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LIDAR SLAM Simultaneous Localization and Mapping
for Vehicle Localization using LIDAR Sensors
ROBIN LINDHOLM
CARL-JOHAN PÅLSSON

Department of Signals and Systems
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Abstract
The vehicle industry is developing increasingly advanced driver assistance systems,
making progress towards a fully self-driving vehicle. Potential benefits include in-
creased safety, lower fuel consumption and higher productivity. To have an effective
control system, a reliable position estimate and a map of the environment are crucial.

A dilemma in robotics is that in order to construct a map, an accurate robot
position estimation is necessary, but to know the robot’s position a map is required.
Simultaneous Localization and Mapping (SLAM) is the problem of constructing
a map of an unknown environment while simultaneously performing localization
within the map.

This thesis describes an implementation of the GraphSLAM algorithm using
LIDAR sensors for perception of the environment. The algorithm includes both a
robust front-end for graph construction and a robust back-end for graph optimiza-
tion. A feature-based registration algorithm is implemented to detect loop closures.

The algorithm was tested on public datasets and a proprietary dataset with good
results. Different types of maps were generated including compact maps designed
for vehicle localization. A separate algorithm based on the particle filter was im-
plemented for localization within the generated maps. The algorithm was able to
determine vehicle position with sub-meter level accuracy. Several sources of errors
were identified and suggestions for future improvements were proposed.

Keywords: SLAM, GraphSLAM, Localization, LIDAR, Features, Loop Closure,
Robust.
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1
Introduction

The vehicle industry is adding more and more advanced driver assistance systems
making progress towards a fully self-driving vehicle. The potential benefits of au-
tonomous vehicles are large and numerous. Each year about 1.2 million people are
killed in road traffic accidents, of which 90% are caused by human error [1]. Ad-
vanced control algorithms can reduce fuel consumption by 4-10% by accelerating
and decelerating more smoothly than a human driver and significantly decrease the
cost of congestion [2]. By having a computer in control of the vehicle, the driver is
able to do other productive or enjoyable activities such as working, reading, watch-
ing a movie or even sleeping during the trip. To have an effective control system, a
reliable position estimate and a map of the environment are crucial.

A dilemma in robotics is that in order to construct a map, accurate robot po-
sition estimation is necessary, but to know the robot’s position a map is required.
Similar as many other catch-22 problems one solution is to solve both problems at
the same time. Simultaneous Localization and Mapping (SLAM) is the process of
updating a map of an unknown environment while keeping track of the position of
the vehicle. SLAM has been applied in self-driving cars, unmanned aerial and un-
derwater vehicles, planetary rovers, domestic robots and even within human bodies.
[3]

One environment sensing technology, commonly used for obstacle detection, is
Light Detection and Ranging (LIDAR), which estimates the distance to an object
from the time delay between a light pulse and the detection of the Reflection. By
moving the ranging sensor during the scan a point cloud representing the environ-
ment is generated. These point clouds can be used for place recognition and the
motion estimation needed to solve the SLAM problem.

1.1 Objective

The aim of this project is to examine the available algorithms for solving the SLAM
problem and find which ones are suitable for LIDAR sensor data. Challenges for a
full scale commercial implementation are investigated by implementing a complete
solution. It is the goal that the results will be useful for Volvo Group, Volvo Cars
and other parties in deciding which algorithms to develop further.
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1. Introduction

1.2 Scope
This project will examining available methods and focus on implementing a complete
SLAM algorithm. Only LIDAR based sensors will be examined, other vision sensors
such as mono- and stereo cameras will not be examined. A real time solution for
embedded controllers is not attempted and while execution is analyzed and tried to
be minimized, the project is not limited to a real time solution.

1.3 Work Division
Most of the work in this report was done in collaboration of both the authors of this
thesis and thus responsibility was mostly equally shared. For example the Graph-
SLAM main algorithm, the Front-End, the cartography and the localization was
done by both authors working side by side. Carl-Johan had the major responsibility
for the Back-End and the pre-processing while Robin had the major responsibility
for the feature based registration and the robust loop closure. Carl-Johan was re-
sponsible for the C++ implementation of GICP while Robin were responsible for the
two Matlab implementations of ICP. The rest of the work(literature search, report
writing, testing, evaluation etc) was not divided, but performed in collaboration
between the two authors.

1.4 Outline
In chapter 1 the problem is introduced and the objective of the thesis is defined.
Chapter 2 gives an outline of how the project was performed. The following two
chapters gives first the fundamental background theory and later more specific the-
ory for the SLAM problem. This division is a bit vague, but the intent is that by
moving out some of the more general theory outside the SLAM theory it will make
the SLAM theory more readable. Chapter 5 introduces the datasets and the sensors
used in the datasets. In chapter 6 the implementation is presented, with elaborations
about the choices made in the implementation. Chapter 7 presents some relevant
results from the implementation. The chapter is complemented by chapter 8 where
the results are evaluated and analyzed and limitations are investigated. In chapter 9
future work for further improvement and some interesting challenges found during
the project is presented.

2



2
Methods

In this chapter we present a brief description of the method used in the project.

2.1 Literature Study

To acquire relevant knowledge about the problem a literature study was done.
S.Thrun [4] presents an extensive overview of the SLAM problem, which was used fre-
quently during the project. The lectures from the course Robot Mapping at Freiburg
University were watched and the exercise material was performed which included im-
plementing EKF-SLAM, FastSLAM and GraphSLAM [5]. As challenges were found
during the project several different academic articles were read, some of these are
cited in the thesis.

2.2 Study Groups

The project was performed in collaboration with another master thesis group work-
ing SLAM using cameras, one professor, two industrial PhDs acting as supervisors,
three additional PhDs with knowledge about the subject and one engineer from Au-
toliv AB. The group had meetings weekly in the first half of the project where topics
were chosen to be discussed, relevant scientific papers were read and presentations
about the topics were done by one of the master thesis groups. The topics for the
presentations held by this group include

• GraphSLAM

• Registration

• Condition and Marginalization in GraphSLAM

• Robust Front-End

• Feature-Based Registration for Point Clouds

• Robust Back-End

3



2. Methods

2.3 Implementation
To simplify the development of the complete implementation of a SLAM algorithm
for LIDAR sensors, we opted to use datasets with high quality sensors. Public
datasets from Ford Campus Dataset, Kitti Vision Benchmark Dataset and pro-
prietary datasets from Volvo Cars were selected.

We developed a pre-processing Matlab script that converts the data from the
datasets, to an easy to access Matlab format. In this script the different timestamps
from the different sensors were converted to Unix time format and features were
extracted from LIDAR scans. This batch pre-processing turned out to be useful, so
the main algorithm did not have to redo the processing while minor changes were
made to the main algorithm. Especially since the data heavy LIDAR sensors were
used.

A complete implementation of a SLAM algorithm was developed which loops
through the preprocessed data and constructs various different types of maps. Maps
that were produced include large point clouds for the entire observed environment
during the drive, map of a specified region of the drive, maps of features and maps of
features along a predefined path. One point cloud of the entire environment could be
useful for visualization purposes, for path planning or for generating different kinds
of maps. The map of features along a predefined path was tried for localization of a
car based on new LIDAR data and noisy odometry measurements.

4



3
Background Theory

In this chapter, the underlying background theory for this thesis is presented. Most,
if not all, of these topics are very broad and cannot be fully explored within this
work.

3.1 Recursive Bayesian Filtering
Bayes filter is the most general algorithm for calculating posterior distributions [4].
It estimates the posterior distribution bel(xt) over the state xt recursively based on
measurements zt and control inputs ut at time t. Bayes filter assumes the true state
to be an unobserved Markov process and the measurements to be observed states
from a hidden Markov model. Both of these are based on the Markov property; if
it is possible to make predictions for the future based solely on the present state of
the system equally well as if the system’s entire history was known, the future and
past are independent.

Algorithm 1 Bayes Filter
Require: bel(xt−1), ut, zt

1: for all xt do
2: bel(xt) =

∫
p(xt|ut, zt) bel(xt−1) dxt−1

3: bel(xt) = η p(zt|xt) bel(xt)
4: end for
5: return bel(xt)

Bayes filter, presented in Algorithm 1, operates in basically two steps, prediction
and update. In the prediction step, line 2, the previous posterior distribution is
extrapolated to the time of the measurement according to the control input. In the
update step in line 3, the measurement is taken into account to improve the estimate.

3.1.1 Kalman Filter
The Kalman filter is probably the most recognized technique for implementing Bayes
filters [4]. It works in the same manner as the Bayesian filter but with the assumption
of Gaussian distributions. The Kalman filter represents posterior distributions by the
moment parametrization. For each time t, the posterior distribution is represented
by the mean µt and covariance Σt. Three properties are required for the posterior
to be Gaussian:

5



3. Background Theory

1. The state transition probability p(xt|ut, zt) must be linear with added Gaussian
noise:

xt = Atxt−1 +Btut + εt (3.1)
where xt is the state vector at time t and ut is the control vector evaluated
at time t. At and Bt are the linear state transition and control input models
respectively. The random noise ε represents the uncertainty introduced by the
state transition, as a distribution with zero mean and covariance Qt. The mean
of the posterior is given by Atxt−1 +Btut and the covariance by Qt.

p(xt|ut, zt) =

det(2πQt)−
1
2 exp

(
−1

2(xt − Atxt−1 −Btut)>Qt(xt − Atxt−1 −Btut)
)

(3.2)

2. The measurement probability p(zt|xt) must also be linear with added Gaussian
noise:

zt = Ctxt + δt (3.3)
where zt is the measurement vector and Ct the linear measurement model.
δ represents the measurement noise as a distribution with zeros mean and
covariance Rt. Thus the measurement probability is given by

p(zt|xt) = det(2πRt)−
1
2 exp

(
−1

2(zt − Ctxt)>Rt(zt − Ctxt)
)

(3.4)

3. The initial distribution bel(x0) must be normally distributed with mean µ0
and covariance Σ0

bel(x0) = p(x0) = det(2πΣ0)− 1
2 exp

(
−1

2(x0 − µ0)>Σ0(x0 − µ0)
)

(3.5)

The Kalman filter, presented in Algorithm 2, operates in a similar fashion as
the Bayes filter algorithm with prediction and update steps. In lines 1 and 2, the
predicted distribution belt represented by µt and Σt is calculated up to the time of
the measurement by incorporating the control input ut but not the measurement
itself.

Algorithm 2 Kalman Filter
Require: µt−1, Σt−1, ut, zt

1: µt = Atµt−1 +Btut
2: Σt = AtΣt−1A

>
t +Rt

3: Kt = ΣtC
>
t (CtΣtC

>
t +Qt)−1

4: µt = µt +Kt(zt − Ctµt)
5: Σt = (I −KtCt)Σt

6: return µt, Σt

In lines 3 through 5, the measurement is incorporated to estimate the posterior
distribution bel(xt). The variable Kt is the Kalman gain, which specifies to what

6



3. Background Theory

degree the new measurement should be incorporated into the new state estimate. In
line 4, the mean is adjusted in proportion to the Kalman gain and the innovation.
The innovation is the difference between the measurement zt and the expected mea-
surement Ctµt. Finally, the covariance Σt is adjusted due to the information from
the measurement.

