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Abstract 

Identifying, visualizing and quantifying process disturbances at SSAB Oxelösund 
using multivariate modelling  

Henrik Rådberg 
Department of Chemical Reaction Engineering 
Chalmers University of Technology 
 
 
Modern process lines give rise to huge amounts of data which are stored in databases. Mul-
tivariate analysis comprises useful tools to grasp useful information from the datasets. In 
the present study principal component analysis (PCA), projection to latent structures 
(PLS) and hierarchical PCA has been used to create models of five process steps at a Swed-
ish steelworks. The focus has been to identify and explain relations to quality problems in 
each step, both within the step itself, but also from upstream processes using hierarchical 
PCA. 
 
The five process steps that have been modelled are the blast furnace, desulphurization in 
the torpedo car, basic oxygen steelmaking in the LD–LBE-converter, secondary steelmak-
ing in ladle and ladle furnace and, finally, continuous casting of slabs. Among the results 
achieved it is found that: 
 

� PLS prediction of crude iron analysis from blast furnace discharge has been made 
with a fraction of explained variance for external validation (Q2

PS) above 20% for 
P, Cr, Cu, Ti, CaO, SiO2, MgO and basicity. The data resolution was relatively low.  

 
� Hierarchical modelling revealed correlations between the process steps, e.g. that 

LD-converter treatments registered as severe slopping heats have a titanium con-
tent in the incoming crude iron that is higher than average. 

 
� Heats with too high phosphorous content after LD-treatment can be identified as 

having low silicon content in the crude iron, which makes it impossible to create 
the necessary slag amount for desired phosphorous cleaning effect. 

 
� High sulphur content in the torpedo car demands a long treatment time. If the sili-

con content is low in such a batch, there is an evident risk that it will not have high 
enough temperature in the secondary steelmaking. 

 
� Capturing reasons for quality problems during casting is difficult due to the low 

variation in data. The main variations exist between the steel qualities. However, 
the importance of casting properties such as oscillations for visual quality of the 
slabs, and temperature and steel analysis for slab inner quality have been recog-
nized. 

 
 
Keywords: Multivariate analysis; PCA; PLS; hierarchical modelling; process modelling; blast furnace; steelworks 
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Sammanfattning 

Moderna processindustrier ger upphov till stora mängder data som sparas i databaser. För 
att analysera dessa datauppsättningar och få ut användbar information används ofta statis-
tiska verktyg i form av multivariata metoder såsom principalkomponent analys (PCA) och 
projektion till latenta strukturer (PLS). PCA används för klassificering och för att skaffa sig 
en överblick över de observationer (objekt) som finns i datauppsättningen medan PLS an-
vänds för prediktion av en eller flera intressanta responser (Y-variabler). I detta arbete 
PCA och PLS använts för att modellera fem processteg på SSAB Oxelösunds stålverk. Fo-
kus har legat på att identifiera och förklara samband mellan kvalitetsproblem i varje pro-
cessteg. Sambanden har sökts såväl inom processteget som i tidigare processer genom an-
vänding av hierarkisk modellering. 
 
De fem processteg som undersökts är masugn, avsvavling i torpeder, färskning i LD–LBE-
konverter, skänkmetallurgi och stränggjutning. Bland erhållna resultat märks följande: 
 

� PLS-prediktion av råjärnsanalyser från masugnstappningar har gett förklarings-
grader på över 20% vid extern validering (Q2

PS) för följande ämnen: P, Cr, Cu, Ti, 
CaO, SiO2, MgO samt basicitet. 

 
� Hierarkisk modellering har påvisat samband mellan processteg, exempelvis att 

LD-charger med stora utkok haft högre titanhalt i råjärnet än medelvärdet av alla 
observationer. 

 
� Charger med för hög fosforhalt efter färskning uppvisar samband med låg kiselhalt 

i det inkommande råjärnet. Den låga kiselhalten förhindrar att tillräckligt mycket 
slagg kan bildas vilket hämmar fosfosreningen. 

 
� Hög svavelhalt i råjärnet kräver långa behandlingstider i avsvavlingssteget. Om 

dessutom kiselhalten är låg är det stor risk att chargen hamnar lägre i temperatur 
än gränsvärdet vid skänkbehandlingen tillåter. 

 
� Modellering av kvalitetsproblem vid stränggjutningen har försvårats av låg varia-

tion i datauppsättningen eftersom de främsta variationerna återfinns mellan olika 
stålkvaliteter. Samband mellan kokillens oscillering och stålämnets ytkvalitet har 
dock kunnat fastställas, liksom inverkan av temperatur och stålsammansättning i 
gjutlådan på stålämnets inre kvalitet. 
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1. Objectives and scope 

The amount of process data collected at modern process facility makes it possible to use 
multivariate techniques to gather useful information about the process in a variety of ways, 
for example: 
 

� Classify a process state as belonging to normal operation or not. 
� Reveal underlying explanations to known disturbances. 
� Detect unknown disturbances and suggest causalities. 
� Predict important quantities or qualities. 

 
It is however important to have an idea of what phenomena that may be present and possi-
ble to study before starting to collect and treat data. This study is performed as a part of a 
research project supervised by IVL Swedish Environmental Research Institute, and the 
objectives and scope are described in subsequent sections.  

1.1. Objectives 
Data from both ironworks and steelworks are included in the study and divided into blocks 
which correspond to the process steps. The main objective is to identify, visualize and quan-
tify process disturbances at the plant by modelling each block and also connect data from 
the iron- and steelworks using hierarchical modelling. The top-level model is based on the 
models for each of the data blocks. 
 
The process disturbances may cause faults such as non-satisfactory and varying crude iron 
composition, slopping during basic oxygen steelmaking, failure reaching the liquid steel 
product specification and quality problems while casting. The aim is to describe these dis-
turbances well enough for actions to be taken. 

1.2. Scope 
The process equipment at different steelworks may vary from each other, therefore the 
theoretical description of steel production as well as literature and papers studied are 
mostly for process lines similar to the one at SSAB Oxelösund. The term process line is 
here used for the five steps crude iron production, desulphurization, basic oxygen steelmak-

ing, secondary steelmaking and continuous casting. 
 
SSAB Oxelösund produces a variety of steel qualities. Internally these are named T-sorts, 
each having its specific process route and quality specification. Three T-sorts have been 
included in the data studied (in this study called T1, T2 and T3), constituting common 
products with challenges meeting quality targets, especially in the casting step. Although 
the T-sorts do not have exactly the same properties, they are included in the same dataset 
for comparison. 
 
A wide range of phenomena and correlations in the process line may be studied using mul-
tivariate techniques, but focus in this study is to identifying factors affecting the quality tar-
gets in each process step and thereafter to quantify their influence. The quality targets are 
illustrated in figure 15 in section 3.1.3. 
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2. Theoretical background 

In this chapter the tools used for data analysis are presented together with a description of 
the steelmaking process in general and the SSAB Oxelösund steelworks in particular.  

2.1. Multivariate statistical methods 
The aim for multivariate analysis is to present useful information from large amounts of 
data that may be difficult to grasp in more traditional ways. The methods used in this study 
are based on the idea of latent structures available in the original data.  
 
The concept can be illustrated by a comparison with the human colour vision as is done by 
Martens and Naes (1991), see figure 1. The sunlight consists of several wavelengths, of 
which the ones between 400 and 700 nm are what we call visible light. If these wavelengths 
encounter a red cloth, the “red” (600–700 nm) are being reflected and eventually registered 
by the human eye, which registers the information as the three quantities red/green, yel-
low/blue and light/dark and passes this information on through nerve cells. Even though 
the incoming light consists of tens or more wavelengths, three variables (together with in-
formation about the light source’s original spectra, which the brain is aware of) is enough to 
produce meaningful colour information. These three pairs are in this case the latent vari-
ables that the incoming spectra are compressed into. 
 

 

Figure 1. Colour vision as an illustration of latent variable construction. The sunlight consists of hundreds of wave-
lengths. The red wavelengths are reflected by the red cloth and captured by three pigments in the eye. Three nerve 

signals pass on the wavelength information to the brain which calculates the three-dimensional colour space. 
 

In this study two latent variable methods have been used to model the different process 
steps at SSAB Oxelösund; principal component analysis and projection to latent structures 
(also known as partial least squares). A common thing with these methods is that they pro-
duce models that are more compact and statistically stable than the data matrix X (Mar-
tens & Martens 2001). In addition, results from the individual models have been imple-
mented in a top model by hierarchical methods, described in subsection 2.1.3. 
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2.1.1. Principal component analysis (PCA) 

Several objectives may be the background for using principal component analysis (PCA). 
Wold et al (1987) lists some of them in their PCA tutorial: simplification, data reduction, 
modelling, outlier detection, variable selection, classification, unmixing and prediction. 
 
Using PCA to construct the latent variables out of a data matrix XX is basically a task of 
least squares calculation. The different observations made are stored as rows (often called 
objects) in X and the variables measured constitute the columns. The main patterns in the 
data in X are captured in a few principal components (PCs), stored in the small matrices T  
and P 0. The column vectors in T  carry information about patterns in the observations while 
the rows in P 0 are related to the variables and their individual contributions to the principal 
component. Plotting is usually a good tool to visualize the information achieved in the PCs. 
 

2

6

4

x11 ¢ ¢ ¢ x1K

...
. . .

...
xN1 ¢ ¢ ¢ xNK

3

7

5
=

2

6

4

t11

...
tN1

3

7

5

2

6

4

p11

...
pK1

3

7

5

0

+ ¢ ¢ ¢ +

2

6

4

t1A

...
tNA

3

7

5

2

6

4

p1A

...
pKA

3

7

5

0

+

2

6

4

e11 ¢ ¢ ¢ e1K

...
. . .

...
eN1 ¢ ¢ ¢ eNK

3

7

5

2

6

4

x11 ¢ ¢ ¢ x1K

...
. . .

...
xN1 ¢ ¢ ¢ xNK

3

7

5
=

2

6

4

t11

...
tN1

3

7

5

2

6

4

p11

...
pK1

3

7

5

0

+ ¢ ¢ ¢ +

2

6

4

t1A

...
tNA

3

7

5

2

6

4

p1A

...
pKA

3

7

5

0

+

2

6

4

e11 ¢ ¢ ¢ e1K

...
. . .

...
eN1 ¢ ¢ ¢ eNK

3

7

5

 

Figure 2. Matrix notation for a schematic extraction of data  
matrix X into A principal components and residual matrix E. 

 
The PC’s can be calculated in a iterative manner using the NIPALS (non-linear iterative 
partial least squares) algorithm. The vector ti (i = 1:::Ai = 1:::A, where A is the number of compo-
nents calculated) is called the score vector and pipi is denoted loading vector. Geometrically 
the principal component may be interpreted as the straight line best fitted to the N  data 
points in a space spanned by K  variables. 
 

 

Figure 3. The score tijtij is the orthogonal projection of the jjth observation onto the axis of the iith principal  
component. The loading vector pipi contains the direction coefficients for the PC. 

 
The slope of the PC reveals the direction of maximal variance. The following components 
will be orthogonal to the previous ones, and by calculating A = min(K;N)A = min(K;N) components a 
whole new set of axes are constructed, i.e. a coordinate system transformation has been 
made. However, when using PCA in studies like this, there is no meaning in taking too 
many components since the observations and variables contain noise. Meaningful informa-
tion is only available in the first few components and using too many PC’s would only spoil 
the opportunity to classify or predict future observations. 
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Data pretreatment 
Before the PCA is performed on the data matrix XX it may be necessary to do some trans-
formations, centring and scaling of data. These three steps are not performed by routine 
but depend on how input data looks. 
 
Transformations may be used to correct for nonlinearities in original data. A common 
transformation is to take the logarithm of the XX-values, but there is a lot of various special-
ized methods available. If different transformations are applied to the variables there is a 
risk for introducing a shear between the correlation matrix for XX and the one for the trans-
formed data set (Wold et al 1987). 
 
Centring around each variable’s mean is used to achieve more stable computations. Since 
PCA is used to model the variation between the objects, centring will not influence the in-
terpretation (Martens & Martens 2001). The relation between original data and the princi-
pal components may then be written as X = 1¹x + TP 0 + EX = 1¹x + TP 0 + E , where 11 is a K £ 1K £ 1 column vec-
tor only containing ones. 
 
Scaling is used to compensate that some variables may have larger absolute values than 
others, thereby giving each variable possibility to contribute equally to the PC’s. Usually 
scaling is performed by dividing each value with the standard deviation of the respective 
variable. In some cases scaling is not suggested, e.g. when modelling absorbance data the 
variables (wavelengths) are all of the same kind and scaling would have severe effect on the 
loadings pp calculated. 
 
Another pretreatment operation may be to create new variables, e.g. differences or ratios, 
calculated from the variables already present. Also, handling of missing data must be taken 
care of since all process data is not registered for all times. This may for example be due to 
transmission failures between sensor and database. 
 
In the present study, centring, scaling and creation of new variables have been used but no 
transformations. Missing data has been handled by an algorithm which is a part of the soft-
ware used for modelling1. 

Model validation 
When the model has been calculated it is important interpret it and to perform a proper 
diagnose where its accuracy and other quality aspects are validated. In order to do that, 
several statistical tools and useful plots can be calculated and studied. A first overview 
normally includes checking the amount of explained variance R2R2 and the amount of vari-
ance that the model is able to predict (often denoted Q2Q2 or R2

predictionR2
prediction). These two proper-

ties vary between 0 and 1 where unity indicates a good performance. They are calculated as 
follows: 
 

R2 =
SSR

SST

= 1¡
SSE

SST

R2 =
SSR

SST

= 1¡
SSE

SST  
 
where SSRSSR is the explained sum of squares, SSTSST  is the total sum of squares and SSESSE is the 
residual sum of squares. If the degrees of freedom are accounted for, the so called adjusted 
R2R2 can be calculated: 
 

                                                           
1 Simca-P+ 11.5 from Umetrics AB, Umeå, Sweden. 
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R2
adj = 1

SSE

K¡A¡1
SST

K¡1

= 1¡ (1¡R2)
K ¡ 1

K ¡A¡ 1
R2

adj = 1
SSE

K¡A¡1
SST

K¡1

= 1¡ (1¡R2)
K ¡ 1

K ¡A¡ 1 
 
where AA is the number of components and KK  is the number of variables (if the number of 
observations, NN , are less than KK  then NN  should be used instead of KK). The R2

adjR2
adj is used due 

to the fact that R2R2 increases with every new component calculated, even if it does not 
model any important variance. R2

adjR2
adj is able to compensate for the fact that a new compo-

nent has been calculated and will only increase if more variance than would be expected 
from random noise is explained (Montgomery 2001). 

