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Abstract

This thesis aims to address and evaluate the MPC approach for the control of a small differential
drive robot in static and dynamic environments. Three different optimization algorithms where eval-
uated on three different simulated scenarios. The algorithms are Sequential Quadratic Programming
(SQP), Interior-Point Method (IP) and Proximal Averaged Newton-type method for Optimal Control
(PANOC). For collision avoidance a variant of the collision cone method was used, namely a nonlinear
collision cone. PANOC proved to be the preferable algorithm due to it being more robust and it’s
superior speed. Thus, PANOC was implemented into hardware for further evaluation. The hardware
implementation was done using an Arduino robot, controlled via bluetooth, and a camera attached to
the ceiling. The hardware implementation came with it’s own set of challenges. Using Open Source
Computer Vision Library (OpenCV) the ego vehicles state space can be identified. To get a better
estimate of the robots position an Extended Kalman Filter was used. All the optimizers managed to
drive all the scenarios tested but performed differently. PANOC showed a lot of promise in the field
of non-linear optimization. It also successfully drove a robot through a simple environment.
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Glossary
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1 Introduction

The vast field of autonomous vehicles is expanding rapidly. The field contributes with a lot of interesting
and challenging problems. One such problem is how an autonomous vehicle can make informed decisions
based on the environment. This sparks the interest for Model Predictive Control (MPC) since it can
implement model and environment constraints. However, due to the computational complexity the MPC
can be too demanding to run on real time systems, which makes it paramount to lower computation speeds
while not sacrificing performance. The added complexity also reduces the possibility for convergence and
therefore the quality of control input. This thesis aims to provide viability for MPC for path planning in
real-time applications in complex environments with a realistic point of view.

1.1 Background

Autonomous vehicles have in recent years gained much attention and are becoming more and more com-
mon in both the industrial and commercial world. There is therefore a lot of financial interest to improve
these methods. As this field develops and autonomous vehicles becomes more common the need for safe
and robust methods increases. To increase the safety a deep understanding of the algorithms used in
decision making must be acquired. In order to improve and find optimal methods for autonomous drive
a number of difficult problems must be addressed. One of which is path planning. The path planning
is the core of the problem as it addresses many of the risks and also the success of driving from A to
B. Often the autonomous drive algorithms must be able to handle plenty of different constraints such
as collision avoidance, time limits and the systems physical constraints. All these constraints shrinks
the feasible space of viable paths. Further, in real life things are most often nonlinear which brings
it’s own set of difficulties. In this thesis the environment and system constraints are nonlinear. If the
environment in which the vehicle operates is changing dynamically the task becomes even harder as the
applied constraints change and predicting the future state of the environment becomes vital. One wants
to guarantee that the vehicle performs within the given constraints while also optimizing some factors
such as for example fuel consumption, jerk or speed. An interesting method, which has a lot of potential
is Model Predictive Control (MPC). The MPC method uses an optimization algorithm to find the optimal
control input with respect to the given system over a period of time. To be able to do this online would
present new opportunities for MPC.

At the core of the method lies the optimization algorithm which is responsible for planning the path
whilst respecting the systems limitations with the use of constraints. However, optimization algorithms
is a vast field in itself and determining how different algorithms work with respect to each other in
different conditions is hard to determine by merely looking at a problem due to their potential size and
complexity. An optimization algorithm is sometimes thought of as a black box as the problems can
very quickly become huge, very nonlinear, non-smooth and complex [1]. There is therefore a need for
understanding and comparing these different algorithms to see what their strengths and weaknesses are.

1.2 Related work

There are multiple methods for solving the path planning problem of robots. Well known and used meth-
ods are among others Rapidly exploring Random Tree (RRT), RRT* and RRT*-Smart [2]. They are quite
low on computation power and some of them can quite easily achieve near optimal paths. However, these
algorithms generally don’t take the vehicles dynamics into consideration, somewhat limiting their real
life application. Although they could work well for robots with simple dynamics since these could turn
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on the spot, more complex models such as car like models could render the results useless. Extensions of
the RRT algorithms to include kinematics has been done using a kinodynamic version of RRT [3]. This
would make the results more usable, however this comes at the cost of more computational complexity,
which currently does not allow it to be used in online applications. Other projects uses a MPC instead.
In the MPC it’s easy to implement the vehicle models, and it can quite easily be manipulated by using
costs and constraints since it works like an optimization problem. For this reason many projects choose
to uses MPC for trajectory planing[4], compared to RRT methods. However, as for the RRT methods,
MPC can be computationally expensive.

As previously mentioned, it’s well known that MPC’s can be computationally expensive, thus even
faster optimization algorithms that can perform with good accuracy is needed. This makes advancements
in optimization of utmost priority. There are a few classic and well established algorithms like Sequential
Quadratic Programming (SQP) and Interior-Point (IP) [1], but also a newer algorithm called Proximal
Averaged Newton-type method for Optimal Control (PANOC) [5]. Linear MPCs of today can perform
with high speeds, making it possible to implement them in embedded systems. However, the same is not
obvious for nonlinear systems. This sparked an interest for fast solvers such as PANOC, since it allows
for high speed computations of nonlinear systems. Among other things PANOC has been shown to work
on nonlinear systems such as a mobile robot with a trailer [6], but this is merely a conceptual test. The
company Embotech has with their IP solver made an actual implementation into a car. They show how
it can effectively avoid a suddenly appearing obstacle. They also show how a simulated car can drive on
a road without obstacles [7]. Even tough they have accomplished astonishing things the question arises,
what is the limitations for using MPC in self driving vehicles?

One of the main challenges in MPC is how to model the environment. Where, in vehicle applications,
obstacle avoidance is an especially hard part. This is due to that many scenarios infers highly non-linear
and computationally expensive operations. It is also one of the most important constraints which can
not be broken. There exists multiple methods for how the MPC controller could identify obstacles and
act accordingly. Preferably the obstacles will be included as constraint in the MPC formulation. In Path
Planning for Autonomous Vehicles using Model Predictive Control [8] obstacles are formulated as linear
polygons and are supplied to the optimizer. This is a unique solution where one simply eliminate the
obstacle in the subspace of feasible solutions. However, with this solution the optimizer is not guided on
how to avoid the obstacle. It could drive dangerously close towards the obstacle before it takes action
and further this solution does not guarantee a collision free path in between time steps. Another type
of modelling that allows the MPC to react in a more human-like fashion is the so called Collision Cone
(CC). The Collision Cone is a method that is using the position and relative velocity of the obstacles to
constrain the directions in which a collision is achieved, thus making the vehicle take precautions long
before reaching the obstacle[9][10].

1.3 Our contributions

This thesis aims to answer and analyse the following research questions:

• How do state of the art optimizers perform in realistic, highly constrained, non-linear and non-
smooth environment?

– What are the reason for the differences and in which applications should they all be used?

• Could MPC be used to navigate a vehicle in a general environment?
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– To what extent must the problem be limited for MPC to work and what is its potential in the
area of self driving vehicles?

This thesis gives light to how state of the art optimizers actually perform in realistic driving scenarios. It
pushes them to the limit to identify when and why they break. It shows some of their limitations, flaws
and strengths in different environments and points to improvements that ought to be done. It discusses
in which applications they should be used and why. It aims to further validate the use of MPC for real
time applications and explore the use of MPC as an online controller for nonlinear systems.

1.4 Problem architecture

The system will first be simulated using a MPC with a differential drive model and later the MPC will
be implemented into hardware on a small Arduino robot. The project can be broken down into three
main subproblems:

Environmental modeling Given an environment there will exist a number of constraints modeling the
surroundings in which the vehicle will navigate. Those things could be other cars, stationary obstacles
or a road it must stay on. The places the car can not drive on the so called unfeasible subspace must be
modeled with constraints. One of the big problems is how to implement obstacles as constraints and how
to avoid collision with these. The constraints must further be set up in such a way that the optimizer
can converge to a good path in the environment.

Model constraints The computed path and the corresponding control inputs must follow the limita-
tions of the Arduino robot and the limitations of the model which describes it. Further, the control inputs
must be bounded so that the system is behaving in a way that corresponds well to reality, as example
there is a limit to how fast a set of motors can rotate and this needs to be present in the MPC. All of
these different constraints will limit the feasible subspace of solutions.

In hardware, estimating the state of the vehicle In the simulations the position will be updated accord-
ing to the differential drive model and are therefore assumed to be completely and accurately defined.
For testing on the real robot the position must be estimated quite well. If the position of the vehicle is
not well estimated this can lead to a violation of the constraints. The vehicle’s state will be identified
using a camera in the ceiling, however, the camera will be victim to noise, which makes it impossible to
view the measurements as completely accurate. On the other hand the Arduino robot is not an exact
replica of the model and the motors are simple brushed DC electric motors, meaning that there are a lot
of disturbances impacting the physical system as well. Thus the model and camera measurements will
be balanced using a non-linear Kalman filter.

1.5 Limitations

The project will only evaluate SQP, IP and PANOC as algorithms. The two former ones are widely
used algorithms and are common choices for nonlinear MPC [1]. PANOC is a new method proposed by
L. Stella, A. Themelis, P. Sopasakis, and P. Patrinos [5] and made into a open source optimizer by P.
Sopasakis and E. Fresk and P. Patrinos [11]. The project will not go into depth about the optimizers,
but will present the general idea of how the algorithms work. Focus will not be put on evaluating the
differences and why they perform differently theoretically, but rather the performance of simulated exper-
iments. Said experiments will include a vehicle navigating through three different predefined scenarios.
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In other words this study is not aiming to benchmark the different optimizers. This is due to the fact
that benchmarking optimizers and comparing them is a big field in off itself where specific benchmarking
scenarios are presented and tested. These tests are made in clean environments, without disturbances
and outer influences in order to achieve comparable results. An example of such a test scenario is the
classic Rosenbrock function [12], which is used to evaluate gradient based algorithms. Due to these facts
it’s not desirable to benchmark optimization algorithms on MPCs.

Further, it’s important to note that PANOC is implemented in Python. This is due to the fact
that the Python version is more developed than the Matlab version. This however won’t effect much
as the PANOC API is written in Rust and only time efficient operations are made in Python[11]. SQP
and IP are implemented through Matlab, thus the language’s inherent weaknesses and strengths might
influence the algorithms performance somewhat, but this effect compared to the structural differences in
the algorithms are assumed to be negligible. Any time related evaluations will strictly be performed over
the call to the optimization algorithm in order to minimize the influence of the different languages.
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2 Theory

Firstly in this chapter a general explanation of how a MPC controller works will be presented. The fun-
damental part of the MPC controller is the optimization algorithm, thus what follows is a presentation of
the relevant algorithms for this thesis. The first two optimizers are SQP and IP, which are considered two
of the most powerful and well used non-linear optimization algorithms[1]. The last optimizer explained,
PANOC, is comparatively new and according to the creators suitable for embedded systems due to its
fast convergence rate.

