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Viability of Discrete Event Simulation in the Early Design of Production Systems
A Case Study in the Design of a Flexible Automation Cell
MICHAEL BEKK
ERIK MOEN

Abstract
In the manufacturing industry, Discrete Event Simulation (DES) is recognised as a
tool utilised in the analysis and optimisation of production systems. The effective-
ness of DES, however, depends mainly on the data available from the system which
is to be simulated and the quality of this data. This thesis investigates the viability
of DES when a production system is in its early design stages with limited data
available, and no complete system of which to translate into a virtual model. A
case study was conducted where a production system in its early design stages was
modelled and analysed by applying DES. Following the case study, the results of the
case were analysed and a consensus was formed whether DES was usable as a tool
to assist the system developers in the development process. Despite a lack of high-
quality data, the case produced useful results for the system developers, and a clear
trend of the performance and behaviour of the system was observed. Improvement
suggestions were passed on to the system developers to assist the developers and
as an extension save time and money. With the support of successful case results,
substantial proof that DES is viable to use as a design tool in the early design of
production systems were found. However, this is not without its challenges, as the
majority of the required data and the behaviour of the system has to be estimated,
limiting the accuracy of the results. Despite these challenges, DES is a viable ap-
proach, and can be utilised to influence design changes and parameter improvements
of production systems in their early design stages.

Keywords: discrete event simulation, discrete event systems, case-study, production
systems, early design, viability, simulation.
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Glossary

Automated Guided Vehicle (AGV)
A automatic truck or vehicle used within production to transport material and prod-
ucts.

Collet
A type of clamp which holds the work tool in place.

Continuous simulation
Variant of simulation commonly used when modelling a dynamic system where time
flows continuously.

Data
Information often in the form of numbers which is gathered and used in many dif-
ferent applications.

Discrete Event Simulation (DES)
Variant of simulation which looks at discrete steps in time where an event represents
a state change of the system.

Sequential function chart (SFC)
A chart showing the behaviour of a system sequentially. It includes states, opera-
tions and conditions of the system.

Probability density function (PDF)
A function depending on a random variable X where the integral of the function
gives the likelihood that the value of X lies in the same interval as the integral.

Production Cell
A enclosed area within a production system containing a robot, a controller and
other tools required to produce components or parts of components.

Production System
A system consisting of inputs, processes and outputs. These processes can be as-
sembly, drilling etc.

Rapid Entire Body Assessment (REBA)
Ergonomic tool to assess the strain on the entire body from a certain pose.
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Glossary

Rapid Upper Limb Assessment (RULA)
Ergonomic tool to assess the strain on the body of a certain pose, mostly focused
on the strain to the upper body.

RobotStudio
Robot programming and simulation software created by ABB Robotics.

Tecnomatix Plant Simulation
Graphical DES software developed by the company Tecnomatix.

Theory of Constraints (TOC)
A bottleneck breaking method developed by Eliyahu M. Goldratt [1] where one finds
the bottleneck, tries different ways to break it and iterate until the bottleneck either
has shifted or has been broken.
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1
Introduction

This chapter introduces the project and its background. Followed by this, the aim,
purpose, limitations and research questions of the project will be presented.

1.1 Background
GKN Aerospace Engine Systems, from here on referred as GKN, produces aircraft
engines components for aircraft engines and rocket components [2]. In the recent
couple of years GKN has increased its production volumes of specific components
noticeably, therefore the company is looking to automatise parts of its production
to increase its productivity further. The produced components require high quality
materials, common in aerospace manufacturing [3]. However, these materials usu-
ally have very low machinability, and as such, the tools that are used to machine
the materials are worn out in a short amount of time [4]. The effect of this is that
a substantial amount of tools have to be replaced everyday.

To machine the materials, GKN utilises a special kind of CNC-machine within its
production. The tool replacement procedure of the machine consists of the following
steps performed by an operator:

1. The machine cutting tool magazine is emptied of used cutting tools
2. New cutting tools are prepared
3. The new cutting tools are placed within the magazine

The process of preparing the tools is tedious and time-consuming, and in addition
to the huge amount of time being spent on these tasks, there are also ergonomic
issues related to the handling of the cutting tools, e.g. lifting, fastening and placing.

To solve this problem, GKN is currently researching and developing a flexible au-
tomation cell that might be capable of preparing the cutting tools that are used in
the CNC-machines. The concept of the flexible automation cell is that it will have
multiple modules which all have unique features. The modules can be changed de-
pending on what type of work the cell should perform, thus making it flexible. This
flexible automation cell could prepare the necessary tools for the machines faster
and more efficiently than the current solution. This would save time, be more cost
efficient, provide higher quality and reduce the physical strain that the operators
are exposed to today.

1



1. Introduction

As the flexible automation cell is still a work-in-progress, the overall design of the
automation cell is not finalised. A method to assist the researchers in making design
choices, flow balancing and bottleneck detection is to create a discrete event simu-
lation (DES) model. A DES model can be a cost effective and time efficient method
when designing new factory layouts as well as finding improvements to current lay-
outs [5]. Rather than making changes and trying different solutions in the physical
environment, one can make a virtual model with which to experiment without phys-
ically making changes in the real-life factory. Without having to stop production in
order to experiment with improvements, one can save money and time [5], [6].

1.2 Purpose and aim
Finding design errors and improvement potentials early in the development phase
of production systems has the possibility to save both time and money for man-
ufacturing companies, and DES might be able to find these errors and potential
improvements. The project may also provide important insight into a DES project
in the early design of production systems and its potential and challenges.

Therefore, the aim of this project is to investigate whether DES is a suitable tool
in the design stages of a completely new kind of production system where data is
scarce. To investigate this, the aim is to model the flexible automation cell and
create a DES of the cell within a production system, using this model as a test case.
The simulation will be used to analyse the performance of the cell to balance and
improve the sequencing of the tasks performed by the cell and how modules are
placed within the cell.

1.3 Limitations
A large variation of cutting tools are used when producing the aircraft components
and these cutting tools differ in how they are prepared before they are loaded into
the CNC-machines. Some of the tool variants and its tool parameters are similar to
each other and these variants will be combined to decrease the amount of variants
in the system. This will make system less complex to model whilst still being a
sufficient representation of the actual system.

The flexible automation cell is a work-in progress and all the modules are not yet
built and tested. Therefore, the data available for these modules is either scarce or
not available and how the robot interacts with each module is not yet established.
Because of this, extended amounts of time will not be spent trying to gather high
quality data.
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1. Introduction

1.4 Research questions
1. To what extent can DES be used as a tool when designing new production

systems?

2. Can the simulation model of the flexible automation cell be used to make de-
sign decisions to prove the viability of DES in the early design of production
systems?

3
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2
Theory

The following chapter describes the theory of the project. DES will be introduced
along with its application within production systems followed by an explanation of
input data management. Finally, in order to answer the research questions, theory
on the design of production systems will be provided.

2.1 Discrete Event Simulation
By definition, simulation is the act of virtually reproducing a system or process from
reality [7]. This can be done both by hand or with the assistance of computers, and
the goal of the simulation is to understand and improve its real-world counterpart
[6]. It is also used during design phases of systems to gain knowledge of how the
system will behave, and with this knowledge, make early design decisions [6].

When creating a simulation, one also creates a simulation model. This model con-
tains the objects within a process or system and the relationship between these
objects [6]. DES is applied when modelling a discrete event system, which is often
the case when modelling a production system. A discrete event system, as opposed
to a continuous system, changes states when a particular event of interest occurs,
while a continuous system does not [5], [6].

For example: There is a buffer and a conveyor within a production system. The
system changes state when a product is loaded or unloaded, e.g. the amount of prod-
ucts in the buffer goes from one to two or vice versa, and this happens in discrete
steps. Compare this to the position of a product on a moving conveyor where the
position is continuous, as the position changes in infinitesimally small steps. This is
visualised in Figure 2.1.

Buffer 1 Buffer 2Conveyor

Figure 2.1: Figure showing the discrete amount of components in two buffers and
the continuous position of a component on a conveyor.

5



2. Theory

Furthermore, many measurements made in a production system are discrete, such as
the amount of products completed in a day, the amount of times a machine breaks
down and available workers [5].

Even though DES has many applications, it also has its disadvantages. The fol-
lowing list shows advantages and disadvantages of DES:

Advantages [5],[6]
• Virtual tool used to find improvement potential within a system
• Possibility to virtually test modifications of a system without physically inter-

rupting the actual system
• Easier and cheaper to modify a DES model than the actual system when

testing improvements
• Can be used to investigate and predict economical benefits of certain modifi-

cations that can be made to a system
Disadvantages [6]

• Creating a simulation model requires special training and skills
• There are endless ways of modelling a system
• Results from the simulation may be hard to interpret
• Analysing by using a simulation model can be expensive and time-consuming
• DES cannot accurately describe everything in a production systems

The parts within a production system which cannot be accurately captured using
only DES, such as machine dynamics, are usually simulated through continuous
simulation. If one is interested in accurately representing system dynamics as well,
a hybrid simulation where DES interacts with continuous simulation within a hybrid
system is a possible approach [8]. Furthermore, there is the concept of digital twin,
where one creates a digital ”twin” of a real-world system or process [9]. This twin
is connected to the same controllers as its real-world counterpart and can behave
exactly the same. This also means that the controller can be programmed before it
is implemented in the physical system, which is known as virtual commissioning [9].

