
Structural Health Monitoring of Concrete
Elements Using Deep Machine Learning
Master’s thesis in Complex Adaptive System

Dimitrios Karypidis

Department of Physics
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

This page is intentionally left blank

Master’s thesis 2019:NN

Structural Health Monitoring of Concrete
Elements Using Deep Machine Learning

KARYPIDIS DIMITRIOS

Department of Physics
SensIT project

Chalmers University of Technology
Gothenburg, Sweden 2019

Structural Health Monitoring of Concrete Elements Using Deep Machine Learning
DIMITRIOS KARYPIDIS

© DIMITRIOS KARYPIDIS, 2019.

Supervisor(s):
Carlos Gil Berrocal, Department of Architecture and Civil Engineering
Rasmus Rempling, Department of Architecture and Civil Engineering
Mats Granath, Department of Physics

Examiner: Mats Granath, Department of Physics

Master’s Thesis 2019:NN
Department of Physics
SensIT Project
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Strain profile of a 2D beam constructed in DIANA Finite Element Analysis.

Typeset in LATEX

Gothenburg, Sweden 2019

iv

This page is intentionally left blank

Abstract
The unique nature of Structural Engineering allows the field to integrate fresh in-
novations in its applications only at a slow pace. However, recent advancements
in networking and artificial intelligence can greatly upgrade the current processes.
This thesis reports the early findings of an ongoing project aimed at developing
new methods to upgrade the current maintenance strategies of the civil and trans-
port infrastructure. As part of these new methods, the use of Machine Learning
(ML) algorithms is being investigated to constitute the core of a new generation of
more accurate and robust structural health monitoring (SHM) systems for concrete
structures. Unlike most of the existing SHM systems, relying on the analysis of the
natural frequencies of the structure based on data obtained from accelerometers, the
present study uses a distributed optic fiber system to monitor the strain distribu-
tion along steel reinforcing bars. The preliminary results of the study indicate that
a semi-supervised Deep Autoencoder algorithm (DAE) can successfully quantify the
damage attributable to transverse cracks in a reinforced concrete beam subjected
to three-point loading. Future applications will feature the determination of crack
locations, early detection of reinforcement corrosion as well as other types of damage
such as splitting cracks or surface spalling.

Keywords: structural health monitoring, machine learning, deep autoencoders,
anomaly detection, concrete structures, distributed optic fiber.

vi

This page is intentionally left blank

This thesis was conducted as a proof of concept under the SensIT project, carried
out at the Department of Architecture and Civil Engineering, Chalmers University
of Technology.
Part of this thesis is submitted and at the time of writing under review at the 2019
IABSE Congress New York City [26].

viii

This page is intentionally left blank

Acknowledgements
I would like to thank Rasmus Rempling for introducing me to the SensIT team,
Carlos Gil Berrocal who orchestrated the project planning and patiently walked me
through the modeling parts of the project, of which I was not so familiar with and
Sebastian Almfeldt for setting up and executing all the experiments. I would also like
to thank my examiner and supervisor, Mats Granath, who guided me throughout
this thesis. Finally, special thanks to my fellow CAS classmates, with whom I had
an amazing time these 2 years at Chalmers.

Dimitrios Karypidis, Gothenburg, June 2019

x

Contents

List of Figures xii

List of Tables xiv

1 Introduction 1
1.1 Preface . 1
1.2 Goals . 2
1.3 Approach . 2

1.3.1 Data acquisition and processing 2
1.3.2 Monitoring algorithms . 2

1.4 Results . 2
1.5 Scope and limitations . 2
1.6 Thesis Outline . 3

2 A brief overview on SHM 5
2.1 Preface . 5
2.2 Historical overview . 6

2.2.1 Early stages . 6
2.2.2 SHM in bridge monitoring . 7

2.3 Basics of SHM . 8
2.3.1 Fundamental Axioms . 8
2.3.2 SHM principals . 10

2.4 Summary . 11

3 Deep Neural Networks Overview 13
3.1 Preface . 13
3.2 Brief overview . 13

3.2.1 Biological neurons . 13
3.2.2 Historical overview . 14

3.3 DNN: architecture and functionality 16
3.3.1 Transfer functions . 16

3.3.1.1 Logistic . 16
3.3.1.2 Hyperbolic tangent function 17
3.3.1.3 Rectified linear unit 17

3.3.2 Supervised Training . 18
3.3.2.1 Backpropagation algorithm 18
3.3.2.2 Validating the network 18

xi

Contents

3.3.2.3 Bias-Variance trade-off 19
3.4 Deep Autoencoders . 21
3.5 Summary . 22

4 Methodology 23
4.1 Anomaly detection . 23

4.1.1 Anomaly detection with DAE’s 23
4.2 Concrete monitoring using strain profile 24

4.2.1 Experimental set-up . 24
4.2.1.1 Optic fiber properties 24
4.2.1.2 Beam properties . 25
4.2.1.3 Load . 25

4.2.2 Finite Element Model set-up 26
4.3 Training set up . 27

4.3.1 Pre-filtering of real data . 27
4.3.2 Downsampling spatial resolution 28
4.3.3 Data usage . 29
4.3.4 Data preprocessing . 30
4.3.5 Damage classification . 30

4.4 Summary . 31

5 Results and Discussion 33
5.1 Results . 33
5.2 Discussion . 36

Bibliography 37

A Appendix III

xii

List of Figures

2.1 Wheel-taper monitoring train wheels with the use of acoustics 6
2.2 Accelerometer antenna sensor at the top of Golden Gate bridge (credit:

Steven D. Glaser and Tommi Parkkila, ERCIM News). 7
2.3 Tacoma Narrows Bridge after partial collapse. 7
2.4 The 6 levels of SHM (taken from [1]). 11

3.1 Left picture: A microscope photo of a system of biological neurons
(rat hippocampus). Right picture: A labeled schematic picture of the
structure of a biological neuron . 14

3.2 The pipeline of an artificial neuron 15
3.3 A schematic representation of a Deep Neural Network 16
3.4 A 2D example of a models of different complexity. Left: 20 degrees.

Middle: Linear. Right: Quadratic . 19
3.5 Dropout visual example . 21
3.6 A typical DAE architecture . 21

4.1 Close up view of the optic fiber sensor attached to a steel reinforcing
bar used in the experimental tests . 24

4.2 A diagram of the sensor configuration 25
4.3 Tested beam after failure . 26
4.4 The 2D FE model (mesh mode) . 26
4.5 Force-displacement curves of FEA and the measured beam (Beam 1) 27
4.6 First pre-filtering step featurewise (Beam 1) 27
4.7 Second pre-filtering step samplewise (Beam 1) 28
4.8 Downgrading the spatial resolution samplewise (Beam 1) 29
4.9 Strain profiles for all the real beams 29
4.10 On the left, the strain profile of the beam FEA. On the right, the

strain profile of one of the tested beams. The red dashed line shows
until which state the networks were tested on (Beam 1). It must be
noted that even the load did not increase linearly, since the elastic
modulus of the beams was changing at the event of cracking 30

5.1 Comparing the effect of including the initial states of the monitored
element in the training dataset (Beam 1 & 2) 33

5.2 Comparing the effect of including the initial states of the monitored
element in the training dataset (Beam 3 & 4) 33

5.3 Comparing the effect of including the initial states of the monitored
element in the training dataset (Beam 5 & 6) 34

xiii

List of Figures

5.4 The final classification and losses (Beam 1 & 2) 34
5.5 The final classification and losses (Beam 3 & 4) 35
5.6 The final classification and losses (Beam 5 & 6) 35

xiv

List of Tables

4.1 Specifications of the fiber provided by the manufacturer. 25

5.1 Results obtained for all beams . 36

A.1 Layer structure. III
A.2 Specifications of the fiber provided by the manufacturer. IV

xv

List of Tables

xvi

1
Introduction

1.1 Preface

We live in a fascinating era. The advent of internet can inarguably be considered as
one of the most impactful events that changed the course of humanity. This instant,
global interconnection has drastically changed all aspects of our lives, from social
relationships to newer and ground breaking technologies built on top of it. The most
recent niche is the Internet of Things (IoT), which can be (partially) truncated
to “An open and comprehensive network of intelligent objects that have the capacity
to auto-organize, share information, data and resources, reacting and acting in face
of situations and changes in the environment” [30]. One important application of
IoT is designing real-time monitoring systems, by constantly receiving, processing
and assessing stream of data taken from strategically placed sensors.

Handling and using big streams of data is a tedious task, which has occupied
data scientists for the past years. One of the most promising tools for handling such
tasks is Machine Learning (ML). ML is a sub-domain of artificial intelligence.
By quoting Arthur Samuel (1959), one of the most important pioneers in the fields
of computer gaming and artificial intelligence, ML is :“the field of study that gives
computers the ability to learn without being explicitly programmed” [42]. In recent
years, with the increase in computational capacity of modern computers, a particu-
lar sub-field of ML called Deep Learning (DL) has dominated the research, since
it seems to be the best known approach to prediction and classification [20].