2.1 General Model Predictive Control

The MPC controller uses a system model to predict where the system will end up with a given control
input. The model can be used iteratively, given some initial starting point, to allow predictions further
into the future. Consider a linear discrete state space model

qk+1 = Aqk +Buk, k = 1, 2, .., N (1)

where q is state vector and u is an input vector. Using this iteratively for N time steps generates
information about where the system will be at time step N . Nonlinear systems will from here on be of
specific interest, since the system at hand will be nonlinear. Nonlinear models alters the formulation to

qk+1 = fmodel(qk, uk), k = 1, 2, .., N (2)

Time step N is also known as the prediction horizon and denotes how far into the future the MPC
controller makes predictions. Now given some reference state qr and reference input ur the MPC will
supply the system with control inputs uk, which is done by using some optimization algorithm. The type
of algorithm varies depending on if the problem is linear, quadratic or nonlinear. The MPC supplies a
control input by formulating an optimization problem in a suitable manner.

min
u0,u1,...,uN−1

N−1∑
k=0

(q̃Tk QS q̃k + ũTkRũk) + q̃TNQT q̃N (3a)

s.t. qk+1 = fmodel(qk, uk) (3b)

where q̃k = qk − qr and ũk = uk − ur and minimizing this error drives the decision variables towards
the references. Each step along the prediction horizon implies an added cost as q̃Tk QS q̃k, this cost is
better known as stage cost. Further, in (3a) QS , QT and R are user chosen weight matrices, which allows
the user to choose which state that is of most importance to minimize. With (3) it’s possible to use an
optimization algorithm to find the values of u that would optimally drive the system to the reference
state. A chosen number of consecutive values from the u vector, also known as the control horizon, is
then applied on the real system which moves accordingly and the MPC is reinitialized. [13]

Depending on how the MPC formulation is designed the complexity of the problem is determined.
Highly nonlinear and constrained problems are harder for an optimizer to solve compared to, as exam-
ple, a quadratic optimization problem with linear constraints. A longer prediction horizon also increase
the computational complexity, since it increases the amount of decision variables that is included in the
objective function and is subject to constraints. Thus, increasing the prediction horizon can increase the
performance of the system, but it may also dramatically increase the computational cost or decrease the
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probability of global convergence. More constraints can also be added. The model could be improved
upon by adding more constraints modeling the capabileties of the system in a more realistic way. The
environment in which the vehicle drives in could also be modeled with constraints which are added in a
similar fashion.

There is also something to be said about hard and soft constraints. Hard constraints are limiting the
feasible space of the optimizer, making some states or inputs unusable. Soft constraints, on the other
hand, are formulated into the objective function and simply penalizes the optimizer for taking actions
violating the constraint.

2.2 Sequential Quadratic Programming

One of the most common and proven methods for nonlinear constrained optimization is the Sequential
Quadratic Programming (SQP) method. This method is widely used and one of the best methods for
non-linear optimization. It is an so called active set method which means that it only works with the
constraints that are currently active in the optimization. It typically works well in environments that has
a lot of constraints as it is guided by these towards the solution. This algorithm is thoroughly explained
by Nocedal, J. and Wright, S. in Numerical Optimization [1]. Note that there are many different versions
of SQP and only a general conceptual explanation is given below. SQP works by sequentially solving
relatively simple quadratic sub-problems of the main problem until convergence. Assume the following
minimization problem is to be solved with SQP:

min
x

f(x) (4a)

s.t. ceq(x) = 0 (4b)

The SQP method aims to set up and solve the Karush-Kuhn-Tucker (KKT) conditions for the minimiza-
tion problem above using Newton’s method. For this the jacobian of the constraints are needed and are
written as:

∇ceq(x)T = [∇ceq,1(x),∇ceq,2(x), ...,∇ceq,m(x)] (5)

Now the quadratic sub-problem seen in (6) is to be solved to find the step di. The terms in (6) are
approximated and together they form a quadratic minimization problem. One of the main problems with
SQP comes from estimating the Hessian ∇2

xxL, where L(x, λ) = f(x)−λT ceq(x). Note that 6a is a Taylor
series that represent the function value fi+1. Every sub-problem is subject to the same constraints as in
the original problem, but as SQP is an active set method the set of constraints accounted for varies.

min
d

fi +∇fTi di +
1

2
dTi ∇2

xxLidi (6a)

s.t. ∇ceq,j(xi)T di + ceq,j(xi) = 0, j = 1, 2, ...,m (6b)

The Lagrange multipliers are updated by solving system (7), where (7a) ensures that the KKT condition
no feasible decent is met and (7b) ensures that the constraint conditions are met through newtons method.

∇2
xxLidi +∇fi −∇cTeqiλi+1 =0 (7a)

∇ceq,idi + ceq,i =0 (7b)
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If the SQP problem is constrained, the algorithm should use a merit function to determine if the
computed step length is acceptable or not. This is needed since (6) does not necessarily share the same
minimum as the original problem. There are plenty of different merit functions that could be used for
these types of problems. Matlab’s fmincon uses a merit function formed by Han’s [14] and Powell’s
findings [15].[16] Simply put, the merit function finds the value αi, which changes the step update to:

xi+1 = xi + αidi (8)

The merit function can therefore help the algoritm to adjust the step so that better convergence is
achieved. If xi+1 satisfies the convergence test the algorithm stops otherwise the terms of 6a are evaluated
again and a new sub problem is solved to generate a new iterate.

SQP methods are only efficient when the Hessian ∇2
xxL is guaranteed to be positive definite which

occurs when the quadratic model has a well defined strong minimizer. If this is not the case then there
exist two main ways to tackle this problem. One could enforce a trust-region where one thinks that the
new iterate is well defined and useful by restricting the step d, ||d|| ≤ ∆i. If the step is found to be
too big, ∆i is shrunk and new calculations are made. The inclusion of this new constraint may cause
the problem to become infeasible and handling these situations are complicated and computationally
expensive. The other well accepted practise is to modify the Hessian until it becomes positive definite.
A popular method is to approximate the Hessian with a Quasi-Newton Method BFGS, (named after its
inventors, Broyden, Fletcher, Goldfarb, and Shanno) to ensure that di is in a descent direction of the
objective function. This can however introduce distortions in the model. There is no clear winner of the
former Trust-Region approach or the latter when the Quasi-Newton method simply modify the Hessian.
Matlab uses the Quasi-Newton technique in their fmincon function [16].
With the SQP framework presented above it can easily be extended for more general nonlinear problems
including also inequality constraints. Simply include the inequality constraints and linearize them in the
same manner as the equality constraints in (5).

It is very common to relax the constraints by penalties to avoid the risk of the problem getting
infeasible. The quadratic sub problem is penalised as

min
x,s1,s2,s3

f(x) + µ

Neq∑
i=0

(s1i + s2i) + µ

Nin∑
i=0

s3i (9a)

s.t. ceq(xi) = s1i − s2i (9b)

cin(xi) ≥ −s3i (9c)

s1i, s2i, s3i ≤ 0 (9d)

Where Nin is the number of inequality constraints and Neq is the number of equality constraints.
Also, s1i, s2i and s3i are slack variables. This brief introduction to SQP methods is supposed to give
the reader an intuition about how the algorithm operates. As mentioned earlier evaluating the Hessian is
something that may take a long time to approximate in SQP algorithms. This is partly since it needs to
be positive definite which means that reevaluation or alterations may be needed to ensure this criteria.
SQP is an active set method so every time the active set is changed the Hessian needs to be recalculated
since the original optimization problem changes and the Hessian with it. [1].
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2.3 Interior-Point

Interior point (IP) algorithms are also known as barrier method algorithms and are along with SQP the
most used algorithms for non-linear optimization problems. As the name implies, it finds a solution by
traversing in the interior of the problem’s feasible space. It therefore operates very differently from SQP
as it works far from the constraints. It typically works good on problems that are not constrained much
since it hinders the algorithm or increases the risk of it becoming ill conditioned. There are multiple
variants of Interior-Point methods, which comes with their own strengths and weaknesses. Once again
using the work of Nocedal, J. and Wright, S. [1] a basic version of the IP algorithm is presented to get
some insight in how it operates. Given a nonlinear optimization problem of the form:

min
x,s

f(x) (10a)

s.t. ceq(x) = 0 (10b)

cin(x)− s = 0 (10c)

s ≥ 0 (10d)

Note that the inequality constraints, cin, have been rewritten as equality constraints with the use of
a slack variable s. The inequality constraint is eliminated by adding it to the objective function as a
barrier penalty.

min
x,s

f(x)− µ
Nin∑
i=1

log(si) (11a)

s.t. ceq(x) = 0 (11b)

cin(x)− s = 0 (11c)

Here the lower bound on s has been included in the term −µ
∑m
i=1 log(si) since the log-term bounds

s from below. Note that log(s) approaches ∞ as s approaches 0. This can be visualized as a barrier
positioned at the inequality constraint, thus giving the IP method the alternative name Barrier method.
The barrier parameter µ is chosen as a positive parameter which determines the strength of said barrier.
How this parameter is supposed to be chosen is under subject of discussion, one valid approach is to
update it with some step size during each iteration.

Although it’s possible to use the formulation presented in (11) straight away it can present alot of
nonlinearities. Thus it’s preferable to find a more linear form. This is done by finding the problems KKT
conditions and solve these instead. The formulation in (11) have the corresponding KKT conditions:

∇xf(x)−∇xceq(x)T y −∇xcin(x)T z = 0 (12a)

− µS−1e+ z = 0 (12b)

ceq(x) = 0 (12c)

cin(x)− s = 0 (12d)

Note that L(x, s, y, z) = f(x)− ceq(x)T y− (cin(x)− s)T z, which implies that ∇xL(x, s, y, z) = ∇xf(x)−
∇xceq(x)T y −∇xcin(x)T z. Here y and z are the corresponding Lagrange multipliers and S is an matrix
containing all slack variables (s1, s2, s3, . . . ) on its diagonal. Further, e is a vector of ones to satisfy the
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vectorization. The KKT conditions are necessary for the found solution x∗ to be a local optimum, and
thus it’s preferable to solve this problem instead of (11). With the use of Newton’s method on each
equation in system (12) the following is achieved:

∇2
xxL 0 −∇cTeq(x) −∇cTin(x)
0 Z 0 S

∇ceq(x) 0 0 0
∇cin(x) −I 0 0



dx
ds
dy
dz

 = −


∇f(x)−∇cTeq(x)y −∇cTin(x)z

Sz − µe
ceq(x)

cin(x)− s

 (13)

With this the Newton directions dx, dy, ds and dz can be computed, and now it’s possible to take a step
along the Newton direction via:

x+ = x+ αmaxs dx (14a)

s+ = s+ αmaxs ds (14b)

y+ = y + αmaxz dy (14c)

z+ = z + αmaxz dz (14d)

Here αmaxz and αmaxs determines how big the step length along the search direction should be. To find α
we need to follow the fraction to the boundary rule. Which is a way of guaranteeing that the variables s
and z aren’t approaching their lower bounds too fast. If they are not bounded away from zero the second
row in the matrix in (13) can lose rank and the problem becomes ill conditioned.

αmaxz = max{α ∈ (0, 1] : z + αdz ≥ (1− τ)z} (15a)

αmaxs = max{α ∈ (0, 1] : s+ αds ≥ (1− τ)s} (15b)

Where τ ∈ (0, 1). The new found iterate must also decrease a chosen merit function to be accepted. If
xk+1 satisfies the convergence test the algorithm stops, otherwise the terms of (13) are evaluated again
and the linear system is solved to generate a new iterate.