2.1.1 Applications of DES in production systems
Historically DES has been used when designing new production systems. However,
a shift towards using DES as a tool to simulate daily operations such as mainte-
nance and operation planning is evident [10]. DES is also used in the analysis of the
behaviour of systems that are not necessarily defined as a common production sys-
tem, such as hospitals [11]. However, these type of systems are similar to a regular
production system since both of them have a set of tasks that are performed in a
certain sequence [11].

6



2. Theory

2.2 Input data management, statistics and
distributions

Input data management is defined by Skoogh and Johansson [12] as the process
of deciding the required parameters, collecting data, analysing and translating raw
data into usable input data and documenting the data. It is also one of the most
time consuming and expensive but important steps within DES projects [6], [12].
If the input data is not accurate, it might lead to an inaccurate output which in
turn might lead to improvement suggestions that could prove to be mistakes [6].
Therefore it is important to begin gathering data as early as possible in the project
and, if possible, gather the data directly from the real system. However, this might
prove problematic in cases where the system being modelled is in early design stages
[6], [12].

A way to manage the input data is to classify the data by using the classifica-
tions suggested by Robinson and Bhatia [13]. Data is divided into three categories:
A,B,C, see Table 2.1, to know what quality the data has and how to gather it.
Knowing which data type that is used in certain parts of the model is important to
know how reliable the results from the model are. The preferred data to be used
in a DES is category A data, but it is seldom the case that this data is readily
available. In cases where category A data does not exist, one has to collect category
B instead. A simple method of collecting category B data is by doing a stop watch
time study to collect the necessary data [12]. This however is only possible if the
system one wishes to model is fully functional and running. If that is not the case,
one has to estimate category C data. As category C data are only estimates mean
that the quality of the data is lower than A and B. To aid in the estimation of the
required data, one can discuss with experts on the system and production engineers
within the company. One can also look for similar systems with similar processes
and make estimations with the help of the data from such systems [6], [12].

Table 2.1: Classification of data [13]

A Available
B Not available but collectable
C Not available and not collectable

The raw data gathered has to be translated into useful input data for the DES. In
many cases, there is some variability that has to be represented in the DES model
and a common way to represent this variability is through statistical distributions
[12]. The usable distributions vary depending on the quality of the data and more
importantly its availability. According to Banks [6], two distributions that are useful
when data is limited or of low quality are triangular and uniform distributions.

7



2. Theory

2.2.1 Uniform distribution
The uniform distribution is one of the most common and simple statistic distribu-
tions. It is used when one has a lower limit a and a upper limit b and a random
variable x which can take any value between the a and b limit and the likelihood
of getting any of the values is equal [14]. Its probability density function (PDF) is
defined in Equation 2.1:

f(x) =


1

b − a, a ≤ x ≤ b

0, otherwise
(2.1)

For example: There is limited amount of data about about a machines processing
time, but it is somewhere between 2 and 5 minutes. Its lower limit a would be 2,
and its upper limit b would be 5. Its PDF is presented in Figure 2.2.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.2: PDF of the uniform distribution in the machine example.
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2. Theory

2.2.2 Triangular distribution
The triangular distribution is similar to the uniform distribution, with the exception
that one also knows an approximate mean value. The triangular distribution requires
more data, but is a substantial improvement to the uniform distribution as there is
knowledge of where the values usually fall, making it less random [6]. It has a lower
limit a, a mean value b and a upper limit c. The PDF of the triangular distribution
is defined in Equation 2.2.

f(x) =



2(x − a)
(b − a)(c − a) , a ≤ x ≤ b

2(c − x)
(c − b)(c − a) , b < x ≤ c

0, elsewhere

(2.2)

The machine example from the uniform distribution can be applied as a triangular
distribution example. However, this time there is also the mean value b, which in
this case is given the value 3. Its PDF is presented in Figure 2.3.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.2

0.4

0.6

0.8

1

Figure 2.3: PDF of the triangular distribution in the machine example.
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2. Theory

2.3 Design of production systems in early phases
In production system design, it is important that resources are put into the design
when the production system is in its early design phases. If the design is not prop-
erly done, it can lead to problems when the production system is implemented and
later on in its life-cycle [15].

In the manufacturing industry, there is no generally agreed upon way of designing
production systems [15]. However, Rösiö and Bruch [15] studied literature related
to production system design and created a framework which shows a common way
of production system design, see Figure 2.4. In this framework, common activi-
ties of early production system design are mapped and spread out on four different
phases: Initiation, background study, pre-study and design of conceptual production
systems. The framework also shows the iterative approach to production system de-
sign, where the design is evaluated in the fourth phase and if the results are not
satisfactory, the process is iterated. It is worth noting that system simulation is a
common activity when evaluating production system design.

InInitiation
Background

study
Pre-study

Design of
conceptual
production

systems

• Preparing
investment request

• Project planning

• Evaluating the 
existing production 
system

• Production analysis
• Benchmarking

• Choosing system 
parameters/system 
properties

• Function analysis
• Handling complexity
• System simulation
• Generating solutions

• Situation analysis/  
market research

• Defining system
functions and system
tasks

• Elaborating a list of
requirements

• Setting objectives

Figure 2.4: The four phases of production system design by Rösiö and Bruch [15].

When designing production system layout, Maynard and Zandin [16] presents a lay-
out design tool where one maps the relationship between objects in a production
system and weighs the importance of the proximity between these objects. These
objects can be machines, storage, work stations, break rooms etc. Using this tech-
nique, one can design a production system layout optimally, depending on which
objects need to be close to each other and which do not. A common way of evalu-
ating such layouts is by using simulation [16].

In addition to designing the system layout, the flow of the system has to be de-
signed in detail. A common approach is breaking down every process required to
produce a product into flow charts. These flow charts are then used to evaluate
different solutions and to find the optimal flow of the product from raw material to
finished product [17]. The system parameters are connected to the system require-
ments, and when choosing which parameters the system requires, focus is put on
choosing parameters which can compared to already existing data [17].
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3
Methods

In this chapter the methods used in the project will be presented. In order to answer
the proposed research questions, a a research methodology will be presented which
was used to gather relevant qualitative and quantitative data. Thereafter, a DES
methodology will be presented which was used during the DES modelling phase. The
method will be used to create the DES model and as an extension give the authors
knowledge about the design capabilities of DES. Finally, a method in determining
the viability of DES will be provided.

3.1 Literature study
To find information related to the subject of using DES as a tool in the early design
stages of production systems a literature study was performed. From this litera-
ture study, interesting information that other researchers has concluded from their
studies such as methodologies used and what challenges that were faced when using
DES as a design tool, were found.

The information gathering process was performed by defining important keywords
that were used to narrow the scope of the information gathered. The keywords were
defined by using past experiences in the subject of DES and in collaboration with
the supervisors of the project that has extensive experience in the area. The follow-
ing keywords were used: DES, Discrete Event Simulation, Discrete Event Systems,
Simulation, Virtual Commissioning, Digital Twin, Statistical Distributions and Data
Management. In conjunction with these main keywords, sub-keywords were used to
narrow down the results even further, which were: Viability, Challenges, Case-study,
Early Design and Production Systems.

The established keywords were used in the Chalmers library database and the
databases Scopus and Google Scholar. To screen the gathered literature, the ab-
stracts of the literature were analysed to decide if they were relevant for further
review. The process of reviewing the literature followed the five guidelines sug-
gested by Jones [18]:

• What are the main concepts and ideas of the article?
• Do the ideas and theory align with other literature or do they differ?
• How do you explain the difference?
• Is there any agreements between different literature regarding specific concepts

11
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or do they all differ?
• Which of the concepts and ideas is relevant to your own studies?

12
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3.2 Case study on the viability of DES in the
early design stages of production systems

To answer the posed research questions, a case study was performed. The case which
was studied was the application of DES on the flexible automation cell introduced in
Section 1.1. The flexible automation cell was modelled and simulated using Banks
simulation methodology, explained in Section 3.3. The results of the simulation was
subsequently analysed and used as support for the posed research questions (see
Section 1.4).
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3.3 Banks simulation methodology
A common methodology utilised to create DES models is the methodology suggested
by Banks [6]. The structure for the method is presented in Figure 3.1. This struc-
ture has been divided into three main phases: Research & preparation, Model
building and Analysis.

Problem formulation

Project plan

Data collection
Model

conceptiualization

Model translation

No

Experimental 

design

Production runs and 

analysis

Documentation and 

reporting

Verified?

Validated?

Satisfied?

