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Abstract 
 

   This thesis work investigates the potential performance of the future co-location satellite mission, 

GRASP, by presenting the simulations in the MatLab environment. The purpose of GRASP is to 

assess the potential performance of geodetic techniques combined in space. One of the satellites, 

acting as a GRASP, of different satellite constellations; like Globalstar, Iridium and Orbcomm, was 

tested for different orbital height, inclination, eccentricity etc. LAGEOS-1 satellite was also tested 

for the higher altitude of 6000 km. NORAD's (North American Aerospace Defense Command) 

TLEs (Two-Line Element Sets), containing the mean orbital elements, were used to generate orbital 

state vectors of position and velocity for the selected satellites by performing orbit propagation with 

the SGP4 (Simplified Perturbation Models) as implemented in 'Revisiting Spacetrack Report #3'. 

The Globalstar, Iridium, Orbcomm and LAGEOS-1 satellites were selected as the co-location 

satellite and their coordinates were determined by the GPS constellation and also by the VLBI 

network of ground stations. One day orbital data with time steps of 1 minute and 1 second were 

generated by the SGP4 propagator and passed to the MatLab code for coordinate determination by 

GPS and VLBI respectively. The 30 GPS satellites were taken from the GPS constellation for 

higher visibility of the co-location satellite. A VLBI network of 21 existing stations was chosen 

such that it is spread throughout the globe to provide maximum visibility and improved coordinate 

determination for co-location satellite.                    
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1 Introduction 

1.1 GRASP overview and mission description 

 

   The Geodetic Reference Antenna in Space (GRASP) is a proposed micro-satellite mission concept 

devoted to the improvement of all the geodetic techniques like GNSS, VLBI, SLR, and DORIS. It 

was proposed to NASA in September 2011 and is expected to launch in early 2016 for the duration 

of 3 years. The GRASP spacecraft consists of four geodetic sensors devising it a space-based co-

location science instrument [1]. The Terrestrial Reference Frames (TRF) and Celestial Reference 

Frames (CRF) are established and maintained by these space geodetic techniques. All these 

techniques have their own strengths and weaknesses and are used together to complement each 

other. A co-location system is a best way to nullify their weaknesses. The advantages and 

disadvantages of an individual technique make it vulnerable to be used for the variety of geodetic 

observations. A co-location system will have the ability to send artificial VLBI signals, receive 

GNSS and DORIS signals and reflect SLR signals opening new horizons for understanding the 

Earth and Space by improving the CRF and specially TRF [26].          

 

1.2 Innovative instruments on GRASP 

       

  GRASP is a standalone geodetic science instrument in space carrying all the four space geodetic 

sensors to constitute a co-location system. The geodetic sensors includes: Global Navigation 

Satellite System (GNSS), Very Long Baseline Interferometry (VLBI), Satellite Laser Ranging 

(SLR), Doppler Orbitography and Radio-positioning Integrated on Satellite ( DORIS). A short 

description about each of these techniques is given in the following section. 

1.3 Important science goals to achieve 

   

The immense and far-reaching science goals to achieve from a functional GRASP mission include 

[1]: 

  

• Mission will find relationships between several geodetic techniques in an agreeable reference 

frame.            

• The data obtained by the observation in existing geodetic techniques form the basis of TRF. An 

optimal TRF realization requires joint processing of data from several techniques. GRASP will 

implement the joint processing of data for this purpose. 

• GRASP will increase the precision for all precise GNSS, DORIS, SLR and VLBI applications. 

• Many science missions like OSTM, ICESAT-II, SWOT, DesDynI, GRACE-II etc., depends on 

GNSS for precise science measurements. GRASP will improve the accuracy for these missions. 

• GRASP will facilitate the adjustment and constant data processing from the growing diversity of 

GNSS. 

• GRASP will provide steady measurements of sea surface height, ice elevations, gravity field 

variations etc.   

 

Terrestrial frames are developed through the analysis of data from Earth-orbiting satellites. 
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There are various geodetic satellites orbiting the Earth which sends observed data to the ground 

tracking stations. The terrestrial frames are developed by the analysis of these observed data [2]. 

Every geodetic technique inherently produces more accurate measurements in their natural 

reference frames that have unique advantages and disadvantages concerning the geodetic technique 

so frame interconnections are necessary to take advantage of the unique contributions of various 

geodetic techniques. This can be achieved by a co-location satellite system that can combine all 

existing geodetic techniques into a single satellite [1] .              

 

A short introduction of geodetic techniques implemented on GRASP, is presented below. GNSS and 

VLBI are discussed in detailed in Part 1 and Part 2, respectively, as they are the primary techniques 

used in this project work.   

 

DORIS: Doppler Orbitography and Radio-positioning Integrated by Satellite, a French satellite 

system, is used for the orbit determination of satellites and positioning of the ground stations. In this 

system the satellite receives signals, emitted by beacons installed on the ground, and sends back to 

the ground which is slightly changed in frequency by the Doppler Effect. It is included as a host 

research project on several space missions like Spot-2, -3, -4, -5, Topex/Poseidon, Jason, ENVISAT 

and CryoSat [3]. 

 

SLR: Satellite Laser Ranging is a ranging system that uses ultrashort laser pulse to locate the 

satellites. Satellites equipped with retro-reflectors, reflects the laser signals back to the Earth station. 

The measurement of round trip time of flight of the laser signal gives a millimeter level precised 

range measurements for the satellite. These range measurements provide range data for accurate 

orbit determination and science products for other host technologies.             

  

GNSS: Global Navigation Satellite System is a navigation system used to determine the 

geographic position of an object located anywhere on the surface of the Earth. It determines the 

geographic location by the help of triangulation that require three satellites in view of the receiver 

for its geographic position determination. A fourth satellite is also needed to minimize the timing 

error and a more accurate position determination.  GPS (Global Positioning System), GLONASS, 

GALLILEO, COMPASS etc., are various GNSS techniques existing today, but the GPS has been 

used in this project work because of its dense network of satellites and is widely used by civilians 

all around the world. Apart from position determination, GNSS can also be used for various 

geodetic applications like weather prediction, estimation of tectonic plate motion etc. A detailed 

description of how the GPS can be used for spacecraft position determination is discussed in 

Chapters 5 and 6. 
 

VLBI: VLBI (Very Long Base Line Interferometry) is an interferometric technique developed for 

radio astronomy with the purpose to improve the angular resolution. It is an astronomical 

interferometer that consists of two or more telescopes, relatively at very large distances of several 

thousands of kilometers, combined together to present a telescope of the same diameter as the 

distance between them, thus improving the angular resolution of the system. The VLBI technique 

was primarily developed for the observation of extragalactic radio sources such as Quasars but 

nowadays it is also been widely used for the observation and tracking of near-Earth and deep-space 

spacecraft. A detailed description about principle of VLBI observation and how it is used for 

spacecraft tracking is discussed in Chapter 10.                
 

As there is no existing co-location satellite, so some existing Earth orbiting satellites were chosen in 

this project to be used as a co-location satellite. The chosen satellites are given in the Table 1 with 

their orbital information and names in all three formats. 
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Table 1: satellite’s names and orbital information 

 

NORAD id Int'l code Name 

Period 

(minutes) 

Inclination 
(degrees) 

Perigee 

(km) 
Apogee 

(km) 
Eccentricity 

37744 2011-033F GLOBALSTAR 

M089 
114.1 52.0 1,420.2 1,421.3 0.0000607 

 

24795 1997-020D IRIDIUM 5 100.4 86.4 782.8 786.9 0.0002194 

 

25986 1999-065G ORBCOMM 

FM 34 
100.7 45.0 795.5 802.9 0.0003941 

 

8820 1976-039A LAGEOS 1 225.5 109.8 5,844.8 5,955.6 0.0045068 

 

 

                                     

The eccentricity given in Table 1 is taken from the TLEs of respective satellites at a particular epoch. 

The other information is taken from the website www.n2yo.com. At other epochs there might be a 

slight change in the eccentricity due to perturbation effects that can be neglected. A TLE (Two-Line 

Element Set) is a format of two lines of 69 characters each and contains mean orbital elements of 

the satellite that describes the orbit of the satellite. The TLEs, for each of the satellites, used in this 

project are given below in Table 2. 

 

                                Table 2: TLE (Two-Line Element Set) of selected satellites                                  
 

Sr. no.  TLE (Two-Line Element Set)   

1 37744 

1 37744U 11033F   12058.78499768 -.00000086  00000-0  10000-3 0  2034 

2 37744  51.9918 214.5920 0000607 111.9935 248.0987 12.62268085 31388 

2 24795 

1 24795U 97020D   12208.44591533  .00000196  00000-0  63036-4 0  1666 

2 24795  86.3973 345.7566 0002194  59.6702 300.4729 14.34220345797181 

3 25986 

1 25986U 99065G   12208.57542827  .00000430  00000-0  21960-3 0  4456 

2 25986  45.0419 255.4887 0003941 299.0451  61.0004 14.29832474659703 

4 08820 

1 08820U 76039A   12207.58044721  .00000020  00000-0  10000-3 0  3233 

2 08820 109.8341 240.9978 0045068 308.7224  50.9547  6.38664782589488 

 

 

The detailed description about TLE is given in Chapter 3.

http://www.n2yo.com/
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2 Coordinate Systems 
 

 A coordinate system is defined by specifying its origin, a fundamental plane and the preferred 

direction [4]. There are many coordinate systems that are used in satellite orbit determination and 

satellite geodesy. The coordinate systems that are used in this project are described here. 

     

 

2.1 Earth Centered Inertial (ECI) 

  

  The most common system in astrodynamics is the Earth Centered Inertial (ECI) system. It’s a non-

rotating coordinate system centered at the center of mass of the earth. Non-rotating means, it does 

not move with the rotation of the Earth to keep itself fixed with respect to the Earth rather it remains 

fixed and the Earth rotates beneath it. The fundamental plane for the ECI system is the Earth's 

equatorial plane. The x-axis points in the principal direction of the vernal equinox, the y-axis points 

90 degrees to the East and the z-axis passes through the North Pole. 

