
Gaussian processes for emulating chiral
effective field theory describing
few-nucleon systems
Bachelor of Science Thesis for the Engineering Physics Program

MARTIN ERIKSSON
RIKARD HELGEGREN
DANIEL KARLSSON
ISAK LARSÉN
ERIK WALLIN

Department of Physics
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017





BACHELOR OF SCIENCE THESIS FOR THE ENGINEERING PHYSICS PROGRAM

Gaussian processes for emulating chiral effective field theory describing
few-nucleon systems

MARTIN ERIKSSON
RIKARD HELGEGREN
DANIEL KARLSSON

ISAK LARSÉN
ERIK WALLIN

Department of Physics
Division of Subatomic and Plasma Physics

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2017



Gaussian processes for emulating chiral effective field theory describing few-nucleon systems
Martin Erikssona, Rikard Helgegrenb, Daniel Karlssonc, Isak Larsénd, Erik Walline

Email:
amartieri@student.chalmers.se
brikhel@student.chalmers.se
cdakarlss@student.chalmers.se
disakla@student.chalmers.se
ewalline@student.chalmers.se

c© Martin Eriksson, Rikard Helgegren, Daniel Karlsson, Isak Larsén, Erik Wallin, 2017

Bachelor thesis at the Department of Physics, Chalmers
Bachelor’s thesis TIFX04-17-07

Supervisor: Andreas Ekström, Christian Forssén
Examiner: Jan Swenson

Department of Physics
Chalmers University of Technology
SE-412 96 Gothenburg
Sweden
Telephone: +46 (0)31-772 1000

Cover:
Random functions sampled from a posterior predictive distribution with three observed points. Also depicted
is the mean and double variance of the Gaussian process, see chapter 3.

Chalmers Reproservice
Gothenburg, Sweden 2017

mailto:martieri@student.chalmers.se
mailto:rikhel@student.chalmers.se
mailto:dakarlss@student.chalmers.se
mailto:isakla@student.chalmers.se
mailto:walline@student.chalmers.se


Abstract

Gaussian processes (GPs) can be used for statistical regression, i.e. to predict new data given a set of observed
data. In this context, we construct GPs to emulate the calculation of low energy proton-neutron scattering
cross sections and the binding energy of the helium-4 nucleus. The GP regression uses so-called kernel functions
to approximate the covariance between observed and unknown data points. The emulation is done in an
attempt to reduce the large computational cost associated with exact numerical simulation of the observables.
The underlying physical theory of the simulation is χEFT. This theory enables a perturbative description of
low-energy nuclear forces and is governed by a set of low-energy constants to define the terms in the effective
Lagrangian. We use the research code nsopt to simulate selected observables using χEFT.

The GPs used in this thesis are implemented using the Python framework GPy. To measure the performance
of a GP we define an error measure called model error by comparing exact simulations to emulated predictions.
We also study the time and memory consumption of GPs. The choice of input training data affects the
predictive accuracy of the resulting GP. Therefore, we examined different sampling methods with varying
amounts of data.

We found that GPs can serve as an effective and versatile approach for emulating the examined observables.
After the initial high computational cost of training, making predictions with GPs is quick. When trained using
the right methods, they can also achieve high accuracy. We concluded that the Matérn 5/2 and RBF kernels
perform best for the observables studied. When sampling input points in high dimensions, latin hypercube
sampling is shown to be a good method. In general, with a multidimensional input space, it is a good choice to
use a kernel function with different sensitivities in different directions. When working with data that spans
over many orders of magnitude, logarithmizing the data before training also improves the GP performance.
GPs do not appear to be a suitable method for making extrapolations from a given training set, but performs
well with interpolations.

Keywords: Machine learning, Gaussian processes, Chiral effective field theory, Scattering

Sammandrag

Gaussiska processer (GP:s) kan användas för statistisk regression, d.v.s. att göra prediktioner av ny data
givet en mängd av observerad data. I detta sammanhang konstruerar vi GP:s för att emulera beräkningen av
spridningstvärsnittet för lågenergiinteraktion mellan protoner och neutroner, samt kärnans bindningsenergi
i helium-4. I regression med GP används så kallade kärnfunktioner för att approximera kovariansen mellan
observerade och okända datapunkter. Tillämpningen av GP:s är ett försök att reducera den stora beräknings-
kostnaden förknippad med den exakta numeriska simuleringen av observablerna. Den fysikaliska teori som
ligger bakom simuleringen är χEFT, vilken tillåter en perturbativ beskrivning av krafter på nukleär skala
vid låga energier. Denna teori styrs av en uppsättning lågenergikonstanter, som definierar termerna i den
effektiva Lagrangianen. Vi använder forskningskoden nsopt, som implementerar χEFT, för att simulera valda
observabler.

De GP:s som används i denna kandidatrapport implementeras med hjälp av Python-ramverket GPy. För att
mäta hur väl en GP presterar definierar vi ett felmått benämnt model error, som jämför exakta simuleringar
med emulerade prediktioner. Vi studerar också GP:s tids– och minnesåtgång. Valet av träningsdata påverkar
noggrannheten på den resulterande GP:ns prediktioner. Vi undersökte därför olika samplingsmetoder med
varierande datamängd.

Vi konstaterade att GP:s kan fungera som en effektiv och mångsidig metod för att emulera de undersökta
observablerna. Det går snabbt att göra prediktioner med GP:s efter träningens initialt höga beräkningskostnad.
Med väl vald träningsdata och rätt optimering, kan GP:s även ge hög noggrannhet. Vi observerade att Matérn
5/2– och RBF-kärnorna fungerar bäst för de observabler som studeras. Latinsk hyperkubssampling konstateras
vara en bra metod när parameterrummet är av hög dimension. Det är generellt ett bra val att använda
en kärnfunktion med olika känslighet i olika riktningar när parameterrummet är multidimensionellt. När
datan spänner över många storleksordningar förbättrar även logaritmering av datan innan träning GP:ns
uppskattningsförmåga. GP:s verkar inte vara lämpade för extrapolering från ett givet träningsset, men de
fungerar bra vid interpolering.

i



Acknowledgements

We would like to thank our supervisors, Christian Forssén and Andreas Ekström, for great guidance and support
throughout our project.

The Authors, Gothenburg, June 2017

ii



Contents

Abstract i

Sammandrag i

Acknowledgements ii

Contents iii

1 Introduction 1
1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Theoretical description of few-nucleon systems 3
2.1 χEFT and LECs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Scattering cross section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Binding energy of few-nucleon systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Machine learning 7
3.1 Predictions using Gaussian processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Kernel functions and optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Data collection and GP regression 11
4.1 Simulation of observables with nsopt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Sampling of input parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Kernels and hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Error and complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Results 15
5.1 Emulation of scattering total cross sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1.1 Usage of validation data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1.2 Comparison of different sampling methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1.3 Minimizing model error of emulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1.4 Time and memory complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Energy dependent total cross section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Emulating the 4He binding energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Conclusion 25
6.1 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

References 27

iii



iv



1 Introduction
Modern scientific research, with its increasing complexity and large amounts of data, is often limited by the
availability of computational power. While simplified models with analytical solutions are useful for gaining
a qualitative understanding, advanced numerical computations are often needed for quantitative predictions.
Hence, there is a growing need for low-error approximative methods that are also computationally cheap
in terms of time complexity and memory consumption. One possible approach to address this need is to
introduce machine-learning methods. A simplified view of machine learning is the idea of supplying a computer
a limited set of training data, from which a program can make predictions about other similar sets of data. The
prospect is that machine-learning methods will be able to utilize the available data to reduce the computational
complexity and cost of problems without decreasing the accuracy of solutions [1].

