
Self-Stabilizing Emulation
of State-Machine Replication
Implementation and Evaluation of Self-Stabilizing
Emulation of State-Machine Replication with Global Restart
Mechanism

Master’s thesis in Computer Systems & Networks

Daniel Karlberg
Daniel Kem

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2021
www.chalmers.se

www.chalmers.se

Master’s thesis 2021

Self-Stabilizing
Emulation of State-Machine Replication

An Implementation and Evaluation of Self-Stabilizing Emulation of
State-Machine Replication with Global Restart Mechanism

Daniel Karlberg
Daniel Kem

Department of Computer Science & Engineering
Division of Networks & Distributed Systems

Distributed Computing and Systems
Chalmers University of Technology

Gothenburg, Sweden 2021

Self-Stabilizing Emulation of State-Machine Replication
An Implementation and Evaluation of Self-Stabilizing Emulation of State-Machine
Replication with Global Restart Mechanism
Daniel Karlberg
Daniel Kem

© DANIEL KARLBERG, 2021.
© DANIEL KEM, 2021.

Supervisors: Elad Michael Schiller, Department of Computer Science & Engineering
Robert Gustafsson, Combitech AB
Ingvar Andersson, Combitech AB

Examiner: Tomas Olovsson, Department of Computer Science & Engineering

Master’s Thesis 2021
Department of Computer Science & Engineering
Division of Networks & Distributed Systems
Distributed Computing and Systems
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Communicating servers, authors’ own illustration.

Typeset in LATEX, template by Magnus Gustaver
Printed by Chalmers Reproservice
Gothenburg, Sweden 2021

iv

Self-Stabilizing Emulation of State-Machine Replication
Daniel Karlberg
Daniel Kem
Department of Computer Science & Engineering
Chalmers University of Technology

Abstract
The use of distributed systems has grown dramatically in our modern society over
the past few decades. Today we see many digital services being distributed such as
cloud storage and automotive systems. These distributed services are being used by
every sector of our society from banking and finance to more traditional industries
such as manufacturing and military. In other words, These systems are part of our
daily lives and are vital to the daily operation of our society. At the same time as
these systems are important, they also create critical points in our society. Faults
and failures of these distributed systems could have large negative effects on fragile
parts of society.

This is the reason for the initialization of this project, to implement and validate
recent research and advancements in the area of self-stabilization and fault-tolerance
for distributed systems, and evaluate if the research can increase the levels of fault-
tolerance in these systems. This research could allow distributed systems to not
only handle communication faults and crashing of participants in the system, but
also arbitrary transient faults.

Our project has contributed with the first, the best to our knowledge, real-world
implementation and evaluation of a stack of self-stabilizing distributed algorithms,
which together provide the service of a self-stabilizing emulation of state-machine
replication. The project demonstrates that recent advancements in the area of self-
stabilization can provide real-world distributed systems with a higher degree of
fault-tolerance.

Keywords: self-stabilizing, self-stabilization, distributed systems, distributed com-
puting, fault-tolerance, consensus, reconfiguration, state-machine, replication, total-
order broadcast.

v

Acknowledgements
We want to thank our Chalmers supervisor Elad Michael Schiller, who worked closely
with us and provided unwavering support, guidance and expertise to us whenever
we needed it. Always being there with a quick message away from having a meeting
about our development.

We also want to thank our industrial supervisors from Combitech AB, Ingvar An-
dersson and Robert Gustafsson for their important input and guidance from the
industry during our project.

Our thanks also extend to Amanda Sjöö, who worked on a parallel project and
helped us find bugs during our development.

Daniel Karlberg & Daniel Kem, Gothenburg, June 2021

vii

Contents

List of Figures xi

1 Introduction 1
1.1 Project Purpose . 2
1.2 Fault Model . 2
1.3 What is Emulated State-Machine Replication? 3
1.4 What is Consensus? . 3
1.5 What is Unreliable Failure Detection? 4
1.6 What is Self-Stabilization? . 5
1.7 What is a Global Reset Mechanism? 5
1.8 Related Work . 5
1.9 Our Contribution . 6
1.10 Document Structure . 7

2 The System 9
2.1 The System Architecture . 9
2.2 User Datagram Protocol . 10
2.3 Self-Stabilizing Uniform Reliable Broadcast 11
2.4 Self-Stabilizing Failure Detector . 11
2.5 Self-Stabilizing Zero-Degrading Indulgent Binary Consensus 13
2.6 Self-Stabilizing Multivalued Consensus 15
2.7 Emulated State-Machine Replication using Total-Order Broadcast . . 17
2.8 Global Reset Mechanism . 19

3 Implementation of the System 21
3.1 The Programming Language RUST 21
3.2 Threads . 21

3.2.1 Algorithm . 21
3.2.2 Communication . 22

4 Evaluation 23
4.1 Evaluation Environment . 23
4.2 Experiment Plan . 23
4.3 Experiment description . 24

4.3.1 Latency . 24

ix

Contents

4.3.2 Throughput . 26
4.3.3 Self-stabilization and fault-tolerance 26

5 Results 29
5.1 Experiments results . 29

5.1.1 Experiment 1: Latency of the self-stabilizing failure detector . 29
5.1.2 Experiment 2: Latency of the self-stabilizing binary consensus 30
5.1.3 Experiment 3: Latency of the self-stabilizing multivalued con-

sensus . 31
5.1.4 Experiment 4: Latency of the global reset mechanism 32
5.1.5 Experiment 5: Throughput of the self-stabilizing state-machine

replication . 33
5.1.6 Experiment 6: Crashing of participating nodes 34
5.1.7 Experiment 7: Leader failure 35
5.1.8 Experiment 8: Demonstrating recovery from synthetic mem-

ory corruption . 35
5.2 Discussion . 36

6 Conclusion 39

Bibliography 41

x

List of Figures

2.1 Architecture Stack of Algorithms . 9

3.1 Example of operations between the Communication and Algorithm
threads. 22

5.1 The result of experiment 1, showing the latency of the self-stabilizing
failure detector. 30

5.2 The result of experiment 2, showing the latency of the self-stabilizing
binary consensus. 31

5.3 The result of experiment 3 showing the latency of the self-stabilizing
multivalued consensus. 32

5.4 A zoomed version of figure 5.3 showing latency for configurations with
3 to 7 nodes. 32

5.5 The result of experiment 4, showing the latency of the global reset
mechanism. 33

5.6 The result of experiment 5, showing the throughput of the self-stabilizing
emulated state-machine replication. Each circle represents a delivery. 34

xi

List of Figures

xii

1
Introduction

The use of distributed systems has grown dramatically in our modern society over
the past few decades. Today we see many digital services being distributed such as
cloud storage and automotive systems. These distributed services are being used by
every sector of our society from banking and finance to more traditional industries
such as manufacturing and military. In the past decade we have also noticed a
sharp growth in crypto-currencies built on top of distributed systems and distributed
computation. Examples of these crypto-currencies are Bitcoin [43] and Etherium [2].
In other words, These systems are part of our daily lives and are vital to the daily
operation of our society.

Many of these digital distributed systems form critical points in our society. Faults
or failures in these points could lead to catastrophic events if payment systems stop
working or if communication systems break down stopping us from communicating
across the world. From this perspective it is easy to appreciate the importance of
these systems and why it is of utmost importance for us to ensure that they have
a high degree of fault-tolerance built into their design. This is a must in order to
ensure the availability of the service which the system provides.

A distributed system is a collection of computers or servers, often referred to as
nodes, which are connected over either a local or a global network of communication
links. This system works together, through communication in the form of message-
passing, in order to solve a common shared problem or task. Through working
together, a distributed system can compute tasks that are too difficult to be solved
by single nodes. Distributed systems can also ensure availability and fault-tolerance
of a service due to the fact that even if a smaller set of nodes within the system
crashes, the service which the system provides will still be available. If the service
provides data storage, then the data can be replicated across the system’s node,
ensuring fault-tolerance for the data.

In distributed systems, state-machine replication is an important category of tasks
used in many services. It provides the function of storing data across a set of nodes
ensuring both availability of the data at any given time, as long as at least one node
has not crashed. It also provides fault-tolerance through replicating the data over
all the participating nodes. Hence, even if some nodes experience faults and lose the
data, it can be updated by other non-faulty nodes in the distributed system.

In order for distributed systems to be able to provide a high degree of availability

1

1. Introduction

of the service which it provides. The distributed system must be able to deal with
faults and failures, both outside the system (communication failures) but also in
the system itself (crashes). However, achieving a high degree of fault-tolerance in
distributed systems is hard due to the asynchronous message-passing nature which
distributed systems operate in. It is challenging in these asynchronous systems to
detect possible faults and failures of other participating nodes in the distributed
system [41, 24].

1.1 Project Purpose
The purpose of this project is to validate, implement and evaluate a distributed
system which provides the service of a Self-Stabilizing Emulation of State-Machine
Replication, researched by Lundström et al [39]. The system is implemented through
a stack of algorithms from recent research in the area of self-stabilization and fault-
tolerance [9, 38, 39, 37]. This research allows the system to recover from both com-
mon distributed system faults and arbitrary transient faults. The algorithmic stack
consists of self-stabilization consensus and failure detection algorithms which to-
gether support the implementation of the self-stabilizing emulation of state-machine
replication. This project aims to implement this research, in order to evaluate if
the recent advancements in the area of self-stabilization can be used to improve
the fault-tolerance of real-world distributed systems. A successful implementation
of this system can provide a demonstration that this research has the possibility of
making the cloud self-stabilized in the long term. In essence, this project will work
to answer the following two research questions, (1) Is the recent research in the area
of self-stabilization and fault-tolerance valid and correct? (2) If the research is valid
and correct, then what is the performance of our implementation in relation to the
systems latency and throughput?

1.2 Fault Model
One of the main attributes of self-stabilizing distributed systems is the ability to
operate and provide its service in the presence of faults and failures. The imple-
mentation that this project provides utilizes asynchronous message-passing systems
with no shared memory between computers in the system. The asynchronous dis-
tributed system has no universal clock available for the computers in the system.
Due to these two factors, the participating computers can only operate on sending
and receiving messages with each other.

The fault model which this implementation handles includes crashes of participating
computers, communication failures such as packet loss and arbitrary transient faults.
An arbitrary transient fault is a fault that can corrupt communication channels or
processors in the system. These transient faults can cause the system to violate the
assumptions of which the distributed system was designed to operate in [38].

Research papers which handle arbitrary transient faults often limits the effect that
these faults can have on the system. One such limitations which is often made is

2

1. Introduction

that, arbitrary transient faults cannot corrupt the actual program or algorithm code
while the system is running. such a fault could change the design of the distributed
system and hence, cause it to not have its original properties [38, 39, 4].

