HARDWARE AND SOFTWARE PLATFORM FOR
INTERNET OF THINGS

Master of Science Thesis in Embedded Electronic System Design

JOHAN BREGELL

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
Goteborg, Sweden, September 2015



The Author grants to Chalmers University of Technology and University of
Gothenburg the non-exclusive right to publish the Work electronically and
in a non-commercial purpose make it accessible on the Internet. The
Author warrants that he/she is the author to the Work, and warrants that
the Work does not contain text, pictures or other material that violates
copyright law.

The Author shall, when transferring the rights of the Work to a third
party (for example a publisher or a company), acknowledge the third party
about this agreement. If the Author has signed a copyright agreement with
a third party regarding the Work, the Author warrants hereby that he/she
has obtained any necessary permission from this third party to let
Chalmers University of Technology and University of Gothenburg store the
Work electronically and make it accessible on the Internet.

Hardware and software platform for Internet of Things

Johan Bregell

(© Johan Bregell, September 1, 2015.
Supervisor: Lars Svensson
Examiner: Per Larsson-Edefors

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Goteborg, Sweden, September 2015



Abstract

Internet of Things is a relatively new and undiscovered field under constant
change. Today several similar technologies exist, all competing to be ac-
cepted as the new standard. As the concept of Internet of Things spans from
hardware, to operating system, all the way up to application level commu-
nication protocol, this project investigated the most promising technologies
in each of these areas. The findings of this investigation were used to build a
prototype; this prototype was then used to assess the range, response time,
connection speed, and power consumption, of the selected communication
protocol.

The assessment chapter compares the results to the theoretical values
and highlights the differences, while the discussion chapter explores why
these differences occur. The obtained results give insight in what kind of
applications Internet of Things might bring, and also what issues that cur-
rently exist. Amongst the discoveries is the poor response time of an Inter-
net of Things system while using power saving measures. These measures
are needed to achieve a battery life of 1 year, resulting in the inability for
real-time applications to utilize the power of Internet of Things.



Acknowledgements

I would like to offer special thanks to Peter Olsson and Hakan Rolin, my
supervisors at i3tex AB. Hakan Rolin gave me the opportunity to write a
thesis in a brand new and interesting field and Peter Olsson for his knowl-
edge and technical support in embedded programming. I would also express
my sincere appreciation to my academic supervisor Lars Svensson, for the
help with the current readings, constructive critique, and extensive proof-
reading. Finally, I would like to express my gratitude to Per Larsson-Edefors
for being my examiner.

Johan Bregell
Chalmers University of Technology
Gotheburg, May, 2015



Contents

1 Introduction

1.1 Background . . . . . .. ... o o
1.2 Purpose . . . . . . .
1.3 Limitations . . . . . .. . .. .. .
1.4 Method . . . . . . .

2 Technical Background

2.1 Operating system . . . . . ... ... oL
2.1.1 Contiki . . . . ...
2.1.2 RIOT . ... .. e
2.1.3 TinyOS . . . . . .
2.14 freeRTOS . . . . . . . . .

2.2 Hardware . . . . . . . .. . ...
221 OpenMote. . . .. .. ...
222 MSB430-H . ... ... .. ... ... .
223 Zolertia Z1 . . . . ...

2.3 Communication protocol . . . . . . . . ... ... ... ..
2.3.1 IEEE 802.15.4 . . . ... .. ... ... ... ...
2.3.2 BluetoothLE . . . . ... ... .. ... .......

3 Implementation

3.1 Selection of technology . . . . . . ... ... ... ... ...
3.1.1 Requirements . . . . . .. ... ... oL
3.1.2 Hardware . . . . ... ... ... . ... ...
3.1.3 Operating system . . . . . ... ... ... ... ...
3.1.4 Communication protocol . . . . . . .. ... ... ...
3.1.5 Workspace and tools . . . . . ... ... ... ... ..
3.2 Prototype Development . . . . ... ... ... ... .....
3.2.1 Drivers and firmware . . . . . ... ... ... ...
3.22 CoAPserver . .. .. ... .. ... ...
3.23 Testing . . .. . ...
3.3 Final prototype . . . . . . ... oo



6

7

Assessment

4.1 Range . . . . . . .
4.2 Response time . . .. ... ... ... oo
4.3 Connection speed . . . . . . . . ..o
4.4 Power consumption . . . . . ... ..o

Discussion

5.1 The prototype. . . . . . . ..o
5.2 Results. . . . . . . . . .
5.3 Project execution . . . . . ... ..o oL

Conclusion

Bibliography

Appendix A Gantt chart

Appendix B Milestones

Appendix C Risk Analysis

ii

25
25
26
30
34

39
39
40
42

44

46



Acronyms

ACK Acknowledge packet.

BLE Bluetooth Low Energy.

CAN Controller Area Network.

CBOR Concise Binary Object Representation.
CCA Channel Clear Assessment.

CoAP Constrained Application Protocol.

FM Fade margin.

FSPL Free-space path loss.

GPIO General-purpose input/output.

I?C Inter-Integrated Circuit.

IDE Integrated Development Environment.
IETF Internet Engineering Task Force.

IoT Internet of Things.

JSON JavaScript Object Notation.

JTAG Joint Test Action Group.

LPM Low Power Mode.

MAC Medium Access Control.

MCU Microcontroller.

nesC Network Embedded Systems C.
O-QPSK Offset quadrature phase-shift keying.

OS Operating System.

iii



OSI model Open Systems Interconnection model.
PCB Printed Circuit Board.

PHY Physical.

PM Power management.

RAM Random-access memory.

RDC Radio Duty Cycle.

ROM Read-only memory.

RPL IPv6 Routing Protocol for Low-Power and Lossy Networks.
SoC System on Chip.

SPI Serial Peripheral Interface.

UART Universal asynchronous receiver/transmitter.
WLAN Wireless LAN.

WSN Wireless Sensor Network.

iv



Chapter 1

Introduction

1.1 Background

Internet of Things (IoT) is a concept aiming at connecting all things to the
Internet [1]. The different kinds of devices range from simple sensor devices
to complex machines such as industry robots.

Home automation has been available for a few years in the forms of timers
and remotely controlled devices, such as lights, garage door, and climate
control equipment. Also in the industry and workplace, there are current
systems that have some of the functionality of IoT, e.g, sensors in robots
and machines which keep track of the system status so that maintenance
can be scheduled at the right time. However, these systems or sensors rarely
communicate with each other or make decisions based on other sensor values;
instead they depend on input from a user.

In the same way cellphones connected people and made them constantly
connected to the Internet, IoT will connect devices and make them con-
stantly connected to the Internet [2]. In theory, this could lead to a future
with autonomous technology all around us. The benefits could be huge as
it would save time and energy for both the individual at home and for the
industry [3]. IoT could be used in industry to automate power-heavy tasks
to run when the electricity price is low. This principle can also be applied
for the home user with laundry machines and charging of e.g. electric cars.
This practice would lead to reduced energy consumption and thus a reduced
environmental footprint.

i3tex AB wants to investigate potential fields of applicability of this
upcoming technology. i3tex AB has customers in the automotive, communi-
cation, and pulp industries; those customers have made inquiries on how to
integrate IoT and sensor networks into production. As technology evolves,
size and energy consumption of the IoT devices will decrease and computa-
tion power will increase [4]. This reduction in size and energy consumption,
together with the increased computing power, will open up new fields for



IoT. Thus, i3tex AB want to have an IoT platform to present to their current
and potential customers.

The interest in IoT is rapidly increasing, and thus, in the near future,
the number of devices connected to the Internet is expected to increase
rapidly. To support this huge increase in both number of connected devices
and the sheer amount of data that will be sent over both wired and wireless
networks, the communication technology must be ready [5].

1.2 Purpose

The purpose of this project is to find and examine a communication method
for devices that are made to be a part of IoT. This will be done by exam-
ining the available technologies and then developing a prototype based on
the findings, which will be used for examining the communication method.
This project will examine the physical, link, and network layers [6, 7] of
the Open Systems Interconnection model (OSI model) [8], in order to find
suitable technologies on the market. As IoT is still only defined as a con-
cept, there are several technologies to take into consideration and examine
in further detail. The prototype will be delivered to i3tex AB together with
appropriate documentation, e.g. technical specification, hardware manual,
software manual, and API specification.

1.3 Limitations

To be able to achieve the project goal within the available time, limitations
need to be defined in the three main areas of: Operating System (OS),
hardware, and communication method.

The OS will not be custom-made, but rather selected amongst those al-
ready on the market. Thus, to simplify the hardware selection, only those
OSs which already have hardware support that meets the requirements will
be taken into consideration. Furthermore, support for either 6LoWPAN,
ZigBee, or Bluetooth Low Energy (BLE) as communication method is re-
quired, since development to make those standards available is outside the
scope of the project.

On the hardware side, the limitations will be to only use existing devices
and parts as there will be no time for developing hardware or Printed Circuit
Boards (PCBs). However, the hardware does not need to have an integrated
radio transceiver, but needs to support at least one transceiver supporting
IEEE802.15.4 [6]. Thus, communication methods will be primarily selected
from specifications building on the IEEE 802.15.4.



1.4 Method

To ensure that the right technologies were selected and investigated, the
first phase of the project was a literature study. The study served as a
foundation when developing and performing the evaluation of the commu-
nication methods. At the end of the phase, a requirements specification was
formulated to serve as a platform for the next phase.

After the literature study, a selection process was performed, where the
most promising technologies that met the requirements were examined in
further detail and brought into the development phase. This process in-
cluded the selection of development tools and other decisions bound to the
product development.

In the development phase, the chosen set-up was configured and assem-
bled to prepare for testing; it was then tested according to throughput,
range, latency, and energy consumption. Throughput was measured in kilo-
byte per second (KB/s) and tested by transferring data of different sizes
in both congested and uncongested network set-ups to simulate real world
and lab environments. The same set-up was used to measure the latency
of a transmission, which was measured in microseconds (ms). Range was
calculated instead of measured, with meters (m) as the unit. The power
consumption was measured in watts (W).

Each week a meeting with the company supervisors was performed, to
keep the work on the right track. Here, feedback was be given and other
issues and questions handled.



Chapter 2

Technical Background

As of now, IoT is still on a concept level, and is roughly defined as a world-
wide network of objects, where each object is equipped with sensors and/or
actuators, Microcontroller (MCU), transceiver, and power source [9, 10].
The objects or devices are connected to smaller networks called mesh net-
works; the mesh networks are then connected to the IPv6 based internet
with border routers which translate the IPv6 messages into messages more
suited for energy efficient communication. Each node is supposed to be di-
rectly addressable thanks to the vast amount of IP addresses available in
the IPv6 standard.