 

 

                           Figure 1: The Earth-Centered Inertial Coordinate System. [5] 

 

 

The orbital motion of an object in space is defined by equations of motion which are very 

convenient to describe in non-rotating ECI frame as compared to rotating coordinate systems. That 

is why SGP4 utilizes the ECI frame to generate the position and velocity vectors of a satellite in 

orbit. SGP4 is an extension of SGP (Simplified General Perturbation) model, an orbit propagator 

that generates realistic orbital path of the satellites by propagating TLEs (Two-line element sets), 

generated by NORAD (North American Aerospace Defense Command), forward in time. The 

detailed description about TLE is presented in Chapter 3 and the detailed description about SGP4 is 

presented in chapter 4. The ECI frame is also very convenient to indicate directions towards other 

celestial bodies.  
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2.2 Earth Centered Earth Fixed (ECEF) 

 

The Earth Centered Earth Fixed (ECEF) coordinate system is a rotating coordinate system that is 

rotating with the Earth. It is unlike the ECI system that is non-rotating with the Earth. The ECEF 

system is centered at the center of the Earth with the principal axis pointing towards the intersection 

of the prime meridian with the equator. 

 

                                           

 

                           

 

 

 

 

 

 

 

                 

 

                   

 

                           

                         Figure 2: The Earth Centered Earth Fixed Coordinate System. [5] 

   

2.3 Topocentric Coordinate System 

In the topocentric coordinate system the observer or a receiver is at the origin of the system. The 

fundamental plane is the local horizon, that is, a tangent to the surface of the observer on the Earth. 

The location of an object in this system is defined by two angles, Azimuth and Elevation. Azimuth 

is the angle that is measured eastward from the North to the object meridian. Elevation is the angle 

measured positively upward from the observer's local horizon to line of sight of the object. The 

distance measured from the observer to the object is called the Range [24].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                     Figure 3: The Topocentric Coordinate System.  [25]                                             
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2.4 Coordinate transformation 

 

The orbital state vectors generated by the SGP4 are in the ECI coordinate system. Terrestrial objects 

are more conveniently represented in the ECEF coordinate systems. The ground tracks of satellites, 

projected on the Earth's map, are plotted in ECEF system after conversion from the ECI system. As 

an example, Figure 4 depicts the ground track of Globalstar satellite plotted in the ECEF system for 

a period of one day. 

 

                       Figure 4: Groundtrack of Globalstar satellite plotted in ECEF system.  

                                                              (Plotted for one day)   

  

An important point to be noted here is that the satellite's orbit are more easily interpreted as circular 

or elliptical when plotted in the ECI system. To illustrate the difference between the orbits presented 

in ECI and ECEF frames, Figures 5 and 6 are given below: 
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                             Figure 5: Globalstar orbit in the ECEF system.   

 

                                 Figure 6: Globalstar orbit in the ECI system. 

 

The orbital period of the Globalstar satellite is 114.1 minutes, so the satellite completes 12.6 

revolutions per day. In the figures above, the satellite's orbits are plotted for duration of one day so 

there are 12.6 orbits in each figure. These orbital passes are generated by the SGP4 propagator that 

includes the perturbations effects on the satellite like earth's gravity and atmospheric drag. This 

perturbation effect is more clearly viewed in Figure 6 where the plotted points do not overlap on 

each revolution. If the perturbation effects are excluded the points should coincide on each 

revolution.    

 

Form Figures 5 and 6, it becomes clear that the Globalstar orbit is more clearly seen as circular in 
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the ECI system. Satellite observations from a site are done in the ECEF system which is more 

useful than in the ECI system, so the orbital state vectors in the ECI system generated by SGP4 are 

converted to the ECEF system before doing further calculations. The orbital state vectors generated 

by the SĜP4 consists of both the position and velocity vectors but only the position vectors are used 

in this project to determine the satellite coordinates by GNSS and VLBI. So the transformation 

method for the position vectors is described below.      

 

The transformation of the position vector from the ECI to the ECEF system can be achieved by 

using the following matrix equation [6]:    

 

                                                                     recf  =  [T] reci                                             (2-1)                      

 

where T is the transformation matrix and is given by [6]     

 

                                                         

                                                            

A=[
cosθ sin θ 0

−sin θ cosθ 0

0 0 1 ]
                       (2-2)                                            

 

Here θ denotes the Greenwich sidereal time at a specific epoch which is given by [6]   

 

                                                                   

                                                                 θ = θg0 + ωe t                                      (2-3)                      

 

here θg0 indicates the Greenwich sidereal time at 00:00:00 UT, ωe  denotes the inertial rotation rate 

of the Earth, and t is the time duration since 0 hours UT  [6]. 

    

 

The Globalstar satellite travels West to East in the same direction as the Earth rotation. There are 

also many satellites that travel in the opposite direction i.e. from East to West. So the orbits can be 

divided in two categories, prograde and retrograde, depending on the direction of motion of satellite. 

These categories are defined below: 

 

Prograde orbit: A satellite having an orbital inclination of less than 90° and travels in the same 

direction as the rotation of Earth around its own axis i.e. from West to East direction, this orbit is 

called a Prograde orbit. 

 

This can be explained by Figure 7 on next page. 
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                                                Figure 7: Illustration of a prograde orbit   

               

This figure illustrates the prograde orbit of the GLOBALSTAR satellite having an inclination of 52° 

which is less than 90°.   

 

Retrograde orbit: A satellite having an orbital inclination of greater than 90° and travels in the 

opposite direction as the rotation of Earth i.e. from East to West direction, the orbit is called a 

retrograde orbit.     

The figure below illustrates the retrograde orbit. 

                                              

                                         

                                             Figure 8: Illustration of a retrograde orbit  
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3 Two Line Element Sets (TLEs) 
 

Six orbital elements are used to describe the orbit of an Earth’s satellite and its orientation in space. 

A Two Line Element (TLE) set is a format that is used to describe the position of a satellite at a 

particular instant of time. This format consists of two lines of 69 characters of data containing the 

mean orbital element that is why it is called 'Two line Element sets'. The two TLE lines are usually 

followed by a title line that contains the satellite's name. This format is specified by the NORAD 

(North American Aerospace Defense Command) which is also responsible for generating and 

maintaining TLEs of thousands of Earth orbiting satellites and space debris. The satellite in its orbit 

is perturbed by many forces like atmospheric drag, Earth oblateness and lunar-solar perturbations. 

These perturbations change the shape and orientation of the orbit. The NORAD TLEs consists of 

mean orbital elements that average out these perturbation effects in a specific manner [20]. The 

right ascension and declination data of a satellite is taken, by observing the satellite by an optical or 

radio telescope, by SLR technique or other advanced observing techniques, for a short time period. 

These data is then passed through computer software that generates mean orbital element sets and 

other necessary parameters needed for the TLEs.        

 Satellite motion described by these mean orbital elements can be applied to orbit propagation 

softwares for predicting the trajectory of the satellite. The important point to be noted here is that 

during orbit estimation the orbit propagator must include the perturbing effects in the same manner 

as were excluded during the TLE generation otherwise the erroneous estimations will be achieved 

[7].      

 

A TLE example for the International Space Station (ISS) is shown below: 

 
ISS (ZARYA)              

1 25544U 98067A   12069.11980714  .00018689  00000-0  24053-3 0  1541 

2 25544  51.6413 263.8320 0017773 135.4419 323.7930 15.58923824762412 

The description of the lines is as follows: 
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Line 1 

                                            Table 3:  TLE Line 1 Format Definition [8] 

 

Column Description 

01 Line Number of Element Data 

03-07 Satellite Number 

08 Classification 

10-11 International Designator (Last two digits of launch year) 

12-14 International Designator (Launch number of the year) 

15-17 International Designator (Piece of launch) 

19-20 Epoch Year (Last two digits of year) 

21-32 Epoch (Day number and fractional portion of the day) 

34-43 First Time Derivative of the Mean Motion divided by 2. 

 or Ballistic Coefficient (Depending on ephemeris type) 

45-52 Second Time Derivative of Mean Motion divided by 6. (Blank if N/A) 

54-61 BSTAR drag term if SGP4 general perturbation theory was used. 

 Otherwise, radiation pressure coefficient. 

63 Ephemeris type 

65-68 Element number 

69 Check Sum (Modulo 10) 

                                      

                                        

Line 2 

                                          Table 4:  TLE Line 2 Format Definition [8]                                               

 

Column  

01 Line Number of Element Data 

03-07 Satellite Number 

09-16 Inclination [Degrees] 

18-25 Right Ascension of the Ascending Node [Degrees] 

27-33 Eccentricity (decimal point assumed) 

35-42 Argument of Perigee [Degrees] 

44-51 Mean Anomaly [Degrees] 

53-63 Mean Motion [Revs per day] 

64-68 Revolution number at epoch [Revs] 

69 Check Sum (Modulo 10) 

                                      

                                      

                                                                                                                                                                                             

The information from the above given example of TLE for 'ISS' can be extracted with the help of 



3. Two Line Element Sets (TLEs) 

Simulation of a Satellite System for Co-Location in Space 

Page | 12  

 

Tables 3 and 4 as follows: 

 

Line '0' is preserved for the satellite's Catalog Number or International ID. According to [17] there 

is a conflict in the choice of name's length which can be 11, 12 or 24 characters long depending on 

the requirements of some satellite propagation softwares. It can also be a Satellite's Common Name 

provided by some TLE distributors as an additional option for the propagating softwares. For the 

ISS TLE it is ISS (ZARYA). 