1.3 What is Emulated State-Machine Replication?
A state-machine is a computational mathematical model which stores the current
state S of a machine. Given some inputs R to the state-machine, it will calculate
the transition to the next state S ′ and store the new state S ′ in the state-machine.
A real-world abstraction of this model could be, for example, a data-server, which
based on new client data inputs need to store the new data and hence, the data-
server will transition to a new state which incorporates the new data.

State-machine replication is a concept used to increase the fault-tolerance of state-
machines by replicating the state-machines in a distributed system [33]. Distributed
algorithms can be used to ensure that in a fault-free situation, all state-machines of
the distributed system will have the most recent state S stored locally.

By storing the current state S in more than one state-machine, also commonly
referred to as replicas, both the availability and the fault-tolerance of the service
can be increased. The availability can be increased through faster access to a more
geographically closer replica and even if one replica is faulty, another one can be
accessed for the same data or state. The fault-tolerance can be improved due to the
fact that state S is stored at more than one location. Hence, if one replica would
crash, the same state S is still available from another replica. If the crashed replica
would reboot and start working again within a finite time window, the working
replicas in the distributed system could update the crashed and rebooted replica
with the current state of the distributed system.

This project implements an emulated state-machine replication provided by Lund-
ström et al. [39] which is constructed by the use of distributed self-stabilizing con-
sensus algorithms. With emulation, it is meant that the implementation provides
a baseline state-machine replication used to demonstrate the developments in the
research area of self-stabilization. Dolev et al. [11] has previously used emulations of
state-machine replication in attempts to demonstrate self-stabilization for this type
of distributed systems.

1.4 What is Consensus?
The consensus problem is a fundamental part of distributed systems and a require-
ment in order to implement a self-stabilizing emulation of state-machine replication.
The problem consists of a set of participating nodes in a distributed system that
needs to propose and reach an agreement on a shared value v. Lundström et al. [38]
define the consensus problem as follows:

(Consensus definition) Every process pi that is part of the system proposes a value
vi. Let an algorithm solve the consensus. This algorithm has to satisfy the following:

3

1. Introduction

• Validity - If v is the consensus, then propose(v) was invoked by some process
in the system.

• Integrity - A process decides on a value at most once.

• Agreement - Once consensus is reached, all processes share the proposed
value v.

• Termination - All non-faulty processes decide.

This implementation will focus on two types of consensus algorithms for distributed
systems, Binary Consensus and Multivalued Consensus.

The Binary Consensus is a subsection of the general consensus problem [38]. A
binary consensus solves the task for a set of participating nodes in a distributed
system to propose and reach an agreement on a shared binary value v from the set
(0,1), i.e. either zero or one.

The Multivalued Consensus is an extension of the binary consensus problem which
allows a set of participating nodes to also propose and reach an agreement on any
shared integer value v instead of just a binary value [39]. It is common for multi-
valued consensus algorithms to be constructed from binary consensus algorithms.

Fischer et al. [24] states and explains in their research paper that there exists no
solution to the consensus problem in distributed systems which utilizes asynchronous
message-passing systems where crashes can go undetected due to the asynchronous
nature of these systems. In such asynchronous systems, a failure or fault of just
one participating node can cause the entire consensus process to fail. This is why
failure detectors are necessary in order to solve the consensus problem in distributed
asynchronous message-passing systems.

1.5 What is Unreliable Failure Detection?
Asynchronous distributed systems which operate by using message-passing systems
are known to be prone to faults connected with the crashing of participating nodes.
One of the main problems with asynchronous systems is that it is impossible to
know if a participating node in the system has crashed or if the concerned node is
just slow on responding to messages [41]. Hence, it is a challenge in these systems
to detect when a crash actually has occurred.

This is the reason why failure detectors have been researched, in order to solve
this problem regarding asynchronous systems. A failure detector commonly runs
incorporated on the participating nodes of the distributed system as an independent
algorithm. Most failure detectors follow a common design of sending messages to
every participating node and monitoring which nodes respond to the sent message.
Nodes in the distributed system who are experiencing faults or have crashed will be
detected by the other participating nodes in the system. This is due to the fact that
these nodes will have a harder time to respond to the failure detector messages of
other nodes.

4

1. Introduction

Through this baseline algorithmic approach, crashed nodes in the distributed system
can be detected and handled. This will allow other distributed algorithms to be
able to continue operating even in situations of crashed participating nodes. An
unreliable failure detector is a failure detector that will provide the node with a list
of participating nodes in the system which it suspects of having crashed [6].

1.6 What is Self-Stabilization?
The research area of self-stabilization is part of the general research area of fault-
tolerance [7]. Research in the area of fault-tolerance for distributed systems often
focuses on the common faults, such as communication faults, packet loss, link failures
and crashing of nodes. Meanwhile, the research area of self-stabilization focuses on
arbitrary transient faults. An arbitrary transient fault is as mentioned, a fault that
can corrupt communication channels or nodes in the system. These transient faults
can cause the system to temporarily violate the assumptions according to which the
system were designed to operate in [38].

An example of an arbitrary transient fault could be a memory corruption which can
change the value of a variable in the system, for example a counter variable. This
transient fault could cause the system to leave its legitimate state due to an invalid
variable value. A distributed system with self-stabilization will be able to handle
this fault and return the system to a legitimate state within a finite time window
[7].

1.7 What is a Global Reset Mechanism?
Arbitrary transient faults can as mentioned change the value of a variable in the
system to an arbitrary value. If this transient fault causes a variable to be close
to the max integer value of the system (264), there is a risk of integer overflow. A
global reset mechanism can be used to handle these situations and prevent integer
overflow by resetting variables for the entire distributed system in conjunction [9].

Global reset mechanism is not needed outside the context of self-stabilization. Rather,
global reset mechanism and self-stabilization operate together in order to provide
fault-tolerant operation of distributed systems. This is mainly due to the fact that
a variable counter will realistically never reach the max integer value of 264 in a
reasonable time window without a transient fault.

1.8 Related Work
Paxos is a published algorithm by Lamport [34], which provides a distributed sys-
tem of nodes to reach a consensus over an asynchronous network. The proposed
algorithm by Lamport does not make use of any large element from the research
area of fault-tolerance and hence lacks properties for more fault-tolerant systems.

5

1. Introduction

The Paxos algorithm is also unbounded which can induce system failures in the case
of arbitrary transient faults or long run times, depending on the system.

Algorithms in the research area of self-stabilization often build on top of already ex-
isting algorithms for distributed systems or distributed computation. In some cases
these algorithms have already started the implementation of certain fault-tolerant
practices. Research of self-stabilization applies further fault-tolerant practices along
with solutions for recovery after the occurrence of the last arbitrary transient faults
in order to make the algorithms self-stabilizing.

The failure detector of this project is a further development of Mostéfaoui et al. [41]
research of a failure detector which in turn builds on work by Chandra et al. [6] who
developed the unreliable failure detector class. The self-stabilizing consensus algo-
rithms proposed by Lundström et al. [38, 39] builds on proposed non-self-stabilizing
binary consensus algorithms by Guerraoui et al. [30] and non-self-stabilizing mul-
tivalued consensus algorithms by Mostéfaoui et al. [42]. Lundström et al. also
expands on research by Zhang et al. [50] who demonstrate a bounded solution for
the consensus problem, needed in order to prevent overflow problems of unbounded
algorithms.

For the area of state-machine replication, there have been proposed attempts by
Dolev et al. [11] to deliver self-stabilizing state-machine replication solutions. How-
ever, these solutions do not meet Dijkstra’s criteria for self-stabilization [7]. Hence,
the algorithms provided by Lundström et al. [39], which are implemented in this
project, aims to provide a fully self-stabilizing state-machine replication solution.
We note that earlier solutions appeared in [12, 18, 23, 22, 21].

There also exists solutions to coordination of nodes over a network. One example
of this is Zookeeper [31], which provides a centralized service for coordination of a
system of nodes. However, a centralized solution creates a critical point of failure in
the system design and is not optimal for a fault-tolerant focused distributed system.

Other solutions in the area of self-stabilization include the following: Byzantine-
tolerant Binary Consensus [27], Consensus for Shared-memory Systems [17], Atomic
Snapshot[26, 36], Global Reset [25, 19], Vector Clocks [46], Quorum Reconfiguration
[8, 10], Control Plains [3, 28], Reliable Communication [16], Virtual Traffic Lights
[5, 40, 44, 47, 48, 20, 21, 13, 14, 15, 49] and Programming Agents [1].

1.9 Our Contribution
We provide, to the best of our knowledge, the first implementation and evaluation
of a self-stabilizing emulation of state-machine replication built on self-stabilizing
consensus algorithms researched by Lundström et al [38, 39]. Our implementation
also incorporates a global reset mechanism proposed by Dolev et al [9].

Our corresponding evaluation of the implementation shows that the implemented
distributed system is able to perform its service while also experiencing faults in-
cluding communication problems, crashing of nodes and arbitrary transient faults

6

1. Introduction

(Chapter 4). The results presented in this thesis show that the system’s perfor-
mance scales decreasingly to the number of nodes in the system and that safety and
liveness is guaranteed. However, it is also evident that the local evaluation environ-
ment presents challenges in terms of single computer hardware bottlenecks which
are clearly seen when a larger number of nodes are introduced into the system, more
specifically in our case more than 7 nodes. The evaluation demonstrates that the
recent advancements in the research area of self-stabilization and fault-tolerance can
contribute to real-world distributed systems with increased levels of overall fault-
tolerance, making current systems more robust against faults and failures.

1.10 Document Structure
This first chapter has provided basic theoretical information needed to understand
the basics of distributed systems and self-stabilization in order to better understand
the rest of the thesis. Chapter 2 presents the algorithm stack implemented by us and
the architecture needed for the implemented system to operate correctly. Chapter
3 gives an overview on how the distributed system and its algorithm stack was
implemented. Chapter 4 explains the evaluation environment and the evaluation
performed on the distributed system to ensure that the implementation is according
to the specification, while Chapter 5 presents the results of the evaluation. The
thesis will conclude with a conclusion in Chapter 6.

7

1. Introduction

8

2
The System

This chapter presents the algorithm stack and the including algorithms, as well as
the system architecture that provides service of self-stabilizing emulation of state-
machine replication.

