
Automated Drive
Environments and Decision Making
Master’s thesis in Systems, Control and Mechatronics

NICKLAS GUSTAFSSON

Department of Signals and Systems
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2013
Master’s thesis EX009/2013

MASTER’S THESIS IN SYSTEMS, CONTROL AND MECHATRONICS

Automated Drive

Environments and Decision Making

NICKLAS GUSTAFSSON

Department of Signals and Systems
CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2013

Automated Drive
Environments and Decision Making
NICKLAS GUSTAFSSON

c© NICKLAS GUSTAFSSON, 2013

Master’s thesis EX009/2013
Examiner: Jonas Sjöberg (jonas.sjoberg@chalmers.se)
Department of Signals and Systems
Chalmers University of Technology
SE-412 96 Gothenburg
Sweden
Telephone: +46 (0)31-772 1000

Cover:
Modelling traffic environments can be seen as a jigsaw puzzle, where pieces that are put together
consitute to a traffic scenario. Automated drive control systems is provided with information,
from the environment, to make correct decisions and execute the correponding behaviour.

Chalmers Reproservice
Gothenburg, Sweden 2013

Automated Drive
Environments and Decision Making
Master’s thesis in Systems, Control and Mechatronics
NICKLAS GUSTAFSSON
Department of Signals and Systems
Chalmers University of Technology

Abstract

Recent advances in the automotive industry, within the area of active safety, has paved the way
for sophisticated automated drive systems. That is, systems that help drivers to operate their
vehicles. A great number of stakeholders have identified automated drive systems as important
parts of future automotive systems, with respect to passenger safety, comfort and environmental
impact. It is hence of interest to develop such systems efficiently, using modelling and simulation
software. This work focuses on two areas, evaluating traffic environment modelling tools and
developing a system for automated drive. Two tools, PreScan R© and CarMaker R©, are tested by
building a traffic model, containing roads, infrastructure and traffic flows. This thesis describes
the tools’ User Interfaces (UI) for specifying the model, -for connecting Simulink R© developed
control systems and -for visualizing simulation results. The study results in a table, stating the
strengths of the two tools respectively; PreScan has an excellent drag and drop UI for specifying
roads, infrastructure and traffic flows; CarMaker has an advanced default vehicle dynamics model,
and a great UI for visualizing simulation results. An automated drive control system is developed,
implemented and connected to the traffic environments. A three-layered planning architecture
allows the system to sense, plan and execute a legal and efficient behaviour. An Adaptive Cruise
Control (ACC) component is used to execute longitudinal decisions and prevent collisions. The
resulting system drives a host vehicle successfully, through the traffic environments developed
using the modelling tools.

Keywords: Modelling traffic environments, Decision making, Efficient overtake and merging,
Intersection driving, Roundabout driving

Acknowledgements

I would like to express my appreciation to Volvo Car Corporation, for providing me the opportunity
to perform my Master’s Thesis in a stimulating environment. A special thanks goes to Dr. Stefan
Soylom, who has been my supervisor throughout the last twenty weeks. Your advice and guidance
has been of great importance for my work. I would also like to acknowledge TNO and IPG
Automotive for providing me the opportunity to use their software, PreScan and CarMaker
respectively, to achieve my results.

i

ii

Nomenclature

Host car

The host car, or ego vehicle, is the car for which the automated drive system is designed and
implemented.

Target

A target is an object (infrastructure or vehicle) that typically should be considered by the
automated drive algorithm, e.g. a speed sign indicating a new set speed, or a vehicle navigating
through a roundabout ahead of the host car.

Target angle

The target angle αtar ∈ [−π, π] is defined positive counter clockwise from the host car’s heading
to the target’s position.

Target range

If v(t) is a vector from the host car to a specific target at time instance t, the range is given as

dr(t) =
√

v(t)>v(t) (0.0.1)

Target range rate

The target range rate at time instance t is given by

drr(t) =
d

dt
dr(t) (0.0.2)

Hence a negative range rate translates to a target approaching the host car.

Time-to-collision

Time-To-Collision (TTC) is given by

tttc = − dr
drr

. (0.0.3)

It is the time to collision if host and target continue with constant velocities. Systems developed
in this work use TTC to distinguish which targets are of most importance to the host car. TTC
should not be confused with inter vehicle time, which assumes that the target vehicle is stationary.
It is straight forward to include acceleration in Eq. 0.0.3 (Gietelink, 2007). However, it can be
hard to estimate target vehicles acceleration and is hence not included in this work.

Lateral direction, longitudinal direction and yaw angle

Figure. 0.0.1 illustrates direction- and angle conventions related to the host vehicle.

H

Yaw angleLateral direction

Longitudinal direction

x

Global coordinate frame

y

Figure 0.0.1: Conventions of directions and angles related to the host vehicle.

iii

iv

Contents

Abstract i

Acknowledgements i

Nomenclature iii

Contents v

1 Introduction 1

2 Thesis outline and contributions 2

3 Modelling tools for traffic environments 3
3.1 Scenaria descriptions . 3
3.2 PreScan evaluation . 3
3.2.1 Building a PreScan traffic environment model . 3
3.2.2 Modelling sensors to access control signals . 5
3.2.3 Adding Simulink control systems . 6
3.2.4 Simulating a scenario using PreScan . 7
3.3 CarMarker evaluation . 8
3.3.1 Building a CarMaker traffic environment model . 8
3.3.2 Accessing signals in Simulink . 10
3.3.3 Adding Simulink control systems . 11
3.3.4 Simulating a scenario using CarMaker . 12
3.4 Summary of software strengths . 13

4 Decision making for automated vehicles 14
4.1 Software architecture for automated drive . 14
4.2 Perception . 15
4.2.1 Road model . 15
4.2.2 Targets . 16
4.3 Mission planner . 16
4.3.1 Road sign information . 17
4.3.2 List of precedence . 17
4.4 Behaviour planner . 18
4.4.1 Precedence based decision making for legal behaviour 18
4.4.2 Cost evaluation for planning of efficient overtake manoeuvres 18
4.5 Motion planner . 22
4.5.1 Lane defined lateral motion . 22
4.5.2 Trajectory-defined lateral motion . 24
4.5.3 Longitudinal motion . 24
4.6 Execution of motion goal . 24
4.6.1 Lateral control . 24
4.6.2 Longitudinal control . 25
4.7 Results of the automated drive system . 26

5 Conclusions 30

v

vi

1 Introduction

Volvo Car Corporation’s (VCC) vision is that “by 2020, nobody shall be seriously injured or killed
in a new Volvo” (Volvo Car Corporation, 2013b). Hence, research and development efforts are
needed, to increase passenger safety, in future automotive systems. It can be done by improving
three factors: infrastructure, vehicle and driver (HAVEit, 2012b). For instance, improvements
to passive, vehicle related, safety functions such as air-bags and deformation zones are needed.
However, since the great majority of accidents are caused by the driver (HAVEit, 2012b), safety
functions that actively prevents accidents are of great importance to reduce traffic casualties
and injuries. A particular area of interest, related to active safety, concerns the development
automated drive systems. That is systems that use sensors to perceive the surrounding traffic
environment, and help drivers to operate their vehicles; for instance, by taking direct control of
the vehicle’s throttle and steering. Recent advances within the area has paved the way for systems
such as Adaptive Cruise Control (ACC). It is a cruise control with the addition that it has sensors
to get information of the traffic ahead. It can hence conclude that a vehicle in front drives too
slow- or close to the host vehicle, and act by adapting the host vehicle’s velocity (Rajamani,
2012). Original Equipment Manufacturers (OEM) such as Volvo and BMW use the technology in
their vehicles (Volvo Car Corporation, 2013a; BMW, 2013). The importance of automated drive
systems is acknowledged by a great number of industry and science representatives (HAVEit,
2012a; interactIVe, 2012), not only due to safety reasons, but also as key components in the goal
of reducing environmental impact and increasing passenger comfort.

Developing automated drive systems is a time- and resource intense process. They have to be
tested rigorously in a variety of scenaria, to ensure that the systems behave as desired. Often,
car OEMs have a fleet of test vehicles, to validate systems’ functionality. Hence a significant
development cost is spent on equipment, driver hours, analysis of results and even on finding a
road that is suitable for a desired scenario test. This strongly motivates a need for computer aided
development tools that can reduce the cost carriers. MATLAB’s R© toolbox Simulink (MathWorks,
2013) is a modelling and simulation tool, widely established in industry, for design of control
systems. However, it is not convenient to specify traffic environments in Simulink. For that cause,
specialized Simulink compatible traffic environment modelling tools are needed to realize specific
scenaria, i.e. make the automated drive system behave as intended in specific traffic situations.

As mentioned, automated drive systems can assist the driver by supporting at specific situations,
and hence keep the driver in the loop. Going further towards totally excluding the driver from
the loop, to avoid human mistakes, a fully automated drive system is needed to navigate the
vehicle. Such an implementation puts higher demands on the system’s framework. It has to be
modular and scalable to handle the vast amount of traffic situations that a driver usually deals
with. For instance, Urmson et al. (2008) uses a three layer planning framework that separates
tactical planning from making decisions and executing the corresponding behaviour. The system
manages to drive a host vehicle through an urban traffic environment successfully, without human
interventions. Such fully automated vehicles might possibly be a part of the solution to fulfil
VCC’s vision of zero deaths and injuries in future vehicle systems.

