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Healthcare Applications
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Department of Mathematical Sciences
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Abstract
The aim was to investigate taxonomic classification and removal of human host
DNA in the context of a bioinformatic analysis pipeline for screening of pathogens.
The examination was carried out using simulated short-read sequenced shotgun
metagenomic samples. It was found that a majority of human origin DNA could
be separated from bacteria using the K-mer based read classifier Kraken 2 with a
custom built human only reference database. Effects on taxonomic classification
performance were surveyed for variations in sample composition, parameter settings
of the taxonomic classifier and reference database composition. Maintaining both
high precision and recall for species level taxonomic classification of metagenomic
samples was challenging for limited computational resources. A one-size-fits-all ap-
proach to taxonomic classification of any shotgun metagenomic sample would be
near impossible with the tested K-mer based classifiers (Kraken 2 and Bracken) and
instead specialized pipeline tracks optimized for different expected range of species,
sequencing depth and abundance distributions could be a solution.

Keywords: metagenome taxonomic classification, shotgun metagenomics, WGS,
Kraken 2, Bracken, taxonomic classifier, host removal.
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1
Introduction

Resistance to antibiotics among pathogenic bacteria is listed by the World Health
Organization as one of the largest threats to global health [2]. When antibiotics
stop working, previously easily treatable infections can become life-threatening to
individuals and a dire problem for healthcare systems. Infections can afflict anyone
however people who are immunocompromised, such as premature babies and organ
transplant recipients, are particularly at risk and in need of quick diagnostic methods
[3][4]. An important part of tracking and prevention of infectious disease outbreaks
in hospitals is identification of both the bacterial species and the specific genetic
components that can cause antibiotic resistance [5].
There are several different types of methods for identification of species, such as those
based on direct laboratory tests or DNA sequencing. An emerging DNA sequencing
based technology is shotgun metagenomic sequencing [6]. It is generally faster than
single isolate sequencing, where a time consuming cell cultivation step is needed,
and captures more information (such as resistance information) than the amplicon
metagenomic sequencing method does. In shotgun metagenomics all the DNA in
the sample is directly sequenced without prior cultivation and separating of species
[7]. However, the drawback of the method is that the bioinformatic analysis can
become complicated by having a mixture of sequences from different species and
abundances, as well as containing contaminants such as DNA from human hosts.

1.1 Aim and Scope
The context of this work is the need for fast and comprehensive methods for screening
for pathogens and associated antimicrobial resistance (AMR) in healthcare settings.
A broader goal is to develop an automated bioinformatic pipeline for analysis of
metagenomic samples, for example taken from patient’s bodily fluids, skin swabs or
hospital facilities. The main purpose of the pipeline is to take raw whole genome
shotgun metagenomic sequencing data as input, do analyses and output a report
with identified organisms and markers for AMR. The analysis steps in a minimal
proposed prototype can be divided into pre-processing of the sample data, removal
of human host DNA, taxonomic classification, genome assembly and identification
of antimicrobial resistance markers, shown schematically in Figure 1.1. The scope
of the project is however limited to implementing and evaluating two parts of the
prototype shotgun metagenomics pipeline, the taxonomic classification and filtering
of human DNA. A more in-depth description of the aims and scope pertaining to
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1. Introduction

the selected parts are given in sections 1.1.1 and 1.1.2 below.
Bioinformatic analyses can be inaccessible and expensive, especially of large whole
genome sequenced metagenomic samples, as methods tend to be computationally
intensive and require high memory usage[8]. To make the findings more applicable,
the challenge is set for the pipeline to be adapted for running on a laptop (500
GB disc, 16 GB RAM and 8 CPUs). Furthermore, to achieve the functionalities,
building blocks of open software programs and algorithms are used and there is thus
no intention of constructing a fully original pipeline.

Seq.
file

Pre-
process

Human
filter

Tax.
class.

Genome
Assembly

AMR
ID

Result
report

Figure 1.1: Main segments of the in silico pipeline for taxonomic classification and
identification of antimicrobial resistance of shotgun metagenomic samples from the raw
sequence files (FASTQ format). The samples are pre-processed with quality control of
the reads in the sequence files, reads with human origin are thereafter removed in a
filtering step before the sample is passed to taxonomic classification where the species
in the sample are identified. The non-human reads in the sample are assembled, which is
where the mixed sequence fragments are sorted and reassembled into the original coherent
genome sequences for each organism. Using the genome assemblies, genes associated with
antimicrobial resistance can be found. The focus of this thesis are the steps in red which
are filtering of human host DNA and taxonomic classification.

