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Estimation and Tracking of Keypoints Using Object Detection in Visual and Ther-
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Abstract
The initial assessment of a mass casualty incident is essential to e�ectively conduct
a rescue operation. The survival rate is a�ected by the complexity of the incident,
and it is therefore imperative to enhance the operational capacities of emergency
medical services and civil protection agencies in mass casualty incidents. This the-
sis investigates the possibilities for an unmanned aerial vehicle (UAV) to detect and
track regions of interest for remote measurement of vital parameters in visual and
thermal footage for first response triage purposes. The regions of interest are the
nose, mouth, and chest, and the UAV characteristic taken under consideration in
this thesis is image blur due to random camera motion. In this thesis, we take an ob-
ject detection approach and implement the keypoint estimation framework KAPAO
and the tracking algorithm SORT in several di�erent experimental setups. Using
KAPAO and SORT, we achieve a good result. For the detection in the thermal
domain, the model created by transferring knowledge from the visual to the ther-
mal domain achieves the highest performance. We also consider adversarial training
on random motion blur, however the result shows a minimal impact on the model
performance in the presence of characteristic low-altitude UAV motion blur. Re-
garding the tracking of the regions of interest, the result concludes that the SORT
algorithm improves the performance compared to assigning tracking identification
numbers based on frame-to-frame di�erences. The result shows that the distance
to the subjects and the image quality impacts the performance. Compared with
previous work on remote measurement of vital parameters, the algorithms of this
thesis achieve a nearly perfect score on corresponding distances. If the distances
are realizable in a UAV triage application is however unknown and has to be in-
vestigated further. Moreover, the work of this thesis problematizes the low-altitude
UAV motion blur which poses a potential limitation in a potential UAV triage ap-
plication. An alternative could hence be to use optical stabilization measurement
for blur reduction.
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1
Introduction

A mass casualty incident is referred to as an event where the number of casualties
exceeds the available medical resources. Mass injuries can, for example, be caused by
transportation accidents, terrorism, fires, or natural disasters. The initial assessment
of a mass casualty incident is essential to e�ectively conduct a rescue operation.
As a first response, triage is performed by medical sta� at the scene. Triage is a
medical procedure of evaluating and classifying injured based on their vital signs to
prioritize patient care. This becomes a rather demanding task as the magnitude and
complexity of the mass casualty incident increases, which can decrease the survival
rate [1].
To address the di�culties faced in mass casualty incident operations the Swedish
Defence Research Agency (FOI) is involved in a research project led by the Swedish
Transport Administration. The project aims to develop an unmanned aerial vehicle
(UAV) system integrated with artificial intelligence for search and rescue purposes,
to simplify operations and increase the survival rate. The idea is to use a UAV
equipped with sensors such as a standard color (RGB) camera and a thermographic
camera to collect data from the scene of the incident. As a part of the assessment,
the UAV needs to be able to measure vital parameters, and in order to measure
a vital parameter, the UAV has to be able to detect and track the corresponding
region of interest (ROI) where the measurement can be performed.

1.1 Problem Definition and Purpose

This thesis project aims to investigate the possibilities for a UAV to detect and track
ROIs for remote measurement of vital parameters. Specific ROIs are the forehead,
nose, mouth, and chest, where body temperature, respiration rate, and pulse can be
measured for triage [2]. There are state-of-the-art deep learning frameworks for the
detection of human body features. However, they are not able to detect all the ROIs
mentioned, nor are they robust enough to be implemented in a UAV application [3].
Therefore, this thesis aims to develop and evaluate a robust method for detecting and
tracking the mentioned ROIs in visual and thermal footage in multi-person scenarios.
Robust is here defined as the ability to handle perturbation caused by characteristic
low-altitude UAV motion. As there to this point are no publicly available low-
altitude visible or thermal UAV data for detection and tracking of mentioned ROIs,
the UAV motion characteristics are to be simulated on still images. The task at hand
is to be accomplished using deep learning combined with adversarial training.

1



1. Introduction

1.2 Research Question
This thesis project aims to answer the research question:

• To what extent is it possible to detect and track regions of interest for remote
measurement of vital parameters in RGB and thermal footage and in the
presence of characteristic low-altitude UAV motion blur?

1.3 Scope and Limitations
• This project aims to detect and track regions of interest for the measurement

of vital parameters in RGB and thermal footage.
• The ROIs for this project are the forehead, mouth, nose, and chest. Due to a

lack of annotations, the chest will only be evaluated for detection in the visual
domain.

• The project focuses on implementing deep learning models for keypoint esti-
mation for detection and tracking of mentioned ROIs.

• The UAV characteristic taken under consideration in this project is UAV mo-
tion blur. For example, considering di�erent UAV pitch angles are outside the
scope of this project.

• The camera motion blur is to be simulated from still images and evaluation of
the e�ectiveness with respect to real UAV motion blur is outside the scope of
this project.

• This project does not employ real data collected in a mass casualty incident.
Real data collected in a mass casualty incident is considered sensitive as it con-
tains medical information, and using such data would by Swedish law require
an ethical analysis preformed by the Ethics Review Authority1. By excluding
sensitive data, this thesis can focus on the technical aspects rather than the
ethical aspects of data usage.

• Field testing and performing measurements of vital parameters are outside
the scope of this project. Such activities would be required before deploying
the final system. Moreover, it would also require the approval of the Ethics
Review Authority due to the ethical aspects concerning human test subjects.

1.4 Swedish Defence Research Agency
This thesis is carried out in collaboration with FOI. FOI is a defence research insti-
tute and a government authority operating under the Swedish Ministry of Defence.
The agency conducts research within the area of safety and security of the soci-
ety, including strategic decision-making and crisis management [5]. On behalf of

1The mission of the Swedish Ethics Review Authority is to protect the individuals and the
human values within research, and any research carried out on human requires their approval. The
Swedish Ethics Review Authority considers the ethical aspects concerning the project and only
approves a project and whether the possible benefits of the results exceed the endangerment of the
persons subjected for investigation [4].
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1. Introduction

the Swedish Transport Administration and the EU project Nightingale, FOI is de-
veloping a UAV triage application for mass casualty incidents with the ultimate
goal of increasing the survival rate. This thesis project aims to contribute to FOI’s
UAV triage application research. Furthermore, one should note that this is a civil
project.

1.5 Report Overview
This report is organized as follows: Chapter 2 provides background knowledge of
triage and remote vital parameter measurement, as well as related works; Chapter 3
provides the theoretical foundation of the project; Chapter 4 presents the method-
ology and the experiments conducted; Chapter 5 presents the results; Chapter 6
provides a discussion of the results and the research question along with some eth-
ical aspects in Section 6.3, and lastly Chapter 7 which presents the conclusion and
future works.
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2
Background

This chapter is to provide a background for remote triage measurement. Section 2.1
describes the fundamentals of prehospital triage performed at the scene of the in-
cident. Section 2.2 presents existing methods for remote measurement of the vital
parameters presented in Section 2.1 along with corresponding regions of interest in
this thesis. Finally, in Section 2.3 related work concerning the detection and tracking
of ROIs for vital parameter measurement is presented.

2.1 Prehospital Triage
Triage is the medical procedure of evaluating and classifying injured to prioritize
patient care implemented when the demand exceeds the available resource. There
are di�erent types of triage, and prehospital triage is referred to as the first response
triage performed on the scene of the incident. Prehospital triage aims to assess the
situation in order to e�ectively conduct a rescue operation.
Indicators of which prehospital triage assessments are built upon are:

• ambulatory,
• clear airways,
• respiratory rate,
• radial/peripheral pulse,
• and level of consciousness [6].

Ambulatory, the ability to walk, is a primary divider. Walking requires a su�cient
central nervous system and blood pressure, and walking persons will thereby be
down-prioritized. The second point of assessment is clear airways. If the person
cannot breathe, it will get down-prioritized due to a low survival rate. If clear airways
are the assessment of if the person is breathing, the respiratory rate is the assessment
of how the person is breathing. The respiratory rate is an indicator of trauma to
the airways and lungs, and an abnormal breathing pattern will get prioritized. The
pulse parameter is used to estimate blood pressure to detect life-threatening internal
and external bleeding. The last point is the level of consciousness which is assessed
by whether the person can follow commands or not. Verbal and motor responses
are indicators of neurological function [6].

2.2 Remote Measurement of Vital Parameters
This section presents di�erent methods for remote measurement of vital parameters
of interest for triage assessment. The ROI in this thesis is limited to the ROI for

5



2. Background

remote measurement of heart rate, body temperature, and respiration rate, which
are presented below.

2.2.1 Remote Measurement of Heart Rate
The commonly implemented method for remote measurement of heart rate and oxy-
gen saturation is remote photoplethysmography (rPPG) [2]. Remote PPG operates
on the same basis as traditional PPG, which illuminates the skin and measures the
variation of light absorption. The light is absorbed by the blood in the capillaries,
and the absorption is correlated to the dilation and constriction of the capillaries
from which the heart rate can be measured [7]. The forehead is a region of interest
for rPPG measurement due to its large vascularization and thin skin [8]. Therefore,
the forehead constitutes an ROI in this project.