3.1.2 Particle Filter
The Particle filter is a nonparametric implementation of the Bayes filter, where
the posterior distribution bel(xt) is estimated by a finite number of parameters
[4]. By representing a distribution by a set of random state samples drawn from
the distribution, a broader space of distributions can be represented than by, for
example, Gaussians. This representation has the advantage that it’s able to model
nonlinear transformations. The samples are referred to as particles, hence the name
particle filter, and are denoted by

Xt =
{
x

[1]
t , x

[2]
t , . . . , x

[M ]
t

}
(3.6)

whereM is the number of particles. Generally the filter will perform better with more
particles but with more particles computational complexity grows. Every particle
x

[m]
t is a hypothesis of the true state at time t. Ideally, a state hypothesis xt should

have a likelihood proportional to the posterior bel(xt) to be included in the set Xt.

x
[m]
t ∼ p(xt|z1:t, u1:t) (3.7)

It follows that the denser a region is populated with particles the more likely it is
for the true state to be within this region.

Algorithm 3 Particle Filter
Require: Xt−1, ut, zt

1: X t = Xt = ∅
2: for m = 1 to M do
3: Sample x[m]

t ∼ p(xt|ut, x[m]
t−1)

4: ω
[m]
t = p(zt|x[m]

t )
5: X t = X t + 〈x[m]

t , ω
[m]
t 〉

6: end for
7: for m = 1 to M do
8: Draw i with probability ∝ ω

[i]
t

9: Add x[i]
t to Xt

10: end for
11: return Xt

The Particle filter does have some similarities with the Kalman filter, namely
the sampling in line 3. This is more or less a prediction step where the control input
is integrated to extrapolate the state to the time of the measurement. In the update
step, the measurement is used to calculate the importance factor, or weight, for each

7



3. Background Theory

particle. This weight is the probability of the measurement zt given the particle x[m]
t ,

as shown in line 4.
In line 7 through 10, in Algorithm 3, the real strength of the Particle filter occurs,

which is the resampling step. Resampling is when a new set of particles Xt is drawn
from the temporary set X t, where the probability of drawing a specific particle is
defined by its importance factor. This changes how the particles are distributed. The
resampling step refocuses the particle set to regions with high posterior probability
as the particles with low importance weights tend to not be included. Inference can
be done by choosing the weighted mean of the distribution, by taking the most likely
particle or by making a histogram of the particles.

3.1.3 Information Canonical Parametrization
Gaussian distributions are usually represented by moments, a mean vector µ and a
covariance matrix Σ [4]. A duality of this representation is the information canonical
parametrization where a Gaussian distribution is represented by an information
vector ξ and an information matrix Ω. These representations are connected through
an inversion of the covariance

Ω = Σ−1

ξ = Σ−1µ
(3.8)

This relation holds in the other direction as well but with the information matrix
inverted. Thus the parametrization of the distribution in the two different domains
are inversions of each other

p(α, β) = N
([
α
β

]
;
[
µα
µβ

]
,

[
Σαα Σαβ

Σβα Σββ

])
︸ ︷︷ ︸

Covariance domain

= N−1
([
α
β

]
;
[
ξα
ξβ

]
,

[
Ωαα Ωαβ

Ωβα Ωββ

])
︸ ︷︷ ︸

Information domain

(3.9)

There are benefits and drawbacks with using either domain. What is cheap in the
covariance domain is expensive in the information domain and vice versa. Usually, a
matrix inversion is considered an expensive operation and avoided wherever possible.

Table 3.1: Marginalization and conditioning in the Covariance and Information
domain

Covariance domain Information domain
Marginalization µ = µα

Σ = Σαα

ξ = ξα − ΩαβΩ−1
ββξβ

Ω = Ωαα − ΩαβΩ−1
ββΩβα

p(α) =
∫
p(α, β)

Conditioning µ′ = µα + ΣαβΣ−1
ββ (β − µβ)

Σ′ = Σαα − ΣααΣ−1
ββΣβα

ξ′ = ξα − Ωαββ

Ω′ = Ωααp(α|β) = p(α,β)
p(β)

As seen in Table 3.1, the covariance domain offers cheap marginalization and
expensive conditioning while the information domain has the opposite pricing. For
some applications different one of these representations will greatly reduce compu-
tational complexity.

8



3. Background Theory

3.2 Projective Geometry

Projective geometry is commonly used in computer graphics, 3D computer vision
and robotics and has some advantages compared to the standard Euclidean geome-
try. For instance, points at infinity can be represented by finite coordinates, trans-
formations can be easily represented as matrices and formulas are often simpler and
more symmetric.

Homogeneous coordinates are used in projective geometry just as Cartesian co-
ordinates are used in Euclidean geometry. By definition, a coordinate x is said to
be homogeneous if x and λx represent the same object for λ 6= 0.

The transition between homogeneous and Cartesian coordinates is quite straight-
forward. A Cartesian coordinate has an equivalent homogeneous coordinate, which
for the 2D case is

x =
[
x
y

]
︸︷︷︸

Cartesian

⇔

uv
w

 =

wxwy
w

 =

xy
1


︸ ︷︷ ︸

Homogeneous

(3.10)

Rigid body transformations in projective geometry can be represented by an
invertible linear mapping on the form

M =
[
R t
0> 1

]
(3.11)

where R is a rotation matrix and t a translation vector.
A projective transform is a linear mapping

xj = Mijxi. (3.12)

where the transformMij map homogeneous coordinate xj from xi. These transforms
can be chained to map over multiple coordinates as

x2 = M12M01x0 (3.13)

where the coordinate x2 has been mapped over x1 from x0.
The inverse of a transformation represent a mapping in the opposite direction.

Therefore, an analytical expression of said inverse can be very beneficial. This ex-
pression can be derived by solving

I = M−1M =
[
A B
C D

] [
R t
0> 1

]
(3.14)

for A,B,C and D. By applying the orthogonality property of the rotation matrix,
the following result is acquired:

M−1 =
[
R> −R>t
0> 1

]
. (3.15)

9



3. Background Theory

A transform can be represented by a vector containing both a coordinate x and
an orientation θ, i.e. a pose. The symbol ./ is introduced to denote the change in
representation:

p./ = M

M./ = p
(3.16)

where
p =

[
x
θ

]
(3.17)

and ./ signify the mapping [
R(θ) t(x)
0> 1

]
./←→

[
x
θ

]
(3.18)

where R and T are the rotation matrix and translation vector respectively. It is
worth noting that poses can be described from several different frames of reference,
e.g. Mij and Moj describe the same pose pj.

3.3 Registration
Registration is the process of calculating the transformation which aligns two sets
of data into one coordinate frame for comparison and integration [6]. Both image
and point set registration algorithms are widely used in many fields to capture
and analyze real world data. For robots and vehicles, registration is often used to
estimate the ego-motion of said robot or vehicle. This is done by calculating the
transformation which best aligns the data from two different samples while subject
to sensor noise.

There exist several methods to estimate the transformations between two 3D
objects, but this thesis has mainly focused on iterative closest point and feature-
based registration. Both methods estimates the rigid body transformation between
two sets of corresponding points. A brief overview of how one can estimate the
rigid body transformation between two corresponding sets of points and both the
algorithms algorithms are presented here.

3.3.1 Estimating Rigid Body Transformations
Finding the rigid body transformation between two sets of corresponding points is
the backbone of registration and is known as the absolute orientation problem. The
problem can be stated as the following. Assume two corresponding point sets {ai}
and {bi}, i = 1 . . . N are related by

ai = Rbi + T + vi (3.19)
where R is a rotation matrix, t a translation vector and vi is a noise vector. The
goal is to find the optimal rotational matrix R∗ and translational vector t∗ which
minimizes the least-squares criterion

Σ2 =
N∑
i=1
‖ai −Rbi − t‖2. (3.20)

10



3. Background Theory

Figure 3.1: Registration of two point clouds viewed from above. The red point
cloud is taken 0.3seconds after the blue point cloud and has been registered to the
blue point cloud using GICP. As can be seen from the picture the walls and cars
line up well while the ground scans around the vehicle do not have corresponding
points, which is reasonable since the vehicle has moved. Scans were from the Volvo
Cars Dataset.

The problem is well studied and many algorithms are available [7]. Singular
Value Decomposition (SVD) is a fast and high performing algorithm often used.
Other approaches include the calculation of the eigensystem while exploiting the
properties of the rotation matrix or using quaternions to represent rotations.

Algorithm 4 Rigid transform estimation using SVD
Require: {ai}, {bi}

1: a = 1
N

∑N
i=1 ai, aci = ai − a

2: b = 1
N

∑N
i=1 bi, bci = bi − b

3: H = ∑N
i=1 bcia

>
ci

4: [U,Λ, V ] = SVD(H)
5: R∗ = V U>

6: t∗ = aci −R∗ bci

The outline of using SVD to estimate rigid body transformations is presented in
Algorithm 4. It assumes that both point sets have the same centroid, i.e. geometric
center. These centroids are calculated in line 1 and 2. This lead to 3.20 being min-
imized when the trace of R∗H is maximized. The rotation matrix which provides
this maximum is calculated in line 5. The translation is the difference between the
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point sets after the rotation.

3.3.2 Iterative Closest Point
Iterative Closest point(ICP) is an algorithm, which minimizes the difference between
two point clouds by iteratively finding correspondences between the two sets of points
[8]. In the algorithm, one cloud, the Target, is fixed while the other cloud, the Source,
is transformed. In each iteration the closest neighbor of each point in the source is
found by using a search algorithm and the rigid body transformation between the
target points and their closest neighbor can be estimated in the same way as in
algorithm 4. The entire target point cloud is then transformed using the rigid body
transformation estimation and a new closest neighbor search is performed. This
process is iterated until convergence, thus the name Iterative Closest Point.

Algorithm 5 Iterative Closest Point
Require:

Point clouds: A = {ai}, B = {bi}
Initial transformation M0

1: M = M0
2: while not converged do
3: for i = 1 to N do
4: ci = FindClosestPointInA(M · bi)
5: if ‖ci −M · bi‖ ≤ dmax then
6: wi = 1
7: else
8: wi = 0
9: end if

10: end for
11: M = argmin

M
{∑iwi‖M · bi − ci‖2}

12: end while
13: return M

In Algorithm 5, the outline of point-to-point ICP is presented. The target A and
source B is of course necessary but the initial transformation M0 is more or less
optional. If no initial transform is known, it is set to identity, which correspond to
no transformation at all. In line 4, the set of target points which are closest to the
source set is found. For some applications it might be beneficial to down-sample the
point clouds before registration. This reduces the necessary computational power at
the expense of accuracy.