 

Line 1 consists of 69 character spaces that start with the field of Line Number which denotes the 

line number of the line. For Line 0 the Line Number is not mentioned. First field of line 2 is also the 

line number. 

 

The second field of line 1 and 2 are also same. These field represents the satellite's number that 

consists of characters 3 to 7. 

Character 8
th

 is the 3
rd

 Field of line 1 named 'Classification'. It can be 'U' for unclassified data and 

'C' for classified data. All the publicly available TLEs have 'U' for unclassified data. 

  

Fields 4
rd

, 5
th

, and 6
th

 of line 1 are reserved for the 'international designator' with characters 10 to 11 

for last two digits of the launch year, characters 12 to 14 for launch number of the year and 

characters 15 to 17 for the piece of launch respectively. 

For ISS the International designator is '98067A'. Here, 

'98' is the Launch year 

'067' is the 67
th

 launch during the year 1998, and 

'A' is the primary payload. Secondary payloads and launch vehicles are indicated by the subsequent 

letters like B, C, D, E, etc. [9].    

 

The 7
th

 and 8
th

 fields of line 1 are reserved for the epoch at which the TLE was generated. 

Characters 19 to 20 shows the first two digits of the epoch year. Characters 21 to 32 shows epoch 

day and the fractional portion of the day. The month, day, hour, minute and seconds information can 

easily be extracted from these fields. The time is expressed in UTC format [9]. In the above TLE for 

ISS the Epoch is '12069.11980714', which can be expanded as: 

Year=2012 

Month=03 

Day=09     

Hour=02 

Minute=52 

Seconds=31.3369 

 

Characters 34 to 43 represents the first time derivative of the mean motion divided by 2 in units of 

revolutions/day² and reserved for the field 9
th

 while characters 45 to 52 represents the second time 

derivative of the mean motion divided by 6 in units of revolutions/day³ and reserved for the 10
th

 

field. Both of these fields are utilized only by the simple SGP (Simplified General Perturbation) 

model but not by the SGP4/SDP4 model and provides no real scope [8]. SDP4 is an extension of 

SGP4 and it is described in Chapter 4.      

 

Field 11 (characters 54-61) of line 1 represents the ' B-star drag ' term.   

B* (B-star) drag term is a SGP4 type drag coefficient that assess the atmospheric effects on the 

motion of satellites. It is calculated by the formula [9] 
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B*=

C D ρo A

2m                           (3-1) 

where 

CD= Drag coefficient 

ρo= Atmospheric density 

A= cross-sectional area of satellite 

m=mass of the satellite 

 

B* is actually the adjusted value of B, Ballistic coefficient, by the atmospheric density ρo. 

According to aerodynamics theory, every object has a ballistic coefficient which is mathematically 

calculated by [8]: 

                                                      
B=

C D A

m                                    (3-2) 

 

The ballistic coefficient shows the susceptibility of an object to the atmospheric drag, the higher the 

B, the more it is susceptible to the drag. 

B* is an adjusted value of B using the reference value of atmospheric density, ϱo [8] 

                                                         
2

oBρ
=B*                              (3-3) 

Unit of B* is (Earth Radii)
-
¹. 

 

The B* term in the TLE of ISS is 24053-3 and it can be read as +0.24053e-3. A decimal point is 

assumed before the first digit and if there is no sign before the first digit, the + sign is assumed. The 

last digit is reserved for the exponent of base 10, positive if no sign before the last digit. 

       

12
th

 Field of line 1, character 63, is reserved for the 'Ephemeris type' that is the orbital model used 

to generate TLE data. The TLE Ephemeris Type is always set to zero for distributed data, although 

STR#3 suggests the following assignments: 1 = SGP, 2 = SGP4, 3 = SDP4, 4 = SGP8, 5 = SDP8 [7].       

 

Field 13
th

, characters 65-68, is reserved for the 'Element Set Number' which represents the TLE 

count since the launch of the satellite. The Element Set Number of a specific satellite is incremented 

every time whenever a new TLE for that satellite is generated. This helps to keep track the order of 

the TLE for that satellite and to differentiate it from the other TLEs of same satellite. Practically 

sometimes it happens that the 'Element Set Numbers' does not get synchronized with the previous 

TLEs mainly due to switching of operation between the primary and the backup Space Control 

Centers. This makes hard to express whether we have all the elements sets for a designated satellite 

[8]. In the line 1 of above TLE, field 13
th

 is 154
th

 which represents the 154
th

 TLE generated for the 

ISS since its launch.           

 

The last character, 69, of line 1 and line 2 represents the checksum module. The purpose of this 

checksum character is to provide a simple error checking 'modulo-10' mechanism for the TLEs. 

According to [7], only a 90% detection rate is provided by the modulo-10 checksum for uniformly 

random errors. Also the values assigned to the characters are ambiguous, particularly the +sign is 

taken as 0. Having the checksum character, it is wise to look at other features in the TLE, such as 

compare the satellite number on each line, check the line numbers of each line as line one should 

start from '1' and line two from '2' etc. [7].      

 

How the last character in both lines is calculated by the modulo-10 can be described, by considering 
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the line 1 of ISS's TLE given above, as follows: 

 

 

 Add all the numbers given in line 1. 

 Take letters, ‘. ‘and  ' + ' as “0”. 

 Take ' - ‘as “1”. 

 the last digit of summation is the Checksum   

 

here is the example: 

 

 1 25544U 98067A   12069.11980714  .00018689  00000-0  24053-3 0  1541 

  

 

1+2+5+5+4+4+0+9+8+0+6+7+0+1+2+0+6+9+0+1+1+9+8+0+7+1+4+0+0+0+0+1+8+6+8+9+0+0

+0+0+0 +1+0+2+4+0+5+3+1+3+0+1+5+4 = 161 

 

the last digit of the sum 161 is 1 which verifies the checksum modulo-10 of line 1. 

  

Line2 

 

2 25544  51.6413 263.8320 0017773 135.4419 323.7930 15.58923824762412 

Field 1 and 2 for line2 are the same as the line1 and have the same length in characters. 

 

Field 3, characters 9 to16, denotes the inclination of the satellite orbit represented in degrees from 0 

to 180. The inclination for the ISS in the given TLE is 51.6413º.     

 

Field 4, characters 18-25, represents 'Right Ascension of the Ascending Node' (RAAN) also 

represented in degrees from 0 to 360. Satellite's ascending node precesses with time so an accurate 

epoch is required to express the time at which RAAN is valid [9]. The RAAN for the ISS in the 

above TLE is 263.8320º at the specified epoch of the TLE. 

 

Character 27-33 are reserved for the 5
th

 field and denote the eccentricity of the orbit. The decimal 

point for the eccentricity value is omitted in the TLE but it’s assumed to be present there before the 

first digit of the eccentricity value. Eccentricity is always in the range of 0 to 1. The value 0 

represents a circular orbit while 1 represents an elliptical orbit. The eccentricity for the ISS given in 

the above TLE is extracted as '0017773' and can be read as 0.0017773 representing an almost 

circular orbit.   

 

6
th

 field of line 2, Characters 35-42, represents the ‘argument of perigee' expressed in degrees in the 

range between 0 to 360 degrees. For the ISS TLE it is 135.4419º. 

 

Characters 44-51 are reserved for the 7
th

 field of line 2 which is the 'Mean Anomaly'. It is also 

represented in degrees ranging from 0 to 360 degrees. The mean anomaly for the ISS in above TLE 

can be read as 323.7930 degrees. 

 

'Mean Motion' is the 8
th

 field of line 2 with characters 53-63. It is expressed in revolution per solar 

day. In the given TLE the value for the mean motion is '15.58923824' which is 15.58923824 

revolutions per day.    
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The last field connected to line 2, preceding the checksum, is the revolution number. This field 

requires some clarification as there are various conventions for finding the revolution number. 

According to NORAD's convention, the revolution of a satellite within its orbit is the period 

between the consecutive ascending nodes that starts when the satellite reaches the ascending node. 

The important point to note here is that when a satellite is launched, the period from launch to the 

first ascending node is considered as revolution 0. The first revolution starts from the first ascending 

node. A satellite should reach the ascending node before its subsequent revolution number is 

calculated, this is due to the fact that most of the element sets are generated with epochs that spot 

the satellite close to its ascending node [8]. '76241'in the above TLE for ISS shows that the satellite 

has accomplished 76,241 orbits since its launch to the TLE generation epoch.  
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4 Simplified Perturbation Models 
 

Satellite orbital parameters are calculated by the set of five mathematical models called SGP, SGP4, 

SDP4, SGP8 and SDP8 which are generally called Simplified General Perturbation models, SGPs. 

The Two-Line Element sets generated by NORAD, utilize SGP4 extensively due to which these set 

of five models are collectively referred to as SGP4 [10].                 

 

If the position and velocity of satellite or other space debris is known at a particular instant of time, 

SGP4 can be used to predict the future position of the satellite [11]. In reality the satellite's path is 

not ideal but it is changed by the perturbation forces like Earth’s shape (spherical harmonics), 

atmospheric drag, radiation pressure, and gravitational effects from other bodies like the sun and the 

moon in general [12]. SGP4 keep track of these forces and generates a realistic orbital path of the 

satellite. 

 

Satellites having orbital period less than 225 minutes are called Near-Earth satellites and SGP 

models are used to predict the trajectory of these objects. Similarly, satellites that have orbital 

period of greater than 225 minutes are called deep-space satellites and SDPs are used for the 

prediction of their orbital path [10]. By knowing the value of mean motion we can figure out if the 

satellite is near-earth or deep-space and use the appropriate SGP4 or SDP4 to generate TLEs and 

future predictions of satellite pass.    

 

The variations of SGPs are briefly described below. 

 

4.1 SGP 

 

The first simplified perturbation model named SGP, used for near-Earth satellites, was formulated 

by Hilton & Kuhlman (1966) by simplifying the work of Kozai (1959) for its gravitational model. 