This brief introduction to IP methods is supposed to give the reader an intuition about how the
algorithm operates. One advantage of IP over SQP is that it scales well with the number of optimization
variables. On the other hand it scales worse with respect to the number of constraints.[1]

2.4 Proximal Averaged Newton-type method for Optimal Control

The following description is based on the work of L. Stella, A. Themelis, P. Sopasakis, and P. Patrinos
[5]. PANOC is a very fast optimizer that requires very little memory to run, which is why it is suitable
for embedded devices with limited computation power. It’s also promising very high speeds compared
to other nonlinear solvers. In short, it combines a proximal operator with a quasi-newton method to
converge to an optimal solution. This is a new way of tackling optimization by combining two widely
accepted and studied methods for convergence. The authors of the algorithm claim that it is suitable
for MPC and that it outperforms the previous described optimizers IP and SQP in the area of nonlinear
optimization in embedded devices. Consider the optimization in (16), where ln and lN are smooth stage
and terminal cost. The function fn are smooth mappings representing system dynamics. The function
gn represents the relaxed constraints in form of penalties which can be nonconvex, nonsmooth functions.
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min
x

N−1∑
i=0

(li(xi) + gi(xi)) + lN (xN ) (16a)

s.t. xi+1 = fi(xi), i = 0, ..., N − 1 (16b)

Again here N is the prediction horizon. To converge, the step direction and length of the step must
be decided, but (13) includes parts which are not differentiable and thus the step cannot be computed.
However, the step for the smooth parts can be computed. Let h(u) represent the combined smoothed
functions from the stage and terminal costs. If this step û is calculated then it can be projected onto the
feasible set defined by g. This method is used in the proximal operator which PANOC uses and is partly
named after. Evaluation of the proximal mapping of the nonsmooth penalty g, which usually has a very
simple closed-form and is written

x̂i+1 = xi − α∇h(xi) (17)

xi+1 = proxαg
(
ûi+1

)
(18)

where proxαg is the proximal operator, making a proximal mapping of g and using the step size α.

proxαg(û) = arg min
u∈RNnû

(
g(u) +

1

2α
||u− û||2

)
(19)

Again the proximal operator is trying to reduce the value of g(u) while also minimizing a square
penalty on the distance from the current iterate ûk+1. In other words the new value xk+1 shall be as
close as possible to the value that minimize the smooth functions in ûk+1, but at the same time be a good
minimizer for the nonsmooth function g(u). In the PANOC algorithm the proximal mapping is used as:

ûi+1 = xi − α∇h(xi) (20a)

xi+1 = proxαg(ûi+1) = arg min
u∈RNnû

(
g(u) +

1

2α
||u− ûi+1||2

)
(20b)

The input to the prox operator is the gradient of the smooth and convex function. This means that
the proximal mapping is penalized for straying to far from the gradient descent evaluation, however the
contribution from g(u) must be kept low in order for a new iterate to be found. Thus, the proximal
gradient method effectively finds a minimizer for the problem even though it may contain non-smooth
parts.

Evaluation of the gradient of the smooth functions h are made using Automatic backward Differ-
entiation (AD). AD is a popular method for calculating the derivatives of a function. The algorithm
PANOC uses an API called CasADi to calculate approximations of Jacobians and gradients. This API
is especially good for nonlinear problems such as nonlinear MPC [17].

If L is the Lipschitz constant for the minimization problem in (16), then the projected gradient method
is guaranteed to converge if α < 2L, thus α is chosen accordingly. It will converge to points that are fixed
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points (u∗) of the prox operator in (20). In other words at least a local solution to the problem.

These techniques alone converges with at most Q-linear speed, but often slower and is very sensitive
to ill conditioning. The creators of PANOC have therefore made it more robust and faster with two main
tricks that have shown to be much faster than other forward-backward splitting (FBS) type methods.[5]
They address the minimization problem indirectly by minimizing the residual from the current iterate u
and the fixed points u∗ of the problem. The residual r is calculated with the following operator R.

r = Rα(u) =
1

α
(u− proxαg(u− α∇h(u))) (21)

One would then take a step in the direction that minimizes this residual which can be done with the
quasi-Newton method L-BFGS.

xi+1 = xi −HiRα(xi) (22)

where Hi are invertible linear operators that satisfy the secant condition si = Hiyi with si = xi+1−xi
and yi = Rα(xi+1)Rα(u). L-BFGS stores only a few vectors, s and y that represent an approximation of
H which makes it very memory efficient and thus suitable for embedded systems. Ideally Hi capture cur-
vature information of Rα and enable superlinear or quadratic convergence when close enough to a solution.

The next big problem to handle is ensuring global convergence since L-BFGS is only convergent in a
neighborhood of u∗. To ensure convergence the step size in (22) must be accurately decided. How this
is enforced is by using a so called forward-backward envelope (FBE), which is a real valued, continuous
merit function that shares the same local/strong minima for 0 < α < 1

L with the original minimization
problem. Using the FBE the problems turns into an unconstrained minimization problem. As L. Stella,
A. Themelis, P. Sopasakis, and P. Patrinos [5] shows the problem in (16) converges globally if it is a
so called Kurdyka- Lojasiewicz function which is satisfied by all subanalytic functions. This is a mild
property.

ρα(u) = f(u)− α

2
||∇f(u)||2 + dist2U (u− α∇f(u)) (23)

The function ρα(u) describes the FBE merit function where dist(β) =u∈U ||u − β|| is the closest
distance to the set U . The calculation of the FBE is based on the same operations as the FBS making
it similarly efficient provided the distance to U is easy to compute.

Finally, the inner problem which only involve cheap operators becomes:

xi+1 = xi + γi(−HiRα(xi) + (1− γi)αRα(xi) (24)

where αi is chosen with help of the merit function ρα(u).

To ensure that the constraints are met in the inner procedure described above either the classic
penalty method (PM) or augmented Lagrangian method (ALM) is used. At every outer iteration if the
convergence tolerance is not met the penalty for the constraints are updated together with the Lagrange
multipliers if ALM is used, and the inner iterative procedure begins again.

In summary PANOC uses the same oracle as FBS methods and the operations that are the most
computationally expensive operations are the prox-operator and the quasi-newton step using L-BFGS,
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which still operates at high speed. These fast operations still allows the PANOC algorithm to converge
superlinearly. [5]

2.5 Summary of theory

Three optimizers will be tested in an MPC application which is a control method where the input is
calculated with the help of an optimizer. A whole series or so called prediction horizon of inputs can be
calculated which could optimally drive the state of the system towards the reference.

Interior point method (IP) works on the interior on the feasible region with the help of barrier
functions. It is allegedly good with many constraint variables and possibly bad at converging close to
constraint. This is an old very common and power full method for nonlinear optimization. Another
also old, powerful and common optimizer is the sequential quadratic programming method (SQP). It is
an active set method and works by making second order approximations with linearized constraints of
the original problem. The last optimizer Proximal Averaged Newton-type method for Optimal Control
(PANOC)
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3 Model Predictive Control

What follows in this chapter is the MPC formulation for this project, which will be introduced and
extensively explained. Firstly the full MPC formulation is presented, what follows is the modelling of the
vehicle and the environment.

3.1 Full MPC formulation for a differential drive robot

The formulation considers a differential drive type robot which is controlled using the inputs linear
velocity, v, and angular velocity, ω, to manipulate the x and y positions as well as the heading θ.
Consider the finalized MPC formulation

min
u0,u1,...,uN−1

N−1∑
n=0

(
q̃TnQS q̃n + un

TRun+costborder(qn) + costlane(qn) + costjerk(∆un)) + q̃TNQT q̃N (25a)

s.t. qk+1 = fmodel(qk, uk) (25b)

d2cone ≥ ||−→r ||2 −
(−→r
−→
V 1,2)2

||
−→
V 1,2||2

(25c)

∆umax ≥ |uk − uk+1| (25d)

vmin ≤ v ≤ vmax (25e)

ωmin ≤ ω ≤ ωmax (25f)

where
q =

[
x y θ

]T
(26)

is the state vector and
u =

[
v ω

]T
(27)

is the input vector. The costs costborder(qn), costlane(qn) and costjerk(∆un) along with equations (25b)-
(25f) will be explained in depth in the coming sections.

3.2 Model constraints

Starting of with the vehicle dynamics, which are enforced as equality constraints in (25b). As mentioned
the model at hand is a differential drive model, see Figure 1, which is nonlinear. The model constraint
limits the optimization problem with respect to what is feasible for the model’s dynamics. The differential
drive model is characterized by turning using the difference in speed control on the right and left wheel.
One of the great benefits of using this type of model is that it allows for high maneuverability since it
can turn on the spot unlike a car model. Meaning that it can rotate without having any linear velocity
forwards or backwards. The continuous time model is described by (28). A visual representation can be
seen in Figure 1.

ẋ = v cos(θ) (28a)

ẏ = v sin(θ) (28b)

θ̇ = ω (28c)
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In (28) v and ω are the linear velocity and angular velocity respectively. The vehicle states q = (x, y, θ)
denotes the vehicle position and heading in the world frame, see Figure 1. The model is discretized with
some time step Ts which is needed in order for it to be implementable.

xk+1 = xk + vkcos(θk)Ts (29a)

yk+1 = yk + vksin(θk)Ts (29b)

θk+1 = θk + ωkTs (29c)

or by using the state vetor q

fmodel(q, u) =

xk + vkcos(θk)Ts
yk + vksin(θk)Ts

θk + ωkTs

 . (30)

This is the final model constraint implemented in (25b).

Figure 1: Description of vehicle

The vehicle will have limits on its ability to accelerate and decelerate as well as limitations on the
rotational velocity, since this clearly isn’t limited by the model this needs to be handled by supplying
constraints. This is done by simply calculating the difference between the previously calculated velocity
and the new velocity within the optimizer and setting an upper bound on the difference, amax > ∆u =
|uk − uk−1|. This is done via (25d). The maximum and minimum velocities are simply limited to a
maximum and a minimum via the inequality constraints (25e) and (25f). There is also a penalty added
to limit jerk, or sudden spikes in acceleration, of the vehicle. These are penalized by the difference

costjerk(∆uk) = Rjerk|∆uk| (31)

as a cost in the objective function (25a). Here Rjerk is a user defined scalar penalty weight.
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3.3 Environmental constraints

The vehicle will be put into an environment which consists of different obstacles and rules that are
defined via constraints. The environment that is chosen for this project is a two lane curved road with
obstacles standing still or driving on said road. This section explains the constraints that goes into the
MPC algorithm to make the model only drive within the feasible subspace. Observe the 2D environment
shown in Figure 2. It consists of a number of different symbols and colors

• First, is the curved road that is a two lane road with one lane going in each direction, for the coming
scenarios right hand traffic is considered.

• The ego vehicle is represented by a blue point mass with a red line that shows the heading.

• The ego vehicle also has a predicted path at each time step, this is shown as the green dots coming
out of the ego vehicle, this is what has previously been called the prediction horizon.

• The green dashed line shows the path that the vehicle has driven.

• The yellow circle is the reference state which the vehicle steers towards.

