
Using machine learning and natural
language processing to automatically
extract information from software
documentation
Master’s thesis in Software Engineering

HELENA ÓLAFSDÓTTIR

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2019

Master’s thesis 2019

Using machine learning and natural language
processing to automatically extract information

from software documentation

HELENA ÓLAFSDÓTTIR

Department of Computer Science and Technology
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2019

Using machine learning and natural language processing to automatically extract
information from software documentation
HELENA ÓLAFSDÓTTIR

© HELENA ÓLAFSDÓTTIR, 2019.

Supervisor: Michel Chaudron, Department of Computer Science and Engineering
Examiner: Christian Berger, Department of Computer Science and Engineering

Master’s Thesis 2019
Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2019

iv

Using machine learning and natural language processing to automatically extract
information from software documentation
HELENA ÓLAFSDÓTTIR
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Engineers face many challenges when it comes to using and maintaining software
documentation. The OD3 is a vision for the future of software documentation which
proposes that documentation should be generated based on user queries. There are
many steps that need to be taken to create such a system. This research takes one
of those necessary steps by investigating the categories of software knowledge that
are contained in software documentation, automatically classifying sentences from
software documentation into those sentences, and exploring methods to identify
sentence relations. This analysis was conducted on one case documentation. A
system, Software Documentation Supporter (SDS), was then built to explore and
evaluate the results. The aim of the SDS is to support the user when navigating
through long software documentation. In the system, the user can choose from a
list of questions, and the software knowledge extracted from the documentation is
used to answer those questions. The results were evaluated using a quantitative
and a qualitative approach. As the sample size of the evaluation was small, the
quantitative results did not show a significant difference in the time it took users
to solve tasks using the SDS, compared to using only the documentation. The
qualitative results showed that participants did feel that the SDS supported them
and that it helped them navigate the documentation, however it was also clear that
improvements need to be made both in regards to the method, and the design of
the system.

Keywords: software, documentation, architecture, requirement, natural language
processing, classification, clustering

v

Acknowledgements
A large project like a Master thesis is never the work of only one person. I was
lucky enough to be surrounded by people who are incredibly skillful and ambitious,
and helped me achieve the results presented in this thesis. I would especially like to
thank my supervisor, professor Michel R. V. Chaudron for all the time he devoted
to this research. His continuous guidance and encouragement throughout the thesis
was invaluable. I would also like to thank his Ph.D. assistant Rodi Jolak for his input
and help with the system evaluation, and Dr. Mohamed Soliman for his insight into
the subject of this thesis. I would then like to thank all the people who devoted
their time to participate in the system evaluation and helped me collect valuable
information for this research. Finally, I would like to thank my family and friends
for their constant love and support throughout this process.

Helena Ólafsdóttir, Gothenburg, June 2019

vii

Contents

List of Figures xiii

List of Tables xv

1 Introduction 3
1.1 Current practice . 3
1.2 Future vision of software documentation 4
1.3 Purpose of the study . 4
1.4 Problem statement . 5
1.5 Scope . 5
1.6 Approach . 5

1.6.1 Extracting knowledge . 5
1.6.2 Producing answers to user questions 6

2 Background 9
2.1 Software Documentation . 9
2.2 Related Work . 10

2.2.1 Similar Studies . 10
2.2.1.1 SEC . 10
2.2.1.2 Acquiring Architecture Knowledge for Technology

Design Decisions . 10
2.2.1.3 A systematic Mapping Study on Text Analysis Tech-

niques in Software Architecture 10
2.2.2 Ground work . 11

2.2.2.1 OD3 . 11
2.2.2.2 The Task Phrase Extractor 11
2.2.2.3 The Witt database 12

3 Methods 13
3.1 Research method . 13
3.2 Data collection . 13
3.3 Software knowledge categories and data annotation 14
3.4 Classifying sentences into software knowledge categories 14

3.4.1 Identifying relations between sentences 16
3.4.1.1 Clustering . 16
3.4.1.2 Extracting and connecting sentences’ task phrases . . 17

3.4.2 Identifying technology concepts 17

ix

Contents

3.5 User questions and responses . 17
3.6 Creating the Software Documentation Supporter 18
3.7 System evaluation . 20

3.7.1 Participants . 20
3.7.2 Usability test . 20
3.7.3 User experience interview . 21
3.7.4 Evaluation sessions . 21

4 Design and Implementation 23
4.1 Software knowledge categories and their structure 23
4.2 Automatically extracting software knowledge 31

4.2.1 Category Classification . 31
4.2.2 Identifying sentence relations 31
4.2.3 Retrieving technology concepts 32

4.3 The questions of the SDS . 34
4.4 System demonstration . 36

4.4.1 Q1: What functionalities exist in the system? 39
4.4.2 Q2: What functionalities does this feature provide? 39
4.4.3 Q3: How is this functionality implemented? 39
4.4.4 Q4: What was the development process related to this func-

tionality? . 47
4.4.5 Q5: What was the development process related to this non-

functional requirement? . 50
4.4.6 Q6: What architecture patterns are used in the system? . . . 52
4.4.7 Q7: What programming languages are used in the system? . . 52
4.4.8 Q8: How are the architecture patterns in the system imple-

mented? . 53

5 Results 55
5.1 Classification results . 55
5.2 Clustering results . 57
5.3 Results from system evaluation . 59

5.3.1 Task times . 59
5.3.2 User experience . 62

5.3.2.1 Results from System Usability Questionnaire 62
5.3.2.2 Results from open-ended questions 63

6 Discussion 67
6.1 Categories of software knowledge . 67
6.2 Using machine learning and natural language processing to identify

software knowledge . 68
6.3 Usability tests . 70
6.4 User experience . 71
6.5 Threats to validity . 73

6.5.1 Internal Validity . 73
6.5.2 External Validity . 75
6.5.3 Construct Validity . 76

x

Contents

7 Conclusion 77

Bibliography 79

A Appendix A I

B Appendix B XIII

C Appendix C XV

D Appendix D XIX
D.1 Personal experience questionnaire . XIX
D.2 Usability test session . XX

D.2.1 Introduction . XX
D.2.2 Tasks to solve using documentation text XXI
D.2.3 Tasks to solve using the Software Documentation Supporter . XXII
D.2.4 User experience interview . XXIII

E Appendix E XXV

F Appendix F XXIX
F.1 Results from SUS questionnaire . XXIX
F.2 Results from open-ended questions XXIX

G Appendix G XXXV

xi

Contents

xii

List of Figures

3.1 The architecture of the SDS . 19

4.1 High-level view of the software knowledge category graph 25
4.2 A view of the domain category and its subcategories 29
4.3 A view of the requirement analysis category and its subcategories . . 29
4.4 A view of the system category and its subcategories 30
4.5 A view of the development process category and its subcategories . . 31
4.6 A closer view of other categories . 31
4.7 An example of the results produced by the Task Phrase Extractor . . 32
4.8 A screenshot from the Categories table in the Witt database 33
4.9 A screenshot showing the SDS when first opened 36
4.10 A drop-down menu containing the questions that the user can ask

about the documentation . 37
4.11 A mock-up of the upper result box 37
4.12 A mock-up of the lower result box . 38
4.13 A screenshot showing results to Q1, filtered to show only use cases

for the display product feature . 40
4.14 A screenshot showing the feature selector 41
4.15 A screenshot showing a part of the results to Q2 41
4.16 A screenshot showing the functional requirement selector 42
4.17 A screenshot showing results to Q3 44
4.18 A screenshot showing results to Q3-1 45
4.19 A screenshot showing results to Q3-2 46
4.20 A screenshot showing results to Q3-3 47
4.21 A screenshot showing results to Q4 49
4.22 A screenshot showing the non-functional requirement selector 50
4.23 A screenshot showing results to Q5 51
4.24 A screenshot showing results to Q6 52
4.25 A screenshot showing results to Q7 53
4.26 A screenshot showing results to Q8 54

5.1 Results from the principal component analysis 57
5.2 Manually labelled sentences . 58
5.3 Clustering of feature, functional requirement and use case sentences,

using the Gaussian-mixture model . 60
5.4 Task times for all tasks performed in the usability testing sessions . . 60

xiii

List of Figures

5.5 A count of how often participants were faster using documentation
or SDS, per task . 61

5.6 A summary of what participants liked about the SDS 63
5.7 A summary of how participants felt when using the SDS 64
5.8 A summary of improvement suggestions for the SDS 65

6.1 Task times for all tasks performed in the usability testing sessions . . 71

B.1 Clustering of feature, functional requirement and use case sentences,
using the K-means model . XIII

C.1 Shapiro-Wilk and QQ-plot for documentation task times XV
C.2 Shapiro-Wilk and QQ-plot for SDS task times XVI
C.3 F-test that checks for equal variance in the samples XVII

E.1 Results from the personal experience questionnaire XXV
E.2 A bar chart showing the participants’ experience with web developmentXXVI
E.3 A bar chart showing the participants’ experience with requirement

analysis . XXVI
E.4 A bar chart showing the participants’ experience with software archi-

tecture . XXVII

F.1 Results from the System Usability Scale questionnaire XXIX
F.2 A list of comments about what participants liked about the SDS . . . XXX
F.3 A list of comments regarding how participants felt when using the SDSXXXI
F.4 A list of improvement suggestions from the participants XXXII
F.5 A list of other comments received from the participants XXXIII

G.1 Pointers given during usability testing XXXV

xiv

List of Tables

3.1 Scikit-learn classification algorithms evaluated for each trained classifier 15
3.2 Libraries used in the system implementation 19
3.3 Evaluation session schedule . 22

4.1 High-level categories of knowledge presented in software documentation 24
4.2 Labels in software documentation . 24
4.3 Categories of knowledge presented in software documentation 26
4.4 The questions of the SDS . 34

5.1 Classifier - hierarchy vs. flat . 55
5.2 Classifier - hierarchy vs. flat . 59
5.3 Results from the Welch t-test . 61
5.4 SUS score per question . 62

A.1 Flat approach - classifier results . II
A.2 Level 1 . III
A.3 Level 2 - requirements category . IV
A.4 Level 2 - system category . V
A.5 Level 2 - development process category VI
A.6 Level 3 - structure category . VII
A.7 Level 3 - UI design category . VIII
A.8 Level 3 - quality assurance category IX
A.9 Level 4 - structure implementation category X
A.10 Level 4 - behaviour implementation category XI

xv

List of Tables

xvi

List of Tables

Glossary
Software documentation Software documentation is a artefact of the develop-
ment process of a system that has the purpose of preserving and communicating
knowledge of the system under development. In this research, I will only look at the
parts of the software documentation that are written in natural language.

Software knowledge category In this research, a set of categories are defined
that are supposed to cover knowledge contained in software documentation. These
categories are referred to as software knowledge categories.

Software Documentation Supporter (SDS) Software Documentation Supporter
is the system that was developed in this research. In the system, users can view and
ask questions about the documentation they are analysing. Its purpose is to sup-
port the user when navigating large documentations and help him find the desired
information faster.

1

List of Tables

2

1
Introduction

Software documentation is an important tool used by developers to explain and
justify design decisions and demonstrate the requirements, architecture and imple-
mentation of a system. These documentations are incredibly important to preserve
knowledge within an organisation and to make sure information is not only tied to
specific employees. They therefore serve an important role when it comes to main-
taining and comprehending software systems.

Software documentation imposes various challenges in the field of software engi-
neering. The creation, maintenance and use of these documents are all problematic
and old-fashioned in the sense that they all rely on manual work. Still to this
day, software developers spend vigorous amounts of time manually comprehending
software architecture and implementation, for example, by reading those documents.

The idea of using technology to reduce this manual and tedious activity is not new
and many advances have been made in an attempt to make software comprehension
easier and less time-consuming. Most engineers and architects however still spend
too much time comprehending systems and even when they only need answers to
a few specific questions they still need to go through vast amounts of source code,
diagrams and documentation.

It is apparent that many steps need to be taken in order to replace this old-fashioned
way of software comprehension. This research will contribute to that large goal by
taking one of those necessary steps.

1.1 Current practice
When developing large software, many design decisions are made that affect the
source code and its structure. Those decisions are not always evident in the source
code itself and must often be clarified with diagrams and justified with documenta-
tion.

Documentation of software is a very complex task and a lot of research has been
conducted on the problem of preserving developers’ design decisions and rationales,
like for example studies from 2016 by Nosál’ et al. [1] and 2018 by Luciv et al. [3]
that focus on the problem of repetition in software documentation, a study from
2017 by Vranić et al. [2] that focuses on the problem of intent comprehensibility

3

1. Introduction

preservation in software documentation and a study from 2015 by Robillard et al.
[9] that discusses problems in API documentation. The stakeholders of those docu-
mentations are many and vary from business clients to developers maintaining the
system in question. Many different views and aspects therefore need to be consid-
ered in the documentation, making it prone to duplication and misguidance. On top
of this, documentation tends to have low prioritisation due to their high cost, low
immediate return nature, as discussed by both Lethbridge et al. [8] and Robillard
et al. [9] Developers are therefore pressured to spend little time on documenting
systems, causing documentation to be incomplete and later on, poorly maintained
and updated.

These facts impose extreme challenges when it comes to system comprehension.
Developers often have to read through vast amounts of information that contain
duplicates and are insufficient at the same time, causing them to use up to 58% of
their time on system comprehension or related activities as shown by Xia et al. [7]

With developer documentation being one of the most useful information during
software maintenance, insufficient documentation also makes maintaining software
more time-consuming and error-prone. The fact that they often contain duplicates
also makes the documentation itself very sensitive to the changes made to the sys-
tem, as discussed by Luciv et al. [3]

1.2 Future vision of software documentation
The On-Demand Developer Documentation (OD3) by Robillard et al. [4] points out
the high cost and low immediate return of software documentation and introduce a
vision for better satisfying the information needs of software developers. The OD3
proposes a system that would generate appropriate documentation based on user
queries. A user should be able to ask questions and retrieve relevant information
from source code, Q&A forums, etc. Many challenges need to be overcome to
create the system described. One of those challenges is retrieving various knowledge
from software documentation and investigating how it can be used to satisfy the
information needs of software developers. This research will focus on this particular
challenge.

1.3 Purpose of the study
In order to answer questions about the content of software documentation, it is
important to possess knowledge about different parts of it, such as what a specific
diagram is showing and what a specific section or sentence is discussing.

The purpose of this study is to delve into the problem of extracting useful knowl-
edge from natural language in software documentation and using that knowledge
to support the user when navigating through those documents in search for spe-
cific information. The study has two main focus points. Firstly, retrieving rele-

4

1. Introduction

vant information from software documentation, using natural language processing,
classification and clustering algorithms, and other automatic extraction techniques.
Secondly, investigating how this knowledge can be used to support users to navi-
gate more quickly through those documentations when they are looking for specific
information or answers to specific questions.

1.4 Problem statement
The following two research questions are answered in this study:

RQ2: How to automatically categorise natural language text presented in
software documentation into software knowledge categories?

RQ3: How to automatically identify relations between specific instances of
knowledge in software documentation?

1.5 Scope
In order to build the system envisioned in the OD3, all software artefacts and source
code must be considered. This study will only consider natural language sources
when extracting knowledge, eliminating all diagrams and source code related to the
system in question.

The amount of training data for this research is limited, both due to difficulties
to find good, open-source documentation, and due to time constraints, as all data
labelling to create ground-truth had to be done manually. The data used therefore
came from only one open-source software project containing 860 sentences that were
labelled and used for training. The level of annotation was also limited to sentences,
excluding paragraph, section and page level, again due to time constraints.

As the data is very limited, especially considering machine learning standards, deep-
learning methods will not be considered in this study.

1.6 Approach
This study can be divided into two major tasks, extracting knowledge from software
documentation and using this knowledge to produce sufficient responses to user
queries.

1.6.1 Extracting knowledge
Understanding and comprehending natural language is a complex task. With thou-
sands of years of experience and development, the human brain has managed to solve
this challenge with great results. We are not just able to read the lines, we are able

5

1. Introduction

to read between the lines, comprehending complex context, sentiment and hidden
meanings. Teaching a machine to truly understand natural language is therefore
an extremely complex and elusive task. In this study, two types of knowledge were
extracted from the sentences; context and technology concepts. To grasp the con-
text of the sentences, they were classified into subcategories of software knowledge.
Technology concepts were identified when they appeared in the sentences. Two dif-
ferent methods were then used to identify relations between different sentences of
the documentation.

The first step was to define the categories of software knowledge. These categories
were determined using qualitative content analysis, both by looking through cur-
rent literature on software knowledge and by iterating through the data provided
for this research. The knowledge categories were then used to create ground truth
by manually annotating each sentence of the dataset.

Features were extracted from the sentences and used for training and evaluating
classifiers. For extracting the features, various algorithms were investigated and
compared, such as bag-of-words and tf-idf, along with various NLP techniques, such
as n-grams, lemmatisation and stemming. Finally different classifiers were trained
and evaluated, using the Python machine learning package Scikit-learn.

To identify relations between sentences, two different methods were used. Unsu-
pervised clustering was used to identify relations between features, functional re-
quirements and use cases and a rule-based method was used to identify all other
sentence relations. In the rule-based method, task phrases were first extracted from
all sentences and the words of those task phrases were then compared to identify
relations between different sentences of the documentation.

To identify technology concepts, a database that contains about 26,500 technology
concepts was used to find matches in the documentation text.

1.6.2 Producing answers to user questions

The next step is to use the extracted knowledge to answer questions from developers
or architects.

Firstly, the types of questions asked by those specialists needed to be investigated,
to provide support to the most common questions. This step was carried out early
and in parallel to the knowledge extraction phase, in order to make sure the knowl-
edge needed to answer those questions is properly extracted.

Instead of using complicated methods to comprehend the user questions themselves,
a list of possible questions is provided. The relevant knowledge is then retrieved
from the database and presented to the user.

A system (Software Documentation Supporter (SDS)) was then developed where

6

1. Introduction

users can ask questions about the documentation used for this research. Usability
tests were conducted using the SDS, to evaluate the approach and results of this
research.

7

1. Introduction

8

2
Background

This section discusses the background and related work of this research. Firstly,
section 2.1 briefly discusses how software documentation is used today and what
challenges it faces. Secondly, section 2.2 discusses what progress is being made in
regards to those challenges and where this research fits in with that, and then covers
the ground work of this research.

2.1 Software Documentation

Documentation is an important part of many processes. Documentation contains
information about decisions made, the rationale for those decisions, directives for
future work, and other important evidence about work that has been conducted.

Object-oriented software development is one of the processes where documentation
is extremely important. Different documentation is written for different steps of the
development process. The most common are software requirements specification
(SRS), software architecture documentation (SAD), a technical documentation, and
quality assurance documentation. These documentations serve as a repository for
important decisions and results, and a place for the software engineer to motivate
and explain the decisions made during development. They also serve as a substi-
tute for the engineer, since it is incredibly expensive if everyone would direct their
questions straight to them or they simply might not be present anymore.

Software documentation faces many challenges in the modern world. With new
technology being developed rapidly, documentation is often given low priority and
very little time, resulting in low quality documentation, as discussed by Bass et al.
[10]. On top of that, Lethbridge et al. show that most documentation is rarely
maintained, and quickly becomes outdated [8]. Lastly, even though most software
documentation is standardised by the IEEE, in practice, the engineers often impro-
vise. When reviewing possible documentation for this research, the reality was that
they are as different as they are many, both structure and content wise.

In this research, the focus will be on documentation written in natural language,
thus taking into account requirements analysis, software architecture and quality
assurance.

9

2. Background

2.2 Related Work

2.2.1 Similar Studies

2.2.1.1 SEC

The SEC is a tool designed by Alex Tao and Mahsa Roodbari in 2018 [11]. The tool
is designed to answer questions about requirements and architecture, based on the
software documentation. It focuses on retrieving architectural information, often
presented in diagrams, as well as listed features, requirements, use cases and other
results from the requirement analysis. The information is manually extracted from
the documentation and stored in an ontology. The ontology is then used to form
answers to questions from engineers.