DL has successfully been implemented, and is considered to be the state of the
art tools in a plethora of applications such as image recognition, self-driving cars,
machine translation, financial time series prediction, anomaly detection etc. Build-
ing monitoring systems using DL systems is widely used. Unfortunately, these ap-
proaches have only recently started being popular in the field of structural engineer-
ing, via the introduction of Structural Health Monitoring (SHM).

SHM is the constant monitoring of structural systems to detect, localize and
assess irregularities and defects. Despite the successful implementation of SHM in
numerous sectors like the aerospace and automotive industry, its application in the
transport infrastructure has been hindered by the singular nature of civil structures.
Current SHM systems still rely on deterministic methods, such as signal processing
and Finite Element Analysis (FEA). These techniques, although very practi-
cal when used by themselves, suffer from two main issues: (i) non-robustness to
noise, i.e. noise can impair the predictive capacity of our monitoring system, and
(ii) inflexibility, i.e. the monitoring system cannot adapt its predictions in case of
permanent changes in the structural system. Nevertheless, more recent approaches

1

1. Introduction

have applied DL techniques in order to optimize the SHM procedures, most of them
falling under the category of object detection (computer vision) and multi-feature
classification[44, 17, 18, 9],
which sometimes are non-practical to implement in large scale projects.

1.2 Goals
The goal of this thesis is to develop the algorithmic part of an SHM system, based on
DL, that will be monitoring a simply supported reinforced concrete (RC) beam,
without any transverse reinforcement. In this stage, the monitoring will be based
only on the strains along the longitudinal reinforcement. The reason behind this is
that the experimental RC beams for the cracking experiments will be equipped with
optical fiber sensors.

1.3 Approach
In this section we will briefly describe how this thesis sub-tasks were tackled, which
will be described in more details in the upcoming chapters.

1.3.1 Data acquisition and processing
The data used were gathered from both computer simulations and real experiments.
The software used for the numerical experiments was DIANA Finite Element Anal-
ysis (Version 10.2). The experimental data was generated from three-point loading
tests on RC beams conducted at the Chalmers structural engineering lab.

1.3.2 Monitoring algorithms
The DL architecture used in this application is Deep Autoencoders, which will be
discussed in detail in a latter section. Different configurations of the networks were
tested, in order to optimize the results.

1.4 Results
Using the results from the implementation above-mentioned, the network was tested.
Apart from a successful mapping of the states of the beam, we were able to construct
a rule for classifying the strain state of the concrete element.

1.5 Scope and limitations
The current work was tested on simply supported beams only. In order to examine its
effectiveness, the application must be extended into more complex structures, with
different load combinations that will mimic real scenarios of structural overloading.

2

1. Introduction

Additional work must also be conducted in examining and categorizing the proper
criteria for damage classification.

1.6 Thesis Outline
In this section we will present the thesis’ chapters, along with a small description of
them.

1. Introduction: In this chapter we addressed the main motivations behind this
thesis and presented a small outline of the preceding chapters.

2. A brief overview on SHM : SHM is the backbone of this application. In this
chapter we will shortly present the basic principles behind SHM, as well as
some important applications.

3. Deep Neural Networks Overview: The current application is carried out using
a Deep Neural Network (DNN) architecture, which is one of the most recent
ML fields. DNN’s are inspired by neuroscience, and have been vastly applied
the past decades in many fields. In this chapter we will have a short overview
on biological neurons and the historical evolution of DNN’s. There will be
a brief explanation on how DNN’s work, with an additional part on Deep
Autoencoders, which is the architecture that was used.

4. Methodology: In this chapter will be explained in detail the methodology used
in this thesis. That is, the exact network configurations, the way data was
prepossessed before training and how the different states of the beams were
classified.

5. Results and Discussion: In this chapter will be presented all the results and
plots that were produced. In addition, the efficiency of the algorithm will be
discussed, regarding findings. Finally, there will be a small discussion about
possible further research on the topic.

3

1. Introduction

4

2
A brief overview on SHM

The current chapter will be an introduction to SHM. A small description behind
the motivation and the importance of SHM will be presented. Afterwards a small
historical overview will follow, with an emphasis in SHM applications in bridges. In
the end we will present the basic principles of SHM.

2.1 Preface
As society evolves technologically, people’s well-being is becoming more complex
and fragile. Nowdays we rely on the use of sophisticated structural, mechanical
and electrical structures, such as roads, transport infrastructure and power grids.
The frequent assessment of these public-access structural systems is of crucial need
for society. Identifying and locating a defect in time, before severely impairing the
integrity of the whole structure is vital for public safety, financial efficiency and
environmental sustainability. Among structural engineering structures, the most
important are probably bridges, since by nature they are more large-scale, cost de-
manding and extremely important for the financial growth of a state. In Sweden,
there are more than 20000 bridges, which, taking into consideration the harsh envi-
ronmental conditions and the constant traffic loading in which they are exposed to,
renders their monitoring and proper maintenance an incredibly complicated task.
This is really important regarding the environmental footprint of concrete bridges,
since in a life cycle assessment study conducted in 2005 [27], it was shown that the
total energy consumption of a conventional reinforced concrete bridge with a service
life of 60 years is about 46000 Gigajoules and the total CO2 equivalent is about 3600
tons (including traffic).

In addition, the recurrent amount of money spent in inspecting, maintaining
and repairing existing bridges is enormous. According to the OECD database for
transport infrastructure investment and maintenance spending [35], in 2015 Sweden
invested nearly 3250 million euros in the transport infrastructure including road
and railway structures. Approximately two thirds of the total investment (2094 mil-
lion euros) were used for preservation of the existing transport network with a high
percentage of the expenditure devoted to inspection and maintenance operations of
deteriorated concrete structures [3]. However, it must be noted that most of the in-
vestigation works are scheduled either recurrently or whenever an apparent damage
has emerged. The first cases may result in unnecessary or belated investigations,
and the second in costly rehabilitation works that could have been minimized if
the damage was detected in advance. It is thus obvious that targeted and punc-
tual monitoring will result in optimum maintenance, which will allow the bridges

5

2. A brief overview on SHM

to exhaust their service cycle, is extremely important for a sustainable environment
and a healthy economy. In order to achieve that, the most popular process is called
Structural Health Monitoring.

2.2 Historical overview
Structural Health Monitoring (SHM) refers to the damage detection discipline that
involves the periodic or constant monitoring of a system by means of damage mea-
surement and localization. Almost all major industries apply some form of SHM
in their products, services or facilities, since detecting a defect in time is of great
significance. Early damage detection can have a crucial impact on both life-safety
and optimal resource management. Especially nowadays, industry extends the use
of their infrastructure beyond their initial lifespan, thus rendering their detailed and
frequent monitoring even more important.

2.2.1 Early stages
It is reasonable to assume that humans have tried to assess the integrity of structures
since the early stages of civilization. In antiquity, people were using visual inspection
to assess the condition of structures. The first recorded in-situ SHM application was
recorded in the 19th, where railroad wheel-tappers were striking their hammers on
the train wheels (Fig 2.1), in order to evaluate by the generated sound whether
damage was present [21, 15], a method that is still occasionally used today.

Figure 2.1: Wheel-taper monitoring train wheels with the use of acoustics

The first systematic SHM application was on rotating machinery. In fact, SHM
for rotating machinery is mostly known as Condition Monitoring [13]. The initial
approaches were pretty crude. The inspector would touch a screwdriver on the
machine and would assess its integrity by changes in the acoustic signals or in the
vibrations [33]. Since then, monitoring of rotating machines still uses the same data
as it did before, but the data is collected using modern data acquisition systems.
These include various types of sensors, which are more robust and reliable compared
to human perception [19].

6

2. A brief overview on SHM

2.2.2 SHM in bridge monitoring
Historically, bridge monitoring programs were pivotal for understanding and refining
computational models of the load–structure–response chain. One of the earliest
documented systematic bridge monitoring exercises [8], was conducted on the Golden
Gate and Bay Bridges in 1937 in San Francisco (Fig 2.2) in an elaborate program of
measuring vibrational periods of the various components during their construction
to learn about the dynamic behaviour and possible consequences of an earthquake
[6].

Figure 2.2: Accelerometer antenna sensor at the top of Golden Gate bridge
(credit: Steven D. Glaser and Tommi Parkkila, ERCIM News).

The next noteworthy bridge SHM application was on Tacoma Narrows Bridge in
Washington, where the bridge was thoroughly monitored due to its wind-induced
instability, which was the reason of the final collapse (Fig 2.3). What was monitored
was the vibration measurements, which posed a major concern about the integrity
of the structure [45]. This experience was really important in understanding the re-
sponse of long-span suspension bridges in wind-induced vibrations. Despite the great
progress, long-span bridge aerodynamics can still present unexpected behaviour [28].