Our goal is to examine the feasibility of applying machine-learning algorithms in the form of statistical
regression with Gaussian processes (GPs) to the realm of nuclear and particle physics. Computations of
low-energy, nuclear-physics observables suffer from the non-perturbative nature of the underlying theory. The
most modern solution to this problem utilizes chiral effective field theory (χEFT). The χEFT framework
allows an expansion in a small parameter, despite the theory being non-perturbative [2]. By introducing a
power-counting scheme to the χEFT expansion it is possible to classify the importance of different terms.
The first order is known as leading-order (LO), the second order next-to-leading-order (NLO), followed by
next-to-next-to-leading-order (N2LO), and so on. The parameters that govern the χEFT are referred to as
low energy constants (LECs). The number of LECs increase with the order of the expansion. Even though
the χEFT approach greatly reduces the computational demand for nuclear physics calculations, it is still a
time-consuming task with many parameters in the form of LECs. Due to the strong parameter dependence,
even a small change in the input parameters requires a costly new calculation [3].

In this thesis, we construct an emulator using a GP with the aim to reduce the time consumption for the
calculation of few-nucleon observables. A GP uses a function known as a kernel to calculate the covariance
between points in the training data to be able to make predictions about other points in the input space [1].
The training data is supplied to the GP in the form of simulation results from nsopt, a nuclear-physics research
code using χEFT developed at Chalmers University of Technology [3–5]. The accuracy of the emulator is
determined by comparisons between emulated and simulated values. The method is applied to emulate both
the total cross section in proton-neutron scattering, as well as the binding energy for the helium-4 nucleus.

1.1 Purpose

The general purpose of this thesis is to examine the viability of using GPs to emulate and predict the simulation
of physical observables within nuclear physics, in particular the total proton-neutron scattering cross section and
the binding energy of the helium-4 nucleus. This aims to reduce the high computational cost associated with
numerical simulations of these observables. We also want to give a general indication of the overall applicability
of GPs for research within nuclear physics, and to provide rough recommendations of how to best utilize GPs
to achieve the highest predictive accuracy.

More specifically the goals of this thesis can be summarized as follows:

• Construct a GP emulating nsopt simulations of proton-neutron scattering and the helium-4 binding
energy.

• Examine optimal choices for GP-specific training methods, such as the choice of training data and kernel
function.

• Study the computation time and memory usage for GPs to determine whether the use of GP emulations
leads to a sufficient reduction in computational cost, compared to the corresponding numerical simulations.

• Test whether GPs also are a useful tool for extrapolated emulations, as opposed to interpolations.

1.2 Limitations

Our goal with this thesis is to create an accurate emulator, not to expand upon the underlying physics of the
χEFT. We study the theories to get a basic understanding of the observables and methods we are emulating.

1



When working with the χEFT expansion, we are limited to expansion orders up to N2LO and also ignore
three-body interactions. Including more calculations would not be beneficial for the use of GPs, and would
mostly increase the computational complexity.

When dealing with GPs, we limit ourselves to a subset of kernels which are designed for purposes similar to
ours. The training sets used are limited to 3000 points, as larger sets would be more demanding than practical
for the computational power available to us.

1.3 Thesis structure

A general overview of χEFT and the concept of LEC parameters can be found in chapter 2. There are also
explanations of the physical observables cross section and binding energy, as well as their connection to χEFT.
These are the observables we later use to compare nsopt to their GP counterparts. We introduce some of the
mathematics behind GP machine learning in chapter 3, to explain more of the behaviours of the GP emulators.
We focus on the introduction of covariance functions (i.e. kernels) after the general introduction. We motivate
our decisions of how to apply GPs towards χEFT in chapter 4, in terms of, amongst other things, sampling sizes,
sampling methods, kernels that are used, and the defined error measure. Presentations and discussion of the
results of the GPs performance alternate in chapter 5 in order to convey the logic behind some simplifications
in terms of dropping certain GP parameters, such as the amount of validation data. We conclude the thesis
with a brief summary of the general findings of the thesis and recommendations for future work in chapter 6.

2



2 Theoretical description of few-nucleon systems
In this chapter we present a general overview of the underlying theory used by the nsopt simulator. The
simulation is based on an χEFT description of low-energy nuclear physics, which is governed by LECs. The
simulated observables we study in this thesis are the total cross section for proton-neutron scattering (σt

np) and
the nuclear binding energies of the helium-4 nucleus (Eb(4He)).

2.1 χEFT and LECs

An effective theory is an approach used to obtain a description of physics in a limited energy region that
is specified by a separation of scales, inherently manifested by the system under study [6]. The concept of
separation of scales is used when, for example, we go from relativistic mechanics to the special case of classical
Newtonian mechanics. By assuming that the velocity of an object v is small compared to the speed of light c,
we can expand the expression for relativistic kinetic energy using a Taylor series in the small parameter v/c.
The expansion rapidly converges, and by keeping only the first order term we end up with the well known
Newtonian expression for kinetic energy [7]. A similar approach based on separation of scales is used in χEFT
to study the low-energy nucleon interaction. In this thesis we will only briefly summarize the χEFT approach,
for an introduction see Machleidt [2].

The strong force between quarks and gluons is very well explained by the equations of quantum chromody-
namics (QCD). Particles that are made up of quarks and hence influenced by the strong nuclear force, such as
protons and neutrons forming atomic nuclei, are referred to as hadrons. In the low-energy region characteristic
for nuclear physics, QCD is non-perturbative. However, by using χEFT a small parameter expansion can still
be found, and the strong force interaction between nucleons can be seen as an exchange of pions, the lightest of
the hadrons. The separation of scales used in χEFT is provided by the experimentally observed gap in the
hadron energy spectrum between the pions and the heavier mesons. The upper energy limit of the scale is
denoted by Λ and is approximately the mass of a rho meson Λ ≈ mρ ≈ 800 MeV. Physics above this limit is
integrated out, leaving only the lower-energy physics in the form of pions [2].

χEFT facilitates an expansion in the parameter defined as Q/Λ. Here Λ is the previously introduced upper
energy limit defined by the rho meson and Q is the pion momenta in the low-energy processes we want to study.
Typically, the scale of Q is given by the mass of a pion Q ≈ mπ ≈ 140 MeV. By counting the chiral order
ν of the resulting expansion terms (Q/Λ)ν it is possible to organize the terms in the expansion. The terms
themselves can be represented by a set of Feynman diagrams describing the nucleon interaction. A finite set of
terms belong to each order, while the whole expansion is infinite. The chiral order can take on values ν ≥ 0,
with terms of order ν = 1 disappearing due to symmetry reasons. By including the weaker higher order terms
more information is included. The terms with ν = 0 are referred to as leading order (LO), terms with ν = 2 as
next-to leading order (NLO), third order terms as next-to-next-to leading order (N2LO), and so on [2, 6].

The coupling coefficients in the effective Lagrangian are called low energy constants (LECs). The LECs
govern the strength of the terms in the χEFT. Consequently, when increasing the number of terms kept in
the expansion more LECs are introduced. The values of the LECs are not given by the χEFT, but have to
be determined from fits of experimental data and are therefore subject to statistical errors. The LEC values
we use to simulate the total scattering cross section and binding energy of the helium-4 nucleus with nsopt
are values in error ranges previously calculated by Carlsson et al. [3]. We include terms up to N2LO, where
12 LECs are needed to describe the χEFT. Further information on how the values of the LECs are chosen is
presented in section 4.2.

2.2 Scattering cross section

The scattering cross section σ is used as a measure of the absolute probability for a reaction to happen. Consider
an incoming current of Ia particles per unit time hitting target particles spaced with N particles per unit area.
A detector defining a solid angle dΩ from the reaction point will measure a signal of Rb outgoing particles per
unit time. A schematic overview of this process is presented in figure 1. These parameters give us the scattering
cross section, proportional to the probability of the outgoing particle hitting the detector at a specific direction
described by angles θ and φ.