 

Q2 = 1¡
PRESS

SSE

Q2 = 1¡
PRESS

SSE  
 
where SSESSE is the residual sum of squares of the previous component (i.e. in correspon-
dence with the amount of variance remaining to be explained) and PRESSPRESS  is the predic-
tion error sum of squares which is calculated as the sum of squares of the difference be-
tween real XX-values and predicted ones: 

 

PRESS =

N
X

i=1

K
X

j=1

(xij ¡ x̂ij)
2PRESS =

N
X

i=1

K
X

j=1

(xij ¡ x̂ij)
2

 
 
The predicted value x̂ijx̂ij is achieved by cross validation (CV) which also is a tool for deter-
mining the number of significant components in the model. It can be done in several ways 
but is based on the idea of excluding some of the data, calculating a new model, use that 
model to predict the excluded values and then comparing the excluded and compared val-
ues when all data have been excluded one (and only one) time. In the software Simca-P+ 
used for modelling in this study, observations are first excluded for loadings to be calcu-
lated, then variables are excluded and scores calculated. The ratio PRESS=SSEPRESS=SSE is then 
used to determine if the component calculated is significant – a ratio smaller than unity in-
dicates that the predictive ability has increased with the last component (Montgomery 
2001). Q2 may be calculated for a component, a variable in a component (Q2

var) or summed 
for all components, denoted Q2

acc. Depending on whether trends in the data exist or not, 
the way the cross validation blocks are chosen is of importance for the calculation of Q2. 
 
The relevance of the variables is for example determined by looking at the amount of ex-
plained variance. A measure for that is the modelling power, MpowMpow, where the residual 
standard deviation for variable k is related to the initial standard deviation for the variable 
(Umetrics 2002): 
 

Mpowk = 1¡
¾k

¾k0
Mpowk = 1¡

¾k

¾k0  
 
Plotting MpowMpow for all variables enables good comparison of variable relevance. Excluding 
variables is however generally not recommended since removing the variable may seem to 
improve model properties but in reality that is not always true. Also apparently non-
significant variables will contribute to the observations residuals or distance to model 
(DmodXDmodX, described in next subsection) (Wold 1987). 
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Plots and interpretation 
The first principal components calculated reveal most of the information that can be read-
ily interpreted. A first look at the data will therefore be to plot the scores and loadings, see 
figure 4 (a, b, c). 
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Figure 4. Upper left (a): Score scatter plot. Upper right (b): Loading scatter plot.  
Lower left (c): Loading column plot. Lower right (d): Distance to model plot. 

 
Scores.   The score plot describes the observations and can help to find classes of objects 
and objects that are similar, but also non-similar and opposite objects. The score plot is also 
often a useful tool to identify outliers. The ellipse shown in figure 4 (a) is a significance 
limit for Hotelling’s T 2T 2 and marks the largest distance from origin an object may have in 
order to statistically belong to the model. Any object outside this range may be an outlier 
but should be investigated further before it is excluded from the model calculation. 
 
Loadings.   Valuable information about which variables have most influence on the scores 
can be gathered from loading plots. For example; by comparing figure 4 (a) and (b) it can 
be noted that the variables in the upper left and lower right parts of the loading scatter plot 
are connected to the outlying observations in the score scatter plot. Subfigure (c) clearly 
shows important variables in the first principal component. Loadings for variables where 
the standard error indicator bar crosses zero should not be treated as significant in the 
model. It should be noted that the individual principal components in general does not 
necessarily model a specific variable but rather captures the direction of most variance or-
thogonal to the previous direction. However, it is often the case that some phenomena are 
modelled in each component.  
 
Distance to model.   Figure 4 (d) shows a plot of the distance to model-measure for each 
observation in the XX-matrix (denoted DModXDModX in Simca-P+), i.e. the original object’s dis-
tance to the model. DModXiDModXi is the same as the standard deviation of object ii’s residual, 
¾ei
¾ei

, but often a normalized variant is used where it is related to the standard deviation of 
the whole model’s residual, ¾model¾model. The statistic  
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µ

¾ei

¾model

¶2µ

¾ei

¾model

¶2

 
 
is approximately F-distributed and the limit for significant model membership is shown in 
the plot as D-crit (red line). It is possible to identify possible outliers in the DModXDModX-plot 
that is not shown outside the Hotellings T 2T 2-range in the score plot, due to the fact that an 
observation may lie far from the model but still be projected close to origin in the score 
plot. However, the DModXDModX-distance for an outlier should be at least two times the D-crit 
value (Umetrics 2002). 
 
Leverage.   An observation’s influence on the model may be quantified using the leverage 
measure. This may for example be important in determining observations that have rotated 
the model hyper-plane (high leverage points located far from a principal component). The 
observation leverages are the diagonal values of the H-matrix (Montgomery 2001): 
 

hii = diag(H) = diag(T (T 0T )¡1T 0) i = 1 ::: Nhii = diag(H) = diag(T (T 0T )¡1T 0) i = 1 ::: N  
 
Predictions.   New observations may be classified by the computed model using the load-
ings to calculate scores for the new objects. Plotting all the scores may then reveal rela-
tional information between the new objects and the ones that were used to create the 
model. The distance to the model may also be calculated for the new observations. 

2.1.2. Projection to latent structures (PLS) 

PCA is a useful tool for classifying and to get an overview of a set of observations charac-
terized by many variables. However, if the variables in this data set XX, can be seen as the 
causal ones for some measurable property or properties YY , it would be desirable to de-
scribe YY  as a function of XX. A robust and orthogonal method that is frequently used for 
this purpose is PLS, projection to latent structures (Geladi & Kowalski 1986, Renman 
1998). The power of PLS is that principal components are calculated for both the inde-
pendent variables in the XX-block and the dependent ones in the YY -block, while trying to 
describe as much of the correlation between XX and YY  as possible (Martens & Martens 
2001). Schematically, the procedure may be written as: 
 

X = 1¹x + TP 0 + EX = 1¹x + TP 0 + E  
Y = 1¹y + UC0 + FY = 1¹y + UC0 + F  

 
where UU  is the scores for the YY -block which are related to the XX-block scores as U = bTU = bT . CC  
is loading matrix for the YY -block and describes correlation between YY  and TT . There is also 
a set of loading weight vectors w¤w¤, collected in matrix W ¤W ¤, which describes the influence of 
each XX-variable on the YY -scores UU , i.e. the balance between XX and YY 2. When calculating 
the components a certain PLS algorithm is frequently used. If the YY -block consists of just 
one variable the algorithm is denoted PLS1, otherwise it is called PLS2 (Renman 1998). 
Once the components are calculated, it is possible to find the regression coefficients BB as: 
 

Y = 1¹y + XB + FY = 1¹y + XB + F  
 

The XX-block of the model may then be analysed to check the goodness of the fit and out-
lier detection as stated in the text about PCA (section 2.1.1, both model validation and 
plotting). However, a perhaps better choice is to first get an overview of the XX-variables 

                                                           
2 In Simca-P+, ww denotes the weights that combine the residuals of the XX-variables and the YY -scores, while w¤w¤ 
are the weights between the original XX-values and the YY -scores. 
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with a PCA-model and make necessary adjustments of the data set (i.e. observation re-
moval or transformation – without removing useful information for the response variables) 
before starting to build a PLS-model.  

Plots and interpretation 
Once the PLS model has been fit it is necessary to check how well it describes the relation 
between XX and YY . Statistics such as R2R2, Q2Q2 and distance to model (DModYDModY ) are available 
also for the YY -block and indicates explained variance among the dependant variables. Vari-
able importance for the projection, VIP, is a measure of the variables capability to describe 
XX and relate to YY  and is calculated as the square of the loading weights ww, weighted with 
the amount of explained YY -variance (SSRSSR) for each component (Umetrics 2002). 
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Figure 5. Upper left (a): Score scatter plot (t against u). Upper right (b): Loading weights (w*c).  
Lower left (c): Regression coefficients plot. Lower right (d): Normal probability plot. 

 
In figure 5 four useful plots are shown: 
 

a. In (a) tt against uu are plotted – in ideal cases this should give a perfect straight line, 
indicating full correlation between the XX and YY  scores and therefore good predic-
tive ability.  

b. Plot (b) shows the relations between the XX-variables and the YY -responses. This is 
done by plotting the loading weights w¤w¤ together with the weights for the YY -
responses, cc, and gives valuable information about important xx’s for the different 
yy’s. 

c. The regression coefficients shown in (c) may reveal information about the correla-
tion between YY  and the informative part of each XX-variable. However, they do 
not carry any causal information unless design of experiments has been per-
formed. This is due to the coefficients being dependent to each other and the YY -
value will not change as much as each coefficient says.  

d. The plot in (d) is the normal probability plot which shows each observations stan-
dardized residual (eobs

¾e

eobs

¾e

). Observations with a standardized residual larger than 
four (absolute number) should be considered as an outlier. (Umetrics 2002) 
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Predictions 
Once the model has been fit and analysed it is important to check its predictive ability for 
unknown observations. The cross validation of course gives a good indication of the model 
accuracy but since that is a kind of internal validation procedure where data from the origi-
nal dataset are used, it is recommended to perform external validation as well. The data 
used to build the model is often called training-set or calibration-set, while the data for pre-
diction validation is named test- or prediction-set. Of course it is necessary to measure the 
YY -responses for the prediction-set by some standard method in order to be compare pre-
dicted and “true” values. 
 
The procedure for prediction testing is rather straight-forward. The -block scores, tpredtpred, 
for the prediction-set are calculated using the model loadings, thereafter -scores, upredupred, 
are calculated and then the YY -responses are obtained as Ypred = UpredC

TYpred = UpredC
T . Comparison of 

predicted and observed values and the residuals for training- and test-set may then give 
indications of the model performance. A useful tool is to plot observed responses against 
predicted, see figure 6. 
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Figure 6. Predicted Y-values for observations plotted against observed Y-values for the same observations. 
 
Another useful plot is the so called observation risk which shows the ratio between the ob-
servation residual for a predicted object and the observation residual for the same object 
when included in the model ( eobs(pred)

eobs(model)
eobs(pred)

eobs(model)). This is calculated for all the YY -variables and a 

value at 1.5 and above indicates that the observation influences the predictions very much 
when included in the model. 
 
In order to quantify the predictive error, the root mean-squared error of prediction 
(RMSEP) may be calculated: 
 

RMSEP =

v

u

u

u

t

N
P

i=1
(yi ¡ ŷi)2

N
RMSEP =

v

u

u

u

t

N
P

i=1
(yi ¡ ŷi)2

N  
 
This is a very useful number which has the same unit as the response itself, thereby indicat-
ing the size of the error. It is also possible to compare RMSEP with the standard error for 
the analysis method used when measuring the “true” (observed) values (Martens & Naes 
1991, Andersson et al 2004). 
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2.1.3. Hierarchical modelling 

Although multivariate modelling techniques certainly are able to handle a lot of variables 
and build proper models with only a few dimensions, there are situations where dividing 
the data into blocks may improve modelling capabilities. For example, model results from a 
PCA of a process line with variables from different steps may be difficult to interpret due 
to lack of simple structure of the principal components. Dividing the variables into logical 
and meaningful blocks may lead to better models and the ability to build a super level 
model based on the scores from the underlying models, describing common variation and 
relationships between the blocks (Wold et al 1996).  
 
Figure 15 in section 3.1.3 shows the setup in the present study where five process steps in 
the iron- and steelworks make up the five blocks. The process steps are described in the 
next section. The figure also reveals the ability to zoom in from the top-level to the block 
levels, e.g. determining which blocks and variables are most important for the desired 
product properties (Umetrics 2002). 
 

 

Figure 7. The principle of hierarchical modelling where the scores from the  
block models constitute the data for the top model. 

 
There exist several different theoretical approaches for hierarchical PCA and PLS model-
ling. In this study, the implementation available in Simca-P+ has been used, where the 
scores from the base models form the data for the super level as can be seen in figure 7. A 
more detailed theoretical background for multi block and hierarchical modelling are 
among others given by Qin et al (2001), Smilde et al (2003), Westerhuis (1998) and Wold et 
al (1996). The latter also gives an example of a real application. 

2.2. Steelmaking 
The process of iron- and steelmaking in general and the steelworks at SSAB Oxelösund in 
particular is here described. Some extra attention is made to phenomena that have been 
challenging or interesting in this study. It should be noted that steel may be produced in 
other ways than is explained here; the process described is iron ore based production and 
steel refining with equipment used at SSAB Oxelösund as well as many other modern steel-
works. 
 
Information about steelmaking has been gathered from an educational package in Metal-
lurgy from Jernkontoret (2000), Ullman’s (2005), Nationalencyklopedin, AISE (1998, 
1999), Thorén et al (2004), Steeluniversity.org and Atkins & Jones (2002). A visit at SSAB 
Oxelösund has also been made. 
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2.2.1. Overview of the process 

A modern steelworks consists of a series of process steps where crude iron is gradually re-
fined to steel of a certain quality and casted in a continuous manner into large pieces, e.g. 
rectangular slabs, which are treated further in the rolling mill. The crude iron is produced 
in the blast furnace by reduction of iron ore. 
 
SSAB Oxelösund is a world leader in manufacturing wear resistant plates of high quality 
quenched and tempered steel and is one of Sweden’s two remaining facilities using the blast 
furnace for crude iron production (the other one is located in Luleå at SSAB Tunnplåt). 
The production line also contains a coke plant supplying the blast furnaces with reduction 
agent.  
 
This study is limited to the crude iron production and steel refining, i.e. the five steps 
marked within the frame in figure 8. 
 

 

Figure 8. SSAB Oxelösund process line overview. 
 

� Ironworks 
- Crude iron production: Blast furnace 
- Desulphurization: Torpedo cars 

 
� Steelworks 

- BOS, Basic oxygen steelmaking (LD–LBE-converter) 
- Secondary steelmaking (TN station and ladle furnace)  
- Continuous casting 

 
The production in the blast furnace may be treated as continuous while the subsequent 
steps are batches (named as heats). Several different properties are to be considered during 
production, especially composition of the liquid metal. These properties are summarised in 
a T-sort which is used as a production target and contains information such as external and 
internal quality of the steel and maximum, minimum and aim content of various alloys and 
other compounds. Other quality terms are also used, e.g. to ensure that the steel quality 
ordered by the customer is met. Analyses are performed at several steps in the process to 
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verify that the current heat is within the specifications. A description of each step is given 
in later subsections, but first basic thermodynamic and kinetic aspects on the crude iron 
and steel manufacturing are presented. 