No No

Yes

Yes

NoNo

1

2

3 4

5

6

7

8

9

10

11

Research and 

preparation

Model

building

Analysis

Yes

Figure 3.1: Work procedure within simulation suggested by Banks [6]
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3.3.1 Research & preparation
1. Problem formulation

Developing a problem formulation in the early stages of a simulation project is
of great importance to ensure that the model and results that are being gathered
are aligned with the expectations of the stakeholders [6]. The problem formulation
might have already been developed by the stakeholders whereby the modeller has
to verify that the problem formulation is adequate for the project [6]. It can also be
developed together with the modeller through discussions with the stakeholders.

In the case of this project, the stakeholders had developed a rough problem formu-
lation which was further developed together with the authors, from here on referred
as the modellers. This was done through unstructured discussions with the stake-
holders which continued until the stakeholders and the modellers had developed a
final problem formulation.

2. Project plan

The project is planned by analysing important tasks that has to be performed with
regards to the objectives and problem formulation [6]. A project schedule is then
created by deciding when certain tasks should be completed.

A project plan was created early in the project to get an overview of the steps
required to create a DES model of the system. This project plan was created by
analysing which parts of the project were important and further mapped when they
should be completed in a Gantt-chart.

3. Model conceptualisation

A model conceptualisation is a way of abstracting the real system and deciding
what to model and at what detail level [19]. This abstraction of reality is therefore
a simplification of how the system actually behaves. Depending on the purpose of
the project, some parts of the system can be modelled with higher detail than oth-
ers. Different purposes would result in a different abstraction and simplification of
the real system, and the results of the simulation would thereby change depending
on the purpose of the project [19].

The conceptual model is independent of which software or programming language
that is used [19]. It is merely a representation of the logical behaviour within the
system such as: which tasks are performed, in what sequence are they performed
and data regarding the tasks.

For this project, the model conceptualisation was done by discussing the system
behaviour with the stakeholders, especially the developers of the system. The ma-
jority of the conceptual model was based on a process map showing every task of
the system and their order which was provided by the stakeholders. This process
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map was translated into a sequential function chart (SFC) showing states, actions/-
operations and guards/conditions of the system (see Fig 3.2), explained by Battikha
[20], to simplify the translation into an operational model.

INIT

Machine on

1

Action performed

DONE

Perform actionA Action / Operation

Guard / Condition

State

Figure 3.2: Explanation of a SFC

4. Data collection

Input data management is important to achieve a precise model that can repli-
cate the behaviour of a system. Managing the input data and gathering the data is
one of the most time-consuming processes in a DES project [12]. Before the actual
data collection can begin, one has to define what data is required in the model. Ex-
amples of data parameters that are commonly required for a DES model are process
times, cycle times, setup times and availability. The decision on which parameters
to be used is decided by the modeller together with personnel who are experienced
with the system [12]. Data management was explained more in depth in Section 2.2

The data collection phase consisted of firstly finding which parameters that the
operational model would require. These parameters were decided by the modellers
during the model conceptualisation phase and compiled into a list, see Table 4.2.
This list was passed on to the supervisor of the project, whereby the supervisor
checked with the relevant parties for the availability of data for the listed parame-
ters. If there was no data available for a certain parameter, a stopwatch time study
was conducted if the data was gatherable. A stopwatch study is conducted by mea-
suring the time it takes for an operation performed by an operator (or robot) to be
completed [16].

The data required from the CNC-machines was gathered by the relevant production
engineers and supplied to the modellers. This was also the case for the worker data
required.

The time it takes for the robot to travel from one module position to another was
gathered by simulating the actual robot program in the software RobotStudio by
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ABB Robotics. Every possible movement was timed and compiled into a data table
which was subsequently transferred to the simulation software.

As the flexible automation cell will perform operations that currently are performed
manually, the operators performing the manual operations were observed and timed
to achieve a more accurate data estimation. Firstly, a sample size was determined
to be confident that the data gathered was accurate. Thereafter, the processes were
timed with three different operators performing the processes. Two of the operators
were beginners (the modellers) and one was experienced. The processes were broken
down into loading time, processing time and unloading time.

If the data was not gatherable, as with the case of the module data, the mod-
ellers held unstructured interviews with experts of the system to make estimations
of the required data as suggested by Banks [6]. This was combined with the manual
tool preparation data to make the estimated module data more accurate.

The data gathered was fit to appropriate statistical distributions, i.e triangular dis-
tribution, with the use of MATLAB for the data to be usable in the simulation
software.

3.3.2 Model building
The model building phase is performed by translating the conceptual model into
an operational model (computerised model). One has to verify that the operational
model is accurate to the conceptual model and finally validate that the operational
model is accurate to the real system [6].

5. Model translation

The model translation step is where the conceptual model is translated into an
operational model. The conceptual model will be translated using a chosen simula-
tion software, such as AutoMod and Tecnomatix Plant Simulation, or programming
language. The operational model is continuously verified and validated by compar-
ing it to the conceptual model and, if possible, the real system [6].

The DES modelling software chosen for the project was Tecnomatix Plant Simu-
lation, which was already in use at GKN Aerospace and as such was the preferred
alternative. As there was no prior knowledge about Tecnomatix Plant Simulation
within the project, the modellers gained the required knowledge through educational
material provided by Siemens, whom owns Tecnomatix, and by asking specific ques-
tions at the Plant Simulation forums. Furthermore, a Plant Simulation expert from
Siemens was consulted throughout the project. The conceptual model created in
step 3 was then translated into a operational model by following the SFCs created
and by continuously asking the system experts whether the system was behaving as
intended when a new part of the system logic was translated into the operational
model.
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6. Verification

The operational model has to be accurate to the conceptual model, and as such
it is important to verify it. The operational model is verified by comparing how
accurate its behaviour is with respect to the conceptual model. To ensure that it
behaves correctly, the code in the operational model is often debugged extensively
whereby each new addition of the model logic is thoroughly checked if it is behav-
ing correctly. If the operational model behaves as intended when compared to the
conceptual model, it is considered to be verified [6]. Another important part of the
verification of the operational model is to thoroughly document the code. By having
everything documented with explanations of variables and objects, the model can
be more easily verified by someone that is not the original model builder or if the
model builder has to verify older code [6].

The operational model in this project was verified by extensively debugging ev-
ery part of the translated logic. This was done using the debugging tool built into
Tecnomatix Plant Simulation and continuously monitoring certain parameters of in-
terest when simulating, such as product destinations and robot state, to make sure
that they had reasonable values. If any part of the logic did not behave accord-
ing to the conceptual model, the problem was located through debugging and fixed
through iteration. System experts were consulted to verify if the operational model
was behaving as the system was supposed to.

7. Validation

The validation process is where the verified operational model is compared to the
real system. The method of validating the operational model is done through iter-
ation, where the model is simulated, the behaviour compared to reality, the model
and its parameters adjusted and the process is iterated. This process is iterated
until the operational model is sufficiently accurate to the real system [6].

First of all, the model should look realistic to the user. By involving the user of the
model, one gains important input as to which aspects of the model look accurate
to reality and which do not. If the model when compared to the real system looks
correct for the user, the model builder can be confident in that the model is accurate
to reality, this is called face validation [6]. Another common method of validation
is by comparing the output of the model to historical data and from this one can
gain an appreciation of the accuracy of the model [6]. Furthermore, the use of a
Turing test to validate the model can be a sufficient method of validation. A Turing
test is when the output of the model cannot be distinguished from the output of
the real system [6]. Banks [6] suggests that one generates an amount of fake output
reports and mixes them with real reports. A set of engineers will then try to fig-
ure out which reports are fake and which are real, and if the engineers are not able
to tell which are the fake reports it means that the model has passed the Turing test.
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The method used for validating the model in this project was face validation. The
finished operational model was showed to the user and system experts, and if some-
thing didn’t work as they had intended it was changed according to their feedback.
This process was repeated until they were satisfied with the behaviour and look of
the model and as such was deemed validated.

3.3.3 Analysis
The analysis part of the simulation is where one simulates and analyses the results
to find potential bottlenecks within the system. In an effort to break these bottle-
necks, the Theory of Constraints (TOC) developed by Eliyahu M. Goldratt [1] is
a well-known method. Using this method, one can find the bottleneck(s) using the
simulation, try different ideas on how to break the bottleneck(s) and then iterate
until the bottleneck is broken.

8. Experimental design

During the experimental design part of the project, the modeller determines the
run length, number of runs to be made and length of a potential warm-up period
for every variation of the model. When the modeller is satisfied with the results of a
certain model variant, the model can be tweaked and the process starts over again [6].

The experimental designs of the model were decided together with the stakeholders
where the stakeholders explained which experimental models would be of interest.
The operational model was changed according to the stakeholders wishes and simu-
lated until the modellers and stakeholder were satisfied with the result. Initially each
experiment is subject to a screening process where they are simulated with shorter
run lengths and fever number of runs to determine if they impact the system at all.
This initial screening process of experiments was performed to be more time efficient.