1

2 Thesis outline and contributions

The contributions of this work concern traffic environment modelling tools (described in Section 3)
and the implementation of an automated drive system (described in Section 4). Two commercial
modelling tools, PreScan (Tass, 2013) and CarMaker (IPG Automotive, 2013), are examined. A
set of scenaria (described in Section 3.1) is realized and the tools’ following features are considered:

• User interface for specifying traffic models, i.e. how different kinds of roads, road signs,
vehicles and their movements are specified.

• Signal interface between traffic environment model and an automated drive control system
developed in MATLAB/Simulink.

• Visualization of simulation results.

The resulting first contribution, of this work, is a table of the two tools’ strengths (presented in
Section 3.4) with respect to the features considered.

An automated drive framework (described in Section 4) is developed and implemented. Its
modular design (illustrated in Section 4.1) is a contribution itself, separating tactical-, behavioural-
and motion planning layers (described separately in Section 4.3–4.5). The third contribution, of
this work, is a road model parametrization (described in Section 4.2) that allows the planning
layers to prepare a precedence list and make context-based decisions. Further, an Adaptive Cruise
Control (ACC) component is implemented (described in Section 4.6) to execute the decisions
issued. However, it is also used to prevent collisions with vehicles that are in the host car’s
navigation path. The last contribution of this work is an algorithm (described in Section 4.4.2)
that evaluates a cost function to make efficient overtake decisions with respect to acceleration
and velocity deviations from desired reference values. The complete system successfully drives
a host vehicle through the traffic environment models built for the scenaria in Section 3.1, the
results are described and depicted in Section 4.7.

2

3 Modelling tools for traffic environments

This section describes the evaluation of two traffic environment modelling tools, PreScan and
CarMaker, selected after a limited market survey. The tools’ abilities to model traffic environments,
connect with control systems and visualize simulation results are specifically considered. A set of
scenaria is realized to evaluate the tools’ strengths, with respect to the features considered. The
results are presented in the end of this section.

3.1 Scenaria descriptions

A set of scenaria is selected to put demands on specifying complex road shapes, timing traffic
flows and routing signals to- and from the automated drive control system. The following scenaria
are examined:

• Straight- and curved highways:
The host car should follow roads that are curved or straight with a set speed.

• Traffic signs:
The host car should be able to handle speed signs, stop signs and rights of way.

• Overtaking:
Two situations are of interest:

– The host car approaches a slow driving car in the right lane of a highway. The
automated drive system should decide if an overtake is safe and efficient. If so, the
overtake is performed.

– The host car approaches a slow driving car in the right lane; another car is approaching
fast enough from behind for an overtake manoeuvre to be considered unsafe. The host
car should then decide to adjust its speed to the slow driving vehicle in front.

• Highway exit:
The host car should leave the highway by taking an exit.

• Roundabout:
The host car should be able to drive through a roundabout.

• Intersection:
The host car should be able to drive through an intersection.

3.2 PreScan evaluation

This section describes a four step modelling and simulation process using PreScan with MAT-
LAB/Simulink. It describes how roads and traffic flows are defined, how signals are routed to the
control system and how the resulting model is simulated.

3.2.1 Building a PreScan traffic environment model

PreScan uses a Graphical User Interface (GUI) with drag and drop functionality to import
infrastructure- and actor objects (e.g. cars) from an object library to a build area. Most objects
that are placed in the build area are customizable via a property editor on the right hand side
of the GUI. In addition, objects can be configured by right clicking on the specific object and
selecting object configuration. The PreScan GUI is depicted in Fig. 3.2.1.

3

Figure 3.2.1: The PreScan GUI consists of an object library, toolbars, a build area and a property
editor.

Infrastructure

PreScan comes with a large set of predefined and customizable infrastructure objects including
road segments, buildings, traffic signs etc. In this work, road segments and traffic signs are of
most importance. The type of road segments used are:

• Straight road

• Roundabout

• Intersection

• Curved road

• Highway exit

• Lane adapter (merges two lanes into one)

The appearance of predefined infrastructure is customized, to the extent needed, by dragging the
road segment’s ends with the mouse cursor, or by changing parameters in the property editor.
Road segments are put together by connecting road joints, which appear as green dots when a
segment is selected (see Fig. 3.2.2). Additional road joint connection points can be added to the
ends of road segments. In that way diverging lanes, depicted in Fig. 3.2.3, can be achieved.

Figure 3.2.2: When a road segment is se-
lected and moved, green connection dots ap-
pear in the ends of the segments. If two con-
nection points approaches each other, they
snap and connect.

Figure 3.2.3: Road joints can be edited to
add additional connection points, which
enables constructions such as diverging
roads.

The best practice, using PreScan, is to start by adding pieces of infrastructure whose desired
positions and orientations are known (usually straight roads and different types of crossings).
These road segments can then be fixated to the build area and connected using the Curved Road
type, which is a flexible road segment that automatically creates a smooth intermediate road

4

between segments. Traffic signs are added by dragging and dropping a sign object to the build
area. PreScan prompts the user to specify the appearance of the sign’s plate and pole. A library
of hundreds of signs is available and it is also possible to add custom images to the sign plate.
The final road model is shown in Fig. 3.2.4. It contains all traffic contexts required by the scenaria
in Section 3.1.

Figure 3.2.4: A top-view of the resulting PreScan model. Starting from the leftmost point, the
model contains a roundabout, a highway strip, an intersection and a highway exit.

Actors and trajectories

Cars and pedestrian objects are called actors, in PreScan. They are typically dynamic objects
that interact with the infrastructure. In this work actors are used as both host- and target
cars. An actor trajectory, i.e. movement definition, is given by a path and a corresponding speed
profile. The actor’s path is most conveniently defined using the inherited path tool found in the
left toolbar. Using the tool, it is sufficient to specify the end joints of a specific road segment,
PreScan automatically calculates a path between the points. When an actor is dropped on a path,
PreScan generates a default, but configurable, speed profile and assigns the resulting trajectory
to the actor. In this work, the host car is not assigned a trajectory since it is controlled by an
automated drive system.

3.2.2 Modelling sensors to access control signals

Sensors are used to obtain information about the traffic environment’s state, in order to facilitate
for the host car’s control system. They are added to actors- and infrastructure by drag and drop.
Objects of sensory interest have to be configured as detectable, in order for the sensors to register
them. It is done by selecting a ‘sensor detectable’-checkbox in the specific object’s configuration.
There are three main types of sensors available in PreScan:

• Idealized

• Detailed

• Ground truth

In this work, ideal antennas are used for one-way Infrastructure to Vehicle- (I2V) and Vehicle
to Vehicle (V2V) communication, to send information to the automated drive control system.
Antenna transmitters allow infinite range of detection and are put on infrastructure and actors
that should be detectable by the host car. The transmitters send general information about the
object such as an unique identifier (ID) and global coordinates. In addition, the sensor allows
custom signals to be used. This was used to send information about target type (e.g. speed sign)
and an arbitrary associated parameter (e.g. speed limit). Transmitters send information over a
specified channel; to lump all data on a single bus, all transmitters are connected to the same
channel. The host car uses an antenna receiver to obtain the information broadcasted on the
channel. The antenna set-up is illustrated in Fig. 3.2.5.

Unfortunately, targets can change place on the Simulink bus during simulation. It might
confuse control systems that assume that signal number n on the bus always corresponds to target
n. This phenomenon, illustrated in Fig. 3.2.6, is due to PreScan that orders targets by range to
the host vehicle. The solution approach used in this work is to use an algorithm, that sorts the
bus signals by their unique identifiers. As a consequence, signal number n always corresponds to
target n throughout the entire simulation.

5

T

H
Antenna receiver

Antenna transmitter

70

Figure 3.2.5: All targets (infrastructure and actors) are equipped with antenna transmitters that
broadcast information on a data channel. The host car (H) uses an antenna receiver to obtain
the target information.

0 0.5 1 1.5 2 2.5

1

2

Target identifiers

Time, s

ID

Signal number 1

Signal number 2

0 0.5 1 1.5 2 2.5
0

5

10

15

20

25

30

35

40

45

50
Target range

Time, s

R
a

n
g

e
,
m

Signal number 1

Signal number 2

Figure 3.2.6: To the left: Two targets, with identifiers 1 and 2, changes place on the Simulink
bus, coming from the sensor interface. To the right: PreScan orders the targets on the bus by
range. Hence signal 1 always corresponds to the target closest to the host vehicle. For that cause,
targets can change place on the bus during simulation.

A lane marker sensor is used to obtain the host car’s lateral state on the road. It is a so
called ground truth sensor, i.e. a sensor with an associated algorithm. It outputs information
regarding distance to nearby road markings; and it operates by using a custom number of scan
lines, depicted and described in Fig. 3.2.7. Even though this work is limited to ideal sensors,
it should be mentioned that PreScan supports customizable detailed sensors such as Camera,
LIDAR, radar and Ultrasonic.

H

Intersection point

Sensor centerline point

Figure 3.2.7: The host car is equipped with a lane marker sensor that outputs coordinates of nearby
lane markers at intersection points. It utilizes a customizable number of scan lines, perpendicular
to the sensor heading, to search for intersecting lane markers. In addition, the sensor outputs
information regarding its own position and heading (same as the host car).

