 11 existing open-source DL applications tools and studied

the most used techniques. Finally, The authors underlined future developments in research

into DL systems that need more research.

Wan Zhiyuan [18] conducted a mixture of 14 respondents from 26 countries on four

continents in a mix of qualitative and quantitative studies to generate significant uncertain-

ties between implementing machine learning systems and creating non-machine learning

systems. Their analysis identifies major variations in different software engineering dimen-

sions (e.g., requirements, architecture design, testing, and method) and job properties, e.g.,

diversity of skills, solving problems, and identifying variations. Based on their conclusions,

the authors highlighted potential guidance for the study and provided practitioners the rec-

ommendations.

Henry Muccini [19] study concentrated on the former aspect of the spectrum, intend-

ing to highlight the various activities in the architecture of the ML-based software systems

in the present scenario. To better define best practices of software-based architecture, the

authors recognized four main fields for software architecture that require the attention of

both ML and software practitioners. The authors focused our experience developing an ML-

based software framework to solve the challenges of queuing in one of Italy’s most promi-

nent museums.

Yokoyama Haruki [20] considers the machine learning nature of closely coupled fea-

tures, such as business logic coded from architecture and inference engines derived from

data. Common machine learning systems with three-layer architectural patterns complicate

the troubleshooting method. He suggested a new architecture pattern for machine learning

systems that distinguish business logic and machine learning components to solve this prob-

lem. This architectural pattern allows operators to disassemble errors into a business logic

component and a separate ML part. Thus, while the inflection engine has problems, the

authors roll back the inference engine independently of the business logic. Through a case

study example, he demonstrated how our architectural pattern would help solve problems

more efficiently than common architecture in three different layers.

14

3.2 Summary of related work

From the above literature, most papers focused on the designing of object-oriented

systems and particular domains. However, Hironori Washizaki [2] focused on finding de-

sign patterns, and the authors performed SLR on one database and conducted a survey in

which a response was 1 percent only. In another article, Hironori Washizaki [15] focuses

on product quality characteristics, model quality attribute prediction, and ML pattern Pi. So,

both studies are not conveying the common challenges, best design practices, and main SA

design decisions for ML systems which demonstrates the gap to address these concerns.

 Mayer Ruben [17], focused on enhancing the performance of the DL-based systems.

Concluding, to the best of my knowledge, there is not much data collecting, discussing,

understanding, and classifying the SA design challenges, best design practices, and major

architectural decisions on SA design for ML application systems. Most importantly, no pa-

per-related work is found yet, which primarily discusses common design challenges, best

practices, and the main architecture design decision for ML systems.

15

Chapter 4

 4

 Methods

4.1 Research question and/or Hypotheses

This study aims to find the common challenges, best design practices, and main software

architecture design decisions of the ML systems. The major research questions of this study

are:

1) What are the common software architecture design challenges in machine learning

systems?

I compiled the challenges of software architecture design in ML systems to discuss

all common challenges in a single paper from available literature and conducted

interviews with ML practitioners. This study can assist in minimizing the chal-

lenges of creating ML solutions.

2) What are the best practices in architecting and designing machine learning sys-

tems?

The importance of finding the best practice in architecting and designing ML sys-

tems can help ML engineers and academic researchers follow the recommended

practice that can provide accurate design solutions for their ML systems.

3) What are the main software architectural design decisions for machine learning

systems?

This analysis aims to investigate the main software architecture design decision

between other alternatives for the software architecture of machine learning sys-

tems. According to my knowledge, no such paper collected the main architecture

design decision of the machine learning systems. This study can offer some es-

sential contributions for future research work and guide the main architectural de-

sign decision for ML engineers.

4.2 The Design – Methods and Procedures

I split the approach into three sections to find the answer to research questions: First, I Per-

formed SLR to collect the data from the available literature. Secondly, I conducted inter-

views with some professionals to collect more data. Thirdly, I performed a comparison of

SLR results with data collected from the interviews. Both result’s mapping (comparison

results) can be considered SLR outcomes evaluation and effectiveness of the results of com-

mon challenges, best design practices, and main architecture decisions for ML systems.

16

4.2.1 Systematic Literature Review

This section discussed the systemic literature review description and motivation of using

all processes and selection of databases and extraction techniques to find primary studies.

4.2.1.1 Description and Motivation:

A systematic literature review is a way of reviewing and analyzing all existing findings

relating to a specific research issue, current topic, or phenomena of interest [21], [22].

The most suitable approach for this study is SLR to extract the data to obtain the literature

search list. Data gathering is based on research questions for determining the challenges and

best design practices of SA designing ML systems. SLR is the best alternative because this

technique allows for collecting and responding to relevant information on a given subject in

line with the research questions. SLR can apply to qualitative and quantitative data infor-

mation. So, I follow the mixed-method approach [23]. This method helps to produce quan-

titative and qualitative information from various research [24].

I followed the Kitchenham guidelines [12] to perform the systematic literature review.

Kitchenham et al. [12] explained the SLR as analyzing, reviewing, and evaluating all avail-

able research material on a particular research issue or field. SLR also helps to plan the new

research activities [25]. The data collected using SLR helped identify the design practices,

challenges of architecture design, and ML system’s main architecture decisions.

 Figure 1 SLR Flow

17

4.2.1.2 Data Collection:

To gather the data through SLR, I followed the Kitchenham guidelines [12] to conduct a

systematic literature review and obtain a list of papers from the literature search.

4.2.1.3 Selection of Database

Following are the databases which are selected in finding the primary studies to address

research questions:

• IEEE Xplore

• ACM

• Scopus

• Web of Science

4.2.1.4 Search String:

I used the search string to retrieve papers that are related to research questions. The search

string focused on software architecture, machine learning, challenges, best practices, and

recommendation.

To obtain the primary studies, I conducted a database analysis. The search string applied on

four databases collected all available papers till the end of 20 June 2021. I am going through

four databases using the same search strings. The following search string is used in all four

databases:

“("software architecture" AND ("machine learning" OR "AI" OR "deep learning" OR "ar-

tificial intelligence") AND (("challenge" OR "problem" OR "issue") OR ("best practice" OR

"recommendation" OR "tactics")))”.

It was important to point out that search string can find the following papers that I already

mentioned in the related work section and used as control papers [1], [2], [14]. The papers

gave us some confidence that the search string is well formulated.

 To properly select those papers that focus on design activities relevant to the study, I

define suitable inclusion and exclusion criteria, as described in the following.

4.2.1.6 Inclusion/Exclusion criteria:

The selection of studies for systematic review and meta-analysis is a time-consuming

method. The duplication literature occurrence is expected. The selecting process is essential

and narrows the criteria so that the inclusion and exclusion criteria govern the systemic

review result’s scope and effectiveness [26]. Exploiting inclusion and exclusion criteria can

select the most relevant papers for SA designing best design practices, challenges, and major

architecture design decisions for ML systems.

4.2.1.5.1 Inclusion Criteria:

I divided the inclusion criteria into two iterations. The first iteration is to apply the search

string on the database and selected the paper according to the iterations. The selected arti-

cles in iteration one were further analyzed in iteration two, and their inclusion criteria are

stated below:

18

Iteration 1:

• The articles should be written in English.

• The articles should be available in full text.

• First, reading the article title, then the abstract, and finally the conclusion. The initial

understanding of the articles is learned. While reading each paper, the following key

concepts were kept in mind for the paper’s selection in Iteration one.

i. “Software architecture/SA design decision for ML.”

ii. “Software architecture/SA best-practices/recommendation/tactics for ML.”

iii. “Software architecture/SA challenges/problem/issue for ML.”

iv. “Software architecture/SA main design decision for ML.”

Iteration 2:

• Iteration 1 selected articles methodology text, discussion, and results focus any re-

search question of the study.

• Further, the supervisor checked all selected papers found at the end of iteration two

for verification before extraction results.

4.2.1.5.2 Exclusion Criteria:

As exclusion criteria, I considered the following steps:

• Literature is not available in English.

• The literature is not available in full text.

• Literature did not include the software architecture design decisions of machine

learning, including best design practices and common challenges.

• Duplicate literature and the material present in the form of presentations and general

discussion.

• The duplicate literature is found in two databases (selected only one).

4.2.1.7 Quality Assessment Criteria:

The quality standards for selected studies are represented in the following criteria. Quality

characteristics apply to a selection of primary studies obtained through the database and

snowballing. Every study’s quality is determined by answering each question with “Yes,”

“Partially,” or “No.”

• Does the study identify the SA design challenges for the ML systems?

• Does the study report the best practices in architecting and designing ML

systems?

• Does the study identify the main SA design decisions for the ML systems?

4.2.1.8 Snowballing Approach:

Since a database search could not yield all relevant results [27], I combined the snowballing

method with a database search. Another reason is that database search strings cannot return

all relevant studies. The various databases employ various interfaces and search strings that

are limited to specific approaches in searching. It is challenging to construct a search string

that returns all applicable studies since the keywords used are not standardized. Many

19

unrelated publications from database searches can also be found. Snowballing can be per-

formed both backward and forward.

 The principle of the forward search was introduced by Webster and Watson [28]. The

process of checking references contained in keyword search results is known as backward

reference search. By using keywords, you can find the most up-to-date literature. The phe-

nomenon of dealing with forwarding reference search is known as forwarding search. The

aim of forward snowballing is to discover new studies based on the citations of existing

ones. The process of recognizing papers that referenced the original article or work since it

was written. The knowledge base on the subject has expanded the scope of this.

 Iteration [27] should be used for forward and backward snowballing. The most related

research/study should be added to the initial set of tasks. The iteration of snowballing of

newly discovered studies can be repeated until no further studies are detected. According to

Wohlin [27], the starting list must consist of studies used in the SLR primary studies. The

initial collection of papers should contain a variety of reports by various scholars and pub-

lishers.

4.2.1.9 Selected Papers:

Using the search strings, the total results in IEEE Xplore are 574 with applying the search

string. ACM gave 5318 results, and similarly, other databases and snowballing combined

results are 6494. After evaluating the relationship with research objectives and questions

and applying filtering, inclusion/ exclusion criteria, I narrowed down and selected related

papers. To choose or eliminate the articles, I studied all selected papers' introductions, meth-

odologies, discussion/results, and conclusions.

Database Total Selected

IEEE Xplore 574 6

ACM 5318 8

Scopus 497 19

Web of Science 60 1

Snowballing 45 7

All 6494 41

 Table 1 Selected results from Databases.

20

 Figure 2 Primary Studies Selection Process

4.2.2 Survey

A survey is used to collect quantitative and qualitative data [29]. According to Floyd J.

Fowler [30], the survey is the best tool for gathering data from practitioners through various

organizations. The current study includes investigating the SA design challenges, designing

best practices, and main architecture design decisions for ML systems, which is why a sur-

vey is selected as a research method.

21

Shull et al. [31], characterized the survey as identifying characteristics of a prominent indi-

vidual population. In most surveys, the data are collected through interviews and question-

naires. I selected the interview approach for data collection.

4.2.2.1 Interview Data Collection

Interviews can be used in surveys as a means of data collection. According to G. Hackett

[32], the most common data collection method in surveys is interviews and questionnaires.

Interviews provide effective and thorough input on a particular subject. Open-ended ques-

tions are better suited for this study because researchers can dig deeper by addressing the

question in depth and obtain more knowledge. Closed-ended questions are not suited in this

study.

 I created two pdf documents, the interview invitation letter and interview question-

naires, and both document’s texts are presented in Appendix B. The supervisor confirmed

both documentation's validation before using it. My supervisor and I sent interview invita-

tions to several industry professionals, and academic researchers having primary work or

focus on machine learning systems. I contacted 74 machine learning architects and machine

learning engineers through LinkedIn, and nine industrial machine learning professionals

agreed for the interview. The supervisor also contacted some machine learning experts, and

three agreed to the interview. Because most interviewees resided in various time zones, the

interview meeting time was coordinated through email. A total, 12 interviewees, partici-

pated in the interviews and answered interview questionnaires. Table 5 contains the statis-

tics about the interviewees.