2.2.2. Thermodynamics and kinetics 

In order to perform the ore reduction and steel processing in the desired direction it is nec-
essary to be able to predict the behaviour of the participating components. Thermodynamic 
laws will determine which reactions that occurs and which that doesn’t. Three important 
factors affecting metallurgical thermodynamics are: 
 

� Oxygen potential 
� Composition of the slag 
� Temperature 

 
At first, the oxygen potential must be low in order to reduce the ore. This is well achieved 
in the blast furnace where the oxides present in the ore is reduced stepwise not only to ele-
mental iron, but also to several other metals (such as silicon, Si; manganese, Mn and phos-
phorous, P). In addition the hot metal becomes saturated with carbon in the last part of the 
blast furnace, making its oxygen potential lower than that of the final steel. 
 
Figure 9 shows the large decrease in 
oxygen potential achieved in the blast 
furnace. It also illustrates that subse-
quent process steps adjust the level in 
further steps. After discharge from the 
blast furnace, the crude iron is cleaned 
from sulphur when the oxygen potential 
is low. Thereafter the level is raised in 
order to remove carbon, phosphorous, 
silicon and manganese. Finally deoxida-
tion is performed in order to achieve 
low oxygen content in the steel before 
casting. 
 
The slag produced in the different steps 
is used as a tool for creating favourable 
conditions for desired reactions. In or-
der for the slag to form fast enough, slag 
formers such as lime (CaO) and dolo-
mite (CaMg(CO3)2) are added. In the 
blast furnace the slag mainly consists of 
lime, silica (SiO2), dolomite and alumina 
(Al2O3) while in the steelworks CaO, 
SiO2 and ferrous oxide (FeO) are the 
major constituents. While refining the 
iron or steel, the slag is normally used as 
recipient of the unwanted compounds. 
Two frequently used techniques for re-
moving impurities are precipitation, and 
diffusion. In precipitation a reagent is 
added to the liquid metal and the prod-
uct it forms with the target specimen is 
taken up by the slag. Diffusion tech-
niques are based on improving the equi-

Figure 9. Changes in oxyen potential of the hot metal during 
its way through the iron- and steelworks. 
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librium concentrations between slag and metal in advantage of the slag. In either technique 
it is important to optimize the kinetics and mass transfer between molten metal and slag. 
This may be achieved by:  
 

� Agitation performed either by bubbling inert gas through the bottom of the vessel 
with the liquid steel or through a lance. 

� Temperature adjustment, e.g. by treatment in a furnace. 
� Pressure adjustments, e.g. by vacuum treatment. 

 
Another useful aspect of the slag is that its lower density makes it float on top of the liquid 
metal and thereby protecting the latter from heat losses and dissolving gases such as nitro-
gen, hydrogen and oxygen which are detrimental to the steel during casting.  

2.2.3. Crude iron production: Blast furnace 

The crude iron is produced from iron ore by redox reactions with carbon and carbon mon-
oxide in the blast furnace. Iron ore in the form of pellets and briquettes are placed on the 
top of the furnace together with coke and slag formers such as limestone (CaCO3) and re-
cycled slag from the steel manufacturing (LD-slag). This is called a charge. At the bottom 
part of the furnace a hot air blast enters and reacts with the coke (and coal, which is in-
jected at this stage) to form massive amounts of carbon monoxide which makes its way up 
through the solids. While the solid materials descends down the shaft the iron ore is step-
wise reduced and can eventually be discharged as elemental iron at the bottom, where the 
temperature of the solids reaches up to 1800 °C.  
 

 

Figure 10. Schematical drawing of the blast furnace. (Bi 1989) 
 
Basically the blast furnace can be seen as a counter current reactor as in figure 10. In the 
upper part the gas gives much of its residual heat to the solids which reaches a temperature 
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slightly below 1000 °C – this is called the lumpy zone (or preheating zone). It is also here 
that the first iron ore reduction reactions occur: 
 

3Fe2O3(s) + CO(g) = 2Fe3O4(s) + CO2(g)

Fe3O4(s) + CO(g) = 3FeO(s) + CO2(g)

3Fe2O3(s) + H2(g) = 2Fe3O4(s) + H2O(g)

Fe3O4(s) + H2(g) = 3FeO(s) + H2O(g)

3Fe2O3(s) + CO(g) = 2Fe3O4(s) + CO2(g)

Fe3O4(s) + CO(g) = 3FeO(s) + CO2(g)

3Fe2O3(s) + H2(g) = 2Fe3O4(s) + H2O(g)

Fe3O4(s) + H2(g) = 3FeO(s) + H2O(g)  
 
Thereafter the softening and melting zone, having constant temperature, follows. Here 
some of the ferrous oxide is reduced to elemental iron and lime is formed from the added 
limestone: 
 

FeO(s) + CO(g) = Fe(s) + CO2(g)

FeO(s) + H2(g) = Fe(s) + H2O(g)

CaCO3(s) = CaO(s) + CO2(g)

FeO(s) + CO(g) = Fe(s) + CO2(g)

FeO(s) + H2(g) = Fe(s) + H2O(g)

CaCO3(s) = CaO(s) + CO2(g) 
 
In the zones mentioned, constituting the major part of the furnace, the reduction agent is 
carbon monoxide (or hydrogen) and the reactions are also named indirect reduction. In the 
next zone – the direct reduction and dropping zone – the temperature is high enough for 
the melted FeO to react with the coke or coal directly, producing elemental liquid iron (Bi 
1989):  
 

FeO(l) + C(s) = Fe(l) + CO(g)FeO(l) + C(s) = Fe(l) + CO(g)  
 
Other oxides that reside in the ore pellets are also directly reduced and sulphur (originating 
from the coke but in the form of elemental sulphur or iron sulphide, FeS) is partly removed 
by lime:  
 

C(s) + CaO(s) + S(s) = CaS(s) + CO(g)C(s) + CaO(s) + S(s) = CaS(s) + CO(g) 
 
Many of the metal reduction reactions are endothermic. The energy is supplied when the 
coke and coal is combusted by help of the hot air blast, resulting in a gas temperature 
above 2000 °C. The air enters the furnace in the so-called raceway; through water-cooled 
copper tuyeres (a pipe through which air blast can be forced into the shaft) and has a tem-
perature around 1000 °C. Before entering the furnace the air is heated in a regenerative 
heat exchanger which is heated by flue gases from combustion of the cleaned blast furnace 
off-gas.  
 
The residence time in the furnace is only about 30 seconds for the reduction gas, while the 
solids (and later on the melt) need several hours to descend through the shaft. Tapping of 
the liquid crude iron and the slag is done for about two hours, and then the hole is plugged 
for about an hour. The crude iron temperature at discharge is about 1450ºC. Separation of 
iron and slag is made on mechanical way using the difference in density between the 
phases. However, some slag will still be carried over to the crude iron. 

Important parameters 
It is generally difficult to measure what is really going on in the furnace shaft, for example 
due to the rough environment and high temperature. Analysis of the final hot metal and 
slag is made after tapping, but since the residence time is several hours it is not possible to 
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directly control the process. The operations are striving to run the furnace with as little 
variation as possible. 
 
The production can be controlled by the way the solid raw materials are added on the top. 
This will influence permeability which should be high enough to ensure good flow of reduc-
tion gas and can be estimated by measuring the pressure drop from bottom to top. Other 
important control factors affecting the process may be to vary the blast air volume, tem-
perature and moisture content. Disturbances in the shaft’s cross section can be identified by 
analysing the furnace off-gas for temperature and composition which indicates that gas 
channels or aggregates are present in the furnace. 
 
Although the blast furnace process is very old there are still potential for improvements. 
Disturbances may for example lead to variations in silicon content in the hot metal which 
may affect the refining in the LD-converter. 

2.2.4. Desulphurization: Torpedo car 

The hot metal is tapped into a large vessel wagon called torpedo (due to its shape), which 
may carry 325 tonnes of hot metal. The torpedo is used as a buffer between blast furnace 
and LD-converter – which is where the actual steelworks begins. Remaining sulphur is also 
lowered to desired level in the torpedo by addition of a reagent with strong affinity to sul-
phur – usually calcium carbide (CaC2), lime, magnesia or a mixture thereof – injected in the 
vessel through a ceramic lance. The incoming sulphur concentration may vary between 
0.005 mass-% and 0.2 mass-% and is reduced to 0–0.02 %. The product (i.e. CaS) forms a 
slag which floats on top of the liquid metal.  
 
To ensure that a sufficiently low sulphur concentration has been reached an analysis is 
made on the hot metal and if necessary extra reagent is added. If the analysis result is 
within the limits the crude iron is being poured into a ladle that is transported to the LD-
converter. The slag is removed by mechanical means. 

2.2.5. Basic oxygen steelmaking: LD–LBE-converter 

As can be seen in figure 9 the oxygen potential is greatly increased in the converter. This is 
done mainly to reduce carbon, phosphorous, manganese, silicon and vanadium content and 
increase temperature in the melt, see figure 11. The raw material for the conversion process 
is crude iron from the torpedo, steel scrap (to utilize and stabilize the increased tempera-
ture and improve yield), slag formers and oxygen. The product is crude steel with an ap-
proximate target temperature of 1680 °C, which is then refined to the desired quality in the 
secondary steelmaking before casting takes place. 
 

 

Figure 11. Idealized changes in composition during basic oxygen steelmaking in the LD-converter. 
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The furnace is called LD–LBE-converter, where LD is short for Linz and Durrer, the for-
mer being the city where the reaction vessel was first installed and the latter the surname of 
its Swiss inventor3. LBE is short for lance–bubbling equilibrium and refers to the possibility 
of bubbling inert gas (argon or nitrogen) through the bottom of the vessel, improving the 
agitation. Through the lance, pure oxygen is blown into the vessel, creating a highly oxidiz-
ing potential.  
 
Based on an analysis of the liquid crude iron in the incoming ladle, an optimal program for 
the conversion process is calculated by a heat model which also suggests amounts of scrap, 
slag formers and oxygen to add. The scrap is added first and then the hot metal, thereafter 
the lance is lowered and starts to blow 99.5 % pure oxygen into the vessel. This causes sev-
eral of the compounds to oxidize, where silicon and manganese are the first ones (not to 
mention iron, which makes up 94 mass-% of the hot metal). The SiO2-formation is highly 
exothermic and contributes a lot to the increase in temperature, allowing the scrap to melt. 
Carbon and phosphorous oxidation also give large contributions to temperature increase. 
The silica forms the first slag together with MnO and FeO and lowers the melting point for 
the added slag former CaO. In figure 11 it can be seen that manganese concentration in-
creases when the silicon oxidation is complete. The high temperature reduces MnO in the 
slag by carbon, but during the end of the blow the Mn-concentration decreases again due to 
a reaction with ferrous oxide: 
 

FeO(slag) + Mn(melt) = MnO(melt) + Fe(l)FeO(slag) + Mn(melt) = MnO(melt) + Fe(l) 
 
Phosphorous oxidation is affected negatively by increased temperature which explains why 
phosphorous content increases at the middle period of blowing. The concentration of FeO 
in slag increases greatly at the end of the blowing when most of the Si, Mn, C and P have 
been oxidized.  
 
When blowing is over (about 25 minutes) a sample is taken from both the metal and slag. If 
the concentrations and temperature are acceptable the steel is tapped into a ladle. Care 
must be taken not to carry over slag from the converter to the ladle, which otherwise would 
bring impurities to the steel that are very hard to remove (especially re-reduction of phos-
phorous and vanadium). Also, deoxidation agents such as ferrosilicon (containing iron sili-
cide, FeSi) and aluminium are added to lower the oxygen level. 

Important parameters 
The converter is mainly controlled by changing lance height, oxygen blowing and bottom 
bubbling with argon and/or nitrogen. The process program chosen is dependant on start 
and target values for metal composition and temperature. Most crucial during operation is 
to avoid that the ferrous oxide rich slag – which is very foamy – builds up to high and leaves 
the vessel. Such an occurrence is called slopping and causes loss of raw material and haz-
ardous gas discharge. Several attempts to predict and control slopping have been made 
with varying levels of success.  

2.2.6. Secondary steelmaking: TN-station and ladle furnace 

The converted steel is relatively rich in dissolved oxygen and other gases such as nitrogen 
and hydrogen which must be removed. It will also need adjustments in alloy concentrations 
which can be done in a variety of equipments and by a range of additions to reach the tar-
get analysis for the steel. Gas bubbles or slag inclusions decrease the strength and tough-
ness of the finished steel which is detrimental for quality aspects. Gas removal may be done 
by agitation and vacuum treatment, although oxygen is often precipitated by a reagent ad-
                                                           
3 According to Sethur (1960), D in LD may also stand for Düsen, which is Voest’s patented jet for oxygen blowing, 
or Donawitz, which installed the LD-converter shortly after Linz.  
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dition such as FeSi or Al as is done when the LD-converter is emptied. Slag inclusions con-
sist of oxides or sulfides originating from the slag, refractory lining or precipitation reac-
tions.  
 
At SSAB Oxelösund there are two stations used for these types of treatment: TN-station 
(Thyssen Niederrein or trimningsstation) and the ladle furnace (SU, skänkugn). The TN-
station is a rather simple step and gives the opportunity for the following refining steps: 
 

� Desulphurization.  
� Homogenisation by argon flushing through a ceramic lance or porous plugs in the 

bottom. 
� Alloy addition to meet the demanded analysis and scrap addition to decrease tem-

perature. 
� Addition of CaSi-wire combined with argon flushing to reduce inclusions. Silicon 

binds strongly to oxygen and calcium may react with either oxygen, sulphur or alu-
mina inclusions: 
- Ca(steel) + O(steel) = CaO(slag)Ca(steel) + O(steel) = CaO(slag) 
- Ca(steel) + S(steel) = CaS(slag)Ca(steel) + S(steel) = CaS(slag) 
- Ca(steel) + (n + 1=3)Al2O3 = CaO ¢ nAl2O3 + 2=3Al(steel)Ca(steel) + (n + 1=3)Al2O3 = CaO ¢ nAl2O3 + 2=3Al(steel) 
- CaO(incl:) + 2=3Al(steel) + S(steel) = CaS(incl:) + 1=3Al2O3(incl:)CaO(incl:) + 2=3Al(steel) + S(steel) = CaS(incl:) + 1=3Al2O3(incl:) 

 
The ladle furnace is a comprehensive piece of equipment. In ad-
dition to the tools available at TN there are several alternatives 
for refining: 
 

� Efficient degassing can be achieved by vacuum treat-
ment while flushing argon into the liquid steel from the 
bottom of the vessel. 