2.1 The System Architecture

Figure 2.1: Architecture Stack of Algo-
rithms

The distributed system which this
project implements consists of an ar-
chitecture containing a stack of dis-
tributed algorithms. Every algorithm in
the stack provides services for the algo-
rithms in the upper tiers of the stack.
The architecture of algorithms function
in unison in order to create a distributed
system which can provide the service
of a self-stabilizing emulation of state-
machine replication [39]. The architec-
ture is identically replicated on every
participating node in the system, mean-
ing that all nodes have a independent
local version of the entire stack avail-
able and running on the specific nodes
host computer. The stack of algorithms
operate and progress through communi-
cation with the asynchronous message-
passing system between the participat-
ing nodes in the distributed system.
Message-passing over the network which the distributed system operates in, is the
only form of communication between the nodes. The algorithmic stack included in
the architecture can be found in Figure 2.1. Following is a base bottom-up expla-
nation of the algorithmic stack.

(1) The User Datagram Protocol (UDP) [45] is represented at the bottom of the
stack, as it is the building block protocol for all asynchronous message-passing in
the distributed system (Section 2.2).

9

2. The System

(2) One step above the UDP in the stack, there is the self-stabilizing uniform reliable
broadcast [37] which is used to guarantee delivery of specific broadcasted messages
in a self-stabilizing manner (Section 2.3).

(3) The self-stabilizing failure detector [38] is responsible for detecting faulty nodes in
and electing a leader from the non-faulty participating nodes of the system (Section
2.4).

(4) The self-stabilizing binary consensus [38] is used together with the failure detector
to reach an agreement on a binary value v amongst the non-faulty participating
nodes (Section 2.5).

(5) By using x instances of the binary consensus, where x is the number of partici-
pating nodes, the self-stabilizing multivalued consensus [39] can provide the system
with the service of a consensus to reach an agreement on any integer value v (Section
2.6).

(6) On the top of the algorithm stack is the self-stabilizing state-machine replication
[39]. This algorithm uses the multivalued consensus from a layer below to reach an
agreement on the next state S ′ of the distributed system. Once a consensus has
been reached, the participating nodes will transition from the current state S to S ′

agreed to in the consensus (Section 2.7).

(7) Connected to all algorithms in the architecture is a global reset mechanism [9],
which will monitor variables from all algorithms in the stack and initialize a global
reset if an integer overflow is imminent (Section 2.8).

The system is able to provide the service of a self-stabilizing emulated state-machine
replication as long as a quorum of the participating nodes are considered to be non-
faulty. Through the self-stabilization of the algorithm stack, the entire distributed
system can be fault-tolerant and self-stabilizing.

2.2 User Datagram Protocol
At the basis of almost all distributed systems which operate in asynchronous net-
works and utilize asynchronous message-passing systems, there is the User Datagram
Protocol (UDP) [45]. It is through this protocol that all message-passing between
participating nodes in the system is done. All algorithms in the stack that the archi-
tecture includes utilizes UDP when communicating with other participating nodes
in the distributed system. Each node in the system is going to operate from a socket
on the computer which the node is running on. It is from this socket which the node
is sending and receiving messages (UDPs). Prior to starting the system, every par-
ticipating node will have knowledge of the IP addresses and sockets of everyone in
the system. Everyone will also have an assigned node ID that is known by every par-
ticipating node in the system. This information allows the nodes to send messages
between each other using UDP. The nodes can send messages to specific nodes or
broadcast messages to a set of nodes or all nodes. Broadcasting messages utilizing
only UDP is referred to as Unreliable Broadcast. This broadcast does not spend any

10

2. The System

extra resources on ensuring that the message will arrive at the target destination.
Hence, Unreliable Broadcast does not guarantee delivery of sent messages.

2.3 Self-Stabilizing Uniform Reliable Broadcast
Above the User Datagram Protocol in the algorithm stack of the architecture, there is
the Self-Stabilizing Uniform Reliable Broadcast1 algorithm by Lundström et al [37].
This uniform reliable broadcast (URB) implementation provides the architecture
and the system with the ability to broadcast messages with a guaranteed delivery to
every non-faulty participating node in the distributed system, while also being able
to handle arbitrary transient faults. Compared to unreliable broadcasts, the URB
will guarantee that the message will be delivered at the receiving nodes. The algo-
rithms of this architecture utilizes the self-stabilizing uniform reliable broadcast for
messages which it needs to have guarantees that they will reach other participating
nodes. The utilization of self-stabilizing uniform reliable broadcast does use more
network resources compared to unreliable broadcasts. This is due to the fact that
self-stabilizing uniform reliable broadcast sends more messages to guarantee delivery.

2.4 Self-Stabilizing Failure Detector
As the distributed system operates in an asynchronous network with asynchronous
message-passing between the participating nodes, it is difficult to differentiate a non-
responding node from a crashed node, it can be the case that the non-responding
node is just slow [41]. In our system we utilize a Self-Stabilizing Failure Detector
proposed by Lundström et al. [38] to solve and circumvent the problems of detecting
crashed nodes in asynchronous networks. In addition to detecting crashed nodes in
the system, the failure detector will be able to provide the system with an elected
leader from the participating nodes. This leader is eventually shared amongst all
non-faulty participating nodes.

The self-stabilizing failure detector operates by using unreliable broadcasts when
communicating over the network. Hence, no resources are spent on guaranteeing
delivery of sent broadcasts. Every participating node is going to have an individual
failure detector running locally. The detector will include its local information about
suspicious nodes in the messages sent. This ensures that local knowledge is shared
with the non-faulty nodes in the system. Through this process the information of
the detectors is propagated in the system, which allows the participating nodes to
view the system in the same way.

The failure detector (see Algorithm 1) achieves its task with one main variable over
continuous communication rounds. The variable is an array named counti[]. The
array is used to keep a count on the number of times a node has been suspected.
Every index of the counti[] array represents a participating node, a node’s position is
equal to its own node ID - 1. The counti[] array can be used to elect a leader for the

1Implementation provided by O. Lundström and C. Kou (Chalmers, 2020) [35, 37].

11

2. The System

system. This is achieved by electing the node with the least number of suspicions
in the array, in other words, the node with the best performance.

The detector completes three steps for each communication round:

1. In the first step, the local node will continuously broadcast an ALIVE message
containing counti[] and wait for a quorum of RESPONSE messages from other
nodes to the broadcasted ALIVE message. The RESPONSE message contains
the responding nodes countj[] array and a list of responders to pj previous
communication rounds ALIVE broadcast.

2. The second step consists of merging the list of responders to the local nodes
ALIVE message with the ones received in the RESPONSE messages of the
same communication round. If a node pk is not in this merged list, then this
node has failed to respond to an ALIVE message. This is a sign that the
node might be experiencing faults, hence pi will increment counti[pk] which
will increase the suspicion level of the node pk.

3. In the final step and third step before starting the next communication round,
the local node pi will save the responders of this rounds broadcasted ALIVE
message. This list is sent in future RESPONSE messages for the received
ALIVE broadcasts.

When the nodes receive ALIVE from other nodes in the system, the receiving node
will merge the local array counti[] with the received countj[]. This is done through
taking the maximum for each position in the two arrays. This process allows the
information of suspicious nodes to be shared among all non-faulty nodes in the
system.

The self-stabilizing failure detector also includes a δ value. This value is specific to
the system specifications, which the detector is coupled together with. The decided
δ value is used together with a check() function which inspects the counti[] array
for arbitrary transient faults. If a gap between two values in the array is larger
than δ, there is a possibility that a transient fault has occurred. If this is the case,
the check() function will restore the counti[] array to a non-transient fault state.

12

2. The System

Algorithm 1: Pseudo-Code for Self-Stabilizing Failure Detector for pi. For a
full in-depth and detailed algorithm, see reference [38].

1 Local constants, variables and their initialization:
2

3 macro check(); /* checks the count array for violations of maximum allowed
gap (δ) */

4 operation leader(); /* select the node with least number of suspicions for
leader */

5 recFrom := P ; /* a list of the nodes who responded to the most recent ALIVE
round */

6 count[0..n− 1] := [0..0]; /* the array for the number of suspicions on each node
*/

7

8 do forever begin
9 Broadcast ALIVE();

10 Wait for RESPONSE() from quorum;
11 foreach node pk that did not respond:
12 Increment count[k] by one;
13 Store the nodes who responded in recFrom;
14 Check for δ violations in count[] with check();
15 upon ALIVE() arrival from pj begin
16 Merge the local count with the one received;
17 Check for δ violations in count[] with check();
18 Answer pj by sending RESPONSE() back;
19 upon RESPONSE() arrival from pj begin
20 Merge the local count with the one received;
21 Check for δ violations in count[] with check();

2.5 Self-Stabilizing Zero-Degrading Indulgent Bi-
nary Consensus

The Self-Stabilizing Zero-Degrading Indulgent Binary Consensus proposed by Lund-
ström et al. [38] is a fundamental part of the implemented distributed system. The
algorithm provides a binary consensus service which is both zero-degrading and in-
dulgent. By zero-degrading it is meant that a failure of one consensus round has no
impact on future runs of the algorithm. The indulgent property of the algorithms
means that an arbitrary behavior of the failure detector never violates the safety
requirements, even if it compromises the system’s liveness [29]. The algorithm will
provide the system with a binary consensus for a value v ∈ [0, 1].

Communication in the algorithm is done by using both unreliable broadcasts and
self-stabilizing uniform reliable broadcasts (URB). Uniform reliable broadcasts are
used to broadcast the result of the consensus, this is done in order to ensure that
every non-faulty participating node gets the consensus results.

13

2. The System

The implementation of the consensus algorithm utilizes five main variables in its
operation and two phases. (1) ri is the current local round number for the current
run of the consensus. (2) the estimate array, est[0..2] contains three variables. est[0]
is the value proposed to the consensus by the local node. est[1] is the consensus value
reached in the first phase. est[2] is the consensus value reached in the second phase
and also the result of the binary consensus. (3) myLeader is the current elected
leader of the system, supplied by the self-stabilizing failure detector. (4) newR is
the aggregated round number, if this is larger than ri, then the new ri will be newR.
The aggregated round number is received from other nodes in the systems through
broadcasts from other non-faulty nodes. This ensures that a slow node will get the
aggregated round number from other nodes when receiving messages. (5) The final
variable is txDes, which is the uniform reliable broadcast transmission descriptor.
It will allow us to check if an URB transmission has finished or if it is still being
dealt with by other nodes.

The operation of the self-stabilizing binary consensus (see Algorithm 2) consists
of two phases (0 and 1). When initializing a run of the binary consensus, est[] is
set to [v,⊥,⊥] before starting the consensus, where v is the proposed value by the
local node. Before entering the first phase of the algorithm, it will check if there
already exists a result on est[2]. If that is the case, then the algorithm will URB
the consensus results if no other URB is active. The algorithm will also fetch the
current elected leader from the failure detector and update the current consensus
round number.