Figure 2.3: Tacoma Narrows Bridge after partial collapse.

7

2. A brief overview on SHM

In the last decades bridge monitoring has evolved and consequently formalized
into SHM. The major bridge projects have been initially implemented in Hong Kong
and Japan and more recently in USA. Long-span bridge monitoring systems also
provide ideal opportunities to implement and study SHM systems; for example, the
wind and SHM system [48] implemented on the Lantau fixed crossing has stimulated
SHM research in Hong Kong, not only concerning the performance of the bridges
themselves, but also of SHM methodologies [6].

Although SHM can greatly improve and optimize the lifespan and serviceability
of a bridge structure, it is rarely applied. The reason being the high initial cost of
installation, as well as the rigidity shown by the structural engineering community in
adapting modern technologies. In most bridges, monitoring and health assessment
are carried out by regular inspection and maintenance programs. This has proven to
be sub-optimal, since after car accidents, one of the most frequent causes of reduced
accessibility of the transport infrastructure and the consequent traffic delays is the
performance of inspection operations and the application of maintenance measures
to combat aging of the infrastructure. Consequently, the aging and deterioration of
the transport infrastructure not only poses a very serious issue of public safety but
also has a cascading detrimental impact on the nation’s economy that negatively
affects business productivity, the gross domestic product (GDP) and international
competitiveness [3].

2.3 Basics of SHM

2.3.1 Fundamental Axioms
As written in the previews sections, SHM is a very modern discipline, formalized
only during the recent decades. Some of the pioneers of SHM have constructed the
SHM fundamental axioms [49]. Although these axioms are not based on strictly
posed derivations, their significance was elaborated in the initial script. These are
the following:

• Axiom I: All materials have inherent flaws or defects. This holds true
for all kinds of materials, even for those which are produced industrially. How-
ever, engineers have overcome this problem by using the statistical properties
of each material, and designing using relevant safety factors.

• Axiom II: The assessment of damage requires a comparison between
two system states. Regardless if the SHM estimation mechanism is a so-
phisticated ML algorithm, a statistical pattern recognition method or a simple
visual inspection, the current state must always be compared to a predefined
healthy one. Detecting and analyzing the differences between these states
bring to the fore possible defects, as well as their location.

• Axiom III: Identifying the existence and location of damage can be
done in an unsupervised learning mode, but identifying the type of
damage present and the damage severity can generally only be done

8

2. A brief overview on SHM

in a supervised learning mode. This is reasonable, since unsupervised
methods cannot provide detailed information about the characteristics of the
damage and are unable to classify it as severe or not. This kind of information
must explicitly be provided by the designer, with prior thorough knowledge
on the monitored system, thus a supervised approach is necessary.

• Axiom IVa: Sensors cannot measure damage. Feature extraction
through signal processing and statistical classification is necessary
to convert sensor data into damage information. Sensors’ function is
to receive raw data measured at the point of installation. This data can be
noisy, and possibly inappropriate for direct processing. In most applications,
some signal processing, data cleaning/preprocessing or feature extraction is
necessary. After extracting the essential information, this has to be utilized
by some analysis algorithm, either in the form of statistical learning or some
deterministic method (e.g. FEA reverse engineering).

• Axiom IVb: Without intelligent feature extraction, the more sensi-
tive a measurement is to damage, the more sensitive it is to changing
operational and environmental conditions. As stated in the previous
level, sensor data by itself is not utilizable and usually have some level of noise
contamination. This can be caused due to imperfect installation, harsh envi-
ronmental conditions or some minor defect in the sensor (see Axiom I). It is
thus the designer’s responsibility to construct an algorithm that takes care of
such instabilities, and render the final result reliable and robust.

• Axiom V: The length- and time-scales associated with damage ini-
tiation and evolution dictate the required properties of the SHM
sensing system. Depending on the system and monitoring devices, there
might be gradual degradation or it can be a result of an infrequent event.
These two case might be interpreted differently from the SHM system. This
has to be taken into consideration during assessment.

• Axiom VI: There is a trade-off between the sensitivity to damage
of an algorithm and its noise rejection capability. This axiom is very
popular among statisticians and data scientists, often called Bias–variance
trade-off. In supervised learning, whenever we increase the complexity of the
trained model, we force the model to predict every observation with the max-
imum accuracy. This increases the variance of the predictions i.e. we fit the
noise into the model. On the contrary, when we restrict the complexity of the
model, our predictions have higher error, but the variance is reduced, allowing
for more consistent predictions. This topic will be discussed further in the
next chapter, but the designer must always find the optimal balance between
those two, using and exogenous metric as a guideline.

• Axiom VII: The size of damage that can be detected from changes
in system dynamics is inversely proportional to the frequency range
of excitation. This is more relevant to vibrational measurements. In a

9

2. A brief overview on SHM

nutshell, when the frequency of the measured event is higher, then it is easier
for the sensor to measure it, since there is a higher chance the the measurement
frequency of the sensor will coincide with the event.

• Axiom VIII: Damage increases the complexity of a structure. The
final axiom is probably the one that renders statistical methods more robust
than analytical ones. Assuming that we have an ideal linear concrete beam,
where concrete has no imperfections and behaves linearly in its elastic region
(false by due to Axiom I). When the loading exceeds the elastic threshold,
then we introduce cracks, which consequently introduce nonlinearities in the
system. This dynamic behaviour is very complex to capture by analytical
methods, since in reality we have an alteration in the member’s behaviour.

These axioms, arbitrary as they might seem, summarize the essence of all modern
SHM applications.

2.3.2 SHM principals

SHM systems, according to their functionality, are characterized differently. Rytter
[40] and Lehmhus et al. [29] have formulated the following levels/categories of SHM:

• Detection: The system will alert whether the is damage in the structure.
According to each application, this will result from the monitored measure(s)
(e.g. vibrations, acceleration, strains etc).

• Localization: After it is verified that the system has been damaged, it will
provide information on the possible location(s) of the defect.

• Assessment: At the same time, the system will provide feedback on the
severity of the damage, in order to take the appropriate action.

• Consequence: After assessing the damage, the system can give an estimation
about the safety and serviceability of the structure, according to its remaining
capacity.

• Prognosis: This is more sophisticated category, where after analyzing the
previous level, the system can give a prediction about its remaining service-
life.

• Self-healing The ultimate level of automation. Given that we manage to
localize and assess the defect with extreme level of precision, then it may
be possible to have self-healing mechanisms, that reduce the level of human
interaction for the restoration of the structure. One example might be a shape-
memory allow, which can change its geometry when applying heat load [10].

10

2. A brief overview on SHM

Figure 2.4: The 6 levels of SHM (taken from [1]).

In general, these categories are in ascending hierarchical order, i.e. in order to
acquire information about a level, one must achieve the previous one. However,
sometimes these boundaries are more fluid, and sometimes they tend to overlap.
In addition, some of these levels might be omitted. All the above mentioned is in
unique for each implementation, regarding the underlying problem and the available
means of solving it (sensors, computational resources etc).

In the current application, the levels that were used were Detection, Assess-
ment and Consequence, although localizing the damage can be easily implied
using deterministic methods. More details will be presented in the next chapters.

2.4 Summary
In this chapter a brief overview on SHM was presented, with a particular focus
in bridge applications. This was necessary to understand the foundations of the
current thesis. After the short historical reference and the initial motivation behind
SHM, the reader should have a closer look at the SHM action and the different SHM
levels.

11

2. A brief overview on SHM

12

3
Deep Neural Networks Overview

In the current chapter we will present the foundation of Deep Neural Networks
(DNN’s). DNN’s are directed, multi-layer computational graphs that try to mimic
the mammalian brain. This chapter will be divided in the following parts: a brief
historical overview and initial applications, the basic theory, math and algorithms
behind neural networks and finally a reference to more advanced DNN structures,
with an emphasis in Deep Autoencoders (DAE’s). It must be noted that in this
chapter we will not address the networks optimizers, apart from the vanilla gradient
descent. Optimization is nonetheless a very important part of DNN’s design [20].

3.1 Preface
Machine learning (ML) is the natural evolution of statistical learning. It is consid-
ered to be the most dominant subset of Artificial Intelligence (A.I.). In a nutshell,
ML is the computer science discipline of building and using adaptive algorithms
that iteratively learn to tackle a task without being explicitly programmed to do so.
Common tasks solved using machine learning are regression and classification.

One particularly important group of ML algorithms are Deep Neural Networks
(DNN’s). DNN’s are Artificial Neural Networks (ANN’s) consisting of several stacked
intermediate layers. ANN’s are computational graphs that can be modified through
proper training. They have been a field of study since the 40’s, but because of the
scientific and technological immaturity, have not been popular until the 80’s. Cur-
rent technological development and easier access to greater computational resources
have made DNN’s a prominent tools in both the industry and academia, in almost
all scientific fields.