• The red circle represents the obstacle and will be further explained below

The obstacles in the environment are represented by a red circle shown in Figure 3. The solid obstacle
is the red filled circle which is marked with ro in Figure 3. The dashed line in Figure 3 is robs+rego which
is the combined radius of the obstacle and ego vehicle, and is the radius that will be used later for the
collision avoidance. The outer dotted line marked with P is the penalty margin. This idea comes from
the creators of PANOC who use a similar strategy [11]. The idea is that since the optimizers will respect
the constraints to a certain tolerance they will probably break them by this tolerance at some point. By
introducing a penalty margin which is like an extra safety distance the optimizer might break the safety
margin but the penalty for crossing the whole penalty margin radius is big enough that it wont collide
with the actual obstacle. The reason why this is especially needed is how the penalties in the optimizers
works. A penalty is only added if the constraints are active. This is the case if cin ≤ 0 and always true
for equality constraints. In other words the optimizer would not even know about the constraint if it is
not active. This means that the vehicle could drive side by side to the obstacle at the border of breaking
it and only if the vehicle does drive tangent to the obstacle the penalty would be added. This is why the
penalty margin must be added to make the obstacle visible before collision.

Figure 2: Curved road with ego car, one obstacle and a reference
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Figure 3: Obstacle

The reason for modelling the environment with curved roads is because all types of roads can be
modelled with different segments of circles with different radiuses. If the radius is increased the road
becomes more straight and can therefore work as a straight road segment.

3.4 Collision avoidance

The environment consist of two main types of obstacles, static and dynamic. The movement of the dy-
namic obstacles can be limited by a model or trajectory and thereby included in the calculations. In this
project the obstacles are bound to a trajectory. This can be advantageous since the future trajectory
of the obstacle can be more accurately predicted. This can represent obstacles such as humans or other
undefined objects with unknown dynamics.

A interesting method for implementing collision avoidance constraint is via an old technique called
collision cone. There are many different versions of this method but they build on the same concept.
This method has been used for a long time to ensure collision interception in for example a missile or
torpedo intercepting an aircraft or ship [18]. Since collision avoidance and interception are essentially the
same problem collision cone is commonly used for collision avoidance applications. What follows is an
explanation of collision cone and an extension to it in order to improve the performance.

3.4.1 Linear collision cone

The linear collision cone method uses the relative velocity of the vehicles to determine if they are on
a collision course. It shows which subspace of relative velocities that guarantees collision. Choosing a
velocity that is not within this subspace will therefore guarantee a collision free path. One of the main
benefits of this method is that it guarantees collision avoidance even in between time steps. This can
be guaranteed in each time step since it’s constrained to velocities that in the future will not lead to a
collision. In a sense it is predicting the collision points and avoids those.

The collision cone uses the trigonometry relationships between the two vehicles to constrain the sys-
tem. Consider Figure 4. Firstly, the radius of the ego vehicle is projected onto the obstacle vehicle such
that the combined radius is Rtot = Rego +Robs and the ego car is treated as a point mass. Here −→r is the

distance between the centers of the ego vehicle and the obstacle.
−→
V is the relative velocity direction of

the two objects. The constraint says that dcc ≥ Rtot must be satisfied in order to avoid collision. This
means that the point mass ego car must drive pass the obstacle with a distance of at least Rtot. Note
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that Figure 4 shows when the constraint is not satisfied.

The vector
−→
V needs to be converted into position vector. The vector −→r is projected down onto

−→
V

resulting in the vector −→a =
−→r
−→
V

||
−→
V ||

. This vector is tangent with the circle thus giving the velocity that

is closest to the circle yet not colliding with it. Note that by using Pythagora’s theorem on the vectors
presented below the criterion can be written as

R2
tot ≤ d2cc = ||−→r ||2 − (−→r

−→
V )2

||
−→
V ||2

(32)

(33)

which leads to the final constraint formulation as

ccone = R2
tot − ||−→r ||2 +

(−→r
−→
V )2

||
−→
V ||2

≤ 0 (34)

Figure 4: Collision cone illustration

As discussed earlier the cone constraints limits the subspace of allowed velocities and will therefore
limit how the ego car can drive to not collide with the obstacles. There is no point in having the cone
constraint active on objects that are behind the ego vehicle since it will limit how the ego vehicle can
drive. The same reasoning holds for when the obstacles are in front of but very far away. If they are far
away there is no need to try to avoid the obstacles and it is also unrealistic that the obstacles positions
are known far away. Therefore the cone constraint is only active for obstacles that are in front and close
to the ego car.

3.4.2 Non-linear collision cone

The collision cone constraint presented above is a common used method for collision avoidance for linear
or close to linear systems since it predicts implicitly the collision points or the not allowed subset of
velocities based on the assumption that the velocity of the obstacle is constant. If the velocity of the
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obstacle changes during the prediction horizon the non-allowed subspace of velocities may be inaccurate.
For example, this method does not work when the cars are moving on a curved road since the cone
constraint will predict that the intersection point is off. In Figure 5 the upper arrow shows the wrong
intersection point from the cone constraint given that the obstacle and ego vehicle has the same velocity
magnitude.

Though the collision cone concept origins from the 60s, no nonlinear version of it was found. The
proposed nonlinear version is made by the authors of this paper. The point on the road when the vehicle
and the obstacle will intersect is calculated and this is the point which the vehicle must avoid. This point
is shown in Figure 5 by the lower arrow.

Figure 5: Intersection point (black). Ego vehicle on left with (green) prediction horizon and obstacle
(red) on right.

Figure 6 shows a road segment and the imagined circle it makes if it would continue beyond its
borders. It shows all the components that is needed for the non-linear collision cone to work which are
described below.

Figure 6: Nonlinear collision cone variable explanation
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Firstly the ego vehicle’s velocity vtan that is tangent to the circle described by the curvature of the
road is calculated, see Figure 6. The obstacles velocity vobs is estimated given that it remains in the
current lane which is one of the limitations previously made in this paper. The collision point can be
calculated from the curved distance darc between the moving bodies.

darc = rroad,averageθdiff (35)

timpact =
darc

vtan + vobs
(36)

darc−obs = darc − dobs = timpactvobs (37)

Here rroad,average is the average radius from the ego car and obstacle to the circles centre. The collision
point pcol is calculated from darc−obs, the distance the obstacle must travel during the time until impact
timpact.

When this collision point described by the black dot in Figure 5 shown by the lower arrow, the col-
lision cone constraint is applied to a fictive obstacle that is moved to that position. The velocity of the
obstacle is also set to zero. This way the collision cone can effectively be used on nonlinear environments.
In short it calculates the point were they will collide and then the linear collison cone is used on a fictive
obstacle moved to that point with 0 velocity.

This method has one flaw that has not been addressed in this project. Since vtan will change during the
prediction horizon in each prediction, meaning a pair (yk, xk), vtank can change which in turn changes
pcolk. So in each prediction the car will try to avoid an obstacle that is slightly shifted forwards or
backwards on the road from what the previous prediction of pcol if the car changes vtan. In the simulations
however the intersection point is only moved slightly and the method has been proven in these simulations
to be quite effective. This is because the point is only moved slightly between each prediction since the
car cannot turn and accelerate very fast and each prediction point (xn, yn) has an accurate intersection
point pcol,n. A possible improvement would be if the collision point could be estimated given the whole
prediction horizon instead of doing it at every prediction step. With this new method the collision cone
described in 34 can be applied and this is what represents the collision avoidance constraint in the MPC
formulation (25c).

3.5 Border constraint

To ensure that the vehicle drives within the road, two border constraints are introduced. They act as
repulsive regions if the vehicle drives to close to the edge of the road. These constraints are on the form,
(adcenter)

3 + bd where dcenter is the distance from the vehicle to the centre of the lane next to the border
and b is a penalty factor. An example of such a function is shown in Figure 7. One must scale dcenter
such that the function takes on appropriately high values at a given distance dcenter from the centre of
the lane. This is done by the scaling factor a. The cost that is added to the objective function (25a)
becomes

costborder = max(0, (adcenter)
3 + bdcenter) (38)

where max ensures that only the positive part of the function is accounted for. This method allows some
unwanted behaviour, since it’s allowed for the vehicle to leave the road. Just with an increased cost to

19



the planned path. This case is most evident when the road is completely blocked by obstacles and some
optimizers still plans a path around the obstacles outside of the road.

Figure 7: Border constraint

A reason for not having hard constraints on the border is related to ethics and will be discussed in
Section 9.7. Another benefit of having soft border constraints stems from the border then becoming
repulsive due to the increased cost. This pushes the ego vehicle to stay away from the borders and
simplifies the overtaking maneuvers by eliminating local minimums that occur between the obstacles and
the road border. These minimums are shown in Figure 9 by the blue dots. Thus it was chosen to keep
the borders as soft constraints.

3.6 Moving the reference state and lane keeping

The optimizers will decrease the objective function by minimizing the distance between the vehicle and
the reference point. The fastest way to minimize this distance is to go in a straight line towards it as
shown in Figure 8 by the lower arrow taking the birds way on this circular road.

Figure 8: Fastest path

This introduces a problem when the road is curved as the car wants to drive off the road in a straight
line towards the goal. To make it go in the curvature of the road a soft constraint is introduced. This
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constraint adds a penalty to straying far away from the centre of the lane which it shall drive on, which
is the lane which the reference point is placed on. By doing this one can increase the likelihood that is
stays on the road. The cost is defined as

costlane = blane

√
(rcirc,ego − rcirc,ref )2 (39)

and is the final piece of the MPC formulation in 25a. Where rcirc,ego is defined as the radius from the
center of the circle that represents the road to the state where the ego vehicle currently is positioned. See
Figure 6. The constant rcirc,ref is defined as the radius from the center of the circle that represents the
road to the state where the reference is positioned. Here blane is an user defined weight which determines
how hard the ego vehicle is penalized for straying away from the reference lane. However this constraint
is only active when the cone constraint is inactivated. This is so that it does not limit and interfere with
the collision avoidance system which is of higher priority.

The bigger the curvature the more apparent the problem of staying on the road becomes and this soft
constraint might not be enough. The core of the problem is that the curvature between the reference
and the car is not included enough in the objective function so that it is not bended with the curvature
of the road or that no constraints tells the optimizer that these points are infeasible. One method of
dealing with this is by moving the reference point along the lane closer towards the car as can be seen
in the Figure 8 by the Goaltemp instead of the original Goal. This makes it easier for the algorithm to
optimize towards the reference point. This is also a realistic approach since the car does not necessarily
have information about the road far away. The new temporary reference is moved to a point on the
same lane as the original reference point at a distance vmaxNTs + dref,margin away. Here vmax is the ego
vehicle’s max velocity, N is the prediction horizon, Ts is the time step and dref,margin is a chosen short
distance ensuring that the last prediction step doesn’t fully reach the reference point.

3.7 Terminal cost and reference angle

Ideally one wants to give the vehicle much freedom in planning the path in between the current position
and the reference position to not limit the optimizers ability to comply to the constraints. One way
of manipulating this is by emphasizing the terminal cost in comparison to the stage cost in (25a). By
lowering the stage cost and increasing the terminal cost, QT , the vehicle can plan each step in the
prediction horizon more freely while still closing in on the reference point.