I conducted 12 interviews following Wohlin’s [33] guidelines with professionals from var-

ious organizations as part of the survey for mapping with the SLR outcomes. To target pro-

fessionals from other countries, I used the zoom feature to perform the online interviews

and shared the zoom meeting links through an email. The interviews were recorded after

the participant’s permission except for one interviewee, and notes were taken with this in-

terviewee. This information was stored in the system on Google Drive and shared with the

supervisor for assurance of usefulness in the study. During the interview, I asked for their

job title, and the interviewee's professions were ML academic researchers, ML architects,

ML engineers/developers, and having machine learning systems knowledge.

22

 The supervisor and myself contacted machine learning experts from all around the

world, and 12 agreed to the interview, and the interviewees were in the following conti-

nents:

 Figure 3 Interview Participants Continents

4.3 Comparison Validation:

Data are collected using SLR from literature and by conducting interviews with practition-

ers. The results extracted through SLR and interview outcomes are added in tables. Each

research question of SLR is added in table 2, 3, and 4. Similarly, the interview outcomes of

each research question are added in table 6, 5, and 8. Further, I compared each interview

data according to common challenges, best design practices, and main software architecture

design decisions and mapped it in tables 9, 10, and 11. Each interview texts, notes, and

developed concept codes were studied adequately before comparing to SLR results and

mapped with the interview Id of the interviewee into mapped tables. The mapping showed

the commonality of data knowledge between literature and practitioners. The comparison

can suggest which SA design decisions for ML systems are using in industry and what are

missing in the academic literature. On the other hand, it also shows which SA design deci-

sions for ML are in the literature and have not been discussed by the practitioners. The

comparison of both data assists with the authentication of the mapped part of SLR outcomes.

4.4 Validity Threats:

Validity threats are listed in this section for both SLR and interviews. This section discusses

three forms of validity threats. Internal validity is a problem that the researchers must

5

3

2

1 1

ASIA EUR OCEANIA MIDDLE EAST NORTH AMERICA

Interview Participants Continents

Continents

23

address internally, i.e., the cause and effect are determined within the analysis and are not

clarified by other variables. Constructed validity relates to data and measurements: the qual-

ity and the measures. External validity risks are dependent on generalizable study results.

4.4.1 SLR Validity threats:

Interval Validity:

To find the related studies, I used a database search and the snowball method. Internal va-

lidity is jeopardized by the article selection method. This threat can be eliminated by reading

papers and working with a supervisor to create and refine the search string. For this purpose,

various database searches are conducted. After applying the inclusion-exclusion criteria, I

deleted the unrelated articles. The backward and forward snowballing is used to find more

specific studies. This procedure was carried out during the iteration. Following this process,

I included more articles. For the evaluation of the obtained studies, quality criteria were

created.

Construct Validity:

It is essential to create a search string to find specific studies. Ambiguity/Errors in search

strings resulted in inaccurate results, posing a challenge to construct validity. I minimized

this risk by identifying keywords in relevant posts. The supervisor also checked the search

string to reduce bias in the collection of posts. In snowballing approach, I also remove the

repeated studies.

4.4.2 Interviews Validity threats:

Interval Validity:

Internal authenticity threats for interviews are included as identifying practitioners for in-

terviews, practitioner’s knowledge of interview issues, and further analysis of data gathered.

To minimize the risk of finding actual practitioners, professional ML system architecture

development, ML system developer experience, personal industry contacts, and finding pro-

fessionals through LinkedIn can be beneficial. There is a good chance that practitioners can

miss the key point of the issue related to research questions. A simple interview question-

naire with examples was included to mitigate this threat.

External Validity:

To minimize the risk of not having generalized outcomes from interviews, diverse individ-

uals from the industry with varying levels of expertise from various countries and in differ-

ent positions were considered.

Construct Validity:

The construct validity of interviewing refers to achieving the data collection goal of the

interview through a questionnaire. I brainstormed with the supervisor in preparing the ques-

tionnaire when considering study questions.

24

4.4.3 Limitations and Delimitations

Due to pandemics (Covid19), the survey interviews with the experts were conducted online.

However, it was performed online due to pandemics. Another limitation is that the available

literature might not define all main architecture decisions for ML systems. These might be

based on relatively small sample size, challenges, and best practices are not general. Since

July is considered the month of summer vacation in Europe, it might be possible that there

were not enough experts for interviews. Another alternative solution that I considered is to

conduct interviews in June and compare the interview results with the SLR results in July.

I did not distinguish the ML design decisions, such as designing ML systems and the

ML model’s pattern. I focused on SA designing decisions for ML systems and not ML

model designs because this is not in the study’s scope. The ML model design challenges

and practices are out of the study’s scope, but this can refer in future work. The wrong

understanding of the interpretation, the expert’s point of view might not be the same through

an online meeting. The legitimacy of SLR results can be threatened by reliability and mostly

internal validity [34].

25

Chapter 5

 5

 Results

5.1 SLR Data Analysis

I discussed the research findings from the 41 relevant selected papers in this chapter. Ap-

pendix A contains the primary study publications as well as the relevant reference numbers.

The following procedure is used to choose the primary study. Research supports the SLR

objective and if the studies describe the RQ1, RQ2, and RQ3 responses. One researcher split

the papers evenly and used the inclusion-exclusion/search criteria stated above.

 I started the study with 6494 publications, and after applying inclusion and exclusion

criteria, I narrowed it down to 300 studies. I studied left papers abstract, introduction, meth-

odologies, and conclusion to select or eliminate the papers. Total 41 papers were chosen

through SLR and snowballing using four databases. The snowballing method was chosen

because it is easier to locate papers than standard database searches, i.e., by utilizing forward

and backward snowballing of the start set papers. The initial iteration of forward and back-

ward snowballing, 15 more paper was selected. After applying the same procedure to read

the paper, I chose seven related papers for study.

 All the papers focused on the software architecture design, common challenges, best

practices, and main decisions of ML systems. Following graph shows the percentage of

selected papers in four databases:

 Figure 4 Selected Papers Percentage in Four Databases

15%

20%

46%

2%

17%

Selected Papers

IEEE Xplore

ACM

Scopus

Web of Science

Snowballing

26

5.1.1 SLR RQ1 Common Challenges Codes, Theme, and Description

A total of seventeen distinct topics were chosen by performing SLR on academic papers to

identify the challenges of Software Architecture designing Machine Learning systems

which refer to RQ1. The focus of the theme is “Challenges,” which corresponds to the

codes/topics.

The following table shows the common issue occurring while designing the software archi-

tect of the ML systems:

Id Codes Common challenges/Issue Theme SLR Paper

Id

SC1 Deductive verification and model checking are barely applicable to

ML due to their inherently probabilistic and non-linear nature.

Description: At the algorithmic level, various techniques increase

qualitative qualities such as safety, robustness, or dependability.

However, because ML is fundamentally probabilistic and non-lin-

ear, many traditional methods to ensuring system correctness, such

as deductive verification and model checking, are only marginally

relevant.

Challenges S14

SC2 Data management (data pre-processing and preparation) in ML sys-

tems has significant data design issues. Data management design

issues sometimes remain after the ML system is developed.

For example, handling extensive data, including scientific imaging

data using ML reflected complex relationships, it’s challenging to

manage a large amount of data and time-consuming to infer contex-

tual information. The ML outcomes are mostly dependent upon the

input data and its training. So large amount of managing data are a

common challenge when designing ML systems.

Challenges S15

SC3 Microservice architecture has multiple design challenges while de-

veloping an ML system using it.

Description: Because the MSA (microservice architecture) applica-

tion is separated into numerous services, locating the failure nodes

is challenging. A service failure in the MSA (microservice architec-

ture) may cause an avalanche effect, resulting in the failure of the

entire system.

Challenges S18

27

SC4 The following are the most common challenges, especially for ML-

based safety-critical systems, and can apply to other ML systems

too:

• Model complexity and opacity.

• Complete probabilistic output.

• Sensitivity to variations in distribution.

• Scenarios of limited testing.

• Formal verification is either impossible or impractical.

• Restrictions on Limited defect detection, prevention, and con-

tainment.

• Strict reasoning regarding systemic flaws

• Code reasoning is limited.

• There is very limited heterogeneous redundancy.

The introduction of complete probabilistic components with vast

input and output spaces, on the other hand, creates common chal-

lenges.

• To identify acceptable safety design patterns.

• To justify the safety qualities attained by employing.

• For picking the best patterns for the job at hand.

Challenges S22

SC5 Neural network systems developed using ML have a design chal-

lenge to reusable their building block.

Description: It is still challenging to use neural networks with ML

as reusable building blocks with clear interfaces in productive sys-

tems.

Challenges S26

SC6 The cyber-physical systems (CPSs) are the integration of computa-

tion, networking, and physical process. The CPSs developed using

machine learning have design challenges in managing the system’s

continuous change and evolution of CPSs and operating environ-

ment.

Description: The usage of multi-core architectures in CPSs is com-

plex because its software interacts between cores, and its interaction

design challenges are difficult to solve. The difficulty of design

challenges occurs if the one software with dynamic behavior is

Challenges S27

28

allocated to the noncritical domain and further system interacts with

critical applications in the static part.

SC7 Mobile Robot developed with ML has major design challenges are

to involve the integration of several different bodies of knowledge.

One example of specialized bodies of knowledge is that computer

vision does not properly employ a multitude of sensor technologies.

Description: There are generally no acknowledged standards,

guidelines to develop mobile robots using ML. The selection and

design of an architecture for a mobile robot that satisfies the func-

tional and quality attribute requirements is a big challenge. The de-

signing of the localization and navigation part of the robot system

is challenging because of less available knowledge of computer al-

gorithms and probability theory.

Challenges S28

SC8 The use of machine learning (ML) components in software systems

introduce uncertainty. Uncertainty exists while evaluating the reli-

ability of software architectures design. Prior information on the un-

certainty of ML components employed at design time is regarded as

incomplete and challenging. The usage of ML components in a soft-

ware system can propagate and influence other system components.

Challenges S30

SC9 SA still challenges the quantification of architectural expertise in

ML systems. For Example, it’s challenging to identify appropriate

individuals in making suitable design decisions according to the re-

quirements.

Challenges S32

SC10 The input data can change over time, which can require updating in

ML systems, especially the change in Model can add impact on sys-

tem outcomes and its performance.

Description: The dataset is input at the model training stage and

emits a learned model that produces predictions. Dealing with the

changed input data is challenging. However, the workflow becomes

more challenging when ML systems need to be deployed in produc-

tion. The comprise machine learning platform requires other com-

ponents together with the learned model. The components offer

automation to deal with a wide range of problems that can occur in

production and model training.

Challenges S34

29

Creating this level of automation is difficult, and it becomes con-

siderably more difficult when we consider the following complica-

tions:

• Change in input data.

• Creating a single machine learning platform for a variety of

different learning tasks.

• Continuous training and service.

• Human-in-the-loop.

• Reliability and scalability at the production level.

SC11 Data dependencies design issues in ML systems are challenging,

and configuration lines are usually more than traditional codes lines.

Description: Hidden debts in the ML systems are harmful because

it can affect the performance of the systems. Data dependencies in

ML systems have a comparable potential for debt accumulation but

may be more challenging to discover. In a mature system that is

actively being developed, the number of configuration lines might

considerably outnumber the number of lines of traditional code. The

increment in configuration lines is challenging to handle.

Challenges S38

SC12 Wrong selection of the model and not being aware of best practices

can lead to poor performance of ML systems which is still a large

challenge.

Description: Model management consists of training, maintenance,

deployment, monitoring, organization, and documentation of ma-

chine learning (ML) models. Incorrect model management deci-

sions can result in poor ML system performance and high

maintenance costs. Because both infrastructure and algorithm re-

search is rapidly developing, there is a lack of knowledge of the

problems and best practices for ML model maintenance. Authors

classified the obstacles, but the key ones are:

• Conceptual difficulties, such as determining what component

of a model is.

• Data management issues, such as problems regarding the ab-

stractions used in ML pipelines,

• Engineering problems include creating systems that use sev-

eral languages and specialized hardware.