1. In phase 0, the node will broadcast est[0] using unreliable broadcast, until
n − t phase 0 messages have been received with matching round number r,
from unique nodes. One of the unique nodes needs to be the elected leader.
If a majority of the messages received has the same elected leader as the local
node, then est[1]← v, where v is the received value in the broadcast from the
leader. If a majority did not have the same elected leader, then est[1] ← ⊥.

2. In phase 1, the node will broadcast est[1] using unreliable broadcast, until
n − t phase 1 messages have been received with matching round number r,
from unique nodes. If all phase 1 messages contain the same est[1] value, the
node will decide on the value in est[1] and use URB to broadcast the consensus
result. If the responses contains both a value and/or ⊥, then the consensus
will restart phase 0 with est[0] set to the value in est[1].

When receiving a phase broadcast from a node pj and this broadcast contains an
est[1] value. The node will check if the local est[1] = ⊥. If that is the case, the node
can update the local est[1] with the value from the broadcast. If the received phase
message was a broadcast, a response is also sent to the broadcasting node.

Once a node receives a URB containing a consensus result v, the node will check
if there already is a local result in est[2]. If not, then the node will put the value
v from the URB in est[2], est[2] ← v. This process allows the set of participating
nodes to reach a binary consensus as long as there is a quorum of non-faulty nodes.

14

2. The System

Algorithm 2: Pseudo-Code for Self-stabilizing Indulgent Zero-degrading Binary
Consensus for pi. For full in-depth and detailed algorithm, see reference [38].

1 Local constants, variables and their initialization:
2

3 est[] = [⊥,⊥,⊥];
4 myLeader = ⊥;
5 operation: propose(v) := est[v,⊥,⊥];
6

7 while true do
8 If est[2] 6= ⊥ ∧ txDes = false:
9 urbBroadcast(DECIDE(est[2]));

10 continue;
11 Get leader ID from failure detector;
12 r = max(r, newR);
13 repeat broadcast PHASE 0(r, est[0], leader) until: /* Phase 0 */
14 n− t (majority) received phase 0 messages with matching r;
15 received phase 0 broadcast from leader with matching r;
16 If majority of phase 0 messages had the same leader as local node:
17 est[1] ← est[0] received from leader;
18 repeat broadcast PHASE 1(r, est[1], leader) until: /* Phase 1 */
19 n− t (majority) received phase 1 messages with matching r;
20 Let rec = [est[1] values received in phase 1];
21 If rec = [v] → urbBroadcast(DECIDE(v));
22 If rec = [v,⊥] → est[0] = v;
23 If rec = [⊥] → continue;
24 upon PHASE n(r, est[1], leader) from pj begin
25 if Phase 1 ∧ est[1] = ⊥ then est[1] ← v (from phase message);
26 if Phase n was a broadcast then respond Phase n to pj;
27 upon DECIDE(v) from pj begin
28 if est[2] = ⊥:
29 est[2] ← v;

2.6 Self-Stabilizing Multivalued Consensus
For the Self-Stabilizing Emulation of State-Machine Replication to be able to create
a consensus among the set of nodes, on the transition from the current state S to
the next state S ′, the set of nodes need a multivalued consensus. A multivalued
consensus allows for the distributed system to reach an agreement on any integer
value v, compared to a binary value.

The Self-Stabilizing Multivalued Consensus provided by Lundström et al. [39] con-
tinues on the implementation of and utilizes the self-stabilizing binary consensus as
a building block, in order to provide a solution to the multivalued consensus prob-
lem. The proposed algorithm uses x instances (or objects) of the aforementioned

15

2. The System

self-stabilizing binary consensus solution, where x is the number of nodes in the dis-
tributed system. Every instance of the binary consensus has its own set of variables,
explained in section 2.5. The instances can also be identified through a sequence
number in [0, . . . , x− 1].

The implementation of the algorithm utilizes three main variables in its operation
to achieve a multivalued consensus. (1) The proposals[] array keeps the integer
value proposals made by every node pk in the distributed system. Hence, every
node has a unique position in the array (pk position is proposals[pk]). (2) The BC[]
array stores all the x instances of the binary consensus for the specific system. (3)
The final variable is txDes, which is the uniform reliable broadcast transmission
descriptor. It will allow us to check if an URB transmission has finished or if it is
still being dealt with by other nodes.

The algorithm (see Algorithm 3) operates by proposing an integer value. This is
achieved through self-stabilizing uniform reliable broadcasting of the nodes proposed
integer value v, let us refer to this broadcast as a proposalURB(v). The usage of
URB ensures the delivery of the sent proposal from the sending node. When a node
pi in the system receives a proposalURB(v) from pk in the system, pi will store
the proposal in proposalsi[pk]. If the first self-stabilizing binary consensus instance
(BC[0]) is not already activated and running, the node will start the consensus
process by activating the first binary consensus instance. The algorithm will contin-
uously activate binary consensus instances iteratively until an instance of the binary
consensus returns the results v = 1. The same index in BC[i] which returned the
result v = 1, is going to be used to select the reached consensus value from the
proposals[i]. If proposals[i] = ⊥ or if all of the instances of BC[] return the result
v = 0, then the consensus has failed and needs to be restarted. The proposal array
can be ⊥ if the issued node did not propose any integer value for the consensus, or
if network faults caused the consensus to finish before the proposal had arrived at
every node in the distributed system.

16

2. The System

Algorithm 3: Pseudo-Code for Self-Stabilizing Multivalued Consensus for pi.
For full in-depth and detailed algorithm, see reference [39].

1 Local constants, variables and their initialization:
2

3 v = ⊥; /* local proposal value */
4 proposals[] = ⊥-s; /* array of arriving proposals */
5 BC[]; /* array of x binary consensus objects */
6 txDes = ⊥; /* URB transmission descriptor for decision sharing */
7

8 do forever begin
9 If v 6= ⊥ ∧ txDes = false:

10 urbBroadcast(PROPOSAL(v));
11 Wait for BC[i] to return result; /* i = 0 */
12 If BC[i] = 0:
13 activate BC[i+ 1];
14 If BC[i] = 1:
15 return proposals[i];
16 consensus finished;
17 If i = NumberOfNodes:
18 consensus failure;
19 restart consensus;
20 upon PROPOSAL(v) from pj begin
21 let proposals[pj] = v:
22 If BC[0] 6= active:
23 activate binary consensus instance BC[0];

2.7 Emulated State-Machine Replication using Total-
Order Broadcast

The underlying stack of self-stabilizing distributed algorithms is used to implement
a Self-Stabilizing Emulation of State-Machine Replication proposed by Lundström
et al. [39]. In its essential form, the emulated state-machine replication will contin-
uously use the self-stabilizing multivalued consensus to reach an agreement on the
transition from the current state S of the distributed system to the next state S ′.
The multivalued consensus will in return use the self-stabilizing failure detector and
the self-stabilizing binary consensus in order to achieve its task of a consensus on an
integer value. From this perspective, it can be seen how the algorithm stack together
provides the functionalities required to implement the self-stabilizing emulation of
state-machine replication.

The emulation of state-machine replication uses total-order broadcast based on the
self-stabilizing uniform reliable broadcast in order to send ordered messages with
unique sequence numbers. In order not to flood the networks communication channel
or the nodes with self-stabilizing uniform reliable broadcasts which use more network

17

2. The System

resources, total-order broadcasts are only sent once per a given time window. The
time window is based on an estimation of the round trip time, ensuring that a
broadcasted total-order message has a chance of reaching the target before a new
uniform reliable broadcast is made. When a node pj receives total-order messages,
the node will put the them in a sorted and ordered bag of undelivered messages.
The algorithm utilizes a synchronization phase, where every non-faulty participating
node in the system will broadcast the maximum consecutive undelivered sequence
number received. Through this process, the non-faulty nodes will be able to discover
the maximum consecutive undelivered sequence number shared amongst the nodes
in the system. This sequence number can be proposed to the multivalued consensus
and if a consensus can be reached, then the participating nodes can deliver the
messages up to and including the sequence number from the bag of undelivered
messages to the state-machine. This process ensures that the new state S ′, which
includes the recent delivered messages is replicated and shared between the non-
faulty nodes in the distributed system. In other words, a state-machine replication.

The algorithm (see Algorithm 4) for self-stabilizing emulation of state-machine repli-
cation operates by using three instances (or objects) of the self-stabilizing multi-
valued consensus. Each of these objects have in turn x binary consensus objects
available (where x is the number of nodes in the system). Three instances of the
multivalued consensus is used to have the algorithm be bounded in the number of
available instances. This is to prevent overflow problems from a system operating
over longer run-times, using an unbounded number of multivalued instances. Hence,
at any given time, a maximum of two multivalued consensus instances are active.
The instances are recycled, garbage collected and reset for re-use. This makes the
algorithm bounded with the number of multivalued instances used.

As aforementioned, the algorithm utilizes a synchronization phase to find a common
denominator with the maximum consecutive undelivered sequence number shared
amongst the nodes in the system. This phase also provides the participating nodes
with the information of which the latest completed multivalued consensus instance
each node has accessed. This allows the nodes to know when everyone in the system
is on the same instance, which also allows for a new instance to be initialized (with
proposalURB(v), see Section 2.6) and the old used instance to be recycled, garbage
collected and reset for re-use. The synchronization phase also allows for nodes that
have experienced faults but recovered to gain information and update itself with the
current state of the state-machine and the current activated multivalued consensus
instances. In case of faults which cause wrongful activation of the instances, a trigger
exists which resets all three multivalued consensus instances.

18

2. The System

Algorithm 4: Pseudo-Code for Emulated State-Machine Replication using
Total-Order Broadcast for pi. For full in-depth and detailed algorithm, see ref-
erence [39].