1.1.1 Taxonomic Classification
Knowing which microorganisms, especially pathogens, are present in a sample and
which are not, can be central to treatment of infections or other medical interven-
tions [9]. The function of a taxonomic classification step is to identify and name the
organisms in the metagenomic sample based on unique properties of their genome
sequences. An advantage of shotgun metagenomics is the possibility of capturing
genome sequences of pathogens from all domains of life at the same time, however,
due to project limitations the investigation into the problem of taxonomic classifica-
tion is constrained to bacteria. Furthermore, the lowest taxonomic rank the bacteria
will be differentiated at is species and it is limited to previously characterized species.
Ideal taxonomic classification, within the scope of the project, is thus defined as cor-
rectly classifying all non-novel bacteria in a shotgun metagenomic sample down to
the species rank with zero false discoveries.
There are multiple factors involved in determining the difficulty level and success
of taxonomic classification. These include, but are not limited to, sample content,
taxonomic classifier and reference database. The aim is to describe the individ-
ual and combined effects of selected variables from each category and optimize for
classification performance.
The main aspects considered surrounding sample composition is how the classifica-
tion is effected by the number of species in the sample, similarity between species
and sequencing depth of the organisms in the sample. The scope is limited to short-
read samples sequenced using Illumina technologies, which is one of the commonly
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1. Introduction

used sequencing methods for whole genome shotgun metagenomics [10].
The examination of taxonomic classifiers is focused on the K-mer based DNA-to-
DNA classification program Kraken 2 [11] and its companion program Bracken [12].
Kraken 2 has consistently been among the top performers in regards to computa-
tional time and classification recall, however lower on precision [8][13][1]. Bracken is
a tool for Bayesian reestimation of abundance after classification with Kraken and
has been shown to enhance the abundance estimates of the taxonomic classifications
[12]. The objective is to investigate if parameter tuning of the Kraken 2 and the
accompanying Bracken can improve classification performance.
Kraken 2 uses an indexed database of genetic reference sequences and for fast classi-
fication needs enough free memory to hold the database in memory or maps to disc
as a slower alternatively [11]. As memory space is limited, there will for a fixed file
size be a dichotomy between the amount of representation each species has and the
number of species in the database. The aim is to survey if custom built reference
databases can increase classification performance compared to a pre-built standard
within the size constraints of being capable to run on a laptop.

1.1.2 Human DNA Filtering
Collateral human DNA is expected to be included when doing shotgun metagenomic
sampling directly from a patient, for example of blood or skin and oral swabs [14].
Mixed human origin DNA is also likely to appear in varying amounts when sampling
from an environment such as hospitals [15]. In the context of a bioinformatic pipeline
intended for clinical application, it is therefor likely for incoming samples to contain
substantial amounts of human DNA if not removed in the laboratory.
The content of the human DNA is not of interest for taxonomic classification of
bacteria or identification of antibiotic resistance, however, storing and processing it
would consume unnecessary resources as well as have implications for privacy issues
as it can be linked to individuals. The bottleneck for computational resources is the
genome assembly step. Genome assembly, where the mixed sequence fragments in
the sample are sorted and reassembled into the original coherent genome sequences
for each organism, is needed for the identification of antibiotic resistance genes.
Depending on the program used for assembly, the time and resource usage can grow
fast when the sequence complexity grows, such as when species and genome sizes are
increased [16][17]. Filtering out human reads from the sample before assembly could
reduce the complexity as the human genome is large compared to microorganisms. It
is therefore relevant to investigate methods for filtering of human reads as a pipeline
step when working with limited memory and computational resources.
Before sequencing the metagenomic sample, physical human DNA fragments can be
removed or degraded using commercial human host depletion kits [14][18]. However,
the processes of human DNA elimination can have biased effects on the recovery of
microbial DNA for certain species due to their characteristics [14]. Filtering of hu-
man DNA reads in-silico, post sequencing, can be used as a compliment or preferred
alternative to the depletion kits depending on the percentage human DNA in the
sample and intended analysis [14]. There are established workflows for separating
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1. Introduction