The motion of the satellite is affected by the gravitational drag and the mean motion is the averaged 

motion of the satellite over a prescribed duration of time. This model assumes the drag effect on 

mean motion as linear in time which defines a quadratic change of mean anomaly with time. The 

eccentricity of an orbit also changes due to the drag effects, which in turn affects the perigee and 

apogee height, but SGP models this effect in a way that preserves the constant perigee height [11].      

 

4.2 SGP4 

    

SGP4 is also used for near-earth satellites. It was formulated by Ken Cranford in 1970. In 1959 

Brouwer presented a solution to the satellite theory without drag. In 1969 Lane and Cranford 

presented an improved drag theory for the satellites that used Brouwer theory for its gravitational 

model. Ken Cranford simplified this work further and produced SGP4 [11]. The SGP4 model 

generates an error of nearly 1 km at epoch and increases nearly 1 to 3 km per day [8].  
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4.3 SDP4 

 

The SDP4 model is a modification of the SGP4 model and is developed by Hujsak in 1979 to be 

used for the deep-space satellites. SDP4 use only simplified drag equations. Since the effects of 

atmospheric drags becomes lower as we go higher above the Earth's atmosphere or can be discarded 

for more deep-space orbits but the perturbations due to the sun and the moon becomes larger in 

effect so accounted in SDP4 model as Lunar-Solar perturbations. Earth resonance terms like 

sectoral and tesseral Earth harmonics are also included for geostationary and molnyia orbits [11]. 

The SDP4 model has an error of 10 km at epoch [10]. 

 

4.4 SGP8 

 

The SGP8 model is also used for near-Earth satellites. The extended analytical theory developed by 

Hoots used the models of gravitational and atmospheric effects that were developed by Lane and 

Cranford. The Hoots differentiated the differential equations in a very different style to simplify the 

work. The SGP8 model was obtained by simplifying the work of Hoots [11].          

 

4.5 SDP8 

 

In the end, the extension of SGP8 model implemented for deep-space space satellites is SDP8 

model. The equations used in SDP4 were also used in SDP8 to model the deep-space effects [11].     

 

The 'Revisiting Spacetrack Report#3', by David Vallado, provides the MatLab code for SGPs where 

only the SGP4 and SDP4 are implemented. The reason is that the TLEs generated by the NORAD 

(North American Aerospace Defense Command) only utilize the SGP4 and SDP4. A simple 

condition is implemented in the code that checks for the satellite's orbital period. If the orbital 

period is greater than 225 minutes, SDP4 is selected. An important point to be noted here is that the 

TLEs should to be propagated by the same perturbation model that is used to generate them. Using 

other models will lead to the propagation full of errors unless we are agreeable to accept predictions 

with unpredictable errors [8]. 
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 Part 1 

 Coordinate determination of a co-

location satellite by GNSS 
 

               This section describes a method implemented to estimate the co-location satellite's 

coordinates using the GNSS constellation. First, Chapter 5 discusses the condition implemented for 

calculate the visibility of co-location satellite as seen from a GPS constellation and derives the 

necessary equation with help of the Fig. 8. Chapter 6 explains the least-squares estimation process 

for coordinate determination with GPS measurements. The necessary equations are derived by 

considering Globalstar satellite as a co-location satellite. Chapter 7 presents the results and 

discussions.            
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5 The visibility of GPS satellites as seen from a 

co-location satellite                                
 

 The aim is to simulate GPS measurements on a co-location satellite. These measurements shall be 

used in an analysis and the position of the co-location satellite shall be determined. To simulate 

GPS measurements, we need to know which and how many GPS satellites are visible for the co-

location satellite. First the orbit of the co-location satellite and the satellites of the GPS constellation 

were simulated by the SGP4 propagator for a period of one day with time step of one minute. Then 

the visibility is checked at every epoch. The availability of minimum four visible GPS satellites is 

necessary for coordinate determination by trilateration. For this a condition is developed in the 

Matlab code that checks minimum four visible GPS satellites at every epoch. If the condition is 

fulfilled at that epoch, the code proceeds and the coordinates of the co-location satellite are deter-

mined otherwise the program control jumps to next epoch and performs the same procedure test 

again until the condition is satisfied. For the data used for simulations, there are 31 satellites listed 

on the Celestrak website as operational satellites. According to [14], the total number of GPS satel-

lites acquirable during a specific instant of time depends on the operational spare satellites available 

in orbit and also the number of satellite outages. 30 GPS satellites have been used for co-location 

satellite's coordinate determination.                     

5.1 Condition for visibility 

As the satellites are continuously orbiting the Earth, there always is a possibility that the co-location 

satellite viewed by GPS satellites is blocked by the Earth. As we required four GPS satellites at 

every epoch, there might be a possibility that at one epoch only one or two GPS satellites can view 

the co-location satellite and at next epoch only three due to blockage by the Earth. To overcome this 

hurdle a visibility condition was developed that can be described by the figure below: 
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                          Figure 9: Visibility of a co-location satellite and a GNSS satellite 

 

 Figure 9 uses the Globalstar satellite as a co-location satellite and GPS satellite as a GNSS satellite. 

GS (Globalstar) and GPS satellites are orbiting the earth at the vector distance of a and b 

respectively, measured from the center of the Earth. The dotted inner circle is shown as the Earth, 

the smaller outer circle is the orbit of GS satellite while the bigger outer circle is the orbit of GPS 

satellite. a is the vector distance in km from the Earth's center to the GS satellite that is equivalent 

to the radius of Earth plus the altitude of satellite above the Earth's surface (Re+h). The altitude of 

GS satellite is approximately 1400 km above the Earth's surface. b is the vector distance in km from 

the Earth's center to the GPS satellite. The GPS satellites are approximately at an altitude of 20200 

km above the surface of the Earth. c is the vector distance in km from the GS satellite to the GPS 

satellite and is given by: 

   

                                                                 ab=c


                                   (5-1) 

 

The length of the perpendicular CD, denoted X, determines the visibility of the GS satellite by the 

GPS satellite. X should be greater than 6378e3, the radius of the Earth, to allow visibility between 

GS and GPS. If X is less than the radius of the Earth this means the GS satellite is on the other side 

of the Earth or is below the horizon of GPS satellite. 

 

Considering the units in km, the condition for visibility as a generalized solution for any geometry 

between GS and GPS satellite is 

                                                             6378  X                                    (5-2) 

 

as X is perpendicular to c so a right-angled triangle CBD is formed in Figure 9. The triangle CBD 

gives     
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 a

X
=β sin                                      (5-3) 

 

 

                                                                                                     (5-4) 

 

where β is the angle opposite to X in right-angled triangle CBD, expressed in degrees, and can be 

calculated by the dot product of vectors a and c as 

 

                                                             βca=ca cos


                               (5-5) 

                     

                                                       
   








 

ca

ca
=β 


arccos                               (5-6) 

 

   

After the condition for visibility is fulfilled, the least-squares estimation process starts for the 

position determination. How the least-squares is used for positions determination is described in 

next Chapter.   
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6 Least-Squares Estimation using GPS 
 

The least-squares method is the most commonly used algorithm for position determination from 

pseudoranges, which is used to find the positions of four or more satellites. It is used to find the 

approximate solution of overdetermined systems. An overdetermined system is a set of equations 

having more equation then unknowns. The least-squared method determines an approximate overall 

solution that minimizes the sum of the squares of the errors made in the results of every equation 

within the system.         

  

The simplified observation equations for the pseudoranges to four satellites in view of the receiver 

are given by [16] as: 

                                                                                          (6-1) 

      

                                                                                          (6-2) 

 

                                                                                          (6-3) 

 

                                                                                          (6-4) 

 

the subscripts in the above equations denote the satellites. For 'n' equations, it can be written as 

 

                                                                                          (6-5)          

 

where (x
k
, y

k
, z

k
) is the position of satellites in view of the receiver, k=1,2,3....., k denotes the 

number of satellite, (x, y, z) are the unknown receiver coordinates and T, T
K
 are the receiver clock 

bias and the satellite 'k' clock bias respectively, added to the pseudorange to each visible satellite.    

 

Ephemerids, part of navigation message broadcast by every GPS satellite, contains orbital 

information from which satellite position and timing information (x
k
, y

k
, z

k
, τ

k
) can be computed. 

The unknown receiver position and time information (x, y, z, τ) can be determined by the Least-

Squares method. The Equation (6-5) contains the clock corrections for the satellite and the receiver 

which are expressed in meters by multiplying with the speed of light. 

 

To make the calculations and computations simple, the timing information has been neglected in 

this project. So the Equation (6-5) becomes 

 

                                                                                                 (6-6) 

                                                                                        

The least-squares approach requires a linear system of equations and as the pseudorange Equation 

(6-6) is non-linear so this needs to be linearized. 

 

Applying Taylor's expansion at a-priori position, the above observation equation gives the 

linearized equation: 

        

                           
P (x,y,z )=P (x0, y0, z0 )+(x−x0)

∂ P
∂ x

+( y−y0 )
∂ P
∂ y

+(z−z0 )
∂ P
∂ z

               (6-7) 

 

that includes only the first order terms. It can also be written as 
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                                            Δz
z

P
+Δy

y

P
+Δx

x

P
+zyxP=zy,x,P












00,0,                         (6-8) 

 

It is to be noted that the partial derivatives in above equation are calculated at provisional parameter 

value (x0, y0, z0), an initial estimate for the receiver position which is also known as a-priori value. 

The a-priori position of a receiver can be taken as (0, 0, 0), the Earth's center, as an initial value. 

The corrections to these initial estimates, to obtain the receiver actual coordinates, can then be 

determined iteratively [15]. 