Each mesh network is built up from several nodes [11], i.e. the consumer
devices, all talking to all other nodes within range, as seen in figure 2.1.
The nodes may either be passive or active, depending on the role of the
node. Active nodes serve as the branches of the network and are constantly
ready to relay messages in either direction. These nodes usually have an
external power source. Passive nodes, often used as data collectors, only
turn on when it is time to collect and send new data. Usually, they do not
relay data and can be seen as the leaves of the network structure; therefore
they can operate on battery power. The border router is the link between
the Internet and the mesh network; it translates IPv6 frames into mesh
networks frames. A mesh network frame differs from a IPv6 frame in both
size and addressing; the addressing can be either a variation of IPv6 or
a completely independent scheme, and the size is usually only 10% of the
IPv6 frame size. All nodes can talk directly to every other node in range i.e.
their neighbours, but to reach the border router, one of the neighbours are
selected as the active route. The active route is supposed to be the most
effective way to reach the border router in terms of latency and hops.



—— Active Route

Figure 2.1: ToT mesh network

One of the most common mesh network communication standards is
IEEE 802.15.4; it defines the Physical (PHY) layer and Medium Access
Control (MAC) layer of the OSI model [8]. This standard has two major
implementations: 6LoWPAN and ZigBee. Each implementation can operate
in the 2400-2483.5, 902-928, and 868-868.6 MHz frequency spans as defined
in the IEEE 802.15.4 standard. One of the main differences is that 6LoW-
PAN uses native IPv6 addressing; thus the nodes can be accessed directly
from any IPv6 enabled device connected to the Internet.

A node is specified to be a low power MCU with a transceiver and some
sensors and/or actuators. The assignment of the nodes is to monitor their
surroundings or to control particular equipment. A consumer device can
have a integrated or external IoT node and in both cases the device as
a whole is considered to be a IoT device. Nodes can have different soft-
ware complexity depending on their role, but in general an embedded OS is
needed.

Thus, when designing a IoT device, there are three major components
that need to work together: MCU, OS, and communication. In the following
sections, the most prominent technologies in each of these fields will be
examined and described. This investigation will act as the foundation for
the implementation phase of the project.



2.1 Operating system

The operating system is the foundation of the IoT technology as it provides
the functions for the connectivity between the nodes. However, different
types of nodes need different levels of OS complexity; a passive node gener-
ally only needs the communication stack and is not in need of any threading
capabilities, as the program can handle all logic in one function. Active
nodes and border routers need to have a much more complex OS, as they
need to be able to handle several running threads or processes, e.g. routing,
data collection and interrupts. To qualify as an OS suitable for the IoT, it
needs to meet the basic requirements:

e Low Random-access memory (RAM) footprint

Low Read-only memory (ROM) footprint

Multi-tasking
e Power management (PM)
e Soft real-time

These requirements are directly bound to the type of hardware designed for
the ToT. As this type of hardware in general needs to have a small form fac-
tor and a long battery life, the on-board memory is usually limited to keep
down size and energy consumption. Also, because of the limited amount
of memory, the implementation of threads is usually a challenging task, as
context switching needs to store thread or process variables to memory. The
size of the memory also directly affects the energy consumption, as mem-
ory in general is very power hungry during accesses. To be able reduce the
energy consumption, the OS needs some kind of power management. The
power management does not only let the OS turn on and off peripherals such
as flash memory, I/O, and sensors, but also puts the MCU itself in different
power modes. As the nodes can be used to control and monitor consumer
devices, either a hard or soft real-time OS is required. Otherwise, actions re-
quiring a close to instantaneous reaction might be indefinitely delayed. Hard
real-time means that the OS scheduler can guarantee latency and execution
time, whereas Soft real-time means that latency and execution time is seen
as real-time but can not be guaranteed by the scheduler. Operating systems
that meet the above requirements are compared in table 2.1 and 2.2.



Table 2.1: OS Requirements Support

Memory Real-time
OS RAM ROM Multi-tasking PM Hard Soft

Contiki 10kB  30kB X X - X
RIOT 1.5kB  5kB X X X X
TinyOS 1kB 4kB X X - X
freeRTOS 1kB  10kB X X X X

Table 2.2: OS Programming Language Support

OS C C++4+ nesC

Contiki X - -
RIOT X X -
TinyOS - - X
freeRTOS X - -

2.1.1 Contiki

Contiki is a embedded operating system developed for IoT written in C [12].
It supports a broad range of MCUs and has drivers for various transceivers.
The OS does not only support TCP/IPv4 and IPv6 with the ulP stack [9],
but also has support for the 6LoWPAN stack and its own stack called RIME.
It supports threading with a thread system called Photothreads [13]. The
threads are stack-less and thus use only two bytes of memory per thread;
however, each thread is bound to one function and it only has permission
to control its own execution.

Included in Contiki, there is a range of applications such as a HTTP,
Constrained Application Protocol (CoAP), FTP, and DHCP servers, as well
as other useful programs and tools. These applications can be included in
a project and can run simultaneously with the help of Photothreads. The
limitations to what applications can be run is the amount of RAM and
ROM the target MCU provides. A standard system with IPv6 networking
needs about 10 kB RAM and 30 kB ROM but as applications are added the

requirements tend to grow.



2.1.2 RIOT

RIOT is a open source embedded operating system supported by Freie Uni-
versitdt Berlin, INIRA, and Hamburg University of Applied Sciences [14].
The kernel is written in C but the upper layers support C++ as well. As
the project originates from a project with real-time and reliability require-
ments, the kernel supports hard real-time multi-tasking scheduling. One of
the goals of the project is to make the OS completely POSIX compliant.
Overhead for multi-threading is minimal with less than 25 bytes per thread.
Both IPv6 and 6LoWPAN is supported together with UDP, TCP, and IPv6
Routing Protocol for Low-Power and Lossy Networks (RPL); and CoAP and
Concise Binary Object Representation (CBOR) are available as application
level communication protocols.

2.1.3 TinyOS

TinyOS is written in Network Embedded Systems C (nesC) which is a vari-
ant of C [15]. nesC does not have any dynamic memory allocation and all
program paths are available at compile-time. This is manageable thanks to
the structure of the language; it uses modules and interfaces instead of func-
tions [16]. The modules use and provide interfaces and are interconnected
with configurations; this procedure makes up the structure of the program.
Multitasking is implemented in two ways: trough tasks and events. Tasks,
which focus on computation, are non-preemptive, and run until comple-
tion. In contrast, events which focus on external events i.e. interrupts, are
preemptive, and have separate start and stop functions. The OS has full
support for both 6LoWPAN and RPL, and also have libraries for CoAP.

2.1.4 freeRTOS

One of the more popular and widely known operating systems is freeRTOS
[17]. Written in C with only a few source files, it is a simple but power-
ful OS, easy to overview and extend. It features two modes of scheduling,
pre-emptive and co-operative, which may be selected according to the re-
quirements of the application. Two types of multitasking are featured: one
is a lightweight Co-routine type, which has a shared stack for lower RAM
usage and is thus aimed to be used on very small devices; the other is sim-
ply called Task, has its own stack and can therefore be fully pre-empted.
Tasks also support priorities which are used together with the pre-emptive
scheduler. The communication methods supported out-of-the-box are TCP
and UDP.



2.2 Hardware

Even though the hardware is in one sense the tool that the OS uses to
make IoT possible, it is still very important to select a platform that is
future-proof and extensible. To be regarded as an extensible platform, the
hardware needs to have I/O connections that can be used by external pe-
ripherals. Amongst the candidate interfaces are Serial Peripheral Interface
(SPI), Inter-Integrated Circuit (I?C), and Controller Area Network (CAN).
These interfaces allow developers to attach custom-made PCBs with sen-
sors for monitoring or actuators for controlling the environment. The best
practice is to implement an extension socket with a well-known form factor.

A future-proof device is specified as a device that will be as attractive
in the future as it is today. For hardware, this is very hard to achieve as
there is constant development that follows Moore’s Law [4]; however, the
most important aspects are: the age of the chip, its expected remaining
lifetime, and number of current implementations i.e. its popularity. If a
device is widely used by consumers, the lifetime of the product is likely
to be extended. One last thing to take into consideration is the product
family; if the chip belongs to a family with several members the transition
to a newer chip is usually easier.

2.2.1 OpenMote

OpenMote is based on the Ti CC2538 System on Chip (SoC), which com-
bines an ARM Cortex-M3 with a IEEE 802.15.4 transceiver in one chip
[18, 19]. The board follows the XBee form factor for easier extensibility,
which is used to connect the core board to either the OpenBattery or Open-
Base extension boards [20, 21]. It originates from the CC2538DK which
was used by Thingsquare to demo their Mist IoT solution [22]. Hence, the
board has full support for Contiki, which is the foundation of Thingsquare.
It can run both as a battery-powered sensor board and as a border router,
depending on what extension board it is attached to, e.g OpenBattery or
OpenBase. Furthermore, the board has limited support but ongoing devel-
opment for RIOT and also full support for freeRTOS.



Table 2.3: OpenMote and extensions specifications

e C(C2538 SoC e Current Consumption
— ARM Cortex-M3 MCU — 24 mA Active
— RAM 32kB — 0.6 mA Standby
— Flash 512kB — 0.4 uA Deep Sleep

HW Multiplier/Divider
— 32 x GPIO Pins

e OpenBattery

— 2xAA Battery Slot

—- 12C
SPI — SHT21 Temp and
B Humidity Sensor
— ADC 12-bits — ADXL346 Acceleration
— AES/RSA Encryption Sensor
Engine — MAX44009 Light
e Radio Transceiver Sensor
_ 9.4 GHz e OpenBase
— IEEE 802.15.4 — FTDI FT232R Serial
— 7 dBm Power Port
— -97 dBm Sensitivity — ENC28J60 Ethernet
Port
e Price

— OpenMote: 90 euro
— OpenBase: 60 euro
— OpenBattery: 30 euro

2.2.2 MSB430-H

The Modular Sensor Board 430-H from Freie Universitdt Berlin was designed
for their ScatterWeb project [23]. As the university also hosts the RIOT
project, the decision to support RIOT was natural. The main board has a
Ti MSP430F1612 MCU [24], a Ti CC1100 transceiver, and a battery slot
for dual AA batteries; it also includes a SHT11 temperature and humidity
sensor and a MMAT7260Q accelerometer to speed up early development. All
GPIO pins and buses are connected to external pins for extensibility. Other
modules with new peripherals can then be added by making a PCB that

10



matches the external pin layout.

