
Automated generation of scaffolding
topologies
Master’s thesis in Systems, Control and Mechatronics

Markus Jernek & Oliver Johansson

DEPARTMENT OF ELECTRICAL ENGINEERING

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2022
www.chalmers.se

www.chalmers.se




Master’s thesis 2022

Automated generation of scaffolding topologies

Markus Jernek & Oliver Johansson

Department of Electrical Engineering
Division of Communications, Antennas, and Optical Networks

Chalmers University of Technology
Gothenburg, Sweden 2022



Automated generation of scaffolding topologies
Markus Jernek
Oliver Johansson

© Markus Jernek & Oliver Johansson 2022.

Supervisor: Björn Langborn, Doctoral student in Hardware-constrained communi-
cations
Examiner: Erik Ström, Head of Division of Communications, Antennas and Optical
Networks

Master’s Thesis 2022
Department of Electrical Engineering
Division of Communications, Antennas, and Optical Networks
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Scaffolding solution produced by the developed algorithm

Typeset in LATEX, template by Kyriaki Antoniadou-Plytaria
Printed by Chalmers Reproservice
Gothenburg, Sweden 2022

iii



Automated generation of scaffolding
Markus Jernek
Oliver Johansson
Department of Electrical Engineering
Chalmers University of Technology

Abstract
This thesis presents the development and performance of an algorithm consisting of
a multi-objective genetic algorithm, used in conjunction with linear programming,
to solve scaffold optimization problems. This is done in order to simplify the design
process and automatically generate optimized solutions to increase safety for peo-
ple within the scaffolding industry. To the author’s best knowledge, no equivalent
algorithm exists for this application. Three main objectives were selected for the
optimization and evaluation of the generated scaffolding solution, namely material
usage, scaffolding length to wall length, and excessive scaffolding over the roof edges.

By evaluating the performance of the algorithm both visually and quantitatively
to that of scaffolding created manually by users of the ScaffCalcs web application,
the results reflected a robust and competitive solution for square buildings with a
maximum total wall distance of 48 meters and 1 scaffolding roof story, while time-
constrained to 2 seconds, implying a reduction in generation time by a factor of
270. For larger buildings with a total wall distance of 120 meters and 3 scaffolding
roof stories, the algorithm was not allowed to fully converge with an imposed time
constraint of 2 seconds, but on average generated equivalent solutions compared to
the users’, with the presence of outliers that would prevent a guaranteed optimal
solution in every run. By lifting the time constraint for larger buildings, the algo-
rithm generated optimal solutions with 96% repeatability for an average generation
time of 40 seconds. Thus, an algorithm has been successfully developed for the
automatic generation of scaffolding topologies, which generates competitive results
in a time-efficient manner.

Keywords: MOGA, LP, Scaffolding, Optimization, NSGA-II,

iv





Acknowledgements
First of all, we would like to extend our gratitude to our supervisor Björn Langborn
for his continuous support and assistance throughout this thesis.

Many thanks to the members of ScaffCalc who have truly welcomed us in a smashing
fashion and invested both time and resources to assist us in our work.

Markus Jernek & Oliver Johansson, Gothenburg, June, 2022

vi





List of Acronyms

Below is the list of acronyms that have been used throughout this thesis listed in
alphabetical order:

AFS Swedish Work Environment Authority’s Statute Book
FEM Finite Element Method
GA Genetic Algorithm
LP Linear Programming
MOGA Multi Objective Genetic Algorithm
MOOP Multi Objective Optimization
SiS Swedish Standard Institute
SOGA Single Objective Genetic Algorithm



List of Scaffolding terms

Below is the list of scaffolding terms that have been used throughout this thesis:

Diagonal brace Further diagonal support linked between corners
Decks Component used for standing on which are attached to ledgers
Deck gap Height between two decks
Ledger Horizontal link for scaffolding between standards
Consoles Scaffold module for closing scaffolding gaps to wall facades
Standards Vertical support of the scaffolding
Roof-fit Objective name for distance between scaffolding compartment and

roof edge
Wall-fit Objective name for distance between scaffold and wall



Contents

List of Acronyms viii

List of Figures xii

List of Tables xv

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Aim and Research Questions . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Outline of Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theory 4
2.1 Single Objective Optimization . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Deterministic and Stochastic Optimization . . . . . . . . . . . . . . . 6
2.3 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Fitness Value . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.4 Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.5 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.6 Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.7 Elitism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Multi-Objective Optimization . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Normalization of MOGA-Values . . . . . . . . . . . . . . . . . . . . . 18
2.6 Scaffolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Methodology 20
3.1 Milestones for Algorithmic Construction . . . . . . . . . . . . . . . . 20

3.1.1 Milestone 1 - Length Optimization . . . . . . . . . . . . . . . 20
3.1.2 Milestone 2 - Length and Material Optimization . . . . . . . . 21
3.1.3 Milestone 3 - Connecting Scaffolds Around Multiple Walls . . 22
3.1.4 Milestone 4 - Optimizing Scaffolds on Gable Walls . . . . . . . 23

3.2 Evaluation of Algorithmic Performance . . . . . . . . . . . . . . . . . 26
3.2.1 Locate Optimal Number of Generations . . . . . . . . . . . . 26
3.2.2 Visual Comparison Vs User-Built Scaffolds . . . . . . . . . . . 28
3.2.3 Quantitative Comparison of Scaffolding Generation . . . . . . 29

x



Contents

3.2.4 Time-Unconstrained Algorithmic Performance . . . . . . . . . 29
3.3 Algorithmic Logic for 2D Buildings . . . . . . . . . . . . . . . . . . . 30

3.3.1 Wall Sequence Processing . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Constrained Material Inventory . . . . . . . . . . . . . . . . . 33

4 Algorithm 34
4.1 Algorithm Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Pymoo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.2 PuLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Minimization problem . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.1 Objective functions . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.2 Fitness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.3 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.4 Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.5 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.6 Elitism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Scaffolding Solutions Filtering . . . . . . . . . . . . . . . . . . . . . . 44

5 Results 45
5.1 Locate Optimal Number of Generations . . . . . . . . . . . . . . . . . 45

5.1.1 Small Test Case . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.2 Medium Test Case . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1.3 Large Test Case . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Visual Comparison Vs User-Built Scaffolds . . . . . . . . . . . . . . . 50
5.2.1 Visual Comparison O1, Constructor Vs Algorithm . . . . . . . 50
5.2.2 Visual Comparison O2, Constructor Vs Algorithm . . . . . . . 52

5.3 Quantitative Comparison of Scaffolding Generation . . . . . . . . . . 53
5.3.1 Test Case B1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.2 Test Case B2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4 Inventory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.5 Time-unconstrained Optimization . . . . . . . . . . . . . . . . . . . . 59

5.5.1 Test Case B1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.5.2 Test Case B2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Discussion 61
6.1 Algorithmic Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Effect of a Constrained Inventory . . . . . . . . . . . . . . . . . . . . 63
6.3 Comparison with Existing Software . . . . . . . . . . . . . . . . . . . 64
6.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.5 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7 Conclusion 66

Bibliography I

xi



List of Figures

2.1 Visualization of local minimum, strict local minimum and global min-
imum, all dependent on the neighborhood ε. . . . . . . . . . . . . . . 6

2.2 Graphical representation of how roulette wheel selection is conducted. 10
2.3 Graphical representation of how tournament selection is conducted. . 11
2.4 Visualization of a single-point crossover between two parents, with

the dashed lines symbolizing the randomly generated crossover point. 12
2.5 A visual representation of how the scramble mutation operation works,

with (p) being the probability of mutation. . . . . . . . . . . . . . . . 12
2.6 A visual representation of how the random resetting operation works,

with (p) being the probability of mutating a given gene i. . . . . . . 13
2.7 A visualization of how the ranking of solutions can be ordered and

placed into different front-levels, where PF1 is the front containing
the non-dominated solutions (3) and (5). . . . . . . . . . . . . . . . . 15

2.8 Illustration of how the crowding distance is calculated for a solution i. 16
2.9 A basic outline of the steps involved in NSGA-II, which displays the

formation of Rt = Pt∪Qt, that undergoes non-dominated sorting and
crowding distance sorting to form a new parent population Pt+1. . . . 17

2.10 Common scaffolding structure with commonly used names for scaf-
folding dimensions and components. . . . . . . . . . . . . . . . . . . . 19

3.1 Milestone 1, displaying an example of a successful solution to a SOGA
problem where length is the only objective function. . . . . . . . . . . 21

3.2 Milestone 2 - displaying an example of a successful solution from
a MOGA with two objective functions, being; length and material
optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Milestone 3, displays a successful example of connecting multiple scaf-
folding compartments around multiple wall facades. . . . . . . . . . . 23

3.4 Milestone 4, displays an example of successful implementation of scaf-
folds to allow for roof access. . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Milestone 4, visualization of additional roof scaffolding access with
given heights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6 Milestone 4, comparison between an optimized and a poor scaffold
solution of minimizing distance to the roof edges. . . . . . . . . . . . 26

3.7 Distribution of total scaffold length surrounding four walls from Scaf-
fCalcs database with marked lines for small, medium and large scaf-
folding thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

xii



List of Figures

3.8 Reference model of wall 1 used for all three test cases when locating
the optimal number of generations. . . . . . . . . . . . . . . . . . . . 27

3.9 Reference model used for both test cases when members from Scaf-
fCalc are to construct scaffolds. . . . . . . . . . . . . . . . . . . . . . 29

3.10 Construction geometry a scaffold around two walls sharing an out-
wards corner with wall length as Wwall and wall distance as Ldistance
and corner piece dimensions as Lcorner. . . . . . . . . . . . . . . . . . 31

3.11 Scaffolding sharing inwards corner with wall length as Wwall and wall
distance as Ldistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.12 Displays how wall sequencing would be performed depending on in-
wards/outwards corners. . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 First instance of compartment geometry for objective 3. . . . . . . . . 36
4.2 Second instance of compartment geometry for objective 3. . . . . . . 37

5.1 Average time for one run over 50 independent runs, with 30, 50, and
75 generations for the small test case . . . . . . . . . . . . . . . . . . 46

5.2 Normalized average sum from objectives, 1,2, and 3, for 30, 50, and
75 in populations for the small test case . . . . . . . . . . . . . . . . 46

5.3 Contour plot for 10, 100, and 200 generations displaying the average
Pareto result from 50 independent runs on the small test case with 30
selected as population size. Here, obj1 = normalized length-fit, obj2
= normalized material, and obj3 = normalized roof-fit. . . . . . . . . 47

5.4 Average time for one run over 50 independent runs, with 30, 50, and
75 generations for the medium test case . . . . . . . . . . . . . . . . . 47

5.5 Normalized average sum from objectives, 1,2, and 3, for 30, 50, and
75 in populations for the medium test case . . . . . . . . . . . . . . . 47

5.6 Contour plot for 10, 100, and 200 generations displaying the average
Pareto result from 50 independent runs on the medium test case with
30 selected as population size. Here, obj1 = normalized length-fit,
obj2 = normalized material, and obj3 = normalized roof-fit. . . . . . 48

5.7 Average time for one run over 50 independent runs, with 30, 50, and
75 population for a large building . . . . . . . . . . . . . . . . . . . . 49

5.8 Normalized average sum from objectives, 1,2, and 3, for 30, 50, and
75 in populations for a large building . . . . . . . . . . . . . . . . . . 49

5.9 Contour plot for 10, 100, and 200 generations displaying the average
Pareto result from 50 independent runs with 30 selected as population
size. Here, obj1 = normalized length-fit, obj2 = normalized material,
and obj3 = normalized roof-fit. . . . . . . . . . . . . . . . . . . . . . 50

5.10 front view of wall 3 built by the constructor on test case O1 . . . . . 51
5.11 front view of wall 3 generated by the algorithm on test case O1. . . . 51
5.12 Visualization of the contractors scaffold construction for test object

O2, viewed from wall 1. . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.13 Visualization of the algorithmic scaffold generation for test object O2,

viewed from wall 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.14 Visualization of best user made modeling of scaffolding for building

B1 viewed from front. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

xiii



List of Figures

5.15 Visualization of the algorithmic scaffold generation for test object B1,
viewed from wall 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.16 Objective values distribution for the selected solution from 100 run
for B2 building dimensions using the genetic algorithm for wall 1 and 3. 55

5.17 Front-side view of best user modeled scaffolding around building B2. . 56
5.18 Front-side view of best algorithm generated scaffolding around build-

ing B2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.19 Solution from an constrained inventory run on test case B2. . . . . . 57
5.20 Objective values distribution from 100 runs using non-time related

termination criteria for building B1 regarding wall 1 and 3. . . . . . . 59
5.21 Objective values distribution from 100 runs using non-time related

termination criteria for building B2 regarding wall 1 and 3. . . . . . . 60

xiv



List of Tables

2.1 Three different examples of value encoding are highlighted in an at-
tempt to show the power and diversity in value encoding. . . . . . . . 9

3.1 Available ledge lengths, in meters, for different material suppliers. . . 21
3.2 Metrics presented in meters for all lengths, given for small, medium,

and large building used for locating the optimal number of test cases. 27
3.3 Displays the Utopian values as well as the maximum values used when

normalizing the data for each test case for wall 1. . . . . . . . . . . . 28
3.4 Metrics for object O1, and O2 where all lengths are given in meters. . 29
3.5 Metrics for test case B1, and B2 where all lengths are given in meters. 29

5.1 Amount of scaffolding compartments used for each wall within the
contractors project with time taken for the project modeling of O1. . 50

5.2 Amount of scaffolding compartments used for each wall from 10 in-
dependent runs performed with 250 generations and 30 in population
on the reconstructed test object O1. . . . . . . . . . . . . . . . . . . . 51

5.3 Amount of scaffolding compartments used for each wall within the
contractors project with time taken for the project modeling of test
object O2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4 Algorithmic results from 10 independent runs performed with 240
generations and 30 in population on the reconstructed test object O2. 52

5.5 Best and average objective metrics for multiple user modeling and
algorithm of B1 building for each wall number in parenthesis. . . . . . 54

5.6 Best and average objective metrics for multiple user modeling and
algorithm of B2 building for each wall number in parentheses. . . . . 55

5.7 Table showing the unlimited amount of each ledge length that was
available. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.8 Table displaying the limited amount of each ledge length that is avail-
able before the run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.9 Table of remaining amount of ledge lengths after generated scaffold
on constrained inventory. . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.10 Summation of the generated solutions with a constrained and uncon-
strained inventory for test case B2. . . . . . . . . . . . . . . . . . . . 58

5.11 Metrics for the average objectives generated by 100 runs from the
algorithm for time unconstrained test case B1. . . . . . . . . . . . . . 59

5.12 Metrics for the average objectives generated by 100 runs from the
algorithm for time unconstrained test case B2. . . . . . . . . . . . . . 60

xv



1
Introduction

In this chapter, a brief background to the building industries usage of scaffolds are
introduced, combined with some additional methods of how the industry goes about
retrieving information and calculations about scaffolds. Thereafter, current soft-
ware available for visualizing and performing calculations on scaffolds is presented,
followed by the main aim of this thesis and the proposed research questions. The
chapter is concluded by discussing the delimitation of the thesis and an overview of
the remaining chapters.

1.1 Background
Every year, a total of 50 scaffolds collapse, with more than 200 people injured due
to unsafe scaffolding projects, in Sweden alone [1]. The majority of injuries are due
to falls or faulty scaffolding, both of which can be the result of incorrect scaffold
modeling. This in turn can be the result of unqualified scaffolding entrepreneurs,
incorrect use of components, or incorrect calculations, something that current digi-
tal tools would help reduce.