Challenges S39

30

SC13 ML or Non-ML has different practices like a requirement, design,

testing/quality, process, and management.

Description: In a few areas, the design of ML systems and non-

ML software systems and their everyday challenges differ. ML

system architectures generally include data gathering, data cleans-

ing, feature engineering, modeling, execution, and deployment. In

contrast, non-ML software system architectural design is a more

creative approach that implements different structural divisions of

software components and provides behavioral descriptions. The

distributed architecture style is commonly favored for ML systems

due to the large volume of data. Complexity in architectural and

intricate design is generally the result of a distributed architectural

style.

Secondly, ML systems have less emphasis on component low cou-

pling than non-ML software systems. Even though various fea-

tures of ML systems have distinct capabilities, development teams

are closely linked. The performance of data modeling, for exam-

ple, is dependent on data processing.

Thirdly, detailed design for ML systems is more flexible than for

non-ML software systems. It has been observed that data modeling

might contain tens to hundreds of possible machine learning algo-

rithms; as a result, the comprehensive design of ML systems

would be time-consuming and iterative. Software developers often

undertake a huge number of experiments in order to create an ap-

propriate model.

Challenges S4

SC14 The ML systems managing or versioning, model customization,

and handling components are challenging. First, maintaining and

versioning the data required for machine learning systems is far

more complicated and demanding than other forms of software en-

gineering. Secondly, Model customization and reusing the required

abilities that are not commonly found in software teams. Third,

ML/AI components are more difficult to manage as separate mod-

ules than typical software components because models can get "en-

tangled" in complicated ways and exhibit non-monotonic error

behavior.

Challenges S8

SC15 Deep Learning systems that use Machine learning software archi-

tecture have various design challenges. A deep learning system is

Challenges S16

31

extremely demanding for a computer system's hardware. It costs a

lot of time, severely limiting their practical application, such as em-

bedded and real-time systems. Modern CNN designs with ML sys-

tems are highly resource-demanding, which limits their practical

usefulness. Furthermore, big resource consumption may be solved

utilizing cloud computing and large data processing centers. How-

ever, this is not appropriate for all circumstances, such as when a

crewless vehicle loses contact with a distant server, resulting in an

accident.

SC16 The ML design smells (may indicate an underlying problem in a

component/system) are difficult to find. The design smells can pro-

duce in several ways; for example, using multiple languages in the

ML system often increases the cost of effective testing and makes

it more difficult to transfer ownership to other team members. An-

other design smell is maintaining the prototyping environment is

costly, and small scale rarely reflects reality at full scale.

Challenges S38, S39

SC17 The machine learning systems with three-layer architectural pat-

terns consist of the presentation, logic, and data layers. The com-

mon ML systems with three-layer architecture complicated the

troubleshooting method because of their tightly coupled functions,

for example, business logic code from design and inference engines

derived from data. On the other side, three-layer architecture to han-

dle the change in input is difficult. The instability in input data jeop-

ardizes operational stability, resulting in model staleness and

missing values. When model staleness occurs, inference engine per-

formance suffers as a result of changes in input data trends.

Challenges S6

 Table 2 SLR Results of RQ1

5.1.2 SLR RQ2 Best Practices Codes, Theme, and Description

A total of twenty-five distinct topics were extracted to identify the best practices in archi-

tecting and designing machine learning systems that refer to RQ2. The focus of the theme

is “best practice,” which corresponds to the codes/topics.

The following table shows the best practices in architecting and designing machine learning

systems:

32

Id Codes Best practices Theme SLR Paper

Id

SP1 The best design designing practices in ML autonomous systems

like advanced robots and self-driving [vehicles] to add certifiabil-

ity, safety, time predictability, and security.

The following explains all four aspects:

Certifiability: All safety-critical software components must be

written in accordance with strict coding standards and certified by

appropriate certification organizations.

Safety and Fault-Tolerance: The system can avoid catastrophic

consequences for the user(s) and the environment by implement-

ing proper mechanisms for tolerating faults and failures that may

occur in complex software routines.

Time Predictability: ML autonomous systems must respond to en-

vironmental events within predefined time boundaries, which are

computed at design time based on a set of performance require-

ments.

Security: The software must be designed to defend the system

from cyber-attacks that could target vulnerable sections of the

code in order to alter the software and gain control over the sys-

tem.

Best practice S16

SP2 The best design practice to remove distortion on ML scientific im-

aging databases is to use in-memory disturbed learning architec-

ture. The in-memory distributed learning architecture can achieve

by applying sophisticated learning and optimization techniques on

scientific imaging datasets.

Best practice S17

SP3 Microservice architecture’s (MSA’s) security concerns are receiv-

ing much attention as its popularity grows. The best design prac-

tice for mining causality using MSA is to divide into invocation

chain anomaly analysis using robust principal component analysis

and a single indicator anomaly identification algorithm. The prin-

cipal component analysis method is known to assists in reducing

the dimensionality of datasets and extend interpretability.

Best practice S18

SP4 ML-based digital forensics systems are part of forensic science

that deals with recovering and investigating the information con-

tained in digital devices. The best practice for developing digital

Best practice S20

33

forensics systems comprises four phases: seizure, acquisition,

analysis, and reporting.

The following is the explanation of four phases:

Seizure: First, determine which devices may contain useful infor-

mation for the ongoing investigation and then seize.

Acquisition/imaging: Create an exact duplication of the data, and

analysis of the data is recommended to perform on the duplicated

data.

Analysis: The image of the device can be analyzed to identify your

results using ML techniques.

Reporting: After data analysis, the results can be described in an

official report.

SP5 In safety-critical systems using ML, the best practice is that the

designers must focus that the design practices don’t let a system

in reaching a hazardous state (caused more failure).

Description: The best practices of software architecture designers

must guarantee that software employed in safety-critical systems

developed using ML does not cause or contribute to the system

reaching a hazardous condition. When a defect is discovered, the

safe state must reach quickly - for example, by turning off compo-

nents of the system. In other cases, the system should continue to

function securely despite any failures or allowing some graceful

deterioration - until a viable, safe state is reached.

Best practice S22

SP6 The Federated learning simulation framework (FLSim) algorithm

is the best design practice for simulators, which helps developers

create simulators in different scenarios efficiently.

Description: The FLSim is a federated learning simulation frame-

work, and it’s an extensible and reusable simulation framework

for federated learning. FLSim commonly assists deep learning,

machine learning frameworks, for example, PyTorch and Tensor-

Flow. It’s recommended to use FLSim in creating simulators that

have any of the above-mentioned frameworks.

Best practice S24

34

SP7 The advantages of using ML cloud technologies increase the qual-

ity of cutting tools states recognition in the industry.

Best practice S25

SP8 The best design practices of the Artificial neural network in ML

systems are the appropriate selection of modeling languages.

Three concerns are network architecture, network training, and da-

taset model are recommended to consider during the selection of

modeling language. The following are the explanation of three

concerns:

Network Architecture: The first thing that comes to mind when

designing a neural network using ML is its actual architecture,

which consists of neurons, mostly organized as layers, and con-

nections between the neurons that define the data flow.

Network Training: Even the best network architecture for a spe-

cific task is useless if it is not properly trained. The developer can

modify the training procedure without changing the architecture,

or the developer can combine existing architectures and training

models without changing the models at all.

Dataset Model: Finally, the compiler needs to know where to look

for training data and how to load it to train a network. Furthermore,

the dataset must be divided into training and test data; developers

recommended only using parts of the data or skipping training if

the dataset has already been learned.

Best practice S26

SP9 The Siemen’s four-view architecture designing approach is based

on best architecture design practices for mobile robotics develop-

ment using ML components. This approach assists in reducing the

complexity of architecture design activities. The Siemen’s four

views architecture approach are conceptual view, module view,

execution architecture view, and code architecture view. These

four views increase the simplicity in the development of the mo-

bile robotics system developed using ML.

Best practice S28

SP10 It is best to design practice to explicitly model the intrinsic uncer-

tainty particular to ML components and assess how it propagates

and impacts other elements in the system at the designing stage.

Best practice S30

35

SP11 In the best designing process, the architects and developers can

favor a naturalistic approach in selecting appropriate designs.

Best practice S32

SP12 The best practice is to use TensorFlow-based learner implementa-

tion with support for continuous training and serving with produc-

tion-level dependability. Id 16 identifies that the primary strategy

of TFX is to efficiently orchestrate and give users a unified con-

figuration of recurrence components (data analysis and transfor-

mation, data validation, model training, model assessment,

validation, and infrastructure service).

Best practice S34

SP13 The best designing practice that can assist in designing ML sys-

tems is documentation that improves the ML System's reusability.

Description: Reuse, extension, and usage of undocumented soft-

ware frameworks are difficult to envision. So, the best practice is

to properly describe documentation and code, which can increase

reproductivity and shareability.

Best practice S35

SP14 Using a single container, single-mode patterns, and multiple-node

patterns is the best design practice in reusing components and di-

viding implementation among teams.

Following are the explanation of the above design patterns:

1) Single-container patterns (Single- container pattern provides a

natural boundary for defining an interface.)

2) Single-node patterns (Single-node patterns comprise symbiotic

containers co-scheduled on a single host machine).

3) Multi-node patterns (multi-node patterns help to combine mul-

tiple containers into a single pod.)

The advantages are as follows:

• It’s simple to distribute implementation across various

teams and reuse components in new situations.

• Distributed systems include unique features, such as the

ability to upgrade components separately and the ability to

write in several languages.

• For the system to decline gracefully as a whole.

Best practice S36

36

SP15 ML systems are typically composed of several workflow pipe-

lines. Due to time constraints, a pipeline is often quickly con-

structed to meet a specific requirement, which can be caused to

make a Pipeline jungle. Pipelines may include various glue codes

written in various languages as well as special languages for man-

aging pipelines. The best design practice is to avoid Pipeline jun-

gles by taking a step back, looking at systems as a whole, and

taking data collection and feature extraction seriously.

Best practice S38

SP16 The best practice to find the ML design smells is to focus on three

types of ML design smells: Plain-Old-Data, Multiple-Language,

and Prototype smells. The following is the description of three

types of design smells:

• The smell of Plain-Old-Data Type (Complex information

used and produced by ML systems is all too often encoded

with plain data types such as raw floats and integers.)

• Smells in a Variety of Languages (Using multiple languages

often increases the cost of effective testing and makes

transferring ownership to other team members more diffi-

cult.)

• The smell of a Prototype (Maintaining a prototyping envi-

ronment comes at a cost, and there is a significant risk that

time limits will lead to using a prototyping system as a pro-

duction solution. Furthermore, results obtained at a small

scale rarely reflect reality at full scale.)

Best practice

S38, S39

SP17 The best design practice to minimize the technical debt in ML sys-

tems is to focus on debt for Data testing, the debt of reproducibil-

ity, process management, and debt to culture. The following is the

explanation:

• Debt for Data Testing (If input data requires to replaces the

code in ML systems, then code should be tested once

again. Commonly, some input data testing is critical to a

well-functioning system)

• The debt of Reproducibility (It is difficult for team develop-

ment to be able to repeat experiments and obtain similar

results)

• Debt in Process Management (Process Management debt

significant issues are to update the configuration of similar

Best practice S38

37

models, it’s an issue to visualize and detect blockage in the

flow of data)

• Debt to Culture (It is essential to encourage team cultures

that value feature deletion, complexity reduction, repro-

ducibility, stability, and monitoring improvements in the

same way that accuracy improvements are valued)

SP18 The large-scale forecasting problems and time series prediction

systems developed using ML gained attention. The best design

practice to develop a similar system is to train a single model per

time series and retrain the models every time a new forecast needs

to be created. Some classical forecasting techniques can be used

to develop a similar system, such as Auto-Regressive Integrated

Moving Average models, exponential smoothing methods, and

state-space formulation.

Best practice S39

SP19 The change in input data usually requires an update or extension

of the ML system's functionality to accommodate the new

changes. The visualization of data assists the development team in

understanding the previously trained model data as well as new

data.