3.2 Brief overview

3.2.1 Biological neurons
ANN’s were heavily inspired by the human brain. The human brain, and conse-
quently the mammalian brain, is part of the central nervous system. The human
brain is often characterized as the most complex object that has ever been discov-
ered in the universe [25]. In terms of adaptability, the human brain is the best
processing unit. It can process large amounts of complex, inconsistent, noisy data
with robustness and remarkable precision. In addition, it is extremely efficient in
adapting into new environments and stimuli, without having to explicitly be rewired
like a conventional sensor-based computational system.

13

3. Deep Neural Networks Overview

The basic structural component of the brain is the biological neuron. There are at
least 1011 neurons in the human brain, which form about 1014 synaptic connections
[14]. Neurons consist of 4 parts: cell body, dendrites, axon and synapses (Fig
3.1). Neurons are a type of cell, thus they have a main body which contain all
the necessary material for the cell to live. The cell body contains the cell’s core,
which in turn contains the cell’s genetic material. Inside the body all the chemical
processes of the neuron take place, such as enzymes and protein synthesis. Neurons
transmit information using electrical signals, via the axon. The axon itself is divided
into several branches, called dendrites. Each branch is forming a connection with a
neighboring neuron, in order to establish a communication link via the transfer of
electrical signals. The two branches are not in contact. In fact a microscopic space
is formed, namely the synapse (synaptic cleft), which according to the distance and
the chemical composition of the surrounding fluid, the neural activity weakens or
strengthens [46]. Of course this is not a detailed overview of how biological neurons
work, but it is sufficient to examine how were their artificial counterparts inspired.

Figure 3.1: Left picture: A microscope photo of a system of biological neurons
(rat hippocampus). Right picture: A labeled schematic picture of the structure of

a biological neuron

3.2.2 Historical overview
For the rest of the report, we will use the terms "neuron" and "node" interchangeably.
The first artificial neuron was formalized in 1943 by McCulloch and Pitts, with
the initial name threshold logic unit (TLU)[31]. For the ith neuron, the signal is
propagated as follows:

yi = f(
m∑

j=1
Wijxj − bi) (3.1)

where Wij is the weight matrix, which shows the the percentage of the signal
passing from node i to node j, xj is the jth input signal and bi is the bias term,
which serves the purpose of shifting the decision boundary line (or any hyper-plane
in multidimensional problems). The function f is called the activation (or transfer
function), which regulates in what manner will the neuron be activated, and thus

14

3. Deep Neural Networks Overview

what it will export in the preceding nodes (Fig 3.2). As the its name suggests, in
TLU the activation function that was used was the Heaviside step function:

f(x) =
{

1, ≥ 0
0, otherwise

(3.2)

As we will discuss below, this activation function has the disadvantage that is has
a constant derivative (also not defined at x = 0), thus it is not widely used anymore.
It must be noted though that it is similar to how signal is propagated in biological
neurons.

Figure 3.2: The pipeline of an artificial neuron

The next notable progress took place in 1958 by Rosenblatt [38], who evolved
the TLU into the famous perceptron. Perceptron was similar to TLU, with the
major difference that now there was a learning rule to adjust the weight matrix.
The rule is know as delta rule, which uses gradient descent to minimize the error
from a perceptron network’s weights. Thus, the a weight connection wij is updated
as follows:

wt+1
ij ← wt

ij + ∆wt
ij (3.3)

The rate of change of the current connection is proportional to the contribution
of it to the final error. Thus:

∆wt
ij = −η ∂E

∂wt
ij

(3.4)

where η is the learning rate, which regulates the speed of the training process.
It must be chosen wisely, since too little might lead to premature convergence, and
too much might lead to oscillations around the global optimum (overshooting).

These initial architectures could only be utilized to solve linearly separable prob-
lems, which lead to their loss of popularity. Neural nets started being popular again
in 1982, after the discovery of Hopfield Networks [23], which were proven to have
the ability to store and retrieve a memory, partially or completely. One of the most
important pieces of work, which is considered to be the one that initiated the rise
of DL was published in 1986 by David Rumelhart, Geoffrey Hinton and Ronald

15

3. Deep Neural Networks Overview

Williams [39], which combined together previews papers and formalized the final
form of Multilayer Perceptron (later known as DNN) [47] which was trained using
the back-propagation algorithm [32].

3.3 DNN: architecture and functionality
A DNN consists of several stacked layers of computational nodes. Each node is
connected with all the nodes of the preceding layer. Herein a DNN is a unidirectional
computational graph, which readjusts its adjacency matrix. A schematic diagram
of a DNN is presented below (Fig 3.3):

Figure 3.3: A schematic representation of a Deep Neural Network

3.3.1 Transfer functions
The output of each node is dictated by Eq. 3.1. Let us examine how different activa-
tion functions determine the properties of the neuron’s output. Since DNN training
uses the activation function’s derivative, as we will discuss in backpropagation, each
activation function will be defined along with its derivative:

3.3.1.1 Logistic

The logistic function is a subset of the sigmoid functions family. They are called
sigmoid because the shape resembles an "S" shape. The function is the following:

f(x) = 1
1 + e−x

(3.5)

f ′(x) = f(x)(1− f(x)) (3.6)

16

3. Deep Neural Networks Overview

The range of the output is (0, 1). The logistic function measures probability of
a binary event, thus it is the main transfer function in the output layer whenever
we have a binary classifier network. In case of multiclass classification, the logistic
function can be used in an "all vs one" scheme [37], or alternatively the softmax
function could be used, which is the implementation of the logistic function for
multiclass problems [5].

3.3.1.2 Hyperbolic tangent function

Similar to the logistic function, the hyperbolic tangent function (tanh) is also a
sigmoid function, with a different output range:

f(x) = ex − e−x

ex + e−x
(3.7)

f ′(x) = 1− f(x)2 (3.8)

The range of the output is [−1, 1]. Tanh is used both as a classifier and as a re-
gression/signal propagation function. However, it suffers from a vanishing gradient,
due to its output restriction. Thus, except from special cases, some variation of the
next transfer function is preferred.

3.3.1.3 Rectified linear unit

Rectified linear units (ReLU’s) we considered to be a weak choice in the early stages
of DL. Researchers believed that it was too simplistic, and also that the loss of
information on negative outputs would be detrimental. Nowadays, due to our better
understanding of DNN’s, and due to the important work of Geoffrey Hinton [34],
ReLU is the most popular and useful non-classifying transfer function in DL. The
equations are presented bellow:

f(x) = max(0, x) (3.9)

f ′(x) =
{

1, x ≥ 0
0, otherwise

(3.10)

ReLU does not suppress any positive output. Because of its simplicity it is very
computationally efficient. It has also the very important trait that it introduced non-
linearity in DNN’s. Of course the blow-up problem, which might lead to network
overfitting, is existent. However, with certain techniques that will be discussed
bellow, this can be greatly reduced. In case that it is advised to have a non zero
derivative for negative outputs, one could use either a Leaky ReLU [22], or an
Exponential Linear Unit (ELU) [12].

This was not an exhaustive presentation of all the transfer functions that are being
used. However, these are the most common ones and more likely for the reader to
encounter.

17

3. Deep Neural Networks Overview

3.3.2 Supervised Training
The most important aspect of DL models is their ability to adapt their configuration
according to the desired output. This is known as supervised learning, which is
the only type of learning that we are going to explore in this section. However,
the principles of supervised learning are used in most techniques of all learning
paradigms (unsupervised, reinforcement and semi-supervised learning), as well as in
the current application.

3.3.2.1 Backpropagation algorithm

As we showed before, the initial training algorithm that was used was the Delta
rule. However its functionality is limited to a single layer network. The great
breakthrough that the backpropagation algorithm offered was that we could now
change the weight of each connection, according to their contribution to the final
error. For our example, consider a Summed Square Error (SSE) function:

E(y, ỹ) = 1
2

m∑
j=1

(y − ỹ) (3.11)

where E is the chosen loss function, (SSE in this example), m is the number of
samples and y and ỹ are the expected and predicted output respectively. Note that
this type of evaluating the loss using all the samples every epoch is called batch
or on-line training. By backtracking the network, we examine how the previews
outputs influence the error using the chain rule. Assuming that we have k hidden
layers, the for any neuron we calculate the following:

∂E

∂wik

= ∂E

∂ỹ
∗ ∂ỹ

∂netik
∗ ∂netik
∂wik

(3.12)

where netik is the value entering the activation function as in Eq. 3.1. The index ik
means the ith neuron of the kth hidden layer. By examining the individual deriva-
tives, it is easy to calculate all of them from left to right. By repeating the chain
rule process until we reach the first hidden layer, we then have all the quantities
by which the individual weights have to change, according to Eq 3.3. This is the
vanilla version of backpropagation and there have been proposed more advanced,
computationally efficient and parallelizable variations. However, this is the core of
how modern DL models are trained.