In today’s construction, scaffolding companies are hired to deliver scaffolding so-
lutions to building projects. Such projects can include painting and facade renova-
tion, as well as new construction. One of the ways scaffolding engineers can model
the scaffold is to do iterative sketching on a building blueprint with regard to the
available scaffolding modules. To guarantee scaffolding safety, they must follow the
Swedish industry guidelines and safety regulations mentioned in AFS and SiS, while
modeling which have recommendations on scaffolding dimensions related to forces,
as well as anchoring recommendations [2], [3]. Another way to model and plan scaf-
folding for these scaffolding companies is to utilize available software. Most software
tools include options for modeling the building and then use graphical tools to place
scaffolding modules to match the dimensions of the building. The software and its
scaffolding modules are either modeled by following the regulations of AFS and SiS
or are totally modifiable to adjust for the scaffolding contractors’ own preference or
expertise.

Existing software utilizes built-in CAD tools to place bodies of structures/buildings,
for which scaffolding modules can be placed manually around said building in a visual
representation of reality. By utilizing these software, it is possible to retrieve infor-
mation that would be of interest to the user. Some software provides calculations

1



1. Introduction

for wind forces with needed reinforcement recommendations, and general practice
is to include a tableau of materials needed for the modeled scaffolding. Scaffolding
companies can therefore rely on the software to provide sufficient calculations and
dimensions of components according to safety guidelines such as AFS [2]. These
features make the software very attractive to use for construction companies as it
minimizes both time and money spent on scaffolding planning, whilst maintaining
and improving upon the safety of the scaffolds by more easily providing and shar-
ing knowledge within construction companies regarding scaffolding modeling and
set-ups.

Existing computer aided work
In the current market, several software products are available to provide an easier
solution for the scaffold market. Some of the software provides an automated sugges-
tion of a scaffold for the customer [4][5][6]. Two of these three automatic generation
software utilize very easy optimization regarding wall-fitting of scaffolding, by using
the longest length available for the whole wall and switching out one ledger for a
smaller for a better fit at the end. The third option of these software uses the same
principle but can switch out more than one ledger to another to achieve a good fit.
There are also other software that exist with the only option of manually modeling
the scaffold in a digital environment [7][8][9][10].

There have been studies carried out to automatically generate scaffolding surround-
ing wall faces, as well as optimize the planning phase of scaffolding setups [11].
These studies have not necessarily focused on optimizing scaffolding on separate
walls and how well the scaffold fits the wall, but rather operate as a visualization
and planning tool to minimize work, scaffold transportation, and cost.

These software bridges the gap between current scaffolding modeling methods and
complete digitization within the construction industry. Existing software is consis-
tent with providing clear visualization with different scaffolding module modeling
techniques. However, to our knowledge, current software does not perform any
multi-objective optimization toward material minimization with respect to the fit-
ting of the scaffold to the facade, which in turn would increase safety by reducing
loads and scaffolding gaps while maintaining good affordability and low material
requirement.

2



1. Introduction

1.2 Aim and Research Questions
The aim of this thesis is to construct and use an algorithm consisting of a Multi-
Objective Genetic Algorithm (MOGA) and Linear Programming (LP) to be used
to solve scaffold optimization problems that users can encounter in the ScaffCalcs
web application [10]. The constructed algorithm should automatically generate a
scaffolding solution around specified squared building dimensions that will be visu-
alized for the user. The research questions that have been posed are then:

- Can the scaffolding solution generated from the developed algorithm improve
upon a manual user solution, with respect to material usage and overall fit,
while constrained to a 2 second generation time?

- How large of a performance increase with respect to the generation of optimal
solutions would the algorithm experience if the time constrain was lifted?

1.3 Delimitations
This thesis will not perform any new calculation for safety measures or make any
modifications to the general structure of a scaffolding compartment with respect to
safety or load resistance, which is not already implemented in ScaffCalcs software.
The construction pattern implemented is in accordance with the Swedish Work
Environment Authority Statute Book (AFS) [2] and will be followed in this thesis.
The generated solution from the algorithm will not undergo any load calculations,
but will focus on optimizing the defined objectives. The work is limited to the current
version of the ScaffCalc software with respect to visualization, data collection, and
potential building patterns.

1.4 Outline of Report
To further familiarize the reader with optimization and genetic algorithms, Section 2
highlights the important theory behind these concepts, as well as the difference be-
tween single and multi-objective optimization. Familiarizing the reader with the
algorithmic foundation and fundamental operators used is essential to understand
the implications of the generated results. Section 3 outlines the different methods
used to evaluate the performance of the algorithm, as well as providing an under-
standing of the algorithmic logic. Section 4 provides a detailed understanding of the
algorithmic structure and the formulation of constraints. Sections 5 and 6 present
and discuss the results generated by performing the tests established in Section 3.
Finally, Section 7 provides the conclusion of the most important findings throughout
this thesis.

3



2
Theory

In this chapter a thorough introduction to optimization is provided, followed by the
distinction between deterministic and stochastic optimization. This is accompanied
by an introduction to evolutionary algorithms, where a clear description of a ge-
netic algorithm will be defined along with all its operators. The chapter is then con-
cluded by applying the discussed concept to define a multi-objective genetic algorithm,
namely: NSGA-II, followed by a common normalization method for multi-objective
problems.

2.1 Single Objective Optimization
Optimization is commonly referred to as finding the optimal solution to an optimiza-
tion problem by minimizing or maximizing a function over a given set of feasible
alternatives, Ω. Generally, this is formulated as

min
x

f(x)

s.t. x ∈ Ω .
(2.1)

where f is referred to as the objective function and will be considered for problems
over Rn which further implies f : Rn → R. The vector x contains n decision
variables such that x = [x1, x2, ...xn]> ∈ Rn and will vary over the feasible set of
alternatives to either minimize or maximize the objective function. Whether to
minimize or maximize the objective function is generally problem dependent, but
the difference between the two approaches is merely separated by the multiplication
of -1, establishing the following relation.

min
x
−f(x) ≡ max

x
f(x) . (2.2)

Furthermore, most optimization problems only allow x to take on values within a
certain range or region. This is most often referred to as the feasible region that
contains the full set of alternatives for the decision variables over which the objective
function can be optimized. The feasible region is mapped by the construction of
constraints, which consists mainly of inequality/equality constraints, also known as
constrained functions. In general, inequality functions and equality functions are
defined as (2.3) and (2.4).

gi(x) ≤ 0, i = 1, . . . , q (2.3)

4



2. Theory

hi(x) = 0, i = 1, . . . , p . (2.4)

By applying the constraints to the problem, all feasible points must satisfy all the
p + q constraints, and by doing so Ω in (2.1) becomes the subset of Rn containing
all feasible points, Ω ⊆ Rn. If, however, Ω = Rn then the problem is referred to as
an unconstrained optimization problem.

Local and Global Optima
The objective of optimization is to locate the global optima of a given problem.
To know whether the found solution is a local or global optima, it is important to
establish their definitions.

Local Minimum
Assuming the same conditions as in (2.1) it is possible with a strong inspiration to
the definition of a strict local minimum as presented in [12] to form the expression
for a local minimum as:

∃ ε > 0 : f(x) ≥ f(x∗) ∀x ∈ Ω ∩ {x : ||x− x∗|| ≤ ε} . (2.5)

In (2.5) an arbitrary neighborhood ε is defined within the set Ω and for the point
x∗ to be considered a point of local minimum, it has to satisfy the constraint of
constructing the lowest objective within the selected neighborhood, thus fulfilling the
constraint f(x) ≥ f(x∗). Assuming a one-dimensional problem, several points within
the objective function could occur that satisfy (2.5), e.g., a horizontal objective
function that defines the neighborhood ε, as shown in Figure 2.1 between x3 and x4.
A harsher condition for optimality is a strict local minimum.

Strict Local Minimum
A continuation on (2.5) is displayed in (2.6), and highlights a point x∗ that strictly
defines the lowest objective and thus claims strict local optima within the neighbor-
hood ε [12].

∃ ε > 0 : f(x) > f(x∗) ∀x ∈ Ω ∩ {x : ||x− x∗|| ≤ ε}, x 6= x∗ . (2.6)

As highlighted in Figure 2.1 x1 and x2 are two strict local minimums since there
exist an ε > 0 for each point that satisfies (2.6). Any x within the interval [x3, x4]
is a local minimum but not a strict minimum as there does not exist an ε > 0 that
fulfill the condition in (2.6).

5



2. Theory

Global Minimum

f(x)

x1 x2 x3 xx 1 x 2 x 3
x4

Figure 2.1: Visualization of local minimum, strict local minimum and global min-
imum, all dependent on the neighborhood ε.

Similar to the local minimum, the global and strictly global minimum is defined
in the set Ω, constructing the following equation for a global and strictly global
minimum:

f(x) ≤ f(x∗) ∀x ∈ Ω (2.7)

f(x) < f(x∗) ∀x ∈ Ω . (2.8)

In Figure 2.1 a potential global minimum is found at x2, but x1, x3, x4 cannot be a
global minimum.

Relationship Between Minimum and Maximum
Using (2.2) the local and global maximum of a function could be found by reversing
all the inequality signs in (2.5)-(2.8). Furthermore, a function is never always guar-
anteed to locate one optima; a good example of this would be the function sin(x)
that consists of several global minimum and maximum, and thus no strict global
optima.

2.2 Deterministic and Stochastic Optimization

Mathematical Optimization
Mathematical optimization is a deterministic approach to solving optimization prob-
lems and contains several methods of optimization tools depending on the problem
at hand. One such method is linear programming, which is a powerful tool that has

6



2. Theory

been present for several decades and is widely used in a variety of different fields [13].
When utilizing linear programming the objective function, equality and inequality
constraints have to be linear and the set of all feasible points is a convex polytope,
that is, a set of points that satisfy a finite number of affine inequalities. The general
structure for linear programming is defined in canonical form as follows.

minimize
x

c>x

subject to a>i x + bi ≤ 0, i = 1, . . . , q
and xi ≥ 0, i = 1, . . . , n .

(2.9)

Here, c, x, and a are all vectors of dimensions n, where x represent the unknown
variables that will take values in the feasible set Rn. A common special case of (2.9)
is linear integer programming where xi ∈ Z. The constraint applied in xi to only take
positive values from (2.9) is motivated by the majority of problems mainly solved by
linear optimization. Such being the optimization of parts in production, the number
of stops in a complex routing problem, where in most cases the quantities involved
are non-negative integers [12].

Stochastic Optimization
The major difference between deterministic and stochastic optimization is the in-
troduction of randomness to the optimization problem, an element that is utilized
to gather a large range of different solutions to the optimization problem and in-
fluence the algorithm to converge toward an optima. Usually, the random element
is introduced in the objective function or the constraint set [14]. Similar to mathe-
matical optimization, stochastic optimization is built upon selecting a set of decision
variables to optimize and adopting an appropriate algorithm to carry out the opti-
mization. If the given optimization problem is small and linear, then it is usually
common practice to employ linear programming. However, if the problem is complex
and highly non-linear then stochastic optimization is favored due to the element of
randomness that can assist the stochastic optimization algorithm from escaping a
local optima and instead find a global optima. Something that is common as the
complexity of the problem grows. Furthermore, higher-dimensional problems con-
taining several decision variables or objective functions are generally associated with
non-trivial constraints where the usage of stochastic optimization algorithms are fa-
vored over the deterministic optimization [15]. Similar, high-dimensional problems
may contain multiple local optima in which deterministic algorithms are more prone
to get stuck [16].

The field of stochastic optimization is a large sphere containing several optimization
algorithms that have been developed over the years for a variety of different fields
[14]. One such domain is evolutionary algorithms that contain optimization algo-
rithms inspired by Darwinism and are population-based metaheuristics [17]. In the
next section, the concept of evolutionary algorithms will be further explored.

7



2. Theory

2.3 Genetic Algorithm
Evolutionary algorithms contain a large number of algorithms intended to solve
optimization problems by simulating biological processes encountered during evo-
lution. One such occurrence is the special case of genetic algorithms (GA) that
mimic biological evolution but in the domain of numbers. Similarly to Section 2.1
the objective function and decision variables for a given problem that is intended to
be solved with the help of an evolutionary algorithm can be structured in a similar
way. Once the problem has been identified and correctly formulated, the selection
of components and operators has to be recognized along with the choice of realistic
hyperparameters which all will be problem dependent. When using evolutionary
algorithms, there is no choice of parameters that generate an optimal solution for
each and every problem; hence, it is important to understand the usage and effect
of these different operators and parameters, which will be discussed in more detail
in this section.

Initialization
The first step in solving an optimization problem utilizing a GA is to initialize a
population of chromosomes xi where i = 1, 2, . . . , N , with N being the number of
individuals in a population. There are multiple approaches when conducting the
initialization, and in most cases it is problem-dependent, which implies that it is
vital to select the corresponding encoding operator of the GA that supports the
problem at hand.

2.3.1 Encoding
The premise of utilizing the encoding operator is to enable the mapping of objective
variables to a string that can easily be interpreted by the GA. Over the years, several
encoding operators have been developed; however, due to the nature of this work,
the most suitable approach would be that of value encoding.

Value Encoding
Value encoding is utilized when the search space allows for complicated values, such
as real numbers, and when the use of binary coding would be very difficult. The
chromosomes in value encoding take the form of strings that can contain a vast
variety of values, ranging from real numbers to characters to some complicated
object, as demonstrated in Table 2.1.

8



2. Theory

Table 2.1: Three different examples of value encoding are highlighted in an attempt
to show the power and diversity in value encoding.

Chromosome A 2.3456 1.0145 8.0975 2.1235 9.1975 5.5576
Chromosome B ACTGGAOMHEKMNENFJANEBCADDFIEFF
Chromosome C (left), (forward), (forward), (back), (right), (forward)

2.3.2 Fitness Value
The objective function is problem-dependent and constructed in a way similar to that
displayed in (2.1). Evaluation of a certain chromosome is carried out by minimizing
or maximizing a given objective function f(xi) for all decision variables in that
chromosome. When evaluating the objective function, it is feasible to rank each
chromosome by assigning it a fitness value. Furthermore, the fitness value will play
an important role in later steps during the GA, as it is an output that reflects the
goodness or fitness of a given solution to the optimization problem. In (2.10) the
general equation for a chromosomes’ fitness value is defined.

Fi = f(xi) . (2.10)

2.3.3 Selection
The selection process is a stochastic method designed to reflect the breeding that
occurs between generations in nature, where the fittest parents have a greater proba-
bility of mating and forming an offspring, while the worst still have a small probabil-
ity of being selected. It is crucial that the algorithm does not completely disregard
the worst individuals as this would restrict the search process to a local domain, hin-
dering the algorithm from converging towards a global optima [18]. Furthermore,
weaker individuals can show features that can be extremely useful after the recom-
bination steps. Similarly to Section 2.3.1, there are several viable selection methods
that all display different methods to select suitable parents for breeding. However,
all techniques reflect the biological phenomenon of "survival of the fittest". Dur-
ing this section two different selection methods will be presented, namely: roulette
wheel and tournament selection.

Roulette Wheel
Roulette wheel selection builds upon assigning each individual a fitness value that
is intended to reflect the probability of being chosen as a parent. Thus, the larger
the fitness an individual displays, the higher the probability of being chosen, and
the action of spinning the wheel can be seen as the selection process. When imple-
menting this selection method, the wheel itself acts as a metaphor, while in practice
it is the cumulative relative fitness value, φj, that is determined for each parent.

9



2. Theory

Figure 2.2: Graphical representation of how roulette wheel selection is conducted.