1 Local constants, variables and their initialization:
2

3 currentInstance; /* last sequence of the instance result read */
4 allInstance[]; /* currentInstance of nodes in the system */
5 maxReady; /* local maximum consecutive undelivered sequence number */
6 allMaxReady[]; /* maximum consecutive undelivered sequence number of

nodes in system */
7

8 while true do
9 repeat broadcast SYNC until:

10 SYNCack received from all non-faulty nodes with matching r;
11 let v = min(allMaxReady[]);
12 If foreach non-faulty pk;
13 allInstance[pk] = currentInstance ∨ (currentInstance + 1) mod 3 ;
14 Then urbBroadcast(PROPOSAL(v));
15 upon SYNC(r) from pj begin
16 Send SYNCack(maxReady, currentInstance, r) to pj;
17 upon SYNCack(maxReady, currentInstance, r) from pj begin
18 if matching r;
19 allMaxReady[pj] = maxReady;
20 allInstance[pj] = currentInstance;

2.8 Global Reset Mechanism
The stack explained in the sections above can together provide a distributed system
for Self-Stabilizing Emulation of State-Machine Replication. However, for the system
to be completely self-stabilizing, there is a need for a global reset mechanism. This is
due to the fact that the listed algorithms in the stack utilizes unbounded variables
which are not reset together with the instances, for example counters. It is not
viable to suppose that these counters would reach integer overflow limits (264) from
normal operation, it would take too much time. An arbitrary transient fault could
however cause variables to jump to a value close to the integer overflow and risk
system malfunction if it were to reach it. Hence, a global reset mechanism is not
needed outside the context of self-stabilization. However, it is a requirement for a
fully self-stabilizing system.

An algorithm (see Algorithm 5) for Global Reset Mechanism is provided by Dolet
et al. [9], which is a self-stabilizing state-transition for global reset mechanism. The
algorithm operates by continuously monitoring unbounded variables. If a variable is
at risk of integer overflow, a global reset mechanism will be invoked. The mechanism
will transition every non-faulty participating node in the system through a series of

19

2. The System

six states in a synchronized manner. This allows the system to reset the variables to
a safe configuration in the final state of the synchronized mechanism, in conjunction
with each other, ensuring that everyone resets the variables at the same time. The
synchronized transition is carried out through a process where the participating
nodes echo their current state in the reset mechanism. This allows the nodes to
know the mechanism state of every non-faulty node in the system. Once everyone is
in the same state, they can transition to the next state in the mechanism together.
In the case of a fault, where a participating node falls out of order in the mechanism
state transition, meaning that a node is two states behind or two states in front of
any other node in the system. Then the entire reset mechanism will restart for every
non-faulty node.

Algorithm 5: Pseudo-Code for Global Reset Mechanism for pi. For full in-depth
and detailed algorithm, see reference [9].

1 Local constants, variables and their initialization:
2

3 myCurrentState = 0; /* my current state */
4 echoStates[]; /* current state of other nodes in the system */
5 macro transition(myCurrentState); /* 1 → 2 | 2 → 3 | 3 → 4 | 5 → 0 */
6

7 while true do
8 If reset needed ∧ foreach non-faulty pk;
9 echoStates[pk] = 0;

10 Then myCurrentState = 1;
11 If foreach non-faulty pk;
12 echoStates[pk] = myCurrentState ∨ (myCurrentState + 1) mod 5;
13 Then myCurrentState = transition(myCurrentState);
14 If ∃ pk ∧ non-faulty;
15 echoStates[pk] = 1 ∧ myCurrentState = 0;
16 Then myCurrentState = 1;
17 If myCurrentState == 5;
18 reset unbounded variables;
19 Broadcast ECHO(myCurrentState);
20 upon ECHO(myCurrentState) from pj begin
21 echoStates[pj] = myCurrentState;

20

3
Implementation of the System

This chapter presents how the system and architecture is implemented in the pro-
gramming language RUST and how it is able to provide the service of self-stabilizing
emulation of state-machine replication.

3.1 The Programming Language RUST
This project was implemented in the programming language RUST [32]. RUST
is a statically typed language which was used for the implementation of the self-
stabilizing uniform reliable broadcast, due to the fact that RUST was developed for
performance focused systems. This thesis project continues the utilization of RUST
due to the legacy code and a set of good characteristics such as safe concurrency
operations between threads and no run-time or garbage collection for improved
performance. RUST also has a rich type system which includes a ownership model
with both memory and thread-safety. These characteristics in combination with the
legacy infrastructure allows RUST to be a suitable programming language for this
thesis project which aims to increase fault-tolerance of distributed systems.

3.2 Threads
The implementation which provides the service of a self-stabilizing emulation of
state-machine replication is constructed by using two threads. One thread is used
for running the algorithms while the other one is responsible for handling the commu-
nication. The two threads will in conjunction provide the service of a self-stabilizing
emulated state-machine replication. The implementation is divided into two threads
for efficiency. The algorithms send a large quantity of messages and hence, also re-
ceive a large quantity. This is occurring while the algorithms also have to complete
computations. For this reason, the implementation is divided between two threads,
the algorithm thread and the communication thread.

3.2.1 Algorithm
The algorithm thread operates the majority of algorithms in the architecture stack.
Specifically, the thread handles the computation of the algorithms from the failure
detector to the state-machine replication in the stack. When an algorithm in the

21

3. Implementation of the System

stack, which is controlled by the thread, needs to send or broadcast a message, the
algorithm calls a function with the data it wants included in the message, what type
of message it is (e.g. alive or sync) and if the message should be broadcast or direct
message to a specific node. This information is transferred to the communication
thread which sends the message through the message-passing system. For messages
that need to be broadcast using self-stabilizing URB, a separate function is called.

The algorithm thread also continuously asks the communication thread to fetch new
messages from its buffer and hand over the data and original sender to the algorithm
thread. Through this method, the thread can receive new messages and complete
computations on the data and progress in the algorithm.

3.2.2 Communication
The thread responsible for communication handles all message-passing, which in-
cludes sending and receiving UDPs at the socket level. It continuously listens to
the socket for incoming UDPs and stores them in respective buffers depending on
the type of message (e.g. alive or sync). When the algorithm thread requests a
new alive message, the communication thread can fetch a message from the correct
buffer and transfer it to the algorithm thread.

The communication thread also handles the self-stabilizing uniform reliable broad-
cast algorithm [37]. The algorithm thread sends uniform reliable broadcasts through
a function call, which in turn tells the communication thread to send an URB using
the self-stabilizing algorithm. The communication thread runs the algorithm con-
tinuously in order to ensure delivery of messages sent as URBs. Figure 3.1 shows
an example of operations between the two threads.

Figure 3.1: Example of operations between the Communication and Algorithm
threads.

22

4
Evaluation

The evaluation chapter is divided into two main parts. Firstly, the evaluation envi-
ronment is described and its use explained. Secondly, the experiment plan describes
the details of the experiments, the manner in which the experiments will be carried
out and what data we will gather.

4.1 Evaluation Environment
The evaluation of the implementation was completed in a local evaluation envi-
ronment, using a local machine. The local environment allows us to deploy our
application for easy verification of our implementation of the research. Through
this environment we can perform both validation of the research and evaluate the
performance of our implementation.

The environment operates by assigning an individual socket for each participating
node part of the current evaluation configuration on the local machine. A unique
ID is also assigned to each node operating on a socket address. The nodes com-
municate with each other over the loop-back interface address (127.0.0.1) by using
the message-passing system. The participating nodes have information about each
other’s ID and socket addresses from the initialisation of the evaluation configura-
tion.

Through this environment, we are able to validate if the research and implementation
is performing according to the specifications of the research papers. The environment
also allows us to log data from the evaluations runs for inspection and analysis
of the implementation’s performance. In order to evaluate self-stabilization and
fault-tolerance, faults can be manually inserted through executing a piece of code
while the implementation is running within the evaluation environment. This allows
us to evaluate how the implementation handles faults and if they are handled in
accordance with the specifications.

4.2 Experiment Plan
When evaluating the system there are many different types of experiments which
can be carried out to test both the functionality of the algorithms as well as their
performance. For this reason an experiment plan is utilized. The experiment plan of

23

4. Evaluation

our implementation will provide information needed to answer the research questions
of this thesis:

• Is the recent research in the area of self-stabilization and fault-tolerance valid
and correct?

• If the research is valid and correct, then what is the performance of our im-
plementation in relation to the systems latency and throughput?

Our evaluation criteria consider the ability to handle the faults (fault-tolerance)
explained in the fault model and the time for algorithm operations to complete (la-
tency). Due to the fact that the distributed system continuously makes invocations
for new operations from algorithms in the stack, we can provide information about
the systems throughput i.e. the number of operations completed over a period of
time, by inverting the data gathered from the latency experiments. We also con-
sider the scalability of the system, i.e. how the performance of our implementation
is affected by the increase of participating nodes in our experiments.

Evaluation and experiments will be executed in the local evaluation environment.
For the experiments, 5 different configurations of participating nodes will be used.
The five configurations consist of 3, 5, 7, 9 and 11 participating nodes. The reason
for these configurations is due to the fact that the quorum of the system is calculated
with t = n/2, where n is the number of nodes and t is the number of nodes that
are allowed to be faulty. The quorum is used in the algorithms for finding and/or
waiting for a set of nodes. At the different configuration, the number of nodes
needed for this set changes. This is how the number of nodes in the configurations
was selected.

4.3 Experiment description
This section provides a detailed list of experiments part of the experiment plan.

4.3.1 Latency
The list for latency related experiments includes the following:

1. Latency of the self-stabilizing failure detector. The binary consensus
algorithm depends on having a reliable leader in the system in order to function
properly. This is why it is important for the system to have a failure detector
which is reliable and has a low latency in order to facilitate decision making.
This is due to the fact that if different nodes follow different leaders, the binary
consensus algorithm will not come to an agreement on a shared value.

The performance of the failure detector is only impacted by a slow node if
that node is needed in the quorum for the majority. A slow node can be
described as a node with a lower ability to respond, this can be due to message
transmission time or CPU constraints. This means that the performance of
the failure detector is expected to be high and therefore the latency to be

24

4. Evaluation

low even if more nodes are introduced. When running the experiment locally
we expect that the biggest factor for its performance is the hardware which
eventually will become a bottleneck and it will result in a significant jump in
latency when this happens.

We define latency for the failure detector as the time from the event of the
current leader failure to the time a new leader has been observed by all work-
ing nodes. The experiment was repeated for a total of 10 times, with best
and worst cases removed in order to calculate an average latency for each
configuration.

2. Latency of the self-stabilizing binary consensus. The latency of the
self-stabilizing binary consensus is the pillar for the self-stabilizing multival-
ued consensus and therefore also for the self-stabilizing emulated state-machine
replication implementation. Because of this we expect the latency of the binary
consensus to be lower than the latency for multivalued consensus. Further-
more, we expect the latency to increase significantly since there is a need to
coordinate with all of the working nodes and therefore the amount of messages
needed will grow significantly based on how many nodes are in the system.

The latency of the binary consensus is defined as the time from when a pro-
posal to the consensus was made, until a consensus was reached from the
perspective of each node. An average latency was calculated for each configu-
ration by taking the latency of 100 consecutive consensus agreements for each
configuration of nodes.