 

The partial derivative for the above equation can be determined as:    

 

                                                                

 

i

o

P

xx
=

x

P ²





                                                 (6-9) 
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                                                  (6-10) 

 

                                                                

 

i

o

P
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=

z
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
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                                                    (6-11)                                            

 

in terms of the variables used in the MatLab code, the above partial derivatives can be written as: 

 

                                                          

∂ Di

∂ X
GS

=

−(X GPS
−X

GS )²

D
i                                         (6-12) 

         

                                                          

∂ Di

∂Y
GS

=

−(Y GPS
−Y

GS )²

D
i                                         (6-13) 

  

                                                           

∂ Di

∂Z
GS

=

−(Z GPS
−Z

GS )²

D
i                                         (6-14)   

 

where subscripts GPS and GS denotes the GPS and Globalstar satellites respectively. Substitution of 

these partial derivatives in Equation (6-8) gives 

 

                 
Δz

D
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D
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i
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i

GSGPS

i

GSGPS ²²²
00,0,


   (6-15) 

  

                 
Δz

D

ZZ
+Δy

D

YY
+Δx

D

XX
=zyxPzy,x,P

i

GSGPS

i

GSGPS

i

GSGPS ²²²
00,0,


    (6-16) 

 

P(x, y, z) is the observed pseudorange between the GPS satellite and the receiving satellite (in this 

case GS) calculated by the coordinates generated by the SGP4 propagator. It is also called an actual 

observation. P(x0, y0, z0) is the observed pseudorange computed using provisional parameter values 
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for GS satellite. It is also called 'computed pseudorange' or 'calculated pseudorange'' [16]. The 

measurement noise of 1mm was also added deliberately to the observed pseudorange.      

 

Equation (6-16) can also be written as: 

                                                                                                                                                                                                      

                      
     

Δz
D

ZZ
+Δy

D

YY
+Δx

D

XX
=ΔP

i

GSGPS

i

GSGPS

i

GSGPS ²²² 
             (6-17)                            

             

Now here ΔP is called the Residual Observation and is defined as the difference between the actual 

observation and the observation computed using provisional parameter values[16].    

 

In matrix form it can be written as:                                

 

                        

ΔP= [
−(X GPS−X GS )

D i

−(Y GPS−Y GS )

Di

−(Z GPS−Z GS )

D i
][
ΔX

ΔY

ΔZ ]
                (6-18) 

 

Trilateration requires minimum three known points for three ranges. However, GPS point 

positioning requires 4 satellites for 4 pseudoranges[16] to eliminate the timing error introduced due 

to inaccurate receiver clocks. On the contrary, the pseudorange equations derived above does not 

contain the timing correction terms (to simplify the calculations and computations). In fact, these 

equations must be called range equations instead of pseudorange as there is no timing terms as they 

simply calculates the range between the known points. To generalize the solution where we have 

timing information and 4 satellites in view, the term pseudorange has been used in this description. 

So for a system of linear equation having m≥4 satellites in view, equation (6-18) can be written as: 
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   (6-19) 

 

 

Using matrix symbols it can be written as: 

 

                                                                     A x = l                                                            (6-20) 
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Here 'A' is called the 'design matrix' that contains linear coefficients. These coefficients obtained by 

taking the partial derivative of every observation pseudorange with respect to each variable. The 

columns, 'n', of  design matrix are of the same number as there are parameters and as much rows 'm' 

as there are satellites. 

The 'x' is a column vector that contains the difference between the unknowns and a-priori values 

which gives the corrections to the a-priori values. 

'l' is also a column vector that contains difference between the Observed and the computed 

pseudoranges.   

  

A covariance matrix C is also needed here for the observations. Assuming uncorrelated pseudorange 

observations having same uncertainties, a unity matrix is used for simplicity [15]. Thus the 

covariance matrix for 'm=4' visible satellites look like this: 
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0100

0010

0001=C                              (6-21)              

 

To solve the least-squares system of equations, a MatLab function lscov()' was used. The lscov() 

function takes design matrix 'A' and residual 'L' and returns the corrections to the a-priori value and 

the corresponding standard deviations 'dx'. As a first guess the a-priori value is taken as center of 

the Earth, (0, 0, 0), and design matrix is calculated at this point and passed to the lscov() function 

which returns the corrections 'x' and added to the a-priori value to be used for the next iteration. At 

next iteration the design matrix is again calculated with the new a-priori value and new corrections 

are generated. This process goes on until a threshold level of, let say, 1 cm is achieved. When the 

threshold level is achieved, the latitude and longitude are calculated from the estimated points at 

that epoch and then the programs jumps to next epoch to determine the next points with the same 

procedure. 

 

      

Converting estimated Cartesian coordinates to Geographic coordinates [15] 

 

Considering the GRS80 system, the longitude of a point from a Cartesian coordinates is determined 

by    

                                                                       









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GS

X

Y
=λ arctan                     (6-22)         

 

The calculation of latitude is not as easy as longitude and requires iterative solution. As GRS80 

ellipsoid is used as an approximate shape of the earth, so we have semi-major axis, a = 6378.137 

km and semi-minor axis, b = 6356.7523141 km. 

 

So the latitude is calculated by : 
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where β0 is the longitude at previous iteration and is calculated by 

 

                                                                  
0

0 arctan
X

Z
=β GPS                          (6-24) 

     

 

where 

                                                                     Y²+X²=X 0                           (6-25) 

 

and     
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When β is calculated, the difference between β and β0 is taken. If the difference is larger than a 

threshold level of 1e-4 than value of β is assigned to β0 and new iterations starts. This process is 

continues until specified threshold level is achieved and β is calculated. 

 

When the latitude is determined the height of the object above the ellipsoid can be calculated by the 

following equations: 
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7 Results and Discussions 
 

The figures below show the comparisons of original and estimated position vectors for the 

Globalstar satellite. The original position vectors are the x, y, z values of position of the co-location 

satellite, in this case Globalstar, generated by propagating the TLE with the SGP4 for one day with 

time steps of one second. Thus we have 1440 positions of satellite. The estimated position vectors 

are x, y, z values of the positions determined by the GPS satellite network. During the estimation  

process a noise of 1 mm was added to the determined positions, This noise was generated by the 

randn() Matlab function that generates normally distributed pseudo- random numbers every time 

the code is simulated.              

 

Comparison of original and estimated positions vectors     

 

 

 

 

 

 

 

 

 

 

                    

 

                         

 

 

 
      Figure 10: Comparison of original and estimated x-components of the position vector for Globalstar satellite                              

 

 

                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             
         Figure 11: Comparison of original and estimated y-components of the position vector for  Globalstar satellite                              
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                Figure 12: Comparison of original and estimated z-components of the position vector for Globalstar satellite                              

 

The results for other satellites were also similar so only the results for Globalstar satellite were 

shown. Figures 10, 11 and 12 shows that the original and estimated positions are very close to each 

other which gives the impression that the estimated positions are exactly the same. But actually 

there exists a difference due to the deliberately added measurement noise. This fact is obvious in the 

figures below that show the vector difference of original and estimated positions and also the 

standard deviations. These are shown for all the satellites.              

 

                   Figure 13: Vector difference of original and estimated coordinates for Globalstar 
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                            Figure 14: Standard deviations for estimated coordinates for Globalstar 

                                           

 

 

                    

                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                            Figure 15: Vector difference of original and estimated coordinates for Iridium    
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                              Figure 16: Standard deviations for estimated coordinates for Iridium 

 

 

 

 

 

                        Figure 17: Vector difference of original and estimated coordinates for Orbcomm                                   
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                         Figure 18: Standard deviations of estimated coordinates for Orbcomm 

 

 

The Iridium and Orbcomm satellites both are at an altitude of almost 800 km that gives the higher 

values of σ and dd. The standard deviation is denoted by σ and the vector difference is denoted by 

dd.    

 

                      Figure 19: Vector difference of original and estimated coordinates for LAGEOS-1 
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                       Figure 20: Standard deviations of estimated coordinates for LAGEOS-1 

 

 

Table 5: Standard deviations of estimated positions 

 

Satellite Name NORAD Id Max σ(mm) Mean σ(mm) 

    Globalstar     37744        1.82        0.92 

     Iridium     24795         4.71        1.28 

    Orbcomm     29586        3.24        1.25 

   LAGEOS-1     08820        0.95         0.61 

                                        

                            

Table 6: Vector difference of original and estimated positions 

 

Satellite Name NORAD Id Max dd(mm) Mean dd(mm) 

    Globalstar     37744      2.93        0.85 

     Iridium     24795      5.32        1.17 

   Orbcomm     29586      5.65        1.16 

   LAGEOS-1     08820      1.38        0.56 

 

Tables 5 and 6 present the standard deviations and vector difference, respectively for all the 

satellites. The maximum standard deviations and maximum vector difference are very low for 

LAGEOS-1 satellite. This is because the LAGEOS-1 satellite is at highest altitude of 6000 km, 

compared to other satellites, that contributes to better geometry with the GPS satellites and also 

provides visibility for more GPS satellites. The Globalstar satellite is at an altitude of 1400 km that 
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gives the second lowest deviations after the LAGEOS-1 satellite. Iridium and which are almost the 

same. This discussion leads to the conclusion that the higher orbital altitudes of co-location 

satellites will lead to the better results of estimation.      
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 Part 2 
    

 Coordinate determination of  

 Co-location satellite by VLBI 
 

        This section describes the coordinate determination of a co-location satellite by VLBI. The 

starting chapters present the theory required to build the foundations for the coordinate 

determination. Chapter 8 describes the light-time equation, Chapter 9 presents theory about 

Geometric Dilution of Precision (GDOP) and Chapter 10 discuss about the VLBI technique in 

general. Chapter 10 presents the whole process of estimating the positions of co-location satellite 

based on the theory of previous chapters. It also includes the programme flow of the MatLab code 

that used to predict the positions. Actually, the whole discussion in this chapter goes according to 

the code flow control and the subsequent equations needed in the code are also derived step by step 

according to the code flow. For example, the equations for the calculation of a a-priori value for the 

co-location satellite are derived at the point where programme flow needed it. Also any decision 

making is also stated accordingly.      
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8 Light-Time Equation 
 

The light-time equation calculates the signal elapsed time from the satellite to the ground station or 

vice versa. It also takes into account the correction due to relativistic effects. The light-time 

equation for Quasars also includes the curved wave front effects along with the relativistic effects. 