φj =
∑j

i=1 Fi∑N
i=1 Fi

, j = 1, . . . , N . (2.11)

In (2.11) Fi is the fitness of individual i (see (2.10)), this cumulative fitness sum
is summed across the entire population N . To determine which parent to select, a
random number r ∈ [0, 1] is generated and the individual with the smallest j such
that (2.12) is satisfied and is then selected.

φj > r . (2.12)

As shown in Figure 2.2, it can be easier to visualize the roulette wheel as a domain in
[0, F ] where F is the numerator in (2.11), with individuals placed along its horizontal
axis, from which an individual’s size within this domain is proportional to its fitness.
This method of selection allows for all individuals to run a chance of being selected
and propagated through the GA. However, the risk of premature convergence to local
optima is present due to the nature of fitness-proportionality where individuals with
dominant fitness will dictate the future of the population [19].

Tournament Selection
In tournament selection, the process of selecting a suitable parent emulates the typ-
ical competition between animals better than that seen for roulette wheel selection.
This method involves the random selection of tn individuals from the population,
most commonly referred to as the tournament size, that will be "competing" for the
role of being selected as a parent.

The process of selecting a single individual for tournament selection occurs with a
probability of 1

N
, which implies that no sorting of fitness values is required. Once

tn individuals have been selected, they enter the tournament state where a random
number r ∈ [0, 1] is generated and compared to p, which is a hyperparameter usually
set around 0.6 − 0.7 [12]. If the probability for tournament selection is larger than
that of r, the fittest individual is selected. However, if this does not hold, then the

10



2. Theory

Figure 2.3: Graphical representation of how tournament selection is conducted.

fittest individual is disregarded and a new r is generated. These steps are demon-
strated in Figure 2.3 and if there is only one individual remaining, it is automatically
chosen.

2.3.4 Crossover
Crossover is the GAs equivalence to sexual reproduction and is intended to allow
partial solutions from distinct parts of the problems’ search space to be explored,
thus enabling the algorithm to not converge towards a local search region. However,
in general, the population size of a GA is never in the millions as seen in nature,
but instead somewhere around 30-1000 [12]. With a smaller population pool, it is
vital to regulate the crossover process since a successful individual will spread its
genetic material rapidly, implying a reduced diversity, and thus risking the GA to
become trapped in a local optimum. To mitigate this risk, a crossover probability is
selected, which is problem-dependent but correlated with the size of the population.
For a population size ranging from 50-100, it has been suggested that the optimal
crossover probability for a single crossover point is 0.6 [20].

Single-Point Crossover
In single-point crossover, a random crossover point is generated independently for
two individuals among n−1 possible points in a chromosome of length n. As shown
in Figure 2.4, the genetic material left of the crossover point is exchanged between
the two parents to form two new children.

11



2. Theory

Figure 2.4: Visualization of a single-point crossover between two parents, with the
dashed lines symbolizing the randomly generated crossover point.

2.3.5 Mutation
To further enable the genetic algorithm to explore more of the search space, muta-
tion is introduced. As this process allows for an increase in exploration, mutation
rarely has an instantaneous positive effect on fitness, but rather showcases advan-
tages once in later generations [12]. Using mutation, lost genetic material can be
recovered and new genetic material is randomly distributed, making it an insurance
policy against irreversible loss of genetic material [21].

When applying mutation to GAs the probability of it occurring is usually set as
a parameter beforehand and takes the form of (2.13).

pmut = c

n
. (2.13)

Here, c is a constant of order 1 and n represents the length of the chromosome. Sim-
ilar to crossover a randomly generated number r ∈ [0, 1] is generated and compared
with pmut for each gene, which implies that r is generated n times for each chro-
mosome. Generally, the process of mutation can involve several different operators,
some of the most common being scramble mutation and random resetting. In the
next section, these operators will be introduced.

Scramble Mutation
When utilizing scrambled mutation, either a subset of the chromosomes’ genes can
be selected or the entire domain. The selected zone can be visualized in Figure 2.5
as the yellow area, and once this section is determined, a random permutation of all
genes is implemented, resulting in a shuffle of the selected genes.

Figure 2.5: A visual representation of how the scramble mutation operation works,
with (p) being the probability of mutation.

12



2. Theory

Random Resetting

Figure 2.6: A visual representation of how the random resetting operation works,
with (p) being the probability of mutating a given gene i.

Another heavily used mutation method is the random resetting operator, whose main
task is to iterate through the entire chromosome and evaluate each chromosome at
a time. As shown in Figure 2.6, i is the count representing each gene, and as the
algorithm iterates through the chromosome for each i a random value r ∈ [0, 1] is
generated and compared with a predetermined probability pmut. If the condition
pmut > r is true, then a new number is generated from the search space of the
objective variable. If, however, the condition does not hold, then that gene remains
unchanged, and the iteration continues.

2.3.6 Replacement
If a given search domain is relatively small, the risk of producing duplicates within
a generation is possible. In this scenario, the replacement operator is a useful tool
for removing duplicates. If the offsprings produced by the parents are identical
to the parents, then the need for re-evaluating these individuals is redundant, and
these offsprings are instead replaced. When duplicates are located, they are pro-
cessed through the crossover section once again until a unique set of individuals is
generated.

2.3.7 Elitism
In Single-Objective Genetic Algorithms (SOGA) the method of elitism is utilized to
preserve a copy of the fittest individual from each generation to be carried over to
the next generation without undergoing any change [12]. The intended use of this
process is to speed up convergence by continuously taking advantage of the fittest
individuals genetic material to not lose potential individuals that could guide the
algorithm towards an optima. When the optimization problem consist of more than
one objective function, such as in multi-objective optimization problems elitism is
indirectly implemented in the algorithm and does not carry out its own step as seen
for SOGA-problems, this concept of indirect implementation will be further explored
in the Section 2.4.

13



2. Theory

2.4 Multi-Objective Optimization
As the name suggests, a multi-objective optimization problem (MOOP) is con-
structed of several objective functions that are to be optimized over a given search
space. Compared to single-objective optimization (2.1) MOOPs can have several op-
tima for a given problem, which requires the user to have prior knowledge about the
relative importance of the objectives. The general MOOP with n decision variables
and m objective variables can be formulated as follows.

minx f(x) = [f1(x), f2(x), . . . , fm(x)]>
s.t. gi(x) ≤ 0, i = 1, 2, . . . , q

hj(x) = 0, j = 1, 2, . . . , p

 (2.14)

Where x = [x1, x2, . . . , xn]> ∈ Ω ⊆ Rn is an n-dimensional decision vector, with an
n-dimensional decision space, Ω. f(x) represents the objective vector containing all
the objective functions defined within the problem, gi(x) constitutes the inequal-
ity constraints, and hj are the equality constraints [22]. Unlike a single-objective
optimization problem (SOOP), the selection and ranking of individuals require a
more complex method to establish the fittest candidates. To do so, the concept of
Pareto-dominance and Pareto-optimality will be further explored in the following
sections.

Pareto-Dominance
Based on (2.14) and given two feasible solutions xA ∧ xB ∈ Ω, the solution xA is
said to dominate xB if and only if it satisfies the following conditions.

(∀i ∈ {1, . . . ,m} : fi(xA) ≤ fi(xB))∧ (∃j ∈ {1, . . . ,m} : fj(xA) < fj(xB)) . (2.15)

If (2.15) is satisfied, the dominance is generally indicated in the following way:

xA � xB ≡ xA dominates xB . (2.16)

Pareto-Optimality
By utilizing (2.16) a solution x∗ ∈ Ω, is referred to as the Pareto-optimal solution
if the following condition holds:

@ x ∈ Ω : x � x∗ . (2.17)
If there exists a solution x∗ that satisfies (2.17) this solution in non-dominated and
objectively better than those solutions that do not satisfy this constraint. Having
a method of objectively ranking the solutions, it is possible to construct a Pareto-
optimal set that contains all Pareto-optimal solutions and is defined according to
(2.18).

P∗ , {x∗|@ x ∈ Ω : x � x∗} . (2.18)

14



2. Theory

Figure 2.7: A visualization of how the ranking of solutions can be ordered and placed
into different front-levels, where PF1 is the front containing the non-dominated so-
lutions (3) and (5).

Iterating through the solutions given to a MOOP it is possible to construct different
fronts by applying (2.18) and storing the solutions to separate front-levels as visu-
alized in Figure 2.7.

The process of sorting the solutions to different fronts is constructed in an itera-
tive way by initializing an empty set PE′ and filtering the non-dominated solutions.
The definition of a non-dominated solution is that it is not worse in any objective
while superior in at least one, in accordance with (2.15). Furthermore, all available
solutions are stored in the set PE, which according to Figure 2.7 would be
PE = {1, 2, 3, 4, 5}. By constructing two loops, one selecting a specific solution
(i ∈ PE) and the other looping over all other solutions except for the selected one
(j ∈ PE ∧ j 6= i) a process for finding non-dominated solutions can be established.
By storing the non-dominated solutions in PE′ each complete iteration over all avail-
able solutions will store the front-level with an index represented of each complete
iteration cycle. By removing the non-dominated solutions from PE when locating
the next front-level the process can be carried out until PE is empty. Each complete
set PE′ represent a new front level PFl, with l = 1, 2, . . . L, where L is the number
of fronts, as seen in Figure 2.7. The first complete iteration cycle containing PF1
is commonly referred to as the Pareto-optimal front and is formally defined as the
following:

PF∗ ,
{
f(x) = [f1 (x∗) , f2 (x∗) , . . . , fm (x∗)]> |x∗ ∈ P∗

}
. (2.19)

Crowding Distance
The crowding distance is a measurement that entails the density of solutions sur-
rounding a given solution, which is an important quantity to calculate when trying
to preserve the diversity within a given population. The crowding distance is fur-
ther calculated by firstly sorting all the solutions according to their objective values

15



2. Theory

f2

f1

i-1

i

i+1

1

r

Figure 2.8: Illustration of how the crowding distance is calculated for a solution i.

within a given front PFl. So, for a front containing r solutions there will be m
sorted lists (Ii, i = 1, . . . ,m) each containing all r solutions in ascending objective
value with respect to fi. With the sorting performed each solution is assigned a
crowding distance value of zero, cdk = 0, k = 1, 2, . . . , r and the boundary solu-
tions in each sorted list, cdIi

1
, cdIi

r
are assigned a crowding distance value of infinity

[23]. In Figure 2.8 these two solutions are the non-dominated solutions marked 1
and r which are given a crowding distance value of infinity since they are at the far
edges of the solution space thus contributing to the preservation of diversity. The
crowding distance is calculated for each possible solutions by iterating over all the
objectives as presented in (2.20).

cdk =
m∑

i=1

r−1∑
j=2

I i
j+1 − I i

j−1

I i
r − I i

1
. (2.20)

By introducing a crowded comparison operator (≺n) solutions can now be compared
in regards to two aspects, namely:

1. Non-domination rank (irank)
2. Local crowding distance (cdk)

The first criteria separates solutions over different fronts (PFl) based on non-domination
which in turn means that solutions within fronts of the lowest value of l are pre-
ferred. The second criteria separates solutions within the same front based on their
crowding distance value. Furthermore, the definition for the crowded comparison
operator is defined as in [24].

a ≺n b if (arank < brank) ∨ ((arank = brank) ∧ (acd > bcd)) . (2.21)

Between two solutions, a and b with different non-domination ranks the lower rank
is preferred. And for two solutions belonging to the same front and thus having an
equal rank the solution with the larger crowding distance value is preferred as this
will increase the diversity within the population.

16



2. Theory

NSGA-II

Non-dominated 

       sorting

Rt

Qt

Pt

PF1

PF2

PF3

Crowding distance 

         sorting

Rejected

Pt+1

Figure 2.9: A basic outline of the steps involved in NSGA-II, which displays the
formation of Rt = Pt ∪ Qt, that undergoes non-dominated sorting and crowding
distance sorting to form a new parent population Pt+1.

A widely used algorithm to solve MOOPs is the Non-Dominated Sorting Genetic
Algorithm II (NSGA - II), developed by Deb et al. [24]. This algorithm is used
to find multiple Pareto-optimal solutions in a MOOP and demonstrates three key
characteristics stated in [25]:

1. Usage of an elitist principle,
2. Focuses on non-dominated solutions, and
3. Utilizes an explicit diversity preservation mechanism, namely; crowding dis-

tance
For the first iteration, t = 0, a parent population Pt is initialized of size N and
similar to SOGA problems, undergoes operators such as selection and mutation to
create a children population Qt of size N . For t ≥ 1 the algorithm follows the steps
shown in Figure 2.9. For each generation, the current population is of size 2N ,
consisting of the current parent population and its children population, forming the
union Rt = Pt ∪ Qt. Once Rt has been constructed, the population is sorted ac-
cording to non-domination, forming different fronts containing individuals based on
their fitness and level of domination, this process is illustrated in Figure 2.7. The
new parent population Pt+1 is formed by adding individuals from the first front and
moving up in front-levels until its size exceeds N . As seen in Figure 2.9 all indi-
viduals from the front PF1 and PF2 are transferred to the new parent populations.
However, since not all individuals in front PF3 can be selected for Pt+1, crowding
distance sorting is performed, and only those individuals that preserve diversity
the best are chosen. Furthermore, the new parent population is used for selection,
crossover and mutation to form Qt+1 and so the process repeats. Therefore, the to-
tal complexity of one generation of the algorithm can be divided into three steps[26]:

1. Non-dominated sorting O(MN2)

17



2. Theory

2. Crowding distance assignment O(MN logN)
3. Sorting on ≺n is O(2N log(2N)) .

Which establishes a total complexity of O(MN2).

2.5 Normalization of MOGA-Values
When working with MOGA problems, it is common that the data generated for
each individual objective function do not share a common unit of measurement.
To simplify the process of evaluation, a form of robust normalization is commonly
conducted where every objective value takes a value between 0, and 1 in a so-called
min-max normalization [27].

fnorm
i (x) = fi(x)− obj◦i

objmax
i − obj◦i

, i ∈ [1,m] . (2.22)

In equation (2.22) m is the number of objective functions and obj◦i represents the
utopia point, which is equivalent to where each objective function is in its most op-
timized state. Generally, this point can also be approximated based on engineering
intuition and is then referred to as an aspiration point or a target point. Fur-
thermore, objmax

i is the maximum value each objective function can experience and
similar to obj◦i it can also be approximated based on engineering intuition. When
each function value fi(x) is evaluated according to the normalization equation, a
normalized value fnorm

i (x) is produced.

2.6 Scaffolding
Throughout this thesis, a common building pattern will be used on assembled scaf-
folds, which is common practice and follows the general guidelines and safety mea-
sures taken by the Swedish Work Environment Authority and SiS [2], [3]. This
pattern can be seen in Figure 2.10. Because of needed simplification in how materi-
als are counted going onward throughout this thesis, one material is the equivalent
to one whole compartment in width with its respective height. The scaffold dis-
played in the figure is consisting of two materials. This is done as total scaffolding
components used scale directly with the amount of compartments.

18



2. Theory

Figure 2.10: Common scaffolding structure with commonly used names for scaf-
folding dimensions and components.

The material components used for constructing a scaffolding are diagonal brace,
standards, ledgers and consoles, the diagonal brace supports between compartments
diagonally while ledger supports compartments horizontally and the standards are
vertical supports. The consoles are optional modules for a scaffold to provide wall
access for a scaffold when the gap between wall and scaffold is large. There are stan-
dards and recommendations to follow when building a scaffold and the dimensions
of its properties. One of those that will be used in optimization is the gap between
a scaffold and its corresponding wall face, this should be as small as practicable and
not exceed 0.3 meters according to Section 31 of AFS [2]. If the gap is any bigger
than 0.3 meters one must use additional modules in the form of consoles to fill this
space as shown in figure 2.10.