human reads from the microbial reads in the sample FASTQ file based on direct
alignment of reads to a human reference genome [19]. The k-mer based taxonomic
read classifier Kraken 2 has been shown to be comparably fast at classifying mi-
croorganisms in metagenomic samples [11]. It is proposed here to take advantage
of the speed of Kraken 2 for the extrapolated task of human read classification and
removal. The aim pertaining to a pipeline step for filtering out human DNA is to
investigate if Kraken 2 can be a faster alternative to alignment based methods while
quality wise remaining competitive. Specifically the questions to answer are: Can
human origin reads be filtered out from an Illumina short-read shotgun metagenomic
sample using the K-mer based taxonomic classifier Kraken 2? Is filtering by Kraken
2 comparable to a method using the Burrows-Wheeler aligner BWA-mem 2?

4



2
Theory

The intent of the chapter is to provide a theoretical background on the methodology
behind metagenomic sequencing data, reference databases and taxonomic classifica-
tion programs.

2.1 Metagenomic Sequencing
Metagenomic sampling is used when characterizing microbiomes in both the natu-
ral and human environment [20][21]. Metagenomics is also emerging in the context
of infectious disease detection for species identification and antimicrobial resistance
prediction [9][6]. A metagenomic sample is a biological sample that contains ge-
netic material from organisms, potentially multiple of different types, present in the
sampled environment. When a metagenomic sample is collected, by for example a
skin swab or tissue sample, first the genetic material, in this case DNA, is extracted
from the cells [22]. To be able to interpret the information carried by the physical
DNA strands they need to be converted into a readable form by a DNA sequencer.
The extracted DNA strands could be sequenced by targeting certain regions us-
ing amplicon methodology, or non-selectively in so called shotgun sequencing where
everything in the sample is sequenced [23].
The output from DNA sequenced with next generation sequencing technologies is
a digital read file, typically in the format .FASTQ, where each read of a DNA
fragment is a transcription into letters accompanied by Phred quality scores of each
DNA nucleotide [24]. The reads can be of differing length depending on the type
of sequencer. For example, Illumina short-read sequencers give read lengths of 50-
300 bp and read lengths of 150 bp are recommended by Illumina for whole-genome
sequencing [25][26]. Illumina sequencing can generate so called paired-end reads
where a fragment sequenced in both directions gives rise to two paired reads and a
sequenced sample can have two .FASTQ files, one for the reads of the forward strand
and one for the reverse strand [24]. The average sequencing error rates for Illumina
sequencers are less than 1 %, however, the errors are non-uniformly distributed
across the reads and furthermore depend on the specific illumina platform used [27].
Information can be gained directly from the read, such as some types of taxonomic
classification, or the reads can be assembled into the original genomes using the prop-
erty of reads overlapping along the genome [23]. Following from that the organisms
in the metagenomic sample are not separated before extraction and sequencing of
the DNA, the reads from all organisms in the sample are mixed together in the
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2. Theory

.FASTQ file which is in contrast to sequencing of single isolate cultures where all
reads originate from one type of organism [22]. The relative abundance of cells from
a certain species in the physical sample will approximately carry over to the relative
abundance of reads from that species in the .FASTQ file, however, the read abun-
dance is also influenced by the length of the species’s genome. The average read
coverage of a species genome is the average number of reads covering a nucleotide
position in the genome. A metagenomic sample with a non-uniform distribution of
species abundances will result in some genomes of species being covered by fewer
reads than others, even below an average of 1X depending on the sequencing depth
of the sample [28]. To increase the read coverage of the lowest abundance species
the whole sample must be further sequenced which extends the sequencing time.