3.3.2.2 Validating the network

The purpose of ML is to give information about unobserved data, after appropriate
training using observed data. In order to achieve that, it is a common practice to
split the dataset in the following parts:

• Training set: The training set consists of all the observations needed to fit
the weights of the network via training.

18

3. Deep Neural Networks Overview

• Cross validation set (CV): In order to have a reality check during training
on the progress of our training, we separate a portion of the data, in order
to use it for CV. In prefixed intervals during training, we feed CV data into
the network and monitor the CV-error. In case the CV-error starts increasing,
regardless of the training error, it is advised to stop the training procedure,
since our model starts to overfit (more on that in the next subsection).

• Test set: After the training has been successfully completed, we need to check
the network’s efficiency with new observations. These observations are within
the test set, but consequently, if the DNN is put to use, every new observation
can be considered to be in the test set.

There are various recommended data split schemes. For average observations num-
ber, a 60, 20, 20% is common, although these ratios must be chosen individually for
each application.

3.3.2.3 Bias-Variance trade-off

In supervised learning the task is to create a capable with enough flexibility, so
that it can capture the spatial complexity of the data distribution. However, there
is a very common pitfall. If the model is very complex, and manages to fit a line
that passes from all the training observations, then we have the problem of high
variance (overfitting). An overfitted model has fitted perfectly all the training
samples, including noise and outliers, thus failing to generalize and provide accu-
rate predictions in observations outside the training dataset. Herein, the slightest
perturbation can result in vastly different predictions. The exact opposite occurs
when the complexity not high enough. In that case the model suffers from high
bias (underfitting). The model has such low complexity that, no matter how many
observations we feed it, it cannot adapt to the distribution of the dataset. Thus,
whatever observation we feed the network, we will always get similar results. This
is best known as the Bias-Variance Trade-Off [24], and finding a balance between
those two is the daunting task of most ML applications (Fig 3.4).

Figure 3.4: A 2D example of a models of different complexity. Left: 20 degrees.
Middle: Linear. Right: Quadratic

By nature DNN’s are high-complexity models. Herein the overfitting problem is

19

3. Deep Neural Networks Overview

something that must be addressed. Fortunately, we live in a era which is data-
abundant, where vast amounts of data are available to solve ML tasks. Thus the
high complexity trap of DNN’s is usually compensated by large training sets, since
it is shown that more data can resolve high variance problems and help the network
generalize better [16]. However, overfitting can still be an issue, which can be tackled
with some of the following methods:

• Regularization: Regularization in data science is the process of using ad-
ditional information in order to solve an ill-posed problem or reduce overfit-
ting [7]. In ML it usually refers to methods that restrain that sudden weight
changes. This happens be adding a penalization term in the loss function. Two
of the most common regularizers are, L1 (Lasso) and L2 (Ridge regression):

JL1(y, ỹ,w) = E(y, ỹ) + λ||w||1 (3.13)

JL2(y, ỹ,w) = E(y, ỹ) + λ||w||2 (3.14)

where J is the final cost function and the positive hyperparameter λ is the
penalty factor or regularization rate. It is apparent that the weight alteration
increases with λ, making the network less flexible, and having λ = 0 deac-
tivated the regularizer. Common values are between 0 and 1, with 1 being
considered as highly restrictive. Of course tweaking it is a matter of design.
Regularizers achieve greatly reduced variance without significantly increase in
bias [4]. It is the designer’s choice to add the bias term in the regularizer,
although in most cases it is unnecessary.

• Dropout: A very brute way of reducing overfitting is dropout. Dropout is the
random pruning of network nodes (excluding the input and output), in order to
avoid favouring some features over others. By randomly deactivating nodes in
each iteration, the parameter matrix is more evenly distributed. This method
is rather counter intuitive, and it should be used with caution, since it mutates
the structure of the network, and it might remove important information (Fig
3.5).

• Early Stopping: The direct approach is to monitor out network during train-
ing using an evaluation metric (e.g. accuracy or loss), and decide when it is an
appropriate instance to terminate our training. Usually both CV and training
will be improving in the initial steps of training, and there will probably be
an epoch when the CV metric will start degrading while the training one will
continue improving. This is usually a typical indicator that the model starts
overfitting, and probably a good instance to terminate the training procedure.

• Data augmentation: Finally, as we discussed before, complex models are
able to generalize better when they are fed with more data. However, increas-
ing the size of our dataset is not always possible, and even if it were it could
be costly. Thus, we can use data augmentation techniques in order to generate
more data by distorting slightly some of the features of existing samples. This
is a great technique and is very popular in image classifier networks.

20

3. Deep Neural Networks Overview

Figure 3.5: Dropout visual example

3.4 Deep Autoencoders
A very interesting type of DNN, is the Deep Autoencoder (DAE). Although autoen-
coders do not fall under the supervised learning category (some characterize them
as unsupervised and others as semi-supervised networks), their training utilizes the
same principles as supervised models (Fig. 3.6). Main purpose of autoencoders is
to solve the task of representation learning. They reduce the input dimensions and
keep the essential structural information of the data, similar to Principal Compo-
nent Analysis (PCA). In fact, when the decoder is linear and our loss function is
the mean squared error (MSE), an undercomplete autoencoder (latent space smaller
than the input space) reduces the dimensionality of the input exactly the same way
as PCA [20].

Figure 3.6: A typical DAE architecture

The unique property of DEA’s compared to conventional artificial neural networks
is that the network architecture consists of two parts: the encoder and the decoder.
The encoder consists of sublayers of decreasing node number, “squeezing” the initial
input x into the smallest sublayer, called bottleneck or latent-space layer. The

21

3. Deep Neural Networks Overview

number of neurons in the bottleneck layer correspond to the number of features we
want to compress the data into. The decoder is the part of the network from the
bottleneck till the output. The topology of the decoder sublayers is a mirror of the
encoder.The bottleneck architecture inhibits the non-useful mapping g(f(x)) = x.
The efficiency of the network is measured by the reconstruction error produced by
feeding unseen data of the dataset. The purpose of autoencoders is to map the input
data to itself, i.e. the cost function becomes:

J(x, x̃) ≡ J(x, g(f(x))) (3.15)

where f is the encoding function and g is the decoding function. Notice the
parameters of the loss function. For DAE’s, the loss is the differnce between the
input x and the reconstructed input x̃, after passing through the encoder part of
the network. Thus, for DAE’s the loss is also called reconstruction error. A very
typical choice for the error function is the regularized MSE. DAE’s work well when
the data is multidimensional, and some of the features are either correlated or non-
uniformly significant. Depending on the application, there are several variations of
DAE’s, such as Denoising, Variational and Sparse Autoencoders. They are a very
popular choice for anomaly detection tasks, as we will discuss in the next chapter,
thus chosen for the current application [26].

3.5 Summary
In this chapter a brief overview on DNN’s was presented. It was explained how
biological neurons and their artificial counterpart work, while making a historical
passing from the earliest applications to the most recent ones. This chapter was piv-
otal in understanding the application in this thesis, especially the last part explaining
the function of autoencoders. Supervised learning using DL models is probably the
hottest topic in the past decade, and is still a very active topic of research. For the
interested, the main supervised learning DL architectures are convolutional neural
networks (CNN’s), recurrent neural networks (RNN’s) and adversarial generative
networks (GAN’s). All of the above have evolved, and one can find more advanced
applications, and even a combination of these which is not uncommon [43, 36]. Very
promising, but yet not fully implemented are capsule networks (CapsNets) [41] and
Neural Ordinary Differential Equations [11].

22

4
Methodology

Having laid out the foundations in the previews chapters, we are now able to elab-
orate on the implementation details. The main concept of the current thesis is to
create an anomaly detection system, which will almost constantly give feedback on
the concrete’s beam condition. In this chapter all the implementation steps, as well
as the motivation behind them will be presented.

4.1 Anomaly detection
Anomaly detection (also outlier detection) refers to a family of techniques that sys-
tematically monitor a system in order to identify rare items, events or observations
which raise suspicions by differing significantly from the majority of the data [50].
These unusual observations quite often indicate either that our system has reached
an anomalous condition or that the newest observation is defective, both of which
should be examined with care. The main assumption utilized by anomaly detection
algorithms is that the features of our data are generated by an underlying distribu-
tion p(x).

4.1.1 Anomaly detection with DAE’s
The use of DAE’s has become a staple for anomaly detection tasks. With proper
implementation, it is a robust and reliable model. The algorithm steps are the
following:
Step-1 Examine the data and use an appropriate preprocessing scheme.

Step-2 Decide which data fall under the normal category.