Table 2.4: MSB430 Specification

e MSP430F1612 MCU e Sensors
— RAM 5kB — SHT11 Temp and
— Flash 55kB+256B Humidity Sensor
— 48 GPIO Pins — MMAT7260Q

) Accelerometer
- I°C
— SPI e Current Consumption
_ ADC 12-bits (MCU+RF)
— DAC 12-bits — 330 uA + 16.9 mA
Active

e CC1100 Transciever 11 uA 4 1.6 mA
— < 1 GHz Standby
— IEEE 802.15.4 — 0.2 uA + 0.4 uA Deep
— 10 dBm Power Sleep
— -93 dBm Sensitivity e Price

— 30 - 100 euro depending
on manufacturing cost

2.2.3 Zolertia Z1

As many other Wireless Sensor Network (WSN) products, the Zolertia Z1
builds upon the MSP430 MCU [25, 26]. The communication is managed
by the Ti CC2420 which operates in the 2.4 GHz band. The platform
includes two sensors: the SHT11 temperature and humidity sensor and the
MMAT7600Q accelerometer. Extensibility is ensured with: two connections
designed especially for external sensors, an external connector with USB,
Universal asynchronous receiver/transmitter (UART), SPI, and I?C.

11



Table 2.5: Zolertia Z1 Specification

e MSP430F2617 MCU e Sensors
— RAM 8kB — ADXL345
— Flash 92kB+256B Accelerometer
— 48 GPIO Pins — TMP102 Temperature
2C Sensor
— SPI e Current Consumption
— ADC 12-bits (MCU+RF)
— DAC 12-bits — 365 uA + 18.8 mA
_ Active
e (C(C2420 Transciever 0.5 uA - 426 uA
— 2.4 GHz Standby
— IEEE 802.15.4 — 0.1 uA + 0.02 uA Deep
— 0 dBm Power Sleep
— -95 dBm Sensitivity e Price
— 95 euro

2.3 Communication protocol

Several different wireless communication protocols, such as Wireless LAN
(WLAN), BLE, 6LoWPAN, and ZigBee may be suitable for IoT applica-
tions. They all operate in the 2.4GHz frequency band and this, together
with the limited output power in this band, means that they all have a simi-
lar range. The main differences are located in the MAC, PHY, and network
layer. WLAN is much too power hungry as seen in table 2.6 and is only
listed as a reference for the comparisons.

Table 2.6: Protocol specification overview

Protocol Frequency Range IEEE Data Rate TX Active Power @ 3V

WLAN 2.4GHz 35m 802.11 54 Mbit/s  ~800mW
BLE 2.4GHz 100m  802.15.1 1 Mbit/s ~25mW
6LoWPAN 2.4GHz 20m 802.15.4 250 kbit/s <75mW
ZigBee 2.4GHz 20m 802.15.4 250 kbit/s <75mW

12



2.3.1 IEEE 802.15.4

The TEEE 802.15.4 standard defines the PHY and MAC layers for wire-
less communication [6]. It is designed to use as little transmission time as
possible but still have a decent payload, while consuming as little power as
possible. Each frame starts with a preamble and a start frame delimiter; it
then continues with the MAC frame length and the MAC frame itself as seen
in figure 2.2. The overhead for each PHY packet is only % ~ 4.5%; when
using the maximum transmission speed of 250kbit /s, each frame can be sent
in % = 4.265ms. Furthermore, it can also operate in the 868MHz and

915MHz bands, maintaining the 250kbit/s transmission rate by using Offset
quadrature phase-shift keying (O-QPSK).

IEEE 802.15.4 frame
131 Byte

Preamble Start Frame Frame Length MAC Frame

4B Del{n&iter 1B 127 Byte

Figure 2.2: IEEE 802.15.4 frame

Several network layer protocols are implemented on top of IEEE 802.15.4.
The two that will be examined are 6LoWPAN and ZigBEE.

6LoWPAN

6LoWPAN is a relatively new protocol that is maintained by the Internet
Engineering Task Force (IETF) [7, 6]. The purpose of the protocol is to
enable IPv6 traffic over a IEEE 802.15.4 network with as low overhead as
possible; this is achieved by compressing the IPv6 and UDP header. A full
size IPv6 + UDP header is 4048 bytes which is ~ 38% of a IEEE 802.15.4
frame, but with the header compression this overhead can be reduced to 7
bytes, thus reducing the overhead to ~ 5%, as seen in figures 2.3 and 2.4.

IEEE 802.15.4 frame
133 Byte

Preamble SFD FL 6LoWPAN Uncompressed frame
4B 1B 1B 127 Byte

FCF DSN Address Pagload
2B 1B 208 102 B

Dst: PANID  Dst: MAC  Src: PANID  Src; MAC 1Py uD Data paylc
28 8B 2B 88 40 8

Figure 2.3: 6LoWPAN uncompressed frame

13



IEEE 802.15.4 frame

133 Byte

Preamble
4B

SFD FL 6LoWPAN compressed frame
1B 1B 127 Byte

Address
20B

Figure 2.4: 6LoWPAN compressed frame

ZigBee

ZigBee is a communication standard initially developed for home automation
networks; it has several different protocols designed for specific areas such
as lighting, remote control, or health care [27, 6]. Each of these protocols
uses their own addressing with different overhead; however, there is also the
possibility of direct IPv6 addressing. Then, the overhead is the same as for
uncompressed 6LoOWPAN, as seen in figure 2.5.

IEEE 802.15.4 Frame
133 Byte

Preamble  SFD FL ZigBee frame
4B 1B 127 Byte

Address Payload
20B 102 B

Dst: PAN ID  Dst: MAC Src: PANID  Src: MAC IPv6 uD Data payload
2B 8B 2B 8B 40 B 8B 54 B

Figure 2.5: ZigBee frame

A new standard called ZigBee 3.0 aims to bring all these standards to-
gether under one roof to simplify the integration into IoT. The release date
of this standard is set to Q4 2015.

2.3.2 Bluetooth LE

BLE is developed to be backwards compatible with Bluetooth, but with
lower data rate and power consumption [28]. Featuring a data rate of
1Mbit/s with a peak current consumption less than 15mA, it is a very ef-
ficient protocol for small amounts of data. Each frame can be transmitted

in %};@Z = 376us; thanks to the short transmission time, the transceiver

14



consumes less power as the transceiver can be in receive mode or completely
off most of the time. BLE uses its own addressing methods and as the MAC
frame size (figure 2.6) is only 39bytes, thus IPv6 addressing is not possible.

IEEE 802.15.1 Frame
47 Byte

Preamble Access Address Bluetooth LE Frame
1B 4B 39B

Header Payload
2B 0-37B

Figure 2.6: BLE frame

Starting from Bluetooth version 4.2, there is support for IPv6 addressing
with the Internet Protocol Support Profile; the new version allows the BLE
frame to be variable between 2 - 257 bytes. The network set-up is controlled
by the standard Bluetooth methods, whereas IPv6 addressing is handled by
6LoWPAN as specified in IPv6 over Bluetooth Low Energy [29].

15



Chapter 3

Implementation

The goal of the implementation phase is to have a working prototype for
future assessment. To make the process of implementing the prototype
possible, the first part of the implementation process will be to create a set
of requirements. When these are set, the process will continue by comparing
the data from chapter 2 to find the candidates that fulfil the requirements.
After the technologies are selected, the process will continue with setting
up the workspace, which includes the platform for development and the
required tools to build, debug and test the prototype. Finally, when these
three steps have been performed, the next step will be to start with the
actual prototype development.

3.1 Selection of technology

3.1.1 Requirements

As the time dedicated for development is limited, the requirements have
to make sure that the development process does not run into any major
obstacles. All parts of the total prototype need to fit together seamlessly.
However, the hardware platform and the operating system are tied most
closely together. Therefore, they need requirements that complement each
other, so that they can act as a platform for software development. Natu-
rally, both the hardware and the operating system requirements might have
to be altered slightly to enable the best match.

Hardware

e Transceiver with IEEE 802.15.4 or IEEE 802.15.1
e Integrated sensor/sensors

e MCU with low power mode under 5uA

16



e Wakeup from low power mode with timer
e Border router ability

e Joint Test Action Group (JTAG) support

Operating system
e Support for the SoC/MCU and transceiver
e 6LoWPAN, ZigBee or BLE stack
e Soft real-time

e RAM and ROM footprint matching the hardware

Communication protocol

e IPv6 addressing support
e Existing OS support
e Network type is mesh

e UDP

3.1.2 Hardware

Fach platform examined in chapter 2 has different strengths and weaknesses.
When looking at the MCU, OpenMote has a ARM Cortex-M3 which is
more powerful compared to the other two alternatives: it features a 32bit
32MHz core with 32KB RAM and 512KB flash memory compared to the
MSP430 16bit 25MHz core with ~10KB/~100KB memory configuration.
In terms of peripherals all three platforms are comparable, with similar
amount of DAC, GPIO pins, and external busses. All of the platforms have
a temperature sensor and an accelerometer, but OpenMote also features
an light /uv-light sensor and a voltage sensor built into the MCU’s ADC.
The MSB430 platform has a somewhat lower power consumption in active
RF mode thanks to the less power-hungry sub-GHz transceiver. On the
other hand, the less powerful MSP430 MCU has a better deep sleep power
consumption, but as the radio is not integrated in the chip as it is in the
C(C2538 SoC, that advantage is offset by the external transceiver.
Comparing the transceivers, there are two 2.4GHz models and one sub-
GHz model; the sub-GHz CC1100 has a higher transmit power of 10dBm
compared to 0dBm for CC2420 and 7dBm for CC2538. Also the sensitivity
is similar for all the alternatives but gives a slight advantage to CC2538
with -97dBm compared to -95dBm and -93dBm for CC2420 and CC1100.

17



Using these numbers and Friis range equation (equation 4.1) the range of
each transceiver with a Fade margin (FM) of 20dB can be seen in figure
3.1. The benefits of working with lower frequencies can clearly be seen as
the theoretical range of CC1100 is almost 3 times longer than the 2.4GHz
transceivers.

450

400

CC2538 CC1100 CC2420
Transceiver

Figure 3.1: Range comparison with a FM of 20dB

Adding all this information together, the choice of platform will land on
OpenMote with the CC2538S0C. It both has a MCU with more memory
and better performance, and a transceiver with really good characteristics
both in terms of energy consumption and range. Also OpenMote is the only
option that can act as a border router using OpenBase; it lets the SoC inter-
face with USB, UART, JTAG, and Ethernet, which enables the standalone
border router mode without the need to be connected to a computer or other
hardware. The OpenBattery extension lets the SoC operate as a node in a
mesh network and provides a dual AAA battery slot connected to the PCB.