19



3
Methodology

In the methodology chapter two main segments will be presented involving the mile-
stones for the algorithmic construction, and the approach for evaluating the algorith-
mic performance, both included in the first segment and will be conducted with an
unconstrained inventory. All developed tests for this first segment are supported by
ScaffCalcs visualization tools and can therefore be processed and evaluated. The sec-
ond segment entails algorithmic logic for unconventional buildings and how to handle
wall sequencing, and a constrained material inventory. The constrained inventory
will not be implemented in any visual or user test cases, but solely presented in terms
of a feature, remaining attributes in the second segment will not be further evaluated
in the result section as they are not supported on ScaffCalcs web application.

3.1 Milestones for Algorithmic Construction
The structure and goal of this thesis has been to develop an algorithm to solve an
entire scaffolding optimization problem by successfully developed solutions to all
of its milestones. By following a timeline fashion these milestones were evaluated
to the milestones’ respective difficulty, seen from the writers point of view. The
milestones that were evaluated along the thesis and further presented in the result
section are;

1. Length optimization
2. Length and material optimization
3. Connecting scaffolds around multiple walls
4. Optimizing scaffolds on gable walls

For visualizing purposes all images provided in this section were manually created
by the writers and are no reflection of the algorithmic performance. Furthermore,
walls 1-4 are presented in a counterclockwise order, implying that wall 1 is always
seen in the front view of each images containing the buildings gable unless otherwise
stated.

3.1.1 Milestone 1 - Length Optimization
The first milestone to consider is to optimize a scaffolding and its length in regards to
a given wall facade. The scaffolding can be built from materials consisting of specific
available lengths, mostly depending on which supplier is chosen with examples shown

20



3. Methodology

in Table 3.1. The objective is to minimize the length difference of the sum of chosen
materials and the wall length. For visualization of scaffolds, Layher material was
used.

Table 3.1: Available ledge lengths, in meters, for different material suppliers.

Layher Haki Pluseight
0.73 0.7 0.5
1.09 0.77 0.7
1.40 1.05 1
1.57 1.25 1.25
2.07 1.655 1.5
2.57 2.05 1.75
3.07 2.55 2
4.14 3.05 2.5

3
3.5

By utilizing a SOGA and solely optimizing on a given length the goal is to generate
a scaffolding structure similar to that given in Figure 3.1.

Figure 3.1: Milestone 1, displaying an example of a successful solution to a SOGA
problem where length is the only objective function.

3.1.2 Milestone 2 - Length and Material Optimization
A clear and natural extension to the first milestone is for the generated solution to
use less amount of material, which in turn means to use wider compartments in forms
of longer ledge lengths. To accomplish this the algorithm will become a MOGA with

21



3. Methodology

two objective functions, namely length, and material. A successful implementation
would generate a figure similar to that displayed in Figure 3.2, which displays a clear
difference in the amount of material whilst still maintaining the length compared to
that in Figure 3.1.

Figure 3.2: Milestone 2 - displaying an example of a successful solution from a
MOGA with two objective functions, being; length and material optimization.

3.1.3 Milestone 3 - Connecting Scaffolds Around Multiple
Walls

The next milestone is for the algorithm to be able to cover multiple connected walls
and have respective scaffolding around these. This leads to some manipulation of
targeted lengths for optimization as well as certain constraints further explained in
Section 3.3. A successful implementation surrounding a given facade can be seen in
Figure 3.3. Due to the symmetric nature of wall 1 and 3, the algorithm is intended
to be run on wall 1, from which the result is directly mirrored on wall 3. Walls 2 and
4 differ in the regard that wall 2 and 3 share a fixed size corner piece that connects
them which wall 4 and wall 1 does not. Due to wall 4 and wall 1 not necessarily
sharing a corner piece the last compartment of wall 4 should extend just past the
deck width of scaffolding for wall 1 which can cause these walls to differ with respect
to their connection to the following wall in sequence and would mean that wall 4
can use one less compartment.

22



3. Methodology

(a) Front view (b) Top view

Figure 3.3: Milestone 3, displays a successful example of connecting multiple scaf-
folding compartments around multiple wall facades.

3.1.4 Milestone 4 - Optimizing Scaffolds on Gable Walls
To improve and increase the usage of the algorithm, more functionality is needed.
Additional access for the gable roof facade present on two out of four walls for
a square building is needed. Furthermore the MOGA will only be run on wall
1, whereas the second wall and fourth wall in this case uses linear optimization
programming to be solved. Due to the absence of a gable along this wall and thus
no ordered optimization problem, linear programming provides a faster and more
consistently well performing solution in comparison to using the MOGA on these
walls. To grant this additional roof access, the height needed for each compartment
within the scaffold to its respective roof edge must be calculated and additional
scaffolding stories must be added accordingly from the extra height of an added
roof. An example of granting sufficient access can be seen in Figure 3.4.

23



3. Methodology

Figure 3.4: Milestone 4, displays an example of successful implementation of scaf-
folds to allow for roof access.

Roof types in the current version of live software are restricted to gable roofs. The
development of the algorithm focused on implementation of gable roofing with ad-
ditional option to grant access to tilted roofing. Gable roofing will always have a
symmetrical look over the wall facade with midpoint corresponding to the walls’
midpoint, while tilted roofing either ascends or descends in height, starting on the
left side from the walls’ front view.

When a roof facade is at least two meters higher than the wall facade at any given
point, the scaffold should give access to this area above. This is done by providing
an additional story of scaffolding stretching between the roof ends where the height
difference is two meters or more. This extra scaffolding adds enough stories so that
there at no point is a roof edge which is more than 2 meters above the highest scaf-
folding compartment floor. The scaffolding should also be extending past the outer
edges of the roofing it is granting access to, as to fully cover the additional construc-
tion area. Figure 3.5 shows how additional scaffolding stories would be constructed
to allow access to the roof.

24



3. Methodology

Figure 3.5: Milestone 4, visualization of additional roof scaffolding access with
given heights.

It can be seen that the rightmost extra story of scaffolding is extending quite a bit
past the roof edge. This is the distance from the roof which should be minimized
to reduce forces from any oncoming wind. The exposed area of scaffolding extended
past roof edges and its area size directly influences structural forces from wind cal-
culations [3]. Additionally, having the anchoring point closer to the wall increases
the stability of the scaffold. The first extra story in this example case, displayed
as a blue box is set up two meters above previous story to guarantee head room
clearance in accordance to minimum clearance of 1.9 meters by SiS [3]. There are in
general two things that must be taken into account for the algorithm to solve this
effectively. Firstly, check if any additional stories must be constructed on the specific
compartment width. Secondly, if any additional story is needed then a new objec-
tive function must be defined in order to construct this new scaffolding structure
efficiently. This was done by introducing another objective, minimizing the distance
on the scaffold compartments extended beyond the roof edge. This constructs a
more optimized and safe scaffolding structure with reduced loads with respect to
wind forces.

In Figure 3.6, an example case of two possible solutions is displayed with one being
a worse option over the other with respect to the total distance to the roof edge.

25



3. Methodology

(a) Poor roof scaffold construction (b) optimized roof scaffold construction

Figure 3.6: Milestone 4, comparison between an optimized and a poor scaffold
solution of minimizing distance to the roof edges.

3.2 Evaluation of Algorithmic Performance
For the evaluation of algorithmic performance three test cases were utilized when
identifying an optimal number of generations for a given facade input. All three
cases was buildings consisting of four walls and a saddle roof, which is the form of
input at the time of writing supported by ScaffCalcs visualization tool. Furthermore,
data logged from real users on ScaffCalc was utilized and compared to the algorithm,
as the goal for the algorithm is to generate a similar or better scaffold. Metrics such
as the amount of material and generation time was compared to what the algorithm
produced. Additionally, a quantitative test was constructed where two different
test cases of buildings was compared to the output of the algorithm. Lastly, any
time constraints on the algorithm were removed and fully converged results were
evaluated by comparing it to results generated by users and algorithmic output
under time constraint. All tests was conducted on a computer with an Intel Core
i7-1065G7 processor running at 1.3GHz, 4 cores.

3.2.1 Locate Optimal Number of Generations
Since the algorithm is time constrained to ≤ 2 seconds it is vital to utilize the correct
amount of generations to optimize performance. To add algorithmic flexibility, three
test cases, each with different input sizes were evaluated over 50 separate runs, for
30, 50, and 75 in population. These three test cases and their dimensions were based
on data taken from ScaffCalc calculations, using a percentage distribution of total
scaffolding length surrounding a building. From this distribution, a threshold for an
upper limit with respect to a scaffolds total length was chosen for a small, medium
and large scaffold to represent the distribution in three different sized test cases and
their respective building sizes, as seen in Figure 3.7.

26



3. Methodology

Figure 3.7: Distribution of total scaffold length surrounding four walls from Scaf-
fCalcs database with marked lines for small, medium and large scaffolding thresholds.

The goal was to find a time vs generations correlation and a weighted average of the
objectives given at each generation for different populations and building sizes. In
Table 3.2 the metrics for each test case is provided, along with a reference building
showcased in Figure 3.8.

Figure 3.8: Reference model of wall 1
used for all three test cases when locating
the optimal number of generations.

Building θ G W H
Small arctan (0.5) 3 12 5

Medium arctan (0.5) 5 20 8
Large arctan (0.5) 7.5 30 12

Table 3.2: Metrics presented in meters
for all lengths, given for small, medium,
and large building used for locating the
optimal number of test cases.

Furthermore, each building was of square dimensions implying that each test case
had a dimension of W ×W . By choosing the metrics demonstrated in Table 3.2
the buildings was be comprised of 1, 2, and 3 roof compartments along the height
of G as seen in Figure 3.8. Lastly, all data was normalized according to equation
(2.22), to be properly compared. In Table 3.3 the maximum, and Utopian points

27



3. Methodology

for each objective and test case is introduced. These three presented objectives are
wall distance which is how much the scaffold extends past the building corner with
respect to any additional padding specified by a user in meters, materials which
is the quantity of scaffolding compartments used in the scaffolding and lastly roof
distance which is the total sum of the length that scaffolding compartments extends
past a roof edge in meters.

Table 3.3: Displays the Utopian values as well as the maximum values used when
normalizing the data for each test case for wall 1.

Test Case obj◦1 (m) obj◦2 (qty) obj◦3 (m) objmax
1 (m) objmax

2 (qty) objmax
3 (m)

Small 0.15 5 0 1 17 4
Medium 0.15 8 0 1 28 8
Large 0.15 12 0 1 42 12

3.2.2 Visual Comparison Vs User-Built Scaffolds
Logged data containing user-built scaffolds around four walls were evaluated on con-
struction time and visual discrepancies to similar results generated by the algorithm.
Due to limitations in data logging, the true dimensions for the buildings had not
been stored, which forced the writers to replicate the length of the walls to the best
of their ability. Since the lengths of all compartments and images of the user-built
scaffolds were stored, similar replicas were recreated and used solely for visual com-
parisons. The approximate metrics for the two recreated buildings are presented in
Table 3.4, assuming a reference model according to Figure 3.9.

28



3. Methodology

Table 3.4: Metrics for object O1, and O2 where all lengths are given in meters.
Object θ G W L H Available Lengths
O1 arctan

(
3

5.5

)
3 11 10 5 Layher1 (3.1)

O2 arctan
(

1
2

)
5 20 35 5 Haki (3.1)

1All lengths except 4.14 are included

Furthermore, each object was subjected through the algorithm for 10 independent
runs, and results such as material used and time taken was presented for both O1
and O2.

3.2.3 Quantitative Comparison of Scaffolding Generation
Members of ScaffCalc were given two test cases, classified as B1 and B2, consisting
of one smaller (B1) and one larger (B2) building. The task was for each individu-
ally to create scaffolds around each test case to the best of their ability. A specific
restriction provided to each user was that each roof compartment had to protrude
horizontally from the roof edges similar to the algorithm. The dimensions and met-
rics of B1 and B2 are found in Figure 3.9 and Table 3.5.

Figure 3.9: Reference model used for
both test cases when members from Scaf-
fCalc are to construct scaffolds.

Test
Case θ G W L H

B1 arctan
(

5
6.5

)
5 13 11 8

B2 arctan
(

7
12.5

)
7 25 25 12

Table 3.5: Metrics for test case B1, and
B2 where all lengths are given in meters.

Based on the results of Section 3.2.1 a suitable number of generations was chosen
that is applicable to the algorithmic runs on building dimensions for B1 and B2.
Furthermore, the algorithm was run for 100 independent runs, each under the same
conditions, and the output of each run will be compared with the results generated
from ScaffCalcs members modeling. All previously states objectives, as well as time,
will be presented and evaluated.

3.2.4 Time-Unconstrained Algorithmic Performance
The same test cases as presented in section 3.2.3 was used to evaluate the perfor-
mance of the algorithm while not following any constraint on run-time. To execute
the algorithm under no time constraint, the algorithms’ stopping criterion was set

29



3. Methodology

to compare the Pareto front from generations in a 1000 interval. If the Pareto front
has not changed and thus has not found a better solution or improved objective
values within 1000 generations, the algorithm was stopped. This stopping criterion
was checked for in every 100 generations. By using a convergence-based stopping
criterion, the algorithm should find either a local optima or a global optima. A total
of 100 independent runs were carried out using a time-unconstrained stopping cri-
terion. The results generated from the time-unconstrained algorithm was compared
to those generated in Section 3.2.3.

3.3 Algorithmic Logic for 2D Buildings
Given an input building, there are several key factors to consider when generating
scaffolds around its selected walls. Firstly, the scaffold is generated in a globally
counterclockwise order around the building. To give correct input for the algorithm,
some pre-processing has to be done between the user input and algorithm. The
selected walls have to be evaluated to see if they share a corner. If a corner is
shared, it must be determined if the corner is facing inwards or outwards, as this
influences the given length constraint. Another element to detect for each wall is
whether there is any roofing facade that should be accessed. This leads to further
constraints and optimization regarding its appearance.

3.3.1 Wall Sequence Processing
If two walls are sharing an outward corner the algorithm input for the first wall
should be constrained to guarantee a suggestion going past the corner as to guarantee
an interlocking between the two walls and their respective scaffolds as seen in Figure
3.10. The corner piece shown in the figure is not part of the scaffolding length
objective as this is a fixed size of scaffolding depending on compartment depth that
interlocks two scaffolds around corners. It should also consider any possible inputs
from the user on the distance between scaffold placement and its wall defined as
wall distance, Lwall, as this leads to added or subtracted distance depending on the
corner configuration and its constraint. The input is therefore given according to
equation (3.1) for an outwards corner between walls.

Ltotal = Lwall + Ldistance

Lscaffold ≥ Ltotal
(3.1)

For an outwards corner there are four length variables present which includes Lwall
which is the distance of the wall, Ldistance which is the length between the scaffold
and its wall. Lscaffold is the total scaffolding length which must be greater or equal to
Ltotal. This constraint is dependent on the building geometry and the interlocking
between two walls.

30



3. Methodology

Figure 3.10: Construction geometry a scaffold around two walls sharing an out-
wards corner with wall length as Wwall and wall distance as Ldistance and corner piece
dimensions as Lcorner.