Step-3 Train the autoencoder with the normal data only, until convergence.

Step-4 Feed all the training data into the model (training+CV), in order to obtain
the training reconstruction error.

Step-5 Construct a threshold error according to some statistic derived from the
training reconstruction error (a common choice is Trec = maxx∈Xtrain

J(x, x̃))
[2]

Step-6 Each sample that has a greater reconstruction error than the threshold, is
characterized as an anomaly. With the total reconstruction error profile,
we can have a sanity check on the efficiency of our network.

23

4. Methodology

The neural network was built in Python 3.7 using the open source ML library Keras.
The network configuration will be presented in the appendix.

4.2 Concrete monitoring using strain profile
The goal of the current implementation is to examine the possibility of using DAE
as a monitoring system in concrete structures. More specifically, the aim is to
monitor structures using only measurements of reinforcement strains obtained from
a distributed optic fiber sensor (Fig 4.1).

Figure 4.1: Close up view of the optic fiber sensor attached to a steel reinforcing
bar used in the experimental tests

The idea is to model the structure using Finite Element Analysis (FEA), load
it until failure with different load cases, gather the features needed for the damage
estimation and train the model with the normal states of each loading case. This
approach, while reasonable, does not account for the unavoidable error existing in
all data acquired from integrated sensors (imperfect application, device noise etc.)
nor the inherent heterogeneity of concrete. Since concrete is commonly modelled
as a homogeneous material in FEA, the existing randomness of the material is not
well captured by conventional FE, thereby rendering them divergent from the real
structure. To tackle this issue, the initial states of the physical element were included
into the training data. This step, which acts as a “calibration”, can be easily applied
to large scale projects and makes the neural network generalize even better.

4.2.1 Experimental set-up

4.2.1.1 Optic fiber properties

The optic fiber system that was used for the experimental setup was a high-definition
(HD) fiber optic strain sensor provided by Luna Innovations Inc. (Fig 4.2). They
provide an almost continuous measurement along the length of the measured ele-
ment up to 50 meters, with a single sensor’s capacity surpassing the 1000 strain
measurements per meter.

24

4. Methodology

Figure 4.2: A diagram of the sensor configuration

This sensor has the benefit of being embedded without influencing significantly
the integrity of the measured element and it remains intact in many hazardous
environments. The specifications of the fiber are presented in Table 4.1.

Table 4.1: Specifications of the fiber provided by the manufacturer.

Spatial Resolution (typical): 2 – 20mm
Sensing Range: 30m standard (70m optional)
Strain Resolution: ± 1.0µStrain (@10mm resolution)
Strain Range: ±20,000µStrain
Temperature Resolution: ± 0.1°C (@10mm resolution)
Temperature Range: -50 to 300°C (practically limited by packaging)
Sampling Rate: ∼0.1Hz

Sensor Capacity: = length of sensing fiber /
resolution (3000 sensing locations typical)

Operating Temperature
(Measurement System): 10°C to 35°C

4.2.1.2 Beam properties

The experimental set up consisted of 6 concrete beams with dimensions 90×15×10cm,
reinforced with two � 10mm rebar of B500B steel placed with a concrete cover of
25mm. The concrete had a cube compressive strength of 60 MPa and a tensile split-
ting strength of 3.5 MPa, both measured at 28 days. For each beam, only one of
the longitudinal bars was outfitted with an optic fiber sensor. The signal frequency
was 1.25 Hz and spatial resolution was 0.65mm.

4.2.1.3 Load

The beams were tested to failure under three-point loading using a displacement-
control setup at displacement rate of 1mm/min. Two of the beams were loaded
monotonically and four were subjected to cyclic loading, but all six exhibited shear
failure (Fig 4.3).

25

4. Methodology

Figure 4.3: Tested beam after failure

4.2.2 Finite Element Model set-up

As mentioned before, the FEA software used was DIANA Finite Element Analysis
(Version 10.2). DIANA is a very user friendly software which is appropriate for
quick modeling of concrete structures. Since this is the proof-of-concept project, it
was reasonable to use a simple model, that could nonetheless encapsulate the under-
lying behaviour of the real structure. Moreover, from an engineering perspective, a
simpler model is always preferred than a more complex one, since it is more flexible,
maintainable and easier to monitor. Thus we used a 2D plane stress model which
was meshed into quadrilateral elements. The reinforcement was modeled using 1D
truss elements (Fig 4.4).

Figure 4.4: The 2D FE model (mesh mode)

The two supports were modeled as sheet elements made from steel, one roller
and one pin. Since the purpose of the modeling was to simulate the actual experi-
ment, the loading approach that was used was displacement-based. To achieve that,
a loading support was added at the middle top of the beam. The modeling was
an adequate approximation of the real experiment, as it is apparent by compar-
ing the force-displacement curves from the FEA and the beam measurements (Fig.
4.5). The properties of the materials were in correspondence to those of the real
experiment.

26

4. Methodology

Figure 4.5: Force-displacement curves of FEA and the measured beam (Beam 1)

4.3 Training set up

4.3.1 Pre-filtering of real data
In order to install the sensor, it is necessary to extend the fiber beyond the actual
length of the measured element. The reason behind this is to connect it with the
acquisition system and assure complete monitoring along the beam. Thus an initial
filtering step is to remove the outermost left and right features from each beam (Fig
4.6).

Figure 4.6: First pre-filtering step featurewise (Beam 1)

It is also important to remove the last timesteps (samples) of each beam after
failure. Since the beam loses its integrity in an abrupt fashion, the strains get so
large that they exceed the measurement range of the fiber. Hence most of the data
points are nulls and thus must also be manually removed from the dataset (Fig 4.7).

27

4. Methodology

Figure 4.7: Second pre-filtering step samplewise (Beam 1)

4.3.2 Downsampling spatial resolution
As stated before, HD optic fibers measure with an extremely high resolution. Herein,
for a 90 cm beam we may end up with a dataset with more than 1200 features.
Although there might be applications where this kind of detail might be required,
for the current (and most probably in any similar one) project, this abundance of
information is unnecessary, and will increase the computational complexity for no
concrete reason. Thus, a simple down sampling algorithm was implemented:

% Determine downsampling va lue s
D: Or i g i na l datase t
Dfin : F ina l datase t
mstart : number o f o r i g i n a l f e a t u r e s
mfinal : number o f f i n a l f e a t u r e s
rem = mstart − mfinal % mstart

div = in t (mstart − mfinal / mstart)

% Downsampling a lgor i thm
D = D(1 : end − rem)
I n i t i a l i z e Dfin

f o r i=1 : l ength (D)
i n i t i a l i z e he lpe r array temp
f o r j=1 : mfinal

a = mean(D(i , d iv ∗(j)+1 : i , d iv ∗(j +1)))
end
Append a in Dfin

end

After the FEA, we ended up with 93 final features. The number of features in
the real beams were different, depending on the application of the fiber. Thus the
above-mentioned algorithm was crucial. One might notice that some of the real
features might be unused, but due to the high resolution and the extension of the

28

4. Methodology

fiber beyond the actual length of the beam, it is negligible and does not degrade the
coherence of the final dataset (Fig 4.8). If it actually mattered, one could question
the robustness of the methodology.

Figure 4.8: Downgrading the spatial resolution samplewise (Beam 1)

Bellow the strain profiles acquired for all the experimental beams are presented,
after being pre-filtered by the processing described above:

Figure 4.9: Strain profiles for all the real beams

4.3.3 Data usage
The training data consisted of the strain states up to 50% of the total capacity of
the results obtained from the FEA, whereas only about the first 35% of the strain

29

4. Methodology

states obtained from each experiment were used for training. In Figure 4.10 we can
distinguish the data used from the FEA and the first sample beam.

Figure 4.10: On the left, the strain profile of the beam FEA. On the right, the
strain profile of one of the tested beams. The red dashed line shows until which
state the networks were tested on (Beam 1). It must be noted that even the load
did not increase linearly, since the elastic modulus of the beams was changing at

the event of cracking

4.3.4 Data preprocessing
The most crucial part of the implementation is the data preprocessing. Feature-
wise preprocessing such as z-score standardization and min-max normalization was
discarded. The reason is that for the current application all features Fj, j = 1, . . . , n
have the same physical meaning (strain at some rebar position), thus having the same
underlying range while the total range of the values will not be known beforehand in
a real application. Consequently, the preprocessing scheme that was tested was a row
zero mean centering approach where each feature for each datapoint is transformed
as follows:

xij
new = xij − x̄i, i = 1, . . . ,m; j = 1, . . . , n (4.1)

where m is the number of observations and x̄i is the mean of all the features in
the current observation. In common ML applications, this type of preprocessing is
discouraged, since transforming different units with the same device removes a great
part of relational information, and it is unreasonable to compare features of different
nature. Nevertheless, for the reasons discussed above, it is an ideal candidate for
the current application.