2.2.2 Remote Measurement of Body Temperature
The forehead is also an ROI for remote measurement of body temperature as the
forehead temperature is highly correlated to the internal body temperature due
to the large vascularization and thin skin. The temperature at the forehead can
therefore be used to detect hyperthermia and hypothermia. This correlation cannot
be seen in other parts of the body; the temperature in limbs can be highly di�erent
from the core body temperature [8].

2.2.3 Remote Measurement of Respiratory Rate
Di�erent types of sensor data can be used to measure the respiratory rate remotely.
The respiratory rate can be estimated remotely by acoustic analysis, analysis of
temperature fluctuation due to respiration, chest motion analysis, and rPPG.
The acoustic-based methods utilize the breathing sound to determine the respira-
tory rate. Such methods have proven e�ective but also sensitive to background
noise [2]. The sensitivity poses a di�culty in unconstrained environments, which
makes acoustic analysis unsuitable for UAV triage applications.
The respiration rate can be estimated remotely by analyzing the temperature di�er-
ence in inhaling and exhaling air in thermal footage [2]. Detecting and tracking of
mouth and nose in thermal images are hence of interest in this thesis. Temperature
fluctuation-based methods have proven to be sensitive to motion [2] which make the
tracking aspect particularly relevant.
Estimation of respiration rate can also be performed through respiration motion
analysis. Chest motion analysis has proven to be a robust method for respiration
rate estimation in multi-person scenarios [2]. Moreover, it can be performed on
di�erent types of sensor data such as RGB, depth, and thermal footage. Detection
of the chest is hence within the scope of this project. The chest area is a large ROI
which poses an advantage. However, clothing can potentially obstruct the analysis
of chest motion, which can become problematic in outdoor applications.
Respiration rates can be observed in rPPG signals as respiratory arrhythmia af-
fects the heart rate and blood volume signal. Hence, the respiration rate can be

6



2. Background

modulated from the rPPG signal [9]. The fundamentals of rPPG are described in
Section 2.2.1.

2.3 Related Work
In the aftermath of the COVID-19 pandemic, the detection of ROIs for remote mea-
surement of infection indicators has gained more attention. Previous research by
Rodriguez-Lozano et al. [8] and Muller et al. [10] propose two methods for segmen-
tation of the forehead and the nose region in thermal images. Rodriguez-Lozano
et al. implement a trigonometric segmentation method where the forehead is seg-
mented by fitting an ellipse onto the face and extracting the upper part of the
ellipse [8].
In di�erence from Rodriguez-Lozano et al., Muller et al. implement a deep learning-
based method for segmenting the forehead, nose, mouth, lower face, and eyebrows.
Muller et al. implement a conditional generative adversarial network (cGAN), trained
on a custom annotated database they have created. The dataset is, however, small
and limited to controlled lab environments. In addition to segmentation, Muller et
al. successfully extract the temperature levels at the di�erent ROIs [10].
Another approach for detecting and tracking ROIs is triangulation from existing
keypoints. Djeldjli [11] presents a method for remote assessment of blood pressure
and arterial sti�ness in RGB footage. The measurements are performed remotely
at the forehead, triangulated from the eyebrows and the facial bounding box, using
the facial keypoint estimator Dlib [12] and the OpenCV [13] face detector.
Yang et al. [14] propose a method for remote measurement of blood pressure, heart
rate, and respiration rate in RGB and thermal footage, including detection of the
forehead and nostrils. Yang et al. implement RetrinaFace [15], a deep learning
framework for detecting facial keypoints, from which the ROIs are triangulated
based on di�erent facial feature distances. Although vital parameters are measured
in visual and thermal domains, the ROIs are only detected in the RGB videos. The
defections are transferred to corresponding thermal videos via an image alignment
process made possible as the videos are recorded simultaneously.
Compared with previous work, this thesis is not limited to controlled settings. In
this thesis, we implement data collected under uncontrolled settings in outdoor
environments that represent a potential UAV triage application. Moreover, we are
considering more considerable distances to the subject than in previous work.

7



2. Background

8



3
Theory

This chapter contains the theory for this thesis focusing on the computer vision ele-
ments. Section 3.1 provides a brief introduction to deep learning and convolutional
neural network. Section 3.3 the fundamentals of keypoint estimation are described
along with a keypoint estimation framework of interest for this thesis project. As
motion blur is to be considered in this thesis, Section 3.6 provides the theory re-
garding adversarial perturbation and motion blur kernels. Furthermore, Section 3.7
is dedicated to object tracking and the tracking algorithm implemented in this the-
sis.

3.1 A Brief Introduction to Deep Learning
Deep learning algorithms are based upon artificial neural network architectures,
and deep learning models are consequently often referred to as deep neural net-
works. Deep neural networks are extensive models characterized by their complex-
ity. Training a deep learning model requires a considerable amount of data and
computational power [16]. This section describes some fundamental deep learning
concepts of interest for this thesis.

3.1.1 Artificial Neural Networks
Artificial neural networks (ANN), or simply neural networks, are computational
models inspired by biological neural networks. An ANN consists of artificial neurons,
or nodes, which are connected and arranged in layers. An illustration of a basic ANN
is illustrated in Figure 3.1. The first and last layers of an ANN correspond to the
input and output layers, while the intermediate layers are referred to as the hidden
layers. Moreover, the depth of a neural network is given by the number of hidden
layers [16].
Mathematically, a node is a weighted summation passed through an activation func-
tion. Given the input values x1, ...xm, the corresponding weights w1, ...wm, and an
activation function „(·) the output of the node is given by

y = „

A
mÿ

i=1
xiwi + b

B

.

The weights and the bias therm b added to the weighted sum are learnable param-
eters determined by training. The weights control the strength of the connection
of the nodes, i.e., how the inputs influence the output, and the bias terms regulate
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3. Theory

Hidden Layers Output LayerInput Layer

Figure 3.1: An example of a feed-forward ANN. The circles correspond to nodes
which are arranged in layers.

the flexibility of the nodes by shifting the activation functions. Di�erent functions
can be employed for activation. A commonly implemented activation function is the
sigmoid function

„(z) = 1
1 + e≠z

,

which returns a value between 0 and 1. The functionality of a node is further
illustrated in Figure 3.2 where z corresponds to the weighed summation.

Input
Values

Weights
Node

Activation
Function

Output

Bias
Therm

Figure 3.2: Illustration of an artificial neuron.

An ANN can be described as a non-linear transformation F which maps an input
X œ Rm◊N on to an output Y œ Rn◊N ; F : Rm◊N æ Rn◊N where N denotes the
number of samples while m and n correspond to the input and output dimensions
respectively. The transformation is governed by the weights and the biases, ◊ =
{Wl, bl}L+1

l=1 , of the trainable layers. There are L + 1 trainable layer corresponding
to the the hidden layers L along with the output layer. The output is generated by
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3. Theory

propagating the input through the ANN and the output can therefore be described
as Y = F (X, ◊) = „L+1(„L(...(„1(X)))) [17].
Training a neural network is the process of tuning the parameters ◊ to improve
model performance. The objective is to minimize the di�erence between the actual
and the predicted output described by the loss function L(F (X, ◊), Ŷ ). Accordingly,
the training process is a minimization problem where the optimal parameter is given
by

◊̂ = argmin
◊

L(F (X, ◊), Ŷ ).

The training of a neural network is an iterative process where the parameters are
learned through stochastic gradient descent optimization [17].

3.1.2 Convolutional Neural Networks
Convolutional neural network (CNN) is a frequently implemented architecture within
computer vision. CNN neurons are arranged in three dimensions; the height and
width corresponding to the spatial dimension and the depth equivalent to the depth
of the input. The three-dimensional representation makes CNNs suitable for im-
age processing. CNN architecture comprises three types of layers; the convolutional
layers and pooling layer for feature learning, and the fully connected layers for clas-
sification [18]. The fully connected layers are conventional ANN layers described
above, while convolutional layers and pooling layers are described below.

3.1.2.1 Convolutional Layers

Convolutional layers pose as filters for feature extraction, which consist of convolu-
tional kernels corresponding to matrices of weights learned by training. The kernels
are passed sequentially over the input for which the kernel is multiplied with each
subregion, followed by a summation to obtain a feature map for activation. Hence,
the size of the acquired feature map is determined by the size of the kernel, as well
as the division of subregions. A convolutional operation is illustrated in Figure 3.3.
A neuron in a convolutional layer is only connected to neurons in the preceding
layer within reach of the convolutional kernel. Due to the local connectivity of the
conditional layers, the initial layers of a CNN will capture local features while the
latter ones will capture global features [17, 18].