To account for the fact that some points will not have any correspondence, a
threshold dmax is used to define the weights in line 5 though 9. This threshold
represents a trade-off between accuracy and convergence in most implementations
of ICP. In line 11 a similar problem to equation 3.20 is expressed which a similar
problem as solved in algorithm 4. This sequence of operations it repeated until
converged or a fixed number of iterations has been reached.

12
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Another popular implementation of ICP is the point-to-plane variant. It improves
the performance by taking advantage of surface normals. Instead of minimizing the
expression in line 11, the point-to-plane algorithm minimizes the error along the
surface normals with

M = argmin
T

{∑
i

wi‖ηi(M · bi − ci)‖
}

(3.21)

where ηi is the surface normal at mi. Point-to-plane is generally more accurate
and robust than the standard point-to-point ICP but requires significantly more
computational power to calculate the surface normals [8, 9]. A further extension
of this is the Generalized ICP (GICP) which improves on both the point-to-point
and point-to-plane frameworks. This is partially done by taking into account the
surface information from both clouds contrary to only one cloud. A derivation of
this implementation can be found in [8].

3.3.3 Feature-Matching
Instead of taking whole point clouds into consideration, a few features can be used
to register said clouds [10]. This greatly reduces the computational complexity of the
problem as well as the amount of information to store. A feature is generally defined
as an "interesting" part of an image or a pattern which differs from its immediate
surrounding. Since the point clouds often do not have complete point-point corre-
spondence, which can happen when the point clouds only partially overlap, a lot of
effort has been made into feature selection and description extraction to improve
correspondence selection.

Two sets of features from two different scans are matched and a set of matching
feature pairs is selected. For each matching pair, a homogeneous transformation can
be calculated through the least-squares formulation in 3.20. Usually, there are some
incorrect matches and resulting transformations which have to be removed with an
outlier detection algorithm e.g. RANSAC.

A feature is often generated in basically two steps, detection and description. In
the detection step, the image is searched for points of interest or keypoints. Corners,
intersections of two or more edges, are generally stable between images and thus often
used as interest points. Popular algorithms for corner detection in images include
the Harris, and Shi-Tomasi corner detection algorithms [11]. While there are much
fewer algorithms for 3D feature detection there has been a number of publications
proposing such algorithms in the last years. Commonly used algorithms for 3D point
clouds include NARF and 3D-SIFT and for 2D LIDAR point clouds the algorithm
FLIRT, which handle occlusion phenomena from ranging data and take advantage
of the scale invariance [12, 13].

In the description step, the areas around the keypoints are described. A good
keypoint descriptor should capture most of the important and distinctive informa-
tion in the region of a keypoint so that the keypoint can be recognized if encountered
in another image. Another important aspect is the computational cost for compar-
ing descriptions. Commonly used descriptors for images include SIFT, SURF and
BRISK [14]. For 2D LIDAR point clouds, FLIRT is a powerful descriptor [12], and
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Figure 3.2: Brisk sampling pattern [14]. The blue circles represent the sampling
locations and the red dashed circles the corresponding standard deviation of the
Gaussian kernel used to smooth the intensity values at the sampling location.

for 3D point clouds there are many popular descriptors such as PFH, FPFH and
SHOT [13].

As the Binary Robust Invariant Scalable Keypoints (BRISK) descriptor was used
in this thesis, a brief presentation of it is provided here. The BRISK descriptor is
composed as a binary string of simple brightness comparison tests around the key-
point in a fixed pattern, Figure 3.2. By identifying the characteristic direction of each
keypoint, rotation invariance is achieved which is key for general robustness. Since
Brisk has a native binary representation it has an order of magnitude faster key-
point extraction and approximately three times faster feature-matching compared
to other popular methods such as SIFT and SURF [14].

3.4 Gauss-Newton Method
The method of least-squares is an approach to the approximate solution of overdeter-
mined systems [15]. These problems are usually formulated to minimize the objective
function

f(x) = 1
2‖r(x)‖2

2 = 1
2

m∑
j=1

r2
j (x) = 1

2

m∑
j=1

(Φ(x; tj)− yj)2 (3.22)

where rj is the residual, i.e. the difference between the predictions φ(x; tj) and the
observed value yj at each tj. One general algorithm to solve these problems is through
the iterative Newton’s method

∇2f(xk) ∆xk = −∇f(xk)
xk+1 = xk + ∆xk

, k = 0, 1, . . . (3.23)
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which converge towards a root of f . Finding the inverse of the Hessian can be very
expensive, especially in higher dimensions. In such cases it is better to solve for the
search direction ∆xk through some linear solver. By collecting all residuals into a
vector, the derivatives of f can be expressed as

∇f(x) =
m∑
j=1

rj(x)∇rj(x) = J(x)>r(x) (3.24)

∇2f(x) =
m∑
j=1
∇rj(x)∇rj(x)> +

m∑
j=1

rj(x)∇2rj(x)

= J(x)>J(x) +
m∑
j=1

rj(x)∇2rj(x). (3.25)

The Gauss-Newton method is a modified Newton’s method where 3.23 is simpli-
fied to

J>k Jk ∆xk = −J>k rk
xk+1 = xk + ∆xk

, k = 0, 1, . . . (3.26)

by neglecting the residual Hessians ∇2rj(x) in 3.25. This lowers the computational
time considerably since only one derivative evaluation is necessary per iteration. It
is even possible to circumvent the matrix multiplication in 3.26 by reforming the
equation into the linear least-squares problem

min
∆x

1
2‖Jk ∆x+ rk‖ (3.27)

which can be solved with linear solvers such as SVD or Cholesky factorization.

3.5 A∗ Algorithm
The A∗ algorithm is a widely used search algorithm in computer science for finding
paths and traversing graphs[16]. It has been proven to find the shortest path in
optimal time under certain well-defined conditions [17]. A∗ improves the time per-
formance of Dijkstra’s algorithm by applying a heuristic. Like all informed search
algorithms, A∗ follows the route that is the most likely to lead towards the goal.
What separates A∗ from other best-first search algorithms is the inclusion of the dis-
tance traveled as a heuristic. This heuristic must be admissible i.e. not overestimate
the distance to the goal. Pseudo code for A∗ is shown in Algorithm 6.

The A∗ algorithm starts with the addition of the initial node start to the open
set of nodes Q. The closed set R and the path is initialized to an empty set. In each
step, the node with the lowest score is moved from the open set to the closed set
while all its neighboring nodes are evaluated. If a neighbor is not already in the open
set or is closer to the goal than the current node it is added to the open set. This
is repeated until the goal node is reached or the open set is empty. If the goal is
reached, the sequence of nodes path from start to goal is returned. Otherwise, false
is returned when the open set becomes empty .
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Algorithm 6 A∗

Require: start, goal
1: Q = start
2: R, path = ∅
3: while Q 6= ∅ do
4: current = min(score(Q))
5: if current = goal then
6: return path = reconstruct_path(came_from)
7: end if
8: Q = Q \ current
9: R = R ∪ current

10: for each neighbor of current do
11: if neighbor ∈ R then
12: continue
13: end if
14: tentative_score = score(current) + distance(current, neighbor)
15: if neighbor 6∈ Q or tentative_score < score(neighbor) then
16: came_from(neighbor) = current
17: if neighbor 6∈ Q then
18: Q = Q ∪ neighbor
19: end if
20: end if
21: end for
22: end while
23: return false
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4
Simultaneous Localization and

Mapping Theory

Simultaneous Localization and Mapping (SLAM) is the process of updating a map
of an unknown environment while keeping track of the position of the vehicle. In
this chapter, theory for the SLAM problem is presented. The three main categories
of algorithms are presented in a chronological order of when they developed.

There are two different cases of the SLAM problem, the online and the full SLAM
problem. In the online SLAM problem, the posteriori distribution of the current pose
pt and map m is estimated

p(pt,m | z1:t, u1:t) (4.1)

where z1:t and u1:t are the measurements and control inputs up to time t respectively.
The full SLAM problem estimates the posterior of the entire trajectory [3]

p(p0:t,m | z1:t, u1:t). (4.2)

4.1 EKFSLAM

Extended Kalman Filter SLAM (EKFSLAM) was the first SLAM algorithm devel-
oped and is still one of the most influential algorithms [4, 5]. It applies the EKF
framework to the online SLAM problem by using maximum likelihood data associ-
ation to find a solution to

p(pt,m | z1:t, u1:t) = η p(zt | pt,m)︸ ︷︷ ︸
Measurement model

∫
p(pt | pt−1, ut)︸ ︷︷ ︸

Motion model

p(pt−1 | z1:t−1, u1:t−1)︸ ︷︷ ︸
Prior distribution

dpt−1,

(4.3)
which is equation 4.1 expanded with the use of Markov assumptions and Bayes’
rule. The algorithm assumes Gaussian noise for both motion and perception. If the
uncertainty of the posterior is large, the linearization can introduce large errors
making the algorithm fail.

Maps in EKFSLAM are feature based and comprised of point landmarks. The
point landmarks are stored in the state vector and thus estimated along with the
pose. Due to computational limitations, the number of points landmarks are usually
kept small. The algorithm work best when these is little ambiguity between land-
marks, e.g. when using artificial landmarks as beacons. This can be feasible for some
environments like factories while long roads are not as viable.
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4. Simultaneous Localization and Mapping Theory

The EKFSLAM algorithm does not scale very well with large maps. The com-
plexity of the algorithm is O(n2) where n is the number of landmarks. With this
complexity the algorithm is computationally intractable for large scale mapping.

4.2 FastSLAM
The FastSLAM algorithm is based on the particle filter approach to the SLAM
problem [4, 18]. Since particle filters suffer from the curse of dimensionality, using
particles to estimate all landmarks would be infeasible. The FastSLAM algorithm
circumvents this curse by factorizing the full SLAM posterior 4.2 into

p(p0:t,m | z1:t, u1:t) = p(p0:t | z1:t, u1:t)
M∏
i=1

p(mi | p0:t, z1:t) (4.4)

which is a product of the robot path posterior and the landmark posterior condi-
tioned on the robot path estimate. The structure of the posterior allows for a version
of particle filters known as Rao-Blackwellized Particle Filter. In these, the particles
represent the posterior over some variables while other probability density functions
represents the other variables.

In FastSLAM, each particle represents a hypothesis of a robot’s path and the
position of the landmarks. Since the landmarks are conditionally independent of
each other given the robot path, the landmarks can be estimated separately. Fast-
SLAM estimates each of these sub problems through a low dimensional EKF. By
using a particle filter for the motion, no linearization is necessary in this step and
nonparametric distributions can be used while the EKF still assumes a Gaussian
distribution for the landmarks positions.