There are two major differences between the SEC and the SDS. Firstly the SDS
will automatically extract and populate the ontology with information from doc-
umentation. Secondly, the SDS will focus on extracting knowledge from natural
language text instead of knowledge contained in diagrams and lists.

2.2.1.2 Acquiring Architecture Knowledge for Technology Design Deci-
sions

Acquiring Architecture Knowledge for Technology Design Decisions is a disserta-
tion thesis by Mohamed Soliman from 2018 [19]. In this research, Soliman looks
at architecture knowledge in Stack Overflow posts and how this knowledge can be
identified and used to make better design decisions. Soliman used an ontology and
a set of classification approaches to capture semantic information and to identify
and classify architecture-related posts. He then implemented his approach in a web-
based search engine, which proved more effective than the traditional keyword-based
search.

There are two main differences between this research and Soliman’s research. First,
the type of data analysed and used, since Soliman analysed online posts whereas
this research analyses software documentation. Second, the system produced in
this research will help a user analyse one specific documentation at a time, whereas
Soliman implemented his approach as a search engine for all software architecture
related information gathered from Stack Overflow posts.

2.2.1.3 A systematic Mapping Study on Text Analysis Techniques in
Software Architecture

This literature review from 2018 by Tang et al. [20] thoroughly covers research using
different text analysis techniques in the field of software architecture, i.e. classifi-
cation, clustering, search and information retrieval, etc. From this mapping study,
it is apparent that many researchers focus on different ways to use text analysis

10

2. Background

techniques to extract information that can be helpful to software architects and en-
gineers. However, none of the papers reviewed use machine learning techniques to
extract general architecture knowledge from SADs. There are three papers men-
tioned in this literature review that have work related to our research; Bridging
the gap between software architecture rationale formalisms and actual architecture
documents: An ontology-driven approach, from 2009 by López et al. [21] recognises
the need of information extraction from SADs and has a similar idea of a system
that helps users grasp specific knowledge, using information extraction and ontolo-
gies. However, their approach to extract information deviates from ours, as they use
rule-based learning for this purpose. Semi-automated Design Guidance Enhancer
(SADGE): A Framework for Architectural Guidance Development, from 2014 by
Anvaari et al. [22] develops a framework for extracting architectural knowledge.
Again however, rule-based learning is user for information extraction. Personalised
architectural documentation based on stakeholders’ information needs, from 2011
by Nicoletti et al. [23] attempts to identify parts of SADs that might be of interest
of specific users. Their approach is to identify software architecture related concepts
in SADs and use them to classify their sentences into predefined categories. Their
approach is however semi-automated as they require manual semantic annotations
with the SAD document, in order to produce results.

2.2.2 Ground work

2.2.2.1 OD3

The On-Demand Developer Documentation (OD3), as mentioned in section 1.2, is a
vision for future software documentation. The OD3 describes a system that would
replace the manual work of writing documentation, instead, the appropriate docu-
mentation is generated as an answer to a user query.

This study will contribute to the OD3 vision mainly by exploring two things.
1. What knowledge is contained in software documentation?
2. How can we extract the knowledge necessary to answer questions about specific

software documentation?

2.2.2.2 The Task Phrase Extractor

Extracting Development Tasks to Navigate Software Documentation is a paper from
2015 by Treude et al. [30] In this research, a system was developed that extracts task
phrases from software documentation and uses them to help the user navigate the
documentation. This is done by first running a documentation through the system
to identify and extract all task phrases. Those results are then used in the search
functionality of the system to auto-complete and create suggestions based on what
the user searched for.

The paper shows that extracted task phrases are more useful than extracted concepts
and code elements. In this research, I use the Task Phrase Extractor to extract task
phrases from all sentences of the documentation being analysed. However, I then

11

2. Background

use the task phrases to identify relations between sentence instances, by connecting
sentences that have task phrase words in common.

2.2.2.3 The Witt database

The Witt database is a product of a research project published in 2018 by Treude
et al. which uses data from Stack Overflow and Wikipedia to develop an automated
approach for the categorisation of software technology concepts [5]. An extension
of this research is the ability to generate dynamic lists of all technologies of a given
type. A list generated using this automated approach is stored in the Witt database
and is used to match technology concepts that appear in the documentation.

12

3
Methods

This section goes over the methods used for each part of the research, from data
collection and annotation and how the data is used to implement the automatic
software knowledge extraction, to the creation and evaluation of Software Docu-
mentation Supporter (SDS), the system that was built to showcase and evaluate the
results.

3.1 Research method
This research is a design science research and follows the design science research
methodology (DSRM) for information systems. The methodology was formulated
and presented by Peffers et al. [15] and consists of the following six steps:

1. Identify problem and motivate
2. Define objectives of a solution
3. Design and development
4. Demonstration
5. Evaluation
6. Communication

The problem was identified and motivated through existing research and was demon-
strated in chapter 1, introduction and chapter 2, background. The objectives of a
solution were then defined based on the problem identified and are demonstrated in
the problem statement, chapter 1.4. In the design and demonstration step, the soft-
ware knowledge categories and its structure, as well as the SDS were developed as
a solution to the identified problem. In the demonstration step, data from a chosen
case documentation was used to populate the software knowledge categories and the
results demonstrated in the SDS. An evaluation was conducted on the SDS through
usability tests and finally, the results are communicated through this report.

3.2 Data collection
In the beginning of this research, I got a hold of a dataset that was supposed to
contain 100 software documentation files. However, it turned out that only 7 of
those 100 files were actual software documentations. The files were extracted from
Stack Overflow using a machine learning algorithm, unfortunately the accuracy of
the algorithm was not as high as expected.

13

3. Methods

In order to create ground truth for the classification algorithm, all data needed
to be annotated. As the data was already minimal, it was decided to only look
at sentence level classifications. Annotating sentences into categories of knowledge
however is an incredibly time-consuming task and resulted in the inevitable decision
of only working with one documentation.

The software documentation of an e-commerce system called Snowflake, written by
Escoriza [6] was chosen based on the quality of the content, structure and text. The
documentation follows the IEEE standards for software documentation [16, 17, 18]
quite thoroughly and contains information about requirement analysis, quality assur-
ance, software architecture and other implementation details. The documentation
was quite extensive and provided us with about 830 sentences to analyse.

3.3 Software knowledge categories and data an-
notation

Qualitative content analysis was used to annotate the sentences into software knowl-
edge categories. As these knowledge categories were not known beforehand, an it-
erative bottom-up approach was used to obtain concrete definitions of the software
knowledge categories that can be recognised in software documentation. In the be-
ginning, the categories were inspired by existing models by both Tao et al. [11]
and Soliman [19], but at this point it was unclear how well those categories would
generalise to the subject of this research. A part of the dataset was classified using
the initial categories. As the annotation process proceeded, some categories were
deemed unnecessary while others emerged and the definition of the categories be-
came more explicit.

When the knowledge categories and their definitions had become clear, a random
sample of the dataset was then annotated by an independent party using these
definitions. All deviations between those annotations and the ones made by the
researcher were analysed and used to make category definitions more concrete.

3.4 Classifying sentences into software knowledge
categories

Natural language data is very diverse and contains a lot of possible features to use
for training a machine learning algorithm. When working with textual data, it is
therefore important to use pre-processing techniques to deal with this diversity and
make it easier for the machine learning algorithms to identify the useful features of
the data. Various pre-processing methods were applied to the dataset, in order to
remove inferior features.

Firstly, the diversity of the data was reduced by making all data lower-case and

14

3. Methods

removing digits and punctuation marks. The Natural Language Toolkit (NLTK)
[26] platform was used for removing stop words, lemmatisation, and stemming. Stop
words are words that occur frequently in text but do not bear any specific meaning.
These words are often removed from textual data as they are not good candidates
for features and might distract the machine learning algorithms. Lemmatisation
removes the affix of the words and stemming then reduces words to their word stem
[26].

This is a multi-class classification task, where every sentence should be classified
into one of 25 categories. All Scikit-learn classifiers can handle multi-class tasks, so
a collection of different classifiers were trained, tested and compared on the data
set. As the software knowledge category structure has hierarchical properties, two
classification approaches were also compared, flat classification and hierarchical clas-
sification. In the flat approach all data points are classified straight into the leaf
nodes of the hierarchy, however in the hierarchical approach, a separate classifier
is trained for each level of the hierarchy. For each trained classifier, the following
Scikit-learn classifiers were compared.

Table 3.1: Scikit-learn classification algorithms evaluated for each trained classifier

Scikit-learn classification algorithm
sklearn.naive_bayes.BernoulliNB
sklearn.ensemble.ExtraTreesClassifier
sklearn.neighbors.KNeighborsClassifier
sklearn.svm.LinearSVC
sklearn.linear_model.LogisticRegression
sklearn.neighbors.NearestCentroid
sklearn.ensemble.RandomForestClassifier
sklearn.linear_model.SGDClassifier

When comparing the different classification algorithms, various metrics were mea-
sured and monitored.

Cross-validation accuracy. Cross-validation is a method used for splitting data
into training and testing data. The dataset is split into k smaller sets. The model
is then trained on k-1 sets and tested on the 1 remaining set. This is repeated k
times, so each set is used as a testing set once. Using cross-validation is a often
considered a good approach to detect and minimise overfitting, however in this case,
with a very little dataset, only using cross-validation accuracy was not enough, and
therefore other metrics were monitored as well.

The dataset was then split into a training, testing and validation set. First the
whole dataset was split into three parts, a 67.5% training set, 25% testing set and
a 7.5% validation set. The model was first configured to using the training and
testing set. When the optimised model had been found it was then validated using
the held-out validation set. For this approach, the following metrics were measured.

15

3. Methods

Precision. Precision measures the model’s ability to identify only the relevant
data points, and is defined by the following formula.

precision = TruePositive

TruePositive + FalsePositive
(3.1)

Recall. Recall measures the model’s ability to identify all the relevant data points,
and is defined by the following formula.

recall = TruePositive

TruePositive + FalseNegative
(3.2)

F1 score. The F1 score is a measure that takes into account both the precision
and recall of a model, and is defined by the following formula.

F1 = 2 ∗ precision ∗ recall

precision + recall
(3.3)

Overfitting. Overfitting is a measurement for the generalisability of a model, if a
model is overfitting the training data, it is unlikely to generalise well to other data.
Overfitting can be identified by comparing training and testing results. Training
accuracy that is much higher than the testing accuracy is a good indication of
overfitting in the model, since it is performing much better on data it has seen than
on data it has not seen. The following formula was therefore used to measure the
overfitting of the models.

Overfitting = TrainingRecall − TestingRecall (3.4)

3.4.1 Identifying relations between sentences
Two different methods were used to identify relations between sentences; clustering
and comparing words of task phrases extracted from sentences.

3.4.1.1 Clustering

A feature is a collection of related functional requirements and thus a functional
requirement always corresponds to some feature of the system. Use cases are then
used to demonstrate how the system will fulfill a certain functional requirement. For
this reason, it is possible to assume that each sentence in functional requirement or
use case category, relates to one of the system’s feature.

The fact that the sentences will always relate to one of the features of the system,
makes clustering algorithms a potential solution to identify those relations.
A model was created using a Scikit-learn’s TF-IDF vectoriser [27], which reduces
the textual data to the data of which words appear and how often. This technique

16

3. Methods

however results in a very high dimensional representation of the text. Principal
component analysis (PCA), a technique used to reduce the dimensionality of data
while still retaining their correlation, was therefore used to reduce the dimension of
the data to a 2-dimensional space.

A clustering algorithm was then used to identify correlations between sentences.
The clustering algorithm is unsupervised with the exception of a manual input for
the variable k. The variable represents the number of clusters you wish the algo-
rithm to identify and was therefore set to 3, that is, the number of features in the
Snowflake system, as stated in the documentation.

In order to evaluate the accuracy of the results, all sentences in the feature, func-
tional requirements and use case categories were manually classified based on which
feature they corresponded to. The manual and clustering results were then com-
pared.

3.4.1.2 Extracting and connecting sentences’ task phrases

In a paper from 2015 by Treude et al. [30] a system that extracts task phrases from
software documentation was developed and presented. A task phrase is a verb asso-
ciated with a direct object and/or a prepositional phrase. The case documentation,
Snowflake, was run through this system, and the task phrases extracted for each of
its sentences.

These extracted task phrases were then used to identify relations between sentences,
by identifying sentences that had task phrase words in common.

3.4.2 Identifying technology concepts
In order to identify technology concepts data from the Witt database, created by
Treude et al. [5] was used. The Witt database is a static database that contains
a list of software technology concepts identified on Stack Overflow. This database
was used to find both architecture patterns and programming languages mentioned
in the documentation that matched concepts belonging to those two categories in
the database.

3.5 User questions and responses
The goal of this research was to use the extracted software knowledge to answer com-
mon developer questions. Collecting the questions for the system was an iterative
process. Firstly, the questions were mostly inspired by information and questions
from other research [8, 24, 25]. This initial set of questions was used to understand
what knowledge was important to extract from the documentation. Later on, the
list was refined to also highlight the capabilities of the SDS.

17

3. Methods

To formulate the responses to the questions, first I had to determine the appro-
priate information needed to properly answer each question. There was no formal
theory to rely on in this case and instead this process was iterative, where I deter-
mined what knowledge I believed was relevant to the question, got feedback from
others and made improvements. The presentation of the responses in the SDS was
then inspired by Tao et al. [11]. There, graphs were used to present the responses
to similar user questions, with good success.

3.6 Creating the Software Documentation Sup-
porter

The Software Documentation Supported (SDS) is an important evaluation tool. It
was created to showcase the results, experiment with their presentation and to eval-
uate their usefulness. The SDS is implemented using the MVC architecture and
therefore consists of a model component, view component and a controller compo-
nent.

The view component is written in JavaScript, HTML, and CSS. It contains the
user interface and simple logic to display the results. Through the user interface,
the user can view the documentation and choose from a list of questions to ask about
it. The relevant data is then received from the model component and is displayed
to the user in the form of either simple text or graphs, which are drawn with the
help of the DagreD3 library.

The controller component is written in Python and Javascript. It contains most
of the business logic and is used to query the data stored in the model component.
Given a question chosen by the user, the appropriate data is requested from the
model component. The data is then manipulated and sent back to the view compo-
nent.

The model component contains an ontology that stores the classification and cluster-
ing results, the Witt database and the Task Phrase Extractor results. The ontology
was created and populated using the Protégé1 ontology editor and then hosted on
an Apache Jena Fuseki server, which serves as an endpoint for querying the ontology
data. The Witt database is stored in a database file and queried with the SQLite3
Python library. The extracted task phrases are then stored in a simple text file and
Python is used to retrieve and manipulate the data.

Figure 3.1 shows the architecture of the system. Table 3.2 then lists the libraries
that were used in the implementation of the SDS and their purpose.

1https://protege.stanford.edu

18

3. Methods

Figure 3.1: The architecture of the SDS

Table 3.2: Libraries used in the system implementation
Library Purpose
Flask A python web framework.
SPARQLWrapper A Python library used to query the ontology.
SQLite3 A Python library used to query the Witt database.

JSON Used to translate Python dictionaries and lists to
a JSON format.

Bootstrap A HTLM, CSS and JavaScript library used to de-
velop responsive web systems.

jQuery A JavaScript library used for event handling.

DagreD3 A JavaScript library used to draw data structures
as graphs.

19

3. Methods

3.7 System evaluation
The evaluation of the SDS was twofold. Firstly, I measured how efficiently users
could solve tasks using the system compared to only using the software documen-
tation itself. Secondly, qualitative user experience data was collected through a
questionnaire and open-ended questions.

3.7.1 Participants
The participants of the usability tests were persons with background in software
engineering and some experience related to software architecture, requirement
analysis or the documentation of software.

All participants were asked to complete a personal experience questionnaire,
which asked about level and field of education, years of experience within software
engineering and level of experience of web development, software architecture and
requirement analysis.

Nine people agreed to participate in the system evaluation. Of those nine
participants, there were four professors or assistant professors from four different
universities in three different countries, three doctorate and one master student
from Chalmers University, and one person currently working in industry. Those
nine individuals had an average of 7.8 years of experience in software engineering.
See appendix E for more information on the participants’ background.

One participant was excluded from the quantitative results of the usability
tests, as they had extensive prior knowledge of the Snowflake documentation, which
caused bias in the quantitative measures. The participant’s feedback in the user
experience interview was however very valuable and was included in the qualitative
results.

3.7.2 Usability test
The usability tests consisted of a tutorial video and eight tasks.

The tutorial video was divided into two parts. The former was in the form
of a slideshow and introduced the software documentation that they were supposed
to analyse with and without the SDS, and then went over the basics of this
research. The second part of the video was a demonstration of the SDS with
textual explanations. The functionalities of the system were showcased to give the
participants an idea of how to use it to efficiently navigate the documentation text.

The user then got eight tasks to solve, four using the system and another
four using only the software documentation. In order to make the tasks compara-

20

3. Methods

ble, the system and documentation tasks where of similar nature, so for each task to
be solved using the system, there was another very similar task, to be solved with
the documentation. The tasks were created to represent how software developers
use documentation in practice. The tasks of the usability tests are listed appendix D.

During the usability tests, quantitative data was collected in the form of
task times.

Task time
The task time is the time it took the users to solve the task, measured from when
they start reading the question, until they indicate they are done answering the
question.

3.7.3 User experience interview
When the participants had solved all eight tasks, they were asked to give feedback
on the user experience of the system.

Firstly, they were asked to fill in a questionnaire based on the System Us-
ability Scale (SUS) by Brooke [28]. The SUS is a popular tool for measuring user
experience and was chosen as it is quick and easy to use. Bangor et al. also showed
that it effectively measures the usability of a system, even on small datasets [29].

Following the SUS questionnaire, the participants were then asked to answer
four open-ended questions. The questions were designed to encourage participants
to think about different aspects of their experience with the system. Having the
questions open-ended then allow for broader and more extensive feedback from the
participants. These questions made it possible to collect information about what
the participants liked about the system and what ideas they have for improving or
extending the SUS.

The user experience interview can be found in appendix D.

3.7.4 Evaluation sessions
Each evaluation session was carried out by a moderator who was responsible for
following the predefined session schedule, measuring the task times and providing
users with help where needed. Each session was scheduled to take about 60-70
minutes and was divided into three parts:

21

3. Methods

Table 3.3: Evaluation session schedule
Step Time Description

1 10-20 minutes

Participant watches a video tutorial that should
teach them the basics of the system. They then
play around in the system for a few minutes to
get a better feeling of how it works.

2 40 minutes
Participant solves 4 tasks using the SDS and 4
similar tasks using only the written documen-
tation (about 5 minutes per task).

3 10 minutes
Participant gives feedback on user experience
through a questionnaire and four open-ended
questions.

All sessions followed this same schedule, and all participants received the same
information and solved the same tasks. However, there was some variation between
the setup of the sessions. Firstly, three sessions took place in Sweden, two took
place in Iceland and four sessions took place through Skype. The sessions in Iceland
and through Skype were carried out by me whereas the sessions that took place
in Sweden where carried out by a PhD student from Chalmers University. Lastly,
half of the participants were asked to first solve tasks using the system while the
other half started by solving tasks using the documentation. The purpose of this
was to even the learning advantage that participants have when solving the latter
four tasks.

22

4
Design and Implementation

This section has four main parts. Section 4.1 shows the defined software knowl-
edge categories and discusses their design and structure. Section 4.2 discusses the
implementation of the methods used to extract the knowledge from the software
documentation. Section 4.3 explains the questions that users are able to ask in the
SDS. Finally, section 4.4 demonstrates how the SDS answers those questions.

4.1 Software knowledge categories and their
structure

The knowledge presented in software documentation is incredibly broad and every
documentation is different in some aspect. It is therefore challenging to define
categories that cover all knowledge presented in documentation. In order to support
a wide range of possible software documentation, and to make possible future
extensions of the software knowledge category graph easier, all categories were
abstracted into high-level categories, presented in table 4.1.