The satellite light-time equation is acquired from Equation (8-67) in [21] which is expressed in 

local geocentric frame of reference. Local geocentric frame of reference is the more convenient way 

for locating near-Earth orbiting satellites. Satellites in deep-space missions are more conveniently 

located in solar-system barycentric frame of reference. The light-time solution expressed in solar-

system barycentric space-time frame of reference for deep-space satellite is also given in [21]. As 

our co-location satellite is a near-Earth satellite, the light-time solution expressed in local geocentric 

frame of reference is given as: 
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       (8-1) 

 

Here t3 is the signal reception time at a tracking ground station, like VLBI station, or a receiving 

satellite. 

t2 is the transmit time at the satellite. 

μE is the gravitational constant of the Earth given by 3.9860044x10
14

. 

γ is the relativistic constant. For the case of general relativity it is 1. 

r2 is the distance between the geocenter and the satellite. 

r3 is the distance between the geocenter and the ground tracking station. 

r23 is the distance between the ground tracking station and the satellite.    

 

This is a down-leg light path that starts with the actual position of satellite at transmit time t2 and 

ends at the ground tracking station' or other receiving satellite at received time t3. For the case of 

up-leg light path the up-leg light-time equation can be found by replacing 3 with 2 and 2 with 1 [21]. 

This light-time equation is formulated in the non-inertial frame of reference and is in a local 

geocentric frame of reference and also is non-rotating with respect to the Solar-System barycentric 

space-time frame of reference [21].  
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9 Geometric Dilution of Precision (GDOP) 
 

The Geometric Dilution of Precision (GDOP) is a numerical measurement used in GNSS that takes 

into account the geometry of satellites for the purpose of precise positioning. Geometry of visible 

satellites to the receiver tells about how the satellites are separated with each other on the sky, 

which plays an important role in positioning. There are two types of errors that can affect the GPS 

positioning: the errors due the range measurement and errors due to the satellites geometry.  

Although the errors due to range measurements can be mitigated by the use of WAAS (Wide Area 

Augmentation System), post-processing and averaging, but satellite geometry still contributes to the 

errors [20].             

When the visible GNSS satellites are far apart from each other having wider angles, the geometry is 

said to be strong and the DOP values are lower. On the contrary, the closer angle of separation 

contributes to week geometry and higher DOP values that leads to the errors in the positioning. The 

figure below illustrates the concept of GDOP having satellite geometries for good and bad GDOPs 

[18].    

                              

                           Figure 21:  GPS satellites geometries for good and bad GDOPs [22] 

   

Although the GDOP concept is related to the GNSS, but it can also be applied to other systems that 

rely on various sites located apart geographically. This concept of GDOP is utilized here on the 

VLBI sites that take part in position determination of co-location satellite where the good geometry 

of visible VLBI sites is necessary for precise orbit determination.        

There are different DOP levels within the range 0-20 that provides different levels of accuracy for 

variety of applications. All these DOP levels with their description are summarized in the Table 6.  

  



9. Geometric Dilution of Precision (GDOP)     

Simulations of a Satellite System for Co-Location in Space 

Page | 37  

 

 

                        Table 7: Different DOP values with their ratings and description [18]            

DOP value Rating Description 

<1 Ideal This is the highest possible confidence level to be used for applications 

demanding the highest possible precision at all times. 

1-2 Excellent At this confidence level, positional measurements are considered 

accurate enough to meet all but the most sensitive applications. 

2-5 Good Represents a level that marks the minimum appropriate for making 

business decisions. Positional measurements could be used to make 

reliable in-route navigation suggestions to the user. 

5-10 Moderate Positional measurements could be used for calculations, but the fix 

quality could still be improved. A more open view of the sky is 

recommended. 

10-20 Fair Represents a low confidence level. Positional measurements should be 

discarded or used only to indicate a very rough estimate of the current 

location. 

>20 Poor At this level, measurements are inaccurate by as much as 300 meters 

with a 6 meter accurate device (50 DOP × 6 meters) and should be 

discarded. 

                         

The GDOP is calculated by the formula given below: 

                                                                                           (9-1)     

Where 'tr' in the above equation shows the trace of matrix and 'A'  denotes the design matrix that 

contains linear coefficients as in Equation (6-19).      
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10 VLBI for spacecraft tracking 
 
VLBI (Very Long Base Line Interferometry) is an interferometric technique developed for radio 

astronomy with the purpose to improve the angular resolution. It is an astronomical interferometer 

that consists of two or more telescopes, relatively at very large distances of several thousands of 

kilometers, combined together to present a telescope of the same diameter as the distance between 

them, thus improving the angular resolution of the system. The VLBI technique was primarily 

developed for the observation of extragalactic radio sources such as Quasars but nowadays it is also 

been widely used for the observation and tracking of near-Earth and deep-space spacecraft.               
 

10.1 Principle of VLBI observation 

  
The primary observable of the VLBI is the measure of the difference in time of the received signals 

of a plane wavefront from a distant radio source at the two stations on the Earth [23]. This can be 

described by the figure below. 

    

                      Figure 22: The VLBI observation of extragalactic radio source [23].                                             

 

 
Figure 22 shows that the plane wavefront being received by the two radio telescopes operating in 

the VLBI mode. The extragalactic sources are at a great distance, several billion light-years, which 

is assumed as infinite and the wavefront of the emitted signal by these sources is approximated as a 

plane wave when received at the antennas of the two telescopes. The baseline 'b' is the distance 

between the two telescopes that incorporates a delay of signal reception at one of the telescope. This 

time delay is given in the form of geometric distance as 'cτ'.       

 
If the object to be tracked is the near-earth satellite than the wavefront of the signal transmitted 

from the satellite is considered as a curved wave due to relatively a small distance. The signal delay 
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due to a curved wave front arriving at the two antennas should also be taken into account along with 

the satellite motion which relatively moves faster than quasars due to the small distance between the 

Earth and the satellite. 

 

10.2 VLBI delay model 

The VLBI delay model (observation equation) is a mathematical model that takes into account the 

delays in signal due to geometry, earth rotation and atmosphere (ionosphere, troposphere). For 

extragalactic sources a very famous delay model known as a 'consensus model' is based on the 

plane wave approximation is recommended by the IERS and is given by [23]: 

 

                                                                                                                                

                                         
−cτ=b⋅k+Δτ clock+Δτ tro+Δτ iono+Δτ relativistic                         (10-1)                  

where, 

c=the velocity of light in vacuum, 

k= the unit source vector which defined in a space-fixed, barry-centric and equatorial celestial 

system, 

b= the baseline vector of the VLBI stations which is defined in an 

      Earth‒fixed, geocentric, equatorial terrestrial coordinate system, 

Δτclock = the delay correction due to the synchronization and frequency discrepancies of atomic 

               clocks relative to a fixed clock, 

Δτtrop =the troposphere delay correction, 

Δτiono= the ionosphere delay correction and 

Δτrelativistic=the delay corrections due to the relativistic effects. 

    

As our tracking object is a near-Earth spacecraft which is considered as a finite distance, a finite 

VLBI delay model was formulated. For the sake of simplicity, only a signal time delay due to 

different arrival times is considered in VLBI delay model for this task while Earth rotation, 

relativistic and  atmospheric delays were discarded. The model is formulated in local geocentric 

non-inertial frame of reference, ECEF (Earth Centered Earth Fixed).   
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11 Coordinates determination by VLBI 
The coordinates of a co-location satellite can also be determined by the VLBI network of ground 

stations. The stations are chosen such that they are spread all over the world to provide maximum 

visibility for accurate coordinate determination. 

 

 

The selected VLBI station's names and their geographical coordinates are given in the Table 8: 

 

                                        Table 8: VLBI stations location information   

              

Sr. no. Station ID Country Continent Lat. , long. (degrees) 

1 Urumqi China Asia 43.4712N, 87.1779E 

2 Tsukuba Japan Asia 36.1031N, 140.0887E 

3 Hartrao South Africa Africa 25.8889S, 27.6854E 

4 Parkes Australia Australia 32.9979S, 148.2646E 

5 Westford USA North America 42.6129N, 71.4938 W 

6 Greenbelt USA North America 39.0219N, 76.8265W 

7 Onsala Sweden Europe 57.3958N, 11.9263E 

8 Ny-Ålesund Norway Europe 78.5546N, 11.5155E 

9 Tigoconc Chile South America 36.5037S, 73.0131W 

10 O' Higgins Antarctica Antarctica 63.3209S, 57.9008W 

11 Fortaleza Brazil South America 3.8777S, 38.4259W 

12 Kokee Park USA North America 22.1260N, 159.6650S 

13 Noto Italy Europe 36.8761N, 14.9890E 

14 Badary Russia Asia 51.7667N, 120.2333E 

15 Zelenchk Russia Asia 43.7833N, 41.5667E 

16 Yaragadee Australia Australia 29.0247S, 115.2049E 

17 Brewster USA North America 48.1312N, 119.6833W 

18 Yebes Spain Europe 40.5241N, 3.0894W 

19 Svetloe Russia Asia 60.5323N, 29.7819E 

20 Sainte Croix USA North America 17.7566N, 64.5836W 

21 Kitt Peak USA North America 31.9563N, 111.6124W 

                                  

                                       

All these VLBI stations are shown in Figure 23 according to their serial number in the table above. 
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                                      Figure 23: VLBI stations location plotted on the map                                        

 

Like in the GNSS case we also need at least four observation equations for co-location satellite 

coordinate determination by VLBI stations. The VLBI technique requires two radio telescopes for a 

single observation. A network of three radio telescopes forms three combinations of two stations 

giving three base-lines hence three observation equations which are still not fulfilling the 

requirements of four observation equations. Therefore a network of four or more radio telescopes is 

necessary to get at least four observation equations. Network of four radio telescopes gives six 

combinations of two stations and hence six baselines which fulfills the requirements.       