The complexity of FastSLAM is O(M · N) where M is the number of particles
and N is the number of landmarks. By exploiting the fact that particles share
common landmarks, the computational complexity can be reduced to O(M logN)
if implemented well.

FastSLAM2.0 improves on the FastSLAM re-sampling step by taking the mea-
surement into account when re-sampling the particles. This makes the algorithm
perform equally well with less particles.
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Figure 4.1: FastSLAM algorithm in action. The green dots are the particles. Each
particle has its own hypothesis of the robots pose. The red line represents the trajec-
tory of the particle with the highest weighting. The blue ellipsoids are the 1σ-region
of the landmarks depicted with a black cross.

4.3 GraphSLAM

The basic idea behind the GraphSLAM algorithm is to model the posterior as a
graph where poses and landmarks are represented by nodes, and motions and mea-
surements as edges between the nodes [19, 4, 5, 20]. Edges can be viewed as soft
constraints between the nodes. As the motion and measurements are subject to noise
the constraints will be contradictory. The goal of the algorithm is to find the poses
and map which maximizes the full SLAM posterior 4.2, i.e.

[p∗,m∗] = argmax
p,m

p(p0:t,m | z1:t, u1:t). (4.5)

To find the maximum, the posterior is expanded to the recursive form

p(p0:t,m | z1:t, u1:t) =
η p(zt | pt,m) p(pt | pt−1, ut) p(p0:t−1,m | z1:t−1, u1:t−1) (4.6)
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which, when considering all times t, leads to the closed form

p(p0:t,m | z1:t, u1:t) = η p(p0,m0)
∏
t

p(pt | pt−1, ut) p(zt | pt,m)

= η p(p0,m0)
∏
t

[
p(pt | pt−1, ut)

∏
i

p(zit | pt,m)
] (4.7)

where the term p(p0.m0) is the prior over both the initial pose p0 and the map m.
This prior can be factorized into the independent p(p0) and p(m0). Since there is no
prior knowledge about the map, the corresponding prior is placed in the normalizer
η.

The robot’s motion and measurements are assumed to be normally distributed,
and the prior can be expressed as a Gaussian distribution. This correspond to the
expressions

p(pt | pt−1, ut) = η exp
{
−1

2
(
pt − g(pt−1, ut)

)>
Q−1
t

(
pt − g(pt−1, ut)

)}
(4.8)

p(zit | pt,m) = η exp
{
−1

2
(
zit − h(pt−1,mt)

)>
R−1
t

(
zit − h(pt−1,mt)

)}
(4.9)

p(p0) = η exp
{
−1

2p>0 Ω0p0

}
(4.10)

where g is the motion model and h the measurement model. These equations consti-
tute the constraints or errors whose distributions should be maximized. Since only
the exponents are relevant in this regard, the negative logarithm of the posterior

− log p(p0:t,m | z1:t, u1:t)

= const.+ log p(p0) +
∑
t

[
log p(pt | pt−1, ut) +

∑
i

log p(zit | pt,m)
]

(4.11)

is examined. The summation of all the quadratic terms from 4.8-4.10 can be collected
into one term. This lead to the following

[p∗,m∗] = argmax
p,m

p(p0:t,m | z1:t, u1:t)

= argmin
p,m

∑
k

e>k Ωkek
(4.12)

where ek are the errors from constraint k and Ωk the information of said constraint.
The algorithm can be simplified to work without landmarksm. Pose-GraphSLAM

utilizes only poses to make nodes and edges are only made between pose-nodes. This
lead to the chain of poses representing the map instead of landmarks. Since no land-
marks are used, loop closure, the act of recognizing previously visited areas, has to
be managed with the landmark information stored within the nodes. Compared to
using landmarks in the state vector, this leads to a smaller and sparser graph, but
features are not optimized relative to the pose of the scan. By comparing multiple
correspondences s at the same time, the probability of incorrect loop closures is
greatly reduced.

The GraphSLAM algorithm is generally split in two separate problems, the
Front-End which constructs the graph from the measurements and the Back-End
which solves the optimization of the state vector p.

20



4. Simultaneous Localization and Mapping Theory

Raw Sensor Data
Front-End

Process 
Sensor Data

Data Association

Build Graph

Back-End

Optimize Graph

Graph

Figure 4.2: Division of the GraphSLAM algorithm into Front-End and Back-End.
The Front-End reads the sensors data and constructs the graph that the Back-End
optimizes.

4.3.1 Front-End

The Front-End builds the graph of nodes and edges from sensor measurements.
While the robot is moving temporally, edges between poses are created in a chain
between each pose and its previous and succeeding pose. New landmarks are added
as a node with an edge to the pose from which it was first observed. When the robot
sees a previously observed landmark, a new edge is formed between the landmark
and the pose node currently observing the landmark.

In the pose-GraphSLAM algorithm, since no landmarks are stored, loop closures
are formed as constraints between the current pose and a previously observed pose.
Loop closure constraints can be formed when a match has been observed between
two scans from two different poses without direct temporal connection. Since there
is bigger problem of ambiguity for constraints between poses far away from each
other temporally, they are often treated differently.

Figure 4.3: Illustration of a loop closure. When the robot returns to an area it has
previously visited and is able to recognize where it is in the environment relative to
its previous pose.
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The constraints from the temporal chain of the robot’s movements can either
be from odometry sensors, scan- or feature matching, or a combination of multiple
sources. Dead reckoning will generally produce low quality maps, as sensors subject
to noise will drift over time [5]. Loop closures are therefore desirable to improve the
estimation of both the poses and the map. However, doing a correct loop closure
can be hard for many reasons. Objects may move over time and similar looking
environments may be hard to distinguish. For example, indoor environments often
contain walls and corners that appear similar to other walls and corners. It is crucial
to avoid incorrect loop closures since they will greatly affect the optimization of the
graph.

E.Olson [21] proposed to solve the global ambiguity problem by clustering loop
closure hypotheses in local groups, Figure 4.4, and the local ambiguity problem by
finding the most pairwise consistent set of hypotheses.

Figure 4.4: Drawing illustrating two local groups of loop closures. The triangles
are poses, the black line are odometry constraints and the red lines are loop closure
hypotheses.

The main idea of Olson’s algorithm is to form a pairwise consistency matrix A.
Each element Aij is the probability that the hypotheses hi and hj agree. By finding
the shortest path between the hypotheses, a loop can be constructed as seen in
Figure 4.5 and the probability of hypothesis agreement can be estimated with the
information stored in the edges. The shortest path can be found with a graph search
algorithm such as A∗.

For all combinations of hypotheses, an indicator vector v is formed

vi =
{

1 if hi is true
0 if hi is false

(4.13)

where vi tells whether hypothesis hi is true or not. The goal is to find the indicator
vector with the highest average pairwise consistency λ through the relation

λ = v>Av
v>v

. (4.14)
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Figure 4.5: Drawing illustrating a set of hypotheses. A pair of hypotheses hi and
hj are said to be consistent if the transformations around the loop returns to the
origin.

where A consists of the elements

Aij = eT
./ΩT (T ./)> (4.15)

with the transformation T in pose form and information ΩT around the loop of
hypotheses. The ./ symbol signify the change from transformation to pose represen-
tation as described in Section 3.2.

This is a NP-hard problem but can be treated as if continuous. By differentiating
4.14 and setting it equal to zero, the problem becomes equivalent to

Av = λv (4.16)

which is the characteristic equation. The dominant eigenvector v1 maximizes 4.14.
If the fraction between the two largest eigenvalues is large, e.g. λ1/λ2 > 2, v1 is re-
garded as locally unambiguous. If no sufficiently dominant eigenvalue is found, more
hypotheses should be collected until one eigenvalue is dominant. After discretizing
v = v1, the hypotheses marked as true are accepted as loop closures.

4.3.2 Back-End

The Back-End optimizes the poses and landmarks based on the information stored
in the graph. This is done by finding the minimum of the least-squares objective
function 4.12 by using a solver, typically Gauss-Newton. The error is the differ-
ence between the poses p and landmarks m in the state vector and the, from the
measurements, observed poses p̂ and landmarks m̂ through some sensors. However,
since poses contain orientation, the nonlinearity makes it incorrect to simply sub-
tract them. Instead, the transformation representation of poses comes in handy as
the error eij can be defined through the transformation Eij from the observed pose
p̂j to the expected pose pj within the same coordinate frame, as visualized in Figure
4.6. For the pose-GraphSLAM algorithm, the error can be defined as

eij =
(
M̂−1

ij Mij

)./
=
(
M̂−1

ij (M−1
oi Moj)

)./
(4.17)
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where ./ denote the change between pose and transformation as described in Section
3.2. Further expansion of the error yields

eij =
[
Re te
0> 1

]./
=
[
R̂>ijR

>
oiRoj R̂>ij

(
R>oi(toj − toi)− t̂ij

)
0> 1

]./
(4.18)

when applying 3.11 and 3.15 to 4.17.
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Moi

eij

Mij

Mij

Moj

y

x

p
i

p
j

p
j

Figure 4.6: Illustration of the GraphSLAM error function. The arrows denote the
direction of the transformations. M denotes transformations and eij the error in
vector form.

The optimization of the graph is very sensitive to outliers, e.g. incorrect loop
closures. These can contort the graph beyond recognition. It is therefore important
to remove outliers before the optimization (Front-End) or compensate for them
during the optimization (Back-End). For increased robustness, outliers should be
handled in both the Front-End and Back-End.

Dynamic Covariance Scaling (DCS) scales the information of the edges based on
the objective function [22]. This reduces the impact of large errors which can appear
from bad constraints. The optimization may converge slower as all large errors are
affected including those from good constraints. DCS computes a scaling factor as

sk = min
(

1, 2Φ
Φ + X 2

k

)
(4.19)

where X 2
k = e>l Ωkek from 4.12 and Φ the upper bound for all robust constraints.

Φ is effectively a tuning parameter. The scaling factor is one as long as the error
is within bounds and decreases when outside as in Figure 4.7. The scaling factor is
applied to the objective function according to

[p∗,m∗] = argmin
p,m

∑
k

e>k s2Ωkek. (4.20)

By scaling the information in the edges, the constraints are relaxed and make the
problem less stiff.
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4. Simultaneous Localization and Mapping Theory

Figure 4.7: Dynamic Covariance Scaling of an error from a constraint. The scaling
factor diminishes as the error increases beyond a specified limit.