3.1.2.2 Pooling Layers

A pooling layer can follow a convolutional layer to reduce the spatial dimension
further. This is known as downsampling, which reduces the complexity of the model.
There are two pooling operators: the max pooling operator, which extracts the
maximum value from a specific region, and the average pooling operator, which
extracts the average value. The dimension is reduced by dividing a feature map
into subregions and by letting a pooling operation act on the regions. Hence, the
reduction is determined by the size of the regions [17, 18]. The downsampling process
is illustrated in Figure 3.4. Note that the pooling layer acts on each feature map
independently to maintain the depth.
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3. Theory

Figure 3.3: Illustration of a convolutional operation. The filter acts on the input
layer and the size of the output is determined by the dimension of the filter and how
the filter is traversed.

3.2 Object Detection
Object detection is the computer vision task of detecting and localizing objects
within images and videos. Deep learning-based object detectors are commonly di-
vided into one-stage and two-stage models. The two-stage detectors consist of a
region proposal step for the prediction of object bounding boxes and a classification
step for the classification of the predicted bounding boxes. In contrast to the two-
stage detectors, the one-stage detectors perform region proposal and classification
simultaneously [19]. The one-stage detectors are known for their inference speed,
making them suitable for UAV applications, compared with the two-stage detectors,
which demand greater computational resources [20]. The following section is ded-
icated to the one-stage object detector You Only Look Once implemented in this
thesis.

3.2.1 You Only Look Once
You Only Look Once [21, 22, 23, 24, 25] (YOLO) is a state-of-the-art one-stage
object detector known for its inference speed, making it suitable for real-time appli-
cations. As a one-stage detector, YOLO performs object proposal and classification
simultaneously by dividing the input images into an S ◊S grid. Within each cell, B

object bounding boxes are predicted and assigned a confidence score reflecting upon
the accuracy of the corresponding bounding box. This process yields a surplus of
bounding boxes which are passed through a non-maximum suppression (NMS) filter
to determine the final detections. The NMS removes bounding boxes with confi-
dence scores below a given threshold and then suppresses the bounding boxes with
a high intersection over union (IOU) with high confidence class-specified bounding
boxes. The YOLO pipeline is illustrated in Figure 3.5.
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0 4 4 7

3 9 3 2

8 5 6 9

4 3 1 8

9 7
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4 4

5 6

Average
Pooling

Max Pooling

Figure 3.4: Max pooling and average pooling operations. The max pooling oper-
ator extracts the maximum value of the region, and the average pooling operation
yields the average value of the region.

The YOLO model was initially proposed by Redmon et al. in 2015, after which
four subsequent versions have been released. The original version, YOLOv1 [21],
consists of a CNN of 24 convolutional layers for feature extraction followed by two
fully connected layers for the prediction of bounding boxes. The updated second
version, YOLOv2 [23], released the year after, uses a Darknet-19 backbone for fea-
ture extraction. Darknet-19 is a CNN architecture of 19 convolutional layers and
five max pooling layers. Moreover, in the second version, the fully connected layers
are removed and replaced with anchor boxes for the prediction of bounding boxes.
The architectural updates show an increment in inference speed.
In the third version, YOLOv3 [22], also by Redmon et al., the backbone is further up-
dated to a Darknet-53 architecture (to be described in more detail in Section 4.5).
Moreover, YOLOv3 employs a feature pyramid network (FPN) for feature fusion
which concatenates the feature maps from di�erent layers of the backbone. Fur-
thermore, in the third version, residual block, skip connections, and up-sampling
are introduced. These changes show a significant improvement in accuracy and
performance on small objects.
The fourth version, YOLOv4 [24], was released by Bochkovskiy et al. in 2020. Com-
pared to its successor, YOLOv4 relies on a CSPDarknet53 backbone, and the FPN is
replaced with a spatial pyramid pooling (SPP) layer and path aggregation network
(PANet) for feature aggregation at multiple scales. Bochkovskiy et al. introduce
a “Bag of Freebies” and a “Bag of Specials” to further improve the performance.
The bag of freebies is data augmentation techniques to expand the dataset arti-
ficially. Data augmentation techniques employed are photometric, such as bright-
ness, contrast, hue, and saturation distortion, and geometric distortions such as
random scaling, cropping, and flipping. The most recent version as of March 2022,
is the fifth version YOLOv5 which is an open-source project maintained by Ul-
tralytics1. YOLOv5 is a PyTorch implementation of YOLOv4, making it more
user-friendly [25].

1https://ultralytics.com/yolov5
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SxS grid on input image

Bounding boxes+confidence

Probability map

Final detection

Figure 3.5: Illustration over the YOLO pipeline. The input image is divided into
an S ◊ S grid. For each cell, B object bounding boxes are predicted and assigned a
confidence score along with the class probabilities. The predictions are then fused
with NMS to obtain the final predictions.

3.3 Keypoint Estimation

Vision-based keypoint estimation aims to detect and localize points of interest in
visual input data such as images and videos. In particular, person keypoint detection
aims to estimate human body landmarks. Conventional human body landmarks
annotations are: eyes, ears, nose, shoulders, elbows, hands, hips, knees, and feet,
which are visualized in Figure 3.6.

To this point, CNN-based heatmap regression is the prevalent approach for keypoint
estimation. In a keypoint heatmap, the grid constitutes the input image, and the
pixels encode the probability of the corresponding pixel being a keypoint. Given
that the model aims to determine N keypoints, there will be N keypoint heatmaps
containing the spatial confidence distribution of the corresponding keypoint. CNN-
based heatmap regression leverage CNN to regress the heatmaps onto the input
images, and the final keypoint predictions are obtained by extracting the maximum
indices of the heatmaps [26, 27].

The heatmap-based methods have become the dominating keypoint estimation ap-
proach due to their performance. However, generating and processing the heatmaps
are computationally costly. High-resolution heatmaps are required to achieve accu-
rate results, and the accuracy/speed trade-o� is one of the major drawbacks of the
heatmap-based approaches [26].
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Figure 3.6: Human body keypoint annotations.

3.3.1 Multi-Person Keypoint Estimation
Multi-person keypoint estimation can be categorized into top-down and bottom-
up methods. The challenge in a multi-person setting is associating the detected
keypoints with the corresponding persons, which becomes especially challenging
when people occlude each other.
Top-down approaches employ a person detector and a single-person keypoint estima-
tor. The detector generates human detection bounding boxes, and the single-person
keypoint estimator is then applied to each bounding box separately to create a
multi-person keypoint estimation. Top-down approaches are thereby classified as
two-stage processes. The bottom-up methods simultaneously detect all keypoints
and assign them to the corresponding person [27]. Hence, bottom-up methods are
considered to be one-stage approaches. The bottom-up approaches are generally
faster; however, they are less accurate than their top-down counterparts [26, 27].
On the other hand, the top-down approaches are more sensitive to person occlusion
as occlusion makes the person detection more likely to fail [27].

3.3.2 Modeling Keypoints and Poses as Objects
To address the heatmap drawbacks, McNally et al. introduced the heatmap-free
multi-person keypoint detector KAPAO [26] (Keypoints And Poses As Objects).
KAPAO models keypoint and their spatial relations as objects within a YOLOv5
framework. This heatmap-free development has significantly improved the accuracy
and inference speed compared to heatmap-based state-of-the-art keypoint estimation
frameworks [26].
KAPAO is an object detection-based keypoint estimator which treats keypoints
and poses as objects. The keypoint objects are defined by a detection bounding
box of equal width and height and its center coordinates. In contrast, the pose
objects comprise of a traditional object bounding box along with its associated set
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of keypoint objects. The keypoint objects are dedicated to keypoints with strong
local features such as nose and eyes. Unlike the keypoint objects, the pose objects
contain spatial relation information. The global understanding of the pose object
makes it suitable for estimation of keypoint lacking in local features such as hips
and shoulders [26].
KAPAO employs a YOLO-based network for the detection of keypoint and pose
objects. The network takes an input image and maps it onto output grids containing
the predicted keypoints and pose objects. Rather than using a bottom-up approach,
the detection of keypoints and pose objects occur simultaneously. Subsequently, the
output grids are passed to NMS to eliminate redundant proposals by suppressing
candidates with low confidence scores by comparing the overlaps. The NMS is
applied on the keypoints and pose objects separately before being fused with a
matching algorithm to obtain the final body pose prediction [26]. The pipeline is
illustrated in Figure 3.7.

NMS( )

NMS( )

Figure 3.7: An illustration of the KAPAO framework. The detection network
N maps the input image I onto a set of output grids Ĝ containing both the pre-
dicted keypoint Ô

k and pose objects Ô
p. The predictions are then separately filtered

through an NMS before being fused by the matching algorithm –, which produces
the final prediction P̂.