� Heating possibilities by a set of electrodes creating elec-
tric arcs. 

� Stirring possibilities by electromagnetic induction for 
homogenization and slag inclusion modification pur-
poses. Stirring is also important for degassing since the 
ferrostatic pressure is about two atmospheres at the bot-
tom of the ladle and would cause too large portions of 
gas to remain in the liquid steel if there were no circula-
tion in the ladle. 

 
Once the analysis shows that the steel meets ordered quality the ladle is transported to the 
casting machine. 

2.2.7. Continuous casting 

Good control of the casting procedure is vital for final product quality, i.e. nice surface 
properties, absence of cracks and pores and a homogenous analysis throughout the finished 
slab. Correct temperature and absence of air while tapping the steel into the casting equip-
ment are important factors. The presence of alloys in the steel affects the solidifying tem-
perature in such a way that there exists a solidifying temperature range rather than a fixed 
temperature. The temperature where the steel begins to solidify is called the liquidus and 
the temperature when it is a stable solid is denoted solidus. This leads to a phenomenon 
called segregation where the recently solidified steel does not have the same analysis as the 
molten steel next to it due to decreased solubility in the solid state for some elements. The 
segregated elements become enriched in the interior. 
 

Figure 12. Ladle furnace.  
(Ullmans 2007) 
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The ladle received from secondary steelmaking is placed above a container called tundish 
which serves as a steel buffer between the ladle and the mould, ensuring a controlled flow 
and the ability to change ladle while casting. The mould is placed underneath the tundish, 
see figure 13. The whole process also involves a manoeuvre where the vertically orientated 
solidifying steel strand is transferred to a horizontal positioning before cutting occurs. 
 
The liquid steel flows through a refractory pipe in 
the bottom of the ladle into the tundish. The top 
surface of the tundish is covered to protect from air 
and there may also be internal walls present in the 
tundish. Their purpose is to reduce the length any 
remaining inclusion must travel to be captured in 
the casting powder holding the slag phase – thus 
more inclusions will be removed and steel quality 
improved. However, such an arrangement is not 
present at SSAB Oxelösund. When the tundish is 
full the steel starts to pour down into the mould 
through another pipe. The mould is water cooled to 
promote solidification and the casting powder 
added to the top of the mould surface keeps the 
surrounding air away. The outer part of the steel 
begins to solidify as the temperature decreases. An 
oscillation movement of the mould promotes im-
proved surface properties and prevents the strand 
to stick at the mould wall. The process parameters 
are controlled in such a way that the solid shell is 
thick enough to withstand the ferrostatic pressure (the weight of the liquid steel inside the 
strand) when the strand leaves the mould and enters the secondary cooling zone where wa-
ter jet nozzles produce a water mist that cools the strand. Samples are taken from casting 
sequences representing T-sorts known as difficult to meet desired quality, and analyzed 
with respect to the inner structure and composition. When the strand reaches the end of the 
casting machine it is eventually cut into desired lengths, called slabs. Some slabs are visually 
inspected for surface cracks. 
 
After-treatment depends on the customer’s demands but may imply grinding or storage in 
a diffusion furnace before they are taken to the rolling mill. However, many slabs may be 
directly delivered to customer.  

Important parameters 
It is especially the temperature that is important during the casting process. The tempera-
ture in the mould should be about 20–25 °C above the liquidus temperature to cover for 
heat losses, but the most important aspect is to minimize variations. Frequency and ampli-
tude of the mould oscillations, cooling water flow, casting speed and steel levels in tundish 
and mould are other important control factors. A technique called soft reduction is used to 
minimize the appearance of segregations in the slab centre. The rolls at the end of the cast-
ing machine, placed just before the strand’s inner melt solidifies, exert a pressure on the 
strand which homogenizes the metal composition.  

2.2.8. Challenges in the production line 

Several of the process steps may be denoted as crucial to reach the desired quality of the 
steel slabs. The blast furnace needs to deliver crude iron at a reasonably similar composi-
tion all the time. High levels of liquid iron inside the shaft will push up the hot blast race-
way, causing excessive heating which may burn too much coke and increase refractory lin-

Figure 13. Illustration of tundish and  
oscillatiing mould. (Ullmans 2007) 
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ing wear. Operational variations may cause extra amounts of desulphurization reagent to 
be used in the torpedo cars and also extra alloying in the steel plant, which is an economical 
drawback. The large volume of material passing the blast furnace and the long residence 
time makes every reduction in raw material use valuable both economically and environ-
mentally. 
 
In the steelworks, the process in the LD–LBE-converter is of high importance. Decreasing 
time from tap to tap, avoid slopping, reach the analyze targets and avoid slag carryover 
during tapping are things that the operation personnel must consider. Careful alloying of 
the crude steel at tapping from the LD-converter is necessary not to reach compositions 
higher than tolerated in the T-sort to be produced. The secondary steelmaking will fine-
tune the composition, but the closer to final analysis the steel is already after tapping from 
the LD-converter, the smoother the process will continue. Deoxidation, degassing and ho-
mogenisation are also important steps for most T-sorts. An incomplete homogenisation due 
to insufficient gas bubbling may cause deoxidation agent and inclusions to remain in the 
steel. In addition to analysis, the crude steel temperature also needs to be accurate enough 
when the ladle is sent to casting. 
 
During casting the temperature in the tundish is of great importance to avoid segregation 
and achieve good surface quality. If the soft reduction is to work properly there is a need to 
know where in the strand direction the last molten iron solidifies. 

2.3. Previous studies of steelworks using multivariate methods  
Multivariate methods have been used successfully in a wide variety of applications in the 
process industry for at least 20 years. Not least have several projects aiming for develop-
ment of statistical process control been carried out (e.g. Nomikos & MacGregor 1995). The 
steel industry has also investigated some process parts with multivariate methods, but it 
may not always be publicly available.  
 
Prediction of slips in the blast furnace has been attempted by Gamero et al (2006) and the 
development of an expert system for operating the blast furnaces at Corus’ sites in the UK 
is described by Warren & Harvey 2001. In a study by Bhattacharya (2005) the silicon con-
tent in the hot metal produced in the blast furnace was predicted by a PLS model, however 
with great uncertainty in the predications. 
 
A comprehensive study on process control has been carried out with SSAB Oxelösund as 
one of the primary research objects. The project was called HIPCON, Holistic integrated 
process control, and was supervised by IVL Swedish Environmental Research Institute4. 
One application developed within HIPCON is a desulphurization reagent dosage model 
where the desulphurization step in the torpedo cars was studied with multivariate methods. 
A model for reagent dosage calculation based on PLS was developed in 2004. A somewhat 
similar study has been done at Dofasco’s steelwork in Canada, described by Dudzic & 
Quinn (2002). 
 
Another objective for the HIPCON project was to classify LD-converter heats with respect 
to slopping occurring or not. The results were though not clear enough for certain predic-
tions, but valuable information about factors affecting slopping behaviour was achieved. 
The work was presented in 2005. In a diploma thesis from 1996, Kappel investigates impor-
tant factors for temperature decrease after blowing in the LD-converter with PCA and PLS 
models but bad quality of data deteriorates the result. 

                                                           
4 The HIPCON project was performed within the European Union’s  sixth framework programme for research and 
technological development 2004 – 2006. 
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Secondary steelmaking has not been investigated with PCA or PLS in particular, but a 
work done by Fernandez et al used Self-organizing maps (SOM) to predict steel quality 
after ladle treatment. 
 
A comprehensive project developing an online monitoring system for the continuous cast-
ing stage has been developed at Dofasco’s facilities in Canada (Zhang & Dudzic 2006). The 
system is able to monitor the whole batch duration; start-up, normal operation and transi-
tion phases such as spare part changes. To correct for the different numbers of observations 
between the occasions studied an indicator variable is used. 
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3. Data treatment and modelling 

3.1. Data pretreatment 

3.1.1. Data extraction and structure 

Historical process data where extracted from databases at SSAB Oxelösund and supplied 
as Excel files which then were treated further with Microsoft Excel 2003. Availability of 
blast furnace historical data limited the time period to about six months, from mid August 
2007 to mid February 2007, except for crude iron analysis data which were available from 
January 2006. Data extraction for all steps except the blast furnace was quick and data 
treatment and modelling first performed for these processes. Blast furnace data where ex-
tracted in steps, with the complete set available in April 2007.  
 
Each of the Excel files contained data representing only a part of the actual block, such as 
desulphurization, crude steel analysis after LD-treatment, ladle furnace treatment, casting 
machine properties and remarks on the slab inner quality. Each of the tables contained one 
or more key variables useful to match the observations. The heat number in the LD-
converter (named LSNR) was chosen as observation id, and the relevant heats for the three 
T-sorts chosen (T1, T2, T3) were selected within the specific period of time. Figure 14 de-
scribes the relationships between the different keys used to match data. It should be noted 
that the most challenging part is the fact that the crude iron used for a heat in the LD-
converter may originate from both blast furnaces and several torpedos. 
 

 

Figure 14. Schematic drawing of treatment pathways and key variables for each step. 
 
Common variable types are analyses for metal and slag, amount of raw material added and 
operational parameters such as temperatures, gas flows and more. Several different resolu-
tions are available: 
 

� Time-based 
- Raw material additions from end of November were available on an hourly ba-

sis. They were matched with discharge data based on a blast furnace residence 
time of 7–8 hours: 0.04 x 6 h ago + 0.46 x 7 h ago + 0.46 x 8 h ago + 0.04 x 9 h 

ago. 

     

Blast furnace 
One tapping goes to 
several torpedos 
Key: UTNR 

Torpedos 
One torpedo may 
contains several 
tappings 
Keys: TPNR, 
TPKPJ 
TPRESA 

LD-converter 
One charge 
contains of crude 
iron from sevreral 
torpedos 
Key: LSNR 

Secondary steelmaking, 
TN and SU station 
All charges go to TN but 
not all goes through SU. A 
charge may be returned 
e.g. from SU to TN or LD. 
Keys: LSNR, SSNR 

Continuous casting 
A casting sequence may 
consist of several charges. 
Several slabs are cut from 
each charge. 
Keys: LSNR, SSNR, AENR 



 
 
 28 

- Operational parameter data for the blast furnace were available as a 24 hour 
average which was matched to its corresponding discharge. 

 
� Working shift-based 

- Raw material additions from end of August were available per working shift. 
Several discharges are made per working shift and data was matched by letting 
the first tapping for the shift have material data from previous shift, the second 
tapping took material data as half of the previous shifts additions plus half of 
the current shift. A third tapping took all its material additions data from the 
current shift. 

 
� Heat-based 

- All data from LD-treatment and secondary steelmaking and casting data ex-
cept slab analysis. 

 
� Slab-based 

- Analysis of composition and quality for the slabs casted from a specific heat 
and sequence. For quality remarks the fraction of faulty slabs was calculated 
and used when weighting the data to represent LD-heat. For composition 
analysis the maximum and minimum values and standard deviation within each 
heat were used as variables. 

 
In order to match data for torpedos with data for LD-treatment a coupling table was con-
structed and supplied by SSAB Oxelösund. It consisted of actual mass of the crude iron 
taken from a specific torpedo and used for a LD-heat and together with the total weight 
loaded the fraction from each torpedo could be calculated. 
 
For blast furnace modelling, datasets using discharge number as observation id (rather than 
heat number) were used in addition to the ordinary LSNR-weighted data set. That made it 
possible to study the behavior of the actual process without losing important information. 
Some graphs visualizing analysis deviations were created using Microsoft Excel. 

3.1.2. Variable selection 

Some of the variables available were not useful for modelling in their original state, and 
therefore different approaches were used in order to create useful information from them. 
Examples of data treatment: 
 

� Filtering data to get only observations corresponding to the time period and T-
sorts chosen. 

� Deleting unnecessary variables.  
� Determining whether to use a parameter as variable and/or label. 
� Creating a new variable from one or more existing ones, for example: 

- Treatment time calculated from stop and start timestamp. 
- Total amount alloy added calculated from alloy number in nth addition and 

weight added in nth addition. 
- Amount of gas added calculated from gas flow and time. 
- Lance height after nn% of the treatment calculated from lance position before 

change related to fraction of treatment time when change occurred. 
- Deviation from target created from measured value and aim/max/min value. 
- Relative variables, e.g. amount of reagent per amount of sulphur. 

 
For some of the data processing tasks Excel macros were created using Microsoft Visual 
Basic. The accuracy of the data tables created by these macros was verified by random 
sample comparison with original data.  
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3.1.3. Block construction 

The process naturally decomposes into five blocks as described in section 2.2.1. Data tables 
for each block where merged using Microsoft Access 2003 and typical variables can be seen 
in figure 15. The two letter abbreviations will be used when referring to the different blocks 
later on.  
 

 

Figure 15. Illustration of the multiblock model with the different variable types noted. 
 
 
Each data block contained the same observations; for the last four blocks there were 477 
observations (Ntot = 477) and for the BF block NBF = 386, due to missing data, especially 
for August.  The Excel files for each block were imported one by one into the modelling 
software. The number of variables in each block, K , were 58 for BF, 37 for TP, 105 for LD, 
153 for SS and 148 for CC, i.e. Ktot = 501. The three T-sorts used in the study constitute 
subsets of observations as follows: N534 = 181; N723 = 96; N763 = 200. A complete list of 
variables used, together with a short description, is found in Appendix B: Variable list. 

3.2. Modelling 
Modelling has been carried out using the software Simca-P+ 11.5 from Umetrics AB, 
Umeå, Sweden. At first, the individual blocks where modelled separately with PCA to 
identify patterns and variables influencing the quality targets within the particular step. 
Another important task is to investigate which phenomena that are captured in the princi-
pal components in order to interpret the models and especially understand contributions to 
the hierarchical model. In addition, for some blocks PLS models were created to study par-
ticular relationships. Below methods and arguments are presented quite general, only men-
tioning details to a small extent. All modelling have been documented separately in Simca-
P+ project files and spreadsheet documents. 