If two walls were to share an inwards corner the total scaffold length of the first
wall should account for this next scaffold sequence regarding optimization. It is
influenced by wall distance and a corner piece as well as constrained on its maximum
length as seen in Figure 3.11. If it is not the first wall in a sequence then the wall
distance can be neglected from subtraction as it evens out over the two corners as
defined in equation (3.2).

Ltotal = Lwall − Lcorner

Lscaffold ≤ Ltotal
(3.2)

Here, the added distance Lcorner is the size of the square scaffolding piece placed in
the connection of two walls.

31



3. Methodology

Figure 3.11: Scaffolding sharing inwards corner with wall length as Wwall and wall
distance as Ldistance

However, if it is the first wall for a given sequence the wall distance must also be
subtracted, as presented in equation (3.3).

Ltotal = Lwall − Ldistance − Lcorner

Lscaffold ≤ Ltotal
(3.3)

The second wall in sequence sharing this corner would thereafter also subtract the
depth of the scaffolding from its total scaffolding length and check for connecting
walls and if the next corner is inwards or outwards. A longer sequence of wall
connections is displayed in Figure 3.12 with its respective Lscaffold, in this example
Lscaffold = Ltotal from previous examples.

Figure 3.12: Displays how wall sequencing would be performed depending on in-
wards/outwards corners.

32



3. Methodology

From this figure two special cases are displayed where there are walls connected to
double outwards and double inwards corners with their respective Ltotal displayed
in (3.4), (3.5). These walls are wall number 2 and 4 counted from the left most wall
with a length of 18,5. When more walls are sequenced it is needed to account for the
previous walls and their respective miss match in regards to Lscaffold and Ltotal when
accounting for total length in next wall. An example of matching total length for
wall 3 is shown in equation 3.6 which depends on wall 1 and its miss match labeled
Ldiff1.

Ltotal2 = Lwall2 + 2Ldistance

Lscaffold2 ≥ Ltotal2
(3.4)

Ltotal4 = Lwall4 − 2Ldistance − 2Lcorner

Lscaffold4 ≤ Ltotal4
(3.5)

Ldiff1 = Lscaffold1 − Ltotal1

Ltotal3 = Lwall3 + Ldiff1 − Lcorner

Lscaffold3 ≤ Ltotal3

(3.6)

3.3.2 Constrained Material Inventory
To add further algorithmic flexibility and take into account the inventories of the
user, the algorithm should use no more than the specified available material for its
suggested solution. This implies that the optimization is constrained to the amount
of material available according to equation (3.7) where Mused is the material used
for the solution and Minv is the material available in the inventory.

Mused ≤Minv (3.7)

This test aims to showcase how well the algorithm works when restricting its search
space. The results presents the inventory before and after the algorithm is run to
be compared to the results of the unconstrained run, where both are evaluated for
test case B2, see Table 3.5. Furthermore, all Layher lengths from Table 3.1 will be
available for both runs.

33



4
Algorithm

This section covers the usage of genetic algorithms with custom objective functions
and constraints tailored for the problem at hand in combination with integer pro-
gramming when an ordered optimization is not needed to increase performance. For
the algorithm, this section covers all the objectives and constraints present in the
final iteration. It further explains functions for tracking a user’s inventory with a
supply of materials and applying these in the form of constraints.

4.1 Algorithm Frameworks
The algorithmic focus is to generate a scaffolding solution with respect to optimizing
several objectives, which is done using two different frameworks. The first is Pymoo,
which is used for the genetic algorithm and its minimization of objectives [28]. The
second framework is PuLP, which is used for integer programming, where one of its
solvers is used to minimize the optimization objectives [29]. Integer programming is
very close to linear programming, with the sole exception that optimization variables
are constrained to be integer values. The variables are constrained to integer values
because a scaffold cannot use a fraction of the length of the material.

4.1.1 Pymoo
The Pymoo framework offers many single- and multi-objective optimization algo-
rithms, with the majority of available algorithms being stochastic optimization algo-
rithms through a Python framework. Pymoo specifically offers a lot of alternatives
for a genetic algorithm when solving both a single- or multi-objective optimization
problem. The algorithm developed throughout this thesis utilizes the minimization
methods of the NSGA-II algorithm, including objective minimization and ranking
through the crowding distance with Pareto fronts as described in Section 2.4. The
evolutionary methods described in Section 2.3 used within the NSGA-II algorithm
had to be modified and adjusted to fit the problem and to be in accordance with
the objective of this thesis. The NSGA-II algorithm is used for the multi-objective
scaffold optimization regarding three objectives, including wall fit, amount of mate-
rial, and roof distance. The GA is used for this over other optimization algorithms,
as the roof distance objective depends on the arrangement of ledge lengths order for
evaluation of its fitness.

34



4. Algorithm

4.1.2 PuLP
PuLP is a linear programming solver capable of solving integer programming prob-
lems. The algorithm utilizes PuLP default solver CBC to solve the bi-objective
problem regarding wall fit and material amount when a roof facade is not present
on a specific wall as then a certain arrangement of the variables is not needed to de-
termine the fitness of said solution. Using the PuLPs’ LP solver for these instances,
the algorithm can find a better solution faster than a genetic algorithm, which both
reduces runtime and brings consistent performance on walls without a roof gable
area.

4.2 Minimization problem
The multi-objective minimization problem is defined as in (4.1) where each objective
function is explained individually in Section 4.2.1 and constraints in Section 4.2.2.

min
x

f(x) = [f1(x), f2(x), f3(x)]T

s.t. gi(x) ≥ 0, i = 1, 2, . . . , 6 + q + n

xi ∈ R, i = 1, 2, . . . , n
(4.1)

4.2.1 Objective functions
For the MOGA there are three objective functions which are to be minimized. These
functions calculate the scaffold length compared to wall length, the amount of com-
partments used and how much a scaffold extends past roof edges. The first objective
function is to minimize the total scaffolding length with respect to the length of the
wall which is defined in (4.2).

f1(x) =
∣∣∣∣∣
(

n∑
i=1

xi

)
− Lwall

∣∣∣∣∣ , Lwall > 0 . (4.2)

Here xi is each gene within the chromosome x of length n containing a set of sug-
gested compartment lengths, and Lwall is the total length of the wall. The second
objective is with regards to the material and calculates the total amount of com-
partments used within a scaffold design as seen in (4.3).

f2(x) = n . (4.3)

For the third and final objective function the total extended scaffolding compartment
length past the roof edge must be calculated for two cases as defined in (4.4) and
(4.5) with accompanying figures.

First case
Each roof is divided into a left and right side of roof intersections between roof edge
and scaffolding compartment floors. Li, and Hi are the extended roof distances for

35



4. Algorithm

each compartment of either left or right side triangle, Vi is the global coordinate for
the left-most point in compartment i for either side, θ the roof-angle and ZLi or ZRi

is the global intersection coordinate between compartment i and the slanted roof on
left or right side. For the specific case shown in Figure 4.1 the variables h, n take
the values of 4, 7, where h is the index of the compartment that goes through the
midway coordinate of the roof and n is the index of the last compartment.

Figure 4.1: First instance of compartment geometry for objective 3.

f3(x) =



∑h
i=1 Li(x)⇒ Li =

−Vi(x1:i) + ZLi(x1:i, θ), ∃ZLi

0, @ZLi∑n
i=h Hi(x)⇒ Hi =

Vi(x1:i)− ZRi(x1:i, θ) + xi, ∃ZRi

0, @ZRi

(4.4)

Second case
In the second case of objective function f3 the difference is that the middle part of
compartments is split up so that no compartment shares both left and right side
intersection of Z and therefore is not used twice. This means each compartment
should only be used once for their respective left or right side intersection of roof
through compartment floor to calculate f3 as seen in (4.5). For the second case
shown in Figure 4.2, h, n takes the values of 4 and 8, where h is the index of the
compartment with respective V at the left side of the roofs midway coordinate.

36



4. Algorithm

Figure 4.2: Second instance of compartment geometry for objective 3.

f3(x) =



∑h
i=1 Li(x)⇒ Li =

−Vi(x1:i) + ZLi(x1:i, θ), ∃ZLi

0, @ZLi∑n
i=h+1 Hi(x)⇒ Hi =

Vi(x1:i)− ZRi(x1:i, θ) + xi, ∃ZRi

0, @ZRi

(4.5)

4.2.2 Constraints
For the algorithm to produce feasible solutions, it must meet some constraints.
These constraints will be connected with the available material, the length of the
structure, the roof scaffolding, and the specifics to grant certain access points. The
first constraint set is to guarantee that a scaffold will either extend past a wall to
enable scaffolding to round corners if required or stop just short as to not collide
with an upcoming inwards corner, this constraint is formulated in (4.6).g1(x) = ∑n

i=1(xi)− Lwall, if outwards corner
g1(x) = Lwall −

∑n
i=1(xi), if inwards corner.

(4.6)

The second constraint is to increase the quality of any proposed solution with re-
spect to scaffold length compared to wall length. A maximum acceptable deviation
between scaffold and wall was set to 1 meter as defined in (4.7).g2(x) = Lwall −

∑n
i=1(xi) + 1, if outwards corner

g2(x) = ∑n
i=1(xi)− Lwall + 1, if inwards corner.

(4.7)

To include inventory tracking constraints with regards to available materials had to
be set up as defined in (4.8).

37



4. Algorithm

g2+i(x) = Ii − 2HiTi(x), i = 1, 2, . . . , q . (4.8)

Where inventory of available ledge length L1, L2, ..., Lq is denoted as Ii ledges of
length Li. Let Ti(x) be the number of ledges in x that have length Li. It is needed
to have 2HiTi(x) ledges for compartment i, where Hi is the number of compartment
stories and the constant 2 is accounting for the depth of the scaffold.

For proposed scaffolding solutions it is necessary to include proper access points in
accordance to AFS [2] which means to provide staircase access at least every 25
meters. This is incorporated in the algorithm by providing enough ledge lengths
with possibility of staircase access within a solution so that placement or access
points can be done in an appropriate order to fulfill the access point constraint of
25 meters. The amount of ledge lengths needed within a scaffold is formulated to be
more than a scaffold length divided by 25 as seen in (4.9). The ledge lengths that
can grant staircase access is formulated as Sstaircase.

Lscaffold =
n∑

i=1
(xi)

g3+q(x) =
⌈
Lscaffold

25

⌉
−

∑
i∈Sstaircase

Ti(x)
(4.9)

The last constraint formulated to improve upon solutions quality with regards to
roof distance is formulated so that no compartment should extend more than 2
meters past a roof edge for the left or right side of wall compartments for a gable
roof. For the first case of scaffolding structure shown in figure 4.1 the constraint in
formulated in (4.10). For the second case of scaffolding structure shown in figure
4.2 the constraint is formulated as in (4.11).

g4+q+i(x) = 2− Li, i = 1, 2, . . . , h
g4+q+i+1(x) = 2−Hi, i = h, h+ 1, . . . , n

(4.10)

g4+q+i(x) =

2− Li, i = 1, 2, . . . , h
2−Hi, i = h+ 1, . . . , n

(4.11)

4.3 Genetic Algorithm
The genetic algorithm used for optimization is modified in relation to Pymoos
NSGA-II to allow for the specific parameters used for this project and the encoding
of the ledge length values. It is important to keep track of the arrangement of ledge
lengths for each solution, as different permutations lead to different fitness results.

38



4. Algorithm

4.3.1 Sampling
The sampling process of the algorithm generates a population with a specified num-
ber of individuals. These individuals are initiated as a random sequence of available
ledge lengths as a first step of the optimization algorithm. The available ledges
are sent as input to the sampling process. The availability of these ledge lengths
depends on the scaffold loading class for the scaffold and the user inventory. To
make the algorithm faster and more efficient on this optimization problem, which in
reality has a quite small search space, the algorithm has been limited by reducing
the span of size on sampled individuals correlating to the amount of ledges in a
scaffold. The minimum size of a sampled individual is determined by the length
of the longest available ledge length as in (4.12) where Lledge is the longest ledge
length, Lwall is the wall length to optimize toward and Nmin is the minimum in-
dividual size. The size of the sampled individual is also limited to the maximum
number of ledge components depending on the optimization length as in equation
(4.13) where Nmax is the maximum individual size. The walls length influence the
maximum amount of ledge components so that for shorter walls it is assumed that
the maximum amount of ledges is equal to the rounded up integer of the walls length
as this would still mean the amount of combinations for the ledge components are
still small. For longer walls of 6 meters or above, the maximum length is the same
as the walls length divided by two to keep the combinations to a minimum and to
easier find solutions prioritizing longer ledges which in general is more beneficial for
longer walls. Furthermore, population size used for the genetic algorithm is 30 and
the available ledge lengths depend on the supplier, seen in Section 3.1 and number
of length choices is defined as n.

Nmin =
⌈
Lwall

Lledge

⌉
. (4.12)

Nmax = dLwalle , Lwall ∈ [0, 6) ⊆ R+

Nmax =
⌈
Lwall

2

⌉
, Lwall ∈ [6,∞) ⊆ R+ .

(4.13)

P = 30 (4.14)

39



4. Algorithm

Algorithm 1 Sampling
Input: q, Nmax, Nmin, P
Output: Population
i← 0
Population← List()
Population.size← P
while i < P do

Individual ← List()
j ← 0
size← random.choice(range(Nmin, Nmax)) . Determines initial scaffolding

compartments
while j < size do

Length← random.choice(q) . Compartment assigned a random length
from supplier

Individual.Append(Length)
j ← j + 1

end while
Population.Append(Individual)
i← i+ 1

end while

4.3.2 Fitness
To evaluate individual solutions, a fitness function is needed. The fitness function
is the inverse objective function and is to be maximized within the algorithm where
the best solution has the highest fitness in that category. For this project, there are
three fitness functions that correspond to the objective functions f1, f2, f3 mentioned
in Section 4.2.1 for the genetic algorithm. Each population individual has access to
its objective function value and the fitness values are specified as follows:

40



4. Algorithm

Algorithm 2 Fitness
Input: Population
Output: (Population, Fitness)
i← 0
Fitness← List . Creates a fitness list for the population
while i < Population.size do

fitness_length← 1/Population(i).f1
fitness_material← 1/Population(i).f2
fitness_roof ← 1/Population(i).f3
Fitness.append((fitness_length, fitness_material, fitness_roof))
i← i+ 1

end while

4.3.3 Selection
For the genetic algorithm, the selection process is where two parents are selected
to then produce two offspring. These parents are determined by using a binary
tournament selection where for each parent, two individuals are being compared
and the one with the higher fitness value is chosen as one of the parents.

Algorithm 3 Selection
Input: (Population, Fitness)
Output: Parents
i← 0
Parents← List()
while i < dPopulation.size/2e do

pair ← List() . List for saving best potential parents
j ← 0
while j < 2 do

random1← random.choice(Population)
random2← random.choice(Population)
if random1.f itness > random2.f itness then

pair.append(random1)
else

pair.append(random2)
end if
j = j + 1

end while
Parents.append(pair)
i← i+ 1

end while

41



4. Algorithm

4.3.4 Crossover
The crossover produces two offspring from two parents selected from the binary
selection process. For the algorithm to work better, it was necessary to constrain
some of the crossovers for shorter optimization lengths. Where it is restricted to not
using crossover when the individual consists of only 3 or fewer ledge lengths defined
as Kmin. Due to the smaller search space, the crossover probability was set relatively
high at a value of 50%.