3. Latency of the self-stabilizing multivalued consensus. The latency of
the self-stabilizing multivalued consensus is an important metric since this al-
gorithm is continuously used by the emulated state-machine replication for
reaching agreement on the next state transition. The latency experiment will
provide an indication on the system’s ability to continuously reach a mul-
tivalued consensus agreement. Similarly to the binary consensus algorithm
we expect the latency to grow significantly based on the number of nodes in
the system, due to the fact that the quorum size will increase as an effect of
increased message cost with more participating nodes.

Latency is defined as the time from the event of a multivalued proposal until
a consensus was reached from the perspective of each node. Similar to the
binary consensus experiment, an average latency was calculated for each con-
figuration by taking the latency of 100 consecutive consensus agreements for
each configuration of nodes.

4. Latency of the global reset mechanism. We measure the latency of
the global reset mechanism in order to understand how long it takes for the
distributed system to reset a variable and how this time scales with the increase
of participating nodes. The latency of this part of the stack is important, due
to the fact that the system cannot progress while a global reset is occurring.

In terms for the global reset mechanism, the latency is defined as, the time

25

4. Evaluation

from the event of a node issuing a global reset until the last node has reset
the variable to a safe state, i.e. the time for the entire system to reset the
variable. An average latency was calculated by gathering the latency of the
global reset mechanism 10 times for each configuration, with best and worst
case removed. This provides us with an indication of the average time for our
implementation to reset the distributed system with an increasing number of
participating nodes.

4.3.2 Throughput
The list for throughput related experiments includes the following:

5. Throughput of the self-stabilizing state-machine replication. The self-
stabilizing emulation of state-machine replication utilizes the entire algorithm
stack in order to provide its state-machine service. It is therefore of interest to
gather information on the throughput of the service, in order to demonstrate
how many state transition operations the system can complete under a given
time period.

We define the throughput as the number of total-order deliveries completed
over a predefined period of time. We run the entire system and log the number
of deliveries completed over 400 seconds, with timestamps for each delivery.
This allows us to calculate the average time for a delivery to be made and
investigate the change in number of deliveries per second over the predefined
time period.

4.3.3 Self-stabilization and fault-tolerance
The list for self-stabilization and fault-tolerance related experiments includes the
following:

6. Node crash failures. To evaluate the system’s ability to handle crashed
nodes, we selectively suspend the operation of participating nodes. Through
this experiment we iteratively suspend the operations of one node at a time,
until we reach the threshold t, where the crashed node is required in the
quorum.

According to the specifications of the algorithms in the stack, the system
should be able operate while t < n/2. Hence, once t = n/2 the state-machine
replication is expected not to be able to reach agreements on the next state
of the distributed system. In conjunction with the experiment, the failure
detector should also be able to classify the crashed nodes as faulty.

7. Leader failure. To evaluate the system’s ability to handle the crashing of
the currently elected leader, we suspend the operation of the current leader.
Through this process we can monitor the process of the failure detector to
detect that the leader has stopped operating and that a new leader is elected.
This allows us to monitor the liveness of the system, i.e. termination.

26

4. Evaluation

The failure detector in the system stack should be able to detect the suspended
leader and propagate this information throughout the system. A new leader
should automatically be elected and shared amongst all non-faulty partici-
pating nodes. The system’s ability to conduct this process is known as the
safety property of the algorithm and the performance of it is the liveness prop-
erty which is described in the experiment covering the latency of the failure
detector.

8. Demonstrating recovery from synthetic memory corruption. Due
to the fact that arbitrary transient faults cannot be simulated, we instead
demonstrate the system’s ability to recover from synthetic memory corruption.
This process is accomplished by including components for fault injection into
the program code. The faults corrupt key variables such as sequence numbers
and the goal is to demonstrate that the system can handle this. This allows us
to demonstrate that the system is able to recover from the synthetic memory
corruption and return to a legal state of execution.

We demonstrate the system’s ability to handle these faults by the injection of
synthetic memory corruption faults into objects of the binary consensus and
the failure detector.

We inject components for fault injection into the program code of the binary
consensus, which modify the current round number of the activated binary
consensus instance. By design of the algorithm, the modified round number
will be shared amongst all working nodes if the modified round number is
larger than the current round number of the other nodes. If the modified
round number is lower than the current round number of the other nodes, the
node with the injected fault will just copy and use the round number of a
working node.

With the failure detector, the injection is done to the counti[] array of a par-
ticipating node pi. Through the process of including components for fault
injection into the program code, we can increase some position of the array
to a large value, which should trigger the system’s arbitrary transient fault
handling. The check() function should capture this fault and return the array
to a legal state for continued operation. Note that other variables which are
not directly protected from arbitrary transient faults are handled by the global
reset mechanism [9], which resets the variable to a safe state in the case of an
arbitrary transient fault.

27

4. Evaluation

28

5
Results

This chapter presents the results and discussion about the experiments performed
on the system in order to evaluate the throughput, latency and fault-tolerance of
the implementation.

5.1 Experiments results
The following is the results of the experiments described in section 4.3. The ex-
periments demonstrate the functionality of the system in terms of fault-tolerance
and self-stabilization, while also providing an indication of the performance of the
implementation.

5.1.1 Experiment 1: Latency of the self-stabilizing failure
detector

We measure the latency of the failure detector because algorithms in the stack
depend on having a valid and reliable elected leader in the system, shared by the
working nodes. A failure detector with a high latency could cause problems or delays
in the facilitation of the decision making.

The experiment is anticipated to show a small increase in the latency, this is due to
the fact that the failure detector only requires a quorum of the fastest nodes in the
system in order to progress. Hence, if a slow node is added to the system, which is
not required in the quorum, the latency should not increase by a large margin.

The results of experiment 1 which is shown in figure 5.1 shows the latency of the self-
stabilizing failure detector. We note that the performance is relatively unaffected by
the number of nodes present in the system, this is expected since the failure detector
only needs to wait for the majority quorum of the fastest nodes. However, we also
note that when 11 nodes are present in the system there is a jump in latency which
can be the case since the results are derived from this algorithm running alongside
the other parts of the system as explained in the system stack. Because of this the
hardware seems to become the bottleneck when running many nodes.

In comparison to the anticipated results, the system’s failure detector latency is
in-line with what was expected from the results beforehand.

29

5. Results

Figure 5.1: The result of experiment 1, showing the latency of the self-stabilizing
failure detector.

5.1.2 Experiment 2: Latency of the self-stabilizing binary
consensus

The self-stabilizing binary consensus sits at the core of the stack and is a vital
component in the system’s ability to facilitate decisions. It is directly used in con-
junction with the upper layers of the stack, hence latencies in the binary consensus
will affect the total system. It is therefore of importance to measure the latency
of the binary consensus to find out how the time to reach consensus and decisions
scales with the number of participating nodes in the system.

We expect the latency of the binary consensus to notably increase with the number
of participating nodes. This is mainly because of an increase in the message cost in
order to coordinate all the working nodes through the algorithm’s phases in order
to reach a valid consensus.

The results of experiment 2 is shown in figure 5.2 which shows that the latency of the
self-stabilizing binary consensus grows significantly with the number of participating
nodes. However, it is hard to understand how much of the latency increase is due
to hardware limitations of the testing environment. Therefore the latency growth
in reality may not be as dramatic as shown in the figure.

When compared to the expected results, we find that the results provided by the
experiment closely conforms with our anticipated expectations.

30

5. Results

Figure 5.2: The result of experiment 2, showing the latency of the self-stabilizing
binary consensus.

5.1.3 Experiment 3: Latency of the self-stabilizing multi-
valued consensus

Because the application is directly linked to the multivalued consensus algorithm it
is important to evaluate its performance, this is done by measuring the latency.

We expect the latency of the multivalued consensus to be higher than the binary
consensus latency, this is because the multivalued consensus is dependent on the
binary consensus algorithm and its performance. However, as in the case for the
latency of binary consensus we also expect the latency of the multivalued consensus
to grow significantly when more nodes are introduced into the system.

The results for the latency of the self-stabilizing multivalued consensus is presented
in the graph shown in figure 5.3. The first observation that is made is that the latency
for the setup of 11 nodes is considerably higher compared to the other setups, this
is likely because the hardware becomes the bottleneck in this system since it is not
made to be run on a single machine. The results for this comes from the average of
the first 100 consensuses which also explains why the difference is mostly noticeable
in the setup for 9 and 11 nodes, this is also something which impacts the throughput
of the emulated state-machine replication which we present in figure 5.4.

When we compare the results with our expectations they confirm what we were
expecting. However, the hardware bottleneck seems to be a bit excessive specifically
for 11 nodes. This is also confirmed when checking the results for the throughput
of the self-stabilizing state-machine replication presented in experiment 5.

31

5. Results

Figure 5.3: The result of experiment 3
showing the latency of the self-stabilizing

multivalued consensus.

Figure 5.4: A zoomed version of figure
5.3 showing latency for configurations

with 3 to 7 nodes.

5.1.4 Experiment 4: Latency of the global reset mechanism
Due to the fact that if the global reset mechanism is invoked and activated by
a participating node, the other nodes cannot progress in any other part of the
system because of overflow risks. Hence, the latency of the global reset mechanism
is important to measure in order to find out how long the service of the system will
be down in case the mechanism needs to be activated.

The global reset mechanism is expected to get remarkably slower with an increase of
participating nodes in the system. This is mainly due to the fact that the mechanism
requires all working nodes to state-transition in unison through the mechanism’s
state-machine in order to reset the corrupted variables. Hence, the slowest node will
be the deciding factor of the latency for the global reset mechanism.

The results of experiment 4 is shown in figure 5.5 and indicates a non-linear increase
of latency as the number of nodes in the distributed system increases. Due to the
fact that the mechanism requires messages to be sent to and received by every non-
faulty node in order to execute the reset state-transition in unison, the increase in
latency can be explained by the increase of number of messages needed to be sent
in order facilitate a transition with more participating nodes.

The experiment results correlate heavily with the anticipated results, indicating that
it is most likely the slowest working node which determines the latency of the entire
global reset mechanism.

32

5. Results

Figure 5.5: The result of experiment 4, showing the latency of the global reset
mechanism.

5.1.5 Experiment 5: Throughput of the self-stabilizing state-
machine replication

We measure the throughput of the self-stabilizing emulation of state-machine repli-
cation in order to get an understanding of the entire system’s performance. This
is due to the fact that the state-machine replication sits at the top of the stack
and utilizes every underlying algorithm to provide its service. The throughput will
give us an indication on how often the implemented state-machine will be able to
transition.

It is hard to anticipate the performance of the state-machine replication, mainly be-
cause there are several underlying algorithms whose performance affects the through-
put experiment. However, since the underlying stack seems to drop in performance
with the number of participating nodes, we expect similar results from the self-
stabilizing emulation of state-machine replication.