3.1.3 Operating system

As a modern operating system can be compiled to match almost any hard-
ware, the most important thing to have in mind is the out-of-the-box hard-
ware support. Only RIOT and Contiki have full support for the ARM

18



Cortex-M3 of the considered operating systems and thus both TinyOS and
freeRTOS are directly eliminated as developing the support would take too
much time. Compared to RIOT, Contiki also has full driver support for
the sensors and transceiver, which should decrease the implementation time
significantly. When compiled into binary form, RIOT uses less RAM and
ROM and thus probably is a bit faster compared to Contiki, which could be
important if the application consumes much resources. The lower memory
usage might also give RIOT an advantage in being future-proof.

Contiki also has support for soft real-time scheduling compared to the
hard real-time scheduling of RIOT; this is however not crucial, as the soft-
ware that will be running on the OS does not have any hard real-time
constraints.

Both RIOT and Contiki have support for 6LoOWPAN but no support
for either ZigBee or BLE; this is due to the fact that these are proprietary
stacks. Support could be added but would take some time to customize for
the given OS. What gives Contiki the largest advantage is that it also have
border router software ready for deployment, which in the RIOT case would
have to be developed.

All in all; as the project has such a limited time frame, Contiki will be
selected as the OS; this, mainly because Contiki comes with most advantages
time-wise; this choice means that the focus of the software development will
be the creation of a test and evaluation system.

3.1.4 Communication protocol

The OpenMote platform has a IEEE 802.15.4 transceiver and thus supports
both ZigBee and 6LoWPAN; this means that BLE is not an option. As Zig-
Bee does not have full IPv6 support yet and is not integrated into Contiki,
the natural choice is 6LoOWPAN. This choice will not only save some devel-
opment time but also enables evaluation of the header compression. As seen
in figure 3.2, the 6LoWPAN stack in Contiki will replace the IP stack while
maintaining the same functionality. As the functionality is the same, TCP
and HTTP will work with 6LoWPAN;, but including them in the source in-
creases the OS build size considerably. On top of the UDP layer, Contiki
also has a working implementation of CoAP that can be used for retrieving
data from the nodes in a power efficient manner. CoAP is a stateless pro-
tocol that uses the HT'TP response headers to achieve a very low overhead
in transmissions while using application level reliability methods to ensure
packet delivery.

19



Applicat-

Transport
Network 6LoWPAN

Link MAC

Physical PHY

Figure 3.2: TCP/IP v.s. 6LoWPAN stack comparison

3.1.5 Workspace and tools

The ARM Cortex-M3 chip that OpenMote and CC2538 is built upon re-
quires the GCC ARM Embedded compiler. This tool-chain is free and runs
on both Linux, OSX, and Windows; however, there is no bundled develop-
ment application so a secondary application for programming is needed. In
Windows, there are several Integrated Development Environments (IDEs)
such as IAR Workbench ARM [30], Code Composer Studio [31] and the
Eclipse plug-in ARM DS-5 [32, 33]; these IDEs use various proprietary tool-
chains and have a price tag ranging from free to several thousand SEK.
Most of the IDEs also have a code size restriction for the free versions. To
minimize the costs, the development machine development machine used in
this project will run Ubuntu 14.04 LTS, the used tool-chain is GCC ARM
Embedded, and Geany is used as the code development application. To
analyse the network traffic in real-time, the open source tool Wireshark is
used together with a IEEE 802.15.4 packet sniffer. Together with a laptop,
the packet sniffer will grant the ability to traverse the mesh network and
analyse the network in real-time as it is seen by the nodes.

3.2 Prototype Development

The goal of the development process is to have a functional border router
and at least two nodes to be able to test how response time and throughput
differs with each hop in a mesh network. To be able to measure response
time and throughput, each node needs to have a CoAP server which can
respond to ping and also receive an arbitrary amount of data for throughput
measurement. It is desirable for each node to be able to send information
about each sensor so the project can be used as a tech-demo.

The first part of the development was to set-up of the workspace and
tools mentioned in section 3.1.5. Ubuntu OS was installed in a VirtualBox
Virtual Machine to make it easier to duplicate and backup; this procedure
gave a noticeable decrease in performance and it is recommended to have a
dedicated native Ubuntu machine for this type of development. Even though

20



Ubuntu uses an easy-to-use package system, there were some problems in
finding a version of GCC ARM Embedded tool-chain that was compatible
with Contiki’s built-in simulator Cooja [34, 35]; eventually, version 4.82
was used to successfully build Contiki. Cooja is a useful tool for testing
and debugging network configurations but does not have support for the
C(C2538 MCU; instead, nodes called Cooja Motes are simulated with generic
hardware. As Cooja is written in Java and runs in a JVM, Oracle Java 1.8
was also installed.

3.2.1 Drivers and firmware

Figure 3.3 shows an overview of the full system. The foundation is the
SoC with the MCU, transceiver, and sensors. The Contiki operating sys-
tem implements the soft real-time kernel together with the firmware for the
SoC/MCU and the drivers for the peripherals and sensors. The last part is
the communication stack, which provides TCP and UDP connectivity over
6LoWPAN. On top of the TCP and UDP protocols, HTTP and/or CoAP
can be implemented.

The firmware required for the OS to work properly on the hardware
platform was already implemented. However, the drivers for the I?C bus
and the sensors were not implemented. The I2C driver is required for the
sensor drivers which in turn enables the MCU to communicate with the
sensors on the OpenBattery platform.

21



CoAP, HTTP

UDP, TCP, RPL

6LoWPAN

IEEE802.15.4e

IEEE802.15.4-2011

Communication

Drivers Firmware

Operating System

Kernel

Hardware

Sensors Transciever

MCU

Figure 3.3: Contiki block overview

3.2.2 CoAP server

In order to make each node’s sensor data accessible, a CoAP sever was im-
plemented as an application running on top of Contiki. A CoAP server in
general can handle any number of resources; in this implementation, one
resource was made for each sensor value i.e. temperature, light, humidity,
and core voltage. The temperature, light, and humidity sensors all work in
a similar fashion. When their value is requested, the 12C bus is initialized
and then a request is sent over the bus. When the response with the value
arrives, that data is put into either a plain-text or JavaScript Object No-
tation (JSON) formatted message depending on the request and then sent
back to the requester. As the core voltage sensor is part of the MCU’s ADC,
that value is retrieved by simply getting data from a register (a somewhat
faster operation).

As a buffer for testing throughput speed was also needed, a resource
with a circular buffer was implemented. This resource is configured with
CoAP’s block-wise transfer functionality for arbitrary data size; however,
the buffer in itself is only 1024Kb to allow the program variables to fit into
the ultra low leakage SRAM. For testing purposes, the data could have been

22



discarded instead of actually saved into the buffer, but then the transfer can
not be verified. Resources are defined by paths as CoAP works in a very
similar way as HTTP.

Table 3.1: Resources and paths

Resource name  Resource path Media type Content type
Light sensors/light application/json application/json
Temperature sensors/temp application/json application/json
Humidity sensors/humidity application/json application/json
Core Voltage sensors,/vdd application/json application/json
Circular Buffer  testing/buffer text /plain text /plain

Each resource is registered in the server with its path, media type, and
content type. When a package arrives on the CoAP port, the server starts
to break down the package to be able to direct it to the right resource. It
starts with verifying that the package is actually a CoAP package, and then
it checks the path and sends it to the correct resource. The resource then
inspects the method field in the package header to direct the incoming data
to the right function. CoAP package method can be either GET, PUT,
POST or DELETE. This function then inspects the request media type
and answer content type so that the function can parse the request and
send a correctly formatted answer. If the resource does not implement the
received method, the server responds with 7405 - Method not allowed” and if
the content/media type is not supported the answer is 7415 - Unsupported
Media Type”. The content/media types are text/plain, application/json,
application/exi, and application/xml.

3.2.3 Testing

Contiki is shipped with a simulation tool called Cooja which is written in
Java; it can simulate an arbitrary number of nodes with different roles and
configurations. All simulation data, such as radio packages and node serial
output may be viewed through different windows and exported to various
formats. Unfortunately Cooja did not have support for ARM Cortex-M3,
but the general set-up was still tested by using Cooja Motes, which are
nodes without specified hardware, and MSP430 nodes such as Wismote or
Skymotes. With this simulator the basic understanding of the communi-
cation between nodes was gained; also, before the hardware arrived, early
testing was performed to test the OS and application software.

23



3.3 Final prototype

The final prototype consists of four OpenBattery nodes and one OpenBase
border router. Both the nodes and the border router are deployed with
Contiki. Each node runs a CoAP server, described in section 3.2.2, on top
of the OS in its own thread. The border router runs a router software called
61br that acts a as translator between Ethernet and IEEE 802.15.4 [36]. Both
types of hardware are configured with a 8Hz Radio Duty Cycle (RDC) driver
to keep the power consumption to a minimum. RDC is a OS driver that
cycles the listening mode of the transceiver to reduce power consumption.
As Contiki puts the MCU into Low Power Mode (LPM) when no function is
running and the transceiver is off, the RDC driver indirectly controls when
the MCU is in LPM. When using the RDC protocol, the nodes repeatedly
send messages until the target node wakes up and sends an Acknowledge
packet (ACK); this makes communication seamless, even though most of the
time the nodes’ transceivers are not active. Also, an always-on RDC driver,
where the transceiver is constantly listening, will be used to be able to look
at the performance impact of the 8Hz RDC.

24



Chapter 4

Assessment

In this chapter the results from each type of assessment are presented. The
first assessment is range, followed by response time, after that connection
speed, and finally the power consumption. The only assessment that is not
performed on the prototype is the range assessment.

4.1 Range

Range is very hard to measure without advanced equipment and isolated
rooms but can be roughly estimated with equation 4.1 called Friis range
equation [37]. P, is the sender transmit power, P, the receiver sensitivity, d
is the distance between the antennas in meters, f is the signal frequency in
hertz, and A is the wavelength. Gy and G, is the antenna gain for the trans-
mitter and the receiver. The last term in equation 4.1, when inverted, is the
Free-space path loss (FSPL) and can be expanded as shown in equation 4.3.

A
C
A= — 4.2
7 (4.2)
FSPL(AB) = 20logyo(d) + 20logy,(f) — 147.56 (4.3)

Unlike Friis range equation, the Link budget equation 4.4 also takes external
loss like FM into account [38]. This is needed to make a correct estimation of
the actual range as there are several things in the environment that obstructs
and distorts the signal.