σ =
Rb
IaN

. (2.1)

3



This is often referred to as the total cross section σt = σ. We must note that while the cross section has the
units of area, it tells us nothing of the actual geometrical area of the target particles. Since the detector in
the above example only occupies a small solid angle it will only record some of the particles, dRb and thus
only describe a fraction of the cross section, dσ. The distribution of particles over all outgoing angles can be
described by a function r(θ, φ), which gives us dRb = r(θ, φ) dΩ /4π. This allows us to formulate the differential
cross section

dσ

dΩ
=
r(θ, φ)

4πIaN
. (2.2)

This differential tells us the angular distribution of the reaction products. We note that we may calculate the
total cross section, telling us the probability of any reaction, by integrating over all angles [8].

Figure 1: Schematic overview of an incoming current of particles Ia scattered against an area of target particles
showing N particles per area. The scattered particle is detected in the solid angle dΩ.

The r(θ, φ) distribution is ultimately decided by how the two particles interact, for example Coulomb
scattering is decided by the electromagnetic interaction. In our case, χEFT is used to model the potential of
the strong force between the particles. We study the total cross section of proton-neutron scattering, where
the neutrons are the targets for the accelerated protons. Given a set of LECs and the kinetic energy of the
proton in the lab frame of reference, we can numerically solve the Schroedinger equation and compute this
cross section. A simulated total cross section curve in the range 1 MeV to 150 MeV is shown in figure 2.

0 50 100 150

0

1000

2000

3000

4000

Lab-frame energy [MeV]

σ
t n
p
[m

b
]

Figure 2: Simulated total cross section for proton-neutron scattering. The cross section is a decreasing function of
energy that spans over many orders of magnitude.

2.3 Binding energy of few-nucleon systems

Another observable we study is the binding energy of the helium-4 nucleus. This is done by solving the
Schroedinger equation for a system of A nucleons

H |ΨA〉 = E |ΨA〉 . (2.3)

4



The Hamiltonian includes the kinetic energy, the strong force, and Coulomb interaction between particles:

H = T + V =

A∑
i=1

p2i
2mi

+

A∑
i<j=1

Vij +

A∑
i<j<k=1

Vijk. (2.4)

Here, the eigenstate |ΨA〉 is an anti-symmetrical product state of single-nucleon states. We can expand the
many-body eigenstate into a complete set of orthonormal basis states

|ΨA〉 =

∞∑
i

ci |φi〉 . (2.5)

More specifically, we choose |φi〉 to be the product state of four non-interacting nucleons in a harmonic oscillator
potential. The energy levels of each oscillator state is governed by the oscillator energy ~ω. The number of
included basis states is decided by the cutoff parameter Nmax. Four-nucleon states with a total energy above
Nmax~ω will not be included. Inserting this sum into the Schroedinger equation and multiplying from the left
by 〈φj | gives us

Nmax∑
i

ci 〈φj |H|φi〉 = E

Nmax∑
i

ci 〈φj |φi〉 , (2.6)

and since 〈φi|φi〉 is unity for an orthonormal basis, we find that

Hijci = Ecj . (2.7)

Here, Hij = 〈φj |H|φi〉 is a matrix element of the Hamiltonian. The lowest energy solution to this eigenvalue
problem will be the closest to the ground state energy of the system according to the variational principle. We
note that the value of a specific matrix element depends on the choice of the oscillator energy ~ω. However, we
have a complete basis for each energy. As Nmax tends to infinity the energy eigenvalue will converge towards
the actual binding energy, and the final result should be independent of ~ω. Every Nmax and ~ω give a new
matrix of Hij-values and this matrix increases in size with Nmax. The lowest eigenvalue is found through
diagonalization of the matrix of Hij-elements, which can be computationally demanding for large Nmax. This
means that the nsopt binding energy often will be a function of ~ω and Nmax. In general, it is not possible to
find a closed-form analytical expression for this function [9].

Put shortly, the physical observables studied in this thesis are the total cross section for proton-neutron
scattering (σt

np) and the nuclear binding energies of the helium-4 nucleus (Eb(4He)). These observables will
be emulated by the GPs presented in the next chapter. The LECs and the lab-frame kinetic energy, as well
as ~ω and Nmax for the bound-state model (presented in this chapter) will serve as input parameters for our
emulation problem.

5



6



3 Machine learning
Solving the Schroedinger equation for nucleon scattering observables or nuclear binding energies can be done
on a modern computer using χEFT. However, the time costs quickly add up, and for large numerical studies
that require many evaluations, it may be too costly to use simulations. Using machine-learning techniques we
may predict values based on an already known set of data. This can be done in a fraction of the time used to
simulate the same values. The specific branch of machine learning used in this thesis is GPs.

3.1 Predictions using Gaussian processes

We want to find a mathematical way to predict values of an unknown function, based on observed function
values. Formally, a GP is defined as a collection of random variables with a joint Gaussian distribution. The
statistical model is defined by its mean and covariance functions:

m(x) = E[g(x)],

k(x, x′) = E[(g(x)−m(x))(g(x′)−m(x′))],
(3.1)

where g(x) is an arbitrary function. The mean is often chosen to be 0, this may be done since we do not have
any information about the function we want to predict. The covariance function k describes the covariance
between two points in input space. These parameters define the prior distribution, which is our distribution
before observing any function values. By choosing a set of points X in input space, we build a covariance
matrix K(X,X) by evaluating the covariance function element-wise. We want to find values of a function f at
every point in X. The result is a multivariate distribution

f ∼ N (0,K(X,X)), (3.2)

from which we can draw sample functions. An example of this is shown in the left panel of figure 3.
To make useful predictions we need observations f ′, located at points X ′ in input space. The observations are

commonly referred to as training data. Generally, these values may have an associated noise, or measurement
error. However, the data used in this thesis is simulated using numerical methods and can be assumed to be
noise-free. Again, we construct a covariance matrix, and find the following multivariate distribution:(

f
f ′

)
∼ N

(
0,

[
K(X,X) K(X,X ′)
K(X ′, X) K(X ′, X ′)

])
. (3.3)

From this distribution we may find another, conditional distribution of f given f ′, X, and X ′. This is known as
the posterior predictive distribution, which uses all known data to give an estimate of unknown data. The
distribution is defined by [1]

f |f ′, X,X ′ ∼ N

(
K(X,X ′)K(X ′, X ′)−1f ′,

K(X,X)−K(X,X ′)K(X ′, X ′)−1K(X ′, X)

)
.

(3.4)

Finding the mean and variance at X is done by evaluating the matrices, and sampling a random function may
be done in the same way as before. An example with arbitrarily chosen training data is shown in the right
panel of figure 3. When using GPs to make predictions, it is in general the mean of these sampled functions
that is of interest. We also note that all of these definitions may be extended to multiple input dimensions by
extending the covariance function to allow vector inputs [1].

7



0 0.2 0.4 0.6 0.8 1

−1

0

1

Input [a.u.]

O
ut
pu

t
[a
.u
.]

0 0.2 0.4 0.6 0.8 1

−1

0

1

Input [a.u.]

O
ut
pu

t
[a
.u
.]

Figure 3: Randomly sampling functions from a Gaussian process corresponds to sampling values from a multivariate
distribution. The left panel shows samples from an unconditioned prior distribution. The right panel demonstrates
sampling from a conditioned posterior distribution with the 3 arbitrarily chosen points marked as blue dots. Both panels
show the mean values of the GP as dashed lines and 2σ limits as dotted lines. The sample functions are shown as solid
lines.

3.2 Kernel functions and optimization

The covariance function k is often referred to as a kernel function because of its importance in defining the GP.
In machine learning, the purpose of a kernel function is to describe the similarity in output between arbitrary
points in input space. Here we will use stationary kernels, which weigh the covariance between two points by
their euclidean distance in input space. This class of kernels is invariant to translations in input space (hence
stationary). A commonly used function is the radial basis function (RBF), sometimes referred to as the squared
exponential function

kRBF(x, x′) = σ2 exp

(
−|x− x

′|2

2l2

)
. (3.5)

Here, l denotes the characteristic length scale of the kernel, and σ its variance. These are referred to as
hyperparameters. We note that this function tends to zero quickly as the distance between the input points
increase. Varying l is demonstrated in figure 4. Changing this hyperparameter can be seen as changing the
sensitivity of the kernel. A large l means training points at a larger distance will influence the predictions more,
and vice versa. The scale factor σ is used to the adjust the variance of the distribution to fit the studied data.