9. Production runs and analysis

The result of the simulation can be analysed to find potential improvements to
the model. Many simulation software solutions have built-in statistical analysis
tools which can be used during the analysis stage of the DES. This analysis can be
used to find bottleneck(s) and other potential improvement areas within the model,
and subsequently the real life system if the improvements are considered for real life
implementation [6].

The operational model and the experimental models were analysed using the built
in statistical analysis tools within Tecnomatix Plant Simulation. These tools were
BottleneckAnalyzer, which visualises the statistical flow of objects within the system
through data tables, and ExperimentManager, which is used to experiment with
different parameters within the system to find the optimal parameter configura-
tions. The BottleneckAnalyzer tool was used to find the bottleneck of the system by
analysing the percentage of time that the individual modules were working, blocked

19



3. Methods

and starved. A resource which is working the majority of the time, which has
a starved resource upstream and a blocked resource downstream, is likely a bottle-
neck of the system. This bottleneck detection method is called the Arrow Method
(AM) [21].

Attempts were made to break the identified bottleneck using the ExperimentMan-
ager tool in conjuncture with the TOC. During the bottleneck breaking phase of
TOC, where one tries different ideas of how to break the bottleneck, the Experi-
mentManager was utilised to run experimental runs with experimental parameters
in an effort to break the bottleneck(s). This process was repeated until the modellers
were satisfied with the results.

10. Satisfied?

If one is satisfied with the results and deem that more production runs are un-
necessary, one can proceed to the next step. However, if the results are not good
enough, the modeller can do more runs, either by experimenting further with the
design or only running the simulation more times to gather more data [6].

11. Documentation and reporting

Lastly, documentation of the project is of great importance. Both by document-
ing the actual process of the simulation project and documenting the code of the
model. Having the process documented, one can gain inspiration in future projects
by looking at the documentation of the process [6]. Furthermore, by documenting
the code of the model it can be more easily understood by people that are not in-
volved with the project and it can also be of help when the modeller is looking and
trying to understand older code [6].

The DES project was documented using the online text-editor Overleaf where the
process was thoroughly explained and reported. In addition, the code written in
Tecnomatix Plant Simulation was commented for the user to easily understand the
system logic and for the modellers to easily go back and understand older versions
of the code when necessary.
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3.4 Determining the viability of DES
To determine the viability of DES in early design stages, a scoring system was cre-
ated which scores the different steps of the model building process. These scores
are based on the difficulty of completing the individual steps with adequate results
within the time frame of the project. The sheet is to be filled out by every mem-
ber of the DES modelling group individually and subsequently discussed to reach a
consensus.

For the results generated to not be skewed, one must also consider the fact that
errors and improvement potentials can be discovered during any of the modelling
steps and not only from the simulation results. As such, any errors or improvement
suggestions discovered will be taken into consideration into the final scoring. Taking
this into consideration, the modellers created a DES viability worksheet based on
the steps in Banks methodology. The questions for each step of the Banks method-
ology in the viability sheet was influenced by the challenges of DES modelling which
was established by the literature study, the challenges can be seen in Table 4.1.
Additional challenges related to DES modelling was suggested by Banks [6]. For
certain steps of the Banks methodology where challenges are common, additional
questions are included in the sheet, e.g. data collection and validation.

The individual steps in the viability sheet is scored from 1-5 where 5 is the highest
score and 1 is the lowest. The scoring criteria used to evaluate each step is shown
in Table 3.1. Finally, the scoring of all the individual steps are summarised to get a
final score. To evaluate the impact of the final score, four different project outcomes
was established and each outcome has a certain range of scoring related to it. E.g to
concluded that DES was viable for the project, a final score ranging between 76-100
had to be achieved, shown in Figure 3.3. The range of scoring used to evaluate
the project outcomes was constructed by having equal ranges for the four project
outcomes.

This worksheet was used to gain perspective on the viability of DES when consider-
ing the actual project. The final worksheet is presented in Figure 3.3 and contains
different questions depending on the individual steps within Banks methodology,
a score concerning each question and if there any additional comments. The cre-
ation of this worksheet was inspired by different ergonomic evaluation worksheets,
such as Rapid Entire Body Assessment (REBA) and Rapid Upper Limb Assessment
(RULA) where one scores the ergonomics in a certain position from bad to good
ergonomic strain [22]. With the completion of the worksheet one receives a final
score and whether action should be taken to improve the ergonomics or not [22].

Figure 3.3: DES viability worksheet based on Banks method

21



3. Methods

Table 3.1: The scoring criteria used for the viability sheet

Score Description
5 Very Accurate
4 Accurate
3 Moderately Accurate
2 Inaccurate
1 Very Inaccurate
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4
Results

Firstly, the results of literature study which was performed to find articles relevant
to the modellers work and the posed research questions, are provided. Secondly, the
results from the case study are provided to give the reader a view into the viability of
DES in the early design of production systems. Thereafter, the DES viability sheet
results are shown. Finally, the results are summarised and the research questions
are answered.

4.1 Literature study results
Florecs-Garca et al.[23] performed three case studies and mapped recurring chal-
lenges in the design, development and deployment phases of DES modelling projects,
which is presented in Table 4.1. While all challenges present in Table 4.1 are critical,
there is one challenge that proved to be more critical than the rest in each phase
[23]. In the design phase, the most critical challenge is defining the problems in
the production system and translating the same problems into a DES model. This
challenge originates from the differing views on the production system as a whole by
different team members. All the cases had to spend a considerable amount of time
in the early design stages deciding on what parts of the production system were
required for the DES model and on what abstraction level it should be [23].

In the development phase, the most critical challenge was the input data collec-
tion, more specifically the lack of existing required data. This challenge becomes
the most critical as there is no real life production system to actually gather data
from, leading the teams in the cases to estimate data for the DES model [23], which
according to Skoogh et al. [10] is category C data, and thus of low quality. An
interesting difference between the cases is that two of the teams decided on the re-
quired input parameters and collected data from that requirement, while the other
one collected all available data only to find that some of the data was not required
for the DES model [23]. This shows the importance of compiling a list of the data
parameters required before data gathering begins.

One of the grandest challenges of the deployment phase was the fact that a ma-
jority of the people at the different manufacturing companies did not have any
knowledge of DES. This led to a lot of time being spent waiting for the support of
the simulation specialists within the cases. The lack of DES knowledge also led to
the results being hard to interpret for the rest of the team members, which made

23



4. Results

decision making based on the DES results challenging [23].

Table 4.1: Table showing the common challenges in a DES modelling project by
Florecs-Garca et al.[23].

DES modelling phase Challenge

Design •  Decision support restricted by question-specific model formulation. What is the  •   

problem and how is it addressed?

•  Representation of production system dynamics and complexity

•  Validity of model detail level

•  Simplification of production system complexity and factor interdependence

•  Non-uniform abstraction level for model simplification

•  Modelling combinatorial explosion of options in a production process

•  Incomplete and conflicting production system knowledge

•  Software diversity and lack of standardisation

Development •  Model verification and validation

•  Model development time

•  Input data collection and analysis

•  Input data availability and quality

Deployment •  Model interopability and information sharing between models

•  Industry acceptance of DES

•  Communication of results for effective decision making

•  Simulation model maintenance

•  Consideration of trade-offs and non-intuitive decisions

•  High cost and low reusability of models

DES modelling challenges

A case study done by Freiberg and Scholz [24] examined whether DES could be used
to evaluate the effectiveness of modern manufacturing equipment in an existing pro-
duction system. A DES model based on the existing factory was created using
Siemens Plant Simulation and compared to an experimental model containing mod-
ern manufacturing equipment replacing the old equipment [24]. The experimental
model performed better than the existing factory in terms of product throughput,
and as such was deemed a worthy investment purely based on profit [24]. Freiberg
and Scholz [24] also mentioned the other benefits of a DES model, such as it pro-
viding a good overview of the performance of the different machines in the existing
system, the overall performance of the system and that of the future system [24].

The success of the case by Freiberg and Scholz [24] provides an example of the
viability of DES in early design stages of production systems even though the ex-
perimental model in the case is based on an existing production system.

4.2 Case study results
To answer the research questions posed in Section 1.4, the results from the completed
case study will be presented and explained. The results will provide insight into
the case, which will used to determine the viability of DES in the early design of
production systems.
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4.2.1 Conceptual model
The modelled system was divided into two product lines: the CNC-machines and
the flexible automation cell, illustrated in Figure 4.1. The CNC-machines feeds
the flexible automation cell with used tools that the cell should prepare and replace.
These tools are transported from the CNC-machines to the cell by human operators.

The cell consists of 10 positions where 10 individual modules or buffers can be
located. Each module has a specific task which it carries out in the process of
preparing the tools. However, not all tool types visit every module, as some mod-
ules process specific tool types. The tools are moved from module to module by the
robot, which is equipped with two grippers and can carry two tools at the same time.