3.4 Thermal Imaging
The visual and thermal domains have been taken under consideration in this project,
and this section presents the basics of thermal imaging. The electromagnetic spec-
trum is divided into subspectrums based on energy levels. The visible range includes
the wavelengths visible to the naked eye, and the infrared (IR) region includes wave-
lengths of 0.7–1000 µm [28]. Furthermore, the IR spectrum is divided into subcat-
egories; near, short, mid, long, and far wavelength IR. According to Wien’s law,
the human body emits a wavelength of 9.4 µm, which falls within the range of long
wavelength infrared radiation (LWIR) of 8-15 µm [28]. Hence, LWIR sensors can be
used for human detection.
The electromagnetic field can be used to create a visual representation of an object.
RGB, or true color imaging, refers to imaging within the visible spectra. Likewise,
thermal imaging can be applied to visualize thermal energy, i.e., IR radiation. A
thermal heat signature consists of a spectral and spatial intensity distribution from
apparent temperature di�erences to the background [29].
In contrast with visual imaging, thermal imaging is less sensitive to illumination
degradation and visual obstruction, which poses an advantage in poor weather condi-
tions and at night. On the other hand, thermal imaging depends on the surrounding
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environment and background temperatures. Lighting conditions, geographic loca-
tions, weather conditions, time of capture, and materials reflective properties are
examples of factors that impact the surrounding environment transmission. More-
over, one should be aware that atmospheric transmission caused by, e.g., humidity
and aerosols also a�ects the thermal image resolution [29].

3.5 Transfer Learning
Transfer learning within machine learning aims to transfer knowledge gained from
solving one problem to solving another, di�erent but related problem. Transfer
learning can be used for generalization across domains and transferring knowledge
from a data-rich to a data-poor domain. In the context of this thesis, transfer
learning can be employed for transferring knowledge from the visual to the thermal
domain [30].
Rather than initializing a model with random weights, knowledge can be transferred
by implementing the weights of a pre-trained model. Knowledge can be transferred
by freezing layers and by fine-tuning. Freezing methods employs the pre-trained
model without modifications. The weights of the pre-trained model are said to
be frozen, meaning that they will not be adjusted during training. The model is
adapted by adding additional layers to be modified by further training on the target
data. Fine-tuning, rather than freezing the weights, adjusts the pre-trained models
by further training the model on the target data [30].

3.6 Adversarial Perturbations
Computer vision models are known to be sensitive to adversarial attacks, i.e., mis-
classification due to perturbations in input data. This is a well-documented issue
that poses a threat in real-world implementations [3, 31, 32, 33]. An adversarial
perturbation is a noise that causes misclassification when added to an image. It can
be quasi-imperceptible, i.e., invisible to a human eye, and it can be universal and
cause misclassification when added to any arbitrary image [32]. Motion blur is an
example of an adversarial that can cause misclassification.
There are two common defense strategies for dealing with adversarial perturbations:
1) model alternation and 2) image prepossessing [32, 34, 35]. Adversarial training
is a commonly implemented defense strategy for increasing model robustness by
including adversarial samples in the training dataset. Image prepossessing, on the
other hand, aims to remove the adversarial perturbation rather than alternating the
model [35].

3.6.1 Motion Blur
State-of-the-art networks are typically trained and evaluated on large high-quality
artifact-free datasets. Using perfect data for training causes a decrease in perfor-
mance in the presence of quality distortion such as motion blur [33, 36]. Possible
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solutions for handling motion blur are adversarial training on motion blur and de-
blurring, which both require knowledge about the blur kernel.
An image subjected to motion blur can mathematically be defined as

y = k ú x + n, (3.1)

where x corresponds to the equivalent sharp image, k the blur kernel, n some additive
noise, and ú is the convolution operator [37, 38]. As the equation implies, if the kernel
is known, it is possible to extract the sharp images from their blurry counterpart.
However, determining the true kernel is not a trivial task.
By the definition in Equation 3.1, motion blur can be simulated by implementing
synthetic motion blur kernels. A selection of di�erent synthetic blur kernels is pre-
sented in Figure 3.8. The disk kernel in Figure 3.8 (a) can be used to simulate
defocus blur, and the oriented box kernel in Figure 3.8 (b) can be applied to sim-
ulate linear motion blur [33]. The kernel in Figure 3.8 (c) is a random kernel that
can be used for simulating random motion [33, 38, 39, 40]. In order to capture the
blur kernel for a UAV, one has to take the complex motion pattern of a UAV into
account, including irregular motion caused by hovering, wind, or turbulence.

(a) Defocus. (b) Linear motion. (c) Random motion.

Figure 3.8: Di�erent synthetic blur kernels.

Vasiljevic et al. [33] investigate the image blur impact on state-of-the-art detection
networks. They implement the types of synthetic blur kernels presented in Figure 3.8
and observe a decrease in performance. Moreover, they are able to improve the
performance by fine-tuning and adversarial training. Vasiljevic et al. observe that
similar static distribution tends to generalize among di�erent kernels, i.e., fine-tuning
on defocus blur increases the model performance on camera shake blur and vice
versa. It is a significant finding, however, in a more recent study by Sayed et al. [31]
conclude the opposite.

3.7 Object Tracking
Object tracking within computer vision refers to the task of tracking objects across
consecutive video frames. Tracking-by-detection is a common approach to multiple
object tracking relying on an object detector. A joint tracking and detection model
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employs an object detection on the video sequence frames for detection and a track-
ing algorithm for data association across the frames to obtain the trajectories of the
objects. Keypoint tracking and object tracking share the same objectives, and as
object trackers, keypoint trackers typically take a two-stage approach [41]. To the
best of this author’s knowledge, there is no de-facto standard approach for keypoint
tracking. Since we are taking an object-based approach to keypoint detection in this
thesis, we will do the same for keypoint tracking.

3.7.1 Simple Online Realtime Tracking
Simple Online Realtime Tracking (SORT) [42] is a multiple object tracking frame-
work introduced by Bewley et al. in 2016. SORT relies on an object detector, a
state estimation model, and a data association algorithm. The estimation model is
a Kalman filter that estimates the next position of an object by extrapolating the
motion of the object. SORT implements the Hungarian optimization algorithm [43]
to associate objects across frames. The Hungarian algorithm operates on an assign-
ment cost matrix of the IOU distances among the detected objects in frame t and
previously detected objects in frame t ≠ 1.

3.8 Evaluation Metrics
This section presents di�erent metrics for evaluation used in this thesis. The evalua-
tion metrics are based upon the binary prediction results presented in the confusion
matrix in Figure 3.9.
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Figure 3.9: The confusion matrix for the definition of the classification metrics.
The columns correspond to the true labels and the rows the predicted labels. TP
corresponds to a hit (a correct classified positive), TN to a correct rejection (a correct
classified negative), while FP is a false alarm (incorrectly positive-classified), and
FN a miss (incorrectly negative-classified).

3.8.1 Precision and Recall
Precision and Recall are key metrics for the evaluation of binary classification mod-
els. The Precision score (P) is defined as the fraction of true positives and actual
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positives:
P = TP

TP + FP . (3.2)

The Recall score (R) corresponds to the true positive rate:

R = TP
TP + FN . (3.3)

According to Equations 3.2 and 3.3, a high Precision score corresponds to a low
FP rate, and a high Recall score corresponds to a low FN rate. A model should
preferably achieve both. The trade-o� between the Precision and Recall is usually
visualized with a precision-recall curve from which an optimal threshold can be
determined.

3.8.2 Average Precision
The Average Precision (AP) is an accuracy measurement commonly used for bench-
marking keypoint estimators. The AP corresponds to the area under the precision-
recall curve, which can be calculated by summarizing the weighted mean of the
Precision and Recall scores at each threshold n,

AP =
ÿ

n

(Rn ≠ Rn≠1)Pn.

A high-performance model should ideally achieve a high AP score. There are di�er-
ent adaptations of the AP score. The AP score is calculated separately for each class,
i.e., the classes are averaged independently. Another variant is the mean Average
Precision (mAP) which corresponds to the average AP over all classes [27].

3.8.3 Multiple Object Tracking Accuracy
Multiple Object Tracking Accuracy (MOTA) is an evaluation metric for multiple
object tracking algorithms. The MOTA metric incorporates three error rates; the
ratio of misses, the ratio of false alarms, and the ratio of ID mismatches [44]. An
ID mismatch is equivalent to an ID switch and is denoted as IDSW. The MOTA is
defined as

MOTA = 1 ≠
q

t FNt + FPt + IDSWtq
t GTt

(3.4)

where error rates and the number of true objects GT are calculated per frame t [45].
A high-performance tracker should obtain a high MOTA score.
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Figure 3.10: Illustration of the di�erent MOTA labels. The di�erent shapes rep-
resent objects captured over seven frames where ‡i are the corresponding ID. The
False Positive corresponds to a detection where there is no object, the mismatch oc-
curs when the ID switches object, and the miss is when an object goes undetected.
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This chapter presents the methodology behind experiments conducted to answer the
research question “To what extent is it possible to detect and track regions of interest

for remote measurement of vital parameters in RGB and thermal footage and in the

presence of characteristic low-altitude UAV motion blur?”. The experiments consist
of six use cases described in Section 4.6. Due to the lack of public available keypoint
annotated data collected by UAVs, synthetic motion blur have been applied to still
images to simulate UAV motion characteristics focusing on the irregular motion
pattern of a UAV. The datasets implemented for keypoint estimation are presented
in Section 4.1 while the blur augmentation is described in Section 4.3.