Gauss-Newton is a commonly used solver for nonlinear least-squares problems
an can be applied. To find the Jacobian of the error, the nonlinear error function
4.18 can be approximated through a first order Taylor series expansion around the
state vector p as

eij(p) ≈ eij(p) + Jij∆p (4.21)

with the Jacobian Jij. Since the error is only relying on the two poses pi and pj,
the Jacobian can be simplified to

Jij = ∂eij(p)
∂p

=
[
0 · · · ∂eij(pi)

∂pi︸ ︷︷ ︸
Aij

· · · ∂eij(pj)
∂pj︸ ︷︷ ︸
Bij

· · · 0
]

(4.22)

and the poses evaluated individually. The linear system in 3.26 is then constructed
as

H∆p = −b (4.23)
p = p + ∆p (4.24)

where the coefficient vector b and matrix H are computed according to

b> =
∑
ij

b>ij =
∑
ij

e>ijΩijJij (4.25)

H =
∑
ij

Hij =
∑
ij

J>ijΩijJij (4.26)

where H is sparse due to the structure of Jij. The system is then solved for ∆p with
a linear solver such as SVD which determines the step length and direction.
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5
Datasets

In this chapter, an overview of the used datasets is presented. None of these datasets
were gathered specifically for this thesis and often for slightly different purposes
than evaluating LIDAR based SLAM. Nevertheless, they were useful for the project
and by using different parts of the datasets different aspects of the problem could
be analyzed. Besides the datasets presented here the Ford Campus Dataset [23] was
also used to test loop closures. However as the Kitti Vision Benchmark Suite dataset
contained a longer drive with several loop closures the datasets and results from the
dataset are not presented here. The sensors that were used are also described in this
chapter.

5.1 KITTI Vision Benchmark Suite
The KITTI Vision Benchmark Suite is a public computer vision and robotic algo-
rithm benchmarking dataset, which was done in collaboration between Karlsruhe
Institute of Technology and Toyota Technological Institute at Chicago. While the
main intention for including the LIDAR data was to provide accurate ground truth
for camera vision algorithms, the LIDAR data proved useful for the algorithms im-
plemented in this thesis. The datasets that were used contained medium density
residential areas in Karlsruhe with pedestrians and moving vehicles. [24]

5.2 Volvo Dataset
Since this thesis was done in collaboration with Volvo Cars, access to two proprietary
datasets from Volvo Cars was granted during the thesis. These datsets were collected
as a part of Volvo Drive Me project, which intends to put 100 self-driving cars on
public roads in Gothenburg Sweden starting 2017 [25]. The first of these datasets
include short drives high-density residential areas within Gothenburg. The other
set include high way driving in a full circle around Gothenburg including a longer
tunnel.

5.3 Sensors
The KITTI and Volvo Cars datasets were gathered with vehicles equipped with
the inertial navigation system OXTS RT 3003 and the LIDAR Velodyne HDL-64E.
Both these are high quality sensors with high a commercial prices which might make
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them infeasible for large-scale commercial production. A brief presentation of these
sensors are given below.

5.3.1 Velodyne HDL-64E

The Velodyne HDL-64E is a high end LIDAR sensor designed for obstacle detection
and navigation of autonomous vehicles [26]. It operates by measuring distance with
64 layers of lasers, which by spinning around provides a complete 360◦ horizontal
field of view. The horizontal field of view is 26.8◦. Horizontal angles are measured to
a 0.09◦ angular resolution and the distance has an accuracy of less than 2cm. The
system is capable of delivering 1.3 million points per second at a frame rate between
5 and 20Hz. The detection range depends on reflectivity of the surface. Pavement
can generally be detected at 50m range and cars at around 120m distance.

Figure 5.1: An example of a Velodyne HDL-64E point cloud. Colors indicate the
reflectivity of each point. A point is blue if very little is reflected back, or red if
almost all is reflected back. The point cloud is from the Volvo Cars Dataset and was
displayed using the open source software VeloView.

In the datasets used in this thesis, the spin rate was set to 10Hz for both the
KITTI Vision Benchmark Suite and Volvo Cars Dataset. This correspond to each
point cloud consisting of around 130 000 points. Each point has an xyz-coordinate
relative to the LIDAR and a reflectivity value related to the infrared reflectance of
the surface of the point.
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5.3.2 OXTS RT 3003
The OXTS RT3003 is an advanced precision Inertial and GPS Navigation system for
measuring motion, position and orientation [27]. By combining Inertial Navigation
System(INS) with GPS receivers it improves performance over GPS-only readings in
urban and tree-covered environments. It has a Velocity accuracy (RMS) of 0.05km/h,
roll/pitch accuracy(1σ) of 0.03° and heading accuracy(1σ) of 0.1°. GPS position
RMS using Real Time Kinematic (RTK) with L1/L2 is 0.02m.
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6
Implementation

To investigate which challenges exist in using LIDAR sensors for SLAM for vehicle
localization, a complete solution was implemented. The goal of the implementation
was to:

1. Find out where the vehicle has been

2. Create a map from the data

3. Localize a vehicle within the map using different data

Three different registration algorithms were implemented for finding the ego mo-
tion and for recognizing previous visited places. The available SLAM methods were
compared and one was selected to be implemented. In addition a basic localization
algorithm was implemented. Here motivations behind the choice of algorithms are
presented with explanations of how they were implemented.

6.1 Choice of SLAM Algorithm
After having done a literature study, three main categories of SLAM algorithms
were identified, the EKFSLAM, FastSLAM and GraphSLAM algorithm. These al-
gorithms were compared to see which algorithm was most suitable to be used for
the implementation. A comparison of the algorithms can be seen in Table 6.1.

A short note on the choice of parallelizability as a criterion in Table 6.1. Graph-
ics Processor Units (GPUs) have gotten very powerful in recent years and GPUs
designed for sensor fusion in vehicles have started to become popular. An example
of this is the NVIDIA Tegra Drive PX, which is a GPU designed for use in vehicles
[28]. Since GPUs main advantage is in massive parallel computations, it could be
of interest to see which algorithms could gain more from having access to power-
ful parallel computational power. EKFSLAM’s main computational bottleneck is
the matrix inversion, which is hard to parallelize. FastSLAM has a re-sampling step,
which is hard to parallelize but might not be needed to be performed very often. The
main bottleneck of GraphSLAM is the error linearization, which is parallelizable.

Since the vehicles will be driving in large environments over long time it was
decided to use GraphSLAM, since the algorithm scales well and is robust over long
drives. Further, only pose nodes are used to reduce the size of the graph along with
the optimization complexity.
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Table 6.1: Comparison of the three main categories of SLAM algorithms. In the
complexity row, n is the number of landmarks, k the number of particles and e is
the number of edges. [5]

EKFSLAM FastSLAM GraphSLAM
Complexity O(n2) O(k ∗ logn) O(e)

Distribution Gaussian Any Gaussian+
outlier rejection

Linearization Once Not needed Re-linearize
Flexibility 0 + ++
Large scale - + ++
Parallelizability - + ++

Pros Easy to implement
well known

Can use negative
information

Scales well
robust

Cons Can not handle
large maps

Hard to recover,
need many particles
to be robust

Harder to implement

6.2 Registration
Three algorithms for registration were implemented, ICP, GICP and a feature-based
registration algorithm. A description of the algorithms is presented here.

6.2.1 ICP Algorithm
An ICP algorithm has been implemented by Jakob Wilm [29] for Matlab. This
algorithm was augmented to include a prior from e.g. odometry. Another extension
was the option to lock degrees of freedom (DoF) in the transformation by exclud-
ing them from the optimization. With this extension, the algorithm can align point
clouds longitudinal while ignoring the lateral DoF. The lateral DoF is instead sup-
plied through a prior. This could be useful in for example tunnels where the walls are
symmetric and lateral alignment is hard. An example of this can be seen in Figure
6.1.

6.2.2 GICP Algorithm
A GICP algorithm was implemented as a program with the use of the open source
Point Cloud Library (PCL) [30] in C++. The program was called from Matlab
through the operating system console. It required point clouds to be converted to
the Point Cloud Data (PCD) format. The PCD filenames of the point clouds to align
was supplied to the program and the resulting transformation matrix was returned.
The option to supply a prior transformation was also implemented.

A down-sampling program was also implemented to reduce the size of the PCD
files. Smaller files decrease the time to load said files. The downs-sampling program
makes use of the voxel grid filter in PCL and requires a PCD file to operate on.
The filter approximates all points within a voxel with its centroid. This preserves
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Figure 6.1: An example of a feature-poor environment where the feature matching
algorithm struggles. ICP will have a hard time estimating the correct lateral trans-
formation. The scan was from taken from the Volvo Cars Dataset from the Lundby
tunnel in Gothenburg.

the shape of the point cloud more accurately than using the center of the voxel to
represent the points.

6.2.3 Feature-Based Registration
Implementations of 3D based feature registration using the algorithms NARF, SHOT
and FPFH were tried on the data using code from tutorials in PCL. Though the
implemented methods seemed to work well for some smaller point clouds, the im-
plemented methods where unable to perform well on the data in the datasets. As
time was limited it was decided to not investigate these algorithms further.

Instead a 2D based feature extraction algorithm was implemented based on the
work of Y.Li and E.Olsen [31]. Slight modifications were made in the rendering of
the image where only the height was considered rather than the difference in height.
Another difference was that the BRISK feature detector was used instead of the
Kanade-Tomasi method. It was found that the algorithm performed better with
these choices but, as this was not the main focus of this paper, no extensive work
was done to analyze potential improvements with the implementation of the original
choices.

In Algorithm 7 presents a short summary of the implemented feature extraction
algorithm. The points in the point cloud are scaled to a pixel grid along the xy-
plane, lines 3-4. The z-coordinates are moved in relation to the ground and assigned
to the corresponding grid tile. As shown in line 5, only the highest point is saved in
each grid tile. This produces a projected height map of the scan. The height then
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Algorithm 7 Feature Extraction
Require: Point cloud: PC = {xi, yi, zi}

1: for all points i do
2: i = floor(rescale(x)) + 1
3: j = floor(rescale(y)) + 1
4: Aij = max(Aij, z − sensorHeight())
5: end for
6: img = matrix2grayscale(A)
7: img = gaussianKernel(img)
8: keypoints = KeypointExtractor(img)
9: descriptions = DescriptionExtractor(img, keypoints)

10: return keypoints, descriptions

converted to a gray scale image, line 6, and smoothed with a Gaussian kernel, i.e. a
Gaussian function. In line 8-9, the keypoints and descriptors are extracted through
an algorithm like BRISK.

To select correct correspondences the transformations are filtered, using the out-
lier detection algorithm RANSAC, and grouping the correspondence pairs into inliers
and outliers. The inliers are assumed to be the correct matches between features and
the outliers are ignored. If the number of inliers is deemed to be too small, the match-
ing is classified as a failure otherwise are the inlier keypoints used to calculate the
least-square optimal rigid transformation matrixM as in Section 3.3.1. The number
of inliers is used to scale the information of the edges created through the feature
matching. An illustration of the process is shown in Figure 6.2.