3.2.3 Adding Simulink control systems

MATLAB/Simulink is invoked from PreScan to initialize variables and launch a 3D-viewer called
VisViewer. A compilation sheet is generated by PreScan when the model is compiled. It is a
Simulink .mdl-file that contains an interface between the traffic environment model and user
specified Simulink blocks. The compilation sheet is divided into blocks of the individual actor-

6

and infrastructure objects that have associated sensors. The compilation sheet for this work
is illustrated in Fig. 3.2.8. The host car (upper left block) has a lane marker sensor and an

Figure 3.2.8: A PreScan compilation sheet consist of actors- and infrastructure that have sensors
attached. Sensor and visualizer interfaces are automatically generated when a PreScan model is
compiled.

antenna receiver as input; and interfaces to VisViewer as output. The traffic signs on the other
hand, solely has an antenna transmitter output. The general interface, between PreScan and user
defined Simulink blocks, is illustrated in Fig. 3.2.9. The host car block, with its content depicted

Sensor data Control Systems Vehicle Dynamics Visualization

User specified Simulink blocks

Figure 3.2.9: Sensor information is available to user specified Simulink blocks for control and
vehicle dynamics. State data from the vehicle dynamics is muxed and sent to a visualizer.

in Fig. 3.2.10, shows the PreScan-Simulink vehicle control interface. The interfaces to sensors
and visualizer are marked with a gray overlay color. Actor states and sensor data is generated by
PreScan to the left; to the right is a state interface for user specified vehicle dynamics. The state
interface to the left is just a copy of the state interface to the right, for convenient signal routing
to the control system.

A VCC vehicle dynamics model was incorporated in the control system design by copying it
into the host car’s block. The visualizer needs vehicle states, such as pitch, yaw, roll, position
and velocity, in order to display a correct representation of the simulated dynamics. A state mux
block to do so, is provided as interface by PreScan. Not all states have to be given, but naturally
the visualizer will not display a turning vehicle correctly if no yaw information is given.

3.2.4 Simulating a scenario using PreScan

The simulation of a scenario is invoked from Simulink and VisViewer visualizes it during runtime.
A set of mouse commands can be used to manipulate the viewing angle and zoom level. It is
also possible to add custom camera views and record the results as a movie file. However, the
recording has to be done during simulation and can not be done offline.

7

Figure 3.2.10: The PreScan interface, to the host car, is highlighted in grey color. To the left:
A copy of the host car states is given, as well as sensor outputs from the antenna receiver and the
lane marker sensor. To the right: The states of user specified vehicle dynamics are muxed and
sent to the PreScan visualizer, VisView. The intermediate blocks are user specified for automated
vehicle control.

3.3 CarMarker evaluation

This section describes how the desired scenaria were implemented using CarMaker, together with
MATLAB/Simulink. It shows how a traffic environment is constructed, how Simulink control
systems are connected and how the resulting scenaria are simulated.

3.3.1 Building a CarMaker traffic environment model

A CarMaker project is called a TestRun. It consists of a road model, a host car model, a driver
model, and a traffic model that includes target vehicles and their movements. CarMaker uses a
GUI to navigate between specifications of the different models.

Road Model

A CarMaker road model is not constructed graphically, by drag and drop, but as a list of road
segments. The GUI and the corresponding road model’s specification, used in this work, is
depicted in Fig 3.3.1. Each segment has a kind with associated parameters. There are three
segment kinds in CarMaker:

• straight road

• turn (left or right)

• clothoid (left or right)

Segments are connected sequentially, with the preceding- and proceeding road segment. As a
result the entire road model is constructed in one piece, from start to stop, and it is therefore
not trivial to implement multiple choice paths, such as intersections or roundabouts. The road
model constructed in this work is depicted in Fig. 3.3.2 from a bird’s eye (top-down) view. The
figure shows a view from the GUI component used to inspect the road model. Note that it is

8

Figure 3.3.1: CarMaker GUI for specifying a TestRun road model. The segments (No 0–13),
specified in the list to the left, makes up for the pieces of road and road signs that are needed to
fulfil the desired scenaria. Associated parameters, such as length, radius and angle, are used to
customize the segments’ appearance.

Figure 3.3.2: A bird’s eye view, of the road model, constructed to realize the desired scenaria.
Starting from the leftmost point, the road extends straight trough a roundabout and an intersection.
It turns back, passes the intersection once more and turns left in the roundabout. It is also
possible to understand the road’s extent by following the distance markers (0-200-400-600-800-
1000-1157.77) from start to finish. A speed sign is placed in the beginning of the highway strip
after the roundabout; a stop sign is placed on the west entry of the intersection.

not possible to zoom. It is therefore not easy to accurately e.g. inspect roundabout’s midpoint
coordinates. An intersection was realized by letting the road cross itself, thus making a 270 degree
turn. Similarly, the roundabout was realized by letting the road turn back and create a third
exit (south). The roundabout’s curvature was achieved by a series of right- and left turns with
appropriate radii. A highway exit was not implemented due to the limitations described above.

CarMaker comes with a few pre-defined road signs, but it is also possible for the user to add
their own. They are added to the road segments individually by specifying a longitudinal offset
from the start of a segment. In this work, a speed sign was added to the highway strip after the
roundabout; a stop sign was added to the intersection entry connecting from west.

9

Adding target vehicles to the traffic model

Traffic objects (actors) are added to the environment by specifying their type and motion in a
list interface. A few pre-defined types are available, e.g. compact car, truck, bus, motorcycle and
pedestrian. The motion of an actor is tightly connected to the road model’s definition. It is given
by a lateral- and longitudinal offset, from the road’s centreline and -start respectively, together
with a time of arrival. Hence, traffic vehicles follow the road model’s segment list sequentially,
either as oncoming vehicles or the opposite. This caused limitations to the actors’ possible
movements, e.g. target vehicles have to pass straight through the intersection, since the road
does so. Figure 3.3.3 exemplifies the GUI for specifying traffic. Three target vehicles (T01, T02
and T03) and their movements have been added to realize the desired scenaria.

Figure 3.3.3: CarMaker uses a list interface to specify traffic, i.e. to define target vehicles and
their movements over time.

Host vehicle dynamics

It has to be mentioned, even though it is not the main focus of this work, that CarMaker comes
with an advanced default vehicle dynamics model for the host car. The model is specified within
the CarMaker car GUI; it is highly customizable through great many parameters concerning
systems such as engine, suspension, tires, brakes and powertrain. This has a great positive effect
on the realism of the simulation visualization.

3.3.2 Accessing signals in Simulink

It is possible to equip the host vehicle with different types of sensors, such as radar, LIDAR
or sonar. CarMaker does not automatically generate a Simulink interface to access the sensor
signals. It has to be built manually using a set of blocks provided by CarMaker. However, since
this work assumes ideal sensors, a simpler way of accessing relevant signals for automated drive is
available. In fact, all relevant signals for this work is available directly in Simulink as exemplified
in Fig. 3.3.4, where the global coordinates of three targets (T01, T02 and T03) are read. It is
sufficient to specify a signal’s name to import it to the Simulink workspace. It is also possible to
write to the signals, e.g. a lateral offset parameter was overwritten during overtake manoeuvres,
thus making the host car change lane.

10

Signal name Explanation
Car.Road.tx (or .ty) Host car global coordinates

Car.v Host car velocity

Car.yaw Host yaw angle

Driver.ReCon.StopTask Indicates a stop sign

Driver.ReCon.StopDist Distance to stop sign

DM.LaneOffset Lateral offset to right lane

DM.SpeedLimit Current speed limit

Traffic.(name).tx (or .ty) Target car global coordinates

Figure 3.3.4: To the left: Three targets’ (T01, T02, and T03) global coordinates are accessed by
specifying the signals’ names. All signals available during simulation can be accessed in the same
way. It was therefore not necessary to equip the host car with sensors such as radar or LIDAR.
To the right: The set of signals that was used in this work.

3.3.3 Adding Simulink control systems

When a new TestRun project is created, CarMaker prompts the user to select whether Simulink
is to be used in the project or not. Selecting yes generates a folder called src cm4sl, containing a
default Simulink .mdl-file which is connected to the TestRun. The .mdl-file contains an interface
to the host car’s vehicle dynamics as illustrated by Fig. 3.3.5. CarMaker has a built in driver

Sensor data Control Systems Vehicle Dynamics

SwitchDriver Model

Visualization

User specified Simulink blocks

Figure 3.3.5: A driver model controls the host vehicle by default. Its signals has to be disabled
(illustrated by a switch) in order to enable a user specified control system to govern the vehicle
dynamics.

model, called IPGDriver, to govern the vehicle dynamics. It follows a list of manoeuvres that
specifies the host car’s desired lateral- and longitudinal position on the road, similar to the actors
added in the traffic model. Hence, a simulation of the vehicle dynamics can be invoked without
adding any custom control systems to the Simulink model. In this work, the driver was told to
follow the right lane using a set speed. Consequently, the host car drives through the roundabout
and adjusts its speed to the traffic regulations given by the road signs. However, it was desired
to add an user specified control system, hence the IPGDriver model was disconnected from the
gas and brake signals in the Simulink vehicle control interface, depicted in Fig. 3.3.6. Thus, still
allowing it to steer the car to follow the road model. An offset parameter was used to make
the driver change lane during overtake manoeuvres. This way of peeling of- and adding custom
control systems to the model can be quite advantageous when compared to building a complete
system from scratch, especially if it is desired to examine some minor sub-system for automated
drive.