We note that the quality of the predictions depend strongly on the hyperparameters. We have to find a set
of hyperparameters that are most likely to fit our data. This is done by evaluating the log likelihood function
of observations f ′ given X ′:

log P(f ′|X ′, l, σ) = −1

2
f ′

ᵀ
K−1f ′ − 1

2
log |K| − n

2
log 2π. (3.6)

K is the covariance matrix as earlier, which implicitly depends on both hyperparameters. To determine the
optimal hyperparameters, we must find the max of the log likelihood function. This maximum can be found
using a number of different optimization algorithms. The implementation of GPs used for this thesis uses the
L-BFGS-B -algorithm, which is a common method for solving non-linear optimization problems [10, 11].

In many applications with multidimensional input spaces, each dimension might exhibit different sensitivities.
The RBF kernel described in equation (3.5) uses a single length scale for all inputs, which assumes the
desired function must behave similarly in all directions. It is straightforward to adjust the kernel function to
accommodate a different length scale for every input dimension, and the result is given by

kRBF(x,x′) =σ2 exp

(
−1

2
(x− x′)ᵀL(x− x′)

)
,

L = diag(l)−2.

(3.7)

8



0 0.2 0.4 0.6 0.8 1

−1

0

1

Input [a.u.]

O
ut
pu

t
[a
.u
.]

0 0.2 0.4 0.6 0.8 1

−1

0

1

Input [a.u.]

O
ut
pu

t
[a
.u
.]

Figure 4: Both plots use the RBF kernel and the same arbitrarily chosen training points to find mean (dashed) and
variance (dotted). The left one has a long length scale of 0.5, this conditions the function to change more slowly. The
right panel shows a short length scale of 0.05, which allows for quick changes in the function, and a higher variance.

Clearly, this will increase the complexity of the optimization of the hyperparameters.
In summary, GPs can be used as a statistical approach to regression. The GP is defined by its kernel

function, hyper parameters and observations. The next step in constructing an accurate emulator is the choice
of appropriate training data (observations) and a suitable kernel. The methods for making these choices will be
discussed in the next chapter.

9



10



4 Data collection and GP regression
In this chapter we present the methods used to obtain data and the GP training process. First, an introduction
to the simulation method is given, specifying the requirements and capabilities of the nsopt code. This is
followed by a description of the sampling schemes used to choose values for the input parameters given to
nsopt for the calculation of cross sections and binding energies. In the next section we treat the GP training
and the different kernels used to construct an accurate emulator. We test the accuracy by introducing an
error measurement. The computational cost is evaluated by measurements of time complexity and memory
consumption.

4.1 Simulation of observables with nsopt

Adequate training data has to be provided to be able to train a GP with high predictive accuracy. To generate
this data we use a research code called nsopt, which is developed at Chalmers University of Technology [3–5].
The code implements χEFT to model the strong interaction and solve the Schroedinger equation for few-nucleon
systems. More specifically, we study the proton-neutron cross section σt

np and the binding energy of a helium-4
nucleus Eb(4He).

When studying scattering cross sections, nsopt requires a set of 12 LECs and the lab-frame kinetic energy
of the incoming particle. The simulated value represents the total proton-neutron scattering cross section of
the interaction in millibarn (mb).

The simulations of nuclei binding energies are done with regard to another parameter space. Here, a single
set of LECs is supplied together with the model parameters presented in section 2.3. nsopt then calculates the
binding energy for the specific ~ω value, and every even integer cutoff up to Nmax. A typical value of Nmax is
20, and ~ω is typically in the range 10 MeV to 50 MeV.

4.2 Sampling of input parameters

To train a GP we use the input parameters to nsopt together with the simulated value as target output. To be
able to make predictions in a large volume of input space these data points need to span the space, and be
somewhat evenly distributed.

When simulating cross sections, we explore a 12-dimensional parameter space that is composed of the
relevant LECs from χEFT up to N2LO. We consider a restricted sub-volume that is spanned by the LEC
ranges specified in table 1, obtained from an earlier study [3]. The typical range of data points used for training
is between 100 to 3000 points.

The sampling methods used to choose LEC values are: (i) Latin hypercube sampling (LHS), and (ii) sampling
from a multivariate Gaussian distribution.

LHS is a sampling method for generating a space-filling, evenly distributed, and close to random set of
data points in a multidimensional space [12]. LHS is performed by dividing every axis into N equally spaced
intervals and randomly selecting a value in each interval. Thereafter, one value from each axis is randomly
selected to create data points , which is repeated N times and each value is used once and only once [13]. A
two-dimensional example of LHS sampling is shown in the left panel of figure 5. The LHS implementation used
in the thesis is part of pyDOE, a Python package for designing experiments [14].

The second sampling method that we use is sampling from a Gaussian distribution. The samples are
distributed according to the standard normal distribution. Hence, the selected data points mainly appear in the
center of the multidimensional space as is shown in a two dimensional example in the right panel of figure 5.

For the work with bound states, the LECs are not varied, which leaves the only relevant input parameters
~ω and Nmax. The values of Nmax used by nsopt are equally spaced (2, 4, 6, . . . , 20) so it is also logical to
use equally spaced ~ω-values. This kind of equally-spaced grid of points is achievable in a lower-dimensional
parameter space, but in higher-dimensional spaces (e.g. 12-dimensional as for the cross sections), the number
of required data points would quickly increase above manageable numbers. Instead of generating a separate
data set for testing the GP predictions of bound states, a subset of the full data set was used for training while
the rest of the data was used for validation.

11



Table 1: The 12-dimensional LEC volume from which parameter values are sampled for calculating the cross section.
The LECs are specified by an experimentally determined range with lower and upper bounds. The fit to experimental
data has been done by Carlsson et al. [3].

LEC Range

Lower Upper

C̃
(np)
1S0

−0.1519 −0.1464

C1S0
2.4188 2.5476

C̃3S1
−0.1807 −0.1348

C3S1
0.5037 0.7396

CE1
0.2792 0.6574

C1P0
0.9924 1.6343

C1P1
0.0618 0.6635

C3P1
−0.9666 −0.4724

C3P2
−0.7941 −0.6324

c1 −0.8329 0.2784
c3 −4.3601 −3.4473
c4 1.8999 4.2353

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 5: Comparing the two sampling methods, LHS and Gaussian sampling, in two dimensions with 10 samples.
LHS presented in the left panel distributes points more evenly, while Gaussian sampling is more likely to place points
near the center as seen in the right panel.

12



4.3 Kernels and hyperparameters

To implement the GP we use a Python framework called GPy [10]. This framework contains the kernels,
algorithms and optimization methods needed to use GP regression for predictions. GPy implements four of
the most common stationary kernels, which are all tested and compared. These kernels are RBF, exponential,
Matérn 3/2 and Matérn 5/2, all of them listed below:

kRBF(x, x′) =σ2 exp

(
−|x− x

′|2

2l2

)
,

kExp(x, x′) =σ2 exp

(
−|x− x

′|
l

)
,

kMat32(r) =σ2(1 +
√

3r) exp
(
−
√

3r
)
,

kMat52(r) =σ2(1 +
√

5r +
5

3
r2) exp

(
−
√

5r
)
,

where r(x, x′) =

√√√√dim∑
i=1

(xi − x′i)2
l2i

.

(4.1)

If we look at the multidimensional length scale defined in section 3.2 we note that RBF and exponential may
be rewritten to include it. We also see that the Matérn kernels already include this feature in the definition of
r. The kernel and the dimension of the length scale are two important variables when finding an optimal GP
for predictions.

The LECs are defined on different intervals, and affect the simulated value to different degrees. This results
in different sensitivities in different input directions, and suggests that multidimensional length scales are a
good idea to use. GPy has the option to use both single and multiple dimensions for all 4 kernels used in this
thesis.