P, = P+ G; + G, — FM — FSPL (4.4)

Combining equation 4.1, 4.3 and 4.4 gives us the equation for the estimated
distance as seen in equation 4.5.
d=10"
P, + G+ G, — P, — FM +147.56 — 20 log,(f) (4.5)
€Tr =
20

25



With this equation an estimation of the transceiver range can be made for
different FMs and transmit powers. When deployed, the transceiver is con-
figured to only accept packages with a signal strength of -70dBm and above
to minimize packet loss and corruption. The antenna gain for OpenMote is
0dBi and can thus be omitted. Figure 4.1 shows a comparison between three
different levels of FM: 0dB, 10dB, and 20dB. A FM of 0dB means that there
is no signal loss except the FSPL and this is very hard to achieve outside of
a lab environment. When increasing the FM to 10dB, which corresponds to
a normal home environment, the maximum range drops to 22m. However,
in these kind of environments the desired range is usually around 10m which
would let the device reduce the transmit power to around 0dBm. Finally,
the FM is increased to 20dB which is roughly what it would be in a office
or industrial environment. The maximum range in this environment is now
reduced to only 7m when transmitting at maximum power.

80 : :
———FM 0dB

| —— FM 10dB

01— Em20d8

Range (m)
S a1 2]
o o o

w
[=]

-20 =17 -14 -11 -8 -5 -2 1 4 7
Transmit power (dBm)

Figure 4.1: Comparison between theoretical ranges at different FMs with a
receiver sensitivity of -70dBm

4.2 Response time

Before measuring the response time, some theoretical estimations are needed
to be able to evaluate the real values. The theoretical values are based upon
the radio duty cycle (RDC) and the average response time to reach a node
can thus be derived from equation 4.6, 4.8, 4.9 and 4.10. As each node only

26



checks the radio every 125ms, this duration combined with the data packet
send time of ~4ms (equation 4.7.) and ACK send time corresponds to the
worst case delivery, as the node needs to wait a whole cycle before being
able to send the package the desired node. When the target node is already
listening, the best case delivery time is 5ms. Thus, the average theoretical
delivery time to reach any adjacent node is 67.5ms.

1

Radio duty cycle: gs = 0.125s = 125ms (4.6)

133B 4+ 4B
Transfer time: 3125;]3/5 ~ 4ms (4.7)
Worst case delivery: 125ms + 4ms + 1ms (4.8)
Best case delivery: 4ms + 1ms (4.9)

130 5

Avg. delivery: w = 67.5ms (4.10)

The delivery time is only calculating the time to send a packet over a link,
but when calculating the response time, the acknowledge (ACK) response
has to be included in the calculation. Each ACK also needs to wait for the
target node to be awake, adding one more instance of average delivery time,
resulting in 125ms in average response time. This time will multiply with
each hop, resulting in equation 4.11, 4.12 and 4.13.

Avg. response time: (2-67.5ms) - hops (4.11)
Best case response time: (2 - 5ms) - hops (4.12)
Worst case response time: (2 - 130ms) - hops (4.13)

After doing a test with real nodes set-up with a 8Hz RDC with three
hops, as seen in figure 4.2, the values in table 4.1 were obtained. Each node
was pinged 200 times at a one minute interval to simulate some traffic on
the network. What can clearly be seen in the average field of the table
is that the average of 765ms is much higher than the expected average of
135ms; the difference is mainly due to the worst-case pings that in some
cases had response times up to 30 seconds. However, when looking at the
geometrical mean which is better at smoothing out big spikes seen in fig-
ure 4.3, the observed response time is still 265ms which is a bit longer than
the expected worst case response time for one hop. Also, for two and three
hops the observed average is high, but the geometrical mean shows that this
is due to the spikes. The estimated response time for two hops is 270ms
which as seen in the geometrical mean table 4.1 is way off by ~500ms. The
same observation goes for three hops where the observed geometrical mean
response time is 1181ms which compared to the estimated response time of
405ms is significantly higher.

27



Active Route
Border Router

Active Node

PC with CoAP test client ‘

Figure 4.2: Assessment system set-up

Table 4.1: Response time for different hop levels using 8Hz RDC

Hops Average Mean Geometrical mean Worst Best

1 765ms 199ms 265ms 34s 31ms
2 1762ms 577ms 763ms 37s 205ms
3 2339ms  932ms 1181ms 60s 313ms

With these observations in mind, the estimation could be described much
better with equation 4.14. which would result in an average response time
of 266, 532 and 1064 ms for one, two and tree hops. However, this would
mean that the response time is doubled for one hop and then doubled for
each consequent hop making the response time exponential which should
not be the case.

Alternative avg. response time: (2 - 67.5ms) - 2P (4.14)

28



x 10

6
—— 1 Hops
5t —— 2 Hops i
— 3 Hops
4+ i
m
£
o> 3 ]
c
|
2 -

o AL AN A ) i AP i AN A
0 20 40 60 80 100 120 140 160 180 200
Measure

Figure 4.3: Plot of response times to nodes with different hop levels

With the RDC disabled, i.e. the transceiver is always listening and the
MCU does not go into sleep mode, the response time is completely different.
As seen in table 4.2 the average response time is around 12ms per hop and
the spikes seen in the response time for 8Hz RDC is gone. Furthermore,
the estimated best case response time of 10ms is very close to the observed
average response time. The response time also scales to the number of
hops as expected and is roughly 12ms per hop. It appears there might
be a problem in the RDC driver as the response time there seems to be
exponential.

Table 4.2: Response time for different hop levels when always listening

Hops Average Mean Best

1 12ms 12ms 11ms
2 20ms 20ms  19ms
3 28ms 31lms 27ms

29



4.3 Connection speed

Connection speeds can be measured in several ways each with their own
different pros and cons. One of the most popular ways is throughput, i.e.
the amount of data over the link is divided by the time it took to reach
the target. However, this gives a false picture of how fast the connection
actually is from the developer’s point of view, as the measured data does
not only contain application data but also headers and checksums. TEEE
802.15.4 has a theoretical data rate of 250kb/s as seen in equation 4.15. but
this is only a measure of how many bits per second the transceiver is able
to output. The application data part, when using no header compression, is
only 41% of the total transfer. Thus, resulting in a theoretical application
data rate, also called goodput, of only 12.81KB/s.

Data rate: 250kb/s = 31.25KB/s (4.15)
133B — 54B
head: ————— =0. 4.1
Overhea 1335 0.59 (4.16)

Theoretical goodput: 31.25KB/s - (1 —0.59) = 12.81KB/s (4.17)

When using CoAP as the application level protocol, each package can
carry either 32 or 64 bytes of application data. In practice, the 64B mode
is only applicable when sending packages between nodes on the same mesh
network, as the addressing fields then can be fully compressed. When using
applications outside the mesh network, each package can only carry 32B
of data, resulting in a packet size of 111B as shown in equation 4.18; this
does not affect the theoretical data rate but has a noticeable impact on the
goodput due to the large overhead of 71%, as shown in equation4.19. To be
able to use the full data rate, the application needs to use a protocol without
handshakes, i.e. UDP, as the transceiver then can send the packets as fast
as physically possible. CoAP is implemented on top of UDP and thus has a
low transport layer overhead, but uses its own mechanism for handshaking,
delivery and ordering. The theoretical CoAP application throughput can
be estimated by looking at the average response time of the node and then
add that time to the the data delivery time. Each package needs to be ac-
knowledged before the next package is sent, and thus the node response time
needs to be taken into consideration. When doing so, the throughput as cal-
culated in equation 4.20. is only 1.64KB/s and thus the theoretical goodput
is reduced from 12.81KB/s down to 0.48KB/s as shown in equation 4.21.

Packet size: 133B — 54B 4 32B = 111B (4.18)
79B

Actual overhead: 1018 = 0.71 (4.19)

(4.20)

30



Theoretical goodput: 1.64KB/s- (1 —0.71) = 0.48KB/s (4.21)

Using the packet size of 111B together with the theoretical response time
from equation 4.11 would give the results shown in figure 4.4. To verify these
calculations, the same test set-up as shown in figure 4.2, which also was used
in section 4.2, was used to test throughput and goodput at different number
of hops. Each node was sent 1KB data each minute for 200 minutes; the
time from the first package sent to the final acknowledge packet received
was measured for each 1KB transmission.

The first test was performed with an RDC of 8Hz and resulted in the
values shown in figure 4.5. As the chart shows, the theoretical throughput
and goodput is much higher than the observed values, but this is due to
the fact that the actual average response time is higher than the theoretical
one. With some calculations made the observed throughput and goodput
are within range of what is expected, given the observed response times in
table 4.1. Equation 4.22 uses the observed values to calculate the average
response time, given the values in figure 4.5.

Response time from throughput:

: 1000B
111B - Ceil (323/pkg) 13.165 (4.22)
=13.16s = — " ~411lms
0.27KB/s Cleil (3;}030/(;13@)

31



1.8

—e— Goodput
—e&— Troughput|/

1.69

1.4

1.2

KB/s

0.8

0.6

0.4

O |
1 2 3
Hops

Figure 4.4: Theoretical throughput and goodput vs number of hops with an
RDC of 8Hz.

32



0.35

—&— Goodput
—e&— Troughput| |

0.3f

0.25

0.2

KB/s

0.15

0.1

0.05

Hops

Figure 4.5: Practical throughput and goodput vs number of hops with an
RDC of 8Hz.

Using the same test set-up as in the previous test but with RDC disabled,
i.e. letting the transceiver always listen and disabling the sleep modes for the
MCU, give the results seen in figure 4.6. This can be verified with the same
method as before and when compared to the actual values from table 4.2,
as seen in equation 4.23, the values are consistent.

1000B
32B/pkg

35528
9KB/s

—— =123
32B/pkg e
3552B (4.23)

5.5KB/s
——— =20.2
32B/pkg 0-2ms

35528
3.9KB/s

32B/pkg

111B - Ceil < ) = 35528

12ms ~

20ms =~

28ms =~ = 28.5ms

33



—&— Goodput
9 —e— Troughput

KB/s

1 1
1 2 3
Hops

Figure 4.6: Practical throughput and goodput vs number of hops with an
always-on RDC.

4.4 Power consumption

To measure power on devices that use very low power and also changes
the power consumption very rapidly and frequently is not an easy task.
According to the currency specification from the CC2538, the different power
modes have the consumption seen in table 4.3 using the built in voltage
regulator TSP6750 that switches the input voltage down from the 3V to
2.2V. The components on the OpenBattery supplied directly by the 3V
batteries have the current and power consumption specifications as seen in
table 4.4.