Currently, 6 of 8 modules can perform their task without the assistance of the
robot, thus the robot can perform other tasks whilst such a module is processing a
tool. For the other two modules the robot is occupied during its process and cannot
perform additional tasks. Furthermore, one of the modules requires a human oper-
ator to run it. This module is to be used as a backup for the automatic modules.
Should a module break, the tool will be placed in the manual interaction module
and the tool is prepared manually by the operator and placed back in the system.

Robot

Main flow

Position 3

Position 9

Position 8

Position 5 Position 6

Position 1

CNC-
machines

Used tools out

Position 10

Position 2

Prepared tools in

Figure 4.1: Conceptual model showing the main flow of the system
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4.2.2 Data collection
4.2.2.1 Data parameters

The parameters that the modellers decided were required for the operational model
is presented in Table 4.2.

Table 4.2: Table showing the data parameters required for the DES model.

Operation Unit

CNC-machine loading time [min]

CNC-machine unloading time [min]

CNC-machine processing time [min]

Amount of available workers

Total amount of time the operators work during a day [h]

Time the robot requires to move from one module to another [s]

Time the robot requires to move into a module [s]

Time the robot requires to move out of a module [s]

Manual solid tool preparation loading time [s]

Manual solid tool preparation unloading time [s]

Manual solid tool preparation processing time [s]

Manual insert preparation loading time [s]

Manual insert preparation unloading time [s]

Manual insert preparation processing time [s]

Manual collet preparation loading time [s]

Manual collet preparation unloading time [s]

Manual collet preparation processing time [s]

In/Out module processing time [s]

Cleaning module processing time [s]

Vision module processing time [s]

Solid tool change module processing time [s]

Insert change module processing time [s]

Collet change module processing time [s]

Data parameters required
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4.2.2.2 CNC-machine and worker data

The unloading, loading and processing time of the CNC-machines all depend on the
specific product in the machine as well as the current tempo. The data gathered is
presented in Table 4.3 and Table 4.4. There are five operators available, with two
shifts and a total of 18 hours per day.

Table 4.3: Table showing the unloading, loading and processing times of tempo 1
of the different products processed in the CNC-machines.

Product Unloading time tempo 1 Loading time tempo 1 Processing time tempo 1 

A 5.00 5.00 254.12

B 4.25 4.25 347.73

C 4.50 4.50 226.57

D 2.00 2.00 45.00

E 5.25 5.25 252.00

F 8.00 8.00 470.20

G 8.00 8.00 470.20

H 7.25 7.25 453.91

Product Unloading time tempo 2 Loading time tempo 2 Processing time tempo 2 

A 3.50 3.50 177.88

B 1.75 1.75 143.18

C 5.25 5.25 264.37

D - - -

E 3.75 3.75 180.00

F 4.25 4.25 249.80

G 4.25 4.25 249.80

H 4.25 4.25 266.09

CNC-machine data for tempo 2 [min]

 CNC-machine data for tempo 1 [min]

Table 4.4: Table showing the unloading, loading and processing times of tempo 2
of the different products processed in the CNC-machines.

Product Unloading time tempo 1 Loading time tempo 1 Processing time tempo 1 

A 5.00 5.00 254.12

B 4.25 4.25 347.73

C 4.50 4.50 226.57

D 2.00 2.00 45.00

E 5.25 5.25 252.00

F 8.00 8.00 470.20

G 8.00 8.00 470.20

H 7.25 7.25 453.91

Product Unloading time tempo 2 Loading time tempo 2 Processing time tempo 2 

A 3.50 3.50 177.88

B 1.75 1.75 143.18

C 5.25 5.25 264.37

D - - -

E 3.75 3.75 180.00

F 4.25 4.25 249.80

G 4.25 4.25 249.80

H 4.25 4.25 266.09

CNC-machine data for tempo 2 [min]

 CNC-machine data for tempo 1 [min]

4.2.2.3 Robot movement

In Table 4.5 the data gathered from the simulation of the flexible automation cell
robot in RobotStudio is presented. The table presents the time it takes in seconds
for the robot to move from a specific module position (see Figure 4.1 for the module
positions) to any other module position as well as from the robots home position
to any module position. The speed of the robot in the simulation is the same as
the real-life robot, which has been set by a robotics expert. The time it takes for
the robot to move into and out of a module was timed at the real-life cell to be a
constant 15s into a module and 15s out of a module.
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Table 4.5: Table showing the time it takes for the robot to move from position to
position in seconds.

Home P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Home 0.0 1.5 1.2 1 0.5 0.4 0.4 0.5 0.8 1.1 1.4

P1 1.5 0.0 0.5 0.8 1 1.3 1.6 1.9 2.2 2.5 2.8

P2 1.2 0.5 0.0 0.5 0.8 1 1.3 1.6 1.9 2.2 2.5

P3 1 0.8 0.5 0.0 0.4 0.6 1 1.2 1.5 1.8 2.2

P4 0.5 1 0.8 0.5 0.0 0.4 0.8 1 1.2 1.6 1.9

P5 0.4 1.3 1 0.7 0.4 0.0 0.6 0.7 1 1.3 1.6

P6 0.4 1.6 1.3 1 0.8 0.6 0.0 0.4 0.6 0.9 1.3

P7 0.5 1.9 1.6 1.2 1 0.7 0.4 0.0 0.4 0.7 1

P8 0.8 2.2 1.9 1.5 1.2 1 0.6 0.4 0.0 0.5 0.8

P9 1.1 2.5 2.2 1.8 1.6 1.3 0.9 0.7 0.5 0.0 0.5

P10 1.4 2.8 2.5 2.2 1.9 1.6 1.3 1 0.8 0.5 0.0

F
ro

m

To [s]

4.2.2.4 Manual tool preparation

Two different kind of tools are used in the CNC-machines: Tools with solid cutting
tools and tools with inserts. In the solid cutting tools, there are also collets which
have to be replaced. These collets are not changed every time a solid tool is prepared,
but approximately once in 300 preparations. In Table 4.6 the data gathered by
observing the three operators performing the manual solid tool change is presented,
where operator 1 is experienced and operator 2 and 3 are beginners. The sample size
was a total of 15, where 5 experiments were performed by each operator. From this
data, an appropriate distribution was chosen, which was the triangular distribution
explained in Section 2.2.2. From the collected data, the lowest processing time of
20s and the highest processing time of 32s were observed and the mean value b
was calculated to be 25s. This resulted in the PDF plotted in MATLAB that is
presented in Figure 4.2. The loading time and unloading time were both constantly
around 2s and was therefore rounded to a value of 2s.
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Table 4.6: Table showing the data collected by observing the three operators
performing the manual solid tool change.

Experiment no. Operator Loading time [s] Processing time [s] Unloading time [s]

1 1 2 20 3

2 1 2 25 2

3 1 1 27 1

4 1 2 24 2

5 1 2 23 2

6 2 2 24 2

7 2 2 30 2

8 2 2 22 2

9 2 3 23 2

10 2 2 32 2

11 3 2 26 1

12 3 2 24 2

13 3 2 25 2

14 3 2 24 2

15 3 2 25 2

Process: Manual Solid Tool Change
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Figure 4.2: Triangular distribution of the manual solid change.
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In Table 4.7 the data gathered by observing the three operators performing a man-
ual change of one insert is presented. The sample size was 30 in total, with 10
experiments performed per operator. Once again the triangular distribution was
used. From the collected data, the lowest processing time of 10s and the highest
processing time of 38s were observed and the mean value b was calculated to be
20s. This resulted in the PDF that is presented in Figure 4.3. The loading time
and unloading time both had a rounded value of a constant 2s.

Table 4.7: Table showing the data collected by observing the three operators
performing the manual insert change.

Experiment no. Operator Loading time [s] Processing time [s] Unloading time [s]

1 1 2 12 2

2 1 2 14 2

3 1 2 10 2

4 1 2 13 2

5 1 2 10 2

6 1 2 18 2

7 1 2 18 2

8 1 2 16 2

9 1 2 20 2

10 1 2 15 2

11 2 2 27 2

12 2 2 21 2

13 2 2 21 2

14 2 2 25 2

15 2 2 25 2

16 2 2 13 2

17 2 2 14 2

18 2 2 19 2

19 2 2 17 2

20 2 2 13 2

21 3 2 15 2

22 3 2 15 2

23 3 2 25 2

24 3 2 19 2

25 3 2 17 2

26 3 2 32 2

27 3 2 38 2

28 3 2 33 2

29 3 2 28 2

30 3 2 33 2

Process: Manual Insert Change
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Figure 4.3: Triangular distribution of the manual insert change.
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In Table 4.8 the data gathered by observing the three operators performing the man-
ual collet change is presented. The sample size was 15 in total, with 5 experiments
performed per operator. Once again the triangular distribution was used. From the
collected data, the lowest processing time of 22s and the highest processing time of
40s were observed and the mean value b was calculated to be 30s. This resulted
in the PDF that is presented in Figure 4.4. The loading time was rounded to a
constant 4s and the unloading time was rounded to a constant 2s.

Table 4.8: Table showing the data collected by observing the three operators
performing the manual insert change.