3.2.1. Block modelling 

After importing the whole data table to Simca-P+, a workset is created before a model is 
fit. When analysing and improving the model it is then possible to create new worksets 

     BF, 
blast furnace 

TP, 
torpedo cars 

LD, 
LD-converter 

SS, secondary 
steelmaking 

CC, continuous 
casting 

Parameters 
   - oscillations 
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   - H-diffusion 
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Analyses 
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Analyses 
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   - coke 
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based on the original data or an existing model. By default a variable or observation with 
more than 50% missing values will be excluded from the workset, but for some models the 
limit was set even higher in order to model information that were seldom registered, e.g. 
slag analysis after LD-treatment. 
 
When fitting the model, Simca-P+’s autofit-function has been used most of the times. It 
calculates the number of components that are cross-validated according to a set of rules 
(Umetrics 2002): 
 

1. Component significant if Q2 > b where b is 0 for PLS, whereas in PCA it increases 
with the number of components calculated, to account for loss in degrees of free-
dom. 

2. Component significant if Q2
var > b for at least 

p
K  variables (or at least one vari-

able for PLS). Q2
var is the explained variance for a variable. 

3. Only applicable to PCA. A non-significant component according to (1) and (2) 
may be denoted significant if the next component is significant and they have simi-
lar eigenvalues (max 5% difference). 

 
By looking at the R2 and Q2 values for the model and the contributing variables, a brief 
understanding of the data’s capability of describing the process is achieved. For real proc-
esses the level of explained variance is normally rather not very high, especially if the data 
resolution is low and the process is complex. Sometimes data quality may be a reason to 
bad statistical properties. In most cases, the workset has been carefully examined for out-
liers, e.g. obviously false analysis values, by variable trimming where values below or above 
a certain limit are excluded. This method should however be used with care, not to remove 
useful information.   
 
Two-dimensional plots of the first two score and loading vectors respectively have been 
used to reveal the most dominant factors in the data set. This is not always the phenomena 
of interest, which may be captured in later components as well. For the steelworks blocks, 
when all T-sorts are included in the model the first score-plot typically shows the T-sort 
grouping due to differences in treatment and analysis. Therefore models have been made 
both for the whole set of observations but also for each subset of T-sort specific observa-
tions. 
 
When considering a components importance it’s fraction of explained variance have been 
considered. Simca-P+ automatically calculates and shows the Hotellings T 2 ellipsoid which 
simplifies outlier detection. It is however important to investigate the reason for an obser-
vation being located outside the T 2-range. For example, when modelling data from secon-
dary steelmaking, observations may not always have the same treatment path, though be-
longing to the same T-sort. This will show up in the score plot, sometimes creating outliers. 
In these cases, the observations have been kept in the workset. Other more obvious outliers 
have been removed, e.g. lance height registered as zero. 
 
The DModX-plot have been used in a similar way as the score-plot. It is possible to find 
other types of outliers that are not outside the T 2-plot but still deviate from the model. 
However, it is still important to check the cause for the observations high DModX-value.  
 
Relationships between variables have been studied using the loadings where correlations 
can be detected. Both two-dimensional scatter plots and column plots have been used. To 
see what factors that influence a specific phenomenon, such as insufficient sulphur removal, 
the contribution plot is a useful tool. By selecting objects that share the phenomenon of 
interest in a score-plot of relevant components it is possible to create a column plot of each 



 
 
 31 

variables contribution to the selected observations compared to the whole set of observa-
tion, where the loadings of respective components are used as weights.  
 
Labels and colours that identify patterns and characteristics of the observations have been 
used as helpful tools in model analysis, as well as object selection to visualize only observa-
tions of interest. Table 1 summarizes the most important models created for each block.  
 

Block Model no N  K  A R2 Q2 Comment 

BF BF03.M4 577 56 8 0.73 0.54 PCA, BF2  
 BF03.M7 371 51 8 0.79 0.58 PCA, BF2, 2007 
 BF04shift.M11 889 17 (X), 18 (Y) 6 0.83 (X), 0.38 (Y) 0.37 PLS, steel and slag as Y 
 BF04shift.M14 989 55 (X), 5 (Y) 2 0.45 (X), 0.01 (Y) 0.001 PLS-DA for working shift 
TP TP02.M4 458 31 6 0.71 0.38 PCA 
 TP03.M11 279 21 (X), 3 (Y) 4 0.52 (X), 0.40 (Y) 0.26 PLS, S as Y 
LD LD05.M7 477 74 7 0.68 0.50 PCA, incl. aim values 
 LD05.M8 477 53 9 0.66 0.29 PCA 
 LDSSCC.M7 477 102 8 0.43 0.21 Analysis outliers removed 
 LDslp.M1 439 74 (X), 1 (Y) 2 0.32 (X), 0.11 (Y) 0.13 PLS, slopping as Y 
SS SS01.M1 477 192 3 0.38 0.34 PCA 
 LDSSCC.M16 477 124 4 0.53 0.50 PCA 
 TPLDSSCC.M21 477 115 5 0.61 0.55 PCA 
 TPLDSSCC.M22 211 115 4 0.55 0.47 PCA, only SU-heats 
 TPLDSSCC.M24 452 35 (X), 1 (Y) 2 0.34 (X), 0.52 (Y) 0.47 PLS, TN temp. diff. as Y 
CC CC03.M7 472 205 6 0.48 0.38 PCA 
 LDSSCC.M18 475 134 5 0.54 0.47 PCA 
 LDSSCC.M30 469 126 (X), 5 (Y) 3 0.50 (X), 0.16 (Y) 0.12 PLS, slab quality as Y 

Table 1. Summary of properties for the most important block models created. Model names refer to the project files. 
 
The blast furnace models have discharge number as observation id while the other blocks 
use LD-heat number as unique identification. 

3.2.2. Hierarchical modelling 

When preparing to build a hierarchical model for the whole process the block models were 
chosen as base models in Simca-P+. This enabled the score vectors of each model to be se-
lected as variables when creating the workset for a new model. The fraction of explained 
variance for a specific component has been an important factor when selecting components 
to include in the model. Several combinations were tried out but it is normally the first few 
score vectors in a model that reveals the important information which is possible to use in a 
super-level model. 
 
Four models were made, one containing all three T-sorts and then one for each T-sort. 
Table 2 summarizes the hierarchical models.  
 

T-sort N  K  A R2 Q2 Comment 

All 477 15 2 0.37 0.07 First component insignificant 
T1 181 10 2 0.36 – 0.06 First component insignificant 
T2 93 10 2 0.50 0.12 Two significant components 
T3 200 13 2 0.34 – 0.07 No significant components 

Table 2. Summary of properties for the hierarchical models created. 
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4. Results 

4.1. Block modelling 

4.1.1. Blast furnace (BF) 

Graphs created to visualize production variations in crude iron composition for important 
elements show that silicon and sulphur deviations from aim values are frequent – every 
third discharge contains to high silicon and/or sulphur concentration. Too low manganese 
content is also common while vanadium, chromium and phosphorous exceeding are below 
five percent of the taps. In total, 56% of the crude iron discharges do deviate from the 
analysis target interval for one or more elements. 

Blast furnace tappings: deviations from target analysis in crude iron
January 2006 – February 2007
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Figure 16. Blast furnace crude iron composition target deviations (above max/below min).  
Above: Accumulated, below left: time-resolved for BF2, below right: time-resolved for BF4. 

Positive value axes are cropped for the two lower graphs. 
 
These deviations are more frequent under certain times of operation. When examining 
model BF03.M4 it is shown that periods of unstable operation in blast furnace 2 are mani-
fested as outliers both in the score and distance-to-model plots. When comparing the ob-
servations from one such period (in November–December) with the average the main con-
tributors are high silicon content, low manganese oxide content and low top gas flow. A 
similar analysis for blast furnace 4 shows fewer and shorter periods of unstable operation, 
and the contributors are higher silicon and titanium content in crude iron and higher sul-
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phur content in slag. The time periods can be seen in the distance-to-model plot in figure 
17. 
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Figure 17. Unstable operation in blast furnace 2. The red squares represent the same observations in both plots. In 
the distance-to-model plot (to the right) the time periods can be seen: (a) during start-up in August 2006, (b) after 

shut-down in October, (c) unstable operation in November – December. 
 
The models built in project BF03 also showed other results regarding factors influencing 
crude iron composition: 
 

� By looking at the loadings for M7 it was seen that phosphorous is negatively corre-
lated to sulphur content in crude iron. 

� Sulphur content in the slag is positively connected to basicity and negatively to 
temperature in shaft and air blast flow, temperature, oxygen content and also top 
gas flow. 

 
The PLS models in project BF04shift were used to predict metal and slag analyses based on 
material additions per working shift and operational parameters per day average which 
should be considered as poor data resolution.  The model residuals are therefore very large 
for many response variables, but measures such as lime, dolomite and silicon oxide content 
in slag and phosphorous and chromium content in the metal have reasonably good predic-
tion properties. Explained variance for the prediction sets are given for both furnaces in 
figure 18.  
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Figure 18. Explained variance for response variables (Q2
varQ2
var) – observations from prediction set. 
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Performing discriminant analysis on material data based on working shift does not imply 
that any differences exist between the working shifts. This is illustrated in figure 19. 
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Figure 19. Score plot showing the discriminant analysis made for working shifts  
in the blast furnace. No regular pattern could be found. 

4.1.2. Desulphurization (TP) 

A score plot of the first two components in model TP02.M4 shows a clear time drift for the 
heat weighted observations. This is due to compositional variations in the crude iron re-
ceived from the blast furnace – observations from August and September have higher 
phosphorous and lower manganese and chromium content than the average observation. 
The opposite is true for observations from January and February compared to average. 
Plotting the incoming compositions for P, Mn and Cr shows an overall increasing time-
trend for Mn and Cr and a decreasing time-trend for P. 
 
Plotting contributions to scores for observations with high residual sulphur content (re-
maining sulphur after main injection of calcium carbide – ordered content > 0) does not 
give any easily interpretable results. Notable is that the incoming sulphur content does not 
affect the ability to reach target concentration. The explained variance for sulphur content 
(TAS2) has been low in the PCA models created. For TP02.M4 R2

TAS2 = 0:71 and 
Q2

TAS2 = ¡0:14. However, introduction of a variable for the absolute sulphur amount 
(SABS_E) improves the model and Q2

TAS2 is then calculated to 0.33 (TP03.M2). 
 
A PLS model was fitted in order to reveal important factors for desulphurization 
(TP03.M11). The response variables were sulphur concentration after treatment, absolute 

amount after treatment and deviation from ordered sulphur content. Looking at the coeffi-
cient plot shows that most variables are not significant. The contributions (significant vari-
ables only) are as follows (‘+’ indicates positive correlation; ‘–’ indicates negative correla-
tion). 
 

� Sulphur concentration and absolute S amount after treatment 
- ordered sulphur content 
- hot metal weight 
 

� Deviation from ordered sulphur content 
- chromium content 
- carbon content 
- ordered sulphur content 
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This PLS model had much better statistical properties for TAS2 than the PCA models de-
veloped. R2

TAS2 = 0:54 and Q2
TAS2 = 0:40. 

4.1.3. LD–LBE converter (LD) 

Studying model LD05.M1 shows that the variables describing scrap additions does not con-
tribute much to the model. This may be caused by the many different scrap numbers used 
in the dataset, i.e. each number is not used enough times to bring meaningful information 
into the model. 
 
When trying to find reasons for missed analysis after LD-treatment, it can first be estab-
lished that the incoming crude iron composition may contribute. In the left part of figure 20 
the loadings p3p3 and p4p4 for LD05.M7 can be seen. Variables for incoming crude iron analysis 
are represented by black dots and it can be seen that they are affecting both t3t3 and t4t4. The 
score plot to the right implies that the reason for the heat in the upper left corner being an 
analysis miss may be due to high levels of molybdenum, chromium, manganese or nickel 
(or low levels of variables in the opposite direction). In this case, the steel analysis after 
LD-treatment showed high nickel level. 
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Figure 20. Loadings and scores for LD05.M7. Crude iron composition variables are seen as black dots and labels 
in the left plot. Observation deviations from target analysis are shown in green in the right plot. 

 
There are also six other analysis misses; one heat is too high in carbon, nitrogen and sul-
phur and another too high in manganese and too low in nitrogen. Four heats are too high in 
phosphorous. These observations are found in the middle of the score plot, with only small 
dependencies on incoming crude iron composition. A plot for the four high P heats shows 
the following contributions: 
 

� High incoming phosphorous content, low silicon and titanium. 
� Low amount of lime and oxygen added, very low estimated slag amount. 
� Short blowing time.  

 
The result confirms that low silicon content only allows a small amount of slag formers to 
be added since the desired basicity otherwise would be exceeded. As phosphorous cleaning 
is an important task for the slag, the LD-treatment is not able to meet desired P level. 
 
Analysing model LDSSCC.M7 and plotting the score’s t2t2 and t3t3 for only the observations 
where severe slopping has been registered, a slightly skew representation toward the lower 
right corner can be seen (figure 21). When studying the loading plot for the same compo-
nents and the contribution plot for the whole group of slopped heats compared to the aver-
age, it can be seen that variables describing estimated amount of slag, total treatment time, 
blowing time, additions of lime, dolomite and oxygen are partly responsible for this skew-
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ness. A slopped heat will naturally demand longer treatment time since the decarburization 
rate needs to be decreased to control the process. The slag formers may be due to high sili-
con content. Slopping prediction gives a result comparable to the one achieved in the HIP-
CON project. 
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Figure 21. Score plot (t2 and t3, left) and contribution plot (right) for heats registered with severe slopping. 

4.1.4. Secondary steelmaking (SS) 

A quick first model (SS01.M1) shows that the T-sort’s are clearly visible also in the secon-
dary steelmaking. This is quite obvious since the quality targets and treatment paths are 
well established for each T-sort. For example, T-sort T3 and T2 are seldom treated in the 
ladle furnace while T1 almost always are. That is captured in the first two model compo-
nents. Plotting scores t3t3 against t4t4 shows distinct observation groupings – not only caused 
by T-sorts but also sub-groupings due to alloys added (figure 22). 
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Figure 22. Left: Coloured according to if SU alloy 5401 (CaSi wire) has been added (brown observations). All three 
T-sorts have observations that used more or less of this alloy. Right: Coloured according to if TN alloy 5030 (FeV) 

was added (brown observations). All three T-sorts have groups of observations that used this alloy. 
 
Remaining three groups of observations are mainly due to the TN-alloy 5035 which is 
FeNb. It should be noted that other alloys also contribute to the observation groupings. 
 