The knowledge presented in software documentation can be abstracted to
seven high-level categories. First of all there are three categories for information
that is unclear or not tightly related to the system under development. Those are
“Document organisation”, which contains knowledge about the structure of the
document itself, “Non-information”, which contains knowledge that is uninforma-
tive in this domain, and “Uncertain” which contains knowledge that the annotators
were not able to place in any category. Then there are four categories that cover
all knowledge related to the system under development. Those are “Domain”,
which contains knowledge about the environment in which the system exists
in, “Requirement Analysis” which contains all knowledge related requirements
and needs for the system, “System”, which contains all information related to
architecture and implementation of the system itself, and finally “Development
process”, which contains information related to the system’s development workflow
and quality assurance.

These categories are listed and defined in table 4.1.

23

4. Design and Implementation

Table 4.1: High-level categories of knowledge presented in software documentation
Category Definition

Domain
Describes or discusses concepts that are a part of
the domain or environment in which the system
exists in.

Requirement analysis

Describes or discusses the system’s requirements
analysis. Expresses a need for the system in ques-
tion or describes requirements and their purpose
in general.

System Describes or discusses the system under develop-
ment.

Development Process Describes or discusses the process followed when
developing the system and managing its quality.

Document Organisation
Describes the organisation of the document, e.g.
what the next sections or sub-sections will discuss,
what a particular diagram is showing, etc.

Non-information
Text that is presumed uninformative in this con-
text. The sentence or fragment of text does not
provide any relative knowledge.

Uncertain

Text that does not fall into any of the defined
sections, or in some cases text that is cross-
categorical, making it difficult to determine only
one category for it.

All sentences of software documentation can be placed in one of those seven
categories. Some sentences also express a directive or a rationale and further the
rationale sometimes expresses a benefit or a drawback. Sentences can therefore get
at least one of those four labels, in addition to their categorisation. The labels are
listed and defined in table 4.2.

Table 4.2: Labels in software documentation
Label Definition
Rationale A justification of decisions made.

Directive
Describes constraints that have been imposed on
the system, e.g. imposed by requirements or other
technology being used.

Benefit A benefit expressed or highlighted through a ra-
tionale.

Drawback A drawback expressed or highlighted through a ra-
tionale.

The categories, labels, and their relations are shown in figure 4.1.

24

4. Design and Implementation

Figure 4.1: High-level view of the software knowledge category graph

A node in the software knowledge category graph represents knowledge about a
system. Rounded box nodes denote categories while ellipses denote labels, and
arrows denote relations between the nodes. There are two types of relations in the
graph, association and inheritance. The high-level view of the graph however only
contains association relations. Association expresses communication between two
nodes and can be either one-directional or two-directional, based on the relationship
between the two nodes. Inheritance however expresses generalisation, i.e. an IS-A
relationship between two nodes.

The requirement analysis aims to identify the stakeholders’ needs for the sys-
tem under development, so all requirements originate from the domain. The
domain and requirement analysis are therefore related with a one-directional
“come from” association. The requirements of the requirement analysis are then
satisfied by attributes of the system, and in the same way the system satisfies
the requirements, and are therefore associated with a bi-directional “satisfies” and
“satisfied by” association. The development process is used to ensure consistency
in development practices and to manage the quality of the system, thus the
development process is associated with the system with a one-directional “used
for” association. The labels rationale and directives are associated with all the
aforementioned categories. A directive has a bi-directional “imposes constraint
on” and “constrained by” association with the categories and a rationale has a
bi-directional “justifies” and “justified by” association with the categories. Benefits
and drawbacks are then associated with rationale since in many cases, a rationale
is explaining or highlighting a benefit/drawback of something, thus the benefits/-
drawbacks have a one-directional “explains/highlights” association with rationale.
Finally, the categories uncertain, non-information, and document organisation all

25

4. Design and Implementation

contain information unrelated to the system under development and are therefore
not associated with any of the categories.

Each of the abstracted categories shown in figure 4.1, divides into more detailed,
lower-level categories. The categories of each section are listed and defined in table
4.3.

Table 4.3: Categories of knowledge presented in software documentation
Main-
category

Sub-category Definition

Domain Stakeholder Discusses particular stakeholders of the
system and how the system will be useful
for them.

Requirement
Functional
requirements & behaviour

Describes what the system does or does not
do in terms of functionality.
The system under development is not men-
tioned in any detail. There is no talk of UI
attributes like buttons, pages, etc, just a
description of the functionalities that the
system has to be capable of.

Non-functional
requirements & behaviour

Describes or discusses the non-functional
requirements/quality attributes of the sys-
tem.

General Describes requirements in general. The
text does not state any specific require-
ments, but discusses something more gen-
eral, related to requirements.

User Story Explains functional or non-functional re-
quirements.
Approximate format: “As a role, I want
goal, so that benefit (priority).”
Identified using rule-based learning on al-
ready identified functional/non-functional
requirements.

Feature Describes a high-level objective of the sys-
tem. Can usually be broken into several
functional requirements.
Example: “Purchase a product”

Use Case Describes how the system fulfills certain re-
quirements. Here the system or some user-
system interaction is mentioned in more
details.
Example: “The user is asked to fill a form
with shipping information. He then presses
the submit button to send the request”

26

4. Design and Implementation

System
Structure Describes both the system’s architectural

structure, i.e. patterns, layers, classes, etc.,
and implementation structure, i.e. tech-
nology solutions/packages being used, and
written source code.

Structure - Architecture Describes architectural attributes of the
system, e.g. patterns, layers, classes and
components.

Structure - Implementation Describes the implementation of the sys-
tem structure.

Structure - Implementation -
Technology Solution

Describes out-of-the-box technology that
is being used, e.g. programming lan-
guages, APIs, programming/development
packages and frameworks

Structure - Implementation -
Source Code

Describes the source code implementation
in some detail, e.g. methods and how they
are written, executed or used.

Behaviour Describes the control-flow and communica-
tion between components/layers, etc.

Behaviour - Architecture Describes the architecture of the be-
havioural attributes of the system.

Behaviour - Implementation Describes how the system behaviour, i.e.
control-flow and communication, is imple-
mented.

Behaviour - Implementation
- Tech Solution

Describes out-of-the-box technology used
to implement the control-flow or commu-
nication in the system.
Example: A text describing how AJAX is
used to send requests.

Behaviour - Implementation
- Source Code

Describes the source code written to imple-
ment the system’s control-flow or commu-
nication.

Behaviour - Implementation
- General

Describes the implementation of control-
flow or communication without going into
details such as what technology is being
used and how it is implemented in the
source code.

Data Describes the data that is used or produced
by the system.

Data - Architecture Describes the conceptual data model or ar-
chitecture of the data used/produced by
the system.

Data - Implementation Describes the actual implementation of the
data model in the system.

27

4. Design and Implementation

UI design Describes the user interface in some detail.
Sentences are e.g. likely to contain words
like: button, page, display, structured,
screen, navigation, scroll, design, HTML

UI design - Architecture Describes the user interface in terms of vi-
sualisation.
Example: Where on the page is the submit
button and what is its color.

UI design - Implementation Describes the implementation of the func-
tional aspects of the user interface.
Example: when is the page reloaded, when
is input data submitted, etc.

Development
Process

Development practice Describes the workflow and general prac-
tice of developers, including how they do
revision control, how they divide their
work, etc.

Quality Assurance (QA) Describes or discusses how the quality of
the system is ensured.

QA - Issue Describes identified faults, errors, bugs or
some necessary improvements that need to
be made.

QA - Risk Describes identified risks or pitfalls in the
system’s architecture or implementation.

QA - Testing Describes how the system in question will
be tested, everything from usability tests
to measuring performance of some compo-
nents.

The categories and their structure are inspired by a research by Tao et al. [11] but
have some differences. The requirement analysis segment of the category structure
is similar to the one presented by Tao et al. The main difference is that test cases
and stakeholders have been moved from this segment.

In order to make the system segment of the category structure support a
wide range of software documentation, the 4+1 architecture used as inspiration.
The 4+1 architecture model by Kruchten is a way of describing a system’s
architecture, using five different views [13]. Using this model as inspiration, the
system segment is designed to cover all aspects of knowledge about the system
under development.

Finally, the development process segment covers both development practice
and quality assurance of the system. The development process has not been a
part of the ontologies or knowledge categories reviewed for this research, however,
this knowledge is not a concrete part of the system under development and
is neither tightly linked to the requirement analysis and was therefore added

28

4. Design and Implementation

as a new main-category. The test cases that were part of the requirement anal-
ysis segment in Tao et al. were therefore moved to its quality assurance sub-category.

Figures 4.2 to 4.6 zoom in on different parts of the structure.

Figure 4.2: A view of the domain category and its subcategories

Figure 4.3: A view of the requirement analysis category and its subcategories

29

4. Design and Implementation

Figure 4.4: A view of the system category and its subcategories

30

4. Design and Implementation

Figure 4.5: A view of the development process category and its subcategories

Figure 4.6: A closer view of other categories

4.2 Automatically extracting software knowledge

4.2.1 Category Classification
All sentences from the Snowflake documentation were classified with a supervised
classification algorithm. Two different approaches, flat classification and hierarchical
classification, were compared, and for both approaches, the performance of several
different Scikit-learn classification algorithms were compared. Before applying the
classification algorithm, all sentences were put to lower case, all stop words and
digits removed, and all words lemmatised and stemmed, using the NLTK package.

4.2.2 Identifying sentence relations
Two different methods are used to identify sentence relations in the documentation.
When every sentence of a certain category is related to exactly one instance in
another category, clustering algorithms can be applied to automatically connect
those sentence instances. This is exactly the case of functional requirements and

31

4. Design and Implementation

use cases, they are always related to exactly one feature instance. However, in most
cases this does not hold and in those cases clustering algorithms do not perform
well, as the number of clusters is unknown. In those cases, sentence relations
are identified by using a Task Phrase Extractor by Treude et al. [30] to find
commonalities between the sentences’ task phrases.

The Task Phrase Extractor, extracts task phrases from sentences. A task
phrase consists of a verb, an object and/or a prepositional phrase. Figure 4.7 shows
an example of the task phrases extracted from the Snowflake documentation. Each
task phrase is surrounded by curly brackets and each part of the task phrase is
surrounded by square brackets and follows the schema [verb] [object] [prepositional
phrase].

Figure 4.7: An example of the results produced by the Task Phrase Extractor

The words of the task phrases are then compared and all sentences that have task
phrase words in common are assumed to relate to each other.

In this case, there is no ground truth to compare the results to. The evalua-
tion of these results will be through usability testing, where the usability of the
results is measured.

4.2.3 Retrieving technology concepts
Technology concepts were extracted from the documentation by identifying the
concepts in the documentation that matched a technology concept stored in the
Witt database by Treude et al. [5].

The Witt database contains a table Categories that stores tag-category rela-
tions. A tag is the name of a concept, e.g. “JavaScript” and the category is the

32

4. Design and Implementation

type of technology concept, e.g. “programming language”. The table has 40,400
rows, which contain 26,419 different tags that belong to 2,708 different technology
concepts. An example from the Categories table is shown in figure 4.8.

Figure 4.8: A screenshot from the Categories table in the Witt database

This table can be used to identify various different technology concepts. In this
research it was used to identify architecture patterns and programming languages.
The drawback of this approach is that some names of technology concepts are also
common words in the English language. Therefore, the results can contain some
false positives.

Four architecture patterns were identified in the documentation; workflow,
state, composite and MVC. Of those four results, only one, MVC, was a true archi-
tecture pattern used in the system. Ten programming languages were identified;
JavaScript, Java, Ruby, Swift, Scala, DOM, CoffeeScript, Scheme, Processing and
Basic. However, DOM, Scheme, Processing and Basic were false positives. DOM is
a programming interface and should therefore not be included as a programming
language, but the other three were mixed up with the English words scheme,
processing and basic.

33

4. Design and Implementation

4.3 The questions of the SDS
The user can choose from a list of 8 questions in the SDS. The questions are listed
in table 4.4.

Table 4.4: The questions of the SDS

ID Question

Q1 What functionalities exist in the system?

Q2 What functionalities does this feature provide?

Q3 How is this functionality implemented?

Q4 What was the development process related to this functionality?

Q5 What was the development process related to this non-functional re-
quirement?

Q6 What architecture patterns are used in the system?

Q7 What programming languages are used in the system?

Q8 How are the architecture patterns in the system implemented?

Questions Q1 and Q2 focus on the requirement analysis of the documentation.
These questions are useful as they give a quick overview and a high-level un-
derstanding of the system described in the documentation. They give the user
information about the features, functional requirements and use cases of the system
and how they relate. Q1 gives information about all the features of the system
and what functional requirements and use cases belong to which features, whereas
Q2 gives information about one certain feature, chosen by the user, and what
functional requirements and use cases belong to that feature. When users ask
this question, they are presented with a list of the systems features. This list
was created manually and is independent of the classification results. To answer
these questions, the classification algorithm was used to select the sentences of the
functional requirements and use cases categories. The results from the Gaussian
Mixture clustering were then used to determine which feature those functional
requirements and use cases belonged to.

Questions Q3 and Q4 focus the functionalities of the system and retrieving
information about how they are implemented, tested, etc. These questions were
inspired by a previous study, as indicated in section 3.5, and are useful to get more

34

4. Design and Implementation

details about the system’s functionalities. When users ask any of these questions,
they are presented with a list of the functional requirements of the system. Again
this list of functional requirements was created manually and is independent of
the classification results. Q3 targets the implementation of the functionalities and
gives the user information about structural, behavioural and user interface aspects
of the implementation of the functionality. This question also contains three sub-
questions; “What is the behaviour of this functionality?”, “What is the structure of
this functionality?” and “What is the UI design of this functionality?”. So if users
were only interested in one of those implementation aspect of the functionality, they
could choose the relevant sub-questions to get a more precise answer. Q4 then gives
information about the development process related to the chosen functionality,
that is, information related quality assurance such as testing and identified issues,
or related to the development practice followed when implementing the functionality.

Question Q5 focuses on the non-functional requirements of the system. Those are
for example requirements related to maintainability, performance and usability.
Now the user is presented with a list of non-functional requirements to choose from,
and again the list is manually created and independent of the classification results.
The question is similar to Q4 and will give the user information about the devel-
opment process of the functional requirements. For non-functional requirements,
questions targeting the implementation are not included, since those requirements
are in most cases not related to specific functionalities that exist in the system itself.

To answer questions Q3 to Q5, the Task Phrase Extractor, described in sec-
tion 3.4.1.2 was used to extract task phrases from sentences of the documentation
and its words then matched to find sentences that relate to the chosen functionality.
The sentence classification was then used to filter the results based on the question
asked by the user.

Finally, Q6 to Q8 focus on specific technology concepts mentioned in the
documentation. Those questions are believed to be useful for architects and devel-
opers and are also examples of questions that can be very tedious to answer using
only written documentation. Q6 and Q7 will give a list of the architecture patterns
and programming languages mentioned in the documentation and Q8 will give
information about how the architecture patterns of the system are implemented.
To answer these questions, the Witt database, described in section 3.4.2, was used
to identify the concepts. Additionally, to answer Q8, the Task Phrase Extractor
and sentence classification was used to find implementation information related to
the architecture patterns.

35

4. Design and Implementation

4.4 System demonstration

The SDS is a web system. Its structure is simple and the system only contains one
web page, so all of the system’s functionalities can be carried out on this one page.

Figure 4.9: A screenshot showing the SDS when first opened

Figure 4.9 shows the website as it appears when first opened. On the left
side, the documentation to be analysed is displayed. On the right side there are
two boxes that are used to display the answers to questions. The horizontal ratio
between the documentation section and result section can be adjusted. Users
can therefore decide to make the documentation section width larger when they
are reading the text, and likewise, they can make the result section width larger
when they are reading information from the result boxes. The navigation bar then
contains a drop-down menu, shown in figure 4.10 where users can choose a question
to ask about the documentation.

As mentioned above, the results are displayed in the two boxes on the right side
of the page. The upper box contains information about the question asked by the
user and the categories and connection words used to formulate the result graph.
The categories and connection words are displayed as buttons which can be used
to filter the results displayed in the graph. A mock-up of the upper result box is
shown in figure 4.11

36

4. Design and Implementation

Figure 4.10: A drop-down menu containing the questions that the user can ask
about the documentation

Figure 4.11: A mock-up of the upper result box

The lower result box contains the results themselves. The results are the sentences
that are considered relevant to the question asked by the user. The sentences are
displayed as a graph to clearly show the feature or connection word that each
sentence relates to. They are also displayed within a box that indicates its category.
A mock-up of the result graph is showed in figure 4.12.

37

4. Design and Implementation

Figure 4.12: A mock-up of the lower result box

The results are always sentences or words extracted from the documentation
text and all sentences that are a part of the results are highlighted in the docu-
mentation text. To ensure traceability, and to allow the user to get better context,
clicking the resulting sentences or words will take the user to the place in the
documentation from where the text was retrieved. If the result is a word and it
appears multiple times in the text, the user can click it again to review the next
place where the word appears.

The format of the results varies slightly depending on the question that is
asked by the user. Sections 4.4.1 to 4.4.8 show the results to each question in more
detail.

38

4. Design and Implementation

4.4.1 Q1: What functionalities exist in the system?
This question gives the user information about the functionalities of the system
and to which feature they belong. This information should help the user to get a
high-level understanding of how the system works.

The data needed to answer these questions are the functional requirements
and the use cases, as those two categories contain all information about the
functions that the user can carry out when using the system. For each functional
requirement and use case, data about what feature they belonged to was also
retrieved, to correctly connect the sentences to a feature of the system.

The results for this question are quite extensive as they include all function-
alities mentioned in the documentation. However, the user is able to filter both
the categories and the features, to make the results more focused. Figure 4.13
shows the results to Q1, after filtering to only see use cases belonging to the display
product feature.

4.4.2 Q2: What functionalities does this feature provide?
This question is very similar to Q1, but now the user is asked to choose the feature
of interest beforehand. When the user asks the question, a drop-down list of the
possible features is therefore displayed (see figure 4.14).

The data needed to answer this question is again functional requirements
and use cases, as they contain the information about the system’s functionalities.
But now the only information retrieved are the functional requirements and use
cases that belong to the feature that was chosen by the user.

As the user has already chosen the feature of interest, this time the cate-
gories included in the graph is the only filter.

4.4.3 Q3: How is this functionality implemented?
Everything related to the implementation of a certain functionality is included in
the result when the user asks this question. Now the user can get more detailed
information about a certain functionality. When asking this question, the user

39

4. Design and Implementation

Figure 4.13: A screenshot showing results to Q1, filtered to show only use cases
for the display product feature

40

4. Design and Implementation

Figure 4.14: A screenshot showing the feature selector

Figure 4.15: A screenshot showing a part of the results to Q2

therefore also has to choose the functional requirement of interest, from a drop-down
menu (see figure 4.16) that is displayed when the question is chosen.

41

4. Design and Implementation

Figure 4.16: A screenshot showing the functional requirement selector

To answer this question, all sentences belonging to the sub-categories of the System
category are retrieved from the database. The Task Phrase Extractor is then used
to find both the task phrase of the functional requirement chosen by the user and
of all the retrieved sentences. The words of the task phrases are then compared and
every sentence that has a task phrase word in common with the chosen functional
requirement is considered relevant to answer this question.

Figure 4.17 shows the results to this question. Here the chosen functional
requirement was “As a customer, I want to list all products of the shop.” The task
phrase of the sentence is shown in bold in the upper result box and those are the
words that are used to create connections to other sentences in the documentation.

42

4. Design and Implementation

In this case, the user is most likely interested to know more about the system’s
implementation when it comes to listing products, so here it is important to filter
the results so that they are more focused on the results that the user is truly
interested in. The word shop has therefore been disabled, as it is unlikely to give
you results relevant to listing products, but the word products has also been disabled
as in this domain it is very general and is likely to bring a lot of noise to the results.