4.4 Error and complexity Analysis

An analysis of how an emulator compares to nsopt simulations is required to determine the accuracy of the GP
predictions in the physical context of χEFT. Another factor to consider is how time and memory usage differ
when using different GP training methods; the errors that are inherent with using GP predictions as opposed
to the simulated values can not be justified if the emulation is as computationally expensive as nsopt itself.

To test the accuracy of the predictions acquired with the GP models, another data set of input parameters
and simulated observables is needed. The set of validation points is compared to the predictions to give an error
measure of the model and can therefore not be the same as the training points. When considering how close
the predictions of the GP come to the true values, a measure of the errors should be defined in a consistent
way. We decided to use a root-mean-square measure of the relative errors of predicted values Yp,i compared to
the simulated validation values Yv,i. We will refer to this measure as the model error

e =
1√
N

√√√√ N∑
i=1

(
Yp,i − Yv,i

Yv,i

)2

. (4.2)

We use this measurement because the errors cannot cancel each other and important outliers affect the measure
in a significant way. Figure 6 presents an example of how the model error is calculated for two different sets of
predicted data. The left panel represents an accurate prediction, with a corresponding low model error while
the right panel results in a high model error due to the larger deviations from the simulated values.

In summary, a lot of our work consists of choosing useful input parameters for the GP training process. The
simulations used for training the GPs are generated with the research code nsopt. In addition to choosing
suitable input parameters, we try to find the most accurate kernel. How well the GP performs is tested with
the model-error parameter, that can be calculated by comparing GP predictions to a set of validation data.
The results of our work is presented in the next chapter.

13



100 150 200 250
100

150

200

250

Simulated value [mb]

E
m
ul
at
ed

va
lu
e
[m

b
]

Data
Expected

100 150 200 250
100

150

200

250

Simulated value [mb]

E
m
ul
at
ed

va
lu
e
[m

b
]

Data
Expected

Figure 6: Two examples of how the emulated values (i.e. predictions) compare to the simulated values. The data
points in the right panel are for the most part further from the expected line. This is also reflected in the model errors:
0.02 for the left panel and 0.10 for the right panel.

14



5 Results
In this chapter we present the results from our work with GPs for constructing emulators for the calculations
of total scattering cross sections and the binding energy of the helium-4 nucleus. The previously introduced
model error is used to compare the performance of different emulators. First, we discuss our findings about
the sampling methods used to choose input parameters for the GPs, both for training and validation of the
acquired predictions. The next part compares results obtained with the four different kernels, both in terms of
model error as well as computational time and memory complexity.

5.1 Emulation of scattering total cross sections

The simulation of a single proton-neutron total cross section at a specific energy requires 12 LECs as parameters.
In the calculations we fixed the energy of the incoming proton to 50 MeV in the lab frame of reference. To
construct an emulator capable of predicting total cross section values at different energies, the energy interval
has to be taken into account as a separate 13th parameter. In this work we have preformed such a study for an
interval between 1 MeV to 150 MeV.

5.1.1 Usage of validation data
Our main measure of model performance is the model error defined in equation (4.2). To compare model errors
from different kernels or training sets we must make sure that it does not depend on the number of validations
points. As seen in figure 7, this is generally true. The model error still varies in the range 100 to 2500 but
only by about 5× 10−3. The variations can be accredited to random elements from sampling. Using multiple
validation sets and averaging the model error could reduce this variation.

0 500 1000 1500 2000 2500
2

2.1

2.2

2.3

2.4

2.5

·10−2

Validation points

M
od

el
er
ro
r

Figure 7: Model error as a function of increasing validation points calculated at 50 MeV using GP emulators for σt
np.

All datasets are sampled using LHS, and the training is done with 1600 data points. The model error is relatively
constant except for variations due to random elements from sampling.

5.1.2 Comparison of different sampling methods
In constructing an accurate emulator it is crucial to find methods for sampling input data in a way that
minimizes the prediction errors over the entire input space. This make it necessary to compare combinations of
sampling methods for training and validation data.

From table 2 we see that LHS and Gaussian sampling of training data perform about as well in terms of model
error, but Gaussian sampling generally has a much larger variance. A model trained with Gaussian-sampled
data has a large point density in the center of the volume and thus gives very good predictions in this area.
Predictions towards the edges of the volume however, have a very large variance.

15



Based on this finding we will continue to use LHS for both training and validation. The idea is that we
want the data points to span the input volume both when training and when validating data.

Table 2: Comparison of combinations of sampling methods. The comparative model error uses the method described
in equation (4.2) normalized so that the lowest model error is unity. The variance, as presented in section 3.2, of the
predicted values is compared in the same way. The last column shows the maximum relative error. All data sets have
1000 points and uses the RBF kernel.

Combinations of sampling methods Comp. model error Comp. variance Max error

Training sampling Validation sampling

LHS LHS 1.30 1.43 0.15
Gaussian 1.00 1.00 0.17

Gaussian LHS 2.04 6.44 0.23
Gaussian 1.33 2.69 0.18

5.1.3 Minimizing model error of emulations

An emulator should preferably both be time efficient and make accurate predictions. The number of training
points that the GP is constructed from is therefore a highly important parameter since it affects both the
time consumption and the model error. The model error decreases as a function of the number of training
points, as shown in figure 8. Another key ingredient is the GP kernel. The four kernels that we compare are
RBF, Exponential, Matérn 3/2, and Matérn 5/2. The two kernels that result in the lowest model errors in
the studied interval, 100 to 3000 training points, are Matérn 5/2 and RBF. The comparison between the four
kernels is also shown in figure 8.

Beyond increasing the number of training points and choosing a good kernel, we also utilized the option
of using a multidimensional length scale as described in section 3.2. This allowed for different sensitivities in
different directions in the LEC volume, making a good fit more probable. The difference in model error when
using the multidimensional length scale is seen in figure 8. It is clear that the use of a multidimensional length
scale improves the accuracy of the predictions.

0 1000 2000 3000

2

4

6

8

·10−2

Training points

M
od

el
er
ro
r

RBF
Exponential
Matern32
Matern52

0 1000 2000 3000

0

2

4

6

8

·10−2

Training points

M
od

el
er
ro
r

RBF
Exponential
Matern32
Matern52

Figure 8: Measured model error for σt
np as a function of the number of points used for training GPs with four different

kernels. The model error decreases as a function of the number of training points. Matérn 5/2 and RBF are the kernels
with lowest model errors. In the right panel a multidimensional length scale was used when training the GPs.

16



5.1.4 Time and memory complexity

To quantify the possible computational gains from replacing nsopt simulations with the GP emulator we
measure the time consumption and memory use of the GP training and prediction process. The procedure is
done for training input in the form of LHS generated LEC samples ranging from 100 to 3000 points in the LEC
volume space, in steps of 100 points. The prediction is performed for a separate set of 1000 LEC sample points.
The same LEC data is used to measure time and memory both for GP training with the multidimensional
length scale and without. This is to compare the increased computational cost of the multidimensional length
scale to the gain in predictive accuracy when using the setting.

The training time measurements are presented in figure 9. The right panel shows GPs trained with the
multidimensional length scale, while GPs in the left panel do not use it. Notice that the multidimensional setting
increases the training time with about a factor ten, compared to training without this setting. No comparable
increase can be seen for the corresponding prediction times, as illustrated in figure 10. This difference is
explained by the fact that when already optimized, the lookup time complexity for a one-dimensional length
scale is the same as for a multidimensional length scale. A GP prediction is therefore more or less independent
of whether the training process uses multidimensional length scale or not. The training process does not exhibit
this independence. This is due to the fact that a N -dimensional length scale increases the dimension of the
space the optimization has to be performed for [10]. Disregarding the initial cost of the training process, the
cost of predicting new points is low. This means that it is possible to use adequately trained GPs to quickly
make predictions about unknown subsets in the LEC volume that the GPs is trained for [10].