11

Figure 3.3.6: Vehicle control systems are added by substituting IPGDriver signals. The interface
to the host car’s vehicle dynamics is highlighted in grey colour.

3.3.4 Simulating a scenario using CarMaker

TestRun simulations are invoked from CarMaker, which then calls for the control systems specified
in Simulink. A GUI component called IPGMovie (depicted in Fig. 3.3.7) visualizes the simulation

Figure 3.3.7: A GUI compoent, IPGMovie, visualizes the scenario simulation. It is possible to
rewind and replay the simulation, which can be useful for debugging the control system’s behaviour.
IPGMovie also allows the user to record videos of the simulation post runtime.

in 3-D, from a camera angle that can be adjusted by using mouse commands. The visualization
results are saved to a buffer, thus enabling the user to rewind and record movies post runtime.
This function is particularly useful when the control system does not work properly during
simulation. It is visually possible to see when the host car does not behave as expected. Then, by

12

rewinding and noting the simulation time, signals that affects behavioural decisions are examined
and the control is system corrected.

The advanced host car vehicle dynamics affects the simulation greatly. The simulation runs
relatively fast, often faster than real time. In addition, the visualization of the host vehicle driving
through the traffic model appears very detailed. IPGMovie visualizes tire forces, pitch and roll.

3.4 Summary of software strengths

This section summarizes the strengths of PreScan and CarMaker, with respect to modelling of
traffic environments, Simulink interface and simulation visualization. The result is presented in
Tab. 3.4.1

Table 3.4.1: Summary of software strengths.

PreScan Strengths

Modelling

Drag & drop for building road networks and adding actors
Highly customizable road segment types (e.g. roundabout)
Flexible specification of actor trajectories, not necessarily tied to road definition
Great capabilities of specifying sensors

Simulink interface
Simulink interface to sensors and actors is auto-generated
Easy to incorporate Simulink control systems
Straight forward to use user specified Simulink designed vehicle dynamics

Simulation 3-D visualization of traffic environment during simulation

CarMaker Strengths

Modelling Advanced default (customizable) host vehicle dynamics

Simulink interface
Built in driver model enables fast sub-system tests
Easy to access simulation signals

Simulation
3-D visualization of traffic environment during simulation
Fast simulation
Buffers the visualization results, hence enabling rewind post runtime

13

4 Decision making for automated vehicles

This section presents the implementation of a three-layered planning framework, used to achieve
automated drive for the scenaria described in Section 3.1. The traffic environment model that
is used to obtain the results, related to this section, is developed using PreScan. As a result
Section 4.5, that describes the implementation of a motion planner, is related to PreScan sensors.
However, similar results can be obtained by using a model developed using CarMaker. It is
assumed that the system has access to all signals it needs, this since the development starts from
an early stage and mainly focuses on the actual framework.

4.1 Software architecture for automated drive

The software architecture used in this work, illustrated in Fig. 4.1.1, is inspired by contributions
to DARPA’s Grand- and Urban challenges (Urmson et al., 2009; Kammel et al., 2008; Urmson
et al., 2008; Thrun et al., 2007). It uses a perceived representation, of a static- and a dynamic
environment, to plan and govern an automated vehicle. The architecture is comprised of three
planning layers:

1. Mission planner

2. Behaviour planner

3. Motion planner

They operate on different levels of control abstraction. The mission layer provides tactical
information to the behaviour, in order for it to make correct decisions. The decisions result in
motion goals that are decoded to a desired path, by the motion planner. The path is executed if

World

Ego-vehicle

Perception

Execution

Mission planner

Behaviour planner

Motion planner

C
on

tr
ol

ab
st

ra
ct

io
n

Three-layer
planning architecture

Figure 4.1.1: A perception layer fuses data to a format that fits a three-layer planning architecture;
consisting of a mission-, a behaviour- and a motion planner. The mission layer provides informa-
tion about the current traffic context (situation), in order for the behaviour planner to interpret
the perception data, and make correct decisions. The motion planner generates the desired path
needed to conform to decisions made. If the path is clear of target objects, the execution module
generates the control input to the vehicle dynamics needed; if not, an ACC component intervenes
to brake the host car to avoid collision.

14

no obstacles are in it, in which case the host car adjusts its velocity by using an ACC component.
In that way, a potential collision is avoided.

4.2 Perception

This section describes the perception module, which generates a traffic environment model
consisting of:

• a static road model

• targets vehicles and -infrastructure

It also provides host car information to the planning layers, such as local- and global position on
the road, velocity, yaw etc.

4.2.1 Road model

A road model structure is defined, in order for the planning layers to be aware of the road
geometry and prevailing traffic regulations. It contains parametrizations of multiple choice traffic
contexts, i.e. road hubs such as roundabouts and intersections, that have multiple connecting
roads. Highway is a third context type considered in this work. However, it is not included in the
road model since it is defined to be the default context. The multiple choice traffic contexts in the
road model have a set of general- and type specific parameters. The general parameters specifies:

• type, e.g. roundabout

• extent, defined as a midpoint and an outer radius

• inner zone, defined as a midpoint and an inner radius

• a speed limit vctxt

Type specific parameters are used to describe the connecting roads and their traffic regulations.
The road model used in this work is illustrated in Fig. 4.2.1. The roundabout does not have
any type specific parameters. It is fully defined by its general parameters. On the other hand,
the intersection has four connecting roads, each with a specific traffic regulation. Hence two
parameters were used to describe each connecting road. An angle parameter tells where the
road’s centreline is located; a traffic regulation type tells whether the road is major or associated
with a yield sign.

Context midpoint

Roundabout context Intersection contextHighway context

(default)

Yielding road

Major road

Figure 4.2.1: The road model holds geometry definitions for traffic contexts that are in the host
car’s navigation route. Both roundabouts (to the left) and intersections (to the right) have an
extent (dashed outer circle) that defines when vehicles are inside the context. A inner zone (dashed
inner circle) defines the limits where the actual intersection (or roundabout) starts. Context
specific parameters define additional zones with associated traffic regulations, e.g. if any road is
major.

15

4.2.2 Targets

All objects that are of interest to the planning algorithms, such as vehicles and traffic regulation
signs, are considered as targets. Naturally, the targets have to be treated differently depending
on their type, e.g. a stop sign does not necessary generate the same control signals as a yield
sign. A general target structure, or bus protocol, is defined to have the following signals:

• Unique identifier

• Target type

• Type specific parameter

• Target range, -range rate and -angle

• Position in global coordinate frame

The types, with their corresponding parameters, appear in Tab. 4.2.1. An idle target is defined
to represent a point in the far horizon.

Table 4.2.1: A type and a parameter is specified for each target. Thus enabling the decision
making algorithm to distinguish between different targets and treat them accordingly. An idle
type is specified to represent a target in the far horizon.

Type Parameter
Idle (no target) Not defined

Speed sign Speed limit

Stop sign Not defined

Car Lane state (left or right)

Yield sign Not specified

4.3 Mission planner

The mission planner has the objective to provide following set of current tactical information to
the other planning layers:

• Host vehicle’s current traffic context

• Entry- and exit points

• Overtake detection

• Road sign information

• List of precedence

The host vehicle’s current context is found by examining the extents of contexts within the
road model. If the host car is not found in any of the contexts, the default context (highway)
is selected. If the current context is of hub type (multiple choice), entry- and exit points are
calculated by the mission planner. The points specify where the host car should enter and exit
the inner zone of the context. Thus, governing which navigation route to take. In this work, the
route (and consequently the points) is assumed to be known in advance.

An overtake detection algorithm is activated during highway drive. It outputs a boolean that
indicates if there is a car in the right lane, in front of the host vehicle, with a time-to-collision
less than a specific time constant. The resulting overtake required signal makes the behaviour
planner aware of the situation.

16

4.3.1 Road sign information

The mission planner keeps track of speed-, yield- and stop signs that are approached by the host
car. A stop sign is essentially a yield sign with a requirement to unconditionally stop for a certain
amount of time, tstop. After the time has passed, the stop sign can be treated as a yield sign. A
discrete event system was used to implement the function, thus only allowing the mission planner
to inform that a stop sign is present for tstop after reaching a standstill pose by the sign. The
prevailing set speed vset is given by

vset = min(vsign, vctxt), (4.3.1)

where vsign is the current speed restriction given by speed signs; vctxt is the speed limit associated
with the current context’s road model.

4.3.2 List of precedence

The mission planner is responsible for preparing and updating a list of precedence, that specifies
the priority for vehicles operating in the current context. The process of generating the list is
similar for all contexts. All vehicles (including the host car) within the current context are paired
with a traffic regulation, given by the road model; and an intended event, e.g. right turn or lane
change. Together, they give a priority. Table 4.3.1 shows how priorities are assigned to vehicles
(a lower number is higher priority) for different traffic contexts. Note that the assignment is
independent of whether the car is a target or host. A vehicle is said to interfere with other traffic

Table 4.3.1: Intended events and prevailing traffic regulations are used to assign a priority number
to all vehicles (including host) in the current context. A lower number represents a higher priority.