Q3 then has three sub-questions. Those give very similar results, except
they are more focused on certain parts of the implementation. Q3-1 therefore
only gives the user information about the behavioural aspects of the functional-
ity’s implementation, Q3-2 only shows information about structural aspects of
the functionality’s implementation and Q3-3 only shows information about the
implementation of the user interface. The results to questions Q3-1 to Q3-3 are
shown in figures 4.18 to 4.20

43

4. Design and Implementation

Figure 4.17: A screenshot showing results to Q3

44

4. Design and Implementation

Figure 4.18: A screenshot showing results to Q3-1

45

4. Design and Implementation

Figure 4.19: A screenshot showing results to Q3-2

46

4. Design and Implementation

Figure 4.20: A screenshot showing results to Q3-3

4.4.4 Q4: What was the development process related to this
functionality?

In this question, everything related to the development practice and quality
assurance of the functionality is considered relevant. Through this question, the
user can get information about for example the testing process or identified issues
related to a certain functionality. As in Q3, the user also needs to choose the
desired functional requirement.

47

4. Design and Implementation

To answer this question, all sentences belonging to the sub-categories of the
“development process” category are retrieved from the database. The Task
Phrase Extractor is then used to find the sentences that relate to the functional
requirements chosen by the user.

An example of the results for this question can be seen in figure 4.21.

48

4. Design and Implementation

Figure 4.21: A screenshot showing results to Q4

49

4. Design and Implementation

4.4.5 Q5: What was the development process related to this
non-functional requirement?

Non-functional requirements usually do not discuss actual functionalities that users
can carry out in the system, but instead focus on its qualitative attributes, like for
example performance and maintainability. Those requirements are therefore not
something that is implemented in the system, but is tested and improved in various
ways. Most information about non-functional requirements is therefore within the
sub-categories of the “development process” category, and thus, this is the only
question about non-functional requirements that is included in the system.

When asking this question, the user has to choose the desired non-functional
requirement from a list that is displayed as a drop-down menu (see figure 4.22).

Figure 4.22: A screenshot showing the non-functional requirement selector

An example of the results for this question can be seen in figure 4.23. In this
example, the chosen non-functional requirements discussed unit, integration and
acceptance testing. However, the extracted task phrases contained quite many
words that are not of interest if the user is solely interested in more information
about those tests. Therefore it is important to disable and filter out the words that
do not relate to the tests, and even to also disable to word test, as it is a quite
general word that can bring noise to the results.

50

4. Design and Implementation

Figure 4.23: A screenshot showing results to Q5

51

4. Design and Implementation

4.4.6 Q6: What architecture patterns are used in the sys-
tem?

The answer to this question is a simple list of all possible architecture patterns used
in the system implementation.

To answer this question, a simple word match was implemented, using the Witt
database as a source for architecture pattern names. Since some pattern names are
also common English words, the word possible is used in the results to indicate that
the system is not 100% sure of the context, and the user should quickly verify the
results. To make this easier, the resulting words are clickable, and clicking them will
take the user to the sentences that contain the words, so the user can quickly review
the context of the sentence to confirm whether this is indeed an architecture pattern.

Figure 4.24 shows the possible architecture patterns identified in the docu-
mentation. After reviewing the results in the documentation text itself, it is clear
that there is one architecture pattern used in the system and that is MVC.

Figure 4.24: A screenshot showing results to Q6

4.4.7 Q7: What programming languages are used in the
system?

This question is very similar to Q6, but now a list of possible programming
languages used to implement the system is retrieved and displayed to the user.

Again, the user should verify the results by checking the context of each
programming language. In this documentation, scheme, processing and basic are
not programming languages. On top of that, there is also one false positive in the
results as DOM is not a programming language. This error is the result of DOM
being wrongly listed as a programming language in the Witt database.

52

4. Design and Implementation

4.4.8 Q8: How are the architecture patterns in the system
implemented?

This question is similar to Q6 as it finds all the architecture patterns in the system,
however it also finds information about implementation details of the possible
architecture patterns.

Figure 4.26 shows the answer to this question. Due to a combination of low
categorisation accuracy and the Task Phrase Extractor sometimes not containing
the words of interest. Unfortunately, no sentences were identified that both
contained the word MVC in the task phrase and were classified into one of the
sub-categories of the “System” category. However, with improved accuracy, this
question is believed to provide the user with useful information.

Figure 4.25: A screenshot showing results to Q7

53

4. Design and Implementation

Figure 4.26: A screenshot showing results to Q8
54

5
Results

This section presents the results of the classification and clustering algorithms,
as well as both the quantitative and qualitative results of the system evaluation.
This section therefore answers the two research questions: How to automatically
categorise natural language text presented in software documentation into software
knowledge categories? and How to automatically identify relations between specific
instances of knowledge in software documentation?

5.1 Classification results
The classifiers were all configured to minimise overfitting, this can however be
difficult when training data is limited, so in most cases, the models overfitted the
training data to some extent. Overfitting under 15% was considered acceptable
and the classifier with the highest validation F1 score that also had acceptable
overfitting measures was chosen. However, minimising overfitting was given higher
priority so if two models yielded similar F1 scores, but one had significantly less
overfitting, the latter one was chosen. If classifiers had the same F1 score and the
same amount of overfitting, cross-validation accuracy was used to choose one over
the other.

An overview of the best results from both the flat and hierarchical approach
can be seen in table 5.1.

Table 5.1: Classifier - hierarchy vs. flat
Section Category Flat Hierarchy

Precision Recall Precision Recall
Domain Stakeholder nan nan nan nan

Requirement
Functional
requirements & be-
haviour

47.59% 72.72% 88.88% 38.10%

Non-functional
requirements & be-
haviour

0.00% 0.00% 29.62% 57.14%

General 0.00% 0.00% 88.88% 28.57%
Use Case 100.00% 33.33% 88.88% 57.14%
Feature 0.00% 0.00% 44.44% 57.14%

55

5. Results

System
Structure - Archi-
tecture

100.00% 16.67% 48.00% 28.80%

Structure - Imple-
mentation - Tech-
nology Solution

37.50% 54.54% 36.92% 60.00%

Structure - Imple-
mentation - Source
Code

66.67% 50.00% 29.54% 72.00%

Behaviour - Imple-
mentation - Tech
Solution

100.00% 16.67% 45.00% 67.50%

Behaviour - Imple-
mentation - Gen-
eral

nan nan nan nan

Data - Architec-
ture

nan nan 0.00% 0.00%

UI design - Archi-
tecture

100.00% 25.00% 40.16% 73.63%

UI design - Imple-
mentation

0.00% 0.00% 0.00% 0.00%

Development
Process

Development Prac-
tice

0.00% 0.00% 100.00% 20.00%

QA - Identified is-
sues

nan nan nan nan

QA - Identified
risks

nan nan 0.00% 0.00%

QA - Testing 33.33% 50.00% 66.67% 20.00%
Document
Organisa-
tion

60.00% 42.86% 33.33% 40.00%

Non-
information

0.00% 0.00% 0.00% 0.00%

Uncertain 25.00% 66.67% 50.00% 14.29%

For the flat approach, the average precision is 35.63% and the average recall is
25.78%, while for the hierarchical approach, the average precision is 43.91% and the
average recall is 35.24%. The hierarchical approach therefore yields considerably
better results and is used to classify all sentences of the documentation.

The results per classifier for both the flat and hierarchical approach can be
found in appendix A.

56

5. Results

5.2 Clustering results

Clustering was used to identify relations between all sentences of the three cate-
gories; feature, use case and functional requirement and behaviour. Textual data
is very high dimensional which can make it difficult to identify the correlations
that hide within the data. Principal component analysis was therefore used to
decrease the dimensionality of the data, and make it possible to explore the re-
lationship between the features, functional requirements and use cases in the dataset.

Figure 5.1 shows the results from the principal component analysis where
each dot represents one sentence from the feature, functional requirement be-
haviour or use case category.

Figure 5.1: Results from the principal component analysis

57

5. Results

The system described in the documentation being analysed contains three features;
user management, browse product, and purchase product, and the PCA results
indeed show the data extending into three directions. In order to have something to
compare to the clustering results, the sentences were labelled into three categories,
based on which feature they relate to. The results from this manual labelling are
shown in figure 5.2, where each category is represented by one color.

Figure 5.2: Manually labelled sentences

From this it is evident that each “arm” of the PCA results represents a feature
quite accurately. A clustering algorithm was used to automatically identify the
clusters. Both a K-means model and Gaussian-mixture model was used and they
yielded the following results when compared to the manual labelling.

58

5. Results

K-means Gaussian
Mixture

User management Accuracy 44.44% 80.85%
Browse Products Accuracy 52.54% 77.78%
Purchase Products Accuracy 95.74% 76.27%
Total Accuracy 63.58% 78.15%

Table 5.2: Classifier - hierarchy vs. flat

The Gaussian-mixture model performed considerably better and also performed
quite evenly across all clusters whereas the “purchase product” cluster in the
K-means model was very dominant, resulting in high accuracy for one cluster but
considerably lower accuracy for the other two clusters.

Figure 5.3 shows the results from the Gaussian-mixture model, where the
data points that were clustered differently when compared to the manual labelling,
were marked with red borders. A similar figure for the results from the K-means
algorithm can be found in appendix B.

5.3 Results from system evaluation

Both quantitative and qualitative data was collected in the evaluation of the SDS.
In the usability tests, the time it took participants to solve tasks was measured and
the results are presented in section 5.3.1, feedback was then collected through the
user experience interview and those results are presented in section 5.3.2.

5.3.1 Task times

All tasks in the usability tests were timed separately. The tasks to be solved with
the documentation and with the SDS were very similar and were mapped to each
other so it would be possible to compare task times for each task, in addition to
the total task times. Measured task times can be seen in figure 5.4.

59

5. Results

Figure 5.3: Clustering of feature, functional requirement and use case sentences,
using the Gaussian-mixture model

Figure 5.4: Task times for all tasks performed in the usability testing sessions

60

5. Results

Figure 5.5: A count of how often participants were faster using documentation or
SDS, per task

As can be seen in figure 5.4, only in 2 out of 8 times the participants were actually
faster solving the tasks using the SDS. However, looking at certain tasks, it becomes
clear that it was different between tasks whether participants performed better
using the documentation or the SDS. Figure 5.5 summarises how often participants
performed better using the documentation versus the SDS. For both tasks 1 and 2,
5 of 8 participants solved the tasks faster when using the documentation, whereas
3 participants were faster using the SDS. For task 3 and 4 however, participants
were more often faster using the SDS, or in 5 of 8 times for task 3 and 7 of 8 times
for task 4.

A t-test was used to check whether the results were significant. Before con-
ducting the t-test, the data was checked for normality using the Shapiro-Wilk
test and a QQ-plot, and the F-test was used to check whether the variance of the
two data sets was equal. The results showed that both data sets follow normal
distribution and have equal variance, these results can be found in appendix C.
The following hypotheses were then set up for the t-test:

H0: Participants were as fast solving tasks using the documentation and
the SDS.

H1: Participants were not as fast solving tasks using the documentation and the
SDS.

The significance level was set to 0.05 and a two-tailed Welch t-test performed.

Average time using documentation 1045.33
Average time using SDS 1106.44
t-value -0.3682
p-value 0.7178

Table 5.3: Results from the Welch t-test

The t-test shows that the probability of the participants being as fast solving the

61

5. Results

tasks using the SDS and the documentation is 71.78%. It is therefore not possible to
reject H0. The results from the usability tests are therefore not significant
and can not be used to state anything about whether the participants
were faster or slower using the SDS, compared to the documentation.

5.3.2 User experience
When participants had finished solving the tasks, they were asked to give feedback
on the user experience of the system (see section 3.7 for more detailed information
about the evaluation design).

Feedback on user experience was collected in two ways, firstly through the
System Usability Scale questionnaire, and secondly, through four open-ended
questions.

5.3.2.1 Results from System Usability Questionnaire

The System Usability Scale (SUS) is a standardised way to measure usability.
It consists of 10 questions, each of which has 5 different response options; from
strongly disagree to strongly agree.

Each participant marked the questions based on their feeling from the us-
ability testing session. Each question’s score is on a scale of 1-5. This scale was
then translated to a 0-4 scale in accordance to SUS standards and finally each score
was multiplied with 2.5 which resulted in each question score being on a scale from
0-10 and therefore the total SUS score being on a scale from 0-100.

Table 5.4 shows the score of each question of the SUS questionnaire, as well
as the total SUS score.

Table 5.4: SUS score per question
Question Score
I think that I would like to use this website frequently. 55.6
I found this website unnecessarily complex. 72.2
I thought this website was easy to use. 66.7
I think that I would need assistance to be able to use this website. 72.2
I found the various functions in this website were well integrated. 66.7
I thought there was too much inconsistency in this website. 72.2
I would imagine that most people would learn to use this website
very quickly.

75.0

I found this website very cumbersome/awkward to use. 75.0
I felt very confident using this website. 47.2
I needed to learn a lot of things before I could get going with this
website.

80.6

Total SUS score 68.3

62

5. Results

5.3.2.2 Results from open-ended questions

In the open-ended questions, the goal was to give the participants freedom to
express their feelings about the SDS. This allows for more honest and diverse
feedback regarding user experience. The participants were asked to answer four
open-ended questions. First, they were asked about what they liked in the system,
second, they were asked how they felt when using the system, third, they were
asked what improvements they would like to see in the system and finally, they had
the opportunity to add any other comments.

Figure 5.1 shows a summarisation of the type of comments received when
participants were asked what they liked about the SDS. Most participants, 8 of 9,
mentioned that they liked the way of navigating the documentation in the SDS,
this was also the type of comment that was most common. Good visualisation of
information was the second most popular comment, ahead of the system’s way of
assisting user learning the documentation, but four different participants mentioned
those two types of comments. Lastly, three participants liked the overview that the
system provided, and finally one participants mentioned the improved traceability
provided by the SDS.

Figure 5.6: A summary of what participants liked about the SDS

Figure 5.2 shows a summarisation of how participants felt when using the SDS.
Most commonly, participants felt supported by the system when solving the tasks.
3 participants felt that the system gave incomplete results. 2 different participants
then gave three different comments about the system being interesting, but 2

63

5. Results

participants felt confused by it. Finally, 1 participant mentioned that he was more
confident in his answers when using the SDS.

Figure 5.7: A summary of how participants felt when using the SDS

Figure 5.3 shows a summarisation of the type of improvement suggestion received
from the participants. Most comments had to do with improvements of the result
design and the UI design. Two participants then suggested making the drop-down
lists and the results searchable, two participants suggested improving the machine
learning algorithms and two participants made other feature suggestions.

64

5. Results

Figure 5.8: A summary of improvement suggestions for the SDS

The complete data collected during the user experience interview can be found in
appendix F.

65

5. Results

66

6
Discussion

In this section the main results of the research are further discussed and the threats
to their validity identified and addressed.

6.1 Categories of software knowledge
To identify and define the categories of software knowledge used in this research,
an iterative bottom-up approach. Snowflake, the documentation analysed in this
research, is a very extensive software documentation and covers the requirement
analysis, software design and architecture, the development process followed, and
the system’s quality assurance and testing, in high detail, and was therefore a good
candidate. Realising the suitable abstract level for the categories was a challenge
and defining the final categories took multiple rounds of iterations where a part
of the documentation’s sentences, or all sentences, were classified into the current
prospect software knowledge categories.

The final categories were split into four high-level software knowledge cate-
gories; domain, requirement analysis, system, and development process. These four
high-level categories are believed to be suitable for all software related knowledge
contained in standard software documentation. There were also three other
categories included; document organisation, non-information, and uncertain, that
are needed for the knowledge that is contained in the software documentation but
is not tightly related to the software itself. Those high-level categories then split
further into sub-categories, forming a hierarchy. The sentences were categorised
into the leaf-nodes of this hierarchy. The hierarchy has the benefits of making
the categories easily extendable. As mentioned earlier, the categories were defined
using a bottom-up approach and it is likely that in the future there will be a need
to add more sub-categories to this classification structure. This hierarchy also
enabled the use of a hierarchical classification approach when training a machine
learning classifier to classify the sentences into one of the categories. This was
especially useful as the training data was very limited which made it difficult for
the classifier to recognise the difference between 25 different categories. Using the
hierarchical approach allowed me to train several different classifiers, that only had
to categorise the sentences into 2 to 7 categories at a time.

The requirement analysis and system categories were the largest high-level
categories. The requirement analysis category had one level of sub-categories that

67

6. Discussion

were inspired by a previous study by Tao et al. [11] and requirement analysis theory
by Lauesen [32]. The system category was then split into 3 levels of sub-categories
that were inspired by the 4+1 architectural view model by Kruchten [13]. Using
current practice and theory was important when formulating the categories and
their structure, as it increases the likelihood of the categories covering all knowledge
contained in software documentation, leaves less room for misinterpretation, and
will make future extensions easier.

Additionally, sentences that expressed a directive or a rationale were labelled.
This information was not used in the research due to time limitations but might
be valuable for future research. Information about rational and directives is, for
example, important to answer questions about why some decision was made in the
implementation process.

Although a traditional relational database would have been enough to fulfill
the needs of this research, an ontology was chosen to store the sentences and their
categories. Ontologies support automated reasoning about instances and have a
good language for expressing instance relations, this can be a large benefit when
storing software knowledge and relations. Ontologies are also easily extendable.
Therefore, although the main advantages of the ontology were not utilised in this
research, it might prove valuable for future studies that might extend this work.

Due to lack of data, it is difficult to draw conclusions about how good these
knowledge categories are and how well they will generalise to other documentation.
The accuracy of the classifier was rather low, but that was expected due to very
little training data and therefore it is not possible to know whether some part of
the inaccuracy was caused by the categories not being good enough. Also, it is
not possible to say how well they will generalise to other documentation, as they
were created using only one documentation. But as I have mentioned, measures
were taken to minimise the effects of this by choosing a good case documentation,
defining the categories with consideration to current practice and theory, and
making sure they are clearly defined and easily extendable.

6.2 Using machine learning and natural language
processing to identify software knowledge

The research questions referred to (1) how sentences could be automatically
classified into software knowledge categories, and (2) how relations between these
sentence could be automatically identified.

Lack of data had a great impact on the classification results. Implementing
a good classifier for classifying natural text into categories that are very related
to each other, like in our case where I am classifying sentences into 25 different
categories of software knowledge, requires a lot of data, certainly much more than
800 instances. The classifier’s precision and recall was therefore quite low, as

68

6. Discussion

expected.

When data is scarce, overfitting and generalisability can be a large problem.
When implementing the classifier, overfitting was minimised as much as possible,
but often overfitting of about 15% had to be considered acceptable. Both this, and
the fact that all training, testing and validation data came from the same and only
documentation, makes it difficult to claim generalisability of the classifiers. If more
data will be accessible for a study similar to this in the future, it is unlikely that
the same classifiers will prove to perform best.

Two different methods were used to identify relations between instances, clustering
and connecting sentences’ task phrases.

Clustering is only a viable solution to identify relations when all instances
belong to one of the potential clusters. This is often not the case in software
documentation where there are many independent sentences that do not necessarily
relate to anything elsewhere in the text, and defining a certain amount of clusters
can be difficult. However, in this research I identified one case where clustering
is very useful, that is when identifying what feature each functional requirement
and use case belongs to. The most difficult and limiting factor in a research like
this is the data annotation, and thus an unsupervised method like clustering, that
does not require annotated data, is incredibly beneficial. This solution however has
the drawback of not being fully automated; a manual input was required for the
number of clusters, k. The Snowflake documentation declares that the system has
3 features and thus k was manually set as 3. There do exist some algorithms that
are supposed to detect k automatically, like for example the G-means algorithm by
Hamerly et al. [33] and the split and merge k-means approach by Muhr et al. [34].
These algorithms however often do not perform well and automatically identifying
k is still a large challenge when using clustering methods. On top of that, working
with natural language makes this an even larger challenge, as there is a lot of noise
present in the natural language data.