To reduce the amount of local minimas in the objective function one could make a simplification in
(25a). That simplification is to set the element in QS and QT that penalizes the angle error θ̃ to 0.
In other words QS(3, 3) = QT (3, 3) = 0 for all θ̃. This implies that the optimizer doesn’t care about
minimizing the angle, thus making it less prone to follow unwanted local minimas. Further, if necessary,
due to how the vehicle is designed it can easily compensate for this angle once it has reached the end
position (xr, yr)

One flaw with this approach is that in order to be able to accurately calculate the collision point the
velocities of the obstacle must be somewhat predictable. In this thesis the obstacles moves on only one
lane and with constant speeds.
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3.8 Summary Model Predictive Control

The scenarios the ego vehicle will drive in is modeled using soft and hard constraints. The car has a few
restrictions and characteristics which has been modeled so that the simulated car will behave similarly
as the Arduino robot. The circular road segment that the optimizers will be tested in has been modeled
with two lanes and constraints in order to keep the car within the road borders. The anti collision system
is implemented using the collision cone method with a proposed nonlinear version of it to be able to use
it in nonlinear environments.
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4 Processing inputs and outputs

To get a better result some precautions had to be done to the inputs and outputs. Firstly, supplying
good initial guesses for the optimizer by using warm starting will be discussed. Warm starting poten-
tially allows for faster convergence to an optimal trajectory, but also makes the algorithm more prone to
converge to some local minimas. Secondly, it’s discussed how to handle paths supplied by the optimizer
where it hasn’t converged to an acceptable set of states.

4.1 Warm start

A common feature in optimizers is the ability to warm start them. This means that the optimizer is
supplied with an initial value based on previous actions. This can be a very effective method that speeds
up the optimizer if the environment does not contain many local minimas. If the environment contains
local minimas such as the blue dots in Figure 9 the optimizer is in some cases more likely to end up in
those if warm start was used. This depends on how the problem is defined and where the minimas are
located as well as the optimizer that is used. Figure 9 shows PANOC when operated with warm start
and as one can see when it avoided the first obstacle it was already moving upwards so that it got stuck
in the local minima of driving above the second obstacle. This is because the optimizer was fed a solution
that was close to a local minima. So if the optimizer is initialised close to a local minima it’s prone to
get stuck in that minima than converge globally. In these cases it is sometimes much better to cold start
the optimizer so that it is more likely to take different actions. As mentioned earlier the solution could
converge faster if warm started but it could lead to an overall slower convergence since as the case in
Figure 9 it will eventually end up in an area where the border cost is really high and this slows down the
convergence substantially.

Figure 9: PANOC warm start

4.2 Bad Paths

It is a common in MPC optimization to turn hard constraints into soft ones by including them in the
objective function in terms of penalties. This is especially common when testing on real life applica-
tions as disturbances can more easily end up making the problem infeasible. PANOC is defined to only
have hard constraints on the input variables and soft constraints for everything else by relaxing these
constraints by using the augmented Lagrangian method or the penalty method. SQP and IP also relax
their constraints for the same reason. The constraint relaxation methods comes with a few cons. They
can lead to a solution where the optimizer chooses an invalid path due to the penalty of violating the
constraints still gives a better next iterate than not violating them if the penalty is to low. On the other
hand, choosing a high penalty can cause the problem to become ill conditioned, which makes it much
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harder for the optimizer to converge. Thus, the problem becomes very dependent on choosing the right
penalty. Too high and it will not be able to converge at all and too low it will not respect the constraints.

The optimizers have a number of defined convergence criterias which tells it that the solution is good
enough. Such criterias can be reaching the minimum step size, no decrease in objective function or the
constraint tolerances has been met. The optimizers can however stop prematurely due to that it runs out
of function evaluations, iterations or time. There is then a risk that it has not converged. The optimizers
will then output the best iterate it has found. It is a common feature in optimizers to output a solution
no matter if a convergence criteria has been met or not. It then says if it has converged or not. However,
to simply check if the optimizer has converged or not is not enough, since the outputted paths still could
be unacceptable. Therefore the feasibility of the solution given has to be checked and handled outside of
the optimizer. One solution to this is to simply check the suggested path for violations and if the solution
is deemed to be invalid the ego vehicle stops and begins a new search. However, in many cases stopping
instantaneously is unrealistic or unwanted. Instead the most recent acceptable path is saved and if the
new path is deemed unacceptable the car continues to drive on the last accepted path.

To determine if the found solution is valid the calculated path is fitted to a forth degree polynomial
of the form ax4 + bx3 + cx2 + dx+ e. If the error between the fitted polynomial and the output path is
above a certain threshold the path is deemed bad and the computed control input will be ignored and the
input from the last accepted path is used until the optimizer can supply a new path with an acceptable
fitting error. This threshold needs to be decided from experiments. Figure 10 shows an acceptable path
and Figure 11 shows an unacceptable path. The plot right below the road plot is a visual example of
the curve fit function where the blue is the actual prediction horizon and the red is the fitted curve. The
number in the lower right corner is the fit error between the two curves.

Figure 10: Acceptable path. Fitting line in red and planned path in blue.
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Figure 11: Non acceptable path. Fitting line in red and planned path in blue.

This is a simple way to quickly judge if a path is valid or not. However, there are still some bad
paths that can pass this curve fitting test. The problem with this test lies in when lowering the fit error
value the space of possible paths are restricted which is not necessarily desirable. In other words it can
filter out some paths that does not fit the forth degree polynomial, but in fact are acceptable paths.
Another problem is that this method does not take into account the environment, only the shape of the
path. The optimizer could therefore plan a path outside the environments bounds that would be deemed
valid. To tackle this problem much more logic would have to be programmed to deal with all the different
cases. However, it might not be a good strategy since one is not fixing the problem at its root. Tackling
the problem at its root would be to improve the optimizers convergance capabileties so that it does not
output bad paths that often. Some examples of these bad paths are shown below in Figure 12. This
problem will not be fixed here and will be used as a measurement of comparison between the optimizers
later on. It is hard to define what is a bad path and not. Paths that one can clearly see has not converged
are deemed bad.

Figure 12: Bad paths
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4.3 Summary processing inputs and outputs

To potentially ease the job of the optimizers the concept of warm start is introduced. This is when the
optimizer is initialized with a solution close to the optimal solution. The concept of bad paths has been
brought up which essentially is a path that has not converged and could possibly lead to applying the
wrong input signals to the car. The output from the optimizers must be checked so that it meets the
requirements which is primarily done by a curve fit of the calculated path onto a forth degree polynomial.

26



5 Evaluation framework

In this section the scenarios in which the algorithms will be evaluated will be presented. Further, it will
also introduce and discuss the methods and measurements with which the algorithms will be evaluated.

5.1 Scenarios

Three scenarios were designed to evaluate the algorithms. The aim is to design each case to specifically
test how the algorithms handles environments where everything is static, environments with gradual
change and environments with sudden change. All the roads are curved with a centre radius of 100 units.
The radius of the ego car and obstacles are 0.125 units and the lane thickness is 1 units. Each scenario
is simulated with a horizon of 10, time step of 0.5, 0.1 < v < 3, −3 < ω < 3, dv < 0.5 and ω < 0.5. SQP
and IP are warm started whilst PANOC is cold started. The distance where the car can see obstacles is
5 units. Each scenario is presented in greater detail below.

Overtaking maneuver of three static obstacles

Firstly, the algorithms are evaluated on a simple slalom track, see Figure 13. The ego vehicle starts
on the bottom lane. This track have multiple local minimas, which must be avoided in order for the
algorithm not to get stuck. Two minimas are found in between the two lower obstacles and the lower
road border and one is found in between the upper obstacle and the upper road border. These minimas
are also shown in Figure 9. It’s also very constraint intensive, since for the most part of the simulation
at least one obstacle will close enough so that a collision cone constraint is active.

Figure 13: Scenario with three static obstacles

Overtaking maneuver of two moving obstacles

To observe how to the ego vehicle is handling dynamic environments an overtaking scenario was con-
structed. One obstacle is moving along the lower lane towards the right, while another obstacle is moving
towards the left along the top lane, see Figure 14. The obstacles are constrained to move only on the
middle of the lane where they were initiated on and this is included in the optimizer. In other words the
optimizers know the trajectories of the obstacles in beforehand. The ego vehicle will start on the bottom
lane, overtaking the obstacle in front of it and return to the bottom lane.
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Figure 14: Scenario with two moving obstacles

Suddenly appearing obstacle

In this scenario the aim is to be able to evaluate the algorithms ability to handle sudden changes in the
environment. The obstacle will appear on the position shown in Figure 15 when the obstacle is some
predefined distance away.

Figure 15: Scenario with one suddenly appearing obstacles

5.2 Evaluation methods

To somewhat compare the optimizers two measures of path quality was defined, number of bad paths
and robustness. The computation time of each horizon was also recorded and plotted. It is hard to
define what a bad path is which was discussed in Section 4.2, however this will serve as pointer in the
general direction of which optimizer that tends to converge to better paths. Robustness is measured by
simulating 10 consecutive times with added normal white Gaussian noise with mean 0 on both v and ω.
The standard deviation σ is kept as big as possible and if the car can drive without hitting any obstacle
or go outside the road with 80% success is deemed successful. The maximum standard deviation that
could be added is shown under the column Robustness. The angular velocity ω is much more sensitive
to noise as it could align the car in an extreme angle towards an obstacle or the border of the road
making it harder to compute a feasible path. The noise on the velocity is much less likely to affect
the robustness. Therefore when choosing the standard deviation the following start values were chosen
σv = 1

2 and σω = 1
100 . The values were decreased gradually until success. The values were then increased

separately to find the highest possible value for both of the input. This test was not performed in such
quantity so that it is statistically accurate. The purpose is mainly to get an idea of the robustness so
that the correct algorithm can be chosen for installation in the hardware.

5.3 Summary evaluation framework

Three scenarios was introduced in which the car will drive. They all pose different challenges. The
scenarios are; overtaking maneuver of three static obstacles, overtaking maneuver of two moving obstacles
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and suddenly appearing obstacle. A few tests and things that is going to be documented based on the
scenarios is brought up such as a robustness test and comparison of computation time.
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6 Simulation results

The scenarios are simulated with PANOC and MATLAB’s SQP and IP algoritms. Under each scenario
plots from three different time steps for each algorithm is presented. Next to each set of time step plots
there is also a plot of the corresponding computation time for each prediction horizon. Note that the
computation times presented in the figures are in milliseconds for PANOC and in seconds for SQP and
IP. Each scenario ends with a table comparing some data from each optimiser.

Overtaking maneuver of three static obstacles

All algorithms were able to complete this scenario and the results are shown in Figures 16, 18 and 20. In
Figures 17, 19 and 21 it is clear that PANOC is superior when it comes to computation speed. Further,
it’s clear that PANOC works well enough and can plan an many acceptable trajectory. SQP doesn’t
struggle either and is the only algorithm that does converge to sensible paths throughout the simulation,
see Table 1 bad paths. IP plans the least optimal trajectory of all the algorithms, which can be seen in
Figure 20 where the planed trajectory is quite wiggly and plans longer paths around the obstacles. Little
can be said about the robustness from Table 1, other than that PANOC seems to handle disturbances
better that both of the MATLAB algorithms.