Experiment no. Operator Loading time [s] Processing time [s] Unloading time [s]

1 1 3 24 2

2 1 3 26 2

3 1 3 22 2

4 1 3 24 2

5 1 4 24 2

6 2 5 34 2

7 2 5 33 2

8 2 3 28 2

9 2 3 28 2

10 2 5 34 2

11 3 4 34 2

12 3 3 40 2

13 3 4 36 2

14 3 3 35 2

15 3 3 32 2

Process: Manual Collet Change
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Figure 4.4: Triangular distribution of the manual collet change.

4.2.2.5 Module data

When it came to modules which had no real-life operation, system experts were
consulted to estimate the required data. The modules which had real-life operations,
e.g. solid, insert and collet change, the data from the manual preparation was
combined with expert interviews. The estimated module data is presented in Table
4.9.

Table 4.9: Table showing the estimated processing times of the modules, with the
exception of the manual preparation module.

Module Processing time [s]

In/Out: In 4

Cleaning 60

Vision 10

Solid tool change 25

Insert change 20

Collet change 30

In/Out: Out 4

Manual interaction See manual preparation

Module data
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4.2.3 Operational model
The model contains 20 CNC-machines, 10 modules, buffers and a robot. Tools are
delivered from the CNC-machines to the input buffer at the flexible automation
cell manually by operators. Once the tools are in the flexible automation cell, the
robot handles the transportation of tools between the modules. A booking system
is utilised where each module sends requests to the robot for it to pick a tool and
send it to another module.

When a tool has been processed in the cell it is transported to a warehouse/buffer
by an operator. When all the required tools are present in the warehouse, an order
is sent by a machine its process starts. A picture of the model is presented in Figure
4.5.

 1 m  1 : 200

CNC-Machines and buffers

Warehouse

Flexible automation cell

Figure 4.5: CNC-machines located to the left, the warehouse at the top and the
flexible automation cell to the right.

4.2.4 Verification and validation
The operational model was considered verified as a result of debugging and stepping
through the simulation, continuously comparing it to the conceptual model. How-
ever, the model was not considered completely validated, as there is no real-world
system or data of which to compare it to. It was deemed semi-validated, as the
system experts deemed that the model behaved as expected.

4.2.5 Experimental design
To answer research question 1, see Section 1.4, results from the simulation experi-
ments are explained in detail.

The run length of each experiment was set to 60 days and each experiment was
observed five times. When the software is observing an experiment multiple times,
the random variables (random seeds) changes and the results of the model may
change since there is a larger variance in the model.
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Furthermore, the model has to be stable throughout long periods of time. To make
sure that the model was stable an initial experiment was performed: the model was
run for one year with five observations. Since there was no errors occurring during
that time the model was deemed stable.

Additional experiments performed was categorised into two types of experiments:
structural and improvement of parameters. The structural experiments changes the
behaviour of the system by alternating features such as how parts are delivered
to the cell and how the robot operates. These experiments included the use of
Automated Guided Vehicles (AGV), having modules be completely self-sustainable
and controlling which tool type arrives to the cell and when. The structural ex-
periments performed is presented in Table 4.10. The improvement of parameters
experiments focuses on running multi-level experiments to determine what parame-
ter values should be used to improve the output of the cell. Examples of parameters
is robot speed and buffer sizes throughout the production.
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Table 4.10: The structural experiments performed

4.2.6 Production runs and analysis
Before beginning the implementation of the structural and parameter improvement
experiments, a base model had to be established to have a model to compare the
results with. Due to lack of data, an appropriate size of the input buffer was decided
through an experiment, labelled as structural experiment 0 (SE 0 in Table 4.10).
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Six buffer experiments, labelled BE 1-5, were performed where the buffer size was
altered from 100-200 in steps of 20.

The output from the cell increases linearly when the buffer capacity is increased
linearly. However, when the buffer size is 100-140, the slope of the curve is steeper
than when it is 140-200, see Figure 4.6. Thus, the importance of the buffer size
with regards to the output of the cell is decreasing in value after the buffer size has
reached 140. Having large buffers is usually not desirable, therefore the buffer size
of 140 was determined to be a sufficient value for the base model.

Figure 4.6: Input buffer size compared to the output of the cell.

Observe that when comparing the curve for the robot utilisation to the output
from the cell in Figure 4.7, they are near identical in shape. The Arrow Method
(see Section 3.3.3) indicates that the robot is the bottleneck of the system and its
utilisation determines the cell productivity. The utilisation of the robot is between 3-
4 times higher than any other machines/modules utilisation, thus it can be concluded
that it is the current bottleneck of the system. The desired output of the system
is roughly 73000 products, where the output of the base model is roughly 16000
products. Therefore, there is a need to increase the productivity of the flexible
automation cell by 450 % to meet the current demand.
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Input Buffer Size Experiments

Robot Utilisation vs Input Buffer Size

Robot Utilisation Input Buffer Size

Figure 4.7: Input buffer size compared to the utilisation of the robot within the
cell.

The structural experiments, labelled SE 0-7, were subsequently applied to the model
and simulated. Results from the runs are presented in Figure 4.8. Experiment SE3,
where the arrival order of the parts were controlled, did not yield any increase in
the output from the cell. Neither did it have any impact when it was combined with
other experiments, thus the arrival order of products is not of great importance for
the capacity of the cell. SE 5, where the AGV and NoHelp experiments are com-
bined, resulted in the highest output.

The increased output is correlated with the utilisation of the robot, as was the case
with the base model. When the robot utilisation increases, the output increases for
most of the experiments. The bottleneck was not broken by the experiments, but
rather the strained further.
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Figure 4.8: Experiment 1-7: Structural design changes to the model

In Figure 4.9 and Figure 4.10 one can see the effect of different parameter changes
on the system and the robot utilisation. In these parameter experiments, labelled
PE 1-48, the robot loading/unloading time was changed from 1 to 15 seconds in
steps of 2 and the input buffer size was changed from 100 to 200 in steps of 20.

By analysing the results, one can see that the parameter that has the biggest effect
on the system output is robot loading/unloading time, with the input buffer size
being close to negligible. The output increases linearly with the reduction of robot
loading/unloading time. The same effect can be observed concerning the robot util-
isation, with the utilisation decreasing drastically when the loading/unloading time
of the robot is low. This utilisation increases until the robot loading/unloading time
is 7 seconds, whereby the curve flattens.
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Figure 4.9: Output of the system when varying robot loading/unloading time and
input buffer size.

Figure 4.10: Utilisation of the robot when varying robot loading/unloading time
and input buffer size.

4.2.7 Suggested system improvements
From the production runs and analysis there are several experiments that showed an
increase in productivity for the flexible automation cell, providing insight into DES
as a design tool for production systems. The most promising one is the implemen-
tation of AGVs to transport the tools and to load the CNC-machines, with which
production can continue running without human operators. This does not take into
account tasks such as maintenance and handling tools at the manual interaction
module, as these tasks still have to be performed by human operators. Additionally,
making the vision module and the solid tool change module independent where they
do not require aid from the robot to perform its tasks, also increases the productiv-
ity of the cell.
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Robot loading/unloading time is also of great importance where having a more
optimised robot will benefit the productivity substantially. Currently the load-
ing/unloading time is 15 seconds and decreasing it by 50% would result in a load-
ing/unloading time of roughly 7 seconds. Decreasing the loading/unloading time
by more than 50% could prove challenging as robot safety and accuracy is of great
importance. Therefore, 7 seconds as loading/unloading time is suggested as a rea-
sonable value.

Lastly, the input buffer size had little impact on the capacity of the cell once the
AGVs were implemented. Having smaller buffers is often desirable, thus the input
buffer is suggested to have a capacity of 100 tools compared to the capacity of 140
tools that the input buffer had in base model.

4.2.8 Sensitivity analysis
Finally, a sensitivity analysis was performed on the model with the suggested changes.
The sensitivity analysis was performed since the other experiments did not take into
consideration disturbances within the production, such as machine breakdowns.

The sensitivity analysis was performed by including the possibility for failures to
happen in the bottleneck machine, the robot. Since there is no recorded data for
how often the robot fails, the analysis was based on experimenting with multiple
values of the availability parameter of the robot. The analysis was performed by
having robot availability ranging from 95%-99% in five availability experiments, la-
belled AE 1-5, the results are presented in Figure 4.11.

The output of the cell decreased from 52714 to ranging between 43340-49904 tools
replaced during 60 days of production, depending on which availability the robot
has. Thus, the systems capacity was decreased by 5%-18% when including break-
downs to the robot as a disturbance.
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Figure 4.11: Availability of the robot compared to the output of the cell when the
loading time is 7 seconds.