A function to reduce the number of features was implemented. The function
removes the unstable features and keeps the stable features. Stable features are
defined as the features that can be observed in temporally consecutive scans. This
results in a reduction in size and a sped comparison between sets of features when
generating loop closure hypotheses. Matched pairs are then compared and outlier
pairs removed. Only features that had at least one inliers with neighboring scans are
saved, the other features are deemed to be unstable and are removed. An option for
how many temporal steps in each direction to be compared is available, by default
it was set to two to allow all scans to overlap.
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Figure 6.2: FeatureThe feature-based registration process is illustrated in four
steps. In the top left plot shows the original point cloud. The top right shows the
extracted keypoints. In the down left plot, matching keypoint pairs are show. As
can be seen there are some outliers from incorrect matches but most matches are
correct. In the down right plot the outliers have been removed using RANSAC. As
can be seen the vehicle has rotated between the scans. The scans were taken from
the Volvo Cars Dataset driving through a roundabout in a high-density residential
area.
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6.3 GraphSLAM Algorithm
A GraphSLAM algorithm was implemented for the data in the datasets. Since the
datasets were collected in advance, the algorithm was not made to run in a real time
application.

An overview of the algorithm is presented in Algorithm 8. It requires a set of
data to loop over. The graph g is initialized before the loop with no nodes nor
edges. In line 3, the Front-End builds the graph and finds loop closure hypotheses.
A robust loop closure algorithm was implemented in line 4, to sort out the bad
hypotheses from the graph. The graph is then optimized in line 5 by the Back-End.
The functions after Front-End does not have to run in every cycle of the loop and
can depend on flags raised by the Front-End or in fixed intervals.

Algorithm 8 GraphSLAM
Require: data = {datai}

1: initialize graph g
2: for all datai do
3: g = Front-End(g, datai)
4: g = RobustLoopClosure(g)
5: g = Back-End(g)
6: end for
7: return g

6.3.1 Front-End
The implemented Front-End processes the data of each time step separately, and
adds nodes and edges to the graph based on the data in the current loop cycle. The
algorithm is split into two parts, creating nodes and edges for moving forward and
loop closure detection. An overview of the Front-End algorithm is presented in 9.

The first part of the algorithm is responsible for creating the nodes and the edges
between consecutive nodes. To avoid unnecessary large graphs, it first performs a
check in line 1, to see whether the vehicle is moving or not. In the case of the
vehicle standing still, the graph is returned without any alterations. If the vehicle
is moving, a new node is created and added to the graph. A GPS edge is created
between the origin and the current node newNode based on the data in lines 4-5.
Another edge between the current node newNode and the previous node is created
with a transformation M and added to the graph in lines 6-8. The transformation
M is from registration methods such as ICP or feature-matching but can also be
from odometry.

The second part of the algorithm finds and adds loop closures to the graph. In line
9 it first finds nodes in the graph close to the current node with two conditions. The
nodes must to be within a specified distance from the current GPS signal and have
a driven distance from the current node above a specified threshold. The specified
driven distance should be larger than the specified GPS distance to avoid loop
closures between temporally close nodes. This returns a set of nodes to search for
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Algorithm 9 Front-End
Require: g, datai

1: if isMoving(datai) = true then
2: newNode = createNode(datai)
3: g = add2graph(g, newNode)
4: edge_GPS = createEdge(datai, newNode)
5: g = add2graph(g, edge_GPS)

6: M = registration(newNode, previousNode(g))
7: edge = createEdge(M,newNode, previousNode(g))
8: g = add2graph(g, edge)

9: search_nodes = findLCNodes(g, newNode)
10: for all node ∈ search_nodes do
11: success,M = featureMatching(newNode, node)
12: if success = true then
13: LC_edge = createEdge(M,newNode, node)
14: g = add2graph(g, LC_edge)
15: end if
16: end for
17: end if
18: return g

loop closures. To reduce the potentially large set, the set is sorted by GPS distance
and a subset selected for loop closure detection.

The loop closure detection is performed in lines 10-16. For each node in this
subset of nodes, a transformation is estimated from the current node. The transfor-
mation is then verified through a few conditions to avoid ill-formed loop closures.
If the feature-matching fails no loop closure is generated. If the feature-matching
algorithm was successful, a loop closure edge is created and added to the graph.

A robust loop closure algorithm was implemented based on Olson’s proposal de-
scribed in Section 4.3.1. The algorithm attempts to remove ill-formed loop closures
from the graph, by constructing a pairwise consistency matrix A from a set of loop
closures. The loop closures are treated as hypotheses to be tested and the search
algorithm A∗ was used to find the shortest set of links between the pairs of hypothe-
ses. These links was then used to build the consistency matrix. The hypotheses that
fail the test are removed from the graph.

A slight modification was done to equation 4.15 in Olson’s proposal. A coefficient
of −0.5 was multiplied with the exponent to better reflect a Gaussian probability
density function

Aij = e−
1
2 T./Ω(T ./)> (6.1)

where the ./ signify the change from transformation to pose representation as de-
scribed in Section 3.2.

Through email correspondence, E.Olson agreed that this better mimics the prob-
ability density function but states that in the end this is more of an engineering
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problem and that experimentation generally is more useful.
The information ΩT was set to identity, as this greatly simplified the problem and

the implemented method for calculating the information in edges was untested. From
the consistency matrix, the dominant eigenvector v is calculated and discretized as
described in 4.3.1. The discretization of implemented through the following expres-
sion:

vi =
{

1 if vi ≤ 0.9
0 if vi < 0.9 (6.2)

6.3.2 Back-End
The implemented Back-End finds the state vector that minimizes the errors from the
constraints as explained in Section 4.3.2 with the Gauss-Newton method. The types
of edges that should be optimized can be selected though an optional argument. For
example whether the edges from the GPS should be accounted for in the optimization
or not.

Algorithm 10 Back-End
Require: g

1: while not Converged do
2: Initialize H,b
3: for all edges do
4: [e, A,B] = linearize(edge)
5: s = DCS(e, getInformation(edge))
6: [Hij,bij] = [Hij,bij] + buildLinearSystem(e, A,B, s)
7: end for
8: ∆p = solveLinear(H,−b)
9: p = p + ∆p

10: end while
11: return g

An overview of the Back-End algorithm is presented in Algorithm 10. The algo-
rithm loops over all edges and builds a linear system that can be solved for the step
direction. The coefficient matrix H and vector b for the entire graph are initialized
inside the loop, as they have to be recalculated for each iteration of the optimization.
The linearization is performed in line 4 where the error e and the Jacobians A and
B in 4.22 are calculated. Scaling factors are calculated according to 4.19 in line 5.
The components of the coefficient matrix and vector are calculated in line 6 and
summed together over the loop. Once the for-loop is complete, the linear system is
solved for the step direction and the state vector is updated in lines 8 and 9. This
sequence of operations is then repeated until a convergence criterion is reached or a
maximum number of iterations is reached.

6.3.3 Pre-processing
To speed up the algorithm and simplify the code, a data pre-processing step was
implemented. The script is essentially the time expensive steps of the algorithm
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performed separate of the simulation to save time when running the algorithm. The
script performs the following tasks:

• Convert timestamps to the same time format, in this case, UNIX.

• Rotate point clouds so that the driving direction is along the x-axis.

• Convert point clouds to binary files for smaller file size and shorter loading
times.

• Down-sample point clouds and store in PCD format for the GICP registration
algorithm.

• Interpolate inertial and GPS measurements to LIDAR sampling frequency.

• Convert GPS reading to xyz coordinates in a local reference frame.

• Extract keypoints and descriptors from the point clouds.

• Remove unstable features.

6.3.4 Cartography
A couple of different methods for producing maps were implemented. These operate
based on an optimized graph and the information stored in the nodes to generate
maps for different purposes. A brief description of each method and their usage is
presented here.

The first method Graph2PointCloud generates one large point cloud from all
the scans in a drive. Each scan is transformed from the origin to the state of the
node it was captured in. An option to only use every other scan was implemented
to reduce the amount of points and make it manageable. This type of map could be
useful for many purposes such as creating a topological map, detect road surfaces or
visualization purposes. Since the map contain a lot of information, it requires plenty
of data storage and computations based on it might take time.

The second method Graph2PointCloudXY is a variation of Graph2PointCloud.
Instead of using all point clouds, only point clouds with points within a specified
area are used. These clouds are selected by finding the nodes within a desired radius
of the area’s centroid. These clouds are then aligned and reduced through a pass
through filter of the area. This map could be of interest for generating bitmaps of
the ground though infra-red reflectivity, as proposed for localization by J.Levison
[32] or if only a certain area of the map i of interest.

The last method Graph2LocalizationMap reduces a pose-graph into a map of
landmarks along a path. A landmark contains a pose and features from the scan.
Thus, localization is performed by registration between the current pose and the
landmark in the map. The landmarks are selected based on their distance from
the path. A fixed radius between the landmarks can be specified as an optional,
which would further reduce the data size of the map. This map could be used for
localization purposes in autonomous navigation.
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6.3.5 Localization
An algorithm was implemented for localization within the map consisting of reduced
pose-nodes. The localization was done by using a particle filter, as described in sec-
tion 3.1.2, where each particle is a hypothesis of the vehicle pose. In the motion up-
date, each particle is updated with odometry measurements or with feature-matching
between the current pose and the previous pose, with added Gaussian noise. For the
measurement update, a feature match is attempted between the features from the
current scan and the features stored in the closest map node according to the GPS
measurement of the current scan.
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7
Results

In this chapter results, from using the implemented algorithms on the datasets,
is be presented. The evaluated algorithms were for registration, for SLAM and for
localization. Whenever possible the results will be quantified with numbers but when
no ground truth exists to compare the results the results are illustrated with figures.

7.1 Registration
Three different registration algorithms were implemented. The methods were

1. ICP with Prior in Matlab

2. GICP using the Point Cloud Library (PCL)

3. Feature-based matching algorithm

LIDAR data from a drive in high-density residential area from the Volvo Cars
Dataset was selected to be used with GPS, measurements as ground truth. The
OXTS RT3003 sensors [27] has a velocity and a rotational velocity RMS error of

σv,GPS = 0.05km/h ≈ 0.014m/s
σω,GPS = 0.02◦/s

.
As the LIDAR had a scan rate of 10Hz = 0.1s which, the ground truth has a

translational and a rotational RMS error of

σtr,GPS = 0.014m/s ∗ 0.1s = 0.0014m
σrot,GPS = 0.02◦/s ∗ 0.1s = 0.002◦

Each algorithm tries to estimate the rigid body transformation between scans
which consists of a translation and a rotation. The estimation is compared to the
ground truth from the GPS.

7.1.1 ICP
The implemented ICP algorithm was evaluated. Since the algorithm was slow and
prone to converge to local minima, a prior was used. The prior was provided by the
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feature-based registration algorithm since it is fast and work differently from ICP.
In the test, 15 iterations was used which along with a decent prior is sufficient for
convergence if possible. Results for ICP registration are shown in Figure 7.1 with
the errors visualized in Figure 7.2. The mean and standard deviation are shown in
Table 7.1.
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Figure 7.1: ICP registration. In the top plot shows the translation in lateral direct.
A value of 1m here implies that the vehicle is moving 1m in the 0.1s time between
the scans and thus has a momentary velocity of 10m/s. The middle plot similarly
shows the longitudinal translation. The bottom plot shows the rotation around the
z-axis, which is how the heading of the vehicle is changing in radians. A value of
0.02rad here implies that the vehicle is translating 0.02rad in 0.1s or has an angular
velocity of 0.2rad/s.