Examining model LDSSCC.M16 by plotting scores t1t1 and t3t3 and loadings p1 and p3 (figure 
23) shows that almost all heats with negative deviations from aim temperature at TN are 
sent to SU for heating. It is also shown that T-sort T2 and T3 are similar to each other (with 
respect to Ti, Si, V, C, Mo, Al and P) but dissimilar to T1. 
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Figure 23. Temperature deviations for secondary steelmaking. Left: Score plot coloured according to each observa-
tion’s deviation from aim temperature. Blue ones are more than 10ºC below and brown ones more than 10ºC above 
target. Right: Loading plot coloured according to variable type. Green variables belong to TN station, red variables 
belong to SU station, blue variables represent steel analysis and black variables represent temperature measures. 

 
Using model TPLDSSCC.M24 to model causes for temperature deviations at TN it can be 
seen (figure 24) that factors connected to positive deviations are e.g. alloy 5499 (scrap addi-
tions for cooling) and heat weight. Additions of alloy 5303 (aluminium wire) and synthetic 
slag are related to negative deviations from aim temperature. 
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Figure 24. Loading weights plot for temperature deviations at TN. 
 
In model TPLDSSCC.M22 reasons for temperature deviations at SU or casting were inves-
tigated but no obvious reasons could be found. 

4.1.5. Continuous casting (CC) 

The difference in analysis between the T-sorts is evident in this last process step, as can be 
seen in figure 25. The score plot for model CC03.M7 shows distinct groupings, mainly due 
to differences in final tundish analysis but also other factors such as casting settings.  
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Figure 25. T-sort groupings in the continuous casting block. 
 

To avoid correlations caused by T-sort differences, one model for each T-sort was created, 
but the statistical properties became very poor due to the lack of variation in data. There-
fore the three T-sorts were modelled together – which is necessary to keep in mind when 
analyzing the results. Table 3 shows estimated relations between the T-sorts for different 
properties, based on score contributions between the groups. 
 

Property Less/lower  More/higher 

Temperature T1  T2     T3 

Casting weight T1  
T2 
T3 

Mould oscillations 
T1 
T3  T2 

Mould engine current T2 
T1 
T3  

Mould width T1 T3 T2 
Mould piston stroke  
(true value) T2  

T1 
T3 

Slab inner faults T1 
T3 (centre quality) 
T2 (firm side) 

T2 (centre quality) 
T3 (firm side) 

Slab visual faults T1 T3 T2 

Table 3. Estimated differences between T-sorts at casting. 
 
When trying to capture reasons for quality problems loadings for the model LDSSCC.M18 
were analyzed. Positive correlation exists between fraction of slabs with visual faults and 
casting data such as piston stroke, mould oscillations, sculls and number of heats in tundish. 
Internal quality problems are correlated to tundish temperatures and slab analyses. Further 
modelling was performed to get more information about causes for quality problems. A 
PLS-model where slab analysis data were replaced by analysis data from tundish 
(LDSSCC.M30) was analyzed. Results are presented for visual slab quality and segrega-
tions – statistical properties for halfway crack at firm side were to poor for reliable inter-
pretation to be done. 
 

� Fraction of slabs with remarks on visual quality (data table AMNVFEL) 
+ Positive correlation: tundish analysis for Si, Ti and N, casting weight, true 

mould thickness, oscillations, common length of mixed zone and maximum 
slab width.  

- Negative correlation: tundish analysis for C, Mo, V and Al, mould piston 
stroke. 
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� Slab centre quality remarks (variable PRCENBET) 

+ Positive correlation: tundish analysis for Si, Ti and N, casting weight, true 
mould thickness, tundish temperatures, oscillations and maximum slab width. 

- Negative correlation: tundish analysis for C, Mo, V and Al, mould piston 
stroke. 

 
� V- segregation width (variable PRBKVSEG) 

+ Positive correlation: common length of mixed zone,  
- Negative correlation: casting weight, total casting time, number of heats in tun-

dish, tundish temperatures. 
 
The fact that there are observations belonging to different T-sorts in the model is clearly an 
aggravation. As can be seen in table 3, many of the factors influencing the quality variables 
also vary between T-sorts which make interpretation hard. The main conclusion is there-
fore that visual quality is connected to casting parameters such as oscillations and inner 
quality to tundish temperature and steel analysis.  

4.2. Hierarchical modelling 
The hierarchical model containing all observations models the differences between the T-
sorts (figure 26), though the statistical properties are poor as stated in table 1 on page 31. 
The result may be summarized as follows: 
 

� Blast furnace and desulphurization data does not contribute to T-sort differences 
(i.e. there are no T-sort specifications in these blocks, except for S content). 

� LD-treatment differs mainly in alloys and scrap added. 
� Analysis differences between T1 and T2 are e.g. Cr, Nb, B, Si and N. 
� Analysis differences between T1 and T3 are e.g. C, Mo, V, Al and Ti. 
� Analysis differences between T2 and T3 are e.g. Cr, Nb, B, Ca, Mn, V and N. 
� The ladle furnace is mainly used for T1. 
� Casting block differs in analysis, temperature and casting parameters such as 

mould oscillations and engine current. 
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Figure 26. Above: Score plot for the hierarchical model with all T-sorts. Coloured as T1 red, T2 green, T3 black.  
Below: Block contributions to the difference between T2 and T3 – only steelworks variables contribute. 

 
A significant model could be auto-fitted only for one of the T-sort sets. This implies that 
the connection between the blocks is rather small. For T-sort T2 a two component model 
was created although. Results from that model are presented in the following subsections. 
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4.2.1. Slopping 

Observations registered as severe slopping heats during LD-treatment were marked as red 
dots in the score plot and it was obvious that they tend to be in the left part of the model 
half-plane (see figure 27). The loadings show that t2 from BF block contribute positively 
and t1 from TP block contribute negatively. The largest loading for both of these two 
blocks is the titanium content in crude iron, but as can be seen in the lower part of the fig-
ure, variables such as crude iron temperature (positive correlation) and sulphur content 
(negative correlation) also contribute.  
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Figure 27. Upper left: Score plot showing the objects registered with severe slopping as red dots.  
Upper right: contributing variables to the red objects from the TP block. 

Below: Contributing variables from the TP block to objects registered with severe slopping. 

4.2.2. Analysis misses 

It has not been possible to find any relations between the blocks for the analysis misses. 
Results within the SS block are available in section 0. 

4.2.3. Temperature misses 

The score plot of t1 and t2 do capture information about temperature misses. The heats 
exceeding aim temperature at TN station with more than 30ºC can be found in the upper 
half of the model plane, and vice versa. 
 
A contribution plot comparing objects 30ºC below aim with objects 30ºC above aim shows 
the differences between the two groups, mainly from TP and SS block. The plots for con-
tributing variables are seen in figure 28, and their interpretation is that: 
 

� Low phosphorous and silicon content in the crude iron is related to negative tem-
perature deviations. 

� Large desulphurization seems to be connected to negative temperature deviations, 
i.e. positive contribution for S content before and negative contribution for S con-
tent after desulphurization. 
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� Large additions of reagent (CaC2) and high level of hot metal in torpedo contrib-
utes to negative temperature deviations. 

� The variables contributing from the SS block are mainly due to that heats below 
aim temperature are treated in the ladle furnace. 

 
A natural explanation is that lower silicon in the crude iron gives smaller contribution of 
exothermal energy in the LD-treatment, while high sulphur content causes longer treat-
ment times in the TP block which increases heat losses. 
 
 

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

t[
2

]

t[1]

BFTPLDSSCC723.M14 (PCA-X), Hierarchical, without ldboor *** preferred ***
t[Comp. 1]/t[Comp. 2]
Colored according to value in variable MNTPLDEBGJ(KTMISS234)

R2X[1] = 0.282899            R2X[2] = 0.214279            
Ellipse: Hotelling T2 (0.95) 

Series (Variable KTMISS234)

Missing
-74 - -30
-30 - 30
30 - 132

SIMC A-P+ 11.5 - 2007-05-23 15:55:24

-3

-2

-1

0

1

2

$
M

2
.t

1
(M

N
 

$
M

2
.t

2
(M

N
 

$
M

4
.t

1
(T

P
 

$
M

4
.t

2
(T

P
 

$
M

9
.t

1
(E

B
 

$
M

9
.t

2
(E

B
 

$
M

1
1

.t
1

(G
J

$
M

1
1

.t
2

(G
J

$
M

1
3

.t
1

(L
D

$
M

1
3

.t
2

(L
D

S
c
o

re
 C

o
n

tr
ib

(G
ro

u
p

 2
 -

 G
ro

u
p

 1
),

 W
e

ig
h

t=
p

1
p

2

Var ID (Primary)

BFTPLDSSCC723.M14 (PCA-X), Hierarchical, without ldboor *** preferred ***
Score Contrib(Above - Below), Weight=p[1]p[2]

SIMCA-P+ 11.5 - 2007-05-23 16:02:52   

-2

-1

0

1

2

T
A

C
1

T
A

S
i1

T
A

M
n

1

T
A

P
1

T
A

S
1

T
A

C
r1

T
A

N
i1

T
A

V
1

T
A

T
i1

T
A

C
u

1

T
A

C
2

T
A

S
i2

T
A

M
n

2

T
A

P
2

T
A

S
2

T
A

C
r2

T
A

N
i2

T
A

V
2

T
A

T
i2

T
A

C
u

2

S
A

B
S

_
F

S
A

B
S

_
E

S
R

V
E

T
O

T
I

L
D

A
C

D
V

K
1

L
D

A
C

D
_

S
A

B
S

L
D

A
C

R
E

K
1

L
D

A
D

IF
F

1

L
D

A
M

A
T

N
1

L
D

A
S

T
M

P
1

L
D

A
T

A
R

A

L
D

A
T

V
K

T

L
D

A
S

H
L

B
1

L
D

A
S

M
IS

S

L
D

S
R

A
N

T

L
D

A
S

H
L

H

L
D

A
T

N
IV

S
c

o
re

 C
o

n
tr

ib
(G

ro
u

p
 2

 -
 G

ro
u

p
 1

),
 W

e
ig

h
t=

p
2

Var ID (Primary)

BFTPLDSSCC723.M4 (PCA-X), TP T2
Score Contrib(Group 2 - Group 1), Weight=p[2]

SIMCA-P+ 11.5 - 2007-05-23 16:04:22

-4

-3

-2

-1

0

1

2

3

4

E
B

T
B

G
A

S
A

N
T

E
B

T
B

L
T

IT
O

T
E

B
T

G
A

S
M

G
D

E
B

T
T

L
T

R
1

E
B

T
T

L
T

R
2

E
B

T
V

S
U

M
E

B
T

L
E

5
0

0
7

E
B

T
L

E
5

0
1

8
E

B
T

L
E

5
0

3
0

E
B

T
L

E
5

0
3

5
E

B
T

L
E

5
0

4
5

E
B

T
L

E
5

1
2

1
E

B
T

L
E

5
2

3
0

E
B

T
L

E
5

2
3

6
E

B
T

L
E

5
3

0
3

E
B

T
L

E
5

4
0

1
E

B
T

L
E

5
4

9
9

E
B

T
X

L
T

S
E

B
T

X
T

E
S

L
E

B
T

X
T

T
S

E
B

T
S

T
T

V
E

B
V

H
B

H
T

E
B

V
E

A
N

T
E

B
V

E
T

O
T

I
E

B
V

H
K

W
T

E
B

V
H

K
W

T
O

T
E

B
V

G
B

T
O

T
I

E
B

V
H

S
B

0
1

E
B

V
H

S
B

0
2

E
B

V
H

S
B

0
3

E
B

V
H

S
B

0
4

E
B

V
F

S
T

O
T

I
E

B
V

A
C

B
E

H
E

B
V

H
A

N
G

E
B

S
X

N
T

S
E

B
S

U
L

G
N

5
0

0
E

B
S

U
L

G
N

5
0

1
E

B
S

U
L

G
N

5
0

2
E

B
S

U
L

G
N

5
0

3
E

B
S

U
L

G
N

5
0

3
E

B
S

U
L

G
N

5
0

4
E

B
S

U
L

G
N

5
0

6
E

B
S

U
L

G
N

5
1

2
E

B
S

U
L

G
N

5
2

1
E

B
S

U
L

G
N

5
2

3
E

B
S

U
L

G
N

5
2

3
E

B
S

U
L

G
N

5
3

0
E

B
S

U
L

G
N

5
4

0
E

B
S

U
L

G
N

5
4

0
E

B
S

U
L

G
N

5
4

9
E

B
S

U
L

G
N

6
6

0
E

B
S

U
L

G
N

6
6

1
E

B
C

H
N

S
T

E
B

V
H

K
R

N
S

E
B

S
X

L
T

S
K

T
M

A
T

T
2

3
4

K
T

M
IS

S
2

3
4

K
T

M
A

T
T

3
2

1
K

T
M

IS
S

3
2

1
K

T
M

A
T

T
3

4
1

_
K

T
M

IS
S

3
4

1
_

L
A

A
N

C
E

B
L

A
A

N
S

iE
B

L
A

A
N

M
n

E
B

L
A

A
N

P
E

B
L

A
A

N
S

E
B

L
A

A
N

C
rE

B
L

A
A

N
N

iE
B

L
A

A
N

M
o

E
B

L
A

A
N

V
E

B
L

A
A

N
T

iE
B

L
A

A
N

C
u

E
B

L
A

A
N

A
lE

B
L

A
A

N
N

b
E

B
L

A
A

N
B

E
B

L
A

A
N

N
E

B

S
c

o
re

 C
o

n
tr

ib
(G

ro
u

p
 2

 -
 G

ro
u

p
 1

),
 W

e
ig

h
t=

p
1

Var ID (Primary)

BFTPLDSSCC723.M9 (PCA-X), SS T2
Score Contrib(Above - Below), Weight=p[1]

SIMCA-P+ 11.5 - 2007-05-23 16:06:27   

Figure 28. Contributing variables to differences between heats below and above target temperature at TN station. 
Upper left: Score plot in the hierarchical model. Blue dots are objects 30ºC or more below aim temperature, brown 
dots objects 30ºC or more above aim temperature. Upper right: Block contributions Lower left: TP block. Lower 

right: SS block. 

4.2.4. Slab quality 

It has not been possible to find any relations between the blocks regarding slab quality (see 
figure 29). Results within the CC block are available in section 4.1.5. 
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Figure 29. Objects coloured according to fraction of slabs with visual remarks are randomly  
distributed in the score plot, implying that no obvious connection to earlier blocks exist.  
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5. Discussion and conclusions 

The results of the study show that multivariate statistical methods as principal component 
analysis and projection to latent structures works well for studying processes in steelmak-
ing. The quality issues present in each step in the production have been explained in more 
or less detail within the scope of the project. Some of the results are already known at 
SSAB Oxelösund, which confirms their correctness.  
 