Context Regulation and intended event Priority
intersection inside inner zone 1

major road, right turn 1
major road, heading straight 1
major road, left turn 2
yield, right turn 3
yield, heading straight 3
yield, left turn 4

roundabout major road (inside inner zone) 1
yield (in outer zone) 2

highway follow lane 1
change lane, no interference with other traffic 1
change lane, interference with other traffic 2

if its intended behaviour disturbs other vehicles, either by directly ramming them or by blocking
their way unsafely. For instance, if a car is approaching from behind with

0 ≤ tttc < τ, (4.3.2)

where τ is a time constant. Then, a lane change is considered to interfere with other traffic.

17

4.4 Behaviour planner

The behaviour planner is responsible for making correct decisions, concerning how to response to
desired behaviour. The resulting decisions are issued as motion goals, later decoded by the lower
level motion planner. The motion goals are either longitudinal, e.g. to yield at an intersection; or
lateral, e.g. to change lane at an overtake manoeuvre. Motion goals have to be safe to execute,
and for overtake manoeuvres, they have to be motivated by an efficient behaviour. The following
sections presents approaches for achieving both a legal and an efficient behaviour.

4.4.1 Precedence based decision making for legal behaviour

Decisions are supported by the precedence list issued by the mission layer. The host car is defined
to have precedence if

priohost ≤ priomin, (4.4.1)

where priohost is the host car’s priority number. priomin is the smallest priority number of all
target vehicles in the current context. Having precedence allows the behaviour planner to response
positively on desired behaviour. Figure 4.4.1 exemplifies the behaviour for two situations, in a
highway- and a roundabout context. Table 4.3.1 is used to generate the corresponding precedence
lists shown in Tab. 4.4.1a and Tab. 4.4.1b. Consequently (for the highway case), if the host
vehicle is C2, its behaviour planner issues a motion goal to stay in the right lane. It is a correct
decision given C1 approaching from behind. For the roundabout example, given that the host car
is C2 with entry- and exit point as depicted in Fig. 4.4.1; since Eq. 4.4.1 is false, the behaviour
planner issues a motion goal to yield at the entry point.

Entry point

Exit point

C1

C2

C3

C4

C1

v1

v2

intention

v3

C2 C3

Yielding road

Figure 4.4.1: Two scenaria are illustrated to exemplify precedence based decision making. To
the left: A car (C2) approaches another car (C3) and determines that an overtake is desired.
However, the manoeuvre is not possible without interfering with C1, hence C2 is assigned a
priority of 2 and does not have the precedence to answer its desired behaviour positively, as a
consequence it stays in the right lane behind C3. To the right: All vehicles are assigned a
priority depending on their position. C1 is not included in the list since it is not in the context
extent. C2 does not have precedence and it therefore not allowed to navigate through the context.
It must yield at the entry point of the inner zone (denoted by a ring).

4.4.2 Cost evaluation for planning of efficient overtake manoeuvres

The precedence list set-up (described in Section 4.4.1) enables safe decisions, regarding how to
change lane, during an overtake manoeuvre. However, if the host car is about to enter a traffic
context, let’s say 500 meters from its current position, the time saved by performing an overtake
might not motivate the resulting acceleration profile. This section develops a method that uses
costs of acceleration- and velocity deviations from reference values, to make more efficient overtake
decisions. As a first approach, overtaking a single vehicle is considered. The result is later used
to solve overtaking and merging with a group of vehicles.

18

Table 4.4.1: Two precedence lists are built for a highway- and a roundabout scenario.

(a) A highway precedence list is built to support
the behavioural planner. It is clear that the
vehicle C2 is not allowed to perform its intended
behaviour (overtake C3).

Highway

Vehicle Priority
C1 1

C2 2

C3 1

(b) A roundabout precedence list is used
to determine if the host vehicle (here
C2) should navigate through the in-
ner zone, or yield at the entry point.

Roundabout

Vehicle Priority
C2 2

C3 1

C4 2

Figure 4.4.2 illustrates a set of n target vehicles {T1, T2, . . . , Tn}, with corresponding constant
velocities vi, where i ∈ {1, 2, . . . , n}. Target Ti is positioned si meters in front of a host vehicle

Context border

H

v
h

v... n

TnT1

v1

T2

v2

sc

Figure 4.4.2: A host vehicle (H) drives behind n targets, in the right lane of an highway strip,
leading to a traffic context sc meters ahead.

(H). All targets are assumed to drive and stay in the right lane of a two-lane highway. The road
leads to the border of a traffic context sc meters from the host vehicle. It is initially assumed
that n = 1. Hence, two decisions with the following outcomes have to be evaluated:

1. The host car adjusts its velocity and positions itself behind T1. Thus the host car’s velocity
deviates from the set speed vset.

2. The host car changes lane and accelerates to vset, passes T1 and decelerates to vc, a velocity
suitable for the upcoming context. This decision gives a different distance to drive in order
to reach the upcoming context; it might also require large accelerations that affect fuel
consumption and passenger comfort. However, it allows the host car to drive closer to vset
compared to (1).

The differences between (1) and (2) are taken into account by a cost function

J (ax, v) =

∫ tf

0

κa2x + λ(v − vset)2dt, (4.4.2)

where κ and λ are tunable weights to value longitudinal acceleration- and velocity deviations.
The time it takes, to reach the desired velocity at the traffic context ahead, is denoted tf . The
acceleration- and velocity profiles for (1) and (2) depend on:

• initial velocity vh of the host car

• set speed vset of the host car

• distance si to the target car that is evaluated for overtake

• velocity vi of the target car that is evaluated for overtake

• distance sc to the upcoming traffic context

• goal velocity vc that the host car should use at the upcoming traffic context

19

Consider a highway example, where a host car should take an exit sc = 300 m ahead, with
velocity vc = 70 km/h. The host car finds itself driving at vh = 100 km/h, approaching a target
vehicle si = 20 m ahead that drives at vi = 80 km/h. The prevailing set speed is vset = 120
km/h. Figure 4.4.3 depicts a trajectory, and acceleration- and velocity profiles that conform to
the two cases, (1) and (2). The profiles were created under the assumption of piecewise constant

0 2 4 6 8 10 12
−10

−5

0

5

10
Case 1: Acceleration profile NO overtake

time, s

a
c
c
e
le
ra
ti
o
n
,
m
/s
2

0 2 4 6 8 10 12
60

80

100

120

Case 1: Velocity profile NO overtake

time, s

v
e
lo
c
it
y
,
k
m
/h

0 2 4 6 8 10
−10

−5

0

5

10
Case 2: Acceleration profile overtake

time, s

a
c
c
e
le
ra
ti
o
n
,
m
/s
2

0 2 4 6 8 10
60

80

100

120

Case 2: Velocity profile overtake

time, s

v
e
lo
c
it
y
,
k
m
/h

0 50 100 150 200 250 300

0

10

20

30

x−pos [m]

y
−
p
o
s
 [
m
]

Case 2: Overtake trajectory

host trajectory

target start position

target end position

point of overtake

Figure 4.4.3: Acceleration- and velocity profiles (solid) for a highway example. The reference
values (dashed) are zero acceleration and velocity vset. Note that tf differs between the two possible
decisions. Upper figures: The host car decelerates and adjusts its velocity to the target vehicle
in front. It reaches the upcoming exit and adjusts its velocity to 70 km/h. Middle figures: The
host car accelerates to set speed, overtakes the target vehicle, and decelerates to adjust its velocity
to the upcoming exit. Bottom figure: The host vehicle’s trajectory, for the intended overtake,
is given by a ramp shape that varies with the lane width and the host vehicle’s velocity profile.
Three target vehicle positions are depicted: (x) initial position, (+) position when overtaken by
host vehicle and (o) position when host vehicle reaches the goal context ahead.

acceleration, a maximal acceleration of 5 m/s2 and a deceleration time of 3 s to reach vc. The
trajectory consist of two ramps that varies by the lane with, host initial velocity and the goal
velocity of the upcoming context. Equation 4.4.2 can be used to evaluate the resulting costs
of the two cases exemplified, thus telling which decision is the cheapest. However, let’s instead
consider an example where the context distance is swept from 1000- down to 100 m. Figure 4.4.4
shows how the overtake decision varies with the distance, for two different target velocities. The
host car’s start velocity is 100 km/h, its set speed is 120 km/h and the target starts 20 m ahead.
For this example κ = 1 and λ = .1 in the cost function (Eq. 4.4.2). When the decision is YES,
an overtake manoeuvre is considered feasible and the host car starts the procedure if it has
precedence. As expected, the system considers an overtake feasible, at a closer distance to the
upcoming context, if the target car drives at a slower velocity.