42



7. Results

Time [s]
10 20 30 40 50 60 70 80 90 100 110

er
ro

r 
[m

]

-0.1
0

0.1
0.2

x-Translational Error

Time [s]
10 20 30 40 50 60 70 80 90 100 110

er
ro

r 
[m

]

-0.1

0

0.1
y-Translational Error

Time [s]
10 20 30 40 50 60 70 80 90 100 110

er
ro

r 
[r

ad
] #10-3

-4
-2
0
2
4
6
8

Heading Error 

Figure 7.2: Error of ICP registration. The first plot shows the error of the estima-
tion in lateral direction from the feature-based registration algorithm. The second
plot shows the longitudinal translation estimation error. The third plot shows the
error in rotation around the z-axis. The forth plot shows the pitch measured by the
IMU.

Table 7.1: Mean and standard deviation of the error for the ICP algorithm

ICP-error µ σ
x [m] 0.051 0.064
y [m] 0.0024 0.034
heading [◦] -0.0049 0.059
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7.1.2 GICP
A similar analysis was done on the implemented GICP algorithm. The algorithm
was run with down-sampled point clouds. Results for ICP registration are shown in
Figure 7.3 with the errors visualized in Figure 7.4.
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Figure 7.3: GICP registration. In the top plot the translation in lateral direct is
shown. A value of 1m here implies that the vehicle is moving 1m in the 0.1s time
between the scans and thus has a momentary velocity of 10m/s. The middle plot
similarly shows the longitudinal translation. The bottom plot shows the rotation
around the z-axis, which is how the heading of the vehicle is changing in radians. A
value of 0.02rad here implies that the vehicle is translating 0.02rad in 0.1s or has an
angular velocity of 0.2rad/s.

The error of the GICP registration can be seen in Figure 7.2. As can be seen in the
figure, GICP sometimes fail to correctly estimate the longitudinal translation. This
can occur when objects, which are detected by many points, are moving between
scans, e.g. large trucks. The mean and standard deviation of the error for GICP can
be seen in Table 7.2.
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Figure 7.4: Error of GICP registration. The first plot shows the error of the es-
timation in lateral direction for the GICP registration algorithm. The second plot
shows the longitudinal translation estimation error. The third plot shows the error
in rotation around the z-axis. The forth plot shows the pitch measured by the IMU.

Table 7.2: Mean and standard deviation of the error for the GICP algorithm

GICP-error µ σ
x [m] 0.023 0.086
y [m] -0.0015 0.017
heading [◦] 2.7 · 10−6 0.034
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7.1.3 Feature-Based Registration
Results for the implemented feature-based registration algorithm can be seen in
Figure 7.5. As can be seen in the figure, the algorithm is stable and gives a good
approximation of the rigid body transformation.
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Figure 7.5: feature-based registration. The top plot shows the translation in lateral
direct. A value of 1m here implies that the vehicle is moving 1m in the 0.1s time
between the scans and thus has a momentary velocity of 10m/s. The middle plot
similarly shows the longitudinal translation. The bottom plot shows the rotation
around the z-axis, which is how the heading of the vehicle is changing in radians. A
value of 0.02rad here implies that the vehicle is translating 0.02rad in 0.1s or has an
angular velocity of 0.2rad/s.

To see which factors influence the error, the number of inliers and the pitch of
the vehicle was analyzed and compared with the error. As can been seen in Figure
7.6 the translational error is larger when the scans are taken from different pitches
like driving over speed bumps. The covariance and standard deviation of the error
from the feature-based registration can be seen in Table 7.3
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Table 7.3: Mean and standard deviation of the error for the feature-based registra-
tion algorithm

feature matching-error µ σ
x [m] -0.0084 0.018
y [m] 0.0023 0.016
heading [◦] 6.0 · 10−6 0.049
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Figure 7.6: Error of feature-based registration. The first plot shows the error of
the estimation in lateral direction from the feature-based registration algorithm.
The second plot shows the longitudinal translation estimation error. The third plot
shows the error in rotation around the z-axis. To see how if the error correlates with
something, the number of inliers from the feature-based registration is shown in the
forth plot and the pitch from the IMU is shown in the fifth plot. As can be seen the
error is generally larger when the pitch is changing.
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7.1.4 Execution Time
Execution time was compared between the algorithms. While the algorithms are
not optimized and further improvement is possible, a comparison should still give
a rough estimate about their relative performance. The Feature-matching was run
in Matlab on the features, ICP was run in Matlab on the full point clouds and
GICP in C++ on the down-sampled point clouds. Results can be seen in Table 7.4.
The implemented feature-based registration algorithm is order of magnitudes faster
than the ICP-based algorithms. While the creation of the keypoints requires some
computations it only has to be performed once for each scan.

Table 7.4: Mean run time for the registration algorithms

Algorithm Mean run time (s)
ICP 6.0
GICP 1.3
Feature-matching 0.024

7.2 SLAM
The implemented SLAM algorithm was tested on the Kitti Vision Benchmark Suite
Dataset. The dataset contained longer drives with several areas of loop closures
and had high quality LIDAR data synchronized with high quality GPS measure-
ments. Thus it was used to test ability to detect loop closures, to test optimization
and to generate different kinds of maps. From the dataset the drive Residential
2011_10_03_drive_0027 Drive from the Kitti dataset was selected. The drive in-
clude a 7min 35s drive in a medium density residential area with several areas of
potential loop closures. GPS coordinates of the drive can be seen in Figure 7.7.

Since the implemented feature-based registration algorithm was found to produce
best results and was much faster than ICP and GICP, it was chosen to be used for
loop closure. For pose-pose constraints between successive nodes, the OXTS RT3003
would give more accurate measurements. However, in some tests the feature-based
registration algorithm was used to get a more visually observable drift.

The feature-based registration algorithm was able to find many loop closures,
illustrated in Figure 7.8a. By optimizing the loop closures, using a robust Back-
End, the drift in the dead reckoning is almost completely compensated for, as can
be seen in Figure 7.8b. The graph looks almost identical to the GPS measurements
in Figure 7.7.

The Gauss-Newton optimization algorithm was able to scale well since sparsity of
the linearized information matrix H was maintained. An illustration of the sparsity
can be seen in Figure 7.9.

While the loop closure hypotheses generated from the dataset seemed correct,
robust loop closure was still used to optimize the loop closure constraints with high-
est average pairwise consistency. As the algorithms main goal is to remove incorrect
loop closures, some loop closure with slightly lower average pairwise consistency due
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Figure 7.7: Kitti Dataset GPS. All the GPS measurements plotted to illustrate
how the vehicle was moving during the drive. As can be seen from the figure several
areas of potential loop closure exist.

to registration errors were also rejected. The main computational bottleneck was
found to be the A* algorithm for finding the shortest path between the hypotheses.
It is likely that this algorithm could have been optimized, but as this was not the
focus of the project it was not prioritized.

A final graph using all sensor data, with robust loop closure and optimized with
a robust Back-End is shown in Figure 7.10. Since the GPS measurements were from
high quality sensors, they had a lot of information and thus formed strong constraints
on the graph in the optimization. As can be seen the resulting graph is very similar
to the ground truth shown in Figure 7.7.

Once a well-optimized graph is available it can be used for many different pur-
poses. To illustrate the observed environment during a drive, a single point cloud of
many scans was created. This was done by registering several scans into the same
reference frame based on the estimated robot pose at the time of the scan. An ex-
ample of this is shown in Figure 7.11. This can be used to get a topological view of
the area. Filtered point clouds were used to reduce the size of the map and not all
scans were used. If all data was used, the resulting point cloud would have almost
600 million points for the drive. As the project was done on personal computers this
was would have been intractable.
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Figure 7.8: Loop Closure Kitti Dataset. In the top figure the dead reckoning using
feature-based registration algorithm is shown in blue with the found loop closures
in red. In the bottom plot the same graph is shown after optimization of pose-pose-
and loop closure constraints.
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Figure 7.9: Sparsity of the linearized information matrix H. Non-zero elements in
H are filled in blue. For each element i in the state vector, which has an edge to
another element j in the state vector p, Hij and Hji will be nonzero. As can be seen
the matrix is sparse and most elements are along the diagonal with the loop closures
can be seen outside the diagonal.
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Figure 7.10: Kitti Dataset using all sensor data. The figure shows the graph using
the OXTS sensor for consecutive pose-pose constraints and feature-based registra-
tion loop closure constraints. The graph has been optimized using robust loop closure
and robust Back-End.
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Figure 7.11: Merged point clouds from Kitti Dataset. Each dot indicate one point
from the down-sampled point clouds registered into the same reference frame. Blue
color indicates that the points are located near the ground and yellow color that they
located above the vehicle. The z-axis has a different scale than the x- and y-axes to
get a 3D perspective.
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7.3 Localization
As the project was done in collaboration with Volvo Group and Volvo Cars, for
whom localization might be of interest, a rudimentary localization algorithm was
implemented as described in section 6.3.5. Two drives from the Volvo Cars Dataset
were selected, one to generate a map and another to localize in the generated map.

The map was generated from a graph from the GraphSLAM algorithm of the
first drive, with landmarks spaced approximately 20m from each other along the
requested trajectory. The landmarks consist of features from scans and the estimated
poses of the scans. An illustration of the map is shown in Figure 7.12
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Figure 7.12: Map for localization. The map consists of landmarks placed out along
the requested trajectory.

The average data size of a landmark in this high-density residential area is 12kB.
Thus the average data size per kilometer is

datasize/km ≈ 12kB/20m · 1000m/km = 0.6MB/km.

Localization in the map was performed using a particle filter. Motion update
is performed by using noisy odometry data, and measurement update is performed
using LIDAR data and the map. An illustration of how the particles looked can be
seen in Figure 7.13.

The pose estimation of the particle filter was compared to GPS measurement as
ground truth and the results is shown in Figure 7.14.
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Figure 7.13: Results for localization using a particle filter. In the top plots, time
step t = 171 is shown, zoomed out to the left and zoomed in on the right. Since no
landmark has been observed for a few scans the uncertainty is large and the particles
are spread out. In the bottom plots scan at time step t=183, a landmark has been
observed and the uncertainty has shrunk.
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Figure 7.14: Position error of the localization algorithm. The norm of the x and y
position error of the localization. The error stays below 0.7m all the time.
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8
Evaluation

In this thesis we have presented a full solution for Simultaneous Localization And
Mapping(SLAM) with LIDAR sensors. The solution can either work on only LIDAR
data or with a combination of LIDAR, GPS and odometry data.