0 1000 2000 3000

0

100

200

300

400

Number of training points

T
im

e
[s
]

RBF
Exponential
Matern32
Matern52

0 1000 2000 3000

0

1000

2000

3000

Number of training points

T
im

e
[s
]

RBF
Exponential
Matern32
Matern52

Figure 9: Measured time consumption when training a GP to emulate σt
np . The number of data points used for training

ranges from 100 to 3000 points in steps of 100 points between each training set. In the right panel a multidimensional
length scale was used when training the GPs. This is seen to increase the training time with about a factor ten.

The time measurements steadily increase with the number of sample points used. The discrepancies between
close points, as seen for example in figure 10 with sharp peaks up and down, are due to the load from other
processes on the computer at the time when the measurements were made. These differences are even more
noticeable for the training processes in figure 9 since the GP employs an iterative optimization algorithm, a
different number of iterations are needed before convergence for different sets of training data. The general
trend shows a faster growth for the two Matérn kernels than for the RBF and exponential kernels. The time
complexity of the training process with nt training points is at most O(n3t ), due to matrix inversion operations
on the covariance matrix. The optimization process itself is of order O(n2hp) from the optimization of nhp
hyperparameters [10].

The memory measured during training is presented in figure 11. It is shown that the memory consumption
is the same no matter which kernel is used and whether the multidimensional length scale is applied or not.
This is due to the number of training points nt being the only determining factor. The memory used by the GP
increases as O

(
n2t
)
. Since the GP training is run in a Python environment there is also some computational

overhead of about 200 MiB. By taking the overhead into account the memory curves in figure 11 follow a
second degree polynomial fit quite closely, in line with the theoretical limit [10].

Similar results were seen for the memory consumption when we used the trained GP to generate predictions.

17



0 1000 2000 3000

0

0.1

0.2

0.3

Number of training points

T
im

e
[s
]

RBF
Exponential
Matern32
Matern52

0 1000 2000 3000

0

0.1

0.2

0.3

0.4

Number of training points

T
im

e
[s
]

RBF
Exponential
Matern32
Matern52

Figure 10: Measured time consumption when using 1000 data points to get predictions from a GP trained to emulate
σt
np . The number of data points used for training ranges from 100 to 3000 points in steps of 100 points between each

training set. In the right panel a multidimensional length scale was used when training the GPs. Using this setting does
not greatly impact the time needed for calculating predictions.

The measurements are presented in figure 12. Noticeable differences are in the beginning and end of the sample
interval. For low number of training points the memory graph exhibits strong fluctuations. These are a side
effect of the quick execution times of GP predictions. The measurement software is not reliable for times below
0.1 s, corresponding to number of samples below 1000, since the memory changes may happen so quickly that
the measurement misses it. In the end of the measurement interval, the graph shows a drop in measured
memory around 2000 training points followed by continued growth. The reason for this drop is not known, but
may be an effect from the Python garbage collection removing memory not in use.

0 1000 2000 3000

500

1000

1500

Number of training points

M
em

or
y
[M

iB
]

RBF
Exponential
Matern32
Matern52

0 1000 2000 3000

500

1000

1500

Number of training points

M
em

or
y
[M

iB
]

RBF
Exponential
Matern32
Matern52

Figure 11: Measured memory consumption when training a GP. The number of data points used for training ranges
from 100 to 3000 in steps of 100 points between each training set. In the right panel a multidimensional length scale
was used when training the GPs. Clearly, the memory consumption is the same whether this setting is used or not.
About 200 MiB of Python overhead is included in the measured memory.

18



0 1000 2000 3000

0

200

400

600

800

1000

Number of training points

M
em

or
y
[M

iB
]

RBF
Exponential
Matern32
Matern52

0 1000 2000 3000

0

200

400

600

800

1000

Number of training points

M
em

or
y
[M

iB
]

RBF
Exponential
Matern32
Matern52

Figure 12: Measured memory consumption when using 1000 validation points to get predictions from a trained GP.
The number of data points used for training ranges from 100 to 3000 in steps of 100 points between each training set.
In the right panel a multidimensional length scale was used when training the GPs. The memory consumption is about
the same whether this setting is used or not. Included in the measured memory is about 200 MiB of Python overhead.
The high variance at the beginning of the interval is an artifact of the measurement software.

5.2 Energy dependent total cross section

The previously presented measurements are all done for simulations and emulations of the total cross section
at a single lab-frame kinetic energy (50 MeV). Since we want our emulator to be able to predict the cross
section for arbitrary energies within a specified interval, we introduce an extra energy parameter in addition to
the previous 12 LECs. This means that the LHS and GP training has to be performed in a 13 dimensional
parameter space, further increasing the difficulty of the emulation problem.

Another difficulty of introducing the kinetic energy as a parameter is the large variation in cross section
values as a function of energy. The cross section spans three orders of magnitude across an energy interval
from 1 MeV to 150 MeV and it rapidly decreases from its peak value at low energies to a very low, almost
constant value at high energies. This makes GP training difficult, since a large number of training points are
needed in the low-energy region to correctly emulate this transition. To solve this problem we train GPs using
logarithmized cross-section data.

A comparison between GPs trained with and without logarithmized cross-section training-data is shown in
figure 13. As seen in the figure, training with logarithmized data improves the accuracy of the prediction for
both a sparsely trained GP with 500 training points and a GP trained using 3000 training points. The y-axis is
a logarithmic scale to better show the difference in predictive accuracy between the two GPs. We see that
normal training data decreases the accuracy of the prediction towards the end of the interval, where the cross
section is relatively constant. This effect is more noticeable for the sparsely trained GP. The reason for the
shift being downwards and not up, is due to the fact that the GP tends to zero outside of training points, as
described in chapter 3. With logarithmized training data the performance gap between the two GPs is reduced.
Both predicted curves follow the simulated curves without any major deviations, with a slightly better accuracy
for the GP trained using 3000 data points.

In figure 14 the large effects of logarithmized data on the model error is presented for GPs with 250 to 3000
training points in steps of 250. Here, the advantages of logarithmized data can be clearly seen. The GP model
errors are calculated with 50 sets of validation LECs data with 300 points each at different energies. In the
right panel the cross section data is logarithmized before GP training, while the GPs in the left panel are
trained using normal data. The two methods were applied to GPs with both the RBF kernel and the Matérn
5/2 kernel. The use of logarithmized data is seen to decrease the model error for both kernels. Generally,
Matérn 5/2 performs better than its RBF counterpart. The irregularities, such as for 1500 samples when a
drop in model error is present for the RBF kernel, are likely due to the randomized sampling of training data
and not a general feature.

19



0 50 100 150

101

102

103

Lab-frame energy [MeV]

σ
t n
p
[m

b
]

Simulated
Prediction log
Prediction normal

0 50 100 150

102

103

Lab-frame energy [MeV]

σ
t n
p
[m

b
]

Simulated
Prediction log
Prediction normal

Figure 13: Simulated and emulated cross section curves with a logarithmic scale. The left panel is for GPs trained
with 500 LHS sampling points representing a sparse set of training points in the 12-dimensional LEC-volume. The GPs
in the right panel are trained using 3000 LHS sample points. The prediction is completed using nsopt simulations with
300 data points at different energies. The same prediction set is used in both panels and all GPs are trained using the
Matérn 5/2 kernel. The solid line represents the nsopt simulated cross sections while the dashed and dotted lines are
predictions using logarithmized and normal training data, respectively. The y-axis is logarithmized to better show the
difference in predictive accuracy between the two GPs. The sparsely trained GP give worse results for both training
data types. The use of logarithmized data improves the results of both GPs greatly reducing the performance gap
between the GPs.