4.1 Keypoint Estimation Datasets
This section presents the datasets used for the keypoint detection task and the alter-
ations made for customizing the mouth keypoint. The datasets are summarized in
Table 4.1. The forehead and chest are not included in the standard keypoint anno-
tations and have been triangulated from the existing annotations. The triangulation
process is further described in Section 4.4.

Table 4.1: Technical information about the datasets used for the detection task.
Keypoints refers to the number of annotated keypoint labels.

Dataset Modality Keypoints
(Total/Facial)

Number of Images
Train Val Test

COCO [46] RGB 17/5 118 287 5000 40 671
COCO-WholeBody [47] RGB 113/68 118 287 5000 40 671
TFW outdoor [48] Thermal 5/5 5916 664 1600
TFW indoor [48] RGB+Thermal 5/5 7200 864 2160

4.1.1 The Common Objects in Context Dataset
The original KAPAO model [26] is trained on the Microsoft Common Objects in
Context (COCO) dataset [46]; an established large-scale object recognition dataset
of everyday objects in the wild. COCO is an RGB dataset annotated with 17 human
keypoints. A selection of images from the COCO dataset is presented in Figure 4.1,
while the COCO keypoints are shown in Figure 3.6. COCO is annotated with five
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facial keypoints: eyes, ears, and nose. There is an extension of the COCO dataset,
which is the COCO-WholeBody dataset [47]. The data remains the same, but
COCO-WholeBody is annotated with an additional 133 human keypoints, of which
68 are facial keypoints. The additional facial landmarks of COCO-WholeBody are
presented in Figure 4.2.

Figure 4.1: Sample images from the COCO dataset.

In this thesis, a custom dataset has been created by adding a mouth keypoint to the
original COCO dataset. This mouth keypoint has been derived from the COCO-
WholeBody dataset. The COCO keypoints are annotated in standard COCO for-
mat, where each keypoint is given by a pixel location, x- and y-coordinate, along with
a visibility criterion. The COCO keypoint visibility flags are; v = 0: not labeled (in
which case x = y = 0), v = 1: labeled but occluded, v = 2: labeled and visible [49].
COCO-WholeBody incorporates other visibility flags representing a reliability crite-
rion that can either be True or False. Compared to COCO, COCO-WholeBody does
not di�er between occluded and non-labeled scenarios, and keypoints with visibility
v > 0 are considered reliable [47]. In this thesis, the additional mouth keypoint has
been derived by averaging the COCO-WholeBody mouth keypoints with a non-zero
visibility criterion. The extracted mouth keypoints have been given visibility v = 2
to match the standard COCO format.
In addition to the keypoint labels, COCO includes a skeleton label to relate/connect
the keypoint and to create a spatial understanding. The original COCO keypoint
skeleton is visualized in Figure 4.3. One should note that this skeleton does not
directly translate into the KAPAO pose object. In this thesis, the additional mouth
keypoint has been connected directly to the nose to create the custom skeleton.
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Figure 4.2: The additional 68 COCO-WholeBody facial keypoints.

Figure 4.3: The standard COCO skeleton.

4.1.2 Thermal Faces in the Wild
Thermal Faces in the Wild (TFW) [48] published in 2022 is a thermal dataset an-
notated with facial keypoint. TFW contains data collected in controlled indoor,
semi-controlled indoor, and uncontrolled outdoor settings. The outdoor data are
multi-person scenarios collected in di�erent environments under unconstrained set-
tings and are hence the most representative of a potential UAV triage application.
Two images from the TFW dataset collected under uncontrolled outdoor settings
are presented in Figure 4.4 for exemplification. The TFW dataset has been manu-
ally annotated with a facial bounding box and five facial keypoints; eyes, nose, and
the outer corners of the mouth. Ultimately, these facial keypoints have created the
underlying constraints for the triangulation of the forehead in this project.
The TFW dataset is annotated with two mouth keypoints. In this thesis, these
have been averaged to obtain a single mouth keypoint annotation. Moreover, all
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Figure 4.4: Samples from the TFW dataset.

the annotations have been considered visible as nothing else is stated and have
been assigned the visibility flag v = 2 according to the standard COCO keypoint
formation.

4.2 Video Datasets for Tracking
This section presents the datasets used to evaluate the tracking algorithm: the 300
Videos in the Wild [50, 51, 52] dataset and the RGBT234 [53] dataset. The datasets
are summarized in Table 4.2. To this point, there is no public available in-the-wild
RGB video dataset annotated with all keypoint of interest in this thesis. Therefore,
tracking of the chest has been left for future work. There is also a lack of publicly
available thermal keypoint annotated video dataset; hence, a multimodal dataset
has been considered.

Table 4.2: Summary of the datasets used for evaluation of the tracking algorithms.

Dataset Modality Number of Sequences K
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300-VW [50, 51, 52] RGB 114 � �
RGBT234 [53] RGB+Thermal 234 � �

4.2.1 300 Videos in the Wild
The iBug 300 Videos in the Wild (300-VW) dataset [50, 51, 52] has been used
to evaluate the tracking of ROIs in the visual domain. 300-VW is an RGB video
dataset for facial landmark tracking annotated with the 68 facial keypoint presented
in Figure 4.2. The dataset consists of video sequences acquired under uncontrolled
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settings and includes various poses, facial expressions, illumination settings, and
occlusion. Moreover, the data is divided into three categories based on di�culty.
The categories are well-lit, mild occlusion, and challenging and the videos of category
challenging have been used for evaluation in this thesis.

Figure 4.5: A sample frame from the iBug 300-VW dataset.

4.2.2 RGBT234 Dataset
The RGBT234 dataset [53] has been used to evaluate the tracking of ROIs in the
thermal domain. RGBT234 is a bimodal multi-person video dataset of aligned RGB
and thermal video pairs collected under uncontrolled conditions. A frame pair from
the dataset can be seen in Figure 4.6. The dataset consists of a wide range of videos
in terms of settings, and the most representative sequence have been selected for
the task at hand. However, the RGBT234 dataset is not keypoint annotated and
has hence been annotated using the bimodality in this project. The thermal video
has been annotated by applying the RGB keypoint estimator to the corresponding
RGB video. This approach is inspired by Chen et al. [54].

Figure 4.6: An RGB and thermal frame pair from the RGBT234 dataset.
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4.3 Motion Blur Augmentation
As a pre-processing step, the data have been augmented with synthetic blur to sim-
ulate random motion blur. This section presents the process of generating random
motion blur kernels implemented in this project. The approach follows previous
work by Boracchi and Foi [40].
The blur kernels have been created using a Markov process followed by sub-pixel
linear interpolation. A Markov process is a stochastic process where the next state
is determined based on only the current state of the system. The motion trajecto-
ries have been continuously sampled on a 2-dimensional grid, where the following
position is determined based on the velocity and previous position. The algorithm is
described in further detail in Algorithm 1. Three perturbations govern the process:
a Gaussian, an impulsive, and an inertial perturbation. The Gaussian perturbation
corresponds to a smaller Gaussian deviation, while the inertial term is a larger de-
viation. In a UAV application, the Gaussian term could be caused by hovering and
the inertial perturbation due to wind gusts. The impulsive perturbation is a counter
term that counteracts the other perturbations [38, 40]. If the perturbations equal
zero, then the motion will be linear.

Algorithm 1 Random trajectory generator
Parameters:
M -number of iterations,
Lmax-max length of trajectory,
I-inertia,
ps-probability of an impulsive perturbation,
pb-probability of an inertial perturbation,
pg-probability of a Gaussian perturbation,
„-initial angle,
x-the trajectory vector.

1: v0 Ω cos „ + i sin „

2: v Ω v0 · Lmax/(M ≠ 1)
3: for t=1 to M-1 do
4: if randn < pb · ps then Û randn≥ N (µ, ‡

2)
5: nextDirection Ω 2v · e

i(fi(randn≠0.5))

6: else
7: nextDirection Ω 0
8: end if
9: dv Ω nextDirection+ps(pg(randn+irandn) · I · x[t] · Lmax/(M ≠ 1))

10: v Ω v + dv

11: v Ω (v/|v|) · Lmax/(M ≠ 1)
12: x[t + 1] Ω x[t] + v

13: end for

The obtained motion trajectories have been converted into point spread functions
(PSFs) by sub-pixel linear interpolation. Sub-pixel linear interpolation is a sampling
method for transforming from sub-pixel resolution to pixel resolution by linear inter-
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polation. The PSFs have been generated by sampling the trajectories on a pixel grid
and performing linear interpolation along each axis. A selection of obtained PSFs
are presented in Figure 4.7 for exemplification. The data was blurred by convolving
the PSFs onto the images using openCV [13] and the blurred output created with
the PSFs of Figure 4.7 are presented in Figure 4.8.

(a) Kernel A. (b) Kernel B. (d) Kernel D.(c) Kernel C.

Figure 4.7: Di�erent random motion blur kernels with di�erent standard devia-
tions.