The best design practice is to use TensorFlow. Because of its

graphical approach, TensorFlow can provide a better way of visu-

alizing data. It is difficult to effectively resolve the neural network

in the ML system. However, TensorFlow assists the development

team in debugging the nodes with the help of Tensor-Board, which

reduces the effort of visiting the entire code.

Best practice S40

SP20 The environment influences the ML-based mobile robot's recog-

nition accuracy. For example, the recognition rate is higher in

more light. The best design practice to increase the efficiency of

recognition is that when the intensity of the light changes, the

noise cleaning algorithm's parameters are recommended to be ad-

justed to account for the change. Simultaneously, to complete im-

age enhancement, the composition model of related algorithms

may need to be reconstructed. Furthermore, all pattern recognition

algorithms and the composition model builder should be capable

of checking the information of related sensors when necessary.

Best practice S1

38

SP21 ML and Non-ML system best practices are different as both follow

the different design, implementation, deployment, and mainte-

nance techniques. The best practice while designs an ML system

is to distinguished ML and Non/ML systems and take both design-

ing and development techniques separately.

Best practice S4

SP22 The troubleshooting process in ML systems is difficult because of

tightly coupled functions, for example, inference engine derived

from data and business logic code from design. The best design

practice is to separate business logic and machine learning com-

ponents. The usage of three-layer architecture can assist the devel-

opment team in breakdown the failure into a business logic part

and an ML-specific component part; it can also allow to roll back

the inference engine independently of the business logic when the

inference engine encounters some issues.

Description: The usage of three-layer architecture for machine

learning systems separates business logic and machine learning

components to tackle the troubleshooting challenges. It can enable

operators to split out failures into a business logic portion and an

ML-specific part. The inference engine may roll back inde-

pendently of their business logic when there are specific difficul-

ties with the inference engine.

Best practice S6

SP23 The best design practice is to train a partial model using existing

general datasets (e.g., ImageNet for object identification) and then

combine it with additional specialized data using transfer learning

for better performance of the object identification system.

Best practice S8

SP24 A significant design concern best practice is to divide it into sub-

concerns, which are subsequently mapped into design

practices within each subsystem.

Description: The ML design techniques as significant design is-

sues deconstructed into sub-concerns, subsequently mapped into

each subsystem's design decisions.

Best practice S11

39

SP25 Static analysability, Monitor Analysability, A-Posteriori Analysa-

bility, and Non-Analysability are the best practice example of pre-

liminary classifications. The usage of preliminary classification

practice can provide confidence to their design process for ML

systems.

Best practice S14

 Table 3 SLR Results of RQ2

5.1.3 SLR RQ3 Main Software Architecture Design Decisions Codes,

Theme, and Description

The eighteen topics/codes were identified, representing the main software architecture de-

sign decisions of Machine Learning systems that target our RQ3. The theme's focus is “Main

Software Architecture Design Decisions Guidelines,” corresponding to the codes/topics.

Following table shows the main design decisions guidelines while architect the software

architecture design of the machine learning system:

Id Codes Main Decisions Guidelines Theme SLR Paper

Id

SM1 The use of Infrastructure as Code (IaC) in ML design de-

cisions helps reduce the cost, time, risk of IT infrastruc-

ture.

Description: The Infrastructure as Code is known as the

method of managing and providing computer data centers

through machine-readable specification files, rather than

actual hardware setup or interactive configuration tools,

which makes it better than other methods.

The main design decision of using the IaC in those ML

systems associated with Databases, servers, and other IT

infrastructure then helps manage the operations using the

same structures and rules used for code development. Se-

curity concerns arise when systems deal with databases

and servers, but the usage of IaC can enhance the security

of the systems.

Main Software Ar-

chitecture Design

Decisions Guide-

lines

S15

SM2 The main design decision in ML-based safety-critical

components is that all safety-critical software compo-

nents must be written according to strict coding standards

and certified by appropriate certification organizations.

Main Software Ar-

chitecture Design

Decisions Guide-

lines

S16

40

The other alternative is to perform validation testing, but

it will be more secure to follow coding standards and ap-

prove certification together with testing because safety-

critical systems failure can cause significant damage to

property, environment, or loss of life.

SM3 The ML-based large-scale learning system requires more

focus on facilitating data analytics. The main design de-

cision is to add data visualization techniques in the de-

signing process, which can express the relationship

between data and computing tasks. The other alternative

is to perform proper data cleaning or labeling, but there

is a chance to skip a chunk of data.

Main Software Ar-

chitecture Design

Decisions Guide-

lines

S17

SM4 The major benefits of using discrete services are reducing

system coupling and providing more flexible service sup-

port. The main design decision to decompose a big ser-

vice into discrete services is to use microservice

architecture in ML systems. The other alternatives to use

Keras and Pytorch, but MSA can provide better results

Main Software Ar-

chitecture Design

Decisions Guide-

lines

S18

SM5 ML-based digital forensics systems are part of forensic

science that deals with recovering and investigating the

information contained in digital devices.

The Digital Forensics system using ML has four phases:

seizure, acquisition, analysis, and reporting. All four

phases are explained in table 3, Id SP4. The aim of the

main design decisions is to focus on four phases of digital

forensics systems in the design-making process. The di-

vision of forensics systems into four phases can provide

more designing simplicity than applying normal develop-

ment stages.

Main Software Ar-

chitecture Design

Decisions Guide-

lines

S20

SM6 The ML systems which are developed through space data

are usually contained a large amount of data. The main

design decision is to use concurrent engineering methods

and model-based system engineering while analyzing the

space data and space mission system design. The other

alternatives are slow with dealing with spatial data. For

example, the Sequential engineering method runs in a

Main Software Ar-

chitecture Design

Decisions Guide-

lines

S21

41

linear format, and each step is taken before moving to an-

other. On the other hand, the concurrent engineering

method and model-based system engineering can deal

with big space data and divide it into different stages. The

different stages can run simultaneously, which assist in

low development time, cost and enhance productivity.

SM7 When existing patterns are not feasible for the ML-based

safety-critical systems, the main design decision for de-

veloping such a system is to create new patterns.

The main design decision for the ML-based safety-criti-

cal systems is to include the evaluation process of archi-

tectural safety methods before moving to the next

development stage because the failure of safety methods

can damage the environment or property.

Main Software Ar-

chitecture Design

Decisions Guide-

lines

S22

SM8 The ML-based mobile computing system's main design

decision is to use federation learning. This can overcome

the challenges by enabling continuous learning on end-

user devices and ensuring data is not lost in end-user de-

vices. Federation learning can also help to the preserva-

tion of data privacy in the ML system. Federation

learning is better than other alternatives. For example, the

distributed learning is usually trained on a complete data

set, but the end-user device doesn’t have complete dataset

access, which is an issue.

Main Software Ar-

chitecture Design

Decisions Guide-

lines

S24

SM9 The usage of cloud technologies is performance-wise

faster in cutting tools state recognition systems. It’s better

than other alternatives, for example, diagnostic feature

selection using combinatorial analysis, but this approach

requires more computing power. The main design deci-

sion to use ML cloud technologies in SA design of cutting

tools states recognition systems because of high-perfor-

mance computing.

Main Software Ar-

chitecture Design

Decisions Guide-

lines

S25

SM10 The major modeling design architecture decisions con-

cern modeling and training neural processing in ML sys-

tems to help achieve better performance systems.

Main Software Ar-

chitecture Design

Decisions Guide-

lines

S26

42

Description: The differentiated three key modeling is-

sues result from architecture, training, and data. Instead

of dealing with low-level constructs, a robotics specialist

prefers a language that accurately represents their area.

For example, deep learning technologies have been more

accessible by expressing layered structures as YAML or

prooftext descriptions or offering high-level Python in-

terfaces like Keras and Lasagne.

SM11 There are many proposed and practiced architectures for

ML-based mobile robots, e.g., Layered Architecture,

Implicit Invocation, Blackboard Architecture, Control

Loop Architecture.

The Siemens 4 view approach is appropriate in the main

design decision when developing the robot navigation

component because of its recurring activities. This ap-

proach also assists better in determine the movement/ac-

tion plan for the avoidance of obstacles in the path of

robot motion.

Main Software Ar-

chitecture Design

Decisions Guide-

lines

S28

SM12 The article discussed the design methods to consume

fewer resources, including hardware and time cost for

CNN and other ML computation operations.

Description: Reduce the number of resources used, both

in terms of hardware and time, for Convolutional neural

networks (CNN) and other ML computing operations are

described in this article.

Main Software Ar-

chitecture Design

Decisions Guide-

lines

S41

SM13 Model validation is essential because it is difficult to pre-

dict whether a learning algorithm will behave reasonably

on new data. So, in the main design decision, model val-

idation must consider and check the validation results be-

fore pushing into the production environment. There are

several ways for model validation, but the best is to com-

bined model validation with data validation to detect cor-

rupted training.

Main Software Ar-

chitecture Design

Decisions Guide-

lines

S34

SM14 The components-based machine learning distributed sys-

tem is a multi-node machine learning system that can

Main Software Ar-

chitecture Design

S36

43

increase efficiency and improve the system's perfor-

mance by handling large-scale input data and ML com-

ponents. The components grow in machine learning

systems, and alternative approaches like principal com-

ponent analysis can solve the complexity of components

to divide components into the new component. The new

addition of components can increase complexity, and it’s

time-consuming to handle new components. So, the main

design decision of using the multi-node approach allows

disturbed ML systems components to be upgraded inde-

pendently, allowing the development team to handle the

component if it grows. These patterns also allow writing

components in a mixture of language, which is easy to

update later.

Decisions Guide-

lines

SM15 The configuration of a machine learning system is hard

to modify; the configuration mistakes can be costly,

waste of computing, leading to serious time loss, and

might be a production issue. The main design decision to

eliminate the configuration issues in ML is to develop all

models separately, which will help to visualize the differ-

ence in configuration. The other approaches can help

identify the configuration issues but are not efficient; for

example, the debugging model training approach can

help detect common errors during model training, but it’s

time-consuming and costly to eliminate the configuration

issues.

On the other hand, develop all models separately will also

help to detect unused or redundant models in the ML sys-

tems.

Main Software Ar-

chitecture Design

Decisions Guide-

lines

S38

SM16 In the main design decision, the usage of TensorFlow for

large-scale ML systems is beneficial. The main design

decision is to use TensorFlow when the development

team is looking for a higher level of performance that’s

also powerful and easy to scale, for example, voice/sound

recognition, image recognition, and video detection sys-

tems. The other approaches like Keras and PyTorch are

better for small systems because these are slower and

lower in performance and speed.

Main Software Ar-

chitecture Design

Decisions Guide-

lines

S40

44

SM17 The environment changes can be challenging for the per-

formance of ML-based mobile robot software. The other

alternatives approach like more feature extraction, color

constancy, and threshold area elimination method ap-

proaches are not enough to increase the efficiency. The

main decision can be to perform the change in parameters

of algorithm and model composition according to the en-

vironmental scenarios. For example, the noise cleaning

algorithm should update its parameters to adapt to the en-

vironment changes when light intensity changes. Simi-

larly, while changing the parameters, the composition of

related model algorithms also needs to be reconstructed,

which will help in image enhancement.

Main Software Ar-

chitecture Design

Decisions Guide-

lines

S1

SM18 The selection of models is the most important major de-

sign decision in almost all ML systems. An appropriate

model selection is a better starting point when designing

a better ML system because alternative trending models

to use sometimes can’t help to fulfill the system require-

ments. So, the models must choose based on the type of

ML system, such as a batch system or a real system, and

model to provide the best performing with useful out-

comes. For example, the use of EfficientNet is better than

the ResNet model approach in image classification be-

cause of scaling the dimensions of the image by a fixed

number of layers that can provide better performance in

real-time ML systems.

Main Software Ar-

chitecture Design

Decisions Guide-

lines

S8

 Table 4 SLR Results of RQ3

5.2 Interview Data Analysis

A total of twelve interviews were performed with individuals with a mix of academics and

industrial ML professionals. All mixed practitioners were asked the same interview ques-

tions, with additional follow-up questions to understand the answers better. The selection

of interviewees and coordination is discussed in chapter 4 under the survey. Before the in-

terview, the practitioners were informed that no personal information would be revealed or

published and that the gathered evidence would be deleted after the research was done. The

interview data were analyzed using a five-phase theme analysis technique [35].