34



Table 4.3: Current and power consumption for OpenMote @Q 2.1V

Mode/Component Current Power

MCU 13mA 27.3mW
TX @ 0dBm 24mA 50.4mW
TX @ 7dBm 34mA 71.4mW
RX 20mA 42mW

PM1 0.6mA  1.26mW
PM2 1.3uA 2.73uW

Sleep Timer (ST)  0.9uA 1.98uW
TSP6750 @ 3V 34uA  102uW

Table 4.4: Current and power consumption for OpenBattery @ 3V

Component Current Power

MAX44009 1.6pA  4.8uW
SHT21 0.5uA  1.5uW
ADXL346  0.2uA  0.6uW

This gives a base power consumption of 102+4.841.5+0.6 = 107.4uW
by adding the constant component consumption. Combined this adds up to
the power profiles in table 4.5.

Table 4.5: Power profiles for the different operating modes of OpenBattery
and OpenMote

Mode Active parts Power consumption

Measuring MCU+Base 27.3mW + 107.4puW = 27.41mW

RX RX+Base 42mW + 107.4pW = 44.11mW

TX @ 0dBm TX-+Base 50.4mW + 107.4pW = 50.51mW

TX @ 7dBm TX+Base 71.4mW + 107.4pW = 71.51mW

Sleep PM2+ST+Base 2.73uW + 1.98uW + 1074pW =
112.81uW

35



Given these power profiles, combined with the time it takes to receive
and transmit packages, and retrieve a measurement, the theoretical power
for one RDC cycle results in the chart seen in figure 4.7. The node starts
in sleep mode using 112.81uW and after 109ms wakes up and goes into RX
mode where a request for a sensor value is received. The node then switches
off the radio and fetches the sensor value. After the value is retrieved from
the sensor, the radio is once again put in to RX mode for a Channel Clear
Assessment (CCA) before entering TX mode and sending the payload. The
transmission is successful and the node goes into RX mode to listen for the
ACK, when it is received the node enters sleep mode again. For this cycle
the average power consumption is 4.8mW which would drain the 2250mWh
batteries in 19 days.

55 T T T T T T

N w w
a1 (=] a1
T T T
i i i

Consumption (mWw)
N
o
T

101 1

0 I I I I I I
0 20 40 60 80 100 120

Time (ms)

Figure 4.7: OpenBattery send and measure power cycle

However, as the nodes have a RDC running at 8Mz, most of the time
there will be no package for the node to receive and thus no measuring and
transmitting, as seen in figure 4.8. This cycling reduces the average power
consumption to 0.47mW, which would make the batteries last for ca 200
days. The goal is to have a node that can run for one year without having
to change the batteries and to be able to do this on 2xAAA batteries with
750mAh the average consumption has to be under 257uW as calculated in

36



equation 4.24.

750mAh - 3V = 2250mWh

(4.24)
2250mWh/(365d - 24h) = 257 W

45 T T T T T

40t 1

Consumption (mW

0 . . . . L .
0 20 40 60 80 100 120

Time (ms)

Figure 4.8: Theoretical OpenBattery power cycle

To verify these assumptions, we used a Keithley 2280S power supply
[39] to measure the total current draw of the prototype. The node was
connected to the power supply, which was set up to make 277 measures each
second with a supply voltage of 3V. Several measurements were performed.
One of the most interesting ones can be seen in figure 4.9. In this picture,
we can clearly see the different operating modes, as the node performs 3
transmissions during the interval. In the first transmission at the 1.6s mark,
the strobing feature of the RDC protocol is seen as the package is sent 5
times before the receiving node is awake and can receive the package. In the
two following transmissions, the package is delivered on the first try. As our
measurement is limited to 277Hz, the current peaks when only waking up to
listen for traffic are sometimes missed, and the peak value is hard to extract;
but the 8Hz RDC cycle is still visible. The average power consumption
for these cycles is 8SmW, which would make the batteries only last for 11
days. However, when taking the average of a measuring series without any
transmissions, the average goes down to 4mW, which increases the battery
time to 23 days. The theoretical sleep power of 0.11mW compared to the
measured of 3mW is what makes the average power consumption that high.

37



Reducing this power consumption by a tenfold would result in an average
consumption of 0.39mW, which is closer to the theoretical average power
consumption.

A discovery made when measuring the power was that the nodes con-
sumed less power when supplied with a lower input voltage. Simply by
reducing the voltage from 3V to 2.6V reduced the power consumption in
LPM by 15%. However, this reduction could affect the range of the nodes.

0.08

0.07f b

o
o
(<2}
T
I

o
o
3]
T
Il

0.03 i

Consumption (mW)
o
o
=

0.02 R b

0.01H b

0 I I ) I ] I I ’ I I

Time (s)

Figure 4.9: Power measurement of OpenBattery node for 3.6 seconds at
277Hz

38



Chapter 5

Discussion

Internet of Things can be realised in several ways as there are still many vi-
able options on the market, mainly in terms of hardware, operating systems,
and communication standards.

Given the recent development in the field, Thingsquare recently released
a technology demo using the same practices as used in this thesis; the choices
taken are on track with the latest development [40]. Also, both Google and
Microsoft have announced that they are developing IoT OSs. When these
products are released, it would be very interesting to compare them with
Contiki. It would be exciting to see if an open-source project can surpass
the commercial offerings in terms of speed, RAM and ROM footprint, and
device support. Furthermore, an in-depth comparison between RIOT and
Contiki would give much insight into the kind of OS practices that benefit
IoT development the most.

Google have also started to develop a substitute for 6LoOWPAN and UDP
that they have named Thread [41]. As 6LoWPAN and ZigBee, it runs on
top of IEEE 802.15.4 and thus might be able to out-compete the existing
implementations. Google promises lower latencies and power consumption
compared to the existing technologies.

5.1 The prototype

The prototype development took more time than initially planned; mostly
because of the complexity of the OS, but also due to bugs in the untested
drivers. The prototype combines the technology from each field, i.e. hard-
ware, OS, and communication protocol, and fulfils the requirements set in
section 3.1.1. Even though the OS is relatively simple, compared to Linux,
Windows, and OS X, understanding the mechanics of the RDC driver and
the LPM driver was difficult, but necessary to be able to interpret the test
results. The prototype worked very well during most of the testing, with
only a few unforeseen deviations. One occurred during the power measure-

39



ment, where the power consumption in low power mode tripled in one of
the test series; this behaviour could not be reproduced and is therefore not
included in the results. Also, in the early stages when working with the 8Hz
RDC driver, packet losses over 50% were recorded for packets with more
than one hop; this problem was solved, when a new version of radio driver
was released by the OS development team.

Selecting OpenMote to be the hardware platform together with Contiki
as the OS, was a very good choice as companies are starting to build their IoT
solutions around Contiki and similar hardware platforms [42, 43]. Already
in the beginning of the development, several benefits were noticed; new
drivers and bug-fixes were released increasing the stability and functionality
of the OS. The active community around the combination of OpenMote and
Contiki was really helpful when developing the drivers for the I?C and sensor
drivers. Example projects for other platforms could be used as references,
giving much insight to how the programming for this type of OS worked.

It would have been interesting to examine the differences between two
operating systems; not only to test which one has the better performance,
but also to compare which one that has the more favourable code structure
and development procedure.

5.2 Results

Collecting the data went well and were reasonably straight forward; it was
easy to transition between the two different test set-ups and thus making
several test scenarios. Assessments were made in the areas of range, re-
sponse time, connection speed, and power consumption. In each area, the
theoretical values were first calculated and then compared to the retrieved
measurements; except in the range case, as the required equipment for mea-
suring was not economically justifiable to purchase.

Range

The theoretical range for OpenMote when transmitting at full power in an
office environment is only 7m. As measuring the range was not a viable
option due to the cost of measuring equipment, only distance estimations
from the placement of the nodes when maintaining a stable connection can
be used as a reference. Using a map of the office and the position of the nodes
the range seems to be around 10m, which would mean that the effective FM
of the office is around 16dB using the always-on RDC. The FM changed a
bit when using the 8Hz RDC as more packages congested the air and the
range dropped to somewhere around 5m; resulting in an effective FM of
~23dB.

To increase the range of the transceiver, a switch to the 860MHz fre-
quency band would be the most effective solution; with a FM of 23dB, the

40



theoretical range would increase to 14m with the same transceiver proper-
ties, and with a FM of 16dB the range would be 31m. Usually, transceivers
with a lower frequency output also have a lower power consumption while
transmitting. Working in sub-GHz also gives the benefit of less interference
as fewer other devices uses those frequencies. Changing to a sub-GHz band
would thus decrease the power consumption and increase the range, without
changing the functionality of the nodes.

Response time

Initially when measuring the response time the always-on RDC was used
and the measured response time was very close to the theoretical value.
However, when using the 8Hz RDC protocol the values started to drastically
differ from the theory. This behaviour is likely to originate from the way the
RDC driver predicts the next time when the target node should be awake.
The procedure is called phase optimization; when enabled, the node saves
the time when the node was last seen, it then uses this value to predict the
next time the node should be awake based on the RDC cycle. However,
this prediction is based on the node’s internal clock. As the clock can differ
from those of the other nodes, misalignments seem to occur, resulting in
misses when trying to reach the target node. Each misalignment increases
the time it takes to reach the target node as the node then needs to strobe
the package until the target nodes wakes up again. In theory, when sending
strobes the target node should wake up and receive the package within
one cycle (125ms); however, this is not guaranteed as other transmissions
might occupy the air, further increasing the response time. If the phase
optimization could be improved to guarantee the alignment between the
nodes, the response time should get much closer to the theoretical value; as
the time to reach the node would be maximum one cycle and the air would
not be as congested by nodes sending strobes.

Connection speed

The connection speed, when using CoAP or any other protocol with per-
packet ACK, is directly bound to the response time. IEEE 802.15.4 has
a relatively low data-rate, only 250kbps, compared to other solutions, e.g.
BLE (1Mbps) and WLAN (>54Mbps). As throughput is based on data-
rate over a longer period of time, both the overhead and the response time
is needed to make a good estimation. CoAP has a very low header size
compared to many other communication protocols, but due to the very
small frame size, the overhead is still relatively high. As of now, the results
clearly show that when a reliable transfer is desired the connection speed
of IEEE 802.15.4 and CoAP is only sufficient for data exchanges around 32
bytes. When the nodes use the always-on RDC, the goodput is less than

41



3KB/s for one hop and is halved for every hop; however, when the 8Hz RDC
is enabled, the goodput is reduced to under 0.1KB/s.