The algorithm, described above, of evaluating an overtake decision for a target with respect
to an approaching traffic context, can be denoted as a function

OE(vh, vset, si, vi, sc, vc). (4.4.3)

It returns a boolean value that tells if the overtake should be done (true) or not (false) from a
efficiency perspective. Now, if we let the number of targets n > 1, the OE function can be used
as a sub-problem solver to evaluate the feasibility to overtake each target car. Thus, enabling

20

1002003004005006007008009001000

No

Yes

Distance to upcoming traffic context, m

D
e

c
is

io
n

Overtake decision

v

i
 = 100 km/h

v
i
 = 90 km/h

Figure 4.4.4: The positive decision, to overtake a target car, varies with the distance to a context
ahead of the host car. Two different target velocities, 100 km/h (solid) and 90 km/h (dashed), are
evaluated. As one can expect, the system decides that an overtake is feasible at a closer distance to
the upcoming context if the target vehicle is driving slower. The final decision, however, requires
that the host car has precedence in addition to having the lowest cost.

the system to decide if-, and in that case, how many target vehicles that should be overtaken
(assuming that the host car has precedence). The solution must take two conditions into account,
for each target vehicle evaluated:

1. if the target can be overtaken efficiently with respect to the upcoming traffic context

2. if it is possible to efficiently merge with respect to other traffic, after the target has been
overtaken.

If both conditions above are true, it is considered efficient to overtake a target vehicle. The
evaluation, of n > 1 target vehicles, is done for each target Ti, starting from i = 1 going to i = n
in an ascending order. However, if (1) or (2) is not true for Ti, i− 1 is returned as the number
of cars that are feasible to overtake. Nevertheless, if (1) and (2) is true for all target cars, n is
returned.

This section has previously discussed how condition (1) can be evaluated, using the OE
function, for a specific target with respect to a context. However, the same function can be used
to consider condition (2) as well. Observe the example illustrated in Fig. 4.4.5. The possibility

H T1 T2
sc

H T1 T2

100 km/h 90 km/h 80 km/h 20 km/h 10 km/h 0 km/h

v = 120 km/h
set

v = 40 km/h
set

Context borderContext border

s2

Figure 4.4.5: The feasibility of overtaking T1 is evaluated in two steps: (1) To the left: with
respect to the upcoming traffic context. (2) To the right: v2 is subtracted from v1 and vset to
make the calculations relative to T2’s velocity. The context distance sc = s2 is used. The problem
statement is hence the same as before, i.e. is it possible to overtake T1 efficiently with respect to
the acceleration needed to reach T2 before T1? Which is solved by the OE function.

to efficiently merge between two targets, Tk and Tk+1, k ∈ {1, 2, . . . , n − 1}, is evaluated by
executing the following two steps:

1. Let vk+1 of Tk+1 be used as a reference velocity. Hence, vh, vset and vk are specified in
relation to vk+1.

2. Call OE using the new velocities and sc = sk+1, vc = 0.

The function call generates the acceleration- and velocity profiles needed to evaluate the merge,
using the cost function J (ax, v) in Eq. 4.4.2, with respect to Tk+1. In the worst case, from a
computational point of view, all cars in front of the host vehicle are considered feasible to overtake.

21

As a result, OE is called 2n− 1 ∼ O(n) times, i.e. two times for each target, except for Tn that
does not have a vehicle in front.

Until now, only two neighbouring vehicles, Tk and Tk+1, have been considered when evaluating
an overtake merge procedure. However, it is straight forward to include a larger set of target
vehicles in front of Tk+1. In that way, a better prediction of the merge possibility can be obtained.
To exemplify this, imagine a third vehicle that drives relatively slow in front of Tk+1. Its presence
might force Tk+1 to brake, in order to avoid collision. Hence, the merge gap between Tk and Tk+1

is affected. The proposed solution to this is to extend the merge condition to look at all cars in
front. For instance, when Tk is evaluated for overtake, the set of targets {Tk+1, . . . , Tn} should
be used as context references, as described above. The resulting algorithm is shown in Alg. 1. In

the worst computational case, OE will get called n2+n
2 ∼ O(n2) times.

Data: host, n targets and upcoming traffic context
Result: number of target vehicles to overtake
for i=1 to n do

/* Evaluate overtake of target i w.r.t. traffic context */

if !OE(vh, vset, si, vi, sc, vc) then
return i-1;

else if i==n then
return i;

/* Evaluate overtake of target i and merging w.r.t. all cars in front

of it */

for k=i+1 to n do
if !OE(vh − vk, vset − vk, si, vi − vk, sk, 0) then

return i-1;
end

end

end

Algorithm 1: Target vehicles are evaluated, for an eventual overtake manoeuvre, using a
function (OE), that solves the sub-problem of overtaking a single target w.r.t. an upcoming
traffic context.

4.5 Motion planner

The motion planner’s objective is to generate trajectories that conform to the motion goals
issued by the behaviour planner. It operates in two different modes, depending on whether lane
markers are present or not. This section describes the two different modes and their output to
the execution layer. In general, for both modes, a heading error angle αe to a point in front of
the host is given as lateral output. It is later used to generate a Steering Wheel Angle (SWA).
Gehrig and Stein (1998) stress the importance of selecting the point cautiously, from a stability
point of view. Selecting a point too close to the car can result in a SWA that makes the car slip,
which is not desired. The proposed idea is to not select navigation points closer than a certain
lookahead radius rla.

4.5.1 Lane defined lateral motion

A lane defined mode, for lateral motion, is used when there are lane markers available, i.e. during
highway driving. A heading error angle αe, to a desired point pd for lateral navigation, is
calculated to make the host vehicle follow a lane reference index ilane ∈ {1, 2}, given by the
behaviour planner. For a geometry illustrated in Fig. 4.5.1, two points, pls1 and pls2, that defines
the vector vls, are used to estimate the road’s heading. The host car’s heading is given by the
two points pc1 and pc2, that defines the vector vc. A curb distance dc, where

22

H

vls

vcd

vc

p
c1

p
c2 p

ls2

p
d

p
ls1

rla

vls,cw

vcls

Intersection point

Sensor centerline point

Navigation point

αe

Figure 4.5.1: Lane marker information is used to calculate an heading error angle αe to a desired
navigation reference point pd. The point is given by a lookahead radius rla and a vector vcd ⊥ vls

whose length dc varies as a function of the current lane reference index.

dc = ‖vcd‖2 (4.5.1)

vcd ⊥ vls,

defines a desired lateral position on the road with respect to vls. It depends on ilane and the
lane width of the road. To avoid feeding discontinuous control signals to the vehicle actuators, a
low-pass system SLP is used to smooth dc variations. Hence dc is given by

dc = SLP

(
ilane −

1

2

)
dlanewidth (4.5.2)

Figure 4.5.2 shows dc for a lane change decision. A lookahead radius rla is used, for stability

27 27.5 28 28.5 29

1

2

3

4

5

6

7

time, s

R
ig

h
t
c
u
rb

 d
is

ta
n
c
e
,
m

 v
s
.
la

n
e
 r

e
fe

re
n
c
e
 i
n
d
e
x

Desired curb distance on overtake lane change decision

d

c

i
lane

Figure 4.5.2: The behaviour planner issues a reference index change from lane 1 (right lane) to
lane 2 (left lane). A smoothing low pass system is used to generate a curb distance dc. For this
particular example, the lane width is 4 meters.

purposes mentioned. Using the geometry in Fig. 4.5.1, αe is given by

αe = arcsin

(
vcls · vls,cw‖vls,cw‖−12 − dc

rla

)
− arctan2

(
vc ·Mvls

vc · vls

)
, (4.5.3)

where M is a 90 degree clockwise rotation matrix. The first term in Eq. 4.5.3 is the angle to
the desired navigation point, with respect to vls. The second term compensates for the host
car’s heading, i.e. rotation in relation to vls. The arctan2-function is used to take the vector
components’ signs into account.

23

4.5.2 Trajectory-defined lateral motion

For more complex traffic contexts, where lane following is not feasible, a trajectory has to be
calculated to navigate from a context entry to an exit. In this work, trajectories for roundabouts
and intersections are assumed given a priori. It has therefore been of interest to follow such
trajectories.

Similar to the lane-defined lateral motion, the trajectory following algorithm utilizes the
notation of lookahead radius. In addition, a scan distance is introduced to enable exclusion of
navigation trajectories that are not in the car’s proximity. As a result, only points within a scan
area As, illustrated in Fig. 4.5.3, are considered for the lateral control algorithm. The scan area
is defined by

As =
{
∀p(γ, r) : −π

2
< γ <

π

2
, rla < r < rscan

}
, (4.5.4)

where p is a point defined in the polar coordinate frame (γ, r) in Fig. 4.5.3. In the case when no

H

v
c

p
d

Sγ

r la

r

rscan

Desired navigation point

Navigation point

Scan area, A

General scan area point

αe

Figure 4.5.3: The algorithm scans an area for navigation points coming from trajectories. If
points are found within the scan area, the point closest to the car is selected. An heading error
angle αe between the host car’s heading and the selected navigation point is calculated.

trajectory points exist in the scan area, the host car finds itself in its lane defined mode. In the
other case, the point closest to the host car, within As, is selected. A heading error angle αe to
the desired navigation point, depicted in Fig. 4.5.3, is calculated and given to the execution layer.

4.5.3 Longitudinal motion

Longitudinal motion goals, issued by the behaviour planner, either tell the motion planner to
proceed or yield. The motion planner conforms to the longitudinal goals by making a desired
target selection. That is, sending range- and range rate information, to the lower level execution
layer (described in Section 4.6), of an appropriate point. If the desired behaviour is to proceed, a
point in the far horizon is selected, hence the host car desires to follow its set speed. In contrast,
e.g. if the system should stop at a yield sign, the sign is selected as a desired target.