Figure 16: PANOC overtaking three obstacles
Figure 17: PANOC optimizer computation
time
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Figure 18: SQP overtaking three obstacles Figure 19: SQP computation time

Figure 20: IP overtaking three obstacles Figure 21: IP computation time
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Three static obstacles
Bad paths Robustness

PANOC ca 8 vd = 1, ωd = 1
600

SQP 0 vd = 0.1, ωd = 1
1500

IP 3 vd = 0.1, ωd = 1
1500

Table 1: Simulation results three static obstacels, comparing SQP, IP and PANOC

Overtaking maneuver of two moving obstacles

All algorithms were successful in finding a path around the obstacles in this scenario. The results are
presented in Figures 22, 24 and 26. From Figures 23, 25 and 27 it’s still clear that PANOC outperforms
the other two algorithms with respect to computation time. PANOC plans a quite bad path with a lot of
overshoot at the first obstacle. It has clearly not planned an optimal path which also can be seen in time
step one and two in Figure 22 where the prediction horizon has not converged in the end. SQP might
have found a more optimal path, however it has some problems planning a smooth path around the x = 6
mark. IP is still having problems with the planned trajectory converging to non-sensible paths, but is
still able to pass the two obstacles. From Table 2 SQP still only outputs sensible paths, while PANOC
and IP have a few bad paths. Regarding robustness the situation hasn’t changed from the scenario with
three static obstacles. The take away from this scenario is that it’s not obvious if PANOC or SQP is
the better optimizer. SQP is more optimal but slower, while PANOC is faster but less optimal. PANOC
is also more robust, see table 2. Further IP is still struggling and does not match up to the other two
algorithms.

Figure 22: PANOC overtaking of two moving
obstacles

Figure 23: PANOC optimizer computation
time
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Figure 24: SQP Overtaking of two moving ob-
stacles Figure 25: SQP computation time

Figure 26: IP Overtaking of two moving obsta-
cles Figure 27: IP computation time
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Two moving obstacles
Bad paths Robustness

PANOC ca 6 vd = 1, ωd = 1
600

SQP 0 vd = 0.1, ωd = 1
1500

IP 3 vd = 0.1, ωd = 1
1000

Table 2: Simulation results two moving obstacles, comparing SQP, IP and PANOC

Suddenly appearing obstacle

All algorithms can handle this scenario, as can be seen in Figures 28, 30 and 32. However, in this scenario
there was a clear hierarchy to which algorithm that performed best. The reason for this is the evaluation
method Activation distance presented in Table 3. This distance is the distance between the car and the
obstacle, which activates the suddenly appearing obstacle when the car is at this distance away from
the obstacle. Here it can be seen that PANOC is best at handling suddenly appearing obstacles, since
the obstacle can appear closer to the ego vehicle. SQP is second best and last is IP. In Figures 29, 31
and 29 PANOC is the fastest algorithm. From table 3 PANOC is the most robust, while SQP is best
at avoiding bad paths. The take away from these results is that PANOC is best at converging in tight
situations. It could be because it has a greater ability to converge from an arbitrary point. Remember
that the other two algorithms are warm started and when the obstacle appear this warm started value is
quite inaccurate.

Figure 28: PANOC avoiding a sudden obstacle
Figure 29: PANOC optimizer computation
time
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Figure 30: SQP avoiding a sudden obstacle Figure 31: SQP computation time

Figure 32: IP avoiding a sudden obstacle Figure 33: IP computation time
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A suddenly appearing obstacle
Activation distance Bad paths Robustness

PANOC 4.5 ca 7 vd = 1, ωd = 1
500

SQP 5.5 0 vd = 0.1, ωd = 1
1500

IP 7 2 vd = 0.1, ωd = 1
1000

Table 3: Simulation results suddenly appearing obstacle, comparing SQP, IP and PANOC

6.1 General observations

One thing that is not presented in the results above is that the IP algorithm take smaller steps distributed
over the whole prediction horizon. In other words it does not drive with the maximum allowed velocity.
This means that, in the simulation, the algorithm takes smaller steps than the other algorithms towards
the reference state. Also, the optimizer indicate that it has not converged fully, further validating the
claim. This is especially noticeable when it is approaching the reference state. It has a hard time converg-
ing when the solution closes in on a constraints. Further, the IP algorithm doesn’t converge in the first
two simulation steps, telling us that without warm starting the algorithm has a harder time converging
with the given parameters.

For SQP there were some changes in hyper parameters needed, in order for the algorithm to clear
the track the constraint tolerance had to be increased, otherwise it risked getting stuck when trying to
pass the obstacles in local minimas. Specifically those minimas presented in Figure 9. However, this this
modification still allowed the system to behave well.

All the algorithms needed a lot of tuning. To get a nice smooth path planning in the majority of the
iterations one had to tune for some time. IP and SQP had the tendency to get stuck whilst PANOC
always made it to the end. However, during some sessions PANOC did go off the road when the present
situation proved too difficult and it wasn’t tuned correctly. Further, PANOC also planned more subop-
timal paths. It often produced acceptable paths, but they were generally in the neighbourhood of the
solution, but didn’t fully converge into the minima. Giving the algorithm more inner iterations or more
computation time did not improve the overall result.

To conclude the results presented above, it’s clear that PANOC is the fastest algorithm, and also the
most robust in regards of disturbances. Further, PANOC is the one where the planned path quickest
adjust itself to sudden changes in the environment.

6.2 Convergence test

One of the big problems was that the optimizers did not converge to an optimal path. It was clear
when running the simulations that sometimes the output from the optimizers had not converged. When
iterating the inner procedure the optimizers needs to ask the oracle to get information about the main
minimization function. These are for example derivatives and function values for different parts of it.
In SQP and IP the algorithms needed much more than the default number of function evaluations to
converge so a test was set up to let the optimizers converge fully and the result was recorded in the figures
below with both warm and cold start. All of the following results are recorded from the scenario with two
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moving obstacles presented in Section 6. The number of function evaluations is a good way to compare
two otherwise very different algorithms. By limiting the number of function evaluations one is essentially
limiting the information it can access. As can be seen in Figures 34 and 35 below the correlation between
the number of function evaluations and the computation time is strong.

The effect on not using warm start is dramatic in both the SQP and IP algorithm. When running with
cold-start the optimizers are much more likely to not converge which is expected. In highly constrained
areas they will not converge within a reasonable time relative to the warm start. IP will use up all the
function evaluations in many cases. In these tests the upper limit for function evaluations is 10e4 which is
a lot. The other iterations where IP does not use all function evaluations it will converge to an infeasible
solution. Furthermore the resulting path will also be infeasible so even with this high limit it does not
manage to drive the scenario with cold-start. In this enviroment it is not globally convergent from any
arbitrary starting point. SQP will get stuck in a mix of unfeasible solutions and solutions where the
objective function is non-decreasing. The latter does not necessarily mean convergence to an acceptable
path as shown in Figure 36 where at the end the majority of the solutions were of those kind. It still
did not manage to output any acceptable path. It has somehow found a local minimizer which does not
look right at all. Even though it says it has found a minimizer it is doubtable and the question arises
in this case if there is some flaw in the algorithm which results in this behaviour. It is hard to tell why
it behaves like this as the optimisation function is hard to visualize and it is hard to identify clear local
minimas.

Figure 34: Cold start IP Figure 35: Cold start SQP
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Figure 36: SQP cold start

When the optimisers are warm started they reach the goal. However one notice a big difference on the
SQP and the IP algorithm in the number of used function evaluations. This is actually a characteristic
difference between them where IP in many cases needs more function evaluations.[19] This was seen
through the project that in many cases IP could run for longer and keep asking for function evaluations
to converge before meeting the requirements. This does not necessarily say that one is faster than the
other. It can though be an indicator that this problem is more suited for SQP compared to IP.

Figure 37: Warm start IP Figure 38: Warm start SQP

PANOC does not output the number of function evaluations. The next best comparison is the
inner iterations. Each time the algorithm takes a step it uses up an iterative which itself uses function
evaluations to determine how far this step should be. The number of inner function evaluations is not
accessible. There is, however, a strong correlation between inner iterates in PANOC and the computation
time. The important thing to see in Figure 39 and 40 is that PANOC does not need significantly many
more iterations to converge from cold start. In terms of computation time it does not make much of
a difference to cold start the algorithm. The difference with warm start is merely 85% faster when
comparing the median. The operations in PANOC are simpler and faster than those in IP and SQP
which both only had a median of 43 number of iterations.
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Figure 39: Warm start PANOC Figure 40: Cold start PANOC

Some more tests were made where PANOC had significantly more computation time, outer and inner
iterative than in the test above. This did not result in any improvements which raises questions on how
well PANOC can converge globally. However, it can evidently converge locally with speed and robustness.

6.3 Summary simulation results

IP did not perform well enough to be considered for implementation. It was not fast enough and did not
converge close to the optimal solution even when warm started. It demands a lot of function evaluations
and even when given extra time to converge it fails to do so well enough. The IP method does not seam
to be well fitted for these kinds of environments or problems.

SQP performed similarly to IP in some aspects. It to was slow and had to be warm started. Though
one big difference was that it could converge quite optimally with high reliability. Since it must be warm
started and is slow it is not suited for implementation.

PANOC was really fast and converged quite well in the environment. It was a clear winner for
the purpose of implementation. It can be cold started and is fast so the results are promising enough
to be implemented in the hardware. The main problem with PANOC was that is sometimes had a non
convergent behaviour and outputted more bad paths than any other algorithm. Even though it sometimes
had a non convergent behaviour it was still the most robust optimizer and could drive the car to the
reference most often and better than the others when subject to disturbances.
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7 Implementation

PANOC is a clear winner in the evaluation of the three algorithms. It is the fastest and can better handle
disturbances. Thus, PANOC will be used in the MPC to compute the input signals to the Arduino robot.
Due to reasons further explained in this chapter the physical system was not robust enough to handle
the scenarios presented in the simulations, thus two simpler scenarios were tested. These tests were a
lane change maneuver and driving past a static obstacle.

7.1 System flow chart

To successfully implement the MPC into hardware multiple parts must work together to achieve the
desired result. How the parts are interacting with each other is displayed in Figure 41.

Figure 41: Flowchart of implementation

Firstly, the camera is used to generate the pictures utilized by the camera script to identify the
position of the vehicle. Due to inaccuracies and disturbances an Extended Kalman Filter is implemented
to generate a more trustworthy estimate of the state. The measured and filtered position signal is then
sent to the MPC which computes the optimal trajectory and corresponding control input. The control
input is sent to the Arduino via bluetooth which is applied to the DC motors.

7.2 Camera and software

The camera is a Plexgear 720p webcamera. The camera’s job is to supply pixel values to the camera
script. In the library OpenCV [20] there is a function called HoughCircles which uses the Hough Gradient
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Method to identify circular objects. This method looks for points in an image that intersects in the circle’s
parameter space. If for example the function finds lots of points with the same parameters it means that
probably there exists a circle with those parameters. If this probability is higher than some threshold the
circle is accepted and shown in the image. This is used to find one big circle that is marked as the rear of
the robot and one small that is the front. Using these coordinates the angle and position of the car can
be computed. This method is sensitive to noise, even when the background is completely white which
eliminates a lot of disturbances. As example the shadow of the car can introduce disturbances that are
interpreted as circles. To filter out disturbance outliers were removed by simply checking the distance
from them to the center of the previous calculated car center point. If the distance is to far they are
neglected. The new accepted circles must also have roughly the same size as the rear or front circle to
be accounted for. The output from the camera was also filtered with a low pass filter before the Kalman
filter. This was done to filter out some of the disturbances in the camera script which can not be done
using the Kalman filter since this is not its purpose.