4.4 Triangulation of the Forehead and Chest
The additional ROIs of this thesis that are not annotated have been triangulated
from the existing keypoint annotations as a post-processing step. The forehead has
been triangulated from the eyes and nose for all use cases. Given an x-axis along eye
level and a y-axis intersecting the nose at (0, -dnose), the forehead keypoint has been
located at coordinate (0, 0.5dnose). The chest keypoint has been triangulated from
the hips and the shoulders. If the shoulders and the hips constitute a square, then
the chest has been defined in the center of the upper half of the square. Triangulation
has the drawback of breaking in the absence of a keypoints the triangulation relies
upon. Hence, one should be aware that triangulated ROIs are more sensitive to
occlusion than their independent counterparts. Moreover, one should note that the
distances for triangulation are not chosen on specific scientific grounds for vital
parameter measurement in this project.

4.5 Network Architecture
This section presents the architecture and training procedures of the implemented
keypoint estimator. The small KAPAO version has been implemented in this the-
sis project which relies on a CSPDarkNet53 backbone for feature extraction. The
DarkNet53 is a CNN architecture of 53 layers comprising 3 ◊ 3 and 1 ◊ 1 kernels.
To enhance the learning capabilities of the CNN, CSPDarkNet53 employs a Cross
Stage Partial Network (CSPNet) strategy in which the gradient flow is divided and
propagated through the networks in di�erent paths. It is achieved by dividing the
feature map of the base layer into two and by fusing them through a cross-stage
hierarchy [55]. The architecture is further described in Table 4.3.
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(a) Convolved with kernel A. (b) Convolved with kernel B.

(c) Convolved with kernel C. (d) Convolved with kernel D.

Figure 4.8: The blurred result obtained when applying the blur kernels in Figure 4.7.

Table 4.3: CSPDarknet53 architecture, the backbone to YOLOv5s version 6.0.

Type of Layer Filter Size Repetitions
Conv 64 3 ◊ 3 1◊
Conv 128 3 ◊ 3 1◊
C3 128 1 ◊ 1 3◊
Conv 256 3 ◊ 3 1◊
C3 256 1 ◊ 1 6◊
Conv 512 3 ◊ 3 1◊
C3 512 1 ◊ 1 9◊
Conv 1024 3 ◊ 3 1◊
C3 1024 1 ◊ 1 3◊
SPPF 1024 5 ◊ 5 1◊

Following the approach of McNally et al. [26], the use cases not relying on fine-tuning
have been initialized with the weights of YOLOv5s to decrease the training time.
According to the default setting of YOLOv5s, also employed by McNally et al., a
stochastic gradient descent (SGD) optimizer and an initial learning rate of 0.01 have
been used for training. For the use cases not relying on fine-tuning, the training
has been performed during 250 epochs using batch size 32. The model fine-tuned
on thermal data has been initialized with the weights of the RGB model, and the
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learning rate decreased to 0.001. Moreover, the number of epochs has been set to
501.
The data has been augmented during the training process to expand the dataset
artificially. Once more, we have followed YOLOv5s and McNally et al. [26] and
used the augmentation techniques and corresponding probabilities in Table 4.4. The
HSV techniques alter the color and mosaic creates new images by combining multiple
images.

Table 4.4: Augmentation techniques and corresponding probabilities were imple-
mented for the expansion of the datasets.

Method Probability
HSV-Hue 0.015
HSV-Saturation 0.7
HSV-Value 0.4
Translate 0.1
Scale 0.9
Flip left-right 0.5
Mosaic 1.0

4.6 Experimental Setup
This section describes the experiments conducted to answer the research question.
The experiments conducted for the detection and tracking tasks are described sep-
arately below.

4.6.1 Detection
The di�erent scenarios for keypoint detection that have been taken under consider-
ation are presented in Table 4.5. An RGB and thermal baseline have been created
for reference purposes, trained on the modified COCO dataset and TFW outdoor
data respectively.
As the impact of characteristic UVA motion blur is of interest in this project, an
RGB model adapted to motion blur have been created. This has been achieved by
adversarial training on a blurred version of the COCO dataset, where 1/3 of the
training data is perturbed with synthetic motion blur as described in Section 4.3.
The impact of the blur has been evaluated by comparing the RGB baseline and the
adopted model’s performance in the presence of synthetic blur.
Three additional use cases have been considered to further investigate the properties
of the thermal domain and KAPAO. As the TFW outdoor data is a relatively small
dataset, an expanded model has been introduced trained on the combined TFW
outdoor and indoor data. The temperature ranges of an outdoor versus indoor

1The readers unfamiliar with the fundamental concepts of training neural networks are referred
to [56] for further reading.
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Table 4.5: The use cases for which the experiments have been conducted.

Use Case Training Data Evaluation Data
RGB baseline COCO COCO

COCO blurred
TFW outdoor

RGB blurred COCO blurred COCO blurred
Thermal baseline TFW outdoor TFW outdoor
RGB fine-tuned on thermal COCO+TFW outdoor TFW outdoor
Thermal expanded TFW outdoor+TFW indoor TFW outdoor
Thermal with modified pose object TFW outdoor TFW outdoor

environment can largely di�erentiate, and it is not trivial that combining them will
increase performance. Another approach taken under consideration is fine-tuning
from the visual to the thermal domain to compensate for the limited amount of
available thermal keypoint annotated data. The last model adopts an alternative
pose object. Rather than implementing the modified COCO skeleton, the face grid
illustrated in Figure 4.9 have been adopted. The aim of redefining the pose object
is to better understand the modeling of local and global features in the thermal
domain. Like the thermal baseline, all the additional thermal models have been
evaluated on the TFW outdoor dataset for comparison.

Figure 4.9: Illustration of the facial grid used as a pose object. The image is taken
from the TFW indoor dataset.

4.6.2 Tracking
For the tracking of ROIs in the visual and thermal domains, tracking algorithm
SORT has been implemented according to the theory of Section 3.7. The best-
performing keypoint estimators of the respective domain have been used for detec-
tion of ROIs. In addition to the SORT algorithm, a naive tracking algorithm where
the tracking IDs are assigned based on frame-to-frame di�erences has been employed
for reference purpose. The experiments conducted referring to tracking are listed in
Table 4.6.
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Table 4.6: The use cases for the tracking task.

Use Case Keypoint Estimator Evaluation Data
Naive algorithm RGB 300-VW challenging

RGB RGBT234 video sequence
Thermal RGBT234 video sequence

SORT RGB 300-VW challenging
RGB RGBT234 video sequence
Thermal RGBT234 video sequence

As previously mentioned, the thermal video dataset is not keypoint annotated.
Hence, the chosen RGBT-234 video has been annotated with the RGB baseline.
The RGB keypoint estimator has been applied to the RGB modality and trans-
ferred onto the thermal modality to evaluate the performance.

4.7 Evaluation
The metrics described in Section 3.8 have been implemented according to the stan-
dard COCO metrics for keypoint detection. The COCO evaluation metric for key-
point detection relies on an object keypoint similarity (OKS) measurement defined
as,

OKS =
ÿ
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D

” (vi > 0)
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ÿ

i

” (vi > 0) . (4.1)

The OKS represents the average keypoint similarity across the keypoint labels where
di corresponds to the Euclidean distance between a detected keypoint and corre-
sponding ground-true annotation, and vi the annotated keypoints visibility. Note
that the visibility of the detected keypoint is not taken under consideration. The
sŸi corresponds to the keypoint standard deviation where s denotes the object scale,
and Ÿi is a keypoint constant. The object scale is defined as the square root of the
segmented object area and the keypoint constant Ÿi = 2‡i where ‡i corresponds to
the keypoint standard deviation for the object scale. By the COCO standard ‡i

for human keypoint detection are given by [0.026, 0.025, 0.035, 0.079, 0.072, 0.062,
0.107, 0.087, 0.089] for the nose, eyes, ears, shoulders, elbows, wrists, hips, knees,
and ankles, respectively. These values have been derived from the COCO evaluation
dataset [49]. In this project, the additional mouth keypoint has been assigned the
same ‡i as the nose.
The primary evaluation metric for keypoint detection is mAP at OKS = 0.50 :
0.05 : 0.95 and OKS = 0.50. An OKS threshold determines the AP for keypoint
evaluation. Keypoints with an OKS exceeding the threshold are considered TP,
and vice versa for FP, from which the AP can be determined. According to the
standard COCO metrics for keypoint detection the mAP at OKS=0.50:0.05:0.95
corresponds the mean mAP over OKS=0.50, 0.55, 0.60, ..., 0.95 [49]. From here on,
mAP at OKS=0.50:0.05:0.95 will be denoted as mAP and mAP at OKS=0.50 as
mAP.50.
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In addition to the COCO standard metric for keypoint detection, the PoseTrack
evaluation metric has been considered. PoseTrack is a benchmark for human pose
estimation and tracking comprising of three tasks, 1) single-frame pose estimation,
2) pose estimation in videos, and 3) pose tracking in the wild. A geodesic point
similarity (GSP) has been adopted for the estimation in the thermal domain. The
GSP mimics the COCO OKS in Equation 4.1, but rather than relying on COCO-
specific normalization instances, a mean geodesic distance is used as a normalization
factor [57]. The ground truth eye-eye distance is commonly used as a normalization
constant in facial landmark detectors [58]. However, the ground truth eye-nose
distance has been used for normalization in this project as it is less sensitive to
occlusion and di�erent poses.
For tracking, PoseTrack employs the MOT metric described in Section 3.8. The
PoseTrack evaluation server has been implemented to evaluate the tracking of key-
point. The server reports the MOTA score for each keypoint label and as an average
over all keypoint labels [57].
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This chapter presents the results of the conducted experiments presented in Chap-
ter 4. The results referring to detection are presented in Sections 5.1 and 5.2, while
the tracking results are shown in Section 5.3.