45

 I recorded all interviews after getting permission from the interviewee. I used the

online software name Otter.ai to extract text from the video for further analysis. Phase one

involves listening or watching the gathered material and taking notes while listening or

watching interview transcripts. It is also necessary to make meaning of the participant’s

experience while taking notes. Phase two included developing codes for data that may be

relevant to the study questions. Codes are created using a descriptive and interpretive ap-

proach to data. Every piece of data that is relevant to the study topics has been coded. Con-

tinue reading data after the first code has been recorded until the next possible required data

are found that can be applied to the existing code or a new code. Phase three includes con-

verting codes into themes that capture essential information about the research problem. The

data from phase two was analyzed to see where there were similarities and commonalities

across the codes. Phase four entails a study of prospective topics, often known as theme

mapping. Each subject was re-evaluated to ensure in light of the facts. The fifth phase is

identifying and naming themes. It was made sure that each topic was unique and that it

addressed the study question directly.

5.2.1 Interview Statistical Representation

Table 5 shows the statistical representation of all 12 interviews. Every interview has a prac-

titioner id of ‘I’ with an incremental suffix. Based on the availability of practitioners in

different time zones, all online interviews are conducted utilizing the Zoom technology.

Each interview took around 30-40 minutes, but some interviews took more time because of

more discussion related to research questions.

Inter-

viewee

Person

Id

Role ML Exp Non-ML

Exp

Total Exp Place Academic/In-

dustry for ML

Company/Uni-

versity

P1 ML Engi-

neer

1 Year 8

months

3 Years 2

months

5 Years Singapore Industry Hidden (Confi-

dential)

P2 ML Engi-

neer

1 Year 11 Years 12 Years Egypt Industry Upland Software

P3 Researcher

in ML

3 Years 6

months

3 Years 6 Years 6

months

Sweden Academic (Pre-

viously worked

in Industry)

Chalmers Univer-

sity

P4 Researcher

in ML

26 Years 0 Years 26 Years Italy Academic (Pre-

viously worked

in Industry)

University of

L'Aquila

P5 ML Engi-

neer

4 Years 5

months

5 Years 7

months

10 Years India Industry Quantiphi

46

P6 ML Archi-

tecture En-

gineer

23 Years 0 Years 23 Years Australia Industry PlayGround XYZ

P7 Researcher

in ML

7 Years 0 Years 7 Years Sweden Academic Chalmers Univer-

sity (director of

Chalmers AI Re-

search Centre)

P8 ML Archi-

tecture En-

gineer &

Researcher

27 Years 0 Years 27 Years USA Industry Cubic Corpora-

tion

P9 Researcher

in ML

1 Year 2 Years 5

months

3 Years 5

Months

Pakistan Industry Cresta

P10 ML and

Data Sci-

ence Engi-

neer

4 Years 12 Years 16 Years Dubai Industry Inception Insti-

tute of Artificial

Intelligence

P11 Senior

Manager

ML Archi-

tecture En-

gineer

15 Years 0 Years 15 Years Australia Industry Macquarie Group

P12 ML Archi-

tecture En-

gineer

4 Years 0 Years 4 Years Pakistan Industry Visionet Systems

Inc.

 Table 5 Interview Statistic

47

The interview participants experience is presented in the following bar graph:

 Figure 5 Interview participants Experience

The interview participants average experience is presented in the following bar graph:

0 5 10 15 20 25 30

P12

P11

P10

P9

P8

P7

P6

P5

P4

P3

P2

P1

Total Exp

Non-ML Exp

ML Exp

0 2 4 6 8 10 12 14

Total Exp

ML Exp

Non-ML Exp

Chart Title

Average

48

 Figure 6 Average Interviewee Experience

5.2.2 Interview RQ1 Common Challenges Codes and Themes

Interviewee

Person Id

Codes Common challenges/Issue Theme

P1 Data are increasing, so does the model size is increasing.

Common Challenges:

• Observability of the data.

• Expansibility (why the system makes a prediction).

• The usage of databases is confusing.

Challenges

P2 • Cleaning the data and make sure data does not break the algorithm

or be biased.

• The input data visualization is difficult to perform, bioinformatic

information is not common, and current techniques are not ap-

plied.

Challenges

P3 ML's common challenge/issue is the privacy of the data.

Challenges

P4 ML developing team needs to understand the data and also to understand

the ML model because sometimes development team has lack of

knowledge.

Challenges

P5 • Data accuracy and completion of data for training of ML systems.

• Cloud function (lambda function) is good, but if high data are com-

ing, it doesn't work; then the development team needs to work on

other techniques. From a security perspective, the development

team needs to choose other techniques; this is a major challenge.

Challenges

P6 Batching scoring is sometimes used to save to database, which is a chal-

lenge to save and take the data.

Challenges

P7 • Establish ML infrastructure – how to manage data (store, access,

update)

• Establish run-time architecture (distributed execution of ML model)

and establish a relation to the ML infrastructure.

Challenges

P8 Data preparation is difficult; make statistics of the data preparation is dif-

ficult.

Challenges

49

P9 How to update the model in production, like to add the new data and to

remain the same structure, are challenging to know.

Challenges

P10 • Most architects don’t follow architecture services. The development

team doesn't follow continuous integration, which becomes com-

plex at the time of system completion.

• ML common challenges in designing less available documentation,

and the ML quality assurance (QA) area is lacking.

Challenges

P11 ML and Non-ML processes are different, and their common challenges

are different, and the decision must not be followed from the non-ML

system in designing and development.

Challenges

P12 Design challenges are not being able to scale the model and server is busy

and not replies to your answer; make the queue system as your request

can be lost. Model request vanishing can be the problem.

Challenges

 Table 6 Interview Results of RQ1

5.2.2.1 Interview Analysis of the Software Architecture Design Common Chal-

lenges in Machine Learning

Total 12 interviewee practitioners offered their point of view related to common decision

challenges in machine learning systems. The most frequent response is data management,

lack of understanding of the business when making the design decision of ML systems.

Irrelevant model and architecture selection is the most known issue in machine learning

systems. ML systems are different than the software engineering system as it depends upon

the data input and getting useful outcomes from it. Cleaning or labeling the data are the most

typical problem, and it necessitates more potential than going forward.

Most practitioners expressed concerns about model upgrading. One known issue is if data

are increasing and so does the mode size is increase; secondly, if data are corrupted, inac-

curate, and new data are added, then the model gets affected, and sometimes it’s difficult to

remain the same structure.

 Two practitioners identified a weak design decision, one of the most prominent chal-

lenges, recommending that a researcher/architect make ML system design decisions with

the development team's help.

50

5.2.3 Interview RQ2 Best Practices Codes and Themes

Interviewee

Person Id

Codes Best Practices Theme

P1 The latest model is the trend to follow, but the most focus should be

given to analyzing the data. Because the data are not correct, the latest

model will not help.

Best practice

P2 Build the grids for developing natural language techniques. Grid is a

data preparation technique that treats data transforms as another hy-

perparameter of the modeling pipeline. The grid searching data prepa-

ration technique suits more for natural processing language.

Best practice

P3 • The usage of microservice architecture in designing ML systems

is beneficial because the use of microservice architecture in the

design of machine learning systems is simple to maintain as it

assists in splitting the system into a set of components. MSA

enables the development team to concentrate on building busi-

ness functionality rather than writing glue code.

• Unified architecture, classified approach, small package, and try

not to make too many architectures decision before develop-

ment, move the architecture decision close to function devel-

oper are the best design practices.

Best practice

P4 The knowledge of the technical depth and understanding the process

of creation and training of the model according to systems require-

ments are the best design practice.

Best practice

P5 I recommend that ML-based natural language systems use the Micro-

service architecture and not the blackboard because microservice can

provide better results.

Best practice

P6 Define the standardization of the training and testing process makes it

easy to validate the models.

Best practice

P7 • Most companies use DevOps and scrum for software develop-

ment and have different variants of ML workflow.

• Make ML designing planning according to the product type, the

organization, and business goals.

Best practice

51

• It is important to ensure proper ML infrastructure and the train-

ing & deployment process, which might impact the SA. The

application domain depends on it; for example, Federated

Learning requires distributed system/software architecture.

Here we need to design a distributed, dynamic system. Experi-

ence in architecting distributed systems and cloud computing

would be useful.

P8 • Pipelines architecture acts plug and plays for replacing the com-

ponent its modular architecture, which is easy to work with.

• A pipeline architecture with TensorFlow is better to use in ML

systems that can enhance the security of the ML system.

Best practice

P9 For general, ML systems use test-driven development, Object-Ori-

ented way of development/techniques, and Jupiter Notebook as best

practices.

Best practice

P10 • For designing ML systems, software engineers and research need

collaboration for planning.

• Object recognition and image processing systems use client-

server architecture, low coupling, and high cohesion techniques

to place data behind the firewall.

• Based on the requirement, we must have comparative analysis,

data-driven approach, or test-driven approach, or data at the in-

itial level. Use Client-Server architecture and autonomous, so

we don't break any pipeline

• ML designing requires most collaboration from developers who

worked in the existing system; according to my experience, re-

searchers generally do not provide the right solution, but prac-

tical experience helps design ML systems.

Best practice

P11 • While building the framework and software architecture design

model, try to avoid new hiring to work on it as in some cases,

it can lead to change/update in data architecture.

• When building on ML framework, we have to confirm the archi-

tecture remains the same or choose which technology changes

it doesn’t affect the framework.

• Create a small system prototype in 1-3 sprints, and when the

business is happy, make a software design and proper develop-

ment and then deployment.

Best practice

52

P12 • If ML systems use microservice architecture (MSA), then modi-

fying your model and releasing the new model is very useful

because of low cohesion and low crash. MSA helps to ML sys-

tem perform long prediction and short prediction.

• Look at the business and see it's real-time or not real-time before

deciding to design and develop ML systems.

Best practice

 Table 7Interview Results of RQ2

5.2.3.1 Interview Analysis of the Software Architecture Design Best Practices

in Machine Learning

Most practitioners recommended optimal practices in ML include following techniques of

data cleaning and proper labeling; for example, if you are using the latest model and still,

it will not help you because the data are not correct. Some of the most significant compo-

nents of ML are the Selection of architecture, pipelines, tools, optimization of model tech-

niques, training and deployment process, and its impact on the software architecture of the

ML systems.

5.2.4 Interview RQ3 Main Software Architecture Design Decisions Codes

and Themes

Interviewee

Person Id

Codes Main Decision Guidelines Theme

P1 The main design decision while designing the software architecture

of the ML system is to make the consideration like who is the end-

user and system fulfill the business needs. So, first, make a proto-

type of a system and feedback from stakeholders is important be-

cause another way of start development and ask for feedback from

stakeholders. If stakeholders are not satisfied, then it’s costly and a

waste of time.

Main Software

Architecture De-

sign Decisions

Guidelines

P2 The major design decision is to always build the grids for ML-based

natural language systems, which enhances its performance; if you

couldn’t find a solution online, it is better to create your packages

for ML systems. The alternative is to modify the packages

Main Software

Architecture De-

sign Decisions

Guidelines

53

according to your system needs, but this is risky because it's time-

consuming in case of failure.

P3 The architects are required to make design decisions with the col-

laboration of the function developer. The main reason to consider it

as the main decision is that developers have practical experience,

and their expertise can help make better design decisions.

Main Software

Architecture De-

sign Decisions

Guidelines

P4 The development team must consider the evolution of the ML sys-

tem as a major design decision. The evolution requires input data

change, and then the development team needs to change the ML

system’s software architecture decision accordingly. The other al-

ternative solution is to retrain the model with new input data and

deploy it in production, but the risk remains the same, and whole

system outcomes might not fulfill the business needs.

Main Software

Architecture De-

sign Decisions

Guidelines

P5 The ML development teams need to make a general model, and then

their main design decision focus must retain it because the newly

hired team member can change the model, which can impact the

ML system performance.