7.3 Vehicle

The vehicle is a small scale differential drive robot powered by two 6-12 Volt DC motors. The vehicle
is controlled by an Arduino micro controller due to it being an easy to use solution. The main task for
the Arduino board is to receive the control signals via a bluetooth receiver and apply it to the motors.
The bluetooth module is of model HC-05. It was chosen due to it being able to receive as well as sending
signals, which allows for eventual future extensions such as applying more sensors to the vehicle. The
robot can be seen in Figure 42 and Figure 43. Figure 43 shows the car with the circles attatched which
the camera script looks for to estimate the state.

The model described in (29) is not suitable for implementation since the true control inputs are the
motor speeds of the right and left motors. To solve this there is a simple relation that can be used to
express the model in terms of right and left wheel velocities. The model to be implemented in the real
robot will take the form

xk+1 = xk +
Rwheel

2
(vlk + vrk) cos(θk)Ts

yk+1 = yk +
Rwheel

2
(vlk + vrk) sin(θk)Ts (40)

θk+1 = θk + +
Rwheel
L

(vlk − vrk)Ts

where Rwheel is the radius of the wheel and L the distance between the two wheels according to Figure
1.
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Figure 42: Arduino robot
Figure 43: Arduino robot with camera detec-
tion circles

The motors of the robot did not respond with precision to the control signals. One engine did most of
the time not respond as well as the other to the same input signal. The difference in response to control
inputs was not accurately mapped since the system was too stochastic. A scaling factor was added to
one of the motors to compensate. Since the motors were inaccurate and the behaviour was stochastic no
detailed mapping of velocity and input signal pulls width modulation (PWM) could be made. They were
found to roughly follow a decaying cubic function. This was expected as the losses in energy would not
scale linearly with the speed, but still this proved too inaccurate.

7.4 Extended Kalman Filter

The Arduino robot as well as the camera script is subject to disturbances and can thus not be trusted
completely. This is a perfect case for the Kalman filter. By fusing the model and the measurements the
Kalman filter can output results that are more accurate. The chosen Kalman filter is of the type extended
Kalman filter, since it’s necessary to use a linear approximation of the vehicle model. The Extended
Kalman Filter is formulated similarly to the linear Kalman filter, however it utilizes the jacobians to
linearize the vehicle model.

Fk =
∂f

∂q

∣∣∣∣
q̂k−1,uk

(41)

Hk =
∂h

∂q

∣∣∣∣
q̂k−1

(42)

Here f is the nonlinear vehicle model presented in (29) which generates the predicted state. The mea-
surement function h describes how the state is measured, which in this case would be the vector

h =

xcameraycamera
θcamera

 (43)

which when linearized results in a 3× 3 identity matrix. For the Extended Kalman filter the prediction
is made made as follows. Firstly, the predicted state esimate is:

x̂k|k−1 = f(q̂k−1|k−1, uk) (44)
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And then the predicted covariance estimate is:

Pk|k−1 = FkPk−1|k−1F
T
k +Qk (45)

Here Qk is a tuneable weight matrix. With the above prediction the filter is updated. Firstly, the residual,
the difference between the measured value and the estimated value, is computed as:

r̃k = zk − h(q̂k|k−1) (46)

The residual covariance is defined as:

Sk = HkPk|k−1H
T
k +Rk (47)

Here Rk is a tuneable weight matrix. If the elements of Qk are greater then Rk the measurements are
trusted more than the model and vice versa. The near-optimal Kalman gain can now be computed as:

Kk = Pk|k−1H
T
k S
−1
k (48)

Now the filtered state estimate can be computed using information from both the model and the mea-
surements.

q̂k|k = q̂k|k−1 +Kkr̃k (49)

Now the covariance can be updated for the next iteration.

Pk|k = (I −KkHk)Pk|k−1 (50)

Thanks to the Extended Kalman filter the disturbances can be some what accounted for, and the MPC
recieves more accurate measurements.

7.5 Summary implementation

The optimizer will control a small differential drive Arduino robot. It gets its control signals from the
optimizer which runs on a laptop. The cars states is estimated using a camera in the ceiling and these
measurements are fused with a extended Kalman filter together with the model.
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8 Results from implementation

The Arduino robot managed to drive two simple scenarios. One where it switched lane and another where
it avoided an obstacle. In both cases the input signal had to be amplified. This was because the optimizer
outputted too low input signals, the reason being that since the model used in the optimizer does not
represent the real system well since the motors are too inaccurate. The disturbance of the camera filter
in estimate of angle had a variance of about 1-2 degrees or more. This disturbance is quite high and as
discussed in Section 5.2 the optimizers are very sensitive for angle disturbance. Compared to the variance
used in the simulation in Section 6 was about 0.1 degrees. The two circles are the rear and front circle
that the camera uses to find the state of the car.

8.1 Lane change

Four pictures were captured from different time instances which can be sin in Figure 44. This test was
made without the Extended Kalman filter. This was because at the time of testing the Arduino robot
did not work properly and the response to the input signals were not correct enough so that the camera
measurements were a better estimate than the output from the Kalman filter. The input signal were
amplified 8 times. After much tuning the car managed to make a few lane changes. The bottle neck here
was the car’s motors. In these scenarios the optimizer planned quite well even though the state estimate
was subject to a lot of disturbances. In Figure 45 one can see that the car drives incorrectly in the end.
The reason why the optimizer plans an odd path in the end is because it is not allowed to decelerate to
fast and the robot did not respond to the deceleration phase in the end well enough.

Figure 44: Picture sequence from lane change test
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Figure 45: Plot of driven path for lane change

8.2 Obstacle avoidance

Four pictures were captured from different time instances which can be seen in Figure 46. Some con-
straints were removed to reduce the complexity of the problem on this test. The jerk cost, deceleration
constraint as well as the upper border was removed. This was because the optimizer could not converge in
this complex environment with the added disturbances from the hardware and the camera measurements.

This was shot using the Kalman filter, but the covariance was still very high on the system dynamics.
The covariance ratio was 200/1 for dynamics and camera. The reason that the Kalman was used here
was that the Arduino robot responded quite well on the input signals. A small problem with the batteries
was solved which made it drive much better. With this modification the test on the lane change could
have been improved, but due to lack of time this was not corrected. However, the car model did still not
represent the real system well enough to make a remarkable difference.

The main bottle neck in this test was the optimizer. Unlike the lane change test this is a much more
constrained test. It was concluded that the optimizer planned bad paths in part due to visual validation
from Figure 47, but it could also be observed when running the simulation without the hardware where it
worked fine. This means that with the added disturbance the optimizer could not converge. This caused
the car to drive on faulty input signals from time to time. Mainly this caused the car to drive too far
away from or through the obstacle. This was also the case for this test which is shown in the figures.
The car seams to drive good in the pictures just avoiding the obstacle, but in Figure 47 one can see that
in fact it did not. This is because the obstacle radius plotted has the ego car radius added to it. The ego
car is treated as a point mass. This is how the obstacle avoidance constraint works, see Section 3.4. The
reason why it drives odd in the end is partly because the car did not respond to the optimizer correctly,
but also that in the very end the camera lost track of the car.
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Figure 46: Picture sequence from obstacle avoidance test

Figure 47: Plot of driven path for obstacle avoidance

8.3 Summary results from implementation

The system that was tested had a lot of disturbances. The camera script introduced disturbances on
the states and the model did not mirror the system well since it also had a lot of disturbances. PANOC
did not perform well in the tests since it could not converge well when subject to such much noise. The
scenarios it was tested in was substantially simplified.
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9 Discussion

Three optimizers were evaluated on three different scenarios and they performed differently. The result
from both the simulation results and the implementation that was made is discussed below. Possible
reasons for specific behaviours and strengths are discussed. Possible areas where each optimizer should
be used are also presented.

9.1 Warm start

The importance of warm start in SQP and IP shows how bad they are at global convergence from an
arbitrary starting point. Claims of global solutions has been made on both SQP and IP [1] but the
assumptions made are restrictive and can be hard or impossible to follow if one would build a very com-
plicated problem. Demonstrated by this rather simple example under Section 6.2 the optimizers cannot
converge globally. This project has however not made any big effort in tailoring the algorithms to the
specifications needed for global convergence. In many cases in optimization convergence can only be
guaranteed in a neighborhood of the solution. This is a well known fact about the newtons method which
is used in both SQP and IP for line search. This condition is much easier fulfilled if the optimizer is warm
started as the initial guess generally is a guess in the neighborhood of the solution. This is why it can be
essential to warm start.

One very interesting comparison between SQP, IP and PANOC is that the latter does not perform as
good if warm started. As shown in Figure 9 PANOC converges to a local minimum when warm started
which happens very often in these scenarios used by this project. Why it chooses to do so is because it
converges fully to this local solution within the given tolerances. It finds a minimizer that are within the
tolerances. To tweak the parameters so that this would not happen proved difficult and in many cases
without success. The question that arises is how easy is it to meet the criterias for global convergence
and can it be done in a complicated environment?

Another thing that is favorable with PANOC is that it converges fast both with and without warm
start. This demonstrates how well it converges to at least a local stationary point. PANOC might not
always find a global minima, but compared to IP and SQP which sometimes doesn’t converge at all, it
looks like a very promising algorithm for non-linear optimization problems.

9.2 Sequential quadratic programming and Interior point algorithm compar-
ison

The discussion regarding which of SQP or IP is a better optimizer is a hard and diverse topic. There
seems to be few cases where it’s clear if one would perform better than the other. Many comparisons has
been made that quickly becomes outdated since improvements are made on these algorithms every day.
One of these examples is that earlier SQP was preferred in cases where warm start was possible since
this was not a possible option with IP method, but this has since become a possibility. Now choosing the
right algorithm not that simple. The best way to find out which one is better seems to be testing both
of them on the given problem.

The IP algorithm has been claimed to work better for big scale problems as it works on the interior
of the problem unlike SQP which works on the null space of the active constraints. One trend is that the
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SQP method work better in highly constrained cases since it works on the borders of these which can
give it an easier path to the optimum. It outperforms IP in many cases if the ratio num. constraints

num. variables is
high[1]. One such claim is made by [19] who did tests which proved this. Therefore a similar comparison
was made for this project. The problems in Section 6 has 100 decision variables and 348 constraints.
When running the optimizers on the problems IP has about twice as many active constraints. This is
measured with the median of all the non-zero Lagrange multipliers. Therefore according to [19] IP should
perform significantly worse. When looking at the computation time graphs under Section 6 it looks like
that this is not the case. They seem to perform similarly in terms of computation time. However, this
is not clear in the plots, but IP does perform a bit worse than SQP. It drives the car much slower from
start to finish which means that even though each computation is almost the same as for SQP in terms of
computation time it does not converge as much as SQP does. Furthermore, the paths seems to be of less
quality. This might be because of that the optimal solution lies on a inequality constraint. For example
the optimizer tries to put v to vmax. IP keeps the solution away from the inequality constraints due to
the barrier functions. To converge closer to the constraints the algorithm needs to compute much longer
to get a sufficient decrease in the penalty parameter. The results could therefore be less accurate than the
SQP method for the same computation time if the solution lies near a highly constrained area[21]. This
also makes the IP method sensitive to solutions near constraints as it becomes ill conditioned. This is
something that was also experienced in this project were IP seemed to be more sensitive to correct hyper
parameters and penalties set on the environment. The problems in this project are quite constrained and
especially in some areas as in the scenario Overtaking maneuver of two moving obstacles when the car
needs to drive in between two cars where the gap is closing. This was see in Section 6.