Using messages without per-packet ACK, thus removing the response
time from the equation, would let the nodes transfer real-time audio and
maybe even highly compressed video. However, using messages without the
per-packet ACK disables the reliable transmission guarantee, and thus it
can only be used with data streams where packet loss is acceptable.

Power consumption

Making a rough estimation of the power consumption of the platform was
straight forward task and so was measuring the actual consumption. When
comparing, the two the values differed by a factor of 30, which was not
expected. The reason probably originates from the clock interrupt which
is triggered every 8ms. Initially, this interrupt was assumed to be disabled
when the system entered the lower power modes, but this was not the case.
As the interrupt fires at 125Hz and the time to wake up and go back to
LPM is only 272us, the power spikes from these interrupts were not seen
on the measuring instruments. As seen in figure 4.9, even the peaks from
the listening cycles were hard to record and those lasted for at least 4ms;
instead, the power consumption from the clock timer looks like an increased
LPM power consumption. At the time this was discovered there was no
time to fix it, but doing so should decrease the average power consumption
to within the limits, granting the nodes the ability to run on battery power
for a year.

As no delays from calculation could be observed, the clock speed on
MCU could, in all probability, have been reduced to save power on the
nodes. However, this reduction would only have affected the consumption
when the node was in active mode, which is only a few percent of the total
cycle time.

The OpenMote chip has a step-down DC-DC converter for this purpose
which is switched off in LPM mode to reduce quiescent currents; however,
as most of the time is spent in LPM, reducing the input voltage to 2.1V
by changing battery type and removing the step-down converter would be
preferable as it would reduce the power consumption. These changes could
affect the range of the device, but this has to be assessed.

5.3 Project execution

Looking at the time plan and the milestones, as seen in Appendix A and
B, each milestone matches a task or transition in the time plan. The plan-
ning report was not submitted to the examiner until the 6/2-15, which is
two weeks behind schedule, exceeding the time planned for milestone M1.
The first draft was submitted before deadline, but several revisions were

42



necessary. In retrospect, the litterature study should probably have been
planned in parallel with the planning report, as the information from the
study helped with the report.

Milestone M2 marks the switch from the literature study and selection
of technology to the development phase. This milestone was met and de-
velopment could begin in the following week. As seen in Appendix C, the
development phase have several risks to consider. The only risk encountered
in this phase was R4, as one of the hardware platforms was delivered with
a broken sensor. However, this malfunction did not affect the time plan as
the development could continue regardless of the malfunction.

The end of the development phase was defined by milestone M3, ap-
proval of prototype, which was completed ahead of schedule granting an
early transition into the assessment phase. In the assessment phase, it could
be argued that risk R9 was encountered when measuring the power con-
sumption, as the results from those measurements did not properly show
the wake-ups from the clock timer. This phase contained milestone M4 and
M5, of which of only M5 was done in time. The Half-time presentation,
milestone M4, was performed on the 8/4-15 in the form of a meeting, where
the progress, results and continuation plan were discussed. Also, a half-time
version of the report was sent the 17/4-15 and approved by the examiner.
Milestone M6, deliver the final prototype, was completed a few days before
the set deadline which eliminated risk R11 and gave more time to work on
the writing and the presentation.

Both of the oral presentations were attended on the 1/6-15 to grant some
experience in how the presentation and opposition are carried out, thus now
following the time plan. However, there were not many presentations to
watch during the planned weeks, as the presentation schedule follow the
academic semesters. The presentation for this thesis was not performed
until the 3/6-15, thus being two weeks behind schedule. However, it was
scheduled on the first available date suggested by the institution. The final
version of the report will be submitted to the examiner before the 19/6-15,
thus successfully completing milestone M?7.

43



Chapter 6

Conclusion

The purpose of the project was to find and examine a communication proto-
col that could be suitable for IoT applications, by investigating the current
hardware, OS, and communication protocols and building a prototype from
the selected choices. What can be said about the investigation is that it is
difficult to examine all candidates in detail; this means that a rough selec-
tion has to be made based on initial knowledge potentially discarding good
options. The general feeling is, however, that all of the examined candidates
in this project were relevant and added valuable insights to the current tech-
nology status.

The assessment gave relevant and interesting results that improved the
understanding in what IoT can be used for, and what further areas of inves-
tigation could be. One of the most interesting areas of further investigation
would be the RDC driver, as it directly affects the response time and thus
also the connection speed. Even though the power consumption was not in
line with the expectations, the reason has been found and can be resolved.
Another conclusion is that IoT is not ready for real-time applications as the
latency is much higher than expected, for the technologies assessed in this
thesis, and also has a high spread. As the latency increases for each sub-
sequent network hop and the minimum observed latency per hop is 11ms,
when using the always-on RDC, this type of communication will probably
only be used for applications where response time can vary greatly, without
affecting the functionality.

CoAP as a communication protocol shows a lot of promise when com-
bined with 6LoWPAN and IEEE 802.15.4. It performs well given its sim-
plicity but has one disadvantage: the large overhead which comes from the
MAC addressing fields in the ITEEE 802.15.4 frame. If this overhead could
be reduced from the current 71% to only 30%, the goodput would double.
A solution would be to use a similar mechanism as BLE where the packet
size varies depending on application.

Each node also has computing time left as the MCU is more powerful

44



than needed for the given application; an improvement would be to use a
less powerful MCU, like the ARM Cortex-MO0+, to reduce the clock speed
as suggested in the discussion. When looking at the future-proof aspect the
later suggestion is probably the better, as the clock then could be increased
if more computing power is needed. In the future, batteries will hopefully be
able to store more energy, thus increasing the time between battery changes
or reducing the battery size.

45



Chapter 7

Bibliography

1]

2]

[10]

[11]

S. C. Mukhopadhyay, Internet of things: challenges and opportunities,
vol. 9.; 9, pp. 1-7. Cham: Springer, 2014.

A. Marqués and M. Serrano, The PECES Project: Ubiquous Transport
Information Systems, pp. 359-366. New York, NY: Springer New York,
2010.

C. Buratti, A. Ferri, and R. Verdone, An IEEFE 802.15./ Wireless Sen-
sor Network for Energy Efficient Buildings, pp. 329-338. New York,
NY: Springer New York, 2010.

J. Daintith, Ozford Dictionary of Physics. Oxford University Press,
April 2010.

E. Wilde, C. Pautasso, and R. Alarcén, REST: advanced research topics
and practical applications, pp. 27-29. New York: Springer, 2014.

O. Hersent, D. Boswarthick, and O. Elloumi, IEEFE 802.15.4. Chich-
ester, UK: John Wiley & Sons, Ltd, 2011.

Z. Shelby and C. Bormann, 6Lo WPAN: the wireless embedded internet.
Chichester, U.K: Wiley, 2009.

OSI Model-Chapter 5, pp. 247-315. Elsevier Inc, 2005.

J.-P. Vasseur and A. Dunkels, Interconnecting smart objects with IP:
the next Internet. Burlington, MA: Morgan Kaufmann/Elsevier, 2010.

G. Fortino and P. Trunfio, Internet of Things based on smart objects:
technology, middleware and applications. Cham: Springer, 2014.

Y. Li, M. T. Thai, and W. Wu, Wireless sensor networks and applica-
tions. New York; London: Springer, 2008.

46



[12]

[13]

[14]

[15]

Thingsquare, “Contiki OS homepage.” http://www.contiki-os.org/
index.html, 2015. [Online|, Accessed May, 28, 2015.

A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads: sim-
plifying event-driven programming of memory-constrained embedded
systems,” pp. 29-42, ACM, 2006.

Imprint, “RIOT OS features.” http://www.riot-os.org/#features,
2015. [Online|, Accessed May, 28, 2015.

P. Levis, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,
J. Hill, E. Brewer, and D. Culler, TinyOS: An Operating System for
Sensor Networks, pp. 115-148. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005.

S. S. Iyengar, N. Parameshwaran, V. V. Phoha, N. Balakrishnan, and
C. D. Okoye, Tiny Operating System (TinyOS), pp. 92-97. Hoboken,
NJ, USA: John Wiley and Sons, Inc.

Real Time Engineers ltd., “freeRTOS features.” http://www.
freertos.org/FreeRTOS_Features.html, 2014. [Online], Accessed
May, 28, 2015.

OpenMote Technologies, “OpenMote features.” http://wuw.
openmote.com/hardware/openmote-cc2538-en.html, 2015. [Online],
Accessed May, 28, 2015.

Texas Instruments Incorporated., “CC2538 Powerful Wireless Micro-
controller System-On-Chip for 2.4-GHz IEEE 802.15.4, 6LoWPAN,
and ZigBee Applications.” http://www.ti.com/lit/ds/swrs096d/
swrs096d.pdf, April 2015. [Online], Accessed May, 28, 2015.

OpenMote Technologies, “OpenBase fetures.” http://www.openmote.
com/hardware/openbase.html, 2015. [Online], Accessed May, 28,
2015.

OpenMote Technologies, “OpenBattery features.” http://www.
openmote.com/hardware/openbattery.html, 2015. [Online], Ac-
cessed May, 28, 2015.

Thingsquare, “Thingsquare homepage.” http://www.thingsquare.
com/, 2015. [Online|, Accessed May, 28, 2015.

Freie Universitdt Berlin, “MSB430 features and specification.”
http://www.mi.fu-berlin.de/inf/groups/ag-tech/projects/
Z_Finished_Projects/ScatterWeb/modules/mod_MSB-430H.html,
2015. [Online|, Accessed May, 28, 2015.

47


http://www.contiki-os.org/index.html
http://www.contiki-os.org/index.html
http://www.riot-os.org/#features
http://www.freertos.org/FreeRTOS_Features.html
http://www.freertos.org/FreeRTOS_Features.html
http://www.openmote.com/hardware/openmote-cc2538-en.html
http://www.openmote.com/hardware/openmote-cc2538-en.html
http://www.ti.com/lit/ds/swrs096d/swrs096d.pdf
http://www.ti.com/lit/ds/swrs096d/swrs096d.pdf
http://www.openmote.com/hardware/openbase.html
http://www.openmote.com/hardware/openbase.html
http://www.openmote.com/hardware/openbattery.html
http://www.openmote.com/hardware/openbattery.html
http://www.thingsquare.com/
http://www.thingsquare.com/
http://www.mi.fu-berlin.de/inf/groups/ag-tech/projects/Z_Finished_Projects/ScatterWeb/modules/mod_MSB-430H.html
http://www.mi.fu-berlin.de/inf/groups/ag-tech/projects/Z_Finished_Projects/ScatterWeb/modules/mod_MSB-430H.html

[24]

Texas Instruments Incorporated., “MSP430F15x, MSP430F16x,
MSP430F161x Mixed Signal Microcontroller.” http://www.mi.
fu-berlin.de/inf/groups/ag-tech/projects/Z_Finished_
Projects/ScatterWeb/moduleComponents/msp430£1612.pdf, May
2009. [Online|, Accessed May, 28, 2015.