The second method used to identify instance relations was extracting task
phrases and connecting sentences that had some words in common in their task
phrases. This method does therefore not utilise any machine learning methods, and
has the benefit of not requiring any annotated data. The drawback of this method
is that it does introduce a lot of noise to the results, as not all words in the task
phrases are necessarily tightly related to the information that the user is looking
for. For example, the task phrase of the sentence “As a customer, I want to list
all products of the shop” is “List products of shop”. In this case, the user is most
likely looking for more information about the listing functionality of the system,
however, the system shows sentences connected to list, product and shop (the word
of is excluded since it is a stop word). In order to allow the user to minimise noise
like this in the results, all task phrase words were displayed as filters in the system,
so in this case the user could filter out the results caused by the task phrase words

69

6. Discussion

product and shop. As the qualitative feedback from the usability testing showed
that users were sometimes quite overwhelmed with the amount of results shown
by the system. Like I discuss in sections 6.3 and 6.4, I believe the training that
participants received in the usability testing sessions was too limited, and with
more experience, I do believe that users would not be as overwhelmed with the
results. Nonetheless, this is definitely a part of the SDS that can be improved with
further research.

Identifying technology concepts allows the SDS to answer questions about concepts
that are used to implement the system, and even how they are implemented, if com-
bined with the Task Phrase Extractor. Potentially, the system could also answer
questions about why certain, e.g. architecture patterns or programming languages,
were chosen over other possibilities, by implementing the additional functionality
of being able to recognise rationale and directives. The technology concepts were
identified by finding matches between the documentation text and a list of tech-
nology concepts from the Witt database. This method has the drawback of being
static, so the database might not contain technologies invented after the database
was created. However, machine learning techniques were used to create the database
and therefore it has the potential of being dynamic, that is, the machine learning
algorithm could be used to update the list of concepts regularly.

6.3 Usability tests

As can be seen in the result section (section 5.3.1), the participants were on average
slower solving the tasks when using the SDS. However, the results from the two
sided t-test showed that the task time results were not significant and thus it
is not possible to conclude that using the SDS affects the time it takes to solve
tasks, compared to using the documentation itself. This is caused by the difference
between task times when using documentation versus using the SDS being too
little to be identified with such few participants. Given the data collected from
the 8 participants we had, roughly 230 participants would have been needed to get
significant results, for a statistical significance threshold of 0.05.

I believe the reason why the participants did not perform as quick as was
expected beforehand is mainly because participants only received about 10-15
minutes of training before being asked to solve quite complex tasks using the
system. It was apparent in the evaluation sessions that more training was required
for users to efficiently use the system to solve extensive tasks.

70

6. Discussion

Figure 6.1: Task times for all tasks performed in the usability testing sessions

Figure 6.1 shows if participants started by solving the documentation tasks or the
system tasks and when they were faster. Looking more closely into the results of
tasks 1 and 2 shows that the learning bias for those tasks was quite extensive. For
both tasks 1 and 2, 7 of 8 participants were faster solving the task the second time,
so if they started by solving the documentation tasks, they were faster solving
the tasks using the system, and vice versa. Looking at the results in figure 5.4 it
is also apparent that the learning bias is in many cases very large, for example,
participant P7 started by solving tasks using the documentation and it took
him/her 702 seconds to solve task 2 using the documentation, but when solving a
similar task using the system he improved his/her time by 444 seconds, or about
7.4 minutes. The difference was then often similar in the other direction, when
participants started solving tasks using the SDS and then improved a lot when they
solved a similar task using the documentation. I did try to minimise the effect of
the learning bias by making half of the participants start solving tasks using the
documentation and the other half using the SDS, however, when the bias is this
large, it affects the overall results considerably.

Even though the usability tests do not yield significant results and had some
drawbacks like the learning bias I discussed, they do indicate that further improve-
ments need to be made to the SDS in order to develop it into a tool that will help
users to effectively navigate software documentation. On top of that it is also clear
that even though the system itself is simple, using it can be complex for users who
are unfamiliar with it. More extensive training sessions before performing usability
tests on a system like the SDS would therefore be crucial to collect as good data as
possible. A more detailed discussion of potential improvements to the SDS can be
found in section 6.4.

6.4 User experience
When participants had finished solving the tasks for the usability testing, they were
asked to answer questions about their user experience.

71

6. Discussion

In a study from 2011 by Sauro [31], where data was collected and analysed
from over 5000 different users in 500 different evaluations, the average total SUS
score was 68. The SDS’ final SUS score was 68.33, so it scored slightly above
average. There were two questions that scored below 60, the question I felt very
confident using this website scored the lowest, 47.22. I believe there are mainly
two reasons for this. Firstly, again the very limited training that the participants
received before solving the tasks. Secondly, I believe that the low accuracy of the
machine learning results affected the confidence of the participants. Seeing false
positives within the results, or realising that something is missing from the results,
has considerable effects on the user as they tend to start doubting all results. This
then is likely to have affected the results of the first question, I think that I would
like to use this website frequently. Not feeling confident about the information that
the system is providing you is likely to be a large deciding factor for the user. Then
there were 3 questions that scored 75 or higher. Two of those questions were about
the system’s learnability. This might sound like a contradiction to what I have
been saying, that the users would need more training to be able to efficiently and
correctly carry out complex task in the system. However, I believe the reason for
this is that the user interface itself is very simple and the whole system is on one
page in a web system. But even though the system itself is not complex and it
does not have many functionalities, the complex part is to translate the task you
have to one of the questions offered by the system. This I believe takes more than
10 minutes to get a feeling for. The third question that scored high was I found
this website very cumbersome/awkward to use. I believe this question scored high
because the user interface is simple. There are few functionalities and all of them
are performed from the front page, which is the website’s only page.

Through the open-ended questions, it was possible to give the participants
more freedom and to get feedback without introducing bias. The questions were
supposed to affect the answers as little as possible and were therefore phrased in a
general way to reduce the likelihood of them introducing bias. The moderator also
made sure to participate as little as possible in the discussion while the participant
was answering the questions, again to decrease the likelihood of introducing
bias. The results show that most participants felt the system helped them when
navigating the system. Many then liked the visualisation provided by the system
and thought it helped them get an overview and an understanding of the contents
of the documentation that was being analysed.

When asking the participants how they felt when using the SDS, many men-
tioned that they felt supported, which likely goes hand in hand with the fact
that the system was helping them navigate and understand the documentation.
However, some participants also mentioned that they felt incompleteness in the
system and were confused. This likely relates to the confidence issue that was
apparent in the SUS questionnaire results and has already been discussed.

When asking participants about improvements they would like to see in the
SDS, many mentioned minor user interface details like, for example, changing the

72

6. Discussion

filter button design and add hierarchy to the documentation text. Many suggestions
were also given about possible improvements to the result design itself, like for
example giving a better overview of where the results are in the documentation,
and a more detailed categorisation/clustering of the results in the graph. Some
participants mentioned that it would be good to make the user story selection
and the results searchable to improve the navigation within the SDS. Finally,
participants also mentioned the importance of improving the accuracy of the
automatic results.

I believe these improvement suggestions support the analysis of the SUS re-
sults. The amount of suggestions related to navigation of the results and result
related UI design is likely triggered by users having difficulties with getting an
overview of the results displayed by the system. The improvement suggestions are
all very good, but the need for some might be eliminated by making the results
more accurate and more focused.

In order to improve the SUS score and the overall user experience of the
SDS, I believe it is most important to improve the accuracy of the automatic
extraction methods. When the results of the system are reliable, the user‘s
confidence will increase, and user confidence is obviously essential for developing
a good system. Also, I believe it might be necessary to make the system‘s results
more focused. There are several things that need to be considered in regards to
that. First, it might be necessary to make the questions in the system more focused.
In order to do this, some research would have to be made to better figure out what
questions are most important to the user. Second, increasing the result accuracy
will lead to more relevant and focused answers. In this case, the classification
accuracy, Task Phrase Extractor connections and technical concept identification
should all be investigated to figure out how noise can be reduced.

6.5 Threats to validity
This section describes the threats to validity of this research, and how these threats
were addressed.

6.5.1 Internal Validity
Firstly, a threat to internal validity is the bias in the data annotation, since all
training data was annotated by me. For the sentence classification annotation, I
got three other persons to go over different parts of the annotation, two of those
were completely unrelated to the study and should not be biased in any way. For
the cluster labels that I created to compare to the GMM clustering results, I then
minimised the bias by labelling the data before I created the clustering algorithm.
I therefore did not know the true results when I labelled the data and should
therefore not be biased.

The results of the usability testing did not show with significance any differ-

73

6. Discussion

ence in the time that it took participants to solve tasks using the documentation
versus using the SDS. However, as in most evaluations, there are some internal
validity threats that are worth discussing.

When it came to the usability testing sessions there were two limitations
that may have caused bias in the results, time and the fact that not all sessions
were run by the same moderator.

The time of the sessions was limited since the participants were volunteers
that did not get any compensation for their time. I therefore wanted to take up as
little of their time as I could without highly affecting the results of the usability
tests. Long usability testing sessions are also more likely to tire out the participants,
affecting the quality of the results. In order to mitigate this threat, participants
were allowed to ask for pointers if they felt lost when solving the tasks. The
pointers given did not contain any information about the solution to the task, but
either further explained the task itself, or gave information about e.g. the structure
of the documentation text or how some functionality works in the SDS. During the
usability testing sessions, it variated how many pointers the participants asked for,
some asked quite often while others never asked for pointers. Most pointers given
were only to clarify the meaning of the tasks. A list of all pointers given during
the usability sessions can be found in appendix G. These pointers may have caused
bias in the results, but I minimised that by standardising the procedure as much as
possible. No pointers were given without the participant asking for them, but when
they had spent 5 minutes on the same task without asking for a pointer, they were
gently reminded that they were allowed to ask for those pointers. This also applied
both when participants were solving tasks using the documentation and the SDS.
Secondly, as I already said, the pointers given never directly related to the answer
to the task and most pointers given were to clarify the task they were supposed to
solve. I therefore believe that the pointers did not have a significant effect on the
result of either the documentation times or the SDS times.

The other issue with the sessions was that due to my location, I was not
able to moderate all the sessions. Three sessions were therefore run by another
moderator. In order to minimise the effects of this, the sessions were standardised
as much as possible. A welcoming text was written so that all participants would
receive the same information about the session, a tutorial video was made so that
all participants would receive the same training, and the substitute moderator
made sure to practice and fully understand the system so he could provide the
same level of help as me.

The selection of the participants is then another threat to internal validity.
It was not possible to select a random sample from the domain of all software
developers, instead I had to contact people that I knew had background in software
development, and might be willing to participate. This can cause bias both because
the group of participants might not be representative of all software developers
that would benefit from using a system like the SDS (for example, the participants

74

6. Discussion

might be very familiar with using documentation or might not be familiar with
using documentation at all), and because I might be biased in my selection of
prospect participants. These biases are difficult to mitigate, but efforts were put
into minimising their effects as much as possible. Firstly, I made sure that the
participants all had background in software engineering, but tried to make sure that
the background was as diverse as possible. The participants were therefore from
different levels of academia, and industry as well. All participants had some level
of experience with requirement analysis and software architecture. However, I was
not able to fully balance participants from academia and industry, as I was only
able to get one participant with a background in industry. In order to minimise
the bias caused by me selecting the participants, I tried to get as many suggestions
from others as possible and sent invitations to all participants that were suggested.
Everyone that responded was then included in the evaluation.

6.5.2 External Validity

Given the very limited data used in this research, generalisability was never its
main purpose.

The SDS is developed using only one case documentation, Snowflake. Even
though this documentation was carefully chosen, it can not be representative of
all software documentation. This affects the generalisability of both the software
knowledge categories defined and the classifier that was trained to recognise those
categories.

The SDS can then certainly not answer all questions that might come to a
developer’s mind when looking for information in software documentation. The
tasks of the usability tests were chosen to showcase the type of tasks that can be
solved with the help of the SDS. The four tasks of the usability tests therefore do
not represent all tasks that developers normally solve using documentation. This
affects the generalisability of the usability testing results. In its current state, the
SDS will likely not be faster at solving all tasks that might come up when developers
are using documentation. However, the current SDS is a proof-of-concept and is
mainly supposed to showcase the potential of such a system.

The sample size of the usability test is also only 8, which is very small and
means that it is not possible to generalise the results to the domain of all software
engineers.

As I said, generalisability was not a primary concern of this research. The
main goal was to create a proof-of-concept system that would showcase the
possibilities of using machine learning and other automatic methods to extract
knowledge from software documentation that could be used to support the user
when navigating those large documentations.

75

6. Discussion

6.5.3 Construct Validity
The main threat to construct validity is the mono-method bias, as only one method
of measurement was used during the usability tests. To mitigate this bias, both
quantitative and qualitative feedback was collected during the usability tests. The
quantitative results are the task time measured, and the qualitative results is
the feedback collected through both the SUS questionnaire and the open-ended
questions of the user experience interview. This made it possible to compare and
analyse the results to see how the align.

Another threat to construct validity was then the learning bias imposed on
the usability testing, as the users always solved two very similar tasks, one using
the documentation and one the SDS. The task that the user solves secondly, is
therefore always somewhat biased, as the user has experience from solving a very
similar task earlier. In order to mitigate this threat, half of the participants started
by solving tasks using the documentation and the other half started by solving
tasks using the SDS. However, as already discussed, for the first two tasks, the
learning bias was greater than expected and is suspected to have a considerable
impact on the total results.

76

7
Conclusion

This research is contributes to the OD3 vision of future software documentation and
focuses on the challenge of using automatic methods, such as machine learning and
natural language processing, to extracting knowledge from documentation. In this
research I (1) identified categories of software knowledge that can be recognised in
software documentation, (2) automatically classified the documentation’s sentences
into those categories of software knowledge, and (3) automatically identified the
relations between different sentences of the documentation. To achieve this, one
documentation was analysed and a web system called the Software Documentation
Supporter (SDS), was developed to showcase and evaluate the results.

The software knowledge categories were identified by using an iterative bottom-up
approach to identify the software knowledge categories and the appropriate level
of abstraction to work with. As only one documentation was used to identify
those categories, it might be necessary to add more to generalise to all software
documentation, but measures were taken to make future extensions as easy as
possible.

The sentence classification was achieved by training a hierarchical classifier
that classifies all sentences into one of the 25 defined software knowledge categories.
As training data was very limited, the precision and recall of the classifier was
only 35.63% and 25.78%, respectively. But by gathering more training data,
these numbers are expected to improve considerably. The trained classifier is not
expected to generalise well, again because the training data was incredibly limited
and some overfitting had to be accepted.

The identification of sentence relations was solved by using two methods;
clustering and connecting the words of the task phrase extracted from each
sentence. Firstly, clustering was applied to the features, functional requirements
and use cases, to identify which functional requirements and use cases belonged to
which features. This allowed the system to give a good overview of the requirement
analysis of the system. Secondly, task phrases have been shown to be useful when
extracted from natural text, as they contain verbs and associated objects which, in
the domain of software documentation, often contain the most important knowledge
presented by a certain sentence. The extracted task phrases were then used to
connect the sentences of the documentation that had some words in common in
their task phrases.

77

7. Conclusion

SDS is the system I developed to showcase and evaluate the results. The
SDS shows the complete documentation text, but also has features to help you
navigate the text. In the SDS, users can ask questions about the documentation
they are analysing and receive answers in the form of natural language and a graph.
The graph shows the sentences that are believed to contain relevant knowledge
and how they relate to each other. The relevant sentences are all highlighted in
the documentation and all sentences in the graph are clickable to take you to the
correct place in the documentation.

Evaluations were then performed on the SDS. The evaluation was twofold,
first usability tests were performed with a sample size of 8 participants, and second,
a qualitative interview with a sample size of 9 participants was used to collect
feedback about the user experience of the SDS. The usability tests did not show
with significance any difference in the amount of time it took participants to solve
tasks with or without the help of the SDS. However, the user experience interview
showed that participants did feel supported when using the system and liked that
it helped them navigate through the software documentation, and as stated in
section 1.3, the purpose of this study was to use automatic techniques to extract
knowledge from software documentation and to use this knowledge to help users
navigate through documentation to find their desired information faster.

Future work should include gathering more data from software documenta-
tion to increase generalisability of the defined software knowledge categories. More
annotated data is also required to increase the generalisability and the precision
and recall of the classification results. Another interesting task would also be to
look further into the possibilities provided by the Task Phrase Extractor, as the
current implementation produces a lot of noise. Other interesting areas to focus
could be (1) handling custom queries from the user, instead of presenting him with
a list of predefined questions, (2) researching the most effective presentation of
knowledge extracted from software documentation, (3) some integration of the SDS
and SEC, the tool developed by Tao et al. [11] and (4) extending this research to
include images and source code.

78

Bibliography

[1] Nosál’, M. & Porubän, J. (2016) Preliminary Report on Empirical Study of
Repeated Fragments in Internal Documentation. Proceedings of the Federated
Conference on Computer Science and Information Systems, 8, 1473-1576. doi:
10.15439/2016F524

[2] Vranić, V. Porubän, J., Bystrický, M., Frtala, T., Polášek, I., Nosál, M., Lang,
J. (2015) Challenges in preserving intent comprehensibility in software. Acta
Polytechnica Hungarica, 12 (7), 57-75. doi: 10.12700/aph.12.7.2015.7.4.

[3] Luciv, D.V., Koznov, D.V., Chernishev, G.A., Terekhov, A.N. (2018) Detect-
ing Near Duplicates in Software Documentation. Programming and Computer
Software, 44 (5), 335-343. doi: 10.1134/S0361768818050079.

[4] Robillard, M.P., Marcus, A., Treude, C., Bavota, G., Chaparro O., Ernst, N.,
Gerosa, M.A., Godfrey, M., Lanza, M., Linares-Vásques, M., Murphy, G.C.,
Moreno, L., Shepherd, D., Wong, E. (2017) On-Demand Developer Documen-
tation. IEEE International Conference on Software Maintenance and Evolution
(ICSME), 479-483.

[5] Nassif, M., Treude, C., Robillard, M. (2018) Automatically Categoriz-
ing Software Technologies IEEE Transactions on Software Engineering, 1-1.
doi10.1109/TSE.2018.2836450

[6] Escoriza, L.L. (2014). Analysis , design and development of a web-shop tem-
plate using SPHERE.IO e-commerce platform. (Unpublished master’s thesis).
Universitat Politècnica de Catalunya.

[7] Xia, X., Bao, L., Lo, D., Xing, Z., Hassan, A.E., Ahmed, E., Li, S. (2018)
Measuring program comprehension: A large-scale field study with professionals.
IEEE Transactions on Software Engineering, 44 (19), 951-976.

[8] Lethbridge, T.C., Singer, J., Forward, A. (2003). How software engineers use
documentation: the state of the practice. IEEE Software, 20 (6), 35-39. doi:
10.1109/MS.2003.1241364.

[9] Robillard, P. Uddin, G. (2015). How API documentation fails. IEEE Software,
32 (4), 68-75. doi: 10.1109/MS.2014.80.

[10] Bass, L., Clements, P., Kazman, R. (2012). Software Architecture in Practice.
3rd ed., Addison-Wesley.

[11] Tao, A. Roodbari, M. (2018). Towards automatically generating explanations of
software systems (Unpublished master’s thesis). Chalmers University of Tech-
nology, Gothenburg, Sweden.

[12] Gruber, T.R. (1993). A Translation Approach to Portable Ontology Specifica-
tions. Knowledge Acquisition, 5 (2), 199-220.

[13] Kruchten, P. (1995). Architectural Blueprints - The "4+1" View Model of Soft-

79

Bibliography

ware Architecture IEEE Software, 12 (6), 42-50.
[14] P. Mayring. (2014). Qualitative Content Analysis. Theoretical Foundation, Ba-

sic Procedures and Software Solution. Klagenfurt.
[15] Peffers, K., Tuunanen T., Rothenberger, M.R., Chatterjee, S. (2007). A de-

sign science research methodology for information systems research. Journal of
management information systems, 24 (3), 45-77.

[16] IEEE Recommended Practice for Software Requirements Specifications (2009)
IEEE Std 830-1998(R2009)

[17] Systems and software engineering - Architecture description. (2011)
ISO/IEC/IEEE 42010:2011(E).