4.3.5 Damage classification
In bridge condition assessment (BCA) a common practice to assess the level of
existing damage in the structure is by creating different criteria or thresholds. Ac-
cordingly, three damage thresholds were created by examining the distribution of
the strains across the rebar from the analysis: R0, R1, R2 which are the small,

30

4. Methodology

significant and hazardous damage thresholds respectively. Thus, we have:

R0 = max(Err)(1 + 1
2 ω̃) (4.2)

R1 = R0(1 + λ1
√
ω̃) (4.3)

R2 = R0(1 + λ2
√
ω̃) (4.4)

where:
ω̃ =

√
exp(σ̃2)− 1 (4.5)

σ̃ = σ(log(Err)) (4.6)

with σ being the standard deviation and Err is a vector with all the training
reconstruction errors. Intuitively, ω̃ is a custom dispersion, fitting the current ap-
plication. It must be noted that the above rules were constructed empirically, after
trial and error, taking into consideration the dispersity of the reconstruction error
resulting from measurements of different noise levels. The coefficient λ1,λ2 are mul-
tipliers that dictate the sensitivity of the system. In our application, λ1 = 3 and
λ2 = 5. In fact, one could construct arbitrary levels of damage λi, depending on the
significance of the structure. It must be noted that the proposed thresholds should
be used with the training scheme that involves both FEA and the initial states data.

4.4 Summary
In this chapter a detailed summary of the proposed methodology was presented. In
particular, all the steps were explained, from the data acquisition process to the
properties of the conducted experiments. In the next chapter will be presented the
results of the current application.

31

4. Methodology

32

5
Results and Discussion

5.1 Results
As it was mentioned in Section 4.2, incorporating the initial real states in the training
procedure acted as a calibration, in order to have a more accurate damage classifi-
cation. To address that, we examined the two cases. In the following graphs (Fig
5.1-5.3) the reconstruction error for all the experimental data is shown, as well as
the maximum training error, with two models trained in a different manner: in the
first case the network is trained using only the FEA data and in the second case both
the FEA and the initial states of the real data. Apart from the small deviations in
the reconstruction error, one must observe the important difference in the maximum
training reconstruction error, used to construct the damage classifiers. It is apparent
that the first case is more unstable, thus not reliable for robust classification.

Figure 5.1: Comparing the effect of including the initial states of the monitored
element in the training dataset (Beam 1 & 2)

Figure 5.2: Comparing the effect of including the initial states of the monitored
element in the training dataset (Beam 3 & 4)

33

5. Results and Discussion

Figure 5.3: Comparing the effect of including the initial states of the monitored
element in the training dataset (Beam 5 & 6)

In the following figures are presented the results of the DAE for all the tested
beams in terms of reconstruction error and train/validation loss. All the results
presented were tested with various random seeds, in order to verify the results. In
all beams, the model easily fits the data. This was to be expected, since the features
were easily distinguishable due to the loading taking place in the middle of the
span.

Figure 5.4: The final classification and losses (Beam 1 & 2)

34

5. Results and Discussion

Figure 5.5: The final classification and losses (Beam 3 & 4)

Figure 5.6: The final classification and losses (Beam 5 & 6)

35

5. Results and Discussion

The damage classification had some diversity, depending on both the loading
pattern that was applied and also the levels of the signal noise. In particular,
from the measured strain profiles, the ones that were considered to be the most
problematic were the Beams 2 and 6. However, only Beam 2 detected the Hazardous
level a little later than what it should have. For the rest of the beams, the hazardous
damage was at approximately 45%-83% of the total beam capacity (Table 5.1).
However, in all cases, the significant damage threshold can efficiently trigger an
inspection, avoiding the total destruction of the concrete element.

Table 5.1: Results obtained for all beams

B1 B2 B3 B4 B5 B6
Training loss 0.00123 0.00107 0.00230 0.00058 0.00130 0.00270
CV loss 0.00112 0.00102 0.00234 0.00058 0.00132 0.00280
Small damage 11% 20% 11% 17% 13% 14%
Significant damage 36% 59% 31% 57% 37% 28%
Hazardous damage 50% 88% 45% 83% 54% 68%

5.2 Discussion
As seen from the results, the detection system that was built was efficient and
could detect damage in three different levels. In some cases (Beams 1 and 3) the
classification might be more overprotective than what is should be, but that way
the designer can be more confident that there will be no critical damage omission
in the more noisy examples (Beam 2).

One could possibly argue that the difficulty of the task was rather simple, since
point loading at the middle of the span is the simplest case. While this holds true,
one must verify the proof-of-concept in the simplest scenarios, and gradually increase
the complexity until it becomes appropriate for a real application. Constructing the
criteria that will characterize the damage levels was the most important part of the
application. It is a very daunting task to compose rules that can have the same
behaviour in all real tests. However, with the appropriate preprocessing techniques
as discussed in the previous chapter, it was possible to construct a more general rule.
Nevertheless, the damage criteria were also dependent on the training reconstruction
error statistics, thus stabilizing the training even further is of crucial importance,
and must be investigated even further.

To the author’s understanding, there are 3 main directions in which this thesis
could continue. First, it would be really interesting to examine the possibility of
creating a damage classification system using the initial states only. FEA is a
really fine procedure, which gets even more sensitive when the structure gets more
complicated. By just using only data that is gathered from the sensors, one must
be assured that the data that are being used correspond to the normal states of the
structures.

Secondly, more ML models could be investigated. Apart from testing different
approaches, which is the straightforward action, one could examine the the effect

36

5. Results and Discussion

of using some kind of an ensemble system, where many ML models (the same with
different configurations or different ones) are stacked together, and the final result
is an outcome of the combined output of the super-system.

Finally, one could test the statistics of the actual errors more rigorously, and
construct damage criteria which are more robust and generalizable.

37

5. Results and Discussion

38

Bibliography

[1] Baltopoulos, A., & Kostopoulos, V. (2015). Chapter 14-Multifunctional carbon
nanotube-based nanocomposites for aerospace applications. Multifunctionality
of Polymer Composites.

[2] Beggel, L., Pfeiffer, M., & Bischl, B. (2019). Robust Anomaly Detection in
Images using Adversarial Autoencoders. arXiv preprint arXiv:1901.06355.

[3] Berrocal,C.,G., Fernandez, I., P., Rempling, R., & Logg, A. (2017). SensIT –
Sensor driven cloud-based strategy for infrastructure management. Chalmers
University of Technology, Manuscript in preparation.

[4] Bishop, C. M. (1995, October). Regularization and complexity control in feed-
forward networks. In Proceedings International Conference on Artificial Neural
Networks ICANN (Vol. 95, pp. 141-148).

[5] Bridle, J. S. (1990). Training stochastic model recognition algorithms as net-
works can lead to maximum mutual information estimation of parameters. In
Advances in neural information processing systems (pp. 211-217).

[6] Brownjohn, J. M. (2006). Structural health monitoring of civil infrastructure.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 365 (1851), 589-622.

[7] Bühlmann, P., & Van De Geer, S. (2011). Statistics for high-dimensional data:
methods, theory and applications. Springer Science & Business Media.

[8] Carder, D. S. (1937). Observed vibrations of bridges. Bulletin of the Seismo-
logical Society of America, 27 (4), 267-303.

[9] Cha, Y. J., Choi, W., & Büyüköztürk, O. (2017). Deep learning-based crack
damage detection using convolutional neural networks. Computer-Aided Civil
and Infrastructure Engineering, 32 (5), 361-378.

[10] Chang, H., Lee, C., & Park, S. (2011). Self-monitoring and self-healing bolted
joints using shape memory alloy. In The 28th international symposium on au-
tomation and robotics in construction (pp. 824-825).

[11] Chen, T. Q., Rubanova, Y., Bettencourt, J., & Duvenaud, D. K. (2018). Neural
ordinary differential equations. In Advances in Neural Information Processing
Systems (pp. 6571-6583).

39

Bibliography

[12] Clevert, D. A., Unterthiner, T., & Hochreiter, S. (2015). Fast and accu-
rate deep network learning by exponential linear units (elus). arXiv preprint
arXiv:1511.07289.

[13] Dawson, B. (1976). Vibration condition monitoring techniques for rotating ma-
chinery. The shock and vibration digest, 8 (12), 3.

[14] Department of Biochemistry and Molecular Biophysics Thomas Jessell, Siegel-
baum, S., & Hudspeth, A. J. (2000). Principles of neural science (Vol. 4, pp.
1227-1246). E. R. Kandel, J. H. Schwartz, & T. M. Jessell (Eds.). New York:
McGraw-hill.

[15] Dhakal, D. R., Neupane, K. E. S. H. A. B., Thapa, C. H. I. R. A. Y. U., &
Ramanjaneyulu, G. V. (2013). Different techniques of structural health moni-
toring. Research and Development (IJCSEIERD), 3(2), 55-66.