Zoletia, “Zolertia 71 Datasheet.” http://zolertia.com/sites/
default/files/Zolertia-Z1-Datasheet.pdf, March 2010. [Online],
Accessed May, 28, 2015.

M.-P. Uwase, N. T. Long, J. Tiberghien, K. Steenhaut, and J.-M. Dri-
cot, “Poster abstract: Outdoors range measurements with zolertia zl
motes and contiki,” vol. 281, pp. 79-83, 2014.

D. Gislason, ZigBee wireless networking. Oxford: Newnes, 2008.

N. C. Gupta, Inside Bluetooth Low Energy. Boston: Artech House,
2013.

J. Nieminen, T. Savolainen, M. Isomaki, Nokia, B. Patil, AT&T,
Z. Shelby, Arm, C. Gomez, and U. P. de Catalunya/i2CAT, “IPv6
over BLUETOOTH(R) Low Energy draft-ietf-6lo-btle-13.” https://
tools.ietf.org/pdf/draft-ietf-6lo-btle-13.pdf, 2015. [Online],
Accessed May, 28, 2015.

IAR Systems, “IAR Embedded Workbench for ARM.” https://www.
iar.com/iar-embedded-workbench/arm/, 2015. [Online], Accessed
May, 28, 2015.

Texas Instruments Incorporated., “Code Composer Studio (CCS) Inte-
grated Development Environment (IDE).” http://www.ti.com/tool/
ccstudio#descriptionArea, 2015. [Online|, Accessed May, 28, 2015.

ARM Ltd., “ARM DS-5 Features.” http://ds.arm.com/ds-5/, 2015.
[Online|, Accessed May, 28, 2015.

“ARM Launches DS-5 Professional Edition and ARM Compiler V5.0,”
Technology News Focus, p. 180, 2011.

F. Osterlind, J. Eriksson, and A. Dunkels, “COOJA TimeLine: a power
visualizer for sensor network simulation,” pp. 385-386, ACM, 2010.

F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-
Level Sensor Network Simulation with COOJA,” pp. 641-648, IEEE,
2006.

Cetic, “6lbr border router software.” http://cetic.github.io/61lbr/,
2015. [Online|, Accessed May, 29, 2015.

48


http://www.mi.fu-berlin.de/inf/groups/ag-tech/projects/Z_Finished_Projects/ScatterWeb/moduleComponents/msp430f1612.pdf
http://www.mi.fu-berlin.de/inf/groups/ag-tech/projects/Z_Finished_Projects/ScatterWeb/moduleComponents/msp430f1612.pdf
http://www.mi.fu-berlin.de/inf/groups/ag-tech/projects/Z_Finished_Projects/ScatterWeb/moduleComponents/msp430f1612.pdf
http://zolertia.com/sites/default/files/Zolertia-Z1-Datasheet.pdf
http://zolertia.com/sites/default/files/Zolertia-Z1-Datasheet.pdf
https://tools.ietf.org/pdf/draft-ietf-6lo-btle-13.pdf
https://tools.ietf.org/pdf/draft-ietf-6lo-btle-13.pdf
https://www.iar.com/iar-embedded-workbench/arm/
https://www.iar.com/iar-embedded-workbench/arm/
http://www.ti.com/tool/ccstudio#descriptionArea
http://www.ti.com/tool/ccstudio#descriptionArea
http://ds.arm.com/ds-5/
http://cetic.github.io/6lbr/

[37]

[38]

[39]

[40]

[41]

[42]

[43]

J. A. Shaw, “Radiometry and the Friis transmission equation,” Amer-
ican Journal of Physics, vol. 81, no. 1, p. 33, 2013.

M. Tolstrup, The Link Budget, pp. 329-344. Chichester, UK: John
Wiley and Sons, Ltd.

Keithley Instruments, “Series 2280S Precision Measurement, Low
Noise, Programmable DC Power Supplies.” http://www.keithley.
com/data?asset=58094, 2015. [Online|, Accessed May, 28, 2015.

Thingsquare, “Private Beta Launched.” http://www.thingsquare.
com/blog/articles/private-beta/, 2015. [Online|, Accessed June,
8, 2015.

Thread Group, “About Thread.” http://threadgroup.org/About.
aspx, 2015. [Online], Accessed June, 8, 2015.

LiFi Labs, Inc., “LIFX.” http://www.lifx.com/, 2015. [Online], Ac-
cessed September, 1, 2015.

Alex Chapman, “Hacking into Internet Connected Light
Bulbs.” http://www.contextis.com/resources/blog/
hacking-internet-connected-light-bulbs/, 2014. [Online],
Accessed September, 1, 2015.


http://www.keithley.com/data?asset=58094
http://www.keithley.com/data?asset=58094
http://www.thingsquare.com/blog/articles/private-beta/
http://www.thingsquare.com/blog/articles/private-beta/
http://threadgroup.org/About.aspx
http://threadgroup.org/About.aspx
http://www.lifx.com/
http://www.contextis.com/resources/blog/hacking-internet-connected-light-bulbs/
http://www.contextis.com/resources/blog/hacking-internet-connected-light-bulbs/

Appendices



Appendix A

Gantt chart

uonezijelulg sisayl
u0I1BIUBSI( SISY L
uoiyusoddo
suol}euasald |edo
$34n309] AJojepue|p
SISayl

uoljejuasasd sawiy AjleH
A1anjaq adAroroud
1UBWISSASSY
juswdol|anag
uoI123|3S
uonesedaid/Apnis ainjesaln]
1oday Sulueld

9z ST vz €2 T 1z 07 6T 8T LI 9T ST ¥I €I ¢I IT O 6
NPIM

8

sselL



Appendix B

Milestones

s10JopH

UOTINITISUL

[eaoxddy

-UO0SSsSIeT 19 o1 09} 11odar euy o) Jrwgng ‘uoryejussord [ruy STwRpRIY

GT - 9/61 ‘UOSSUOAG SIRT | [[0801g UeRyO[ | oY) WIojIod ‘}10del s juepnis Mo © uo asodd( reurq - LN
uroy uesyey ad£joj01d Teuy

GT - G/¢1 ‘Uoss|() 1019d | [[081g uryor x01¢1 09 9dA10301d TeUy O} ISAIR(] JOATR(T - 9IN
Symsox

uoss[() 1919 posoxdde juowussosse JUOUSSISSE JO

GT -6/1 ‘UOSSUOAG SIeT | [[0801g URYO[ 9} JO S)INSaI pur SFUIPUY oY) 198 purR JUasaIJ reaoxddy - GIN
uotyeyuasad

ST -¥/¢ UOSSUOAG SIeT | [[0801g ueyo[ uorjyejuosold owg Jfey € WIO_J | owIi-jeH - FIN
JUOUWISSISSE 10] aodAy0301d jJO

GT -¢/.C uoss[() 1039J | [[P8e1g ueyor poaoxdde 31 108 pue odAjojoxd oty d9jer)suOd(] reaoxddy - ¢IN
S9010T[D

poaoxdde A3oouroay jo

6T -2/0T uoss[() 10939 | [[@8e1g uetof A3o1ourpe) Pajosres o) 108 pur juasald ‘)09[eg reaoxddy - ZIN
11odex Suruuerd

JO uoISSTqNgG

GT - 1/€C UOSSUOAG SIRT | [[0891g URYO[ reaoxdde 103 pejjrmuqns yroder Suruue(d - TN
sulpesa( 7 Aq peaoaddy 7 a[qisuodsoy uorjeue[dxy SOUO9)SI[IIA




Appendix C

Risk Analysis

MO 9N sjuowaImbal oy} joowr j0u soop 9dA10401d poIdAIRp 9T, - ¢TYH
9[qeIspIsuo)) | 9N QuII) Ul o[qeadeurw jou o1e odALj0301d oY) Jo AIGAIR(T - TTY
ystyg GIN pliom [eal oY) Surjusseldad J0U oIt SJUSTIUOIIAUD 19T, - OTY
9)RIPOIN GIN r)ep 9[qesn Juronpoid jou oIe s[00} JULINSBIN - Y
9[qeIapIsuo)) | €A PoySI[qe)se 9 j0UURD UOIPRITUNTITIO)) - QY
MO eIN dIeMpJIRY UO UII JOU S0P Wo)sAs urjerad() - LY
MO eIN suoryeoyrads SIOINIORJNURUI Y} J90UL JOU SOOP SIOIAIP O T, - 9Y
9)RIOPOIN eIN SUITWNSUOD dWI} 003 IR SIIIAJD O} JO UOIYRINIYuUod pue dn-10g - Gy
9)eIOPOIN eIN pooe[da1 oq 01 pasu pue UOIIOUL[RU dIeMPIRH - FY
o[qerapIsuo)) | gZIA 30038 Ul jou ST £30[0UYD9} PaIIsSAp oY, - €Y
Mo N syuowedmbal o) j0ow j0uU seop A30[0Uy29} S[qR[IeAR S, - T
91RIOPOIA N y[se) oYY 939[duIod 03 JUSIDIPNS Jou ST AFO[OUTDD] JO [9AJ] JUDLIND YT, - T
[9AST MSTY | 9UOISO[IIA uonydriosa(q qs1y




	Introduction
	Background
	Purpose
	Limitations
	Method

	Technical Background
	Operating system
	Contiki
	RIOT
	TinyOS
	freeRTOS

	Hardware
	OpenMote
	MSB430-H
	Zolertia Z1

	Communication protocol
	IEEE 802.15.4
	Bluetooth LE


	Implementation
	Selection of technology
	Requirements
	Hardware
	Operating system
	Communication protocol
	Workspace and tools

	Prototype Development
	Drivers and firmware
	CoAP server
	Testing

	Final prototype

	Assessment
	Range
	Response time
	Connection speed
	Power consumption

	Discussion
	The prototype
	Results
	Project execution

	Conclusion
	Bibliography
	Appendix Gantt chart
	Appendix Milestones
	Appendix Risk Analysis