Kmin = 3
Pcross = 0.5

(4.15)

Algorithm 4 Crossover
Input: (Parents, Pcross, Kmin)
Output: Population
r ← rand()
Population← List()
if Parents(1).length ≤ Kmin or Parents(2).length ≤ Kmin then

offspring1, offspring2← Parents(1), Parents(2)
else if r < Pcross then

length1← randint(1, Parents(1).length) . Determines split position
length2← randint(1, Parents(2).length)

part1, part2← Parents(1).split(length1) . Splitting parent in 2
part3, part4← Parents(2).split(length2)

offspring1← part1 + part3 . Combining parent1 and parent2
offspring2← part2 + part4

else
offspring1, offspring2← Parents(1), Parents(2)

end if
Population.append(offspring1) . Assigning individuals to new population
Population.append(offspring2)

4.3.5 Mutation
Mutation for this specific case is done in two ways, either by scrambling the order
of the individual lengths or by changing a random number of the lengths to a new
length with 40% probability for each mutational operator. Therefore, the total
probability of changing an individual is 80% as the random number is generated
only once and no individual can be both scrambled and change ledge lengths in the
same mutation process. The ledge lengths choices is defined as n.

Pmut = 0.4 (4.16)

42



4. Algorithm

Algorithm 5 Mutation
Input: Population, Pmut, q
Output: Population

i← 0
while i < Population.size do

Individual ← Population(i)
r1← rand()
if r1 <= Pmut then . Scramble mutation

New_Individual ← random.permutation(Individual)
else if Pmut < r < (2× Pmut) then . Compartment lengths mutation

j ← 0
New_Individual ← List()
while j < Individual.length do

r2← rand()
if r2 < (1/Individual.length) then

New_Individual.append(random.choice(q))
else if r2 >= (1/Individual.length) then

New_Individual.append(Individual(j))
end if
j ← j + 1

end while
else if r >= Pmut then . No mutation

New_Individual ← Individual
end if
Population(i)← New_Individual
i← i+ 1

end while

4.3.6 Elitism
To further improve the convergence of the stochastic optimization and to easier find
an optimal solution, elitism is used. This saves the best overall fitness solution
(individual) between iterations, leading to further evolutionary improvement on the
best solutions from each generation. Since this thesis algorithm builds upon the
NSGA-II algorithm, elitism has to consider one Pareto front in each generation as
the best where multiple individuals are saved between generations. Some solutions
are better at certain objectives, and therefore multiple solutions are saved as their
total objective values are considered equal.

43



4. Algorithm

Algorithm 6 Elitism
Input: (Population, Fitness)
Output: Best_Individuals

i← 0
Pareto_best← list()
best_fitness← max(Fitness)
while i < Population.size do

if Fitness(i) == best_fitness then
Pareto_best.append(i) . Saving best individuals as Indices

end if
i← i+ 1

end while
Best_Individuals← Population(Pareto_best) . Saving best individuals

4.4 Scaffolding Solutions Filtering
The MOGA does produce multiple viable solutions, which are considered equal from
the optimization run and its Pareto front. However, only one solution can be pre-
sented in the visual environment at a time. To choose a solution within the ones
available, a filtering process was constructed. The first filtering step was to reduce
solutions to those that have no larger than a 0.3 meters wall-fit values, representing
the gap between the scaffold and the wall, as this is a recommendation from AFS [2].
By using this criteria no additional consoles is needed to breach the gap between the
scaffold and the wall facade which is mostly favored. If however the algorithm does
not find a sufficient solution in regards to this wall-fit the algorithm will propose a
solution which may violate the 0.3 meter criteria and therefore additional consoles
would be needed if not any regeneration is done. The materials used is of the highest
priority after wall-fit in the filtering process, and then the reduced roof distance is
taken into account.

1. f1 ≤ 0.3
2. f2
3. f3

If no scaffolding solutions are within 0.3 meters of the wall, then the priority is in
the order of material, wall-fit, roof-fit where the maximum value for wall-fit would
be 1 meter from algorithmic constraints which means the gap between scaffold and
wall facade can always be minimized under 0.3 meters using additional consoles.

1. f2
2. f1
3. f3

44



5
Results

In this section the results from locating the optimal number of generations, given
a small, medium and large test case will be presented. These findings will then be
used to construct a visual comparison of the algorithmic solution with that produced
by a scaffolding contractor, followed by quantitative test results when comparing the
algorithms’ performance to employees at ScaffCalc. Subsequently, the performance
of an inventory-constrained algorithm will be compared with an unconstrained one,
and lastly, the results of a time-unconstrained algorithm for two test-cases will be
presented.

5.1 Locate Optimal Number of Generations
In Sections 5.1.1 - 5.1.3 results highlighting the correlations between the number
of generations and computational complexity will be presented. In addition, re-
sults exploring algorithmic performance for varying populations over a set number
of generations will be presented. For each test case presented in Section 3.2, 50
independent runs will be averaged for every 10th generation for three different pop-
ulations and summarized graphically. For all contour plots, obj1 is the normalized
length objective function, obj2 the normalized material objective function, and obj3
the normalized roof objective function.

5.1.1 Small Test Case
The metrics of the figure for the small test case can be found in Table 3.2, where
the data presented in Figures 5.1 and 5.2 demonstrates the first set of results for
time complexity versus the number of generations and algorithmic convergence,
respectively.

45



5. Results

0 50 100 150 200 250 300

generations

0

1

2

3

4

5

6

s
e
c
o
n
d
s

time vs generations for small buidling

30-population

50-population

75-population

Figure 5.1: Average time for one run
over 50 independent runs, with 30, 50,
and 75 generations for the small test case

0 50 100 150 200 250 300

Generations

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

N
o
rm

a
liz

e
d
 a

v
e
ra

g
e
 s

u
m

 o
f 
o
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
s

average objectives for small building

30-population

50-population

75-population

Figure 5.2: Normalized average sum
from objectives, 1,2, and 3, for 30, 50, and
75 in populations for the small test case

In Figure 5.1 a strong linear correlation is shown between the algorithmic genera-
tional time and the number of generations for 30, 50, and 75 populations. Here, a
larger number in populations demonstrates a larger slope coefficient as the distance
between 75 population marginally grows in distance from 30, and 50 population
with an increase in number of generations. Furthermore, Figure 5.2 presents a nor-
malized average result according to (2.22) for all three objectives, with the same
number of populations as used in Figure 5.1. Due to an efficient initialization cor-
relating with metrics of the test case the algorithm starts with a relatively small
discrepancy from its utopian point, with a worst value of approximately 14.4 for
30 populations. Moreover, the algorithm rapidly convergence between generations
10-50 for each tested number of populations, to stagnate in convergence rate surpass
200. Unlike the results seen in Figure 5.1 the difference in performance between 30,
50, and 75 tends to be less significant, as the trends displayed in Figure 5.2 follow
a similar behavior and performance.

During each out of the 50 independent runs, every Pareto front was stored and
averaged to be presented in Figure 5.3, where the spread of 10, 100, and 200 gener-
ations are displayed.

46



5. Results

Figure 5.3: Contour plot for 10, 100, and 200 generations displaying the average
Pareto result from 50 independent runs on the small test case with 30 selected as
population size. Here, obj1 = normalized length-fit, obj2 = normalized material,
and obj3 = normalized roof-fit.

A clear convergence from generation 10 to 200 can be seen as the objective values for
obj 1-3 decrease and progress toward origin. Similarly, for 100 and 200 generations
the upper area of the contours is darker shaded than the areas closer to origin,
which would imply that the algorithm sequentially prioritizes the poorest optimized
objective function whilst running.

5.1.2 Medium Test Case
Continuing with the medium test case according to Table 3.2, equivalent evaluations
as seen in subsection 5.1.1 were performed and summarized in Figures 5.4, and 5.5.

0 50 100 150 200 250 300

generations

0

1

2

3

4

5

6

s
e

c
o

n
d

s

time vs generations for medium buidling

30-population

50-population

75-population

Figure 5.4: Average time for one run
over 50 independent runs, with 30, 50,
and 75 generations for the medium test
case

0 50 100 150 200 250 300

Generations

0.05

0.1

0.15

0.2

N
o

rm
a

liz
e

d
 a

v
e

ra
g

e
 s

u
m

 o
f 

o
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
s

average objectives for medium building

30-population

50-population

75-population

Figure 5.5: Normalized average sum
from objectives, 1,2, and 3, for 30, 50, and
75 in populations for the medium test case

Similar to the results shown in Figure 5.1, all three trends in Figure 5.4 show a
linear relation between time complexity and the number of generations. Another
common similarity is the difference in slope between the three populations, where a

47



5. Results

large population tends to indicate a larger slope coefficient, as shown in both Fig-
ures 5.4 and 5.1. Although given similar trend lines in time complexity between
the small and medium test case, there is an approximate difference in time of 1.2%
between 30 populations, 11.5% with 50 generations, and approximately 6.2% with
75 in population, over the span of 300 generations. Results indicating a correlation
between time complexity and building size.

Furthermore, Figure 5.5 demonstrates similar results as seen in Figure 5.2 with
a relatively small discrepancy in overall performance for 30, 50, and 75 in popula-
tion. By allowing the algorithm to run for 300 generations, the overall performance
of each population size outperforms those of the small building. Moreover, a contour
plot showing the convergence for the average Pareto front over 50 independent runs
is displayed in Figure 5.6.

Figure 5.6: Contour plot for 10, 100, and 200 generations displaying the average
Pareto result from 50 independent runs on the medium test case with 30 selected
as population size. Here, obj1 = normalized length-fit, obj2 = normalized material,
and obj3 = normalized roof-fit.

Unlike the results seen in Figure 5.3, the algorithm tends to show a lower deviation
among the objective functions as highlighted for 100 generations, where more op-
timized objective functions 1 and 2 (closer to origin) also demonstrate lower, more
optimized fitness values for objective function 3. Additionally, less optimized values
for objective functions 1, and 2 tend to also display a poorer fitness value for ob-
jective 3, which can be seen by the greener area located farthest from origin, given
100 generations. However, by allowing the algorithm to continuously explore, it can
be seen how the overall performance for all objective functions is becoming more
optimized, similar to that seen for the small test case.

5.1.3 Large Test Case
The final test case employed the metrics presented for the large test case in Table 3.2,
and identical evaluations as those previously performed for the small and medium

48



5. Results

test case were carried out. In Figures 5.7 and 5.8 the results are presented for both
time complexity and overall performance.

0 50 100 150 200 250 300

generations

0

1

2

3

4

5

6

s
e

c
o

n
d

s

time vs generations for large buidling

30-population

50-population

75-population

Figure 5.7: Average time for one run
over 50 independent runs, with 30, 50,
and 75 population for a large building

0 50 100 150 200 250 300

Generations

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

N
o

rm
a

liz
e

d
 a

v
e

ra
g

e
 s

u
m

 o
f 

o
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
s

average objectives for large building

30-population

50-population

75-population

Figure 5.8: Normalized average sum
from objectives, 1,2, and 3, for 30, 50, and
75 in populations for a large building

Similar to previous results, Figure 5.7 demonstrates linear relations between time
complexity and the number of generations for all three sizes in population. By com-
paring the results in Figure 5.7 with those collected from the medium test case, and
shown in Figure 5.4 there is a total difference in time between the large and medium
test cases of approximately 3.2 % for 30 population, 5% for 50 in population and
4.2% with 75 population. This would further imply that there is a slight increase in
time usage for the large test case compared to the medium test case, supporting the
comparison made in Section 5.1.2 that time complexity scales with the input size of
the build.

Furthermore, Figure 5.8 demonstrates a successful overall minimization with a con-
verging trend towards the utopian points. However, unlike the performance shown
in Figures 5.2 and 5.5 where the convergence has leveled out around 0.05 for all
populations, the trend shown for the large test case follows a decreasing trajectory,
implying that more generations would be needed before the overall average would
stagnate. By observing the contour plots represented in Figure 5.9, it is possible to
establish a clear discrepancy compared to the contour plots showcased for the small
(5.3), and medium (5.6) test cases.

49



5. Results

Figure 5.9: Contour plot for 10, 100, and 200 generations displaying the average
Pareto result from 50 independent runs with 30 selected as population size. Here,
obj1 = normalized length-fit, obj2 = normalized material, and obj3 = normalized
roof-fit.

First, the minimization of obj1 still contains Pareto solutions in generation 200
equivalent to that found in generation 10. However, by observing the spread of the
sample points, it is clear that the density is vastly more spread in generation 10,
compared to that shown for generations 100 and 200, where the sample points cluster
around the origin. Furthermore, due to the linear interpolation of the contour plots,
outliers such as those shown in Figure 5.9, push the surface area to each objective
value, implying that the overall area of the surface depends on the worst solution of
each objective function. The existence of these outliers is further demonstrated in
Figure 5.8, as the trend for each populations has not leveled out, suggesting there
is room for improvement.

5.2 Visual Comparison Vs User-Built Scaffolds
In the following section, results will be presented according to Section 3.2.2, and
summarized in a table together with the logged data of a contractor using the
ScaffCalcs web application.

5.2.1 Visual Comparison O1, Constructor Vs Algorithm
The first visual comparison was constructed and executed according to the instruc-
tions given in Section 3.2.2, and "Object" O1 in 3.4. In Table 5.1 the data retrieved
from a constructor modeling a scaffold around test case O1 are presented.

Table 5.1: Amount of scaffolding compartments used for each wall within the con-
tractors project with time taken for the project modeling of O1.

First wall Second wall Third Wall Fourth Wall Time (s)
5 5 4 5 779

50



5. Results

Based on the results presented for the small test case in Section 5.1.1, the number of
generations was set to 250 for the simulation, as this would result in a generational
time of less than 2 seconds, as well as a strongly converged outcome based on Figures
5.1 and 5.2. In Table 5.2, 10 independent runs with a population of 30 are presented.

Table 5.2: Amount of scaffolding compartments used for each wall from 10 indepen-
dent runs performed with 250 generations and 30 in population on the reconstructed
test object O1.

Run # First wall Second wall Third Wall Fourth Wall Time (s)
1 4 4 4 4 1.89
2 4 4 4 4 1.72
3 4 4 4 4 1.79
4 4 4 4 4 1.81
5 4 4 4 4 1.74
6 4 4 4 4 1.72
7 4 4 4 4 1.78
8 4 4 4 4 1.89
9 4 4 4 4 1.72
10 4 4 4 4 1.69
Avg 4 4 4 4 1.78

The algorithm output was consistent and outperformed the scaffold produced by the
contractor with respect to both material and time. Due to the relatively short wall
metrics of the test object O1, the algorithm proposed the same optimized solution
each time, visualized and compared to that of the contractors in Figures 5.11, and
5.10.

Figure 5.10: front view of wall 3 built by
the constructor on test case O1

Figure 5.11: front view of wall 3 gener-
ated by the algorithm on test case O1.

Based on a visual comparison in Figures 5.10 and 5.11, both the constructor and
the algorithm have successfully built the scaffold in terms of height and length, as
no major parts of the scaffold are extended beyond the edges of the roof, nor are
there any need for consoles.

51



5. Results

5.2.2 Visual Comparison O2, Constructor Vs Algorithm
Data from the building contractor creating a scaffold around the test object O2 are
summarized in Table 5.3.

Table 5.3: Amount of scaffolding compartments used for each wall within the con-
tractors project with time taken for the project modeling of test object O2.

First wall Second wall Third Wall Fourth Wall Time (s)
7 12 7 13 3399

The metric for test object O2 is summarized in Section 3.2.2, and with a gable length
of 20 meters, the results collected from the medium test case, presented in Table
5.4 acted as a good measurement for the choice of 240 generations. The algorithm
was run for 10 independent iterations each with 30 in population, and is presented
in Table 5.4.

Table 5.4: Algorithmic results from 10 independent runs performed with 240 gen-
erations and 30 in population on the reconstructed test object O2.