1000 2000 3000

0.2

0.4

0.6

0.8

1

Number of training points

M
od

el
er
ro
r

RBF
Matern52

1000 2000 3000
1

2

3

4

5

6
·10−2

Number of training points

M
od

el
er
ro
r

RBF
Matern52

Figure 14: Calculated model error as a function of number of training samples for cross section GPs trained using an
energy interval as an extra parameter. The kernels used are RBF and Matérn 5/2. The GPs in the right panel is trained
with logarithmic data. As seen, Matérn 5/2 is the better performing kernel. The only exception being two outliers in
the left panel, one at 250 training samples and one at 1500.

20



5.3 Emulating the 4He binding energy

For the emulation of the helium-4 binding energy, Eb(4He), we consider a fixed χEFT interaction, instead
varying the many-body model-space. The data of input parameters considered for this problem is an equally
spaced grid of even integers from 2 to 20 for Nmax, and integers from 5 MeV to 130 MeV for ~ω. To calculate the
model-error parameter, some of this data is used for training while the rest is used for validation. However, the
model error is only calculated with interpolated predictions. The subset of training data is taken by using only
a range of Nmax-values (e.g. Nmax = 16, 18 and 20 instead of all values form 2 to 20) and using only ~ω-values
at some specific interval. We specify these subsets of training data by introducing a training-interval number:
a training interval of four means that every fourth integer value in MeV for ~ω is used for training, starting at
~ω = 5 MeV going up to but not above ~ω = 130 MeV (i.e. ~ω = 5 MeV, 9 MeV, 13 MeV, . . . , 129 MeV).

Since one of the input parameters for the bound-state problem is discretely valued (Nmax), we have the
option of training several discrete one-dimensional GPs for different values of Nmax with only ~ω as input
parameter. The accuracy of one– and two-dimensional models with different kernels and training interval are
compared using the model error. The multi-dimensional kernel option is used for all bound-state models, since
the input dimensions operate on different length scales.

The value of the parameter Nmax determines the number of oscillator states in the expansion we use to
approximate the state of the helium-4 nucleus. Increasing the the value of Nmax makes the approximation more
accurate but also makes the simulations more computationally demanding. An accurate prediction of high
Nmax-values based simulated low Nmax-values would therefore be of great interest.

Attempts to extrapolate Nmax are shown in figure 15. Here all available training data is used to train a
two-dimensional model using the RBF kernel and predictions are made for ~ω = 10 MeV, 30 MeV, and 50 MeV.
The variational principle dictates that the binding energy should be decreasing for increasing Nmax. However,
the predictions shown in figure 15 do not behave this way. The predictions of binding energies for Nmax > 20
are quickly increasing or decreasing before approaching zero. It seems that GPs are not a good tool to make
extrapolations in this parameter. The reason for the poor results from the extrapolations might be that GPs in
general are not the best approach to make extrapolations of non-periodic functions. As predictions are made
further away from the training data, the covariance between training points and predicted points decrease,
since we are using stationary kernels. It might be worth mentioning that extrapolations generally are difficult
to make, regardless of method and situation. GPs seem to be no exception.

5 10 15 20 25 30 35 40

−60

−40

−20

0

Nmax

E
b
(4
H
e)

[M
eV

]

~ω = 10 MeV
~ω = 30 MeV
~ω = 50 MeV
Training data

Figure 15: Extrapolation of Eb(
4He) as a function of the many-body model-space parameter Nmax. Crosses show

training data, which ends at Nmax = 20. All training data from ~ω = 5 MeV to 130 MeV with Nmax from 2 to 20 were
used to train this model. The kernel used is RBF. It is known that the binding energy should decrease for increasing
Nmax; it is however apparent that this is not that case for this extrapolation.

The performance of the different kernels is tested by interpolation in ~ω and comparing model-error values.
An example showing training data, non-used data and predictions for a two-dimensional model can be seen in
figure 16, where Nmax = 16, 18, 20-results are used for training. For the model in this figure the training interval
is four, which means that the model is trained with every fourth value of ~ω while the values in between are

21



used for calculating the model error.

9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5

−29

−28

−27
N

max =
16

N
max = 18Nmax = 20

~ω [MeV]

E
b
(4
H
e)

[M
eV

]

Training data
Non-used data

Figure 16: Training data and non-used data together with predictions for a two-dimensional model for emulating
Eb(

4He). Although the figure only shows ~ω from 9 MeV to 14 MeV the training data spans from 5 MeV to 130 MeV.
Three Nmax-values are used for training in this case: 16, 18, and 20 as shown in the figure. The training interval is 4,
which means the model uses every fourth ~ω-value for training. The used kernel is RBF. For this particular model, the
model error is 9.58e-04.

Tables showing model errors for different kernels and training intervals can be seen in table 3. Both one–
and two-dimensional models are tested. It seems to be clear that the RBF kernel gives the highest accuracy,
followed in decreasing order by Matérn 5/2, Matérn 3/2 and exponential for both one– and two-dimensional
models. The table also shows that the model error grows with increasing training interval as expected.

Table 3: Model errors for one– and two-dimensional models with different training intervals and kernels. The lowest
model error for all training intervals and both one– and two-dimensional models is obtained with the RBF kernel, then
in ascending order: Matérn 5/2, Matérn 3/2 and exponential. The models are trained with Nmax = 16, 18, and 20.

2D-models
Training interval

Kernel 2 4 6

RBF 2.81e−5 9.58e−4 4.77e−3
Exponential 3.44e−3 1.07e−2 1.94e−2
Matern 3/2 1.07e−3 5.69e−3 1.30e−2
Matern 5/2 3.37e−4 3.18e−3 8.50e−3

1D-models
Training interval

Kernel 2 4 6

RBF 3.76e−5 8.80e−4 5.26e−3
Exponential 2.98e−3 9.35e−3 1.77e−2
Matern 3/2 1.27e−3 6.23e−3 1.36e−2
Matern 5/2 2.73e−4 3.89e−3 1.05e−2

In table 4, model errors for one– and two-dimensional models using training data with different ranges of
Nmax-values are compared. An Nmax-range of 12 to 20 means that Nmax = 12, 14, 16, 18, 20-results are used
for training. For these models only the RBF kernel is used. While there are no big differences between the
model errors for one– and two-dimensional models, the two-dimensional models seem to perform slightly better.
There is no obvious correlation between the Nmax-ranges and the model errors.

22



Table 4: Model errors with different Nmax-ranges for training. The RBF kernel is used for all models. There are no
significant differences between one– and two-dimensional models in terms of performance. The two-dimensional models
perform slightly better across the board, except for the case with training interval = 6 and Nmax-range: 8 to 20. For
this particular case the two-dimensional model fails to optimize the hyperparameters for the given training set, making
the the predictions go to zero between all training points.

2D-models
Nmax-range Training interval

Lower Upper 2 4 6

16 20 2.81e−5 9.58e−4 4.77e−3
12 20 2.00e−5 9.99e−4 5.86e−3
8 20 2.26e−5 6.51e−4 7.80e−1

1D-models
Nmax-range Training interval

Lower Upper 2 4 6

16 20 3.76e−5 8.80e−4 5.26e−3
12 20 2.92e−5 9.08e−4 4.38e−3
8 20 2.67e−5 7.78e−4 4.17e−3

Since the input space is two-dimensional, the GP problem is not very computationally demanding compared
to the GPs for cross sections. Therefore the time and memory costs are not studied in detail. The simulations
with nsopt are, however, rather costly. It is only a matter of seconds to optimize the models presented in this
section, while it took a couple of hours to simulate the full data set with nsopt. For nuclei larger than helium-4,
the simulation times could get much longer. This would make repeated calculations of binding energies for
specific ~ω and Nmax-values very time consuming. By training a GP-model it is possible to make the time
consuming calculations once, for a general set of training data, and then emulate results for specific ~ω-values
very quickly.

The data on Eb(4He) for different ~ω and Nmax is relatively well-behaved, without many minima, maxima
and quick fluctuations. This is probably a reason that regression with GPs seems to work really well for this
problem, giving relatively accurate predictions with many different sets of training data. Even though the
functions are well behaved, an analytic expression for the binding energy as a function of ~ω and Nmax is not
available. This makes the types of curve fitting that tries to fit the function to an analytic expression unsuitable
for this problem. GPs do not rely on any analytic function expression, which is a reason why they seem to be a
good tool for emulating bound states.