The results for the throughput of the self-stabilizing state-machine replication is
shown in figure 5.6, there are multiple observations which can be made. Firstly, the
performance is degrading when more nodes are introduced into the system. This
can be seen in the graph by observing that more deliveries are made during the same
time frame when there are fewer nodes in the system. Secondly, the performance
gets remarkably lower over time, which can be seen as the lines in figure 5.6 flatten
out when running time increase.

The results from the experiment conform to the expectation in general. The through-
put get lower with more participating nodes. However, we did not expect the

33

5. Results

throughput to be as low for the configurations with 9 and 11 nodes as is shown
in figure 5.6. It should be noted that the hardware limitations of the environment
can have some effects on the result from the larger configurations, resulting in more
extreme results. The main reasons as to why the throughput gets lower over time is
because there is a need for more rebroadcasts due to the nature of self-stabilization
and due to the fact that the buffers get filled up.

Figure 5.6: The result of experiment 5, showing the throughput of the
self-stabilizing emulated state-machine replication. Each circle represents a

delivery.

5.1.6 Experiment 6: Crashing of participating nodes
An important aspect of the implementation is the system’s ability to handle the
crashing of participating nodes. A system which suspends its operation once a
single node has crashed cannot be considered fault-tolerant.

The anticipated results from the experiment is for the implementation to continue
operating as normal while the number of crashed nodes are less than the smallest
required quorum in the system for progress. Once the number of crashed nodes
becomes larger than the smallest quorum, the system should come to a halt.

The results from experiment 6 showed that the system was able to operate accord-
ing to the specifications while the number of crashed nodes remained less than the
smallest required quorum in the system for progress. When the threshold was ex-
ceeded we observed that the state-machine was not able to come to any agreements
on the next state transition.

These results are according to specification of the algorithms in the stack. The

34

5. Results

self-stabilizing indulgent zero-degrading binary consensus [38] requires a quorum
of functioning nodes in the system in order to complete the two phases which are
a part of its operation. Once the number of crashed nodes exceeded the required
quorum, the distributed system came to a halt in the phases of the binary consensus
and thus the system came to a halt. This is expected since the binary consensus
algorithm is at the bottom of the stack meaning that the multivalued consensus and
the state-machine replication itself are dependent on it.

5.1.7 Experiment 7: Leader failure
A leader is required in order for the consensus algorithms to function. Hence, if the
current leader crashed due to a failure, the system should be able to elect a new
leader to continue operating.

We anticipate that once the current leader has crashed, the working nodes should
detect that the current leader is unable to respond to the failure detectors messages.
This information should also be propagated amongst the working nodes count[]
array through their messages. Once the number of suspicions on the current leader
exceeds the least suspicious node, this node will become the new elected leader of
the system.

By the process of suspending the current leader in the system as part of experiment
7, it was possible to validate the system’s ability to elect a new leader. Once a new
leader had been elected, it was shared amongst all non-faulty participating nodes
in the system. This is achieved through the propagation of the count[] array which
ensures that information about faulty nodes is shared with everyone in the system.

This result is correct in accordance with the description and specification of the
self-stabilizing failure detector [38]. Experiment 1 shows the latency of electing a
new leader with different configuration of nodes.

5.1.8 Experiment 8: Demonstrating recovery from synthetic
memory corruption

We evaluate the system’s ability to handle and recover from synthetic memory cor-
ruption injections. This evaluation allows us to evaluate the self-stabilizing aspects
of the implementation. The algorithms in the stack should all be able to return
the system to a legal state of execution in the case of an arbitrary transient fault,
which in this experiment is demonstrated through the injection of synthetic memory
corruption.

The system should be able to return to a legal state of execution within a finite time
window in the case of a synthetic memory corruption which causes the system to
illegitimately leave the legal state of execution.

Experiment 8 involved executing a piece of code which injected a synthetic memory
corruption into the operation of a non-faulty participating node in the system. More
specifically, into the object/instances of the binary and multivalued consensuses and

35

5. Results

the failure detector.

When the round number was modified in the active consensus instances, the progress
of the consensus agreement was undisturbed. The instance was still able to reach
an agreement which was shared amongst all working nodes.

When the count[] array was modified in the participating node’s failure detector it
was handled by the check() function. Once the corruption was injected into the
operation of the node, the self-stabilizing elements of the algorithm handled and
restored the system to a legal state of execution from the previous illegal state
which included the synthetic memory corruption.

The response from the system was correct in accordance with the described specifi-
cations of the algorithm [38, 39]. Within a finite number of execution rounds, the
algorithm was returned to a legal state and able to operate as normal without any
further faults.

5.2 Discussion
The results demonstrate that the implementation of our distributed system for self-
stabilizing emulation of state-machine replication is able to handle the faults pre-
viewed in the fault model (see section 1.2). This includes common problems found
in distributed systems operating over asynchronous networks, such as packet loss
and crashing of nodes. In accordance with those problems, we also demonstrated
that our implementation is able to handle arbitrary transient faults, and return the
system to a legal state of execution if a transient fault occurs within a finite time
window.

With the results from the performance related experiments, we are able to demon-
strate how our implementation’s performance scales decreasingly with the number
of participating nodes in the system. Most of the experiments and their included
figures show a trending non-linear or a worst case quadratic increase of latency of the
implemented system when the number of participating nodes are increased. This is
to be expected since the message-complexity of the algorithms in the stack increases
with the number of nodes. An increase of participating nodes correlates to a re-
markable increase of required received and sent messages in order to make progress
in reaching an agreement on the next state of the self-stabilizing state-machine repli-
cation.

Our first research question asked whether the recent research in the area of self-
stabilization and fault-tolerance was valid and correct. This question was answered
through our implementation and evaluation of the research. The performed exper-
iments and evaluation of the fault-tolerance and self-stabilization of the algorithms
in the stack [9, 38, 39] showed that the distributed system which the stack builds
is capable of handling the faults in the fault model. In the presence of common
distributed system faults such as crashing of nodes, our implementation was able to
continue working as long as the quorum requirement was met. Our evaluation also
demonstrated that our implementation was able to cope with arbitrary transient

36

5. Results

faults and return the system to a legal state of execution once such a fault occurred.
With this result, we have provided a demonstration that the recent research in the
area is valid and correct and that it in fact can be implemented in practice. Hence,
the research could be used in real-world systems in order to reach higher levels of
fault-tolerance.

Our second research question asked what the performance of our implementation is,
if the first research question turned out to be true. From our evaluation, we are able
to observe that the latency of our implemented distributed system grows at roughly
a quadratic rate in relation to the number of participating nodes. This can be
most distinctively noticed in experiment 2 and experiment 5 which evaluate two key
components of the algorithmic stack. A similar growth in latency can be observed in
the global reset mechanism which operates outside of the stack which provides the
state-machine service. However, for the self-stabilizing failure detector we do not
observe the same half-exponential growth in latency, this could be explained by the
fact that the algorithm only needs to wait for the fastest required quorum. It should
be noted that neither the recent researched algorithms nor our implementation of
said algorithms has placed a high focus on performance development. The main
focus has been to implement and validate the research in the area of self-stabilization
and fault-tolerance through the explained evaluation and experiments.

37

5. Results

38

6
Conclusion

With this thesis, we have provided an implementation of a stack containing re-
cently researched distributed algorithms from the area of self-stabilization and fault-
tolerance. Our implementation utilize self-stabilizing uniform reliable broadcast, self-
stabilizing failure detector, self-stabilizing indulgent zero-degrading binary consensus,
self-stabilizing multivalued consensus and a global reset mechanism in order to pro-
vide a fully self-stabilizing and fault-tolerant emulation of state-machine replication
service [9, 38, 39, 37]. The thesis has primarily focused on validating and evaluating
the provided research through this implementation.

The provided results from this thesis project can be used to demonstrate the validity
and correctness of the research. The experiments conducted within this thesis shows
that the independent algorithms as well as the system which the implemented stack
provides is able to handle common faults in distributed systems as well as arbitrary
transient faults. Our evaluation also shows that the latency of the implementation
grows at a half-exponential rate with the number of participating nodes in the
system. These results demonstrate that the recent advancements in the area of
self-stabilization and fault-tolerance are valid and can be used to increase the fault-
tolerance of future distributed systems.

Extensions
As an extension to the work presented in this thesis there is a possibility to improve
the quorum system. The extension reduces the probability of the communication
links being flooded with the different types of messages (alive, response, sync...)
sent by the system’s algorithms. The improvement can be done by measuring the
round trip time for each link-latency between every node present in the system and
only re-transmitting messages on the links once every such time frame. This would
allow the broadcasted messages to have a chance of reaching the destination node
and responding before a new broadcast of the same identical message is made to the
link again.

The improvement can be implemented in two ways. (1) It can be improved by using
a measured constant of the estimated round trip time of the link-latencies calculated
before running the algorithms presented in this thesis. (2) The second approach is
to dynamically calculate the estimated round trip time while the system is running.
The delay between each broadcast will then be set based on the upper-bound of the

39

6. Conclusion

previous time it took to get the responses for the specific messages. Both approaches
have pros and cons, the first approach completes the calculations before starting
the system’s algorithms, hence does not need to spend resources measuring and
calculating during the system’s operation. However, the second approach which
uses more resources during the operation of the algorithm is capable of dynamically
changing the rate of which messages are re-transmitted as the status of the links
changes over time.

In the current implementation of the system, only the total-order broadcast mes-
sages part of the self-stabilizing emulation of state-machine replication is utilizing
this improvement. Furthermore, the implementation utilizes the first approach of
measuring the upper-bound of the round trip times of the link-latencies before start-
ing the operation of the algorithms. It was purposely decided using this approach
during the project because the link-latencies do not change when running evaluation
locally.

40

Bibliography

[1] J. Beauquier, T. Hérault, and E. Schiller. Easy stabilization with an agent.
In WSS, volume 2194 of Lecture Notes in Computer Science, pages 35–50.
Springer, 2001.

[2] V. Buterin. Ethereum: A next-generation smart contract and decen-
tralized application platform. https://github.com/ethereum/wiki/wiki/
White-Paper, 2013.

[3] M. Canini, I. Salem, L. Schiff, E. M. Schiller, and S. Schmid. A self-organizing
distributed and in-band SDN control plane. In ICDCS, pages 2656–2657. IEEE
Computer Society, 2017.

[4] M. Canini, I. Salem, L. Schiff, E. M. Schiller, and S. Schmid. Renaissance: A
self-stabilizing distributed SDN control plane. In ICDCS, pages 233–243. IEEE
Computer Society, 2018.