Main Software

Architecture De-

sign Decisions

Guidelines

P6 The most important major design decision in almost all ML systems

is the selection of a model. The model selection must depend upon

the ML systems domain type like batch system or real system. The

appropriate model selection is a better start to design a better ML

system. The appropriate model selection is a better design decision

to use because it can give a good designing start of the ML system.

Main Software

Architecture De-

sign Decisions

Guidelines

P7 The main decisions are related: how to manage and access data, how

to define the ML development architecture, how to define the run-

time architecture with heterogeneous computing units (CPU +

GPU), how to enable a continuous ML, etc.

Main Software

Architecture De-

sign Decisions

Guidelines

54

P8 When the ML development team uses the TensorFlow Extended ar-

chitecture in their software architecture design decision, the main

design is to use pipelines to enhance the ML system's security and

efficiency. If we don’t use the pipelines, then data privacy flaws can

grow.

Main Software

Architecture De-

sign Decisions

Guidelines

P9 The usage of microservice architecture (MSA) is appropriate in de-

veloping ML-based natural language processing systems because

the other blackboard approach is not better in data cleaning. The

main design reason to use this MSA architecture is that it can assist

in performing a better data cleaning which helps the accurate pars-

ing of the document.

Main Software

Architecture De-

sign Decisions

Guidelines

P10 The main design decision is to use the client-server architecture for

object recognition and image processing systems because it’s more

appropriate than other architecture. The client-server architecture

provides low coupling and high cohesion. This architecture helps to

enhance the system's security; for example, it helps to place the data

behind the firewall.

Main Software

Architecture De-

sign Decisions

Guidelines

P11 The amount of input data can impact the performance of the ML

system. So, the main design decision is to select the architecture

according to the input data to train. When input data are frequently

changing and the system is large, one main design decision is not to

use microservice architecture as it’s not appropriate. The other al-

ternative is to use the Keras, but it’s slow in performance and speed

but works fine infrequent data changing.

Main Software

Architecture De-

sign Decisions

Guidelines

P12 The main design decision in the ML system is the training of the

pipelines must be in separated branches and not involve in training

the model because it’s easier to integrate into large codebases and

easier to share with team members. The other alternative is pipelines

training can be in the same branch, which can reduce time cost, but

it can cause in the making of pipeline jungles.

Main Software

Architecture De-

sign Decisions

Guidelines

 Table 8 Interview Results of RQ3

55

5.2.4.1 Interview Analysis of the Main Software Architecture Design Decision

in Machine Learning

According to the interviewee practitioners, the main decision is based on the business re-

quirements or end-users and the type of ML system, such as static or adaptive systems. It’s

frequently recommended that main designing decisions depend upon handling and access-

ing data, creating a machine learning development architecture, defining a run-time archi-

tecture with heterogeneous computing units (CPU + GPU), and allowing continuous

machine learning.

56

Chapter 6

 6

 Discussion

6.1 Discussion

Following are the SLR and interview combined results:

6.1.1 SLR-Interview-RQ1 Common Challenges Mapping

Id Common Challenges SLR Id Interviewee Person Id Source

SIC1 SC2 P1, P2, P3, P4, P5, P6, P7, P8, P9,

P10, P11

SLR, Interview

SIC2 SC3 P10 SLR, Interview

SIC3 SC8 P4, P10 SLR, Interview

SIC4 SC9 P10, P11 SLR, Interview

SIC5 SC10 P6, P9, P12 SLR, Interview

SIC6 SC12 P3, P4, P5, P9, P10 SLR, Interview

SIC7 SC13 P11 SLR, Interview

 Table 9 SLR plus Interview Results of RQ1

6.1.1.1 Answer of RQ1

What are the common software architecture design challenges in machine learning

systems?

This research question aims to identify the common software architecture design challenges

while developing machine learning systems. A systematic literature review is undertaken to

understand better the issues most companies and literature identified during the implemen-

tation of ML systems. SLR data are essential in identifying the problems of the overall

57

analysis of the issue stated in papers. Interviews helped to get a deeper grasp of common

challenges from industry practitioners. In addition, Tables 2 and 6 included descriptions of

the common challenges posed by both SLR and interviews. I performed a comparison of

the SLR results with the interview practitioners. All common challenges discovered by SLR

and interviews are mapped into table 9.

 The detailed results analysis explanation of SLR of RQ1 is Chapter 6 under “SLR

RQ1 Common Challenges Codes, Theme and Description”. The interview data analysis of

SLR is explained in “5.2.2.1-Interview Analysis of the Software Architecture Design Com-

mon Challenges in Machine Learning”.

 Table 9 mapping represents the common problems discussed in academic literature

and by practitioners in the interview. For example, Id number SC2 matches with interview

common challenges Id p1-11, which indicates that all practitioners discuss SC2 challenge

except one. SC2 common challenge is related to Data management design issues, including

the data pre-processing and data preparation in the machine learning system. The data man-

agement issue even remained after the ML system was fully developed and deployed in the

working environment.

 There are other common design challenges discussed in both (SLR, Interview). For

example, the usage of microservice architecture common challenge is that it’s difficult to

find the failure nodes in the ML system. The identification failure in the microservice ar-

chitecture may add impact, resulting in the failure of the entire system. The evaluation of

the ML software architecture design is not reliable because uncertainty can still exist. An-

other significant common challenge is to gather the experts to identify the appropriate de-

signs for ML systems. The change in input data is a common challenge that can cause the

change in the code, model retraining, testing the whole system again, and might impact the

final system’s outcomes. The wrong selection of the model and not being aware of appro-

priate design decisions can lead to poor performance of ML systems. The last mapped chal-

lenge is related to not having enough knowledge of the development of the ML system. An

architect can apply the same design practice of a non-ML system to the ML development

workflow, but ML and Non-ML have different processes like requirement, design, test-

ing/quality, process, and management.

 The mapped and unmapped can provide guidelines to read all common challenges of

SA design in ML systems in a single paper.

6.1.2 SLR-Interview-RQ2 Best Practices Mapping

Id Best Practices SLR Id Interview Number Id Source

SIP1 SP2 P7

SLR, Interview

SIP2 SP3 P3, P5, P11, P12

SLR, Interview

SIP3 SP12 P8 SLR, Interview

58

SIP4 SP13 P10 SLR (SP17), Interview

SIP5 SP14 P12 SLR, Interview

SIP6 SP15 P8 SLR, Interview

SIP7 SP19 P8 SLR, Interview

SIP8 SP21 P11 SLR, Interview

 Table 10 SLR plus Interview Results of RQ2

6.1.2.1 Answer of RQ2

What are the best practices in architecting and designing machine learning systems?

This research question aims to find best practices in architecting and designing machine

learning systems. The best design practices can guide researchers and industrial develop-

ment teams to gain more knowledge based on the needs of their machine learning systems.

In an attempt to obtain best practices, the SLR and interviews were performed. The SLR of

RQ2 is all results added in table 3, and Interview RQ2 results are mapped in table 7. The

detailed results analysis explanation of SLR of RQ2 is in Chapter 6 under “SLR RQ2 Best

Practices Codes, Theme and Description”. The interview data analysis of SLR is explained

in “5.2.3.1- Interview Analysis of the Software Architecture Design Best Practices in Ma-

chine Learning”. Further, the comparison of SLR results is conducted with the interview

outcomes and is mapped in Table 10.

 Table 10 mapping represents the matching of best practices in architecting and de-

signing machine learning systems discussed in academic literature and by practitioners in

the interview. For example, the best design practice to remove the distortion in scientific

image databases is to use the in-memory distributed learning architecture. Another best

practice is to use the robust principal component analysis (RPCA) method, which can help

to enhance the security of that ML system that is developed using microservice architecture.

The RPCA is discussed above in SP3 Id. The next mapped practice is the usage of Tensor-

Flow extended, whose primary strategy is to give users a unified configuration of recurrence

components (data analysis and transformation, data validation, model training, model as-

sessment, validation, and infrastructure service). Furthermore, the best design practice that

can assist in designing ML systems is the usage of documentation that improves the ML

System's reusability. Due to time constraints, a pipeline is often quickly constructed to meet

a specific requirement, which can be caused to make a Pipeline jungle. The best practice is

to avoid Pipeline jungles by taking a step back, looking at systems as a whole, and taking

data collection and feature extraction seriously. The best practice is to use TensorFlow be-

cause of its graphical approach; TensorFlow provides a better way of visualizing data. The

last mapped best practice is to consider ML and Non-ML system best practices differently

59

as both follow the different design, implementation, deployment, and maintenance tech-

niques. The best practice while designs an ML system is to distinguished ML and Non/ML

systems and take both designing and development techniques separately.

 Both mapped and unmapped results of best design practices result can be beneficial

in architecting and designing machine learning systems.

6.1.3 SLR-Interview-RQ3 Mian Software Architecture Design Decisions

Mapping

Id Main Decisions Guidelines SLR Id Interview Number Id Source

SIM1 SM2 P7 SLR, Interview

SIM2 SM7 P9 SLR, Interview

SIM3 SM13 P8 SLR, Interview

SIM4 SM16 P7 SLR, Interview

SIM5 SM18 P1, P4, P6, P7 SLR, Interview

 Table 11 SLR plus Interview Results of RQ3

6.2.3.1 Answer of RQ3

What are the main architectural decisions on Software architecture design for ma-

chine learning systems?

The study goal is to find the main software architecture design decisions for machine learn-

ing systems. The SLR and interview aim to determine the major decisions in the machine

learning system being used. Through SLR total of 18 main architecture decisions have been

identified, and interview practitioners also shared some main architecture decisions accord-

ing to their knowledge. Table 4 shows the SLR of RQ3 outcomes, and table 8 represents the

interview RQ3 results. The detailed results analysis explanation of SLR of RQ2 is in Chap-

ter 6 under “SLR RQ3 Mian Software Architecture Design Decisions Codes, Theme, and

Description”. The interview data analysis of SLR is explained in “5.2.4.1-Interview Analy-

sis of the Main Software Architecture Design Decision in Machine Learning”. In the end, I

mapped both SLR and Interview results in table 11 to discover the common perspective.

 Table 11 mapping represents the matching of main software architecture design deci-

sions in machine learning systems discussed in academic literature and by practitioners in

the interview. For example, one of the main design decisions is to consider model validation

and check the validation results before pushing into the production environment because it

is difficult to predict whether a learning algorithm will behave reasonably on new data.

60

Another design decision is to create a new pattern when available patterns are not feasible

for the ML systems because the new pattern can be developed according to system require-

ments. Furthermore, the main design decision in ML-based safety-critical components is

that all safety-critical software components must be written according to strict coding stand-

ards and certified by appropriate certification organizations because safety-critical systems

failure can cause significant damage to property, environment, or loss of life.

 Both mapped results and unmapped can help in making major design decisions in ML

systems.

61

Chapter 7

 7

 Conclusion and Future Work

7.1 Conclusion

Architectural design decisions have a long-term influence on software system architecture.

The development team must carefully consider design decisions from available studies or

consult with experienced architects or developers before implementing design selections.

This article suggested common design challenges, best design practices, and significant

software architecture design decisions for machine learning systems. Data are collected by

performing a systematic literature review on four databases and 12 conducted interviews. I

identified 34 primary studies for an SLR and the other 7 papers by snowballing. A total of

twelve interviews were conducted with experienced machine learning experts from industry

and academia.

 Further, the SLR outcomes were compared with interviews and mapped in the table.

The mapped data represents the standard design decisions recommendation from both

sources (SLR and Interviews), indicating a rich SLR results analysis. Both mapped and un-

mapped data can be beneficial while taking designing for ML systems. I compiled 17 com-

mon challenges, 25 best design practices, and 18 major design decisions from SLR for

software architecture design decisions in machine learning systems. The 12 interviewee

opinions related to research questions are added in tables. As a result, some widespread

concerns are discussed in literature and interviews, such as data management, data labeling,

and software architecture design models selection while updating the design model with

more data. Similarly, frequently occurring challenges, best practices, and some major soft-

ware architecture design decisions can provide guidelines to overcome issues and help in

the decision-making process for ML systems.