[18] IEEE Standard for Software and System Test Documentation (2008) IEEE Std
829-2008

[19] Soliman, M. (2018) Acquiring Architecture Knowledge for Technology Design
Decisions (Doctorate thesis). University of Hamburg. Hamburg, Germany.

[20] Tang, A., Bi, T., Liang, P., Yang, C. (2018) A Systematic Mapping Study
on Text Analysis Techniques in Software Architecture. Journal of Systems and
Software, 533-558.

[21] López C., Codocedo V., Astudillo H., Cysneiros L. M. (2012) Bridging the
gap between software architecture rationale formalisms and actual architecture
documents: an ontology-driven approach. Science of Computer Programming,
66-80.

[22] Anvaari M., Zimmermann O. (2014) Semi-automated design guidance enhancer
(SADGE): a framework for architectural guidance development. Proceedings of
the 8th European Conference on Software Architecture (ECSA), 41-49.

[23] Nicoletti, M. Díaz-Pace J.A., Schiaffino S. (2011) Towards software architec-
ture documents matching stakeholders’ interests. Proceedings of the 2nd Inter-
national Conference on Advances in New Technologies, Interactive Interfaces,
and Communicability (ADNTIIC), 176-185.

[24] Ko, A. J., Myers, B. A., Coblenz, M. J., Aung, H. H. (2006) An Exploratory
Study of How Developers Seek, Relate, and Collect Relevant Information dur-
ing Software Maintenance Tasks. IEEE Transactions on Software Engineering,
32 (12), 971-987.

[25] Silito, J., Murphy, G. C., Volder, K. D. (2008) Asking and Answering Questions
during a Programming Change Task. IEEE Transactions on Software Engineer-
ing, 34 (4), 434-451.

[26] Bird, Steven, Edward Loper and Ewan Klein (2009), Natural Language Pro-
cessing with Python. O’Reilly Media Inc.

[27] Pedregosa, F. et al (2011) Scikit-learn: Machine Learning in Python. Journal
of Machine Learning Research, 12, 2825-2830.

[28] Brooke, J. (1996). SUS: a "quick and dirty" usability scale. Usability evaluation
in industry (P. W. Jordan, B. Thomas, B. A. Weerdmeester, A. L. McClelland
(Eds.)), 189-194. London: Taylor and Francis.

[29] Bangor, A., Kortum, P.T. and Miller, J.T. (2008) An Empirical Evaluation of
the System Usability Scale International Journal of Human–Computer Inter-
action, 24 (6), 574-594. DOI: 10.1080/10447310802205776

[30] Treude, C., Robillard, M.P., Barthélémy, D. (2015) Extracting Development

80

Bibliography

Tasks to Navigate Software Documentation. IEEE Transactions on Software
Engineering, 41 (6), 565-581.

[31] Sauro, J. (2011) A Practical Guide to the Systems Usability Scale. CreateSpace
Independent Publishing Platform.

[32] Lauesen, S. (2002) Software Requirements, Styles and Techniques. Addison-
Wesley. ISPN: 0 201 74570 4.

[33] Hamerly, G., Elkan, C. (2002) Learning the k in k-means. University of Cali-
fornia, San Diego.

[34] Muhr, M., Granitzer, M. (2009) Automatic Cluster Number Selection Using a
Split and Merge K-Means Approach International Workshop on Database and
Expert Systems Application. DOI:10.1109/DEXA.2009.39

81

Bibliography

82

A
Appendix A

Here, all results from the sentence classification are presented. Each table represents
one classifier and shows the results from each model that was tested. The model
that was used is highlighted with orange.

Table A.1 shows the results from the flat approach. Tables A.2 to A.10 then
show the results from all levels of the hierarchical approach.

I

A. Appendix A

Table A.1: Flat approach - classifier results
C

V
1

C
V

2
C

V
3

C
V

4
C

V
5

C
V

Tr

ai
n

in
g

Te
st

in
g

O
ve

rf
it

ti
n

g

C
la

ss
if

ic
at

io
n

 M
o

d
el

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

av
er

ag
e

ac
cu

ra
cy

 [
%

]

re
ca

ll

[%
]

re
ca

ll

[%
]

P
re

ci
si

o
n

[%
]

R
e

ca
ll

[%
]

F1

B
er

n
o

u
lli

N
B

(a
lp

h
a=

2
)

3
0

.2
2

2
8

.8
1

2
9

.8
2

3
2

.3
5

2
8

.6
6

2
9

.9
7

3
7

.5
9

2
5

.9
3

1
1

.6
6

2
3

.1
1

2
3

.7
1

2
3

.4
1

Ex
tr

aT
re

es
C

la
ss

if
ie

r(
m

ax
_f

ea
tu

re
s=

5
0

0
,

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',m
in

_i
m

p
u

ri
ty

_
s

p
lit

=
0

.9
)

3
4

.6
2

3
2

.7
7

3
0

.4
1

3
5

.9
3

3
2

.3
2

3
3

.2
1

4
6

.3
5

3
1

.4
8

1
4

.8
7

2
7

.1
4

2
5

.7
7

2
6

.4
4

K
N

ei
gh

b
o

rs
C

la
ss

if
ie

r(
n

_n
ei

gh
b

o
rs

=1
0

0
)

4
0

.1
1

4
5

.2
0

4
0

.3
6

4
3

.1
1

4
2

.6
8

4
2

.2
9

4
4

.3
4

4
0

.2
8

4
.0

6
5

2
.1

5
3

8
.1

4
4

4
.0

6

Li
n

ea
rS

V
C

(C
=0

.0
1

,

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',
d

u
al

=T
ru

e,

fi
t_

in
te

rc
ep

t=
Tr

u
e,

lo
ss

='
sq

u
ar

ed
_h

in
ge

',
m

u
lt

i_
cl

as
s=

'o
vr

',

p
en

al
ty

='
l2

')
4

0
.6

6
3

8
.9

8
4

3
.2

7
4

6
.7

1
3

9
.6

3
4

1
.8

5
6

9
.5

3
4

9
.0

7
2

0
.4

6
3

7
.9

2
3

2
.9

9
3

5
.2

8

Lo
gi

st
ic

R
eg

re
ss

io
n

(n
_j

o
b

s=
1

,

m
u

lt
i_

cl
as

s=
'm

u
lt

in
o

m
ia

l',

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',
so

lv
e

r=
'lb

fg
s'

,

C
=0

.0
3

, p
en

al
ty

='
l2

')
3

7
.3

6
3

7
.8

5
3

6
.2

6
4

3
.7

1
3

4
.7

6
3

7
.9

9
6

0
.5

8
4

3
.0

6
1

7
.5

2
3

0
.6

0
2

4
.7

4
2

7
.3

6

N
ea

re
st

C
en

tr
o

id
()

4
9

.4
5

4
4

.0
7

4
8

.5
4

5
6

.8
9

4
3

.9
0

4
8

.5
7

8
2

.6
6

5
3

.7
0

2
8

.9
6

4
5

.9
3

4
0

.2
1

4
2

.8
8

R
an

d
o

m
Fo

re
st

C
la

ss
if

ie
r(

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',m
in

_i
m

p
u

ri
ty

_
sp

lit
=0

,

m
ax

_d
ep

th
=4

, r
an

d
o

m
_s

ta
te

=0
)

1
4

.2
9

1
9

.7
7

2
2

.2
2

1
4

.9
7

1
5

.2
4

1
7

.3
0

3
3

.0
3

2
5

.9
3

7
.1

0
3

3
.5

5
1

6
.4

9
2

2
.1

1

SG
D

C
la

ss
if

ie
r(

al
p

h
a=

0
.5

, l
o

ss
="

lo
g"

,

p
en

al
ty

="
l2

",
 c

la
ss

_w
e

ig
h

t=
'b

al
an

ce
d

',

ra
n

d
o

m
_s

ta
te

=4
2

)
1

1
.5

4
3

.3
9

2
5

.1
5

2
1

.5
6

9
.7

6
1

4
.2

8
4

2
.7

0
3

0
.0

9
1

2
.6

1
2

1
.0

1
2

4
.7

4
2

2
.7

2

V
al

id
at

io
n

II

A. Appendix A

Table A.2: Level 1
C

V
1

C
V

2
C

V
3

C
V

4
C

V
5

C
V

Tr

ai
n

in
g

Te
st

in
g

O
ve

rf
it

ti
n

g

C
la

ss
if

ic
at

io
n

 M
o

d
el

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

av
er

ag
e

ac
cu

ra
cy

 [
%

]

re
ca

ll

[%
]

re
ca

ll

[%
]

P
re

ci
si

o
n

[%
]

R
e

ca
ll

[%
]

F1

B
er

n
o

u
lli

N
B

(a
lp

h
a=

1
, b

in
ar

iz
e=

0
,

fi
t_

p
ri

o
r=

Tr
u

e,
 c

la
ss

_p
ri

o
r=

N
o

n
e)

6
1

.9
3

6
2

.2
1

6
2

.5
7

6
4

.9
1

6
0

.2
3

6
2

.3
7

7
5

.8
6

6
2

.9
6

1
2

.9
0

4
3

.7
9

4
7

.6
9

4
5

.6
6

Ex
tr

aT
re

e
sC

la
ss

if
ie

r(
m

ax
_f

ea
tu

re
s=

5
0

0
,

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',m
in

_i
m

p
u

ri
ty

_
s

p
lit

=
0

.8
)

3
0

.6
8

3
4

.8
8

3
5

.0
9

3
1

.5
8

3
2

.1
6

3
2

.8
8

3
7

.0
7

2
8

.2
4

8
.8

3
6

1
.6

6
3

0
.7

7
4

1
.0

5

K
N

ei
gh

b
o

rs
C

la
ss

if
ie

r(
n

_n
ei

gh
b

o
rs

=1
0

0
)

5
4

.5
4

5
6

.4
0

5
9

.0
6

5
2

.0
5

5
6

.7
2

5
5

.7
6

5
5

.1
7

5
3

.2
4

1
.9

3
4

6
.0

2
5

5
.3

8
5

0
.2

7

Li
n

ea
rS

V
C

(C
=0

.0
1

,

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',
d

u
al

=T
ru

e,

fi
t_

in
te

rc
ep

t=
Tr

u
e,

in
te

rc
ep

t_
sc

al
in

g=
1

,

lo
ss

='
sq

u
ar

ed
_h

in
ge

',
m

ax
_i

te
r=

5
0

0
,

m
u

lt
i_

cl
as

s=
'o

vr
',

p
en

al
ty

='
l2

',
to

l=
1

e-

0
5

)
5

9
.6

6
5

6
.7

0
6

3
.1

6
6

1
.4

0
5

7
.3

1
5

9
.7

0
6

8
.2

7
5

6
.4

8
1

1
.7

9
6

2
.4

8
6

0
.0

0
6

1
.2

1

Lo
gi

st
ic

R
eg

re
ss

io
n

(n
_j

o
b

s=
1

,

m
u

lt
i_

cl
as

s=
'm

u
lt

in
o

m
ia

l',

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',
so

lv
e

r=
'lb

fg
s'

,

C
=0

.1
, p

en
al

ty
='

l2
')

6
1

.2
1

5
9

.3
0

6
0

.8
2

6
3

.7
4

6
0

.2
3

6
1

.2
1

7
6

.3
8

5
9

.2
6

1
7

.1
2

6
3

.5
4

5
6

.9
2

6
0

.0
5

N
ea

re
st

C
en

tr
o

id
()

5
9

.0
9

5
5

.8
1

6
6

.1
0

6
3

.1
6

5
6

.1
4

6
0

.5
7

7
8

.9
7

6
1

.1
1

1
7

.8
6

5
2

.7
4

4
9

.2
3

5
0

.9
2

R
an

d
o

m
Fo

re
st

C
la

ss
if

ie
r(

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',m
in

_i
m

p
u

ri
ty

_
sp

lit
=0

,

m
ax

_d
ep

th
=4

, r
an

d
o

m
_s

ta
te

=0
)

4
2

.0
5

3
4

.8
8

2
8

.0
7

4
7

.3
7

3
0

.4
1

3
6

.5
6

5
2

.7
6

4
1

.6
7

1
1

.0
9

1
9

.2
9

2
3

.7
7

2
1

.3
0

SG
D

C
la

ss
if

ie
r(

al
p

h
a=

0
.0

1
, l

o
ss

="
lo

g"
,

p
en

al
ty

="
l2

",
 c

la
ss

_w
e

ig
h

t=
'b

al
an

ce
d

',

n
_i

te
r_

n
o

_c
h

an
ge

=
3

,e
ar

ly
_

st
o

p
p

in
g=

Tr
u

e)
 #

6
3

,5
 -

 6
3

5
9

.6
6

5
6

.4
0

6
5

.5
0

6
0

.8
2

5
9

.0
6

6
0

.2
9

7
6

.7
0

5
9

.7
2

1
6

.9
8

6
0

.9
9

5
8

.4
6

5
9

.7
0

V
al

id
at

io
n

III

A. Appendix A

Table A.3: Level 2 - requirements category
C

V
1

C
V

2
C

V
3

C
V

4
C

V
5

C
V

Tr

ai
n

in
g

Te
st

in
g

O
ve

rf
it

ti
n

g

C
la

ss
if

ic
at

io
n

 M
o

d
el

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

av
er

ag
e

ac
cu

ra
cy

 [
%

]

re
ca

ll

[%
]

re
ca

ll

[%
]

P
re

ci
si

o
n

[%
]

R
e

ca
ll

[%
]

F1

B
er

n
o

u
lli

N
B

(a
lp

h
a=

2
, b

in
ar

iz
e=

0
,

fi
t_

p
ri

o
r=

Tr
u

e,
 c

la
ss

_p
ri

o
r=

N
o

n
e)

4
4

.1
9

4
2

.8
6

4
5

.0
0

4
2

.5
0

4
5

.0
0

4
3

.9
1

5
3

.7
4

4
2

.0
0

1
1

.7
4

6
9

.6
4

7
5

.0
0

7
2

.2
2

Ex
tr

aT
re

e
sC

la
ss

if
ie

r(
m

ax
_f

ea
tu

re
s=

1
0

0
,

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',m
in

_i
m

p
u

ri
ty

_
s

p
lit

=
0

.7
, r

an
d

o
m

_s
ta

te
=4

2
)

6
9

.7
7

6
3

.2
9

6
2

.5
0

6
5

.0
0

5
7

.5
0

6
3

.8
1

7
2

.1
1

5
2

.0
0

2
0

.1
1

1
0

0
.0

0
7

5
.0

0
8

5
.7

1

K
N

ei
gh

b
o

rs
C

la
ss

if
ie

r(
n

_n
ei

gh
b

o
rs

=4
0

)
6

5
.1

2
7

1
.4

3
6

0
.0

0
6

2
.5

0
7

2
.5

0
6

8
.3

1
7

0
.7

5
6

6
.0

0
4

.7
5

7
5

.0
0

7
5

.0
0

7
5

.0
0

Li
n

ea
rS

V
C

(C
=0

.0
5

,

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',
d

u
al

=T
ru

e,

fi
t_

in
te

rc
ep

t=
Tr

u
e,

in
te

rc
ep

t_
sc

al
in

g=
1

,

lo
ss

='
h

in
ge

',
m

u
lt

i_
cl

as
s=

'o
vr

',

p
en

al
ty

='
l2

',
to

l=
1

e-
0

5
)

7
2

.0
9

7
8

.5
7

7
2

.5
0

7
7

.5
0

8
0

.0
0

7
6

.1
3

9
1

.8
4

7
8

.0
0

1
3

.8
4

1
0

0
.0

0
8

7
.5

0
9

3
.3

3

Lo
gi

st
ic

R
eg

re
ss

io
n

(n
_j

o
b

s=
1

,

m
u

lt
i_

cl
as

s=
'm

u
lt

in
o

m
ia

l',

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',
so

lv
e

r=
'lb

fg
s'

,

C
=0

.0
1

, p
en

al
ty

='
l2

')
8

3
.7

2
8

3
.3

3
8

0
.0

0
7

2
.5

0
8

0
.0

0
7

9
.9

1
9

3
.8

8
7

2
.0

0
2

1
.8

8
1

0
0

.0
0

8
7

.5
0

9
3

.3
3

N
ea

re
st

C
en

tr
o

id
()

7
9

.0
7

8
0

.9
5

8
7

.5
0

8
0

.0
0

8
0

.0
0

8
1

.5
0

9
4

.5
5

7
4

.0
0

2
0

.5
5

7
5

.0
0

7
5

.0
0

7
5

.0
0

R
an

d
o

m
Fo

re
st

C
la

ss
if

ie
r(

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',m
in

_i
m

p
u

ri
ty

_
sp

lit
=0

.7
,

m
ax

_d
ep

th
=7

, r
an

d
o

m
_s

ta
te

=4
2

)
6

0
.4

7
7

3
.8

1
6

2
.5

0
6

0
.0

0
5

2
.5

0
6

1
.8

5
7

8
.2

3
4

6
.0

0
3

2
.2

3
6

6
.6

7
5

0
.0

0
5

7
.1

4
SG

D
C

la
ss

if
ie

r(
al

p
h

a=
5

, l
o

ss
="

lo
g"

,

p
en

al
ty

="
l2

",
 c

la
ss

_w
e

ig
h

t=
'b

al
an

ce
d

',

n
_i

te
r_

n
o

_c
h

an
ge

=
3

,e
ar

ly
_

st
o

p
p

in
g=

Tr
u

e,
 r

an
d

o
m

_s
ta

te
=4

2
)

4
1

.8
6

3
3

.3
3

4
2

.5
0

4
2

.5
0

5
.0

0
3

3
.0

4
4

3
.5

4
3

4
.0

0
9

.5
4

8
7

.5
0

3
7

.5
0

5
2

.5
0

V
al

id
at

io
n

IV

A. Appendix A

Table A.4: Level 2 - system category
C

V
1

C
V

2
C

V
3

C
V

4
C

V
5

C
V

Tr

ai
n

in
g

Te
st

in
g

O
ve

rf
it

ti
n

g

C
la

ss
if

ic
at

io
n

 M
o

d
el

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

av
e

ra
ge

ac
cu

ra
cy

 [
%

]

re
ca

ll

[%
]

re
ca

ll

[%
]

P
re

ci
si

o
n

[%
]

R
e

ca
ll

[%
]

F1

B
er

n
o

u
lli

N
B

(a
lp

h
a=

2
, b

in
ar

iz
e=

0
,

fi
t_

p
ri

o
r=

Tr
u

e,
 c

la
ss

_p
ri

o
r=

N
o

n
e)

7
2

.3
1

6
9

.2
3

7
9

.3
7

8
7

.3
0

7
4

.1
9

7
6

.4
8

8
6

.2
4

7
9

.4
5

6
.7

9
5

9
.8

8
6

6
.6

7
6

3
.0

9

Ex
tr

aT
re

es
C

la
ss

if
ie

r(
m

ax
_f

ea
tu

re
s=

5
0

,

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',m
in

_i
m

p
u

ri
ty

_
s

p
lit

=
0

.5
, r

an
d

o
m

_s
ta

te
=4

2
)

6
7

.6
9

7
6

.9
2

7
3

.0
2

8
0

.9
5

7
9

.0
3

7
5

.5
2

9
0

.3
7

8
0

.8
2

9
.5

5
7

5
.4

4
7

4
.0

7
7

4
.7

5

K
N

ei
gh

b
o

rs
C

la
ss

if
ie

r(
n

_n
ei

gh
b

o
rs

=2
5

)
7

6
.9

0
7

6
.9

0
8

7
.3

0
8

0
.9

5
7

2
.5

8
7

8
.9

4
7

9
.3

6
7

3
.9

7
5

.3
9

8
1

.1
4

7
0

.3
7

7
5

.3
7

Li
n

ea
rS

V
C

(C
=0

.0
5

,

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',
d

u
al

=T
ru

e,

fi
t_

in
te

rc
ep

t=
Tr

u
e,

in
te

rc
ep

t_
sc

al
in

g=
1

,

lo
ss

='
h

in
ge

',
m

u
lt

i_
cl

as
s=

'o
vr

',

p
en

al
ty

='
l2

',
to

l=
1

e-
0

5
)