4.6 Execution of motion goal

The execution layer generates the control signals needed to govern the host vehicle as planned.
This section presents its lateral- and longitudinal objectives.

4.6.1 Lateral control

The lateral control objective is to adjust the host car’s SWA αswa to navigate against the current
reference point (described in Section 4.5). The point is specified by a heading error angle αe,
relative to the car’s heading direction. A simple proportional control-law is used to generate the
SWA

αswa = Kpαe, (4.6.1)

where Kp is a static gain.

24

4.6.2 Longitudinal control

An Adaptive Cruise Control (ACC) component is used for longitudinal control. It is a system,
widely established in industry, for velocity control (Volvo Car Corporation, 2013a; BMW, 2013).
Its objective is to follow a set speed. However, if a vehicle is found close enough in front, the
ACC component adapts the host car’s velocity to it. The process of selecting a specific vehicle,
for velocity adaptation, is denoted target selection. In this work, a desired target selection is
issued by the motion planner, in order to follow a path that fits a desired behaviour. However, if
a target vehicle is found within the path, the ACC component uses its own target selection, to
avoid collision. This is exemplified in Fig 4.6.1. A host car approaches an intersection from the

Context midpoint

Intersection context

H

H

Entry point (desired target)

Host vehicle

ACC selected target

Yielding road

Major road

Exit point

Figure 4.6.1: A host car (H) approaches an intersection from west. A major road with a dense
traffic flow crosses the host car’s road. The behaviour planner decides that the host car should yield
at the upcoming entry point. It is hence selected it as a desired target. However, an intermediate
car (red) is in front of the host vehicle, in the desired navigation path. It is therefore selected by
the ACC component instead. Thus resulting in the host car stopping behind it before it reaches
the entry point to the intersection.

west. A dense traffic flow, on a major road crossing from south and north, results in a decision to
yield. Hence, the motion planner of the host vehicle selects the entry point of the intersection as
a desired target. However, if the ACC component executes the desired target selection, the host
car will probably collide with an intermediate target vehicle in front. The target is said to be
in the desired navigation path. In such cases, the ACC selects the target in path, instead of the
desired target selection issued by the motion planner. Consequently, the host vehicle adjusts its
velocity to the proceeding vehicle and stops behind it, avoiding collision.

25

4.7 Results of the automated drive system

This section presents results, from the automated drive system developed in this work. A
host vehicle is equipped with the system, as it drives through a traffic environment (described
in Section 3.1) developed using PreScan. Similar results can be obtained using CarMaker as
modelling tool. The content of this section is ideally visualized as a movie; however, since that
is not possible in this format, the results are described sequentially, as the host car navigates
through the different traffic situations. The host car’s movements over time, overlaid on the
road model, is shown in Fig. 4.7.1. Interaction with three target vehicles (A, B, and C) occurs
throughout the drive.

0 100 200 300 400 500 600
−100

−50

0

50

100
Host car

x distance, m

y
di

st
an

ce
, m

vehicle movement

major road

start point
roundabout context
intersection context

Figure 4.7.1: The automated drive control system successfully governs the host vehicle through a
traffic environment. Its movements, throughout the simulation, are depicted above. It yields to a
target vehicle in both the roundabout and the intersection. A second target vehicle drives slow in
the right lane of the highway between the roundabout and the intersection. It is overtaken by the
host vehicle at around x ≈ 180 m. However, the overtake was initially delayed by a target vehicle
that approached from behind.

Yield target (A)
A target vehicle causes the host car to yield at two occurrences, in a roundabout and at an
intersection. It drives through the inner zone of the roundabout, as the host car enters the
outer zone, and takes the south exit. The target continues, and turns from south to east as
it reaches the intersection.

Overtake target (B)
A target vehicle drives relatively slow in the right lane of a highway strip between the
roundabout and -intersection. It is overtaken by the host vehicle.

Interference target (C)
The overtake of target B is affected by a target that delays the procedure, by approaching
fast from behind when the overtake is desired.

The host vehicle starts from a highway; its current traffic context, throughout the simulation,
is depicted in Fig. 4.7.2. It enters a roundabout, at t ≈ 2 s, and discovers that there are other
vehicles operating there; target A drives through the roundabout’s inner zone, as the host car
enters its outer zone. Consequently, a reflecting precedence list is generated, depicted in Fig. 4.7.3.
It tells that the host vehicle does not have the authority to drive through the roundabout. Hence,
the resulting behaviour is to yield at the entry point of the roundabout’s inner zone, shown in
Fig. 4.7.4. Figure 4.7.5 illustrates the host vehicle’s set speed and velocity. The decision to yield
makes the host car’s velocity go to zero at t ≈ 8 s. At roughly the same time, the host vehicle gets
precedence (seen in Fig. 4.7.3) to navigate through the roundabout with a set speed of 15 km/h,
given by the perception layer’s road model. The host vehicle follows a trajectory, given a priori,
through the roundabout and takes the second exit.

A highway strip is reached at t ≈ 22 s and the host vehicle accelerates towards its new set
speed of 70 km/h. By then, target B drives relatively slow in the right lane in front. As a
consequence, the host vehicle identifies that an overtake manoeuvre is required at t ≈ 25 s,
depicted in Fig. 4.7.6. Nevertheless, the host vehicle does not have precedence at t ≈ 25 s nor

26

0 20 40 60

Highway

Roundabout

Intersection

Host context during the scenario

Time, s

C
o
n
te

x
t
ty

p
e

Figure 4.7.2: The host car navigates through
three different traffic contexts during
simulation, a roundabout, a highway and an
intersection.

0 10 20 30 40 50 60 70

1

2

3

4

Empty list

Minimum priority numbers in precedence list

Time, s

P
ri
o

ri
ty

 n
u

m
b

e
r

Figure 4.7.3: The host car’s priority number
(solid) is compared to the minimum priority
number of all target vehicles (dashed) in the
context. A lower number is a higher priority.
The list is said to be empty when there are no
target vehicles in the current context. Please
note that the priority spikes at t ≈ 25 s and
t ≈ 26 s solely occurs for the host vehicle
(solid line).

0 10 20 30 40 50 60 70

Yield

Go

Longitudinal motion goal

Time, s

D
e

c
is

io
n

Figure 4.7.4: The behaviour planner decides
that the host vehicle should yield at two
occurrences, before entering the roundabout
t ≈ 4 s to t ≈ 9 s and before entering the
intersection t ≈ 32 s to t ≈ 45 s. The first
occurrence is due to rights of way, the
section is due to both rights of way and a
stop sign.

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80
Host velocity and set speed

Time, s

V
e

lo
c
it
y
,

k
m

/h

Set speed

Host velocity

Figure 4.7.5: The automated drive system
follows a set speed and adjusts the velocity
to desired targets. At t ≈ 9 s an yield point
is selected as desired target, hence the host
car stops. Similarly, at t ≈ 40 s the host car
stops at a stop sign next to an intersection.
At t ≈ 25 s, a the host intends to overtake a
target vehicle. However, an interfering car
approaches from behind and consequently
the host adjusts it speed, to the slower driv-
ing vehicle in front, until the target car has
passed.

at t ≈ 26 s. This since the desired overtake cannot occur without interfering with target C
that approaches from behind. Consequently, the host car stays in the right lane and the ACC
component selects target B in front. This can be seen on the host car’s velocity, that decreases
significantly at the same time. It can also be seen in Fig. 4.7.7 that indicates the presence of a
target in the navigation path. However, target C eventually passes the host vehicle and a new
overtake request is issued at t ≈ 27 s. Since an intended lane change does not interfere with

27

0 10 20 30 40 50 60 70

No

Yes

Overtake required

Time, s

Figure 4.7.6: It is desired to overtake a
target vehicle during highway drive. When
the system, at first, answers negatively on
the desired overtake, it adjusts the velocity
by breaking. The ‘overtake required’ signal
is triggered by time-to-collision, hence the
time-to-collision increases and for that cause
two impulses appear at t ≈ 25 s and t ≈ 26 s
respectively.

0 10 20 30 40 50 60 70

No

Yes

Target in path

Time, s

Figure 4.7.7: The ACC component, within
the execution layer, has a built in target
selection process. It intervenes if there is
a target in the desired navigation path, e.g.
when there is a slower driving car in the
same lane, in front of the host car.

other traffic, a motion goal to change lane is issued by the behaviour planner, shown in Fig. 4.7.8.
Thence, the host car changes to the left lane, passes target B and changes back to the right lane.
A series of images, shown in Fig. 4.7.9, illustrates the process step by step.

0 10 20 30 40 50 60 70

Right lane

Left lane

Lateral motion goal, lane reference

Time, s

D
e
c
is

io
n

Figure 4.7.8: The system responses posi-
tively on the desired behaviour, to overtake
a target vehicle, when it has precedence to
change lane.

Figure 4.7.9: The host vehicle (arrow) wish
to overtake a target in front. However, a sec-
ond target, approaching from behind, makes
the host vehicle respond negatively on its
desired behaviour. When the target passes,
the host gets precedence to change lane and
overtake the target in front.