 This study is useful for machine learning experts, especially those who participated in

software architecture design decisions, and it provides the best architecture for ML systems.

The study suggests design decisions for different types of ML systems to achieve their busi-

ness goals. For example, the machine learning applied in image recognition encounters var-

ious design difficulties, such as performance, and I developed a list of relevant design

decisions to overcome such concerns. Two interviewees highlighted similar common issues

related to image processing in ML, and their comments are included in this paper to assist

in the design of ML systems.

 Five interviewees suggested finding the domain of the ML system before starting the

design process; for example, it’s essential to know whether the business requires the system

to be deployed as static or dynamic. Furthermore, data management techniques, such as data

cleaning, design-related data collection, data quality measurement, and data labeling deci-

sions, help select the best model for its training. Similar problems are discussed in the paper,

and further interviewee expert’s opinions are added in tables.

62

 Identifying common, occurring challenges in ML systems and overcoming such issues

is not a straightforward process. At the start of the ML system development, the researcher

and architects need to find the ML system type which will develop and find all related com-

mon challenges, best practices, and main SA design decisions to avoid obstacles that sim-

plify the process. The most prominent issues are data fluctuation over time. While creating

a machine learning system is the most critical factor in predicting outcomes according to

the input training data. It is complicated when data changes over time and new models must

be created regularly. In the following situation, model training and production via compo-

nent, which is automation, are more design challenging.

 Similarly, other most common challenges like a service failure in an MSA (micro-

service architecture) might have an avalanche effect, resulting in the entire system failing.

The MSA application is separated into numerous services, locating the failure nodes is chal-

lenging. Another critical challenge in the design of ML occurs when the software with its

dynamic behavior, which must be allocated to the non-critical domain according to the ap-

plicable design paradigm, must connect with critical applications in the static portion.

 The study also found the ML systems best design practices described in the literature

and machine learning engineers research and industrial professionals in interviews. For ex-

ample, the best practices available to design ML systems that handle big data, autonomous

systems, digital forensics systems, and safety-critical systems developed using ML. How-

ever, I also found some best practices while selecting software architecture models like mi-

croservices, TensorFlow, and distributed learning architecture to use in designing machine

learning systems. Utilizing this study in the practical field is very beneficial. Some practice

focuses on documentation, improving the ML system reusability, and the best way to avoid

design smells and debt. The third research question focus on the main software architecture

design decision, and these guidelines are coded in tables. I identified many major design

decisions that can be used in the design decision process for both static and dynamic ML

systems and the issue occurring stage of data corruption. Model incorrectly predicted results

could also be avoided by using above mentioned major design decisions.

7.2 Future Work

I intend to expand this study in future work, perform surveys with questionnaires, and ar-

range a validation workshop with the practitioners for more analysis. I will look at common

challenges, best design practices, and main decisions while ML systems are in production

and ML components in the integration stage, which will help machine learning engineers

gain related knowledge and contribute to the literature.

 As a part of future work, I intend to develop a tool for ML teams. Using search string,

the development team can find all related best design practices, common challenges, and

significant software architecture design decisions available in the literature and collected

opinions from ML experts. System users can download excel type documents of extracted

results and mainly can filter on which type of ML system they want to develop. While this

research is limited to ML, I may look at how well study findings apply to other areas within

the more significant subject of AI.

63

References

[1] S. Amershi, A. Begel, C. Bird, R. DeLine, H. C. Gall, E. Kamar, N. Nagappan, B.

Nushi and T. Zimmermann, “Software Engineering for Machine Learning: A Case

Study,” Proceedings of the 41st International Conference on Software Engineering:

Software Engineering in Practice, ICSE (SEIP) 2019, Montreal, QC, Canada,, May

25-31, 2019.

[2] H. Washizaki, H. Uchida, F. Khomh and Y. Gueheneuc, “Studying Software

Engineering Patterns for Designing Machine Learning Systems,” 2019 10th

International Workshop on Empirical Software Engineering in Practice (IWESEP),

no. 30 December 2019, 13-14 Dec. 2019.

[3] A. Apostolos, C. Sofia and S. Loannis, “Research state of the art on GoF design

patterns: A mapping study,” Journal of Systems and Software, p. 1945–1964, July,

2013.

[4] J. Growin, D. Weynys and T. Holvoet, “Design Patterns for Multi-agent Systems: A

Systematic Literature Review,” Agent-Oriented Software Engineering: Reflections

on Architecture's, Methodologie's, Language's, and Framework's, pp. 79-99, 02

2014.

[5] A. Hany, W. Abedelmoez and S. Hamdi, “Software Engineering Using Artificial

Intelligence Techniques: Current State and Open Problems,” March, 2012.

[6] S. Shirwaikar, “An Exploratory Study of the Security Design Pattern Landscape and

their Classification,” International Journal of Secure Software Engineering, vol. 7,

pp. 26-43, 07 2016.

[7] Y. Watanabe, H. Washizaki, K. Sakamoto, D. Saito, K. Honda, N. Tsuda, Y.

Fukazawa and N. Yoshioka, “Preliminary Systematic Literature Review of Machine

Learning System Development Process,” 10 2019.

[8] B. Yazdi, M. Bafandeh, A. Rasoolzadegan and A. Ghavidel, “The state of the art on

design patterns: A systematic mapping of the literature,” Journal of Systems and

Software, vol. 125, pp. 93-118, 2017.

[9] H. Liu, S. Eksmo, J. Risberg and R. Hebig, “Emerging and Changing Tasks in the

Development Process for Machine Learning Systems,” vol. 125–134, 2020.

[10] T. Al-Naeem, F. T. Dabous, F. A. Rabhi and B. Benatallah, “Formulating the

Architectural Design of Enterprise Applications as a Search Problem,” Proceedings

of the 2005 Australian Conference on Software Engineering, p. 282–291, 2005.

[11] E. M. Saleh, O. Sallabi and H. A. Darbi, “A Multi-Agent System to Support Design

Pattern Recommendation,” 2020.

[12] S. Schelter, B. F, T. Januschowski, D. Salinas and S. S. G. Seufert, “On Challenges

in Machine Learning Model Management,” Bulletin of the IEEE Computer Society

Technical Committee on Data Engineering, pp. 1-11, 2018.

64

[13] P. Zdun and U. Avgeriou, “Architectural patterns revisited - A pattern Language,”

EuroPLoP’ 2005, Tenth European Conference on Pattern Languages of Programs,

Irsee, Germany, pp. 431-470, July 6-10, 2005,.

[14] H. Washizaki, H. Takeuchi, F. Khomh, N. Natori, T. Doi and S. Okuda,

“Practitioners’ insights on machine-learning software engineering design patterns: a

preliminary study},” 2020 IEEE International Conference on Software Maintenance

and Evolution (ICSME), pp. 797-799, 2020.

[15] H. Washizaki, N. Yoshioka, A. Hazeyama, T. Kato, H. Kaiya, S. Ogata, T. Okubo

and E. Fernandez, “Landscape of IoT Patterns, Proceedings of the 1st International

Workshop on Software Engineering Research & Practices for the Internet of

Things,” IEEE Press, 2019.

[16] J. Wang, G. Li and Y. Pu, “A Scenario-Based Architecture for Reliability Design of

Artificial Intelligent Software,” pp. 6-9, 2010.

[17] R. Mayer and H.-A. Jacobsen, “Scalable Deep Learning on Distributed

Infrastructures: Challenges, Techniques, and Tools,” ACM Computing Surveys

(CSUR), vol. 53, pp. 1-37, 02 2020.

[18] Z. a. X. X. a. L. D. a. M. G. C. Wan, “How does Machine Learning Change

Software Development Practices?,” IEEE Transactions on Software Engineering,

pp. 1-1, 2019.

[19] H. Muccini and K. Vaidhyanathan, “Software Architecture for ML-based Systems:

What Exists and What Lies Ahead,” 03 2021.

[20] H. Yokoyama, “Machine Learning System Architectural Pattern for Improving

Operational Stability,” 2019 IEEE International Conference on Software

Architecture Companion (ICSA-C), pp. 267-274, 2019.

[21] B. Kitchenham and S. Charters, “Guidelines for performing Systematic Literature

Reviews in Software Engineering,” vol. 2, 01 2007.

[22] P. Regnell, H. Martin and A. Rainer, “Case Study Research in Software Engineering

– Guidelines and Examples,” 2012.

[23] D. Amaratunga, D. Baldry, M. Sarshar and R. Newton, “Quantitative and qualitative

research in the built environment: Application of 'mixed' research approach,” vol.

51, pp. 17-31, 02 2002.

[24] C. Okoli, “A Guide to Conducting a Standalones Systematics Literatures Reviews,”

Communications of the Association for Information Systems, vol. 37, 2015.

[25] O. Ulrika, L. Kidd, Y. Wengström and N. Rowa-Dewar, “Combining qualitative and

quantitative research within mixed method research designs: A methodological

review,” International journal of nursing studies, 11 2010.

[26] T. Meline, “Selecting Studies for Systemic Review: Inclusion and Exclusion

Criteria,” Contemporary Issues in Communication Science and Disorders, vol. 33,

pp. 21-27, 03 2006.

[27] C. Wohlin, “Guidelines for snowballing in systematic literature studies and a

replication in software engineering,” in Proceedings of the 18th international

conference on evaluation and assessment in software engineering, pp. 1-10, 2014.

65

[28] J. Webster and R. Walton T., “Analyzing the past to prepare for the future: Writing a

literature review.,” MIS quarterly, pp. xiii-xxiii, 2002.

[29] T. a. C. M. a. F. B. a. J. I. Punter, “Conducting on-line surveys in software

engineering,” 2003 International Symposium on Empirical Software Engineering,

2003. ISESE 2003. Proceedings., pp. 80-88, 2003.

[30] K. Dillenburger, “Survey Research Methods, Floyd J. Fowler Jnr, London,

Thousand Oaks, CA, Sage Publications, 3rd edn, 2002, pp. ix + 179, Cloth ISBN 0

7619 2190 7, pound38.00, Paper ISBN 0 7619 2191 5, pound14.99,” British Journal

of Social Work - BRIT J SOC WORK, vol. 32, pp. 390-391, 2002.

[31] F. Shull, J. Singer and D. I. Sjøberg, “Guide to Advanced Empirical Software,”

2007.

[32] G. Hackett, “Survey research methods,” Personnel Guidance Journal, vol. 59, p. 9,

1981.

[33] C. Wohlin, R. Per, H. Matin, M. C. O, R. Björn and W. Anders, “Empirical

Strategies." In Experimentation in Software Engineering,” no. Springer, Berlin,

Heidelberg, pp. 9-36, 2012.

[34] X. Zhou, Y. Jin, H. Zhang, S. Li and X. Huang, “A map of threats to validity of

systematic literature reviews in software engineering,” Proceedings of the 23rd Asia-

Pacific Software Engineering Conference, pp. 153-160, Dec, 2016.

[35] M. Kassab, J. DeFranco and P. Laplante, “Software Testing: The State of the

Practice,” IEEE Software, pp. 46-52, 2017.

[36] A. Nguyen-Duc, I. Sundb, N. Elizamary, C. Tayana, A. Iftekhar and A. Pekka, “A

Multiple Case Study of Artificial Intelligent System Development in Industry,”

EASE '20: Evaluation and Assessment in Software Engineering Trondheim Norway,

p. 1–10, 04 2020.

[37] J. McGovern, S. W. Ambler, M. Stevens, J. Linn, E. K. Jo and V. Sharan, “The

Practical Guide to Enterprise Architecture,” 2003.

66

 Appendix A

Primary Studies for SLR:

S1) J. Wang, G. Li and Y. Pu, "A Scenario-Based Architecture for Reliability Design of

Artificial Intelligent Software," International Conference on Computational Intelligence

and Security, pp. 6-9, 2010.

S2) A. Serban, K. van der Blom, H. Hoos and J. Visser, "Adoption and Effects of Soft-

ware Engineering Best Practices in Machine Learning," In: Proceedings of the 14th Inter-

national Symposium on Empirical Software Engineering and Measurement, pp. 1-12,

2020.