23



24



6 Conclusion
The goal of this thesis has been to study the capabilities of GPs for emulating physical observables in χEFT, and
to provide guidelines of how GPs can be used to decrease computational costs while still maintaining low-error
results. A general observation is that GPs are a powerful tool for regression, and that the GP approach to
regression is likely to work well not only in nuclear physics, but also in other fields of research. While the good
results from GPs can be accredited interpolated emulations, the same can not be said for extrapolations where
the predictions are very inaccurate.

It is clear that there is no perfect set of GP options that works for every kind of problem, as we have shown
in our two applications. However, increasing the number of training points will almost exclusively give better
predictions. Balancing the gains of more training points to the time and memory that is required to perform
the training is the key to a good model.

For sampling of input parameters in many dimensions (as with the cross-section emulation), LHS provides
an evenly filled space with little to no bias towards specific areas. This allows the GP to give consistent results
over the entire parameter volume. With a few-dimensional input space it might be feasible to use a uniformly
spaced training set with good results.

The choice of kernel also affects the performance of the GP significantly. We found that Matérn 5/2 and
RBF are the best performing kernels for our many-dimensional problem with cross sections, while RBF alone
gave the best results for our few-dimensional problem with binding energies. Matérn 5/2, however, needs more
training time than RBF. The time difference between the two kernels increases when we use higher numbers of
training data, especially with the multidimensional length scale setting.

We found that the usage of multiple length scales improved performance. Different input dimensions
influence the observable to different degrees, and the prediction will perform better with length scales optimized
for their specific direction. The cost of this improvement is increased complexity of the optimization problem,
which increases the time spent training the model. We conclude with the general statement that this option is
often worth the added training time.

6.1 Outlook

Further work on the subject could include studies of more complex observables. The data on σt
np and Eb(4He)

are generally well-behaved functions. Other observables, such as binding energies of heavier nuclei or differential
cross sections may have more irregular behavior, which can be harder to emulate. The methods to apply GPs to
more difficult functions could also be developed, similarily to how we used the logarithm to improve predictions.

We focus on four different stationary kernels. There are a huge number of possible kernels, and GPy provides
a framework to combine them arithmetically. This is a possible route for further development on the subject.

25



26



References
[1] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning, ser. Adaptive

computation and machine learning. The MIT Press, 2006, isbn: 0-262-18253-X.
[2] R. Machleidt and D. R. Entem, “Chiral effective field theory and nuclear forces”, Physics Reports, vol.

503, no. 1, pp. 1–75, Jun. 2011, issn: 0370-1573. doi: 10.1016/j.physrep.2011.02.001.
[3] B. D. Carlsson, A. Ekström, C. Forssén, D. Fahlin Strömberg, G. R. Jansen, O. Lilja, M. Lindby, B. A.

Mattsson, and K. A. Wendt, “Uncertainty analysis and order-by-order optimization of chiral nuclear
interactions”, Physical Review X, vol. 6, no. 1, p. 011 019, Feb. 2016. doi: 10.1103/physrevx.6.011019.

[4] A. Ekström, G. Baardsen, C. Forssén, G. Hagen, M. Hjorth-Jensen, G. R. Jansen, R. Machleidt, W.
Nazarewicz, T. Papenbrock, J. Sarich, and S. M. Wild, “Optimized chiral nucleon-nucleon interaction
at next-to-next-to-leading order”, Physical Review Letters, vol. 110, p. 192 502, 19 May 2013. doi:
10.1103/PhysRevLett.110.192502.

[5] B. D. Carlsson, “The data perspective on chiral effective field theory”, PHD thesis, Department of
Physics, Subatomic and Plasma Physics, Chalmers University of Technology, Gothenburg, 2017, isbn:
978-91-7597-530-6. [Online]. Available: http://publications.lib.chalmers.se/records/fulltext/
248612/248612.pdf (visited on 05/10/2017).

[6] A. Pich, “Effective field theory”, in Probing the standard model of particle interactions. Proceedings,
Summer School in Theoretical Physics, NATO Advanced Study Institute, 68th session, Les Houches,
France, July 28-September 5, 1997. Pt. 1, 2, 1998, pp. 949–1049. arXiv: hep-ph/9806303 [hep-ph].

[7] W. Rindler, Relativity, Special, General and Cosmological. Oxford University Press, 2006, isbn:
978-3-540-07970-5.

[8] K. S. Krane, Introductory nuclear physics. Wiley, 1988, pp. 392–401.
[9] P. Navrátil, G. P. Kamuntavičius, and B. R. Barrett, “Few-nucleon systems in a translationally invariant

harmonic oscillator basis”, Physical Review C, vol. 61, p. 044 001, 4 Mar. 2000. doi: 10.1103/PhysRevC.
61.044001.

[10] GPy, GPy: a gaussian process framework in python, since 2012. [Online]. Available: http://github.
com/SheffieldML/GPy (visited on 02/08/2017).

[11] Y. Fei, G. Rong, B. Wang, and W. Wang, “Parallel L-BFGS-B algorithm on GPU”, Computers &
Graphics, vol. 40, pp. 1–9, May 2014, issn: 0097-8493. doi: 10.1016/j.cag.2014.01.002.

[12] M. D. Shields and J. Zhang, “The generalization of latin hypercube sampling”, Reliability Engineering &
System Safety, vol. 148, pp. 96–108, 2016, issn: 0951-8320. doi: 10.1016/j.ress.2015.12.002.

[13] M. D. McKay, R. J. Beckman, and W. J. Conover, “A comparison of three methods for selecting values
of input variables in the analysis of output from a computer code”, Technometrics, vol. 21, pp. 239–245,
2 May 1979. doi: 10.2307/1268522.

[14] pyDOE, pyDOE: design of experiments for python, since 2013. [Online]. Available: https://pythonhosted.
org/pyDOE/index.html (visited on 02/15/2017).

[15] B. R. Barrett, P. Navrátil, and J. P. Vary, “Ab initio no core shell model”, Progress in Particle and
Nuclear Physics, vol. 69, pp. 131–181, Mar. 2013, issn: 0146-6410. doi: 10.1016/j.ppnp.2012.10.003.

27

http://dx.doi.org/10.1016/j.physrep.2011.02.001
http://dx.doi.org/10.1103/physrevx.6.011019
http://dx.doi.org/10.1103/PhysRevLett.110.192502
http://publications.lib.chalmers.se/records/fulltext/248612/248612.pdf
http://publications.lib.chalmers.se/records/fulltext/248612/248612.pdf
http://arxiv.org/abs/hep-ph/9806303
http://dx.doi.org/10.1103/PhysRevC.61.044001
http://dx.doi.org/10.1103/PhysRevC.61.044001
http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy
http://dx.doi.org/10.1016/j.cag.2014.01.002
http://dx.doi.org/10.1016/j.ress.2015.12.002
http://dx.doi.org/10.2307/1268522
https://pythonhosted.org/pyDOE/index.html
https://pythonhosted.org/pyDOE/index.html
http://dx.doi.org/10.1016/j.ppnp.2012.10.003

	Abstract
	Sammandrag
	Acknowledgements
	Contents
	Introduction
	Purpose
	Limitations
	Thesis structure

	Theoretical description of few-nucleon systems
	xEFT and LECs
	Scattering cross section
	Binding energy of few-nucleon systems

	Machine learning
	Predictions using Gaussian processes
	Kernel functions and optimization

	Data collection and GP regression
	Simulation of observables with nsopt
	Sampling of input parameters
	Kernels and hyperparameters
	Error and complexity Analysis

	Results
	Emulation of scattering total cross sections
	Usage of validation data
	Comparison of different sampling methods
	Minimizing model error of emulations
	Time and memory complexity

	Energy dependent total cross section
	Emulating the 4He binding energy

	Conclusion
	Outlook

	References