7
2

.3
1

7
6

.9
2

8
8

.8
9

7
6

.1
9

7
2

.5
8

7
7

.3
8

9
3

.1
2

6
9

.8
6

2
3

.2
6

8
6

.6
4

7
4

.0
7

7
9

.8
6

Lo
gi

st
ic

R
eg

re
ss

io
n

(n
_j

o
b

s=
1

,

m
u

lt
i_

cl
as

s=
'm

u
lt

in
o

m
ia

l',

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',
so

lv
e

r=
'lb

fg
s'

,

C
=0

.0
1

, p
en

al
ty

='
l2

')
7

8
.4

6
6

6
.1

5
8

8
.8

9
7

7
.7

8
7

9
.0

3
7

8
.0

6
9

1
.7

4
7

9
.4

5
1

2
.2

9
8

3
.3

0
8

1
.4

8
8

2
.3

8

N
ea

re
st

C
en

tr
o

id
()

8
3

.0
8

7
8

.4
6

9
2

.0
6

8
5

.7
0

8
2

.2
6

8
4

.3
0

9
3

.1
2

8
6

.3
0

6
.8

2
8

5
.1

9
8

5
.1

9
8

5
.1

9

R
an

d
o

m
Fo

re
st

C
la

ss
if

ie
r(

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',m
in

_i
m

p
u

ri
ty

_
sp

lit
=0

,

m
ax

_d
ep

th
=4

, r
an

d
o

m
_s

ta
te

=4
2

)
6

9
.2

3
6

1
.5

4
6

3
.4

9
7

1
.4

3
7

4
.1

9
6

7
.9

8
8

3
.9

4
7

3
.9

7
9

.9
7

6
2

.1
2

6
2

.9
6

6
2

.5
4

SG
D

C
la

ss
if

ie
r(

al
p

h
a=

0
.5

, l
o

ss
="

lo
g"

,

p
en

al
ty

="
l2

",
 c

la
ss

_w
e

ig
h

t=
'b

al
an

ce
d

',

n
_i

te
r_

n
o

_c
h

an
ge

=
3

,e
ar

ly
_

st
o

p
p

in
g=

Tr
u

e,
 r

an
d

o
m

_s
ta

te
=4

2
)

5
7

.8
0

5
6

.1
6

1
.6

4
2

6
.8

9
5

1
.8

5
3

5
.4

1

V
al

id
at

io
n

V

A. Appendix A

Table A.5: Level 2 - development process category
C

V
1

C
V

2
C

V
3

C
V

4
C

V
5

C
V

Tr

ai
n

in
g

Te
st

in
g

O
ve

rf
it

ti
n

g

C
la

ss
if

ic
at

io
n

 M
o

d
el

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

av
e

ra
ge

ac
cu

ra
cy

 [
%

]

re
ca

ll

[%
]

re
ca

ll

[%
]

P
re

ci
si

o
n

[%
]

R
e

ca
ll

[%
]

F1

B
er

n
o

u
lli

N
B

(a
lp

h
a=

1
, b

in
ar

iz
e=

0
,

fi
t_

p
ri

o
r=

Tr
u

e,
 c

la
ss

_p
ri

o
r=

N
o

n
e)

7
8

.2
6

8
1

.8
1

8
1

.8
1

8
1

.8
1

8
1

.8
1

8
1

.1
1

8
7

.8
0

8
2

.1
4

5
.6

6
1

0
0

.0
0

1
0

0
.0

0
1

0
0

.0
0

Ex
tr

aT
re

es
C

la
ss

if
ie

r(
m

ax
_f

ea
tu

re
s=

5
0

,

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',m
in

_i
m

p
u

ri
ty

_
s

p
lit

=
0

.4
, r

an
d

o
m

_s
ta

te
=4

2
)

8
2

.6
1

8
6

.3
6

8
1

.8
1

8
6

.3
6

8
1

.8
1

8
3

.7
9

9
7

.8
6

8
9

.2
9

8
.5

7
1

0
0

.0
0

1
0

0
.0

0
1

0
0

.0
0

K
N

ei
gh

b
o

rs
C

la
ss

if
ie

r(
n

_n
ei

gh
b

o
rs

=1
0

)
7

8
.2

6
8

1
.8

1
8

1
.8

1
8

1
.8

1
8

1
.8

1
8

1
.1

1
8

1
.7

0
8

2
.1

4
-0

.4
4

1
0

0
.0

0
1

0
0

.0
0

1
0

0
.0

0

Li
n

ea
rS

V
C

(C
=0

.1
,

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',
d

u
al

=T
ru

e,

fi
t_

in
te

rc
ep

t=
Tr

u
e,

in
te

rc
ep

t_
sc

al
in

g=
1

,

lo
ss

='
h

in
ge

',
m

u
lt

i_
cl

as
s=

'o
vr

',

p
en

al
ty

='
l2

',
to

l=
1

e-
0

5
)

9
1

.3
0

6
8

.1
8

7
2

.7
2

8
1

.8
1

7
7

.2
7

7
8

.5
7

9
1

.4
6

7
8

.5
7

1
2

.8
9

1
0

0
.0

0
1

0
0

.0
0

1
0

0
.0

0

Lo
gi

st
ic

R
eg

re
ss

io
n

(n
_j

o
b

s=
1

,

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',
so

lv
e

r=
'lb

fg
s'

,

C
=0

.1
, p

en
al

ty
='

l2
')

8
2

.6
1

8
1

.8
1

8
6

.3
6

9
5

.4
5

9
5

.4
5

8
8

.3
4

9
7

.5
6

8
5

.7
1

1
1

.8
5

1
0

0
.0

0
1

0
0

.0
0

1
0

0
.0

0

N
ea

re
st

C
en

tr
o

id
()

8
2

.6
1

8
1

.8
1

8
6

.3
6

9
5

.4
5

9
5

.4
5

8
8

.3
4

9
7

.5
6

8
9

.2
9

8
.2

7
1

0
0

.0
0

1
0

0
.0

0
1

0
0

.0
0

R
an

d
o

m
Fo

re
st

C
la

ss
if

ie
r(

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',m
in

_i
m

p
u

ri
ty

_
sp

lit
=0

,

m
ax

_d
ep

th
=5

, r
an

d
o

m
_s

ta
te

=4
2

)
8

6
.9

6
7

7
.2

7
8

6
.3

6
8

1
.8

1
9

0
.9

1
8

4
.6

6
9

3
.9

0
8

2
.1

4
1

1
.7

6
1

0
0

.0
0

1
0

0
.0

0
1

0
0

.0
0

SG
D

C
la

ss
if

ie
r(

al
p

h
a=

0
.5

, l
o

ss
="

lo
g"

,

p
en

al
ty

="
l2

",
 c

la
ss

_w
e

ig
h

t=
'b

al
an

ce
d

',

n
_i

te
r_

n
o

_c
h

an
ge

=
3

,e
ar

ly
_

st
o

p
p

in
g=

Tr
u

e,
 r

an
d

o
m

_s
ta

te
=4

2
)

8
6

.9
6

6
8

.1
8

7
7

.2
7

9
5

.4
5

9
5

.4
5

8
4

.6
6

9
7

.5
6

8
9

.2
9

8
.2

7
1

0
0

.0
0

1
0

0
.0

0
1

0
0

.0
0

V
al

id
at

io
n

VI

A. Appendix A

Table A.6: Level 3 - structure category
C

V
1

C
V

2
C

V
3

C
V

4
C

V
5

C
V

Tr

ai
n

in
g

Te
st

in
g

O
ve

rf
it

ti
n

g

C
la

ss
if

ic
at

io
n

 M
o

d
el

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

av
e

ra
ge

ac
cu

ra
cy

 [
%

]

re
ca

ll

[%
]

re
ca

ll

[%
]

P
re

ci
si

o
n

[%
]

R
e

ca
ll

[%
]

F1

B
er

n
o

u
lli

N
B

(a
lp

h
a=

3
, b

in
ar

iz
e=

0
,

fi
t_

p
ri

o
r=

Tr
u

e,
 c

la
ss

_p
ri

o
r=

N
o

n
e)

7
7

.7
8

7
7

.7
8

7
7

.7
8

8
2

.8
6

7
9

.4
1

7
9

.1
2

8
2

.9
2

7
3

.8
1

9
.1

1
5

6
.2

5
7

5
.0

0
6

4
.2

9

Ex
tr

aT
re

es
C

la
ss

if
ie

r(
m

ax
_f

ea
tu

re
s=

5
0

,

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',m
in

_i
m

p
u

ri
ty

_
s

p
lit

=
0

.4
, r

an
d

o
m

_s
ta

te
=4

2
)

9
1

.6
7

7
7

.7
8

8
6

.1
1

8
8

.5
7

8
5

.2
9

8
5

.8
8

9
6

.7
5

7
3

.8
1

2
2

.9
4

8
3

.3
3

8
3

.3
3

8
3

.3
3

K
N

ei
gh

b
o

rs
C

la
ss

if
ie

r(
n

_n
ei

gh
b

o
rs

=2
0

)
8

6
.1

1
8

0
.5

6
8

3
.3

3
8

8
.5

7
8

5
.2

9
8

4
.7

7
8

5
.3

7
7

3
.8

1
1

1
.5

6
8

6
.3

6
8

3
.3

3
8

4
.8

2

Li
n

ea
rS

V
C

(C
=0

.0
0

1
,

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',
 l

o
ss

='
h

in
ge

',

p
en

al
ty

='
l2

',
ra

n
d

o
m

_s
ta

te
=4

2
)

5
8

.3
3

5
0

.0
0

5
5

.5
6

4
5

.7
1

5
5

.5
6

5
3

.1
0

7
9

.6
7

7
3

.8
1

5
.8

6
8

4
.3

8
5

8
.3

3
6

8
.9

8

Lo
gi

st
ic

R
eg

re
ss

io
n

(n
_j

o
b

s=
1

,

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',
C

=
0

.0
1

,

p
en

al
ty

='
l2

')
6

6
.6

7
7

2
.2

2
6

1
.1

1
5

4
.2

9
6

7
.6

5
6

4
.3

9
9

1
.0

6
7

3
.8

1
1

7
.2

5
9

0
.0

0
8

3
.3

3
8

6
.5

4

N
ea

re
st

C
en

tr
o

id
()

9
1

.6
7

8
8

.8
9

9
1

.6
7

8
5

.7
1

7
9

.4
1

8
7

.4
7

9
8

.3
7

7
3

.8
1

2
4

.5
6

8
3

.3
3

8
3

.3
3

8
3

.3
3

R
an

d
o

m
Fo

re
st

C
la

ss
if

ie
r(

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',m
in

_i
m

p
u

ri
ty

_
sp

lit
=0

,

m
ax

_d
ep

th
=5

, r
an

d
o

m
_s

ta
te

=4
2

)
7

7
.7

8
7

7
.7

8
7

7
.7

8
8

5
.7

1
7

3
.5

3
7

8
.5

2
8

8
.6

2
7

3
.8

1
1

4
.8

1
8

6
.3

6
8

3
.3

3
8

4
.8

2
SG

D
C

la
ss

if
ie

r(
al

p
h

a=
0

.5
, l

o
ss

="
lo

g"
,

p
en

al
ty

="
l2

",
 c

la
ss

_w
e

ig
h

t=
'b

al
an

ce
d

',

n
_i

te
r_

n
o

_c
h

an
ge

=
3

,e
ar

ly
_

st
o

p
p

in
g=

Tr
u

e,
 r

an
d

o
m

_s
ta

te
=4

2
)

8
3

.3
3

7
7

.7
8

7
7

.7
8

8
5

.7
1

7
0

.5
9

7
9

.0
4

8
8

.6
2

7
3

.8
1

1
4

.8
1

5
6

.2
5

7
5

.0
0

6
4

.2
9

V
al

id
at

io
n

VII

A. Appendix A

Table A.7: Level 3 - UI design category
C

V
1

C
V

2
C

V
3

C
V

4
C

V
5

C
V

Tr

ai
n

in
g

Te
st

in
g

O
ve

rf
it

ti
n

g

C
la

ss
if

ic
at

io
n

 M
o

d
el

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

av
e

ra
ge

ac
cu

ra
cy

 [
%

]

re
ca

ll

[%
]

re
ca

ll

[%
]

P
re

ci
si

o
n

[%
]

R
e

ca
ll

[%
]

F1

B
er

n
o

u
lli

N
B

(a
lp

h
a=

3
, b

in
ar

iz
e=

0
,

fi
t_

p
ri

o
r=

Tr
u

e,
 c

la
ss

_p
ri

o
r=

N
o

n
e)

8
0

.0
0

8
6

.6
7

7
3

.3
3

8
0

.0
0

8
5

.7
1

8
1

.1
4

8
1

.6
3

7
0

.5
9

1
1

.0
4

7
6

.5
6

8
7

.5
0

8
1

.6
7

Ex
tr

aT
re

es
C

la
ss

if
ie

r(
m

ax
_f

ea
tu

re
s=

5
0

,

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',m
in

_i
m

p
u

ri
ty

_
s

p
lit

=
0

.5
, r

an
d

o
m

_s
ta

te
=4

2
)

2
0

.0
0

2
0

.0
0

2
0

.0
0

2
0

.0
0

7
8

.5
7

3
1

.7
1

8
1

.6
3

7
0

.5
9

1
1

.0
4

7
6

.5
6

8
7

.5
0

8
1

.6
7

K
N

ei
gh

b
o

rs
C

la
ss

if
ie

r(
n

_n
ei

gh
b

o
rs

=5
)

8
0

.0
0

8
6

.6
7

7
3

.3
3

8
0

.0
0

8
5

.7
1

8
1

.1
4

8
1

.6
3

7
0

.5
9

1
1

.0
4

7
6

.5
6

8
7

.5
0

8
1

.6
7

Li
n

ea
rS

V
C

(C
=0

.0
0

0
1

,

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',

lo
ss

='
sq

u
ar

ed
_h

in
ge

',
p

en
al

ty
='

l2
',

ra
n

d
o

m
_s

ta
te

=4
2

)
5

3
.3

3
6

0
.0

0
6

0
.0

0
8

6
.6

7
4

2
.8

6
6

0
.5

7
8

7
.7

6
7

0
.5

9
1

7
.1

7
8

9
.2

9
2

5
.0

0
3

9
.0

6

Lo
gi

st
ic

R
eg

re
ss

io
n

(n
_j

o
b

s=
1

,

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',
C

=
0

.0
0

1
,

p
en

al
ty

='
l2

')
6

6
.6

7
6

6
.6

7
5

3
.3

3
9

3
.3

3
4

2
.8

6
6

4
.5

7
9

5
.9

2
7

0
.5

9
2

5
.3

3
8

9
.2

9
2

5
.0

0
3

9
.0

6

N
ea

re
st

C
en

tr
o

id
()

8
0

.0
0

8
6

.6
7

7
3

.3
3

8
0

.0
0

7
8

.5
7

7
9

.7
1

1
0

0
.0

0
7

0
.5

9
2

9
.4

1
7

5
.0

0
7

5
.0

0
7

5
.0

0

R
an

d
o

m
Fo

re
st

C
la

ss
if

ie
r(

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',m
in

_i
m

p
u

ri
ty

_
sp

lit
=1

,

m
ax

_d
ep

th
=2

, r
an

d
o

m
_s

ta
te

=4
2

)
8

0
.0

0
7

3
.3

3
6

6
.6

7
8

0
.0

0
7

1
.4

3
7

4
.2

9
9

1
.8

4
7

0
.5

9
2

1
.2

5
7

6
.5

6
8

7
.5

0
8

1
.6

7
SG

D
C

la
ss

if
ie

r(
al

p
h

a=
1

0
, l

o
ss

="
lo

g"
,

p
en

al
ty

="
l2

",
 c

la
ss

_w
e

ig
h

t=
'b

al
an

ce
d

',

n
_i

te
r_

n
o

_c
h

an
ge

=
3

,e
ar

ly
_

st
o

p
p

in
g=

Tr
u

e,
 r

an
d

o
m

_s
ta

te
=4

2
)

8
0

.0
0

8
6

.6
7

7
3

.3
3

8
0

.0
0

2
1

.4
3

6
8

.2
9

9
3

.8
8

7
0

.5
9

2
3

.2
9

8
9

.5
8

3
7

.5
0

5
2

.8
7

V
al

id
at

io
n

VIII

A. Appendix A

Table A.8: Level 3 - quality assurance category
C

V
1

C
V

2
C

V
3

C
V

4
C

V
5

C
V

Tr

ai
n

in
g

Te
st

in
g

O
ve

rf
it

ti
n

g

C
la

ss
if

ic
at

io
n

 M
o

d
el

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

av
e

ra
ge

ac
cu

ra
cy

 [
%

]

re
ca

ll

[%
]

re
ca

ll

[%
]

P
re

ci
si

o
n

[%
]

R
e

ca
ll

[%
]

F1

B
er

n
o

u
lli

N
B

(a
lp

h
a=

2
, b

in
ar

iz
e=

0
,

fi
t_

p
ri

o
r=

Tr
u

e,
 c

la
ss

_p
ri

o
r=

N
o

n
e)

7

3
.6

8
7

3
.6

8
7

2
.2

2
7

6
.4

7
7

6
.4

7
7

4
.5

1
7

7
.2

7
7

3
.9

1
3

.3
6

1
0

0
.0

0
1

0
0

.0
0

1
0

0
.0

0

Ex
tr

aT
re

es
C

la
ss

if
ie

r(
m

ax
_f

ea
tu

re
s=

5
0

,

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',m
in

_i
m

p
u

ri
ty

_
s

p
lit

=
0

.5
, r

an
d

o
m

_s
ta

te
=4

2
)

8
4

.2
1

7
8

.9
5

7
7

.7
8

8
2

.3
5

9
4

.1
2

8
3

.4
8

8
3

.3
3

7
3

.9
1

9
.4

2
1

0
0

.0
0

1
0

0
.0

0
1

0
0

.0
0

K
N

ei
gh

b
o

rs
C

la
ss

if
ie

r(
n

_n
ei

gh
b

o
rs

=2
0

)
7

4
.5

1
7

3
.6

8
7

2
.2

2
7

6
.4

7
7

6
.4

7
7

4
.5

1
7

4
.2

4
7

3
.9

1
0

.3
3

1
0

0
.0

0
1

0
0

.0
0

1
0

0
.0

0

Li
n

ea
rS

V
C

(C
=0

.1
,

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',
 l

o
ss

='
h

in
ge

',

p
en

al
ty

='
l2

',
ra

n
d

o
m

_s
ta

te
=4

2
)

7
3

.6
8

7
3

.6
8

7
2

.2
2

7
6

.4
7

7
6

.4
7

7
4

.5
1

7
4

.2
4

7
3

.9
1

0
.3

3
1

0
0

.0
0

1
0

0
.0

0
1

0
0

.0
0

Lo
gi

st
ic

R
eg

re
ss

io
n

(n
_j

o
b

s=
1

,

m
u

lt
i_

cl
as

s=
'm

u
lt

in
o

m
ia

l',

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',
so

lv
e

r=
'lb

fg
s'

,

C
=0

.0
0

0
1

, p
en

al
ty

='
l2

')
5

7
.8

9
6

3
.1

6
5

5
.5

6
5

8
.8

2
7

0
.5

9
6

1
.2

0
8

7
.8

7
7

3
.9

1
1

3
.9

6
1

0
0

.0
0

1
0

0
.0

0
1

0
0

.0
0

N
ea

re
st

C
en

tr
o

id
()

6
8

.4
2

7
3

.6
8

8
3

.3
3

8
2

.3
5

8
2

.3
5

7
8

.0
3

1
0

0
.0

0
7

3
.9

1
2

6
.0

9
1

0
0

.0
0

1
0

0
.0

0
1

0
0

.0
0

R
an

d
o

m
Fo

re
st

C
la

ss
if

ie
r(

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',7
3

,6
8

 m
in

_i
m

p
u

ri
ty

_
sp

lit
=0

,

m
ax

_d
ep

th
=2

, r
an

d
o

m
_s

ta
te

=4
2

)
7

3
.6

8
8

9
.4

7
6

6
.6

7
7

0
.5

9
8

2
.3

5
7

6
.5

5
8

9
.3

9
7

3
.9

0
1

5
.4

9
1

0
0

.0
0

1
0

0
.0

0
1

0
0

.0
0

SG
D

C
la

ss
if

ie
r(

al
p

h
a=

0
.1

, l
o

ss
="

lo
g"