S3) J. Schleier-Smith, "An Architecture for Agile Machine Learning in Real-Time Ap-

plications," 15: Proceedings of the 21th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, p. 2059–2068, 2015.

S4) Z. Wan, X. Xia, D. Lo and G. C. Murphy, "How does Machine Learning Change

Software Development Practices?," IEEE Transactions on Software Engineering, pp. 1-1,

2019.

S5) J. Musil, A. Musil and S. Biffl, "Introduction and Challenges of Environment Archi-

tectures for Collective Intelligence Systems," Agent Environments for Multi-Agent Sys-

tems IV, vol. 9068, pp. 76-94, 2015.

S6) H. Yokoyama, "Machine Learning System Architectural Pattern for Improving Op-

erational Stability," IEEE International Conference on Software Architecture Workshops

(ICSAW), pp. 267-274, 2019.

S7) A. Musil, J. Musil and S. Biffl, "Major Variants of the SIS Architecture Pattern for

Collective Intelligence Systems," Proceedings of the 21st European Conference on Pattern

Languages of Programs, pp. 1-11, 2016.

S8) S. e. a. Amershi, "Software Engineering for Machine Learning: A Case Study," 2019

IEEE/ACM 41st International Conference on Software Engineering: Software Engineering

in Practice (ICSE-SEIP), pp. 291-300, 2019.

S9) H. Washizaki, H. Takeuchi, F. Khomh, N. D. T. Natori and S. Okuda, "Practitioners’

insights on machine-learning software engineering design patterns: a preliminary study,"

2020 IEEE International Conference on Software Maintenance and Evolution (ICSME),

pp. 797-799, 2020.

S10) R. Mayer and H. Jacobsen, "Scalable Deep Learning on Distributed Infrastructures:

Challenges, Techniques, and Tools," ACM Computing Surveys (CSUR), vol. 53, no. 1,

pp. 1-37, 2020.

67

S11) H. Muccini and K. Vaidhyanathan, "Software Architecture for ML-based Systems:

What Exists and What Lies Ahead," arXiv:2103.07950, pp. 1-8, 2021.

S12) A. Ahmad and M. Babar, "Software architectures for robotic systems: A systematic

mapping study," Journal of Systems and Software, vol. 122, pp. 16-39, 2016.

S13) H. Washizaki, H. Uchida, F. Khomh and Y. Guéhéneuc, "Studying Software Engi-

neering Patterns for Designing Machine Learning Systems," 2019 10th International

Workshop on Empirical Software Engineering in Practice (IWESEP), pp. 49-495, 2019.

S14) M. Scheerer, J. Klamroth, R. Reussner and B. Beckert, "Towards Classes of Archi-

tectural Dependability Assurance for machine-learning-based systems," SEAMS '20: Pro-

ceedings of the IEEE/ACM 15th International Symposium on Software Engineering for

Adaptive and Self-Managing Systems, pp. 31-37, 2020.

S15) C. Castellanos, B. Pérez, D. Correal and C. Varela, "A Model-Driven Architectural

Design Method for Big Data Analytics Applications," 2020 IEEE International Confer-

ence on Software Architecture Companion (ICSA-C), pp. 89-94, 2020.

S16) A. Biondi, F. Nesti, G. Cicero, D. Casini and G. Buttazzo, "A Safe, Secure, and Pre-

dictable Software Architecture for Deep Learning in Safety-Critical Systems," IEEE Em-

bedded Systems Letters, vol. 12, no. 3, pp. 78-82, 2020.

S17) A. Panousopoulou, S. Farrens, K. Fotiadou, A. Woiselle, G. Tsagkatakis, J. Starck

and P. Tsakalide, "A Distributed Learning Architecture for Scientific Imaging Problems,"

arXiv:1809.05956 , pp. 1-40, 2018.

S18) M. e. a. Jin, "An Anomaly Detection Algorithm for Microservice Architecture

Based on Robust Principal Component Analysis," IEEE Access, vol. 8, pp. 226397-

226408, 2020.

S19) P. Alarcon, M. Gomez, J. Campos, S. Aguilar, S. Romero and P. Serrahima, "A Ho-

listic Approach for Intelligent Automated Control Technology for Balanced Automation

Systems," The International Federation for Information , pp. 301-308, 1995.

S20) L. Spalazzi, M. Paolanti and E. Frontoni, "An offline parallel architecture for foren-

sic multimedia classification," Multimedia Tools and Applications, 2021.

S21) A. e. a. Berquand, "Artificial Intelligence for the Early Design Phases of Space Mis-

sions," 2019 IEEE Aerospace Conference, pp. 1-20, 2019.

S22) A. Serban, "Designing Safety Critical Software Systems to Manage Inherent Uncer-

tainty," 2019 IEEE International Conference on Software Architecture Companion (ICSA-

C), pp. 246-249, 2019.

68

S23) V. Indumathi and G. Nasira, "FAULT TOLERANCE IN JOB SCHEDULING

THROUGH FAULT MANAGEMENT FRAMEWORK USING SOA IN GRID,"

ICTACT JOURNAL ON SOFT COMPUTING, vol. 07, no. 02, pp. 1-5, 2017.

S24) L. Li, J. Wang and C. Xu, "FLSim: An Extensible and Reusable Simulation Frame-

work for Federated Learning," ICST Institute for Computer Sciences, Social Informatics

and Telecommunications Engineering, pp. 350-369, 2021.

S25) O. Fomin and O. Derevianchenko, "Improvement of the Quality of Cutting Tools

States Recognition Using Cloud Technologies," Advances in Design, Simulation and

Manufacturing III. DSMIE 2020, pp. 243-252, 2020.

S26) E. Kusmenko, S. Nickels, S. Pavlitskaya, B. Rumpe and T. T, "Modeling and Train-

ing of Neural Processing Systems," 2019 ACM/IEEE 22nd International Conference on

Model Driven Engineering Languages and Systems (MODELS), pp. 283-293, 2019.

S27) M. e. a. Möstl, "Platform-Centric Self-Awareness as a Key Enabler for Controlling

Changes in CPS," Proceedings of the IEEE, vol. 106, no. 9, pp. 1543-1567, 2018.

S28) A. Muzaffar, S. Mir, M. Latif, W. Butt and A. F, "Software Architecture of a Mo-

bile Robot," International Conference on Computational Science and Computational Intel-

ligence, pp. 1-6, 2015.

S29) B. Vinayagasundaram and S. Srivatsa, "Software quality in artificial intelligence

system," Information Technology Journal, vol. 6, pp. 835-842, 2007.

S30) A. Serban, E. Poll and J. Visser, "Towards Using Probabilistic Models to Design

Software Systems with Inherent Uncertainty," European Conference on Software Archi-

tecture ECSA 2020 Software Architecture , pp. 89-97, 2020.

S31) E. Buccio, A. Lorenzet, M. Melucci and F. Neresini, "Unveiling Latent States Be-

hind Social Indicators".

S32) M. Bhat, K. Shumaiev, K. Koch, U. Hohenstein, A. Biesdorf and F. Matthes, "An

expert recommendation system for design decision making: Who Should be Involved in

Making a Design Decision?," 2018 IEEE International Conference on Software Architec-

ture (ICSA), pp. 85-8509, 2018.

S33) H. Venthur, S. Dähne, J. Hönhe, H. Heller and B. Blankertz, "Wyrm: A Brain-Com-

puter Interface Toolbox in Python," Neuroinformatics, vol. 13, p. 471–486, 2015.

S34) D. Baylor and et al., "TFX: A TensorFlow-Based Production-Scale Machine Learn-

ing Platform," Proceedings of the 23rd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, p. 1387–1395, 2017.

69

S35) A. Anjos, M. Günther, T. de Freitas Pereira, P. M. A. Korshunov and S. Marcel,

"Continuously Reproducing Toolchains in Pattern Recognition and Machine Learning Ex-

periments," ICML 2017 RML Program Chairs, 2017.

S36) B. Burns and D. Oppenheimer, "Design patterns for container-based distributed sys-

tems," USENIX} Association, Denver, 2016.

S37) P. Raut and N. Borkar, "Machine Learning Algorithms:Trends, Perspectives and

Prospects," International Journal of Engineering Science and Computing, vol. 7, no. 3, pp.

4884-4891, 2017.

S38) D. e. a. Sculley, "Hidden Technical Debt in Machine Learning Systems," Advances

in Neural Information Processing Systems, Curran Associatesd, Inc.,, pp. 1-9, 2015.

S39) S. Schelter, B. F, T. Januschowski, D. Salinas and S. S. G. Seufert, "On Challenges

in Machine Learning Model Management," Bulletin of the IEEE Computer Society Tech-

nical Committee on Data Engineering, pp. 1-11, 2018.

S40) M. e. a. Abadi, "TensorFlow: A System for Large-Scale Machine Learning," THE

ADVANCE COMPUTING SYSTEMS ASSOCIATION, pp. 1-21, 2016.

S41) N. Chervyakov, P. Lyakhov, M. Deryabin, N. Nagornov, M. Valueva and G. Val-

uev, "Residue Number System-Based Solution for Reducing the Hardware Cost of a Con-

volutional Neural Network," Neurocomputing, vol. 407, pp. 439-453, 2020.

70

 Appendix B

Interview Invitation:

I N T E R V I E W I N V I T A T I O N

INVITATION TO PARTICIPATE IN OUR RESEARCH PROJECT TITLED

"SOFTWARE ARCHITECTURE DESIGN CHALLENGES FOR MACHINE

LEARNING SYSTEMS"
Hello

My name is Roger Nazir. I am doing my Master Thesis in Software Engineering under the

guidance of Associate Professor Patrizio Pelliccione from Chalmers University of Technology,

Sweden. This research aims to investigate architectural design decisions for Machine Learning

(ML) systems. This study aims to help developers to have a comprehensive and order classifi-

cation of common challenges, best practices, and main software architecture (SA) design deci-

sions of ML systems from the available studies. It will also highlight the ML software design

complexity and common ML design techniques. The study will help developers/designers to

learn the best ML design practice to minimize the challenges in creating large-scale ML solu-

tions. I hope this study will offer some essential contributions to future research work and pre-

sent a platform to assist young architects by suggesting appropriate architecture designs.

Initially, I am conducting a systemic literature review with snowballing. Then through

an In-depth interview, I will collect the practitioner's opinions, which will be compared to

the results of the systematic literature review.

 I need your time for interviewing a video call, which takes 30-40 minutes. Your partici-

pation in this study based on your knowledge and experience will be valuable to our re-

search. The interview session will only be recorded after getting permission from the

interviewee. No such details will be added in the study that will point to any personal in-

formation of the interviewee. We kindly invite you to give your opinions if you are willing

to participate. Please suggest a day and time that suits you, and I will do my best to be

available. If you have any questions, please do not hesitate to ask. I appreciate any help

you can provide.

Regards,

Roger Nazir

SUPERVISOR:

Associate Professor Patrizio Pelliccione

Department of Computer Science and Engineering Software Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

patrizio.pelliccione@cse.gu.se

mailto:patrizio.pelliccione@cse.gu.se

71

72

Questions:

1. Can you please introduce yourself and describe your job role in this company?

2. Since how many years you are working in this company?

3. Have you published any thesis in the machine learning domain?

4. Can you please share your experience in your current position?

5. Do you have any experience in the previous company which is developing Machine

Learning system? If so, then what was your old experience?

6. Is your company is service-based or product-based?

7. What software development model do you practice in your company in general, like an

agile, waterfall, etc.?

8. Could you please share your experience with the interesting machine learning project

you have recently worked on?

9. In your working experience, how many software architecture design techniques of ma-

chine learning you worked with?

10. Which common software architecture design technique of machine learning you found

being used in most companies through your experience?

11. According to your experience, which are your best software architecture design tech-

nique for machine learning, and what are the benefits of using them?

12. Do you have any recommendations for software architecture design techniques of ma-

chine learning systems?

13. Which would be the best practice that could be useful/helpful in applying software ar-

chitecture designing of machine learning systems?

14. What are the most common software architecture design challenges in machine learn-

ing systems?

15. What are the main architectural decisions on software architecture design of different

machine learning systems?