A feature-matching algorithm was implemented for LIDAR data projected onto
a 2D plane, which was found to be able to be able to perform registration better than
ICP and GICP for the datasets. The feature-matching algorithm was able to find
loop closures hypothesis in the all areas revisited in the datasets, but was struggling
with estimating the ego-motion in featureless environments such as tunnels.

Loop closures are gathered and the ones with highest average pairwise consis-
tency are selected using a robust Front-End based on Olson’s Proposal. A robust
back-end using Dynamic Covariance Scaling was implemented for graph optimiza-
tion. The loop closures had a great impact on the resulting map and the optimiza-
tion was able to remove most of the drift in the dead reckoning. From the resulting
graphs from the GraphSLAM algorithm, different types of maps were created includ-
ing maps for localization. A rudimentary localization algorithm based on a particle
filter was implemented and was found to be able to localize the vehicle in the map
within meter level precision. While the localization error was not negligible, there
were many potential error sources identified.

8.1 Registration

Three different registration algorithms were implemented. It was found that the
feature-matching algorithm was the fastest and performed the best. The algorithm
is based on camera vision algorithms but manages to produce good results on LI-
DAR data projected onto images. There are similar algorithms more suitable for 2D
LIDAR data, which can handle occlusion phenomena from ranging data and take
more advantage of the scale invariance. An example of this is the FLIRT feature
detector and feature descriptor [12]. However since FLIRT is not included in the
Computer Vision System Toolbox, it was decided to instead use the included
Shi-Tomasi feature detector and the BRISK feature descriptor. It is likely that an-
other combination of feature detector and descriptor would have performed better
but would have required more time to implement. As the time for the thesis was
limited it was decided to not implement these.

The way the feature-matching algorithm was implemented it could only do reg-
istration in the two dimensional plane. As the datasets used were mostly on flat
surfaces this was not an issue but might be an issue for other datasets. When the
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vehicle changes pitch between scans it leads to worse performance as the 2D pro-
jections will look different. A solution to this is to use a sensor that measures the
pitch, the costs of these sensors are inconsequential to the cost of a LIDAR[31]. By
transforming the point cloud based on the pitch measurement the quality of the 2D
transformation estimation can likely be improved.

Another way is to use a feature-matching algorithm which extracts features in
3D. A few of these algorithms were tried but implementations were unsuccessful for
the data in the datasets, and the time performance was very low. As the time for
the project was limited it was decided to not investigate these algorithms further.

The feature-matching algorithm performed well in feature rich environments such
as the high density residential areas in the Kitti Vision Benchmark Dataset and the
Volvo Cars Dataset. For areas with fewer features such as The Lundby Tunnel
it was unable to perform registration. A camera would likely have an easier time
detecting features in these environments. J.Levinsson proposed to use bitmaps of
the ground infrared reflectivity for localization in these environments [32]. For the
SLAM problem one solution is to rely on IMU and odometry measurement inside
the tunnel and GPS measurements before and after the tunnel. The LIDAR data
can still be used to generate the map used for localization, for example by using
the infrared reflectivity of the ground. It should be noted that an advantage of
our solution, compared to ground reflectivity based algorithms, should be higher
robustness to weather phenomena such as snow.

8.2 SLAM Algorithm

A SLAM algorithm based on the GraphSLAM method was implemented. While
other algorithms are still popular, most state of the art SLAM algorithms today are
based on the GraphSLAM framework. The algorithm was implemented in Matlab.

To be able to work with different datasets, a pre-processing algorithm was set
up to convert the datasets into a standardized Matlab format suitable for the
GraphSLAM algorithm. As the projects goal was not to do a real time performance
implementation, the pre-processing was not optimized for performance and likely
could be sped up an order of magnitude and likely be run in real time.

Once the pre-processing was done the implemented GraphSLAM Front-End al-
gorithm could run in real time even without optimization of the code. It is not clear
if the SLAM algorithm will be run in real time or offline after the data has been
gathered. For large scale mapping of roads it seems likely that an offline solution,
where a server collects data from many vehicles after they have gathered the data,
will be used to solve the SLAM problem. But for smaller local maps, a real time
solution might be of interest.

The implemented Back-End was implemented for both 2D data and 3D data.
Since the analytical Jacobian of the error function is complex in the 3D case, a
numerical solution was implemented. However the implementation of this function
was very slow. As the datasets was mostly in flat environments it was decided to
only use two-dimensional maps for the project. Other implementations are available,
for example g2o written in C++ [33]. The implemented solution in Matlab was
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not optimized for performance and is likely orders of magnitude slower at optimizing
the graph for 3D.

A robust Front-End was implemented based on Olson’s Proposal. As the pro-
jected unfolded it was found to not improve performance much, as the number of
incorrect loop closures were non-existent the way the loop closure hypothesis were
generated. By using the GPS the global ambiguity problem was solved and by com-
paring hundred of features to hundred of features and removing the outliers and hav-
ing requirements on the number of inliers, the local ambiguity problem was solved.
Still the algorithm was able found to remove some correct loop closure hypotheses
which had slightly less consistent measurements than the other hypotheses.

The SLAM algorithm was based on the Pose-GraphSLAM idea where no land-
marks are stored in the state vector. This reduces the computational complexity
of the algorithms as the features are not optimized and also reduces incorrect loop
closures. However the location of the features will have higher uncertainty and using
them for localization will produce worse results. For an implementation like this, a
robust front-end would likely have a much greater impact.

8.3 Localization
To try out localization a rudimentary localization algorithm was implemented based
on a particle filter. This was only intended as a demonstration that SLAM algorithms
can be used to generate maps for localization. A drive was selected to generate a
map another drive, in the same area, was selected to test localization. The drives
were short and lacked good areas for loop closure lowering the quality of the map.
While the algorithm was rudimentary, it was still able to localize the vehicle within
a radius of 0.7m in a dataset not designed for SLAM or localization, using only
LIDAR data and noisy odometry. A few different potential sources of error were
identified:

• Ground truth was a GPS sensor subject to measurement noise

• The map was based on a single drive going in the same direction most of the
time, a map from a drive revisiting the places many times would likely perform
better

• The feature-based registration algorithm used can likely be improved to give
better estimates over longer distances between scans

• Covariance matrices for the particle filter can likely be better tuned

The map was fairly compact at around 0.6MB/km, a rate that could even be
possible to download over the cellular network.

8.4 Choice of Datasets
As the thesis involved doing solving many small sub-problems it was decided to
start with ideal data. This would reduce the likelihood of getting stuck and simplify
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verification of different aspects of the project. Once a solution for high quality sensors
is complete it is easier to try and adapt this solution to work with cheaper and more
robust sensors of lower quality. Three suitable datasets were identified, the Ford
Campus Dataset [23], the Kitti Vision Benchmark Dataset a proprietary dataset
from Volvo Cars. These datasets had high quality LIDAR scans from Velodyne
HDL-64E and high quality GPS measurements. As time was limited in the project
no solution for lower quality sensors was attempted.

The Ford Campus Dataset included LIDAR data from a low industrial area with
fewer features detected by the feature detection algorithm. Still the algorithm was
able to perform SLAM on the dataset with some slight modification to the settings in
the feature extraction algorithms. While the Ford Campus Dataset had the longest
drive, the Kitti Vision Benchmark Suite Dataset had an almost as long drive with
even more loop closures. It was decided to only include results from this dataset,
thus results from the Ford Campus Dataset are omitted from the report.
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9
Future Work

The ambition of this thesis was to investigate which SLAM algorithms are avail-
able and which ones are suitable for further development, and to investigate which
challenges exists by implementing a solution for LIDAR data. It is the view of the
authors that the ambition has been reached, but that the implemented solution will
require a lot of future work before being suitable for commercial applications. In
this chapter suggestions for future work are presented.

9.1 Registration
The implemented feature registration method works by projecting the point cloud
onto a 2-dimensional plane. The algorithm struggles when the vehicles pitch is chang-
ing between the scans. If the change in pitch is known, for example measured with
an accelerometer, the pitch can be used to transform the point cloud before features
are extracted. It is the view of the authors that this should improve recognition
and therefor also improve localization. Another potential improvement is using a
keypoint extractor and feature descriptor more suitable for LIDAR data such as
FLIRT.

By converting the point cloud into 2D, a lot of information is discarded and only
the two-dimensional transformation can be estimated. A method that works in 3D
can make use of all the information and might provide a more accurate transfor-
mation. When reflectivity information is available it can also be used to improve
registration, but it is important that the algorithm remains robust to changes in
reflectivity due to rain or other sources.

One interesting approach is using Convolution Neural Networks (CNN) to extract
features or to estimate transformations. Estimating rigid body transformation from
point clouds of human faces using CNN has been tried by C.Junfen et. al. [34]. As
CNNs has been very successful in camera image analysis, it is the authors view that
CNN has the potential to be very successful in point cloud analysis also. CNN also
has the promise of performing well for combinations of different data sources, such
as camera, LIDAR and IMU sensors.

9.2 SLAM
As the data was mostly from drives in flat areas it was decided to solve the SLAM
problem in 2D. For other datasets it may be of an advantage to have the map and
robot trajectory in 3D.
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For large scale mappings there are available methods for faster optimization.
Instead of updating the entire map, the map can be split into different hierarchical
levels as proposed by G.Grisetti et. al. [20]. There are also methods for using Bayes
Tree for optimization as proposed by M.Kaess [35].

Another important aspect is removing dynamical objects from maps such as
other vehicles and for updating maps over time. Objects that were observed in
previous drives but not the next should be removed. A marginalization algorithm
was implemented, which could remove older nodes if new nodes were observed in
the approximately same position. As the datasets did not include many drives at
different times this was not tried.

9.3 Localization
The particle filter is a robust and well performing algorithm for localization. As
time was limited and the datasets were not designed for testing of localization, little
effort was put into tuning the algorithm. For future work it would be recommended
to have a dataset that consists of a longer drive around in one area followed by
a drive through the same area. The covariance matrices in the particle filter can
be tuned better and a smarter resampling can be used. This would improve the
performance and the computational complexity.

A way to further reduce the size of the map is to make a training set of features
gathered for a larger set of data, and only store features which are similar to the
features in the training set. By doing this only the identifiers to the feature in the
training set have to be stored, not the entire feature descriptor for each feature in
the map.

The implemented feature-matching algorithm struggles in feature-poor environ-
ments such as tunnel. Instead of relying on features another interesting approach is
to use bitmaps of reflectivity as suggested by J.Levinsson [32]. A solution like this,
may require LIDAR sensors with higher angular resolution than the sensors used in
this project.

Another potentially interesting solution is to represent the spatial world with
planes or other basic geometric figures. This could create a very efficient represen-
tation of the map and is suitable for usage in combination with a particle filter.
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