[16] Domingos, P. M. (2012). A few useful things to know about machine learning.
Commun. acm, 55 (10), 78-87.

[17] Dorafshan, S., Thomas, R. J., & Maguire, M. (2018). Comparison of deep con-
volutional neural networks and edge detectors for image-based crack detection
in concrete. Construction and Building Materials, 186, 1031-1045.

[18] Dung, C. V. (2019). Autonomous concrete crack detection using deep fully
convolutional neural network. Automation in Construction, 99, 52-58.

[19] Farrar, C. R., & Worden, K. (2012). Structural health monitoring: a machine
learning perspective. John Wiley & Sons.

[20] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

[21] Harvey, D. Y., Flynn, E. B., Taylor, S. G., Farrar, C. R., Ramos Jr, O., &
Parker, K. L. (2015). SHMTools: Structural Health Monitoring Software for
Aerospace, Civil, and Mechanical Infrastructure (No. LA-UR-15-22862). Los
Alamos National Lab.(LANL), Los Alamos, NM (United States).

[22] He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings
of the IEEE international conference on computer vision (pp. 1026-1034).

[23] Hopfield, J. J. (1982). Neural networks and physical systems with emergent col-
lective computational abilities. Proceedings of the national academy of sciences,
79(8), 2554-2558.

[24] James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to
statistical learning (Vol. 112, p. 18). New York: Springer.

[25] Kaku, M. (2012). Physics of the future: How science will shape human destiny
and our daily lives by the year 2100. Anchor.

40

Bibliography

[26] Karypidis, D. F., Berrocal, C. G., Rempling, R., Granath, G., & Simonsson, P.
(2019). Structural Health Monitoring of RC structures using optic fiber strain
measurements: a deep learning approach. IABSE 2019, Sep 2019, New York
City, Manuscript submitted for publication.

[27] Keoleian, G. A., Kendall, A., Dettling, J. E., Smith, V. M., Chandler, R. F.,
Lepech, M. D., & Li, V. C. (2005). Life cycle modeling of concrete bridge design:
Comparison of engineered cementitious composite link slabs and conventional
steel expansion joints. Journal of infrastructure systems, 11 (1), 51-60.

[28] Larsen, A., Esdahl, S., Andersen, J. E., & Vejrum, T. (2000). Storebælt suspen-
sion bridge–vortex shedding excitation and mitigation by guide vanes. Journal
of Wind Engineering and Industrial Aerodynamics, 88 (2-3), 283-296.

[29] Lehmhus, D., Brugger, J., Muralt, P., Pané, S., Ergeneman, O., Dubois,
M.-A., . . . & Busse, M. (2013). When nothing is constant but change:
Adaptive and sensorial materials and their impact on product design.
Journal of Intelligent Material Systems and Structures, 24 (18), 2172–2182.
https://doi.org/10.1177/1045389X13502855

[30] Madakam, S., Ramaswamy, R., & Tripathi, S. (2015). Internet of Things (IoT):
A literature review. Journal of Computer and Communications, 3 (05), 164.

[31] McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, 5 (4), 115-133.

[32] Minsky, M., & Papert, S. A. (2017). Perceptrons: An introduction to computa-
tional geometry. MIT press.

[33] Mitchell, J.S. (2007) From vibration measurements to condition based main-
tenance seventy years of continuous progress. Journal of Sound and Vibration,
41 (1), 62–75.

[34] Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th international conference on
machine learning (ICML-10) (pp. 807-814).

[35] OECD (2018), Infrastructure investment (indicator). doi: 10.1787/b06ce3ad-en.
Retrieved from https://data.oecd.org/transport/infrastructure-investment.htm

[36] Ouyang, X., Zhang, X., Ma, D., & Agam, G. (2018, August). Generating Image
Sequence from Description with LSTM Conditional GAN. In 2018 24th Inter-
national Conference on Pattern Recognition (ICPR) (pp. 2456-2461). IEEE.

[37] Rifkin, R., & Klautau, A. (2004). In defense of one-vs-all classification. Journal
of machine learning research, 5 (Jan), 101-141.

[38] Rosenblatt, F. (1958). The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65 (6), 386.

41

Bibliography

[39] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1988). Learning represen-
tations by back-propagating errors. Cognitive modeling, 5 (3), 1.

[40] Rytter, A. (1993). Vibrational based inspection of civil engineering structures
(Doctoral dissertation, Dept. of Building Technology and Structural Engineer-
ing, Aalborg University).

[41] Sabour, S., Frosst, N., & Hinton, G. E. (2017). Dynamic routing between cap-
sules. In Advances in neural information processing systems (pp. 3856-3866).

[42] Samuel, A. L. (2000). Some studies in machine learning using the game of
checkers. IBM Journal of research and development, 44 (1.2), 206-226.

[43] Xingjian, S. H. I., Chen, Z., Wang, H., Yeung, D. Y., Wong, W. K., & Woo,
W. C. (2015). Convolutional LSTM network: A machine learning approach for
precipitation nowcasting. In Advances in neural information processing systems
(pp. 802-810).

[44] Tang, Zhiyi & Chen, Zhicheng & Bao, Yuequan & Li, Hui. (2018). Convo-
lutional neural network-based data anomaly detection method using multiple
information for structural health monitoring. Structural Control and Health
Monitoring. 10.1002/stc.2296.

[45] Vincent, G. S. (1954). Aerodynamic stability of suspension bridges: with special
reference to the Tacoma Narrows Bridge.

[46] Wahde, M. (2008). Biologically inspired optimization methods: an introduction.
WIT press.

[47] Werbos, P. J. (1974). Beyond regression: New tools for prediction and analysis
in the behavioral sciences. Ph. D. thesis, Harvard University, Cambridge, MA,
1974.

[48] Wong, K. Y. (2004). Instrumentation and health monitoring of cable-supported
bridges. Structural control and health monitoring, 11 (2), 91-124.

[49] Worden, K., Farrar, C. R., Manson, G., & Park, G. (2007). The fundamental
axioms of structural health monitoring. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 463 (2082), 1639-1664.

[50] Zimek, A., & Schubert, E. (2017). Outlier Detection. Encyclopedia of Database
Systems. New York: Springer.

I

Bibliography

II

A
Appendix

In Appendix the network configuration will be presented. The framework used was
Keras, and in particular the functional API was used. The layering configurations,
as well as the number of nodes is presented in the default Keras format style. The
rest will be presented in a normal table

Table A.1: Layer structure.

Layer (type) Output Shape Param #

input_1 (InputLayer) (None, 93) 0

dense_1 (Dense) (None, 150) 14100

dense_2 (Dense) (None, 75) 11325

dense_3 (Dense) (None, 37) 2812

dense_4 (Dense) (None, 18) 684

dense_5 (Dense) (None, 15) 285

dense_6 (Dense) (None, 15) 240

dense_7 (Dense) (None, 8) 128

dense_8 (Dense) (None, 15) 135

dense_9 (Dense) (None, 15) 240

dense_10 (Dense) (None, 18) 288

dense_11 (Dense) (None, 37) 703

dense_12 (Dense) (None, 75) 2850

dense_13 (Dense) (None, 150) 11400

dense_14 (Dense) (None, 93) 14043

Total params: 59,233
Trainable params: 59,233
Non-trainable params: 0

III

https://keras.io/getting-started/functional-api-guide/

A. Appendix

Table A.2: Specifications of the fiber provided by the manufacturer.

Epochs: 50
Train size: 80%
CV size: 24%
Activation function: ReLU
Regularizer: L2 = 1e−5

Batch size: 20
Optimizer: RMSprop

IV

	List of Figures
	List of Tables
	Introduction
	Preface
	Goals
	Approach
	Data acquisition and processing
	Monitoring algorithms

	Results
	Scope and limitations
	Thesis Outline

	A brief overview on SHM
	Preface
	Historical overview
	Early stages
	SHM in bridge monitoring

	Basics of SHM
	Fundamental Axioms
	SHM principals

	Summary

	Deep Neural Networks Overview
	Preface
	Brief overview
	Biological neurons
	Historical overview

	DNN: architecture and functionality
	Transfer functions
	Logistic
	Hyperbolic tangent function
	Rectified linear unit

	Supervised Training
	Backpropagation algorithm
	Validating the network
	Bias-Variance trade-off

	Deep Autoencoders
	Summary

	Methodology
	Anomaly detection
	Anomaly detection with DAE's

	Concrete monitoring using strain profile
	Experimental set-up
	Optic fiber properties
	Beam properties
	Load

	Finite Element Model set-up

	Training set up
	Pre-filtering of real data
	Downsampling spatial resolution
	Data usage
	Data preprocessing
	Damage classification

	Summary

	Results and Discussion
	Results
	Discussion

	Bibliography
	Appendix