,

p
en

al
ty

="
l2

",
 c

la
ss

_w
e

ig
h

t=
'b

al
an

ce
d

',

n
_i

te
r_

n
o

_c
h

an
ge

=
3

,e
ar

ly
_

st
o

p
p

in
g=

Tr
u

e,
 r

an
d

o
m

_s
ta

te
=4

2
)

7
3

.6
8

7
3

.6
8

7
2

.2
2

7
6

.4
7

7
6

.4
7

7
4

.5
0

8
9

.3
9

7
3

.1
3

1
6

.2
6

1
0

0
.0

0
1

0
0

.0
0

1
0

0
.0

0

V
al

id
at

io
n

IX

A. Appendix A

Table A.9: Level 4 - structure implementation category
C

V
1

C
V

2
C

V
3

C
V

4
C

V
5

C
V

Tr

ai
n

in
g

Te
st

in
g

O
ve

rf
it

ti
n

g

C
la

ss
if

ic
at

io
n

 M
o

d
el

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

av
e

ra
ge

ac
cu

ra
cy

 [
%

]

re
ca

ll

[%
]

re
ca

ll

[%
]

P
re

ci
si

o
n

[%
]

R
e

ca
ll

[%
]

F1

B
er

n
o

u
lli

N
B

(a
lp

h
a=

3
, b

in
ar

iz
e=

0
,

fi
t_

p
ri

o
r=

Tr
u

e,
 c

la
ss

_p
ri

o
r=

N
o

n
e)

6
7

.8
6

6
7

.8
6

7
1

.4
3

6
7

.8
6

6
7

.8
6

6
8

.5
7

8
1

.4
4

7
5

.7
5

5
.6

9
3

6
.0

0
6

0
.0

0
4

5
.0

0

Ex
tr

aT
re

es
C

la
ss

if
ie

r(
m

ax
_f

ea
tu

re
s=

5
0

,

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',m
in

_i
m

p
u

ri
ty

_
s

p
lit

=
0

.4
, r

an
d

o
m

_s
ta

te
=4

2
)

9
2

.8
6

8
5

.7
1

9
6

.4
3

9
6

.4
3

8
9

.2
9

9
2

.1
4

9
5

.8
8

7
5

.7
5

2
0

.1
3

8
0

.0
0

8
0

.0
0

8
0

.0
0

K
N

ei
gh

b
o

rs
C

la
ss

if
ie

r(
n

_n
ei

gh
b

o
rs

=2
5

)
9

2
.8

6
9

2
.8

6
9

2
.8

6
8

2
.1

4
8

2
.1

4
8

8
.5

7
8

7
.6

3
7

5
.7

5
1

1
.8

8
5

7
.5

0
6

0
.0

0
5

8
.7

2

Li
n

ea
rS

V
C

(C
=0

.0
0

0
1

,

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',

lo
ss

='
sq

u
ar

ed
_h

in
ge

',
p

en
al

ty
='

l2
',

ra
n

d
o

m
_s

ta
te

=4
2

)
9

6
.4

3
7

5
.0

0
8

5
.7

1
1

0
0

.0
0

7
8

.5
7

8
7

.1
4

9
7

.9
4

7
5

.7
5

2
2

.1
9

8
2

.8
5

7
0

.0
0

7
5

.8
8

Lo
gi

st
ic

R
eg

re
ss

io
n

(n
_j

o
b

s=
1

,

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',
C

=
1

,

p
en

al
ty

='
l1

')
8

2
.1

4
7

5
.0

0
8

2
.1

4
8

9
.2

9
7

8
.5

7
8

1
.4

3
8

3
.5

1
7

5
.7

5
7

.7
6

6
9

.5
2

7
0

.0
0

6
9

.7
6

N
ea

re
st

C
en

tr
o

id
()

1
0

0
.0

0
1

0
0

.0
0

9
2

.8
6

9
6

.4
3

1
0

0
.0

0
8

2
.1

4
1

0
0

.0
0

7
5

.7
5

2
4

.2
5

8
6

.6
7

8
0

.0
0

8
3

.2
0

R
an

d
o

m
Fo

re
st

C
la

ss
if

ie
r(

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',m
in

_i
m

p
u

ri
ty

_
sp

lit
=0

,

m
ax

_d
ep

th
=2

, r
an

d
o

m
_s

ta
te

=4
2

)
7

8
.5

7
7

8
.5

7
8

5
.7

1
7

5
.0

0
8

9
.2

9
8

1
.4

3
9

0
.7

2
7

5
.7

5
1

4
.9

7
9

1
.9

9
9

0
.0

0
9

0
.9

8
SG

D
C

la
ss

if
ie

r(
al

p
h

a=
0

.1
, l

o
ss

="
lo

g"
,

p
en

al
ty

="
l2

",

n
_i

te
r_

n
o

_c
h

an
ge

=
3

,e
ar

ly
_

st
o

p
p

in
g=

Tr
u

e,
 r

an
d

o
m

_s
ta

te
=4

2
)

6
7

.8
6

6
7

.8
6

6
7

.8
6

6
7

.8
6

6
7

.8
6

6
7

.8
6

8
1

.4
4

7
5

.7
5

5
.6

9
3

6
.0

0
6

0
.0

0
4

5
.0

0

V
al

id
at

io
n

X

A. Appendix A

Table A.10: Level 4 - behaviour implementation category
C

V
1

C
V

2
C

V
3

C
V

4
C

V
5

C
V

Tr

ai
n

in
g

Te
st

in
g

O
ve

rf
it

ti
n

g

C
la

ss
if

ic
at

io
n

 M
o

d
el

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

ac
cu

ra
cy

[%
]

av
e

ra
ge

ac
cu

ra
cy

 [
%

]

re
ca

ll

[%
]

re
ca

ll

[%
]

P
re

ci
si

o
n

[%
]

R
e

ca
ll

[%
]

F1

B
er

n
o

u
lli

N
B

(a
lp

h
a=

1
0

, b
in

ar
iz

e=
0

,

fi
t_

p
ri

o
r=

Tr
u

e,
 c

la
ss

_p
ri

o
r=

N
o

n
e)

6

4
.2

9
5

0
.0

0
5

8
.3

3
5

0
.0

0
7

2
.7

2
5

9
.0

7
9

3
.0

2
5

3
.3

3
3

9
.6

9
1

0
0

.0
0

3
3

.3
3

5
0

.0
0

Ex
tr

aT
re

es
C

la
ss

if
ie

r(
m

ax
_f

ea
tu

re
s=

2
0

,

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',m
in

_i
m

p
u

ri
ty

_
s

p
lit

=
0

.6
, r

an
d

o
m

_s
ta

te
=4

2
)

5
0

.0
0

4
1

.6
7

5
0

.0
0

4
1

.6
7

6
3

.6
3

4
9

.3
9

7
4

.4
2

4
6

.6
7

2
7

.7
5

1
0

0
.0

0
1

0
0

.0
0

1
0

0
.0

0

K
N

ei
gh

b
o

rs
C

la
ss

if
ie

r(
n

_n
ei

gh
b

o
rs

=2
0

)
7

1
.4

3
4

1
.6

7
7

5
.0

0
3

3
.3

3
6

3
.6

3
5

7
.0

1
6

5
.1

1
5

3
.3

3
1

1
.7

8
1

0
0

.0
0

1
0

0
.0

0
1

0
0

.0
0

Li
n

ea
rS

V
C

(C
=0

.0
0

0
1

,

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',

lo
ss

='
sq

u
ar

ed
_h

in
ge

',
p

en
al

ty
='

l2
',

ra
n

d
o

m
_s

ta
te

=4
2

)
7

1
.4

3
5

8
.3

3
5

8
.3

3
5

0
.0

0
6

3
.6

3
6

0
.3

5
9

7
.6

7
4

6
.6

7
5

1
.0

0
1

0
0

.0
0

3
3

.3
3

5
0

.0
0

Lo
gi

st
ic

R
eg

re
ss

io
n

(n
_j

o
b

s=
1

,

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',
C

=
1

,

p
en

al
ty

='
l1

')
4

2
.8

6
5

0
.0

0
5

0
.0

0
5

0
.0

0
5

4
.5

4
4

9
.4

8
5

1
.1

6
4

6
.6

7
4

.4
9

1
0

0
.0

0
1

0
0

.0
0

1
0

0
.0

0

N
ea

re
st

C
en

tr
o

id
()

7
8

.5
7

7
5

.0
0

7
5

.0
0

5
8

.3
3

6
3

.6
3

7
0

.1
1

1
0

0
.0

0
4

6
.6

7
5

3
.3

3
1

0
0

.0
0

1
0

0
.0

0
1

0
0

.0
0

R
an

d
o

m
Fo

re
st

C
la

ss
if

ie
r(

cl
as

s_
w

ei
gh

t=
'b

al
an

ce
d

',m
in

_i
m

p
u

ri
ty

_
sp

lit
=0

,

m
ax

_d
ep

th
=2

, r
an

d
o

m
_s

ta
te

=4
2

)
3

5
.7

1
5

0
.0

0
7

5
.0

0
5

8
.3

3
5

4
.5

4
5

4
.7

2
8

1
.4

0
5

3
.3

3
2

8
.0

7
0

.0
0

0
.0

0
0

.0
0

SG
D

C
la

ss
if

ie
r(

al
p

h
a=

0
.1

, l
o

ss
="

lo
g"

,

p
en

al
ty

="
l2

",

n
_i

te
r_

n
o

_c
h

an
ge

=
3

,e
ar

ly
_

st
o

p
p

in
g=

Tr
u

e,
 r

an
d

o
m

_s
ta

te
=4

2
)

-
-

-
-

-
-

-
-

-
-

-
-

V
al

id
at

io
n

XI

A. Appendix A

XII

B
Appendix B

The following figure shows the results from the feature, functional requirement and
use case clustering, using the K-means algorithm. Datapoints that were clustered
differently when compared to manual labelling, were marked with red borders.

Figure B.1: Clustering of feature, functional requirement and use case sentences,
using the K-means model

XIII

B. Appendix B

XIV

C
Appendix C

This appendix shows test that were made to check the normality and variance of the
usability task times. Figure C.1 shows the normality results for the documentation
task times and figure C.2 shows the normality results for the SDS task times. Figure
C.3 then shows that results from the F-test, which was used to check whether the
variance of the two samples was equal.

Figure C.1: Shapiro-Wilk and QQ-plot for documentation task times

XV

C. Appendix C

Figure C.2: Shapiro-Wilk and QQ-plot for SDS task times

XVI

C. Appendix C

Figure C.3: F-test that checks for equal variance in the samples

XVII

C. Appendix C

XVIII

D
Appendix D

This appendix lists all elements of the usability tests that were carried out. The first
section shows the questionnaire that all participants answered before attending their
usability test session. The second section then shows all elements of the usability
testing session.

D.1 Personal experience questionnaire
Question 1 What is your highest level of education and in what field?

Question 2 Please indicate how many years of experience you have as a software
developer?

Question 3 Please indicate your level of experience within web development?

� None
� Low
� Average
� High

Question 4 Please indicate which ones of the items below best describes your
experience with Requirement analysis.

� Never worked with it
� Know about it but have never used it to perform development tasks
� I have used requirement analysis documents to perform development tasks
� I have conducted a requirement analysis

Question 5 Please indicate which ones of the items below best describes your
experience with software architecture.

� Never worked with it
� Know about it but have never used it to perform development tasks
� I have used software architecture documents to perform development tasks
� I have designed software architecture

XIX

D. Appendix D

D.2 Usability test session

D.2.1 Introduction
Welcome to this system usability session and thank you again for participating in
these usability tests.

The purpose of this session is to evaluate the system we created, which is
called the Software Documentation Supporter (SDS), and is supposed to help users
get desired information from long software documentation texts, without having to
perform the tedious task of reading the whole documentation.

This session should take about 60 minutes and is divided into three parts.

1. A 10 minute session where you watch a video tutorial that should teach you
the basics of the system and then play around in the system for a few minutes
to get a better feeling of how it works.

2. A 40 minute session where you solve 4 tasks using the SDS and then solve
4 similar tasks using only the written documentation (about 5 minutes per
task).

3. Answer a short user experience questionnaire.

What we are mostly interested in today is to observe how you use the tool to solve
simple tasks about the system discussed in the documentation text.

Keep in mind that we don‘t expect you to gain an in-depth understanding of
the system discussed in the documentation, and there are no right or wrong answers
to the questions we are asking. Answer the questions to the best of your abilities,
without focusing too much on finding the perfect answers.

Also keep in mind that in the SDS we are utilizing automatic methods such
as machine learning. The accuracy of these results are never 100%, so use it to help
you, but don‘t trust it blindly and let it replace your own thinking.

While solving the tasks, we can answer questions about the SDS or if you
need clarification regarding the questions asked. If you are having troubles, we
can also give you tips on how to use the system or where you might find the answers.

Finally, one note about the documentation text. There are a few pages from
the original documentation that are not included in the version you have, for
example, the introduction chapter. These pages did not contain any information
relevant for solving the tasks and hardly even any information relevant to the
implementation of the system. The information on these pages were not used in
the implementation of the SDS and were therefore also removed from the PDF file
that you will review here today.

If something is unclear during the process, don‘t hesitate to ask.

XX

D. Appendix D

D.2.2 Tasks to solve using documentation text

Solve the following four tasks using the Snowflake documentation

Use the following new user story to answer question 1 and 2

User story
Name: Sort by date
Description: As a customer I want to be able to sort products based on how new
they are, so I can see first the products that are new.

Question 1
Looking at the features that exist in the system:

• What existing feature is most relevant/suitable to include the new “Sort by
date” functionality?

• Explain briefly why you chose this feature.

Question 2
Considering the feature display products (alternative term: browse products):

• Are there any additions or changes to use cases, requirements and/or user
stories related to this feature that you think should be made because of the
new “Sort by date” functionality? If so, which are affected? Please elaborate.

Question 3
What functionalities can the user apply to his cart?
Can you find source code related to these functionalities?

Question 4
What programming languages are used in the system implementation?

XXI

D. Appendix D

D.2.3 Tasks to solve using the Software Documentation
Supporter

Solve the following four tasks using the Software Documentation Sup-
porter (SDS)

Use the following new user story to answer question 1 and 2

User story
Name: Shipping address same as billing address
Description: As a customer, I want to be able to save the information that my
shipping address is the same as my billing address, so that I don‘t always have to
fill it in twice when I am ordering products.

Question 1
Looking at the features that exist in the system:

• What existing feature is the most relevant/suitable to include the new “Ship-
ping address same as billing address” functionality?

• Explain briefly why you chose this feature.

Question 2
Considering the feature user management (alternative terms: account management
or manage account):

• Are there any additions or changes to use cases or requirements related to
this feature that you think should be made because of the new “Shipping ad-
dress same as billing address” functionality? If so, which are affected? Please
elaborate.

Question 3
How are products sorted on the home page?
Can you find source code of the sorting implementation?

Question 4
What architecture patterns are used in the system?

XXII

D. Appendix D

D.2.4 User experience interview
Please answer the following questionnaire (System Usability Scale) according to the
instructions given. Then fill in the blanks for the four questions below.

Please note that both positive and negative feedback on the system is valu-
able, so do your best to give your honest opinion.

System Usability Scale
Instructions: For each of the following statements, mark one box that best
describes your reactions to the website today.

Strongly
disagree

Strongly
agree

I think that I would like to
use this website frequently. � � � � �

I found this website unnec-
essarily complex. � � � � �

I thought this website was
easy to use. � � � � �

I think that I would need
assistance to be able to use
this website.

� � � � �

I found the various func-
tions in this website were
well integrated.

� � � � �

I found the various func-
tions in this website were
well integrated.

� � � � �

I would imagine that most
people would learn to use
this website very quickly.

� � � � �

I found this website very
cumbersome/awkward to
use.

� � � � �

I felt very confident using
this website. � � � � �

I needed to learn a lot of
things before I could get
going with this website.

� � � � �

* This questionnaire is based on the System Usability Scale (SUS), which was developed by John Brooke while

working at Digital Equipment Corporation. © Digital Equipment Corporation, 1986.

XXIII

D. Appendix D

1. In comparison to using normal documentation, I like...

2. If I was to use this tool in practice, I would like these changes or additions...

3. When using the system, I felt ...

4. I additionally have the following comments about the website...

XXIV

E
Appendix E

This appendix shows a summary of the usability testing participants’ experience.

Figure E.1: Results from the personal experience questionnaire

XXV

E. Appendix E

Figure E.2: A bar chart showing the participants’ experience with web develop-
ment

Figure E.3: A bar chart showing the participants’ experience with requirement
analysis

XXVI

E. Appendix E

Figure E.4: A bar chart showing the participants’ experience with software archi-
tecture

XXVII

E. Appendix E

XXVIII

F
Appendix F

This appendix shows the results from the user experience interview. The first section
shows results from the SUS questionnaire and the second section shows all comments
received through the open-ended questions.

F.1 Results from SUS questionnaire

Figure F.1: Results from the System Usability Scale questionnaire

F.2 Results from open-ended questions

XXIX

F. Appendix F

Figure F.2: A list of comments about what participants liked about the SDS

XXX

F. Appendix F

Figure F.3: A list of comments regarding how participants felt when using the
SDS

XXXI

F. Appendix F

Figure F.4: A list of improvement suggestions from the participants

XXXII

F. Appendix F

Figure F.5: A list of other comments received from the participants

XXXIII

F. Appendix F

XXXIV

G
Appendix G

This appendix lists all pointers given in the usability tests.

Figure G.1: Pointers given during usability testing

XXXV

	List of Figures
	List of Tables
	Introduction
	Current practice
	Future vision of software documentation
	Purpose of the study
	Problem statement
	Scope
	Approach
	Extracting knowledge
	Producing answers to user questions

	Background
	Software Documentation
	Related Work
	Similar Studies
	SEC
	Acquiring Architecture Knowledge for Technology Design Decisions
	A systematic Mapping Study on Text Analysis Techniques in Software Architecture

	Ground work
	OD3
	The Task Phrase Extractor
	The Witt database

	Methods
	Research method
	Data collection
	Software knowledge categories and data annotation
	Classifying sentences into software knowledge categories
	Identifying relations between sentences
	Clustering
	Extracting and connecting sentences' task phrases

	Identifying technology concepts

	User questions and responses
	Creating the Software Documentation Supporter
	System evaluation
	Participants
	Usability test
	User experience interview
	Evaluation sessions

	Design and Implementation
	Software knowledge categories and their structure
	Automatically extracting software knowledge
	Category Classification
	Identifying sentence relations
	Retrieving technology concepts

	The questions of the SDS
	System demonstration
	Q1: What functionalities exist in the system?
	Q2: What functionalities does this feature provide?
	Q3: How is this functionality implemented?
	Q4: What was the development process related to this functionality?
	Q5: What was the development process related to this non-functional requirement?
	Q6: What architecture patterns are used in the system?
	Q7: What programming languages are used in the system?
	Q8: How are the architecture patterns in the system implemented?

	Results
	Classification results
	Clustering results
	Results from system evaluation
	Task times
	User experience
	Results from System Usability Questionnaire
	Results from open-ended questions

	Discussion
	Categories of software knowledge
	Using machine learning and natural language processing to identify software knowledge
	Usability tests
	User experience
	Threats to validity
	Internal Validity
	External Validity
	Construct Validity

	Conclusion
	Bibliography
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Personal experience questionnaire
	Usability test session
	Introduction
	Tasks to solve using documentation text
	Tasks to solve using the Software Documentation Supporter
	User experience interview

	Appendix E
	Appendix F
	Results from SUS questionnaire
	Results from open-ended questions

	Appendix G