5.1 Blur Impact
This section presents the impact of the synthetic motion blur and the adversarial
training in the visual domain. The performance of the RGB models, previously de-
scribed in Section 4.6, on di�erent blurred versions of the COCO evaluation dataset
is presented in Table 5.1. Note that the blur percentage reports the percentage of
evaluation images augmented with synthetic blur. The baseline model achieved a
mAP=0.619 and mAP.50=0.8 on the original COCO evaluation dataset.

Table 5.1: The performances of the RGB baseline and the model trained on syn-
thetic blur on the di�erent blurred versions of the COCO evaluation dataset. The
Blur Percentage reports the percentage of images augmented with artificial blur.
The scores have been calculated according to the COCO standard metric for key-
point evaluation, where the additional mouth keypoint has been assigned the same
keypoint standard deviation as the nose.

Use Case Blur Percentage mAP@[OKS=0.50:0.05:0.95] mAP@[OKS=0.50]
RGB baseline 0 0.62 0.80

33 0.53 0.77
100 0.34 0.62

RGB blurred 33 0.53 0.79
100 0.36 0.67

5.2 Detection in the Thermal Domain
This section is dedicated to the results regarding detection of the ROIs in the ther-
mal domain. The models’ performance on the thermal TFW outdoor dataset is
presented in Table 5.2. As shown in Table 5.2, the model fine-tuned from visual to
thermal domain yields the highest scores while the RGB baseline achieved the lowest
mAP. However, in terms of mAP.50

, the RGB baseline obtained a significantly high
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score compared with the acquired mAP. One should note that the reported scores
in Table 5.2 have been determined using the geodesic normalization described in
Section 4.7.

Table 5.2: The detection scores for the di�erent models were determined on the
TFW outdoor evaluation dataset. The scores have been calculated with the eye-nose
distance as a normalization factor.

User Case mAP@[OKS=0.50:0.05:0.95] mAP@[OKS=0.50]
RGB baseline 0.21 0.73
Thermal baseline 0.52 0.54
RGB fine tuned on thermal 0.86 0.89
Thermal expanded 0.64 0.66
Thermal with modified pose object 0.73 0.77

5.3 Tracking of ROIs
The results obtained by the naive algorithm employed for reference and the SORT
algorithm are presented in Tables 5.3 and 5.4. The tracking algorithms have been
evaluated according to the PoseTrack standard on the subset of the 300-VW dataset
labeled challenging, and a selected sequence from the RGBT234. In addition to the
ROIs for vital parameter measurement, the MOTA scores for the eyes used for trian-
gulation of the forehead have been reported. According to equation 3.4, the MOTA
score ranges from negative infinity to one. A high performing tracking algorithm
should achieve a MOTA score greater than zero implying that the number of true
observations exceeds the total number of misses, false alarms, and ID mismatches.
One can observe that the algorithms achieve a nearly perfect score on the 300-VW
dataset, compared to the scores on the RGBT234 dataset, which are significantly
lower. Moreover, the result shows that the implementation of the SORT algorithm
increased the performance.

Table 5.3: The obtained MOTA scores for the naive tracking algorithm. The
MOTA is reported per keypoint, and the Total corresponds to the average score
over the keypoint labels.

Use Case Dataset Nose Left Eye Right Eye Mouth Forehead Total
RGB baseline 300-VW 0.981 0.985 0.990 0.976 0.972 0.976
RGB baseline RGBT234 -0.956 -0.955 -0.955 -0.957 -1.000 -0.972
Fine-tuned on TFW RGBT234 -0.674 -0.674 -0.674 -0.694 -0.998 -0.743
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Table 5.4: The obtained MOTA scores for the SORT algorithm. The MOTA
is reported per keypoint, and the Total corresponds to the average score over the
keypoint labels.

Use Case Dataset Nose Left Eye Right Eye Mouth Forehead Total
RGB baseline 300-VW 0.989 0.991 0.991 0.988 0.989 0.989
RGB baseline RGBT234 -0.837 -0.838 -0.839 -0.885 -0.893 -0.858
Fine-tuned on TFW RGBT234 -0.441 -0.434 -0.444 -0.501 -0.550 -0.474
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6
Discussion

In this chapter, the results in Chapter 5 are discussed in relation to the research
question. In addition, the adaption of this thesis for a potential UAV triage appli-
cation is discussed as well as the ethical concern focusing on dataset biases.

6.1 Detection in the Visual Domain
The RGB baseline can be compared with the state-of-the-art KAPAO model to gain
some understanding of the performance. The RGB baseline obtains a mAP=0.619
and mAP.50=0.800 which is similar accuracy to the original small KAPAO model
which achieves a mAP=0.638 and mAP.50=0.884. Training of RGB baseline is
computationally demanding and requires a considerable amount of time. Hence
the number of training epochs has not been further investigated in this project, and
one could probably achieve higher AP scores by prolonging the training. Moreover,
only the small KAPAO version has been the object of investigation in this project,
as inference speed has been prioritized. One should note that implementing the
larger version would likely increase the accuracy as the original large KAPAO model
achieves a mAP=0.703.
As expected, the results in Table 5.1 demonstrate a decrease in performance in the
presence of motion blur. The result shows that adversarial training can improve
performance, although the di�erence is marginal compared to the result by Vasil-
jevic et al. [33]. Vasiljevic et al. regain moste of the lost accuracy by fine-tuning
their pre-trained model on synthetic blur. One should note that there are two sig-
nificant di�erences compared to the work of Vasiljevic et al.: 1) they are considering
conventional objects rather than keypoint objects, and 2) the implementation of
blur kernels. Firstly, keypoint objects are smaller than conventional objects, and
small objects are more sensitive to blur [59]. Hence the object size could explain
the results. Secondly, Vasiljevic et al. generate 100 di�erent blur kernels, which
are applied randomly rather than applying truly randomized blur kernels as in this
project. This can explain why generalization among kernels cannot be observed to
the same extent.
As adversarial training appears to not be very e�ective in this case, it might be
interesting to investigate possible image prepossessing alternatives for deblurring.
In a UAV application, that could be optical stabilizing measures. Another possible
option could be to remove blur artifacts by deconvolution of the kernels with a
deblurring generative adversarial network (GAN).
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6.2 Detection in the Thermal Domain
The results in Table 5.2 conclude that the RGB model fine-tuned on thermal data
achieves the highest scores of mAP=0.856 and mAP.50=0.890 on the TFW outdoor
dataset. The performance of the fine-tuned model provides evidence for that it is
possible to generalize from the visual to the thermal domain. However, the perfor-
mance of the RGB baseline is inconclusive. The RGB baseline achieves the lowest
mAP=0.205, but the mAP.50=0.728 which is considerably higher. Deviation in an-
notation standards between the datasets could explain the di�ering AP score of the
RGB baseline.
Observing the two additional thermal models, the result in Table 5.2 shows that the
performance increased by including the indoor data for training and implementing
the face grid. The relatively poor performance of the thermal baseline could reflect
upon the size of the dataset but also the thermal feature space. Firstly, the increase
in performance due to the expansion of training data is not trivial as the outdoor and
indoor settings di�er considerably in the thermal domain. It would be interesting to
investigate if this is a model-specific behavior, possibly enabled by the pose object,
or not. Secondly, McNally et al. [26] state that the keypoint objects are intended
for keypoint with local features and pose objects for keypoints with global features.
As facial keypoints are categorized as keypoints with local features, it is interesting
that the modification of the pose objects has such a big impact on the performance.
It would be interesting to investigate this behavior further as it speaks for the
innovative height of the pose object.
The TFW dataset is a relatively newly published dataset; hence, there is limited
published work regarding the dataset. The authors of the dataset [48] provide two
baselines, a YOLOv5 and a YOLOv5Face model, both trained on their dataset.
Kuzdeuov et al. use a normalized mean error for evaluation. However, it is not
stated how they have handled false detections, making it impossible to compare the
results.