The host vehicle enters an intersection context at t ≈ 33.5 s, seen in Fig. 4.7.2. A stop sign
is detected at approximately the same time, thus an unconditional stop is required, illustrated
in Fig. 4.7.10. The system therefore issues a motion goal to yield, depicted in Fig. 4.7.4. The
host car’s velocity goes to zero, and it stops in front of the sign. After three seconds, in a stand
still pose, the stop requirement is revoked at t ≈ 43 s. However, target A drives through the
intersection from t ≈ 40 s to t ≈ 45 s, seen from the precedence list. It enters the intersection
from the south, which is a major road, unlike the host car’s entry that connects from the west.

28

0 10 20 30 40 50 60 70

No

Yes

Stop required

Time, s

Figure 4.7.10: The host car approaches a stop sign, at which point the mission planner requires
an unconditional stop. As a result, the host vehicle has to stop and stand still for at least three
seconds.

As a result, the host vehicle retains its motion goal to yield, until target A exits the context. The
host vehicle regains precedence at t ≈ 45 s, and drives through the intersection.

The host car reaches a highway context, once more, and starts to accelerate to set speed. At
t ≈ 53 s, a speed sign is detected by the system. Hence a new set speed of 30 km/s is sent to the
ACC component, seen in Fig. 4.7.5. Consequently the host car’s velocity is adapted to the new
speed limit. The highway strip is later left, as seen in Fig. 4.7.1, by following the right curb to
take a highway exit.

29

5 Conclusions

This work has five important results, to the automotive community, concerning automated drive:

1. Prominent strengths of two traffic environment modelling tools
Two traffic environment models have been developed using two capable modelling tools,
PreScan and CarMaker. The resulting models have been connected to an automated drive
control system developed in MATLAB/Simulink. The study shows the two tools’ prominent
strengths, concerning modelling and simulation capabilities. The results are beneficial to
community members that search for tools to speed up virtual development of automated
drive control systems. The different strengths stated, can help to indicate which software
that fits specific needs. For instance, if modelling of sensors is desired, PreScan might be a
good alternative. If it, on the other hand, is of interest to analyse vehicle dynamics, one
might find CarMaker a good alternative. However the findings are restricted to the scope of
this work. The result should hence be used with this in mind.

2. A modular framework for automated drive
An automated drive framework is implemented in this thesis. It has shown to be a very
capable structure, that divides tactical planning from decision making and control. Hence
development of subsystems can be performed independent of each other, which might be
beneficial to large development projects.

3. Road model parametrization for context based planning
This work has developed a road model parametrization, to enable the planning layers to
have access to the current traffic context and prevailing -regulations. In that way, the
system can prepare-, make-, and execute decisions based on the current traffic situation.

4. Automated drive using an Adaptive Cruise Control component
An Adaptive Cruise Control (ACC) component was used to execute a desired navigation
path. However, the ACC component also intervenes, by adjusting the host car’s velocity, if
target vehicles are found within the path. Hence collisions are avoided.

5. Efficient overtaking by evaluating decision costs
This work develops an algorithm for cost based overtake, of n target vehicles driving in
the right lane, with respect to an upcoming traffic context and merging possibilities. The
algorithm values acceleration- and velocity profiles of different possible decisions.

Simulation results agree with the desired behaviour. The system drives the host vehicle
through a variety of traffic contexts; such as a roundabout, an intersection and a highway, in a
safe an efficient manner, while interacting with other vehicles operating in the traffic environment.
It consequently yields to target vehicles that have precedence, and overtakes target vehicles when
considered efficient. In addition, the system handles different types of traffic signs, such as stop-
and speed signs, and rights of ways. It has been assumed that the control system has access to all
relevant target vehicle information, at all times. The implications of this assumption are however
considered small, or at least manageable. In fact, the automated drive system only considers
targets that are in the proximity of the host vehicle. If such targets are obscured, e.g. by a tree in
an intersection, the framework could be extended to drive conservatively and assume that there
are targets behind the tree. In that way, the resulting behaviour might be to yield until sufficient
environment information is given. If it is desired to implement the system in a real vehicle, I
advice future work to concern generation of trajectories, in complex traffic contexts, that conform
to motion goals issued. In addition, generation of the precedence list can be extended to include
more traffic situations and -regulations. The road model, held by the perception module, can be
adjusted to fit a relevant map provider.

30

References

BMW (2013). BMW Technology Guide. Active Cruise Control. [Online; accessed 5-mar-2013].
url: http://www.bmw.com/com/en/insights/technology/technology_guide/articles/
active_cruise_control.html.

DARPA (2013). Overview. What is the Urban Challenge. [Online; accessed 5-mar-2013]. url:
http://archive.darpa.mil/grandchallenge/overview.asp.

Gehrig, S.K. and F.J. Stein (1998). “A trajectory-based approach for the lateral control of
car following systems”. In: Systems, Man, and Cybernetics, 1998. 1998 IEEE International
Conference on. Vol. 4. IEEE, pp. 3596–3601.

Gietelink, O.J. (2007). Design and validation of advanced driver assistance systems.
HAVEit (2012a). About HAVEit. [Online; accessed 7-nov-2012]. url: http://www.haveit-eu.org.
— (2012b). Highly Automated Driving. [Online; accessed 13-mar-2013]. url: http://www.haveit-

eu.org/displayITM1.asp?ITMID=5&LANG=EN.
interactIVe (2012). Accident avoidance by active intervention for Intelligent Vehicles. [Online;

accessed 7-nov-2012]. url: http://www.interactive-ip.eu.
IPG Automotive (2013). CarMaker. Shift the test drive into simulation! [Online; accessed 5-mar-

2013]. url: http://www.ipg.de/index.php?id=609.
Kammel, S. et al. (2008). “Team AnnieWAY’s autonomous system for the 2007 DARPA Urban

Challenge”. In: Journal of Field Robotics 25.9, pp. 615–639.
MathWorks (2013). Simulink. Simulation and Model-Based Design. [Online; accessed 5-mar-2013].

url: http://www.mathworks.com/products/simulink.
Rajamani, Rajesh (2012). “Adaptive Cruise Control”. In: Vehicle Dynamics and Control, pp. 141–

170.
Tass (2013). PreScan product information. [Online; accessed 5-mar-2013]. url: http://www.tass-

safe.com/en/products/prescan.
Thrun, S. et al. (2007). “Stanley: The robot that won the DARPA Grand Challenge”. In: The

2005 DARPA Grand Challenge, pp. 1–43.
Urmson, C. et al. (2008). “Autonomous driving in urban environments: Boss and the urban

challenge”. In: Journal of Field Robotics 25.8, pp. 425–466.
Urmson, Chris et al. (2009). “Autonomous driving in traffic: Boss and the urban challenge”. In:

AI Magazine 30.2, p. 17.
Volvo Car Corporation (2013a). Safety Technologies. Adaptive cruise control down to standstill.

[Online; accessed 5-mar-2013]. url: http://yourfleet.volvocars.com/preview/safety-
technologies.aspx.

— (2013b). Vision 2020. [Online; accessed 7-nov-2012]. url: http://www.volvocars.com/intl/
top/corporate/volvo-sustainability/safety/pages/vision-2020.aspx.

31

http://www.bmw.com/com/en/insights/technology/technology_guide/articles/active_cruise_control.html
http://www.bmw.com/com/en/insights/technology/technology_guide/articles/active_cruise_control.html
http://archive.darpa.mil/grandchallenge/overview.asp
http://www.haveit-eu.org
http://www.haveit-eu.org/displayITM1.asp?ITMID=5&LANG=EN
http://www.haveit-eu.org/displayITM1.asp?ITMID=5&LANG=EN
http://www.interactive-ip.eu
http://www.ipg.de/index.php?id=609
http://www.mathworks.com/products/simulink
http://www.tass-safe.com/en/products/prescan
http://www.tass-safe.com/en/products/prescan
http://yourfleet.volvocars.com/preview/safety-technologies.aspx
http://yourfleet.volvocars.com/preview/safety-technologies.aspx
http://www.volvocars.com/intl/top/corporate/volvo-sustainability/safety/pages/vision-2020.aspx
http://www.volvocars.com/intl/top/corporate/volvo-sustainability/safety/pages/vision-2020.aspx

	Abstract
	Acknowledgements
	Nomenclature
	Contents
	Introduction
	Thesis outline and contributions
	Modelling tools for traffic environments
	Scenaria descriptions
	PreScan evaluation
	Building a PreScan traffic environment model
	Modelling sensors to access control signals
	Adding Simulink control systems
	Simulating a scenario using PreScan

	CarMarker evaluation
	Building a CarMaker traffic environment model
	Accessing signals in Simulink
	Adding Simulink control systems
	Simulating a scenario using CarMaker

	Summary of software strengths

	Decision making for automated vehicles
	Software architecture for automated drive
	Perception
	Road model
	Targets

	Mission planner
	Road sign information
	List of precedence

	Behaviour planner
	Precedence based decision making for legal behaviour
	Cost evaluation for planning of efficient overtake manoeuvres

	Motion planner
	Lane defined lateral motion
	Trajectory-defined lateral motion
	Longitudinal motion

	Execution of motion goal
	Lateral control
	Longitudinal control

	Results of the automated drive system

	Conclusions