Run # First wall Second wall Third Wall Fourth Wall Time (s)
1 8 12 8 12 1.80
2 8 12 8 12 1.96
3 8 12 8 12 1.81
4 8 12 8 12 1.73
5 8 12 8 12 1.93
6 8 12 8 12 1.77
7 9 12 9 12 1.90
8 8 12 8 12 1.70
9 8 12 8 12 1.84
10 8 12 8 12 1.88

AVG 8.1 12 8.1 12 1.83

As seen for test object O1 in Section 5.2.1 each run of the algorithm is sub 2 seconds,
which compared to the contractors 3399 seconds demonstrates a vast improvement.
Furthermore, the contractor outperforms the algorithm with regard to wall 1, where
one less compartment is used. Due to the symmetric nature of walls 1 and 3 the
algorithm merely mirrors the first wall resulting in a poorer use of material along wall
3 as well. However, the algorithm consistently generates 12 materials for the fourth
wall, which is 1 less than that produced by the contractor. A visual representation
of the contractors and an algorithmic solution will be presented in Figures 5.12 and
5.13.

52



5. Results

Figure 5.12: Visualization of the con-
tractors scaffold construction for test ob-
ject O2, viewed from wall 1.

Figure 5.13: Visualization of the algo-
rithmic scaffold generation for test object
O2, viewed from wall 1.

It can be seen in Figure 5.12 that the contractor uses two 3.05 compartments on the
upper floor, allowing the contractor to use only seven compartments, at the expense
of potential roof fitness.

5.3 Quantitative Comparison of Scaffolding Gen-
eration

The results generated from each test case presented in Section 3.2.3 will be summa-
rized in this section. Unlike in Section (5.2) quantitative measurements comprised
of all three objective functions will be introduced with respect to both the algorithm
output and the manual users.

5.3.1 Test Case B1
The first test case, B1, had a wall length similar to that introduced for the small test
case in Section 5.1.1 with the requirement of an additional scaffold story due to a
gable height of 5 meters. To compensate for the additional story, a suitable choice of
240 generations and 30 in population was selected, supported by the data presented
in Figures 5.1 and 5.2. The best overall solution constructed by the users as well as
generated by the algorithm together with the overall average for the manual users
and 100 algorithmic runs is presented in Table 5.5, where the best solutions are
chosen according to the filtering process in Section 4.4.

53



5. Results

Table 5.5: Best and average objective metrics for multiple user modeling and algo-
rithm of B1 building for each wall number in parenthesis.

Metric User Algorithm
Best Avg Best Avg

Wall fit (1) 0.35 0.38 0.15 0.15
Wall fit (2) 0.28 0.28 0.28 0.28
Wall fit (3) 0.5 0.44 0.15 0.15
Wall fit (4) 0.12 0.06 0 0
Materials (1) 5 5.86 6 6
Materials (2) 4 4 4 4
Materials (3) 5 5.29 6 6
Materials (4) 5 4.14 4 4
Roof fit (1) 0 0.87 0 0
Roof fit (3) 0.03 0.63 0 0

Time taken (s) 555 265 ≤ 2 ≤ 2

The algorithmic output produced 100 consistent solutions for all 4 walls, where the
wall discrepancy was in the range 0.1 - 0.3 meters, 6 and 4 compartments, and a
roof distance of 0 meters, for wall 1 and 3. A graphical representation of the best
users’ solution as well as the algorithmic solution is illustrated in Figures 5.14, and
5.15.

Figure 5.14: Visualization of best user
made modeling of scaffolding for building
B1 viewed from front.

Figure 5.15: Visualization of the algo-
rithmic scaffold generation for test object
B1, viewed from wall 1.

5.3.2 Test Case B2
The same users who provided models and data for test case B1 in the previous section
(5.3.1) were instructed to construct scaffolds around test case B2, with metrics
according to Table 3.5. The overall best solution, along with the overall average for
users and 100 algorithmic runs, is summarized in Table 5.6, with the best solutions

54



5. Results

being chosen according the the filtering process in 4.4.

Table 5.6: Best and average objective metrics for multiple user modeling and algo-
rithm of B2 building for each wall number in parentheses.

Metric User Algorithm
Best Avg Best Avg

Wall fit (1) 0.27 0.35 0.27 0.192
Wall fit (2) 0.17 0.35 0.17 0.17
Wall fit (3) 0.5 0.42 0.27 0.192
Wall fit (4) 0.28 0.24 0.15 0.15
Materials (1) 7 7.9 7 8.69
Materials (2) 7 7.4 7 7
Materials (3) 8 8.2 7 8.69
Materials (4) 7 7.4 7 7
Roof fit (1) 1.55 2.88 1.55 1.32
Roof fit (3) 1.91 3.19 1.55 1.32

Time taken (s) 463.71 391.77 ≤ 2 ≤ 2

Given the wall metrics for test case B2, the results generated from the large test
case in Section 5.1.3 supported the choice of 230 generations, with 30 as population
size. The results of 100 independent runs with these metrics were carried out, and
the results of the stochastic algorithm are presented in Figure 5.16.

Figure 5.16: Objective values distribution for the selected solution from 100 run
for B2 building dimensions using the genetic algorithm for wall 1 and 3.

Compared to the results generated for test case B1, the spread for all three objectives

55



5. Results

is larger, with wall fitness ranging from 0.1 - 0.3 meters, materials 7 - 12, with a dense
cluster around 8-9, and the roof distance mainly grouped between 0.5 - 2.5 meters.
All solutions were below 2 seconds, implying a successful choice of generations and
population. Further, the best solution created by the user was similar to what the
algorithm managed to generate, with the main difference being wall-fit for walls 3
and 4, material for wall 3, and roof fitness on wall 3. A visual representation of the
best solution for the user and the algorithm is shown in Figures 5.17 and 5.18.

Figure 5.17: Front-side view of best user
modeled scaffolding around building B2.

Figure 5.18: Front-side view of best algo-
rithm generated scaffolding around build-
ing B2.

56



5. Results

5.4 Inventory
For the unconstrained test case, all materials were available according to Table 5.7,
and for the constrained test, the inventory was specified according to Table 5.8.

Table 5.7: Table showing the unlim-
ited amount of each ledge length that was
available.

Length Amount
0.45 ∞
0.73 ∞
1.09 ∞
1.40 ∞
1.57 ∞
2.07 ∞
2.57 ∞
3.07 ∞
4.14 ∞

Table 5.8: Table displaying the limited
amount of each ledge length that is avail-
able before the run.

Length Amount
0.45 150
0.73 50
1.09 100
1.40 1000
1.57 300
2.07 100
2.57 100
3.07 100
4.14 56

The first results reflect the solution of the test case constrained by time and inven-
tory, which can be seen in Figure 5.19.

Figure 5.19: Solution from an constrained inventory run on test case B2.

57



5. Results

The materials available after the run was complete are presented in Table 5.9, where
it can be seen that the algorithm has prioritized the longer lengths.

Table 5.9: Table of remaining amount of ledge lengths after generated scaffold on
constrained inventory.

Length (m) Amount
0.45 108
0.73 50
1.09 68
1.40 894
1.57 26
2.07 8
2.57 4
3.07 12
4.14 2

Furthermore, it can be seen in Figure 5.19 that the majority of longer lengths have
been placed along wall 2, with more emphasis on shorter lengths across wall 1. The
algorithm has successfully managed to utilize most of the longer lengths [1.57 - 4.14],
with a smaller change to the lengths below 1.57. The outputs from the constrained
and unconstrained run are summarized in Table 5.10.

Table 5.10: Summation of the generated solutions with a constrained and uncon-
strained inventory for test case B2.

Example Wall fit[W1,..,W4] (m) Materials [W1,..,W4] (m) Roof fit [W1, W3] (m)
Unconstrained [0.27, 0.17, 0.27, 0.15] [8,7,8,7] [1.48, 1.48]
Constrained [0.15, 0, 0.15, 0] [11, 11, 11, 16] [0.64, 0.64]

Here, the results generated from the test case without constraints reflect the average
performance of the algorithm similar to those presented in Table 5.6. Moreover, the
roof-fit and wall-fit are better optimized with a constrained inventory; however, the
materials used are notably larger, with 9 more materials used for wall 4, which is
solved last by the algorithm.

58



5. Results

5.5 Time-unconstrained Optimization
The results generated from the time-unconstrained test case presented in Section
3.2.4 will be presented in this section. In contrast to the other results shown, this
section will include algorithmic results when the algorithms exceed the 2 second
runtime to compare objective performance with the results mentioned in Section
5.3.

5.5.1 Test Case B1
The results of 100 time-unconstrained optimization runs using the MOGA are shown
in Figure 5.20.

Figure 5.20: Objective values distribution from 100 runs using non-time related
termination criteria for building B1 regarding wall 1 and 3.

These results imply that the same solution is found within each run and is the
optimal solution found with respect to the termination criteria. The average number
of generations the algorithm went through from these 100 runs was 1140 with a
minimum of 1100 generations and a maximum of 1600 generations. On average, the
optimal solution was found at generation 140 as the following 1000 generations did
not lead to any improvement on the Pareto front.

Table 5.11: Metrics for the average objectives generated by 100 runs from the
algorithm for time unconstrained test case B1.

Wall fit[W1,..,W4] (m) Materials [W1,..,W4] (m) Roof fit [W1, W3] (m)
Avg [0.15, 0.282, 0.15, 0] [6,4,6,4] [0, 0]

59



5. Results

5.5.2 Test Case B2
The resulting objective values for test case B2 using an unconstrained time termi-
nation criterion are shown in Figure 5.21.

Figure 5.21: Objective values distribution from 100 runs using non-time related
termination criteria for building B2 regarding wall 1 and 3.

The 100 runs went on for an average of 5475 generations, with a minimum of 1900
and a maximum of 12500 before achieving the termination criteria. This means that
the algorithm has converged on an optimal solution with respect to the termination
criteria at around 4475 generations, which is equivalent to approximately 40 seconds
when using linear interpolation on the results demonstrated in the large test case
in Figure 5.7. Comparably, the distribution of solutions varied less than for the
time-constrained case presented in Section 5.3.2, with 82% of the runs converging
to the solution with the least amount of material, deemed the optimal solution in
the time-constrained test.

Table 5.12: Metrics for the average objectives generated by 100 runs from the
algorithm for time unconstrained test case B2.

Wall fit[W1,..,W4] (m) Materials [W1,..,W4] (m) Roof fit [W1, W3] (m)
Avg [0.25, 0.17, 0.25, 0.15] [7.19, 7, 7.19, 7] [1.34, 1.34]

60



6
Discussion

In this section the most important results are summarized and discussed along with
the methods developed and used to generate said results. The aim of this project
was to construct an algorithm consisting of a MOGA and LP to solve scaffolding
optimization problems. The proposed research questions were to investigate whether
the algorithm could propose more optimized solutions to scaffolding problems than
produced manually by a user with a time constraint of 2 seconds. And how large
a performance increase with respect to the generation of optimal solutions the algo-
rithm would experience if the time constraint were lifted.

6.1 Algorithmic Evaluation
All mentions of an optimal solution have not been theoretically proved nor derived
but rather gathered by allowing the unconstrained algorithm to run and utilize the
filtering process presented in Section 4.4 to localize a reference for an optimal solu-
tion.

In Section 5.3.1 it is clear that the results produced support the usage of the al-
gorithm to solve smaller problems, similar to that in size of test case B1. Here,
the algorithmic robustness is truly enhanced by the generation of consecutive out-
puts, which holds in comparison to those manually produced by Scaffcalcs users.
Comparably, the best manual result is relatively close to that of the algorithms’
generated output, with similar roof fitness and slightly more optimized usage in
material. However, when the scaffold was manually created, as seen in both tests
B1 and B2, the use of mirroring walls 1 and 3 appeared to be often neglected, as
the wall fit often varied within each constructed solution. By adapting this mirror-
ing feature, the MOGA only needs to solve wall 1 whilst the LP part solves wall
2 and 4, resulting in roughly halving in time and prevention of user mismatching.
Although, given a relative closeness in objective performance, it is hard to ignore
the large discrepancy in time when comparing the user’s solutions for B1 against the
algorithm’s solutions. With a factor of approximately 230 in favor of the algorithm,
the user experience would be enhanced by adopting the algorithm for smaller con-
structions. A statement further supported by the convergence graph in Figure (5.3)
presented in Section 5.1.1, demonstrating how each objective function on average
was successfully optimized within the time limit of 2 seconds, providing a robust

61



6. Discussion

and consecutive solution for smaller building metrics. Furthermore, by lifting the
time constraint, the generated solutions remained unchanged, which would indicate
that the algorithm had fully converged towards an optimal solution under 2 seconds.

With a positive implementation of the algorithm on smaller time-constrained prob-
lems, the results presented in Section 5.3.2 for test case B2 show a wider distribution
of the solutions generated for a larger building. This is mainly due to the proposed
time constraint of 2 seconds, which inhibits the algorithm from properly exploring
the search space in search for an optimal solution. However, despite a larger distri-
bution in suggested solutions, the average performance holds in comparison to the
average results generated manually by ScaffCalc users. On average, the algorithm
outperforms users in both wall-fit and roof-fit, while producing poorer results for
material. It is common for the generated solution to perform better in one or two
objectives but rarely in all three. This is mainly due to the pure nature of most
multi-objective scaffolding problems, where an improvement in one objective func-
tion, such as material, consequently leads to a poorer fit along the walls and roof,
caused by the loss of flexibility. The results in Section 5.2.2, further supports this
correlation between the objective functions, since the scaffold generated for test case
O2 by the contractor is clearly outperformed by the algorithm with regard to both
wall- and roof-fit. However, the contractor uses one less material on wall 1 and 3.
Furthermore, the solution that was considered the most optimized with respect to
the material for test case B2 with 7 materials for each wall, 0.27 meters in wall-fit
and 1.55 meters in roof-fit was generated only in 2% of all iterations and the optimal
solution with respect to wall and roof-fit with 8 material, 0.15 meters wall-fit, and
0.27 meters in roof-fit was generated in none of the iterations, a result that indicates
that larger buildings require a larger number of generations and therefore more time
to converge towards an optimal solution.

The results obtained from the visual and quantitative tests in Sections 5.2-5.3, sup-
port the use of MOGA and LP to improve a manual user solution for smaller build-
ings while being constrained to a generation time of 2 seconds, shown by the pure
robustness of the proposed solutions. However, for larger buildings, the algorithm
is able to find optimal solutions but cannot guarantee any consistency with a time
constraint of 2 seconds. Therefore, on average the algorithm performs equivalent to
that of the user when compared for objective performance on larger building, with
an increasing risk of proposing a non-optimal solution correlating with the increase
in building size. Consequently, a method was constructed and tested to further in-
vestigate the time-unconstrained convergence of the algorithm for larger problems
with the results displayed in Section 5.5.2, where on average a generational time of
approximately 40 seconds would be required to allow the algorithm to fully converge
for test case B2. However, the method to find the number of genes and thus the
generational time required the entire Pareto front to remain unchanged for 1000
consecutive runs while being checked every 100th. Therefore, an optimal solution
according to our filtering processes could have been located in the early iterations
but kept running due to changes in the Pareto front, and a generational time of 40

62



6. Discussion

seconds should be seen as an average upper ceiling for the time required on buildings
similar in size to test case B2.