6.3 Dataset Biases
To understand the limitations of a deep learning model, one has to be aware of
dataset biases. Amplification of biases within the training dataset is a well-documented
problem within computer vision [60]. For example, a deep-learning model can be
biased in terms of gender, ethnicity, and age, which are ethical concerns.
Studies have been conducted to investigate biases within the COCO dataset. Zhao
et al. [61] conclude that the COCO dataset is biased toward skin color and gender at
image and instance levels. According to their study, the COCO dataset contains 7.5
times more light-skinned subjects than dark-skinned subjects and two times more
males than females. Moreover, Zhao et al. conclude that there are visual di�erences
and that darker-skinned subjects more frequently appear in outdoor settings whiles
light-skinned subjects more regularly appear in indoor environments. Although
COCO is a large-scale dataset, it possesses biases that could cause ethical concerns
in a real-world application.
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Biases within the thermal domain are more complex compared to biases in the
visual domain. For example, one should be aware that the heat signatures of a red
house made of wood and a red brick house may di�er due to the di�erent thermal
properties of the materials. The houses can appear the same on a cloudy day,
but their heat signatures will di�er in direct sunlight. A thermal dataset can, for
example, be biased in terms of lighting conditions, geographic locations, weather
conditions, time of day or year of capture, and due to material properties. Hence,
the size and diversity of the thermal data are essential. Biases within the TFW
dataset have not been investigated, but one can assume it possesses biases due to
its small size.
Analyzing bias propagation becomes especially important in a potential health care
application to avoid discrimination. In addition, biases regarding health status have
to be taken under consideration in a medical application. The data used in this
project are limited to healthy subjects, and the models are consequently biased
towards healthy subjects. Scenarios likely to occur in a mass casualty incident such
as bruising, blood, and loss of limbs have not been investigated. The same applies
in the thermal domain, as skin temperature is correlated to health status. In a
potential mass casualty incident application, domain-specific features such as those
mentioned must be investigated to ensure unbiased models.

6.4 Tracking of ROIs
The tracking of ROIs has been evaluated on two di�erent datasets in terms of image
quality and distance to the observed subjects. The di�erence in distance likely
explains the di�erence in MOTA scores as the distance directly relates to the pixel
area of the ROIs. Due to data shortage, further quantifying the distance dependency
has been left to future work.

6.4.1 Evaluation on the 300-VW Dataset
The results in Tables 5.3 and 5.4 show that both the naive and the SORT algorithm
achieve high accuracy on the 300-VW dataset, although only evaluated on the videos
of category challenging. The forehead and mouth achieve the lowest MOTA scores,
likely due to triangulation and lip movements. Hence, one can conclude that it is
favorable to use the nose for triangulation rather than triangulate from the mouth.
The result shows that implementing the SORT algorithm improves the tracking
score, although the scores were nearly perfect to start with.
An aspect to consider is the relative size and motions of the ROIs. The 300-VW
dataset mainly consists of videos where the ROIs cover larger pixel areas, which is
favorable from a tracking perspective. Nevertheless, the remaining question is what
is a suitable distance for remote vital parameter measurement. Related research
on remote vital parameter measurement by Yang et al. [14] report a method that
performs well on a 0.6 ≠ 1.2m distance in indoor settings, which according to Yang
et al. is a considerably large distance compared to previous works. If the distance
is realizable in a UAV application is debatable; however, the range falls within
distances featured in the 300-VW dataset.
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6.4.2 Evaluation on the RGBT234 Dataset
The evaluation on the RGBT345 dataset does not achieve as high MOTA scores as
the results obtained on the 300-VW dataset (see Table 5.3 and 5.4). Implement-
ing the SORT algorithm improves the scores for all use cases. However, the large
distances and the small relative motions of the ROIs are presumably limiting the
performance of the algorithm. Based on visual observations, detection failures and
identification failings likely cause the low MOTA scores. This behavior does not
seem specific to the thermal domain, as the same could be observed in the RGB
modality.
The performance of a tracking algorithm is ultimately determined by the perfor-
mance of the detector. Small objects with weak appearance and features decrease
the performance of object detectors [59] which is likely what we observed here. As
the ROIs cover small pixel areas, it is presumable that the detector is sensitive to
larger distances and that the combination of larger distances and poor image qual-
ity becomes especially problematic. One could assumably increase the performance
by shortening the detection distances, but there are other approaches to improve
the performance on small objects. A prominent solution is YOLO-Z, introduced by
Benjumea et al. [62]. YOLO-Z is a YOLOv5 model modified on an architectural
level, improving the detection abilities of small objects without any significant speed
trade-o�.

6.5 Adaption to UAV Applications
This project focuses on characteristic UAV motion blur. However, for a potential
UAV implementation, additional aspects concerning the UAV domain have to be
considered. The bird’s-eye view and the pitch angle of the UAV are particular
features to be taken into account.
Another aspect of bringing attention to is hardware limitations. Challenges for
deploying a computer vision application on a UAV platform are: 1) the energy
consumption, the application has to consume minimal power to minimize the impact
on the UAV flight time, 2) the memory consumption and computational power as the
UAV payload capability are limited, and 3) the data processing, the input data has
to be processed with low latency to be applicable for real-time applications [20]. The
detection and tracking of ROIs will only be a part of a large UAV triage application,
making these aspects even more relevant.
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The objective of this thesis has been to investigate the possibilities for a UAV to
detect and track ROIs for remote measurement of vital parameters in the visual
and thermal domains. The ROIs have been the forehead, nose, mouth, and chest,
and the UAV characteristic taken under consideration is motion blur due to random
camera motion. In this project, we have taken an object detection approach to
keypoint estimation and tracking. The state-of-the-art keypoint detector KAPAO
and the tracking algorithm SORT have been implemented and evaluated in several
experimental setups. Various metrics have been used to assess the performance of
the keypoint estimators and tracking algorithms. The keypoint estimators have been
evaluated using mAP and di�erent keypoint object similarity measurements. For
the evaluation of the tracking performance, MOTA has been used.
For detecting ROIs in the thermal domain, the model created by transferring knowl-
edge from the visual to the thermal domain by fine-tuning showed the highest perfor-
mance. Furthermore, as the second best performing model in the thermal domain,
the expansion of the pose object improved the performance significantly. This result
demonstrates the innovative use of the spatial information.
Adversarial training on motion blur had a minimal impact on the performance in
the presence of blur. The result problematizes the sizes of the ROIs and the motion
characteristics of low-altitude UAV flights. Since no generalization among random
blur kernels could be observed, the results support the use of optical stabilization
in a possible UAV triage application.
Regarding tracking of ROIs, the result concludes that the SORT algorithm improved
the performance for all use cases. In addition, one can observe that both the SORT
algorithm and the naive approach achieved an almost perfect score on the 300-VW
dataset. This is a significant result as the dataset represent the distances of previous
research on remote measure of vital parameters. The result shows that the pixel area
is relevant, and it can be concluded that the distance and image quality impact the
performance. This poses a potential limitation in a UAV triage application.

7.1 Future Work
In this project, we have been using public available keypoint annotated datasets
to avoid manual annotation of data. The UAV motion characteristics have been
simulated, and further adopting the models for UAV triage application has been left
for future work. Challenges to be met have previously been discussed in Sections 6.3
and 6.5. With respect to the UAV triage characteristic, possible directions for future
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work could be to 1) collect and manually annotate UAV data from a mass casualty
incident or 2) synthesize data and simulate corresponding scenarios. An idea could
be to create synthetic data by segmenting and adding humans to UAV footage.
The research question is related to limitations associated with remote measurement
of vital parameters for triage. It would be beneficial to further investigate to what
extent it is possible to remotely measure vital parameters to define constraints re-
garding this project in terms of accuracy, distances, and angles. Such limitations
would put this project in context and make it possible to tune the evaluation metrics
accordingly.
This project aims to detect and track the ROIs in the visual and thermal domains. It
would be interesting to investigate the properties of the thermal domain further. A
possible direction of future studies could be to investigate the thermal dataset biases
and implications of using apparent temperature di�erences for imaging. As there
is a limited public available keypoint annotated thermal data, another direction of
future studies could be to explore the possibility of transforming RGB images into
thermal images using, for example, GANs.
The tracking algorithm SORT has been implemented in this thesis project. How-
ever, other possible tracking algorithms might be of interest. DeepSORT [63] is
a successor to SORT which additionally employs a re-identification network. The
re-identification network is a CNN trained to identify object similarity to reduce
identity switches. The original DeepSORT re-identification network is trained on
human objects, and a possibility could be to create a re-identification dataset for
the ROIs. However, that has been left for future work due to limitations.
Before deploying the models in a real-world application, dataset biases and bias
propagation has to be addressed. Aspects to be taken under consideration have
been previously mentioned in Section 6.3, which have to be investigated to be ad-
dressed accordingly. A possible idea could be to expand the dataset artificially using
GANs for image synthesis to increase the diversity of the model and eliminate biased
behavior.
Several ethical aspects have to be investigated before deploying the model in a
real-world triage application. In a medical application, privacy concerns become
particularly important and should hence be analyzed further. Storage of the patents
personal data, patient privacy and consent, as well as reconstruction of training data,
for example, has to be addressed before a potential deployment.
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