 

11.1 VLBI delay in terms of Light-time equation 

 

The satellite down-leg light-time equation in local geocentric space-time frame of reference is 

discussed in Chapter 8 and is given by Equation (8-1): 
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The VLBI time delay is given by 

                                                                 
Δτ AB=tB−t A                                         (11-2) 
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where,  tB = t3-t2, is the light-time solution at station B and 

             tA = t3-t2, is the light-time solution at station A. 

       

so the Equation (11-2) becomes 

                                                           
Δτ AB=(t3−t2)B

−(t3−t2)A                           (11-3) 

 

here the subscripts A and B denote the stations A and B respectively. 

 

substituting light-time equation in Equation (11-3), we get 
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In the above equation the subscript 2 refers to the co-location satellite and 3 refers to station A if the 

light time solution is to be determined for station A, or refers to station B if the light time solution is 

to be determined for station B. So Equation (11-4) transforms to:     

 

               

Δτ AB=(
r

SB

c
+

(1+γ )u
E

c3
ln[

r
S
+r

B
+r

SB

r S +r B−r SB
])−(

r
SA

c
+

(1+γ )u
E

c3
ln [

r
S
+r

A
+r

SA

rS +r A−rSA
])

       (11-5) 

 

This is more understandable with reference to stations A and B. 

 

 

11.2 Least-Squares Estimation for VLBI 

 

In Chapter 6, the coordinates of co-location satellite were determined by the least-square approach 

from the observation equations of pseudoranges between the co-location satellite and GNSS 

satellites. The nonlinear observation pseudorange equations were linearized by applying the Taylor's 

theorem which is a primary requirement for the least-squares method. The coefficient of design 

matrix for the least-squares were obtained by partial differentiation of linearized observation 

equation by the unknown coordinate variables of co-location satellite, initially at a-priori value. 

 The coordinates of co-location satellite by VLBI approach can be determined in the slightly 

different way, where the observation equations are the VLBI delay rather than the pseudorange 

equations for the GPS case. The coefficients of the design matrix, for the least-squares, are obtained 

by partial differentiation of the VLBI delay observation equations by the co-location satellite 

unknown coordinate variables (XS,YS,ZS). 

 

The partial differentiation of Equation (11-5) with respect to XS, YS and ZS respectively, is given 

by:    
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similarly with respect to Ys 
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similarly also with respect to Zs 
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The above partial derivatives are the coefficient of the design matrix for one row, obtained for one 

baseline between stations A and B. The partial derivatives for other baselines, between stations B 

and C, C and D and so on, can be obtained by simply changing the subscripts A and B in above 

equations by the corresponding stations of other baselines. 
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11.3 Determination of the a-priori satellite position 

 

The determination of the a-priori value for satellite in the least-square approach is a first step 

towards satellite coordinate determination with VLBI tracking. In Chapter 6 the a-priori value was 

selected as (0, 0, 0), center of the Earth, for satellite coordinate determination with GPS. The a-

priori value was updated at each iteration step until the solution converged to a predefined threshold 

value of 1 cm. Selecting (0, 0, 0,) as a-priori value in VLBI case resulted in non-converged 

solutions. Some of the solutions that converged showed unrealistic numbers that fell in far apart 

form the actual satellite position. So there was a need of developing a new method of finding a 

reasonable a-priori value that could converge to a predefined threshold in reasonable iterations. 

 

 The a-priori position in the direction of satellite some 20000 km above the surface of the Earth 

would be a best guess. So we need direction vectors from the two VLBI stations, which can see the 

satellite simultaneously at the same epoch, in the direction of satellite and coincides beyond the 

satellite. A minimum elevation mask of 5º is selected for satellite visibility by the two VLBI stations. 

 

Suppose the two VLBI stations 1 and 2 that can see the satellite have elevations ε1 and ε2 

respectively and azimuth α1 and α2 respectively. In the topocentric coordinate system the direction 

vectors towards satellite are: 
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These direction vectors are given in matrix form with dimensions 3x1. Here 'r' denotes the direction 

vectors. The superscripts T1 and T2 denote the topocentric coordinate system for stations 1 and 2 

respectively. That means the direction vectors are defined for stations 1 and 2 separately according 

to their respective topocentric coordinates. The subscripts 'i' denotes the topocentric coordinates (u, 

v, w), 1s for station 1. Also topocentric coordinates (u, v, w), 2s for station 2.       

 

Now we need to rotate from the topocentric coordinate system to the geocentric Earth-fixed system, 

ECEF. This is achieved by the following rotation matrix. 
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so the rotated direction vectors in the ECEF coordinate system are given by: 
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substituting values in (11-16) and (11-17) gives the following direction vectors in Earth fixed 

coordinates. 
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The direction vectors towards the satellite from the starting position at the two stations to a point 

beyond the satellite gives a line. When the two lines intersects this gives a point that can be taken as 

an a-priori value.      

 

If X denotes the stations coordinates in ECEF system, then the starting points of the lines are the 

known station's coordinates and are given as: 
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here the superscript 'E' represents that the coordinates are in ECEF coordinate system and 'i' 
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represents the x, y and z coordinates.    

 

the end points of the line can be determined as: 
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  from these four points of the two lines the intersection of these lines can be determined as: 
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The positions Ao and Bo are those two points that are closest on lines A and B. The mean value of 

these two points can be taken as the a-priori position for co-location satellite. 

 

The a-priori point is determined from the first two stations at an epoch while all the stations that can 

see satellite at that epoch took part in coordinate determination. 

 

As the co-location satellite is moving very fast due to low orbit so a new a-priori value is calculated 

again after every 5 minutes. For example the Globalstar satellite at an altitude of 1400 km above the 

Earth's surface orbits at a speed of 6.8 km/s. That means after every five seconds it would cover a 

distance of 35 km. So a new direction vectors towards the new satellite position would yield a new 

a-priori value.        
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12 Results & Discussion            
 

Figure 24 presents the ground track of Globalstar satellite 37744, plotted for 1 day period with time 

step of 1 second. The orbital information of Globalstar satellite is given in table 1 in Chapter 1.    

                                        Figure 24: Ground tracks of Globalstar plotted for 1 day 

 

The satellite's orbital inclination is 52° and it completes 12.6 revolutions per day. The estimated 

positions of Globalstar by VLBI are shown below in Figure 25. 

                    

                                Figure 25:  Estimated ground tracks of Globalstar predicted by VLBI stations    

 

Figure 25 presents the positions of satellite estimated by the VLBI network are mostly occupied in 

the northern hemi-sphere. The reason is that the large numbers of our selected VLBI stations are in 

the northern hemisphere that satisfies the visibility condition for the four or more stations 

simultaneously. 

There is large number of non-continuity in the estimated orbits this is due to the fact that if at some 
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epochs the condition for four or more stations visibility does not satisfies for a longer periods of 

time the positions are not estimated for those epochs. 

 

                

         

 

 

 

 

 

 

 

 

 

 

 

 

 

        

 

 

           Figure 26: Enlarged view of estimated ground tracks of Globalstar estimated by VLBI 

 

Figure 26 is the enlarged view of the estimated ground tracks for Globalstar that shows the tracks 

are in the northern hemisphere and the discontinuities are more visible.   

 

The Figure 27 presents the vector difference of original and estimated positions of the colocation 

satellite. The plots are shown only for the epochs 7925 to 21706. The reason to plot only for this 

range is that 7925 is the first epoch at which four or more VLBI stations were visible to the co-

location satellite. When the visibility condition is fulfilled the coordinates are determined at that 

epoch and for further epochs. The gap between the plotted points on the epoch axis shows that at 

these epochs the condition for visibility was not fulfilled and coordinates of co-location satellite 

were not determined.  
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                  Figure 27: Vector difference of original and estimated positions of Globalstar 

 

In total 8646 positions were estimated while only 1330 vector difference are shown in Figure 27. 

The reason is that there are some points that give very high values of vector difference. Those 

points are not shown in Figure 27. Those points felled on the epochs 21736, 70992, 71158 and 

71159 and at these epochs the values of vector difference are 5.9768e13, 1.1385e19, 4.8813e20, 

2.6402e20, respectively, which are very unrealistic estimated positions. This is due to the fact that 

at these epochs the geometry of visible VLBI stations was very bad. At these epochs the least-

squares estimation processes did not converged, and after 100 iterations the loop was terminated 

deliberately to estimate position for the next epochs.          

To discard those positions with very high values of vector difference, the concept of Dilution of 

Precision (DOP) was implemented and only those estimated positions were selected that fell 

between DOP ranges 0 to 20. 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

            Figure 28: Estimated ground tracks DOP<20 and simulated measurement noise 0.3 mm 

 

Figure 28 shows only those estimated positions that were calculated for DOP levels less than 20.  

That means positions are estimated only at those epochs at which DOP is less than 20.  As discussed 

in Chapter 9 that there are different DOP levels within the range 0-20 that provides different levels 

of accuracy for variety of applications and all those DOP levels with their description were 

summarized in the Table 7.   

                

If the estimated positions are plotted in different colors for different levels of DOP, than it would be 

easier to figure out which stations are involved in estimating positions with reasonable DOP ratings. 