Although the results displayed for the unconstrained test case B2 were more promis-
ing than those for the constrained, the algorithm was not consistent in its proposed
solutions, and for 4% of the runs, a sub-optimal solution was proposed that was ob-
jectively worse than the other solutions. This is most likely the result of premature
convergence, where the algorithm is trapped in a local minima which can happen in
the case of loss of genetic material within the population. In NSGA-II the usage of
crowding distance is applied to increase diversity and therefore spread the genetic
material within the population, however, if the population size is too small, the algo-
rithm still runs a risk of converging too fast. Therefore, a higher choice in population
size could have produced a more consistent result for the time-unconstrained test
case. Furthermore, with the exception of one sub-optimal solution, it could be ar-
gued that a generational time of approximately 40 seconds is an acceptable time for
the user to wait for a proposed well-optimized solution, especially when the average
scaffolding construction time for test case B2 was 390 seconds. Additionally, most
of the scaffolding projects constructed on ScaffCalc are smaller than in test case B2,
implying that a shorter generational time should be expected for most problems.
In summary, the time-constrained algorithm generated an optimal solution with re-
spect to all objective functions in 2% of all its runs, while the time-unconstrained
algorithm successfully generated an optimal solution in 82% of the runs with re-
spect to material and another 14% with respect to wall and roof-fit. The results of
the time-unconstrained algorithm thus successfully generated an optimal solution
in 96% of its runs and, consequently, were 94 percentage units better for larger
buildings than when constrained to a 2-second generation time. By introducing a
suitable weight factor, the time-unconstrained algorithm could be tuned so that the
generation of optimal solutions would only be suggested based on a predetermined
importance of the objective functions. By tuning this weight factor to optimize
material the algorithm would hopefully converge towards an optimal solution faster
as all suggested solutions not focusing on optimizing material would receive a poor
evaluation and not be proposed as an optimal solution. This feature would bring
more complexity, but also flexibility, to the algorithm and would be worthwhile to
investigate in future work.

6.2 Effect of a Constrained Inventory
In Section 5.4 it is clear that when adapting a constrained inventory, the amount
of material presented in the solution is larger than that seen by the test case with
an unconstrained inventory. However, when the algorithm operates with a limited
inventory, it prioritizes the longer compartment widths, indicating that the objective
function regarding material usage is operational and works successfully when applied
to problems with a constrained inventory. Furthermore, an inventory restricted to a
majority of shorter compartments widths will experience greater flexibility, resulting
in a better optimized wall and roof fit, as seen in Table 5.10. And vice versa, for
an inventory with the majority of longer compartment widths available, flexibility

63



6. Discussion

is lost, resulting in low material usage at the expense of poorer optimized wall and
roof-fit. The motivation for a larger material usage on wall 4 for the constrained
solution is grounded on the wall prioritization done by the algorithm, where the
MOGA proposes a solution for wall 1 that is mirrored onto wall 3, reserving ma-
terial for both walls. This is then followed by the LP solving wall 2, and finally
wall 4. Although a constrained inventory was never compared in terms of wall and
roof-fit with a user test case, it could still be argued that it would serve an impor-
tant role, since the difficulty of backtracking the inventory scales in complexity with
the size of the building, which inevitably would result in hard manageable objectives.

6.3 Comparison with Existing Software
Reiterating back to Section 1.1 where today’s most commonly used computer-aided
tools for scaffolding generation were introduced, the algorithmic approach focused
heavily on material optimization and was optimized only in regards to wall-fit to a
certain degree [4], [5]. Furthermore, there seemed to be no software that incorpo-
rated a third objective along the height of the gables but merely generated scaffolds
up to a set height. Comparably, we have successfully developed an algorithm that
builds upon these optimization tools, by adding a third objective function to inte-
grate roof fit into the optimization part, and develop a more advanced method for
optimizing wall-fit.

6.4 Limitations
The data collected and processed for the qualitative Section 5.3 are largely con-
structed from the results of the ScaffCalc personal, who are well versed within the
scaffolding industry, but not titled scaffolding contractors. Therefore, the results
presented should be used as an indication of how the algorithmic performance would
compete with manual users. Additionally, due to the lack of feedback from profes-
sional contractors, the data collected were also limited in amount, which implied
that no statistical certainty could be established as this would require a larger col-
lection of data.

Although the algorithmic performance has shown very positive results, it is vital
to recognize that no form of strength or FEM calculations has been adopted in the
solutions produced. If the algorithm were to incorporate such calculations, it would
not be able to meet the time constraint of 2 seconds, resulting in infeasible solutions.

6.5 Future Research
In order to build on the work presented in this thesis, it would be highly interesting
and beneficial to further investigate hyperparameter tuning, as most of our work
has focused on algorithmic construction and logic, while the choice of parameters

64



6. Discussion

has been based on external sources, due to time limitations.

Furthermore, since the exclusion of FEM-calculations was adopted in the early stages
of the project, the choice to treat the evaluation of a roof-fit value between 0 and
0.5 meters as equal was based mainly on external guidance. By extending upon our
findings and including FEM-calculations, this interval as well as the roof-fit in (4.5)
would most likely vary with respect to external wind forces. If such a relation could
be located, the complexity and adaptability of the algorithm would increase.

The time constraint of 2 seconds was provided by ScaffCalc and was mainly based
on their intuition regarding user experience. It would serve a great purpose to
investigate this time constraint more thoroughly within the scaffolding industry by
interviewing contractors and users of similar platforms. As discussed in this thesis,
a user could potentially consider sacrificing time in exchange for a converged and
more optimized scaffolding proposal.

65



7
Conclusion

This thesis aimed to develop an algorithm that would incorporate a multi-objective
genetic algorithm and linear programming to solve constrained optimization prob-
lems in regards to the scaffolding industry. After a thorough literature and market
review, it was apparent that most available software was used for visualization pur-
poses, with some implementing a simpler form of optimization with respect to mate-
rial and scaffold length, but none, to the best of our knowledge, in the vertical plane.

Results generated from testing our methods indicated consecutive robustness in the
proposed solutions when applied to smaller buildings while being time-constrained.
These findings would suggest that the algorithm is well versed for smaller construc-
tions, as it guaranteed a solution comparable to that of a users’ in performance,
whilst doing so approximately 270 times faster. Furthermore, the algorithmic out-
put was not as consistent when applied to larger buildings while time-constrained.
However, on average, it produced equivalent results compared to the users’, with
a few outliers that would suggest that a time constraint of 2 seconds is too strict
to guarantee an optimal solution in every run. When the algorithm was allowed to
fully converge without the presence of any time constraint, it generated an optimal
solution in 96% of the runs for the large building, with an average run time of 40
seconds, which in turn is a 94 percentage unit increase in optimal generated solu-
tions compared to when time constraint.

It can therefore be concluded that the algorithm is well suited for smaller buildings,
as it produced solutions with an objective performance equivalent to that of a manual
user, while being substantially faster. However, the algorithm cannot guarantee an
improved solution for larger buildings if time-constrained to 2 seconds. Although,
with an average objective performance for larger buildings slightly better than that
of the users’, the algorithm is still sufficient under a time constraint in relation to a
time-unconstrained run.

66



DEPARTMENT OF ELECTRICAL ENGINEERING
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden
www.chalmers.se

www.chalmers.se


Bibliography

[1] Arbetsmiljöverket. (2016) Olycksstatistik 1979-2016. Accessed 20.01.22.
[Online]. Available: https://www.av.se/produktion-industri-och-logistik/
stallningar/arbetsskadestatistik-om-stallningar/
arbetsskadestatistik-om-stallningar-1979-2016/

[2] ——. (2016) Scaffolding (AFS 2013:4). Accessed 22.04.22. [Online].
Available: https://www.av.se/en/work-environment-work-and-inspections/
publications/foreskrifter/stallningar-afs-20134-provisions/

[3] Swedish Standards Institute. Swedish Standard SS-EN 12811-1:2004
‘Temporary works equipment - Part 1: Scaffolds - Performance
requirements and general design’. Accessed 21.04.22. [Online]. Available:
https://www.sis.se

[4] SMARTScaffolder. Scaffolding design and estimating software. Accessed
29.03.22. [Online]. Available: https://smartscaffolder.com/

[5] Layher. LayPLAN Classic / LayPlan CAD. Accessed 19.04.22. [Online].
Available: https://www.layher.se/teknisk-support/layplan/

[6] Scia. Engineering Software for the Scaffolding and Rack Systems industry.
Accessed 19.04.22. [Online]. Available: https://www.scia.net/en/industries/
scaffolding-and-rack-systems

[7] Avontus. Avontus Software - Technology Solution for Scaffolding. Accessed
19.04.22. [Online]. Available: https://www.avontus.com/

[8] CerTus. Scaffolding design software. Accessed 19.04.22. [Online]. Available:
https://www.accasoftware.com/en/scaffold-design-software

[9] Scafom-rux. ScaffMax, Scaffolding planning software. Accessed
19.04.22. [Online]. Available: https://www.scafom-rux.de/en/products/
software/scaffmax

[10] ScaffCalc. Scaffolding calculation software. Accessed 19.04.22. [Online].
Available: https://sv.scaffcalc.com/

[11] K. Kim and J. Teizer, “Automatic design and planning of scaffolding
systems using building information modeling,” Advanced Engineering
Informatics, vol. 28, no. 1, pp. 66–80, 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1474034613000979

II

https://www.av.se/produktion-industri-och-logistik/stallningar/arbetsskadestatistik-om-stallningar/arbetsskadestatistik-om-stallningar-1979-2016/
https://www.av.se/produktion-industri-och-logistik/stallningar/arbetsskadestatistik-om-stallningar/arbetsskadestatistik-om-stallningar-1979-2016/
https://www.av.se/produktion-industri-och-logistik/stallningar/arbetsskadestatistik-om-stallningar/arbetsskadestatistik-om-stallningar-1979-2016/
https://www.av.se/en/work-environment-work-and-inspections/publications/foreskrifter/stallningar-afs-20134-provisions/
https://www.av.se/en/work-environment-work-and-inspections/publications/foreskrifter/stallningar-afs-20134-provisions/
https://www.sis.se
https://smartscaffolder.com/
https://www.layher.se/teknisk-support/layplan/
https://www.scia.net/en/industries/scaffolding-and-rack-systems
https://www.scia.net/en/industries/scaffolding-and-rack-systems
https://www.avontus.com/
https://www.accasoftware.com/en/scaffold-design-software
https://www.scafom-rux.de/en/products/software/scaffmax
https://www.scafom-rux.de/en/products/software/scaffmax
https://sv.scaffcalc.com/
https://www.sciencedirect.com/science/article/pii/S1474034613000979


[12] M. Wahde, Biologically inspired optimization methods: an introduction. UK:
WIT Press, 2008.

[13] G. B. Dantzig and M. N. Thapa, Linear programming 1: introduction.
Springer Science & Business Media, 2006.

[14] L. A. Hannah, “Stochastic optimization,” International Encyclopedia of the
Social & Behavioral Sciences, vol. 2, pp. 473–481, 2015.

[15] J. C. Spall, “Stochastic optimization,” in Handbook of computational statis-
tics. Springer, 2012, pp. 173–201.

[16] ——, Introduction to stochastic search and optimization: estimation, simula-
tion, and control. John Wiley & Sons, 2005, vol. 65.

[17] D. W. Corne and M. A. Lones, “Evolutionary algorithms,” arXiv preprint
arXiv:1805.11014, 2018.

[18] N. M. Razali, J. Geraghty et al., “Genetic algorithm performance with differ-
ent selection strategies in solving TSP,” in Proceedings of the world congress
on engineering, vol. 2, no. 1. International Association of Engineers Hong
Kong, China, 2011, pp. 1–6.

[19] S. L. Yadav and A. Sohal, “Study of the various selection techniques in ge-
netic algorithms,” International Journal of Engineering, Science and Mathe-
matics, vol. 6, no. 3, pp. 198–204, 2017.

[20] K. A. De Jong, “An analysis of the behavior of a class of genetic adaptive
systems.” 1975. [Online]. Available: https://hdl.handle.net/2027.42/4507

[21] O. Abdoun, J. Abouchabaka, and C. Tajani, “Analyzing the performance of
mutation operators to solve the travelling salesman problem,” arXiv preprint
arXiv:1203.3099, 2012.

[22] L. Jiao, R. Shang, F. Liu, and W. Zhang, Chapter 3 - Theoretical basis
of natural computation. Elsevier, 2020, pp. 88–89. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B9780128197950000037

[23] C. R. Raquel and P. C. Naval Jr, “An effective use of crowding distance in
multiobjective particle swarm optimization,” in Proceedings of the 7th Annual
conference on Genetic and Evolutionary Computation, 2005, pp. 257–264.

[24] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multi-
objective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary
Computation, vol. 6, no. 2, pp. 182–197, 2002.

[25] E. K. Burke, E. K. Burke, G. Kendall, and G. Kendall, Search methodolo-
gies: introductory tutorials in optimization and decision support techniques.
Springer, 2014.

[26] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: NSGA-II,” in Inter-

https://hdl.handle.net/2027.42/4507
https://www.sciencedirect.com/science/article/pii/B9780128197950000037


national conference on parallel problem solving from nature. Springer, 2000,
pp. 849–858.

[27] J. S. Arora, “Chapter 14 - practical applications of optimization,” in
Introduction to Optimum Design (Fourth Edition), fourth edition ed., J. S.
Arora, Ed. Boston: Academic Press, 2017, pp. 666–667. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B9780128008065000147

[28] Pymoo. Multi-objective Optimization in Python. Accessed 24.05.22. [Online].
Available: https://pymoo.org/

[29] PuLP. Optimization with PuLP. Accessed 24.05.22. [Online]. Available:
https://coin-or.github.io/pulp/index.html

https://www.sciencedirect.com/science/article/pii/B9780128008065000147
https://pymoo.org/
https://coin-or.github.io/pulp/index.html

	List of Acronyms
	List of Figures
	List of Tables
	Introduction
	Background
	Aim and Research Questions
	Delimitations
	Outline of Report

	Theory
	Single Objective Optimization
	Deterministic and Stochastic Optimization
	Genetic Algorithm
	Encoding
	Fitness Value
	Selection
	Crossover
	Mutation
	Replacement
	Elitism

	Multi-Objective Optimization
	Normalization of MOGA-Values
	Scaffolding

	Methodology
	Milestones for Algorithmic Construction
	Milestone 1 - Length Optimization
	Milestone 2 - Length and Material Optimization
	Milestone 3 - Connecting Scaffolds Around Multiple Walls
	Milestone 4 - Optimizing Scaffolds on Gable Walls

	Evaluation of Algorithmic Performance
	Locate Optimal Number of Generations
	Visual Comparison Vs User-Built Scaffolds
	Quantitative Comparison of Scaffolding Generation
	Time-Unconstrained Algorithmic Performance

	Algorithmic Logic for 2D Buildings
	Wall Sequence Processing
	Constrained Material Inventory


	Algorithm
	Algorithm Frameworks
	Pymoo
	PuLP

	Minimization problem
	Objective functions
	Constraints

	Genetic Algorithm
	Sampling
	Fitness
	Selection
	Crossover
	Mutation
	Elitism

	Scaffolding Solutions Filtering

	Results
	Locate Optimal Number of Generations
	Small Test Case
	Medium Test Case
	Large Test Case

	Visual Comparison Vs User-Built Scaffolds
	Visual Comparison O1, Constructor Vs Algorithm
	Visual Comparison O2, Constructor Vs Algorithm

	Quantitative Comparison of Scaffolding Generation
	Test Case B1
	Test Case B2

	Inventory
	Time-unconstrained Optimization
	Test Case B1
	Test Case B2


	Discussion
	Algorithmic Evaluation
	Effect of a Constrained Inventory
	Comparison with Existing Software
	Limitations
	Future Research

	Conclusion
	Bibliography