4.2.9 DES viability sheet results
To assist in establishing the viability of DES in this particular case, the DES viability
worksheet, see Figure 3.3, introduced in Section 3.4 was filled out by the modellers.
The result of this is presented in Figure 4.12. According to the scoring on the
viability sheet, the studied case is in the lower half of the 51-75 score, which according
to the sheet shows that the DES was suitable for the case, but with major challenges.
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Figure 4.12: DES viability sheet filled out by the modellers.
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4.3 Summary
The results of the simulation runs of the base model and the different experimental
models show that the bottleneck of the system is the robot, and effort should be put
into optimising the loading and unloading speed of the robot to break the bottle-
neck. With the application of the suggestions in SE 5 and an optimised robot speed,
the daily tool demand can be met by using two robot cells for the entire production
system, proving the flexible automation cell concept.

The results show that the DES model of the flexible automation cell can provide
insight into how it will behave and perform when it is deployed in the real-life fac-
tory. It also shows that the model can be used as a tool to assist the development
of the flexible automation cell, as the model shows that designing all the modules
to not require any assistance from the robot is preferable. However, finding out
how exactly these modules should be designed was not something that was possible
using DES. Furthermore, different parameters such as input buffer size and robot
unloading/loading times could be decided using DES, as seen in Section 4.2.5. To
answer research question 1 (see Section 1.4): DES can be used to make design deci-
sions such as buffer size and robot speed, and also provide improvement suggestions
to the system, such as AGVs and completely autonomous modules. However, more
complex design decisions such as the exact behaviour and logic of individual mod-
ules, was not possible using DES in the early design stages.

The experiments presented in Section 4.2.5, production runs presented in Section
4.2.6 and improvement suggestions presented in Section 4.2.7 show that DES used
in the early design of production systems can provide useful insight into the future
system. One can make certain design choices and improvements to the system which
is currently in development, and through these improvements save time and money.
This is further shown via the viability sheet results presented in Section 4.2.9, which
suggests that DES was suitable for the project. To answer research question 2: The
model of the flexible automation cell provided insight into the system and its be-
haviour, improvements to the design and the parameters of the system as well as
a simulation model which can be further utilised in the future. This shows that
despite a lack of data and no complete real-world system to base the model on, DES
can still be viable and useful in the early design of production systems.
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The following chapter will provide a discussion based on the case results, the viability
of DES in the early design of production systems, challenges faced using Banks,
sustainability aspects of the project as well as discussion on further research.

5.1 Case results
The results of the case study show that the performance of one flexible automation
cell today cannot prepare enough tools to meet the daily demand. However, with
the suggested improvements to the design and parameters of the system, having at
least two flexible automation cells preparing tools in tandem might have the capac-
ity to prepare enough tools.

These results cannot be confirmed to be completely accurate however, as there
is no real-world system to compare the results against and the quality of the data
used in the model is low. This means that the future real-world flexible automation
cell might prepare more tools or less than the results suggest. The feasibility of the
suggested improvement is also questionable, as knowing which improvements that
can actually be implemented is difficult.

There are also aspects which have not been taken into consideration in the model,
such as AGV- and module breakdowns, as these were deemed too difficult to esti-
mate data for and implement. In the real-world, these aspects will likely affect the
capacity of the flexible automation cell.

The methodology, used during the case, developed by Banks and explained in Sec-
tion 2.1.1, proved to be a suitable method for the case. The method proved easy
to follow and each step of the process was in a logical order. However, some steps
of the process are hard to perform correctly considering production systems in an
early design stage. This is mostly due to the lack of data available, making data
collection and validation difficult.
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5.2 Viability of DES in the early design of
production systems

To determine the viability of DES in the early design of production systems, a case
study was performed and a DES viability sheet was filled out based on the process
of the case study and its results. According to these results, there is proof which
indicates that DES is a viable tool to aid developers when designing new production
systems and that it can provide detailed improvement suggestions. This is possible
despite an overall low quality of data and no complete real-world system in which
to base the simulation model on.

Even though it is impossible to create a model which captures the future real-world
system with complete accuracy, it is still possible to see certain trends in the system
and get a grasp of its overall performance and behaviour. These aspects can be
used to make improvements to the operational model and assumptions can be made
that these improvements can also be applied to the real-world system. However, in
the real-world system, the improvements will be made early on and seen as design
changes, rather than improvements.

Design changes and improvements that are particularly complex in nature, such
as the design and behaviour of the modules, are not as viable however. To change
the design and make improvements of an individual module requires a more detailed
simulation which incorporates system dynamics as well as a thorough breakdown of
every operation within each module process.

When evaluating DES as a design tool when comparing it to the design process
presented in Section 2.3, it can be seen that DES can be useful in the evaluation
of conceptual production systems and system layouts [16], [17]. In addition, DES
proved useful in determining system parameters, and which parameters are inter-
esting to monitor. This was shown in the case study, where it was found that
robot loading/unloading time affects the system drastically, and that the developers
should focus on reducing this time. Optimally, DES should not solely be used when
designing production systems, but used in tandem with the regular design process.
Using DES to evaluate parameters, layouts, flows etc. when designing production
systems can prove useful in finding design errors and if these errors are not found it
can lead to problems in the implementation phase [15].

The viability sheet, see Figure 4.12, shows that DES was suitable for the studied
case but it was not without its challenges. However, this viability sheet is subjective,
and the results can vary depending on every individual experience with a project.
The questions for the steps in the viability sheet was based on common challenges
when applying DES, thus they can be considered relevant. However, there are more
challenges that can be included in these steps to get a more detailed evaluation of
the viability. Furthermore, the evaluation of the final score where different ranges of
scores was defined to deem the outcome of the project lacked a rigorous and struc-
tured method. Currently, the scoring ranges are defined by equally dividing the
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maximum amount of points available by the amount of outcomes available. How-
ever, this method where each outcome has equal potential should be revised since
these limits were not based on any statistical evidence. The results from the evalu-
ation of the viability sheet do however accurately reflect the views of the modellers
in this case which shows the potential of this evaluation method. As the project
was finished, the modellers agreed that DES provided many interesting and useful
results, while at the same time having been a great challenge. These challenges are
further explained in Section 5.3.

5.3 Challenges of DES in the early design of
production systems

In the following section, discovered challenges with DES and a solution to these
challenges will be presented. They will also be compared to the common challenges
found by Florecs-Garca et al.[23].

5.3.1 Model conceptualisation
According to Florecs-Garca et al.[23], the model conceptualisation and making an
adequate system abstraction is one of the major challenges in a DES project in
the early design stages of a production system. This proved to be the case in this
project as well, confirming it as a major challenge. As there is no finished system
to analyse and make an abstraction out of, it is difficult to make sure that the
conceptual model actually represents the real system accurately. Therefore, it is
of great importance to discuss with the stakeholders and experts of the system
how the real system is supposed to behave and what simplifications can be done.
The approach of converting a flow chart created by the system experts of the future
system into SFCs proved to be sufficient in this case, however, it is still a substantial
challenge to accurately break down the logical behaviour of the system for it to be
easily translated into an operational model. This is especially the case when the
system needs to be modelled with a high level of detail, wherein DES might not be
the most suitable solution. Instead, a hybrid simulation approach as mentioned in
Chapter 2.1 might be an alternative.

5.3.2 Data Collection
The data collection phase proved to be one of the more challenging tasks of the
DES modelling project. This confirms that data collection in early design stages of
production systems is a major challenge, as was also described by Florecs-Garca et
al.[23].

The flexible automation cell is not yet finished and some of its modules are not
physically constructed yet. Thus, the input data had to be based on an mixture of
data: how the production currently performs, such as CNC-machine processing time
and manual tool preparation, and how the robot and the modules that are actually
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constructed performs. Having a mixture of data where there are different owners of
the data is something that delayed the data gathering process, as the data had to
be gathered by first finding the relevant data owners and contacting them with the
assumption that there is actually data available, which was not always the case.

Furthermore, approximating certain data parameters that are based on how the pro-
duction system currently performs can not be considered to be an accurate method.
It is hard to predict exactly how the flexible automation cell will perform some of
the processes, and if it will perform better or worse when considering the time spent
on each process.

It is also hard to define the accuracy of the model since there is nothing to compare
the model to. Most of the input data is of classification C, thus it can be assumed
that it is of rather low quality and not high accuracy [13]. However, since this
model is to be used as a design tool to try different concepts and how they affect the
flexible automation cell, the accuracy might be sufficient. The analysis performed
showed trends and behaviour within the flexible automation cell that can be used to
assist the system design, but it does not have enough accuracy and detail to define
operations that requires higher accuracy such as daily planning of the production.

To deal with the discussed challenges, one has to decide on relevant parameters
early on in the modelling process. The reason for this is because data collection
takes time, and having decided what data is needed early on means that the rele-
vant parties can be contacted as early as possible. It is challenging to know exactly
what parameters are needed early on in the modelling process, and some parameters
are found when collecting other data. Therefore, having the data collection process
started early on with the relevant parameters required, leads to interesting results
in a lower amount of time.

5.3.3 Model Translation
The limitations of the model conceptualisations stage substantially affected the later
model translation stage. Uncertainties and how to deal with them as well as choos-
ing a relevant abstraction level that the system should be modelled by impacted how
the model translation was performed. Having a rather unspecific model conceptual-
isation and trying to build the model in the software without knowing how some of
the parts of the model should be constructed and how the real system should behave
caused the translation stage of the project to require more time than expected.