[5] A. Casimiro, E. Ekenstedt, and E. M. Schiller. Self-stabilizing manoeuvre ne-
gotiation: The case of virtual traffic lights. In SRDS, pages 354–356. IEEE,
2019.

[6] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43:225–267, 1996.

[7] S. Dolev. Self-Stabilization. MIT Press, 2000.

[8] S. Dolev, C. Georgiou, I. Marcoullis, and E. M. Schiller. Self-stabilizing recon-
figuration. In Middleware Posters and Demos, pages 13–14. ACM, 2016.

[9] S. Dolev, C. Georgiou, I. Marcoullis, and E. M. Schiller. Self-stabilizing recon-
figuration. In NETYS, volume 10299 of Lecture Notes in Computer Science,
pages 51–68, 2017.

[10] S. Dolev, C. Georgiou, I. Marcoullis, and E. M. Schiller. Self-stabilizing recon-
figuration. In NETYS, volume 10299 of Lecture Notes in Computer Science,
pages 51–68, 2017.

[11] S. Dolev, C. Georgiou, I. Marcoullis, and E. M. Schiller. Practically-self-
stabilizing virtual synchrony. J. Comput. Syst. Sci., 96:50–73, 2018.

[12] S. Dolev, C. Georgiou, I. Marcoullis, and E. M. Schiller. Self-stabilizing byzan-

41

https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper

Bibliography

tine tolerant replicated state machine based on failure detectors. In CSCML,
volume 10879 of Lecture Notes in Computer Science, pages 84–100. Springer,
2018.

[13] S. Dolev, S. Gilbert, N. A. Lynch, E. Schiller, A. A. Shvartsman, and J. L.
Welch. Brief announcement: virtual mobile nodes for mobile ad hoc networks.
In PODC, page 385. ACM, 2004.

[14] S. Dolev, S. Gilbert, E. Schiller, A. A. Shvartsman, and J. L. Welch. Au-
tonomous virtual mobile nodes. In SPAA, page 215. ACM, 2005.

[15] S. Dolev, S. Gilbert, E. Schiller, A. A. Shvartsman, and J. L. Welch. Au-
tonomous virtual mobile nodes. In DIALM-POMC, pages 62–69. ACM, 2005.

[16] S. Dolev, A. Hanemann, E. M. Schiller, and S. Sharma. Self-stabilizing auto-
matic repeat request algorithms for (bounded capacity, omitting, duplicating
and non-fifo) computer networks. CoRR, abs/2006.05901, 2020.

[17] S. Dolev, R. I. Kat, and E. M. Schiller. When consensus meets self-stabilization.
J. Comput. Syst. Sci., 76(8):884–900, 2010.

[18] S. Dolev, O. Liba, and E. M. Schiller. Self-stabilizing byzantine resilient topol-
ogy discovery and message delivery - (extended abstract). In NETYS, volume
7853 of Lecture Notes in Computer Science, pages 42–57. Springer, 2013.

[19] S. Dolev, T. Petig, and E. M. Schiller. Self-stabilizing and private distributed
shared atomic memory in seldomly fair message passing networks. CoRR,
abs/1806.03498, 2018.

[20] S. Dolev and E. Schiller. Communication adaptive self-stabilizing group mem-
bership service. In WSS, volume 2194 of Lecture Notes in Computer Science,
pages 82–97. Springer, 2001.

[21] S. Dolev and E. Schiller. Communication adaptive self-stabilizing group mem-
bership service. IEEE Trans. Parallel Distributed Syst., 14(7):709–720, 2003.

[22] S. Dolev and E. Schiller. Self-stabilizing group communication in directed net-
works. Acta Informatica, 40(9):609–636, 2004.

[23] S. Dolev, E. Schiller, and J. L. Welch. Random walk for self-stabilizing group
communication in ad hoc networks. IEEE Trans. Mob. Comput., 5(7):893–905,
2006.

[24] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, Apr. 1985.

[25] C. Georgiou, R. Gustafsson, A. Lindhé, and E. M. Schiller. Self-stabilization
overhead: A case study on coded atomic storage. In NETYS, volume 11704 of
Lecture Notes in Computer Science, pages 131–147. Springer, 2019.

[26] C. Georgiou, O. Lundström, and E. M. Schiller. Self-stabilizing snapshot objects
for asynchronous failure-prone networked systems. In NETYS, volume 11704

42

Bibliography

of Lecture Notes in Computer Science, pages 113–130. Springer, 2019.

[27] C. Georgiou, I. Marcoullis, M. Raynal, and E. M. Schiller. Loosely-self-
stabilizing byzantine-tolerant binary consensus for signature-free message-
passing systems. CoRR, abs/2103.14649, 2021.

[28] Z. Georgiou, C. Georgiou, G. Pallis, E. M. Schiller, and D. Trihinas. A self-
stabilizing control plane for fog ecosystems. In UCC, pages 13–22. IEEE, 2020.

[29] R. Guerraoui. Indulgent algorithms (preliminary version). In Proceedings of the
Nineteenth Annual ACM Symposium on Principles of Distributed Computing,
PODC ’00, page 289–297, New York, NY, USA, 2000. Association for Comput-
ing Machinery.

[30] R. Guerraoui and M. Raynal. The information structure of indulgent consensus.
IEEE Trans. Comput., 53(4):453–466, Apr. 2004.

[31] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper: Wait-free coor-
dination for internet-scale systems. In Proceedings of the 2010 USENIX Con-
ference on USENIX Annual Technical Conference, USENIXATC’10, page 11,
USA, 2010. USENIX Association.

[32] S. Klabnik and C. Nichols. The Rust Programming Language. No Starch Press,
USA, 2018.

[33] L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, July 1978.

[34] L. Lamport. Paxos made simple. ACM SIGACT News (Distributed Computing
Column) 32, 4 (Whole Number 121, December 2001), pages 51–58, December
2001.

[35] O. Lundström and C. Kou. Self-stabilizing byzantine fault-tolerant state ma-
chine replication - rust implementation, experimental evaluation and applica-
tions in trucks, 2020.

[36] O. Lundström, M. Raynal, and E. M. Schiller. Self-stabilizing set-constrained
delivery broadcast (extended abstract). In ICDCS, pages 617–627. IEEE, 2020.

[37] O. Lundström, M. Raynal, and E. M. Schiller. Self-stabilizing uniform reliable
broadcast, 2020.

[38] O. Lundström, M. Raynal, and E. M. Schiller. Self-stabilizing indulgent zero-
degrading binary consensus. In International Conference on Distributed Com-
puting and Networking 2021, ICDCN ’21, page 106–115, New York, NY, USA,
2021. Association for Computing Machinery.

[39] O. Lundström, M. Raynal, and E. M. Schiller. Self-stabilizing multivalued con-
sensus in asynchronous crash-prone systems. European Dependable Computing
Conference (EDCC), 2021.

[40] O. Morales-Ponce, E. M. Schiller, and P. Falcone. How to stop disagreeing and

43

Bibliography

start cooperatingin the presence of asymmetric packet loss. Sensors, 18(4):1287,
2018.

[41] A. Mostefaoui, E. Mourgaya, and M. Raynal. Asynchronous implementation
of failure detectors. In 2003 International Conference on Dependable Systems
and Networks, 2003. Proceedings., pages 351–360, 2003.

[42] A. Mostéfaoui, M. Raynal, and F. Tronel. From binary consensus to multivalued
consensus in asynchronous message-passing systems. Information Processing
Letters, 73:207–212, 03 2000.

[43] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009.

[44] T. Petig, E. M. Schiller, and J. Suomela. Changing lanes on a highway. In
ATMOS, volume 65 of OASICS, pages 9:1–9:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2018.

[45] J. Postel. User datagram protocol. RFC, 768:1–3, August 1980.

[46] I. Salem and E. M. Schiller. Practically-self-stabilizing vector clocks in the
absence of execution fairness. In NETYS, volume 11028 of Lecture Notes in
Computer Science, pages 318–333. Springer, 2018.

[47] V. Savic, E. M. Schiller, and M. Papatriantafilou. Distributed algorithm for col-
lision avoidance at road intersections in the presence of communication failures.
In Intelligent Vehicles Symposium, pages 1005–1012. IEEE, 2017.

[48] M. A. Skoglund, T. Petig, B. Vedder, H. Eriksson, and E. M. Schiller. Static and
dynamic performance evaluation of low-cost RTK GPS receivers. In Intelligent
Vehicles Symposium, pages 16–19. IEEE, 2016.

[49] A. Wegener, E. M. Schiller, H. Hellbrück, S. P. Fekete, and S. Fischer. Hov-
ering data clouds: A decentralized and self-organizing information system. In
IWSOS/EuroNGI, volume 4124 of Lecture Notes in Computer Science, pages
243–247. Springer, 2006.

[50] J. Zhang and W. Chen. Bounded cost algorithms for multivalued consensus
using binary consensus instances. Inf. Process. Lett., 109(17):1005–1009, Aug.
2009.

44

DEPARTMENT OF SOME SUBJECT OR TECHNOLOGY
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden
www.chalmers.se

www.chalmers.se

	List of Figures
	Introduction
	Project Purpose
	Fault Model
	What is Emulated State-Machine Replication?
	What is Consensus?
	What is Unreliable Failure Detection?
	What is Self-Stabilization?
	What is a Global Reset Mechanism?
	Related Work
	Our Contribution
	Document Structure

	The System
	The System Architecture
	User Datagram Protocol
	Self-Stabilizing Uniform Reliable Broadcast
	Self-Stabilizing Failure Detector
	Self-Stabilizing Zero-Degrading Indulgent Binary Consensus
	Self-Stabilizing Multivalued Consensus
	Emulated State-Machine Replication using Total-Order Broadcast
	Global Reset Mechanism

	Implementation of the System
	The Programming Language RUST
	Threads
	Algorithm
	Communication

	Evaluation
	Evaluation Environment
	Experiment Plan
	Experiment description
	Latency
	Throughput
	Self-stabilization and fault-tolerance

	Results
	Experiments results
	Experiment 1: Latency of the self-stabilizing failure detector
	Experiment 2: Latency of the self-stabilizing binary consensus
	Experiment 3: Latency of the self-stabilizing multivalued consensus
	Experiment 4: Latency of the global reset mechanism
	Experiment 5: Throughput of the self-stabilizing state-machine replication
	Experiment 6: Crashing of participating nodes
	Experiment 7: Leader failure
	Experiment 8: Demonstrating recovery from synthetic memory corruption

	Discussion

	Conclusion
	Bibliography