Figure 29 shows the estimated ground tracks for different DOP ranges in colors. 
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Figure 29: Estimated ground tracks colored in different DOP ranges with simulated measurement 

noise 0.3 mm 

 

Figures 28 and 29 contains the same number of estimated positions but the difference is that in 

Figure 29 the ground tracks are colored in accordance with the DOP levels. All these estimated 

positions are calculated at noise levels of 0.3 mm and 1.5 mm but due to the very small difference 

in the positions estimated at two noise levels, only the results for 0.3 mm are shown for all the 

satellites. The vector difference of original and estimated positions of the satellite will tell about 

how much the satellite estimated positions are far from the original positions. This is shown for 

both the two noise levels of 0.3 mm and 1.5 mm in Figures 30 and 31 respectively. 
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 Figure 30: Vector difference for different DOP ranges and simulated measurement noise 0.3 mm 

                              

 
 Figure 31: Vector difference for different DOP ranges and simulated measurement noise 1.5 mm 
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Table 9: Summary of results for Globalstar at different DOPs and simulated measurement noise levels 

             

DOP ranges No. of Estimated positions DOPmax ddmax mm 

0.3 mm 1.5 mm 

1-2 489 1.9997 1.8 8.3 

2-5 2839 4.9997 4.0 22.0 

5-10 1286 9.9994 8.5 44.0 

10-20 1700 19.9910 23.1 104.6 

0-20 6314 19.9910 23.1 104.6 

          

The total number of positions estimated for Globalstar satellite are 8646. Out of these, 6314 have 

DOP<20. The total epochs at which the solution does not converged due to bad geometry are 4, and 

the non-converged epochs are 21736, 70992, 71158 and 71159. The code simulated several times 

for both noise levels and for each simulation the same non-converged epochs were achieved. Also 

the numbers of estimated positions for each DOP levels were also same but the ddmax values were 

slightly different, by ±1 mm or ±2 mm, for each noise level. The reason for this is that the noise is 

generated by the randn() Matlab function that generates normally distributed pseudo-random 

numbers every time the code is simulated. Changing the noise level has no effect on the number of 

estimated positions for each DOP level but the vector difference of original and estimated positions 

is affected. This can be seen in the Figures 30 and 31 and also in Table 9 that as the noise levels are 

increased the ddmax values also increased for each DOP level.                

 

Figure 32 depicts the ground track of 24795 Iridium satellite, plotted for 1 day period with time step 

of 1 second. The orbital information of 24795 satellites is given in table 1 in Chapter 1. 

                                          Figure 32: Ground tracks of Iridium plotted for 1 day   
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Figure 33:  Estimated ground tracks of all estimated positions and simulated measurement noise                            

0.3 mm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           Figure 34: Estimated ground tracks DOP<20 and simulated measurement noise 0.3 mm 
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Figure 35: Estimated ground tracks colored in different DOP ranges with simulated measurement 

noise 0.3 mm 

 

 

 

 

 

 
   Figure 36: Vector difference for different DOP ranges and simulated measurement noise 0.3 mm 
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Figure 37: Vector difference for different DOP ranges and simulated measurement noise 1.5 mm 

 

                   

 

Table 10: Summary of results for Iridium at different DOPs and simulated measurement noise levels 

 

DOP 

range 

No. of Estimated 

positions 

DOPmax ddmax mm 

0.3 mm 1.5 mm 

1-2 277 1.98949 1.5 8.0 

2-5 634 4.99442 3.8 2.0 

5-10 260 9.94176 5.8 44.0 

10-20 360 19.94321 15.8 78.6 

0-20 1531 19.94321 15.8 78.6 

 

 

In total, 1730 positions were estimated. Out of these, 1531 had DOP<20, so 199 positions were 

discarded. There are no epochs with non-converge values due to bad geometry. 

 

Figure 38 depicts the ground track of Orbcomm satellite 25986, plotted for 1 day period with time 

step of 1 second. 
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                                      Figure 38: Ground track of Orbcomm plotted for 1 day 

 

 

     

The ground track of Orbcomm satellite estimated by the VLBI network is shown in the figure below: 

 

Figure 39: Estimated ground tracks of all estimated positions and simulated measurement noise 0.3 mm 
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              Figure 40:  Estimated ground tracks DOP<20 and simulated measurement noise 0.3 mm 

 

 

 

 

Figure 41: Estimated ground tracks colored in different DOP ranges with simulated measurement 

noise 0.3 mm 

 

 



12. Results & Discussion         

Simulations of a Satellite System for Co-Location in Space 

Page | 58  

 

 
 

Figure 42: Vector difference for different DOP ranges and simulated measurement noise 0.3 mm 

 

 

 

 

 

 
Figure 43: Vector difference for different DOP ranges and simulated measurement noise 1.5 mm 
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Table 11: Summary of results for Orbcomm at different DOPs and simulated measurement noise levels 

  

DOP range No. of Estimated positions DOPmax ddmax mm 

0.3 mm 1.5 mm 

2-5 668 4.998 4.0 17.0 

5-10 282 9.989 6.0 51.5 

10-20 516 19.948 15.0 94.7 

0-20 1466 19.948 15.0 94.7 

                       

For Orbcomm, total positions estimated were 1958. Out of these, 1466 had DOP<20. Like Iridium 

there were no epochs with non-converged values due to bad geometry. 

 

         

Figure 44 depicts the ground track of LAGEOS-1 satellite, plotted for 1 day period with time step of 

1 second. The orbital information of LAGEOS-1 satellite is given in table 1 in Chapter 1.                                  

                                         Figure 44: Ground track of LAGEOS-1 plotted for 1 day 
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  Figure 45: Estimated ground tracks of all estimated positions and simulated measurement noise 0.3 mm 

 

 

 

        

 

 

           

            Figure 46: Estimated ground tracks DOP<20 and simulated measurement noise 0.3 mm 
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Figure 47: Estimated ground tracks colored in different DOP ranges with simulated measurement  

noise 0.3 mm 

 

 

      

 
 

Figure 48: Vector difference for different DOP ranges and simulated measurement noise 0.3mm 



12. Results & Discussion         

Simulations of a Satellite System for Co-Location in Space 

Page | 62  

 

 
 

Figure 49: Vector difference for different DOP ranges and simulated measurement noise 1.5mm 

 

 

 
Table 12: Summary of results for LAGEOS-1 at different DOPs and simulated measurement noise levels 

 

DOP 

range 

No. of Estimated positions  DOPmax  ddmax mm 

 0.3 mm  1.5 mm 

2-5  18423  4.999  5.2  24.0 

5-10  14442  9.999 10.2  51.6 

10-20   7096  19.999 19.0 107.2 

0-20   39961 19.999 19.0 107.2 

                             

                                                          

In total 45359 positions estimated. Out of these, 39961 had DOP<20. There is only one epoch at 

which the solution did not converge due to bad geometry and the non-converged Epoch is 71724. 

The LAGEOS-1 satellite presented the highest number of estimated positions and that is due the 

higher altitude compared to other tested satellites. 

    



13. Conclusion           

Simulations of a Satellite System for Co-Location in Space 

Page | 63  

 

13 Conclusion 
  

 The results for all the tested satellites leads to the conclusion that the satellites at higher altitudes, 

above the Earth’s surface, of 6000 km or more will lead to the better tracking by the selected VLBI 

stations and GNSS satellites. If only the GNSS case is taken into account, even the lower altitudes 

of 800 km will provide good predictions of the satellite positions as there are 30 GNSS satellites 

selected in the network.  Also the vector difference of original and estimated positions was of the 

order of mm, with 1 mm deliberately added measurement noise, for the acting co-location satellites. 

But as the co-location satellite has to be equipped with VLBI instruments also, so the lower 

altitudes will not provide tracking for the longer periods of time unless the numbers of VLBI 

stations are increased. There are total thirty one VLBI stations listed on the ‘International VLBI 

Service for Geodesy & Astrometry’ website but only twenty one stations are selected in this project. 

If the numbers of stations are increased to thirty one, the estimated positions for LEO satellites are 

also likely to be increased by a considerable amount. But only positions in the northern hemisphere 

are likely to be increased as large part of listed VLBI stations are in the northern hemisphere.                    

 

The orbital height of Iridium and Orbcomm is almost the same, averaging almost 800 km but the 

inclinations are 86° and 45° respectively. The Iridium even with the higher inclination angle did not 

produced the large number of estimated positions. The total estimated positions were 1730, only 2% 

of the day, while total estimated positions for Orbcomm were 1958, only 2.27% of the day, which 

shows that inclination did not affected the estimations as much. 

 

The Globalstar satellite has inclination of 52° and orbital height of 1400 km. So the positions 

estimated by VLBI were 10% of the day which is comparatively higher with the Iridium and 

Orbcomm respectively, and that is mostly due to the increased orbital height. 

 

LAGEOS satellite at an altitude of 6000 km produced good results compared to LEO satellites. 

Total positions estimated were 45359 i.e. 52.5% of the day. 18423 positions had DOP levels in the 

range 2-5 which is rated as ‘Good’ for reliable estimations. The inclination of 08820 is 109° which 

enables motion of the satellite in the direction opposite to the Earth’s rotation i.e. a retrograde orbit, 

but considering the above discussion for LEO satellites, it does not seems to be influential on the 

estimation process. 

 The elliptical orbits are useful for communication satellites where communication services are 

needed in a specific region for longer periods of time. As the co-location satellite have to be tracked 

by the VLBI stations all over the world so elliptical orbit is not a good choice. Many remote sensing 

and geodetic satellites are in LEO, circular orbits to provide equal proportion of visibility to existing 

ground tracking stations. So circular orbits with altitudes of 6000 km or more are a good choice for 

co-location satellite. At these heights the measure should also be taken to protect satellite from 'Van 

Allen radiation belt' and appropriate shielding should be provided. The sun-synchronous orbits are 

useful to provide continuous sunlight to the solar-panels of co-location satellite and save the battery 

life time.  
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