Whilst the implementation was performed, additional information about the real-
life system was found which impacted how the system was modelled. This lead
to the modellers having to make rather extensive changes to the code and change
the approach entirely to satisfy the features of the real-life system which was not
included in the model conceptualisation. This proved to be one of the contributing
factors to the increased time consumption in this stage. Furthermore, the modellers
inexperience with the modelling software made the model translation stage more
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difficult, as the modellers did not know what tools that could be used. Not know-
ing what the capabilities of the software was and how it could be used to model
the system caused the model development to be based on a trial and error type of
structure. Each area of the conceptual model was coded independently and tested
without knowing how these independent areas should be linked together to form
the model. Some of the tools that were used within the software to create these in-
dependent functionalities and link them together proved to be unsuitable. At that
point, a considerable amount of time had already been spent developing the oper-
ational model with these tools. Having to change the structure of the operational
model at that point caused the overall model translation stage to be delayed further.

To prevent or to minimise the obstacles that were faced in the model translation
stage there are mainly two things that could have been done. Firstly, the model
conceptualisation should be done with a more thorough approach. The stakeholders
should be included early on to make sure that the behaviour of the system is un-
derstood and what the model should be used for to make sure that the conceptual
model and the model translation is done correctly without having to make unfore-
seen changes. Lastly, to prevent poor decision making when deciding what tools
to use within the software and how to structure the conceptual model, the learn-
ing phase should be more extensive. Modelling a complex system without having
sufficient knowledge of the chosen software proved to be very time consuming. By
having a more extensive learning phase where experience and knowledge about the
software is gathered is crucial to make better design decisions that has a higher
probability of making the conceptual model run as intended.

5.3.4 Verification and validation
The verification process consisted of thoroughly debugging and testing the code in
an effort to ensure that it behaved to the established conceptual model and specifi-
cations. It was a very arduous and time consuming process, as when one issue was
resolved, another one appeared. During this process, the fact that the modellers
had limited prior knowledge of the software became clear. The modellers did not
become aware of many efficient ways of debugging until later in the project, and as
such a considerable amount of time spent debugging could have been reduced had
the knowledge of the software been sufficient. Therefore it is important to have prior
knowledge of the software, or a longer learning phase before the actual modelling
begins.

As there is physically no complete existing system upon which the model is based,
validation of the model was evidently challenging. There is no data on how the
system is supposed to perform, only the demand. Therefore it was challenging to
know whether the system performed as intended or not. In an effort to validate the
system, the system developers and experts were consulted, where they examined the
model to see if it behaved as they had originally intended. The experts deemed that
the model behaved as expected, and the model was deemed semi-validated.
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5.4 Sustainability aspects
Concerning sustainability aspects, the different ways the flexible automation cell will
affect the social, environmental and economic pillars of sustainability has to be
considered [25]. The social pillar is about the people connected to the company,
for example the employees and the stakeholders. To be socially sustainable, the
company has to make sure that the employees are treated fairly, that their work-
place is safe and everyone in the supply chain is taken into consideration [25]. The
environmental pillar is about how the company affects the environment. To be
sustainable the company has to focus on, for example, the reduction of waste, de-
creasing its CO2 emission and water usage [25]. The economic pillar is about the
profitability of the company, as to be sustainable, the company has to be profitable.
However, profitability can never be more important than the environmental and
social pillars [25].

As the flexible automation cell is designed to automate the tool preparation process
which today is done manually by operators, it is only natural to assume that these
operators will no longer be required to perform this specific process. This could
potentially lead to layoffs within the company. However, there are still operators re-
quired to operate the flexible automation cell, and as such the operators tasks would
change from manually preparing the tools to operating the flexible automation cell.
However, the flexible automation cell would probably require fewer operators than
the manual preparation of tools does.

The act of automating the tool preparation would in general decrease the ergonomic
strain upon the operators. They would no longer be required to perform the phys-
ically and cognitively repetitive task of preparing the tools manually. Repetitive
tasks are considered by Berlin and Adams [22] to be one of the most harmful fac-
tors. This is especially the case when considering tasks which are performed mostly
with the fingers and hands [22], which is the case of the manual preparation of tools.
The monotonous and repetitive nature of the task may also lead to the operators
experiencing boredom. This might cause the operator to make errors when perform-
ing the task, as the mind of the operator slips [22]. The ergonomic issue of the tool
preparation process would therefore be effectively eliminated with the introduction
of the flexible automation cell within the company’s manufacturing system.

When considering the environmental pillar of sustainability, the biggest aspect
to consider is the fact that the flexible automation cell and its components has to
be produced, which affects the environment. The production of the automation
cell would likely cause a certain amount of CO2 emissions and water usage. This
will also require energy and if the energy is not renewable, such as wind power and
solar power [26], it will have a negative effect on the environment. Energy will also
be required when the automation cell is in operation, which is not required in the
current situation where the tools are prepared manually.

The last pillar to be considered is the economic pillar of sustainability. With the
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introduction of the flexible automation cell within the manufacturing system, tools
for the machines could be prepared automatically by the machine at night, when no
employees are working. This could potentially lead to an increase in productivity
of the entire production system, leading to profit. The fact that the discrete event
model of the flexible automation cell can be utilised to find improvements to the
cell before it has been finished can be seen as profitable as well. This is because
one does not have to rebuild the cell to make adjustments, instead the cell can be
improved in earlier stages.

5.5 Future research
To further evaluate the potential of DES as design tool in early design stages of
production systems, research should be done on a hybrid of DES and continuous
simulation. By utilising continuous simulation as well as DES, system dynamics and
complex system behaviour can be modelled while at the same time taking advantage
of the potential of DES. With a hybrid approach, one can experiment and find im-
provements to the entire production system and its parameters, but also find design
improvements to the more complex parts of a production system. In this case, the
complex parts are the different modules of the flexible automation cell, which all
have complex individual behaviour.

The method of how to evaluate whether or not DES is viable or not that was used
in this project has areas that can be improved further. Defining the scoring ranges
that are used when evaluating the results from the viability sheet or defining a new
evaluation method is something that should be investigated further.

Additionally, the viability analysis performed in this case study was based on the
results from the application of DES. Research to create a viability analysis that
can be performed to assess whether or not DES should be used as a tool would be
helpful, prior to the launch of a project. This has a potential of assisting company’s
in choosing suitable tools that are beneficial for their application and project.

5.6 The covid-19 pandemic
The covid-19 pandemic affected the data collection by removing the possibility of
collecting manual tool preparation data from the physical factory. To solve this
problem, a tool preparation expert was brought from the factory and observed and
timed when performing the manual tool preparation tasks. Because there was a lim-
ited amount of operators to observe, the data is not of the highest quality, reducing
the overall accuracy of the model. This could have been resolved by collecting data
earlier in the process, showing that data collection should start as early as possible
as discussed earlier in Section 5.3.2.

Furthermore, covid-19 also prevented the modellers from going to the company’s
location. To solve this problem, the modellers received a computer with a Plant
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Simulation license in order to work from home and all meetings with the supervi-
sors were relegated to online meeting. This proved a suitable solution, and with
the exception of data collection, the thesis was minimally affected by the covid-19
pandemic.

Despite covid-19 complicating parts of the process, the pandemic showed that a
DES study does not have to be conducted at the physical factory. If no data has
to be collected, or the data can be collected by someone working at the factory, a
DES study can be performed completely from home. All necessary meetings can be
held online, and this has the potential to save time for the modellers. Travelling to
and from the factory takes time, and not being able to travel meant that this time
was instead spent on the DES study. This has the potential of reducing the overall
time a DES study takes, saving the company money, and not having to travel also
reduces the environmental impact. Despite a DES study not affecting the environ-
ment heavily or at all, travelling to and from the factory does. The pandemic has
made people realise that physically being at work is not a requirement, and working
from home can be as effective.
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This thesis has shown that DES can be a viable tool to assist the development of
future production systems and production cells. It was possible to achieve results
showing how the future system might perform with the use of estimated input data.
Analysing these results provided information regarding the main bottleneck of the
system, which proved to be the robot of the flexible automation cell. Furthermore,
the results from the experimental design and production runs showed an estimation
of the capacity of the cell, and that the performance of the robot greatly influenced
the cells capacity. Implementing the suggested improvements and focusing on opti-
mising the performance of the robot has the possibility to make flexible automation
cell viable in daily production.

This shows that DES utilised in the early design stages of a production system is
a viable approach. DES can influence the design of the future system, and be used
as a tool to decide on production parameters. This in combination with the DES
viability sheet provides proof that DES is viable in the early design of production
systems and that its ability to experiment with design suggestions and parameters is
powerful. Although limited in its ability to provide complex design improvements on
system behaviour and logic, its advantages outweigh its disadvantages, and is a use-
ful venture for manufacturing companies looking to design new production systems
or experiment with existing ones.
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