Modelling has not always been straight-forward though. The many raw materials used, al-
loy added and treatments available create data sets with many different variables and it 
may sometimes be hard to grasp useful information. Data pre-treatment takes considerable 
amounts of time and about one third of the project time has been put on data organization. 

5.1. Blast furnace modelling 
More than one third of all blast furnace crude iron discharges are not satisfactory with re-
spect to analysis targets (see page 32). The most common element that deviates from target 
is silicon, which in combination with other factors increases the slopping risk (figure 21) 
and also causes extra slag formers to be added to achieve desired basicity. However, the 
blast furnace is the process step which shows the most promising conditions for successful 
online modelling and statistical monitoring. It has been possible to predict some slag and 
crude iron properties from a dataset containing information about raw material additions 
and operational parameter data – and although the data resolution has been poor (working 
shift and day-average) the explained variance was reasonably good for some of the re-
sponse variables.  
 
In order to study it in more detail and develop statistical models for process control, time 
resolved data for operating parameters such as temperatures and pressures in shaft, blast 
properties, top gas flows, temperature, composition and more – together with raw material 
addition data – needs to be used for prediction of crude iron and slag analysis and crude 
iron temperature. 

5.2. Desulphurization and LD-treatment 
Desulphurization in the torpedo cars has been the least successful block to model in this 
study. The data available and the models developed have not been able to reveal additional 
ways of improving the process. The result in model TP03.M11 shows that high chromium 
content correlate positively with heats with high residual sulphur content, but it has not 
been seen how reliable this result is. In general, the degree of explained variance for vari-
able TAS2 (sulphur content after desulphurization) has been rather sensitive to value 
trimming and introduction of similar variables such as absolute amount sulphur (SABS_E).  
 
Analysis misses after LD-treatment are not very frequent for the observations included in 
this study. Especially the metals are commonly within the target range, while phosphorous 
deviations are more common. This is due to the fact that the increased temperature during 
LD-treatment decreases solubility of P in the slag. The slag’s P cleaning effect is also de-
pendant on slag amount and both Si and P content in incoming crude iron, see figure 20 on 
page 35. 
 
The hierarchical model for T-sort T2 indicates that high titanium content plays a role for 
increased slopping risk. This is illustrated in figure 27 where it is also seen that there are 
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heats not registered with ‘severe slopping’ among the red ones. Several factors that in-
creases the risk for slopping are known, but they way the process is handled may avoid 
slopping to occur. Common experience has not been able to explain why this correlation 
can be seen, but it may be that a third factor is the actual cause.  
 
The models have not been able to capture the significance of different scrap quantities 
added in the LD-converter. To achieve better models, the variables describing scrap addi-
tions may be organized in other ways or one could use more observations. The alloys added 
directly after finished LD-treatment have been included in the LD block, but one could 
also make a specific alloying block, enabling detailed investigation of material additions. 

5.3. Secondary steelmaking 
In general the secondary steelmaking has been quite hard to model due to the many vari-
ables, e.g. alloy additions, gas bubbling, stirring, heating, vacuum treatment and steel analy-
ses. The fact that heats may have different treatment paths also makes it difficult to model 
this block. An alternative approach could have been to make several blocks instead of just 
one, for example one for the TN station and one for the ladle furnace treatment. This ap-
proach was used with good results in the PLS-model TPLDSSCC.M24, which contained 
steel analysis values after LD-treatment together with variables from TN station to predict 
deviations from aim temperature. 
 
A large portion of the heats have temperature deviations which will cause extra treatment 
time for heating in the ladle furnace. If a greater portion of the heats could maintain a tem-
perature within the limits it would bring economical and environmental savings. The nega-
tive deviations have been explained to some extent in the hierarchical model (section 4.2.3, 
page 40), which said that low silicon content and high sulphur content are the main reasons. 
Low silicon content is not very common (see figure 16, page 32), but when it happens in 
combination with high sulphur content it may affects the secondary steelmaking. Better 
quality of the crude iron produced in the blast furnace is therefore one of the keys to more 
stable temperature control in the steelworks.  
 
Another interesting fact is the spread within T-sorts depending on alloys added, see page 
36. They mainly depend on additions of CaSi used for inclusion removal, and also FeV and 
FeNb which are used to reach specified analysis. The reason is that the alloying performed 
after LD-treatment and at TN station not always is able to adjust the steel analysis to the 
desired quality directly. 

5.4. Continuous casting 
Modelling the casting block has revealed that there are relations between operational pa-
rameters and external (visual) slab quality. The data analyzed in the present study is per 
heat which should be considered as a quite poor resolution since casting is performed con-
tinuously. It is also important to point out that the data variation present within one T-sort 
specification is not enough to get good model properties. If further modelling is performed 
on data with better resolution and preferably designed experiments where T-sort differ-
ences are eliminated, the casting machine’s influence on visual faults may be established in 
more detail.  
 
In order to improve internal slab quality and minimize segregation problems during casting 
it is necessary to have careful control of tundish variables such as steel analysis and tem-
perature. If monitoring and control of temperature and analyses can be improved further it 
would be of great importance.  
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5.5. Quantification 
Since 56% of the crude iron discharges from the blast furnace do deviate from one or more 
analysis target intervals (section 4.1.1, page 32) there is plenty of room for improvements. 
The most common deviations which are silicon and sulphur will cause problems later in the 
process: 
 

� High silicon level will demand large amounts of slag formers to be added in the 
LD-converter. 

� Low silicon level together with high phosphorous level will increase the risk for too 
high P content which may be detrimental for the whole batch.  

� High sulphur level will increase time for desulphurization and if, in addition, the 
silicon level is low it will be hard to reach desired temperature, i.e. extra heating in 
the ladle furnace will be needed. 

 
If extra slag formers are added, it means about six tonnes of lime and dolomite extra per 
heat which means economical costs but also increased amount of slag which must be taken 
care of. A heat with too low temperature that is sent to the ladle furnace demands a large 
amount of extra energy – as a simple example, the energy required to increase the tempera-
ture of a steel batch with 30ºC can be estimated to 2.5 GJ: 
 

Qextra = cp;steel ¢mbatch ¢¢T = 420 ¢ 200000 ¢ 30 = 2:5 GJ 
 
If a cause behind the indication that titanium content correlates with increased slopping 
risk can be identified and routines developed to decrease the number of slopped heats it 
will also bring economical and environmental benefits. Each slopping incidence causes ma-
terial losses, dust emissions and interrupted operation. 
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6. Proposals 

With the results and discussion of this study as a starting point, the following proposals are 
made for the continued work: 
 

� Continue with multivariate modelling of the blast furnaces using high resolution 
process data, and eventually online data for the development of an early warning 
system of analysis target deviations and prediction of iron and slag analysis. 

 
� Investigate further if and why titanium content in crude iron does increase the risk 

for slopping to occur. 
 

� Continue with modelling of the continuous casting block using high resolution data 
from the tundish and casting machine in order to develop a multivariate statistical 
process control model for slab quality improvement. 
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Appendix A: Engelsk–svensk ordlista 

 
Engelska Svenska 

Blast furnace Masugn 
Coke Koks 
Continuous casting Stränggjutning 
Ore Malm 
Shaft Schakt 
Slopping Utkok 
Ladle Skänk 
Ladle furnace Skänkugn 
Secondary steelmaking Skänkmetallurgi 
Tundish Gjutlåda 
Mold, mould Kokill, gjutform 
Slab Stålämne 
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Appendix B: Variable list 

Most of the variables mentioned here are named as in the databases. Others have been cre-
ated for this study and are described in the study’s data pretreatment documentation.  

Primary observation identification 
As primary observation id, LSNR has been used for TP, LD, SS and CC blocks as well as 
the hierarchical model. For TP block, TPNR, TPKPJ and TPRESA have also been used 
and for BF block, UTNR has been used. 

Observation labels 
 

Primary ID Secondary ID 

LD1TSRT Observation label 

SENR Observation label 

GLKPJ Observation label 

GLNR Observation label 

GJAVBRKD Observation label 

GJVESTTI Observation label 

ST5GLST Observation label 

GJLOPNR Observation label 

GJPLNORM Observation label 

GJPLSTR Observation label 

ST5GLVE Observation label 

ST5GRVE Observation label 

ST5KONR Observation label 

ST5STNR Observation label 

ST5GVTI Observation label 

ST5GSNR Observation label 

PRFEL Observation label 

EBTSTTI Observation label 

STALAN_SU_SSNR Observation label 

EBVHSTI Observation label 

KTSKLAG234 Observation label 

KTTRAFF234 Observation label 

KTBOOR234 Observation label 

KTSKLAG236 Observation label 

KTTRAFF236 Observation label 

KTBOOR236 Observation label 

KTSKLAG321 Observation label 

KTTRAFF321 Observation label 

KTBOOR321 Observation label 

KTSKLAG341_2 Observation label 

KTTRAFF341_2 Observation label 

KTBOOR341_2 Observation label 

Primary ID Secondary ID 

ANABOM234 Observation label 

ANABOM236 Observation label 

ANABOM340 Observation label 

ANABOMEBEL Observation label 

PQDATUM Observation label 

SKRESA Observation label 

SKNR Observation label 

SKKPJ Observation label 

LD1LAPG Observation label 

LD1SPGM Observation label 

LD1UTGR Observation label 

LD4LANR Observation label 

LD4LARS1 Observation label 

LD4LARS2 Observation label 

LD4UGKR Observation label 

LD4UGRS Observation label 

LD6ORSA1 Observation label 

LD7SKIF Observation label 

LD9KOK Observation label 

LD8BOMA Observation label 

LD1LBE Observation label 

LSBEBEH Observation label 

ANABOM230 Observation label 

KTSKLAG230 Observation label 

KTTRAFF230 Observation label 

PQDATUM Observation label 

SKNR Observation label 

SKKPJ Observation label 

SKRESA Observation label 

DTVIKT Observation label 

PQDATUM Observation label 

Totvikt Observation label 
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Variables in the blast furnace block 
Primary ID Secondary ID 

C BFVAR001 

Si BFVAR002 

Mn BFVAR003 

P BFVAR004 

S_iron BFVAR005 

Cr BFVAR006 

Cu BFVAR007 

Ni BFVAR008 

Ti BFVAR009 

V BFVAR010 

Temp BFVAR011 

DiffSi BFVAR012 

DiffMn BFVAR013 

DiffP BFVAR014 

DiffS BFVAR015 

DiffCr BFVAR016 

DiffCu BFVAR017 

DiffNi BFVAR018 

DiffV BFVAR019 

DiffTemp BFVAR020 

ANMISSANT BFVAR021 

EFT_STOP BFVAR022 

Tapptid BFVAR023 

Slaggtid BFVAR024 

CaO BFVAR025 

SiO2 BFVAR026 

Al2O3 BFVAR027 

MgO BFVAR028 

FeO BFVAR029 

Primary ID Secondary ID 

MnO BFVAR030 

S_slag BFVAR031 

TiO2 BFVAR032 

V2O5 BFVAR033 

K2O BFVAR034 

B2 BFVAR035 

B3 BFVAR036 

Längd BFVAR037 

K-streck BFVAR038 

B-diam BFVAR039 

Grytor BFVAR040 

Grovkoks (9201) BFVAR041 

Finkoks (9203) BFVAR042 

Injektkol (9990) BFVAR043 

MPBO (9248) BFVAR044 

KPBA (9944) BFVAR045 

Mn-briketter (1055) BFVAR046 

Kalksten (9210) BFVAR047 

LD-sten (9208) BFVAR048 

Bränslebriketter (1056) BFVAR049 

Skrot (9236) BFVAR050 

MnSot-briketter (1057) BFVAR051 

Kvartsit (9966) BFVAR052 

Blästermängd BFVAR053 

Blästertemp BFVAR054 

Syrgas i bläster BFVAR055 

Toppgasflöde BFVAR056 

Temp forma1 BFVAR057 

Temp forma20 BFVAR058 
 



 
 
 52 

Variables in the desulphurization block 
Primary ID Secondary ID 

TAC1 TPVAR001 

TASi1 TPVAR002 

TAMn1 TPVAR003 

TAP1 TPVAR004 

TAS1 TPVAR005 

TACr1 TPVAR006 

TANi1 TPVAR007 

TAV1 TPVAR008 

TATi1 TPVAR009 

TACu1 TPVAR010 

TAC2 TPVAR011 

TASi2 TPVAR012 

TAMn2 TPVAR013 

TAP2 TPVAR014 

TAS2 TPVAR015 

TACr2 TPVAR016 

TANi2 TPVAR017 

TAV2 TPVAR018 

TATi2 TPVAR019 

TACu2 TPVAR020 

SABS_F TPVAR021 

SABS_E TPVAR022 

SRVETOTI TPVAR023 

LDACDVK1 TPVAR024 

LDACD_SABS TPVAR025 

LDACREK1 TPVAR026 

LDADIFF1 TPVAR027 

LDAHTMP TPVAR028 

LDAMATN1 TPVAR029 

LDASTMP1 TPVAR030 

LDATARA TPVAR031 

LDATVKT TPVAR032 

LDASHLB1 TPVAR033 

LDASMISS TPVAR034 

LDSRANT TPVAR035 

LDASHLH TPVAR036 

LDATNIV TPVAR037 
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Variables in the LD-converter block 
Primary ID Secondary ID 