9.3 Proximal Averaged Newton-type method for Optimal Control

A deeper comparison of PANOC and other optimizers was not found. The comparison has to be made
with experiments in this project and comparing the operators in the algorithms which are well studied.

In optimization it is very common to use some variant of Newton’s method for the line search which
SQP and IP uses in this project. These methods are very good at solving smooth mildly constrained
functions. The forward backward splitting method is a general method, which is good at solving non-
smooth, constrained and large-scale problems. Evaluating the proximal operator and minimizing the
small convex optimization problem, see Section 2.4, often admits closed form solutions [22]. However
they often converge slowly to stationary points which may be the reason why it has not been used in the
same extent as SQP and IP. PANOC has, as described in Section 2.4, found a clever way to combine this
with quasi-newton steps to achieve a much faster and more robust convergence.

PANOC was not very reliable when it came to global convergence and in some cases even local con-
vergence. It outputs more bad paths than both SQP and IP. PANOC is very dependent on a well tuned
penalty and is very sensitive to high penalties. In some areas or given some disturbances the car can
end up in highly constrained areas where the penalty explodes which might explain why it sometimes
does not converge at all or not even locally. Why it is bad at converging globally is harder to explain.
Attempts were made to get a more reliable and predictive result through giving the algorithm more time
and iterations. No sweet spot was found and letting it compute for longer time, odly enough, often
resulted in worse paths.

PANOC seems to have a problem converging optimally in these environments. Even in simpler en-
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vironments it showed the same behaviour. One possible theory why this happens is that the step û in
(19) is a bad estimate for the smooth and non-smooth parts combined, h+ g, see Section 2.4. Once the
projection onto the feasible space is made the step is reduced significantly. This theory is backed by the
fact that the number of iterations in PANOC are a lot more than for the other algorithms, see Section
6.2. It may need this many iterations since the projection onto the non-smooth part g keeps reducing
the step. Proximal methods sit at a higher level of abstraction than classical optimization algorithms
like Newton’s method. This is since the shape of the non-smooth part g is not known and are therefore
hard to minimize. SQP for example does not use the non-smooth parts explicitly but aproximates them
and this has shown to work quite well if the optimizer is close to a solution. Projecting the step given
by h onto g does not mean it is a suitable step for g. It might be so that projecting onto g keeps it from
reaching an optimal point by bouncing it around the minimum. This could explain why PANOC does
not get a better result when it is allowed to do more itterations. It is known that the proximal operator
is sensitive to ill conditioning [22]. If g is ill conditioned around û then projecting it onto g would clearly
be a hard thing to get right.

Why PANOC sometimes get worse with more iterations could be explained with that since the ob-
jective function keeps changing due to that the penalties and the λ variables changes for each outer
iteration. This is only explains it partly. At some point given enough iterations it should converge given
a significant small step size, but this is not the case. In PANOC it’s not possible to change the step size
and thus this theory could not be tested. However, no deeper investigation was made on the criteria that
the authors of PANOC stated for global convergence. SQP and IP on the contrary gives better results
when allowed to compute longer, which is the expected behaviour.

9.4 Recommended use

PANOC is best used in time critical systems due to its superior convergence rate. It can also be used
in highly constrained environments and even non-smooth and nonlinear ones. It should not be used in
these difficult environments if the system is unstable or if the requirements on optimal output is high
since it is not reliable. The output must be checked so that it meets the specified requirements PANOC
is a good choice when there is no way to warm start the optimizer with a good initial guess.

SQP is best used in medium to highly constrained environments that are not time critical. Much
computation time can be given which improves the quality of the solution and is therefore good for sys-
tems that are unstable or the need for optimal solution is high. For mildly constrained environments the
need for warm start is not that high. The algorithm can be used in nonlinear, non-smooth environments
given that it is warm started with a guess close to the solution.

IP is not recommended for medium to highly constrained environments. It should not be used in very
non-linear or non-smooth environments. If the solution is located close to or on difficult constraint borders
IP will have a hard time converging, which could imply that another optimizer would be preferable in
those cases.

9.5 Collision avoidance system

The cone approach for obstacle avoidance was effective. It allows the ego vehicle to effectively plan ahead
a path so that the next control input takes it to a place where it is less likely to collide. The non-linear
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cone seems to not slow down computation speed in either SQP, IP or PANOC compared to the linear
collision cone. This was concluded as they performed as well when the scenario Overtaking maneuver
of two moving obstacles was simulated with obstacles on the intersection points with 0 velocity which is
essentially how the non-linear collision cone works. It does not treat dynamic obstacles as dynamic, but
static obstacles projected forward in time. This is why this comparison and conclusion could be made.

9.6 Model predictive control in autonomous vehicles

SQP and IP are not good candidates for implementation in time critical systems or systems with low
computational power. They will not be fast enough and the environment modeling has to be restricted
substantially to ensure that they converge. PANOC does show great promise since it seems to handle
difficult environments quite well and is fast enough. It is still quite sensitive to the magnitude of distur-
bances that could be expected in real life. The environment should also be made as simple as possible as
PANOC is not reliable in complex environments. In very controlled settings PANOC could work well if
safety is not of concern.

There is a lot of papers that uses MPC to drive cars in simulations. One might get the impression
that it is a perfect solution, but it still has many flaws. For example it is hard to imagine MPC in a robot
like lawn mowers. The reason is that the environment is simply to complex to model. For PANOC to
work in such a setting, the environment has to be modelled in a clever way that reduces its complexity.

PANOC is groundbreaking in the field of non-linear optimizers. While it may not yet be able to
tackle hard problems with robustness the opportunities it opens are wast. The improved computation
time and the promise it has shown on convergence in non-smooth and highly non-linear environments is
impressive.

9.7 Ethics and the environment

Autonomous vehicles is a topic where ethical questions are ever present. How can a computer take ac-
tions that don’t cause humans to come to harm. One way this is taken into account in this project was
by not having border constraints as hard constraints as mentioned in Section 3.5. The reason for not
having hard constraints on the border was an active choice. Firstly the argument could be made that the
vehicle should not be allowed to leave the road, since this would mean a loss in resources due to damaged
equipment. This is a valid point, but it raises another question, if the situation occurs would it be better
to save the equipment or people’s lives? Assume that the ego vehicle is autonomous without any human
supervision, further assume that it is driving in factory environment. If a person would suddenly appear
in the path of the vehicle it’s fair to argue that the vehicle should try to save the person rather than
save itself. So this is highly a question of ethics. Simply put, not all scenarios where it’s possible to
leave the road are bad ones. There could definitely occur scenarios when it’s preferable for autonomous
vehicle to leave the road rather than crash into obstacles or persons. Consider the scenario when the
vehicle is going at max speed and a suddenly appearing obstacle appears. Making a panic maneuver
could lead to devastating consequences and loss of life. In this project the following has been considered;
obstacles could be considered humans and collision with these should thus be avoided with all means
possible. The vehicle leaving the road and crashing into a ditch or a wall is, with this mentality, con-
sidered preferable. This is the primary reason for using soft constraints on the road boarder in this project.
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Further, with MPC one could choose to optimize towards minimization of energy consumption. The
vehicle could therefore be able to drive further on less energy. This has the potential to greatly improve
the emissions vehicles cause and therefore help the environment.

9.8 Summary of discussion

It was found that warm start is essential for IP and SQP to converge, while PANOC is less effected by
this. PANOC see some benefits from cold-start since it avoids local minimas if cold-started.

PANOC was the superior in regards to speed, followed by SQP and lastly IP. Further, IP doesn’t
converge to solutions located on a inequality constraint, while SQP and PANOC have no problem con-
verging to a reference state.

PANOC is best for time critical systems, since it’s very fast. Albeit unreliable in some instants. SQP
is best used in highly constrained environments that are not time critical, since it’s slower than PANOC.
IP is not recommended in this type of scenarios since it has a hard time converging to reference states
placed on the constraints, further it’s also the slowest algorithm. IP could work well if the system has a
lot of decision variables.

Complex environments makes it hard to recommend MPC for use in self-driving vehicles. For vehicles
driving in simple environments MPC could however be a valid choice, especially with algorithms like
PANOC which is fast enough for embedded applications.
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10 Conclusion

This project evaluated the optimizers sequential quadratic programming (SQP), interior point method
(IP) and Proximal Averaged Newton-type method for Optimal Control (PANOC) in realistic scenarios
for control of a vehicle on a road. The scenarios were simulated and then PANOC was further evaluated
on an Arduino robot.

PANOC had a superior computation speed and converge more often than the others in highly con-
strained, nonlinear, non-smooth environments. This is most probably because of the proximal operator
used in the algorithm that converges better than the quasi newton method used in SQP and IP in these
nonlinear and non-smooth environments. It is almost performing equally well with and without warm
start and handles disturbances good, demonstrating its superior convergence ability on these types of
problems. However it does not converge optimally often and is prone to get stuck in local minimas.

SQP and IP converges more optimally and with much higher robustness if warm started close to the
optimal solution. They are very slow compared to PANOC and very sensitive to disturbances when the
environment is highly constrained, nonlinear and non-smooth. They must be warm started with a guess
close to the solution to work. They are also very dependent on the correct tuning of constraints. SQP
does however, converge to a more optimal solution than the others, when it’s given enough time. In more
mild environments SQP and IP can be cold started, require less time to converge, be more robust and
converge more optimally.

PANOC should be used in systems which are time critical and if it is highly constrained it must be
a stable system since PANOC is not predictable. SQP and IP should be used in milder environments
which are not time critical. If the environment is highly constrained they must be warm started with a
good initial guess. SQP is preferred over IP in environments with medium to high number of constraints
compared to the number of decision variables[19].

From this thesis a lot of doubt has been raised whether or not optimizers are good enough for imple-
mentation in autonomous vehicles if the environment is complex, stochastic or nonlinear/non-smooth. If
MPC shall be used in self driving vehicles the setting it drives in should be controlled or simplified and
the system should be stable. Furthermore, precautions must be taken to validate that the output from
the optimizers have converged in a desirable manner.
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11 Future work

One of the biggest issues was the bad and unreliable convergence. It would be interesting to put more
emphasise on global convergence guarantees for PANOC and investigate what limitations this will pose
on the problem if implemented. PANOC had a very odd behavior when it was allowed to compute for
longer periods of time. When the computation time were increased it performed a lot worse. No reason
for this behavior was found. If this is solved one could sacrifice some computation time for accuracy just
like one can do with IP and SQP which in many cases would be preferable.

It might be hard to improve on the optimizers convergence capability. The chance of global conver-
gence is increased with reduced complexity of the modeled environment. It would therefore be interesting
to see if it could be modeled in another way. Could some parts of the environment be handled by other
sensors to ease the job of the optimizer? Could some sort of method fusion or sensor fusion be used so
that the optimizer has a milder environment to work with?

It would also be interesting to further evaluate PANOC’s performance in real time applications with
better hardware. This would give an even better understanding of the very promising algorithm by
eliminating some hardware related error sources. Those error sources were inaccuracies in the hardware
that could not be modeled.

Lastly more variety of simulation problems could be developed. If a deeper knowledge and under-
standing of these problems a more accurate evaluation and comparison could be made.
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