LSINSVKT LDVAR001 

LSVEVIKT LDVAR002 

OSANC LDVAR003 

OSANSi LDVAR004 

OSANMn LDVAR005 

OSANP LDVAR006 

OSANS LDVAR007 

OSANCr LDVAR008 

OSANNi LDVAR009 

OSANMo LDVAR010 

OSANV LDVAR011 

OSANTi LDVAR012 

OSANCu LDVAR013 

LD3N2TO LDVAR014 

LD3ARTO LDVAR015 

LD6DOTO LDVAR016 

LD6FUTO LDVAR017 

LD6KATO LDVAR018 

LD6MATO LDVAR019 

LD6O2TO LDVAR020 

LD7FPTP1 LDVAR021 

LD7TPTP1 LDVAR022 

LD1TNTE LDVAR023 

BLTITOT LDVAR024 

BLANT LDVAR025 

BEHTIDTOT LDVAR026 

FUANT LDVAR027 

KAANT LDVAR028 

LAH00 LDVAR029 

LAH35 LDVAR030 

LAH50 LDVAR031 

LAH60 LDVAR032 

LAH80 LDVAR033 

MAANT LDVAR034 

LD2RATP LDVAR035 

LD8ALBE LDVAR036 

LDLGE5018 LDVAR037 

LDLGE5020 LDVAR038 

LDLGE5120 LDVAR039 

LDLGE5017 LDVAR040 

LDLGE5061 LDVAR041 

LDLGE5045 LDVAR042 

Primary ID Secondary ID 

LDLGN5063 LDVAR043 

LDLGN5307 LDVAR044 

LDLGN5308 LDVAR045 

LDLGN5008 LDVAR046 

LDLGN5218 LDVAR047 

LDLGN6501 LDVAR048 

LD7SONT LDVAR049 

LD7SONO LDVAR050 

LD7SONC LDVAR051 

LDDOLANT LDVAR052 

LDSKT02 LDVAR053 

LDSKT03 LDVAR054 

LDSKT05 LDVAR055 

LDSKT12 LDVAR056 

LDSKT21 LDVAR057 

LDSKT23 LDVAR058 

LDSKT25 LDVAR059 

LDSKT26 LDVAR060 

LDSKT2X LDVAR061 

LDSKT33 LDVAR062 

LDSKT35 LDVAR063 

LDSKT50 LDVAR064 

LDSKTYLW LDVAR065 

LDSKT54 LDVAR066 

LDSKT55 LDVAR067 

LDSKT56 LDVAR068 

LDSKTGREEN LDVAR069 

LDSKT60 LDVAR070 

LDSKT90 LDVAR071 

LDSKT95 LDVAR072 

LD9SLE LDVAR073 

GACaO LDVAR074 

GASiO2 LDVAR075 

GAAl2O3 LDVAR076 

GAMgO LDVAR077 

GAFeO LDVAR078 

GAMnO LDVAR079 

GAP2O5 LDVAR080 

GAS LDVAR081 

GACr2O3 LDVAR082 

GAV2O5 LDVAR083 

GATiO2 LDVAR084 
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Primary ID Secondary ID 

GABas LDVAR085 

LAANC230 LDVAR086 

LAANSi230 LDVAR087 

LAANMn230 LDVAR088 

LAANP230 LDVAR089 

LAANS230 LDVAR090 

LAANCr230 LDVAR091 

LAANNi230 LDVAR092 

LAANMo230 LDVAR093 

LAANV230 LDVAR094 

Primary ID Secondary ID 

LAANTi230 LDVAR095 

LAANCu230 LDVAR096 

LAANAl230 LDVAR097 

LAANNb230 LDVAR098 

LAANB230 LDVAR099 

LAANN230 LDVAR100 

LAANSn230 LDVAR101 

KTMISS230 LDVAR102 

KTMATT230 LDVAR103 

LD9KOK LDVAR104 
 

Variables in the secondary steelmaking block 
Primary ID Secondary ID 

EBTBGASANT SSVAR001 

EBTBLTITOT SSVAR002 

EBTGASMGD SSVAR003 

EBTTLTR1 SSVAR004 

EBTTLTR2 SSVAR005 

EBTVSUM SSVAR006 

EBTLE5007 SSVAR007 

EBTLE5018 SSVAR008 

EBTLE5021 SSVAR009 

EBTLE5030 SSVAR010 

EBTLE5035 SSVAR011 

EBTLE5045 SSVAR012 

EBTLE5063 SSVAR013 

EBTLE5121 SSVAR014 

EBTLE5218 SSVAR015 

EBTLE5230 SSVAR016 

EBTLE5236 SSVAR017 

EBTLE5303 SSVAR018 

EBTLE5401 SSVAR019 

EBTLE5499 SSVAR020 

EBTXLTS SSVAR021 

EBTXTESL SSVAR022 

EBTXTTS SSVAR023 

EBTSTTV SSVAR024 

EBVHBHT SSVAR025 

EBVEANT SSVAR026 

EBVETOTI SSVAR027 

EBVHKWT SSVAR028 

EBVHKWTOT SSVAR029 

EBVGBTOTI SSVAR030 

Primary ID Secondary ID 

EBVHSB01 SSVAR031 

EBVHSB02 SSVAR032 

EBVHSB03 SSVAR033 

EBVHSB04 SSVAR034 

EBVHSB05 SSVAR035 

EBVFSTOTI SSVAR036 

EBVACBEH SSVAR037 

EBVHVLP1 SSVAR038 

EBVHV101 SSVAR039 

EBVHANG SSVAR040 

EBVHTEM1 SSVAR041 

EBVHSTV SSVAR042 

EBSXNTS SSVAR043 

EBSXNTS SSVAR044 

EBSULGN5009 SSVAR045 

EBSULGN5018 SSVAR046 

EBSULGN5021 SSVAR047 

EBSULGN5030 SSVAR048 

EBSULGN5036 SSVAR049 

EBSULGN5045 SSVAR050 

EBSULGN5046 SSVAR051 

EBSULGN5063 SSVAR052 

EBSULGN5121 SSVAR053 

EBSULGN5218 SSVAR054 

EBSULGN5232 SSVAR055 

EBSULGN5235 SSVAR056 

EBSULGN5236 SSVAR057 

EBSULGN5241 SSVAR058 

EBSULGN5303 SSVAR059 

EBSULGN5307 SSVAR060 
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Primary ID Secondary ID 

EBSULGN5401 SSVAR061 

EBSULGN5404 SSVAR062 

EBSULGN5499 SSVAR063 

EBSULGN6502 SSVAR064 

EBSULGN6605 SSVAR065 

EBSULGN6610 SSVAR066 

EBCHNST SSVAR067 

EBVHKRNS SSVAR068 

EBSXLTS SSVAR069 

KTMATT234 SSVAR070 

KTMISS234 SSVAR071 

KTMATT236 SSVAR072 

KTMISS236 SSVAR073 

KTMATT321 SSVAR074 

KTMISS321 SSVAR075 

KTMATT341_2 SSVAR076 

KTMISS341_2 SSVAR077 

LAANCEB SSVAR078 

LAANSiEB SSVAR079 

LAANMnEB SSVAR080 

LAANPEB SSVAR081 

LAANSEB SSVAR082 

LAANCrEB SSVAR083 

LAANNiEB SSVAR084 

LAANMoEB SSVAR085 

LAANVEB SSVAR086 

LAANTiEB SSVAR087 

LAANCuEB SSVAR088 

LAANAlEB SSVAR089 

LAANNbEB SSVAR090 

LAANBEB SSVAR091 

LAANNEB SSVAR092 

LAANN321 SSVAR093 

ANANC1 SSVAR094 

ANANSi1 SSVAR095 

ANANMn1 SSVAR096 

ANANP1 SSVAR097 

ANANS1 SSVAR098 

ANANCr1 SSVAR099 

ANANNi1 SSVAR100 

ANANMo1 SSVAR101 

ANANV1 SSVAR102 

ANANTi1 SSVAR103 

ANANCu1 SSVAR104 

Primary ID Secondary ID 

ANANAl1 SSVAR105 

ANANNb1 SSVAR106 

ANANB1 SSVAR107 

ANANN1 SSVAR108 

ANANZn1 SSVAR109 

ANANCa1 SSVAR110 

ANANCo1 SSVAR111 

ANANAs1 SSVAR112 

ANANSn1 SSVAR113 

ANANPb1 SSVAR114 

ANANCe1 SSVAR115 

ANANC2 SSVAR116 

ANANSi2 SSVAR117 

ANANMn2 SSVAR118 

ANANP2 SSVAR119 

ANANS2 SSVAR120 

ANANCr2 SSVAR121 

ANANNi2 SSVAR122 

ANANMo2 SSVAR123 

ANANV2 SSVAR124 

ANANTi2 SSVAR125 

ANANCu2 SSVAR126 

ANANAl2 SSVAR127 

ANANNb2 SSVAR128 

ANANB2 SSVAR129 

ANANN2 SSVAR130 

ANANZn2 SSVAR131 

ANANCa2 SSVAR132 

ANANCo2 SSVAR133 

ANANAs2 SSVAR134 

ANANSn2 SSVAR135 

ANANPb2 SSVAR136 

ANANCe2 SSVAR137 

ANANH1 SSVAR138 

ANANH2 SSVAR139 

AVVIKC SSVAR140 

AVVIKSI SSVAR141 

AVVIKMN SSVAR142 

AVVIKP SSVAR143 

AVVIKS SSVAR144 

AVVIKCR SSVAR145 

AVVIKNI SSVAR146 

AVVIKMO SSVAR147 

AVVIKV SSVAR148 
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Primary ID Secondary ID 

AVVIKTI SSVAR149 

AVVIKCU SSVAR150 

AVVIKAL SSVAR151 

Primary ID Secondary ID 

AVVIKNB SSVAR152 

AVVIKB SSVAR153 

AVVIKN SSVAR154 

 

Variables in the continuous casting block 
Primary ID Secondary ID 

GJBUTVKT CCVAR001 

GJLADRUS CCVAR002 

GJPLVIKT CCVAR003 

GJTJL CCVAR004 

GJUTGLGD CCVAR005 

GJVETOTI CCVAR006 

GJVETLIQ CCVAR007 

ST5GLSK CCVAR008 

ST5GSRS CCVAR009 

ST5KBVV CCVAR010 

ST5KBVS CCVAR011 

ST5KOAC CCVAR012 

ST5KOKO CCVAR013 

ST5KTVV CCVAR014 

ST5SLGV CCVAR015 

ST5STSM CCVAR016 

ST5STSS CCVAR017 

ST5GLCH CCVAR018 

ST5BZNR CCVAR019 

ST5GJBZ CCVAR020 

ST5GLSI CCVAR021 

ST5GLT01 CCVAR022 

ST5GLT02 CCVAR023 

ST5GLT03 CCVAR024 

ST5GLT04 CCVAR025 

ST5GJLG CCVAR026 

ST5KF01 CCVAR027 

ST5KF02 CCVAR028 

ST5KF03 CCVAR029 

ST5KF04 CCVAR030 

ST5KF05 CCVAR031 

ST5KF06 CCVAR032 

ST5KF07 CCVAR033 

ST5KF08 CCVAR034 

ST5KF09 CCVAR035 

ST5KF10 CCVAR036 

ST5KF11 CCVAR037 

Primary ID Secondary ID 

ST5KF12 CCVAR038 

ST5KF13 CCVAR039 

ST5KF14 CCVAR040 

ST5KF15 CCVAR041 

ST5KF16 CCVAR042 

ST5KF17 CCVAR043 

ST5KF18 CCVAR044 

ST5KF19 CCVAR045 

ST5KF20 CCVAR046 

ST5KV01 CCVAR047 

ST5KV02 CCVAR048 

ST5KV03 CCVAR049 

ST5KV04 CCVAR050 

ST5KV05 CCVAR051 

ST5KV06 CCVAR052 

ST5KV07 CCVAR053 

ST5KV08 CCVAR054 

ST5KV09 CCVAR055 

ST5KV10 CCVAR056 

ST5KV11 CCVAR057 

ST5KV12 CCVAR058 

ST5KV13 CCVAR059 

ST5KV14 CCVAR060 

ST5KV15 CCVAR061 

ST5KV16 CCVAR062 

ST5KV17 CCVAR063 

ST5KV18 CCVAR064 

ST5KV19 CCVAR065 

ST5KV20 CCVAR066 

AEMAXBRD CCVAR067 

AEDITOTI CCVAR068 

AESTARTH CCVAR069 

AEEJOKFRAC CCVAR070 

AEANHITH CCVAR071 

AAANCMAX CCVAR072 

AAANSiMAX CCVAR073 

AAANMnMAX CCVAR074 
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Primary ID Secondary ID 

AAANPMAX CCVAR075 

AAANSMAX CCVAR076 

AAANCrMAX CCVAR077 

AAANNiMAX CCVAR078 

AAANMoMAX CCVAR079 

AAANVMAX CCVAR080 

AAANTiMAX CCVAR081 

AAANCuMAX CCVAR082 

AAANAlMAX CCVAR083 

AAANNbMAX CCVAR084 

AAANBMAX CCVAR085 

AAANNMAX CCVAR086 

AAANZnMAX CCVAR087 

AAANCaMAX CCVAR088 

AAANCoMAX CCVAR089 

AAANAsMAX CCVAR090 

AAANSnMAX CCVAR091 

AAANPbMAX CCVAR092 

AAANCeMAX CCVAR093 

AAANCMIN CCVAR094 

AAANSiMIN CCVAR095 

AAANMnMIN CCVAR096 

AAANPMIN CCVAR097 

AAANSMIN CCVAR098 

AAANCrMIN CCVAR099 

AAANNiMIN CCVAR100 

AAANMoMIN CCVAR101 

AAANVMIN CCVAR102 

AAANTiMIN CCVAR103 

AAANCuMIN CCVAR104 

AAANAlMIN CCVAR105 

AAANNbMIN CCVAR106 

AAANBMIN CCVAR107 

AAANNMIN CCVAR108 

AAANZnMIN CCVAR109 

AAANCaMIN CCVAR110 

AAANCoMIN CCVAR111 

Primary ID Secondary ID 

AAANAsMIN CCVAR112 

AAANSnMIN CCVAR113 

AAANPbMIN CCVAR114 

AAANCeMIN CCVAR115 

AAANCSTD CCVAR116 

AAANSiSTD CCVAR117 

AAANMnSTD CCVAR118 

AAANPSTD CCVAR119 

AAANSSTD CCVAR120 

AAANCrSTD CCVAR121 

AAANNiSTD CCVAR122 

AAANMoSTD CCVAR123 

AAANVSTD CCVAR124 

AAANTiSTD CCVAR125 

AAANCuSTD CCVAR126 

AAANAlSTD CCVAR127 

AAANNbSTD CCVAR128 

AAANBSTD CCVAR129 

AAANNSTD CCVAR130 

AAANZnSTD CCVAR131 

AAANCaSTD CCVAR132 

AAANCoSTD CCVAR133 

AAANAsSTD CCVAR134 

AAANSnSTD CCVAR135 

AAANPbSTD CCVAR136 

AAANCeSTD CCVAR137 

AVFRACFEL CCVAR138 

PRUNDBET CCVAR139 

PRCENBET CCVAR140 

PRHWLAUT CCVAR141 

PRHWLAUK CCVAR142 

PRCQAUTO CCVAR143 

PRCQAUTK CCVAR144 

PRBRVSEG CCVAR145 

PRHWFAUT CCVAR146 

PRHWFAUK CCVAR147 

PRFEL CCVAR148 
 
 