Figure 2.1: One of several possible metagenomic processes where DNA is extracted
from a biological sample and converted to a digital format by a sequence. The sequenced
DNA data can then be processed to extract information such as species of origin or genes.
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2.2 Plasmids
A majority of a bacterium’s genes are located on its chromosome, however, a subset
of accessory genes may be found on a plasmid which is extrachromosomal circular
DNA [29], see Figure 2.2 (a). The functionalities of plasmids are diverse as well
as their size which ranges from hundreds of base pairs to over a million [30]. The
prevalence and type of plasmids varies between bacterial species but can also differ
within a species, as illustrated in Figure 2.2 (b). Similar as for the chromosome,
plasmids are replicated and passed on to daughter cells in association with cell di-
vision, however, they also carry genes for independent transmission and replication
[29]. Furthermore, plasmids are mobile genetic elements that can be horizontally
transferred, by so called conjugation, between prokaryotic cells in the same genera-
tion, see Figure 2.2 (c). Conjugation of plasmids can occur naturally between both
bacterial cells of the same species and of two different species [31]. Plasmids are
therefore a common vector for spread of genes associated with antibiotic resistance
properties [29]. The plasmid transfer is however not random as it may be induced
by environmental factors and is furthermore unequally distributed across bacterial
species [32]. For example, the F-type plasmids are mainly transferred among species
within the Enterobacteriaceae family group which includes pathogenic strains of Es-
cherichia and Salmonella [33].

(a) (b) (c)

Figure 2.2: Sketches of bacteria and with plasmids. (a) The plasmid is the smaller
circular DNA element separate from the bacterial chromosome. (b) Bacteria may have
zero, one or multiple plasmids of different types varying both intra and inter species. (c)
Plasmid conjugation between two bacteria where the plasmid in Bacterium 1 is transcribed
and then passed through a pilus temporary connecting ’tube’ to Bacterium 2.

2.3 Genomic Reference Sequences and Taxonomy
The National Center for Biotechnological Information (NCBI) is maintained by the
United States government and provides public access to biomedical and genomic in-
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formation [34]. The NCBI online resources takes the form of reference databases, se-
quence analysis tools and repositories for research studies. NCBI genomic resources
include genomes, mainly of human associated microorganisms, and are organized in
databases with nucleotide sequences, genome assemblies and mapped annotations.
GenBank is an archival database of publicly available genetic sequences. It accepts
submissions of whole genome sequences and annotated genome assemblies in addi-
tion to for example transcriptome assemblies and targeted locus studies. [35] Until
the year 2022, 1,349,781 genome assemblies of cellular organisms were submitted
of which 91 % were from bacteria [36]. RefSeq is another sequence collection dis-
tributed by NCBI and it can be described as a non-redundant and curated version of
GenBank [37] [38]. In contrast to Genbank, the NCBI owns the records and can up-
date, combine and improve the annotations and sequences [38]. The two databases
have similar content but differ in format and how the sequences are annotated.
RefSeq contains genome assembly entries from all domains of life. For entries until
and including the year 2022 there are 331,892 assemblies of cellular organisms of
which 41 % is bacterial [36]. Furthermore, of the bacterial assemblies 33,364 are
on complete genome level and when atypical genomes are excluded there are 32,645
assemblies remaining. More studied organisms are overrepresented in the number of
assembly entries in RefSeq and the taxonomic resolution is often higher with entries
categorized on lower taxonomic levels such as sub-species and/or strain level. For
example a subset of seven pathogenic bacteria more closely examined in this thesis,
A. baumannii, E. faecium, E. fecalis, K. pneumoniae, P. aeruginosa, S. aureus and
S. epidermidis, make up 13.6 % of the complete level bacterial assemblies [36].
Every entry of a genome assembly in RefSeq is given a new unique RefSeq assem-
bly accession alongside an individual accession for each FASTA sequence in the
assembly. The assembly is tagged with its estimated level of completeness, where
the alternatives in increasing order are contig, scaffold, chromosome and complete
genome level. For a complete assembly of a bacterial organism the same number of
sequences in the FASTA file are expected as the combined number of chromosomes
and plasmids in the organism in question. The number and type of plasmids may
not be internally consistent between exemplar of the same species as there can be a
physiological variation in plasmid distribution.
A subset of the RefSeq assemblies are categorized by NCBI as Representative genomes,
also referred to as Reference genomes, based on their sequence annotation quality,
recognition as a community standard or medical importance [38][36]. As to not con-
fuse terminology, any genome can be used as a reference, for example when aligning
reads or building an indexed database, however, the RefSeq category refers to as-
semblies of particular importance and generally one per species. In exceptional cases
there may be more than one reference genome per prokaryote species, for example
E. coli has two. The number of bacterial reference genomes listed until 2022 are
16,765 spread across all assembly completeness levels. Another aspect of the RefSeq
database entries are their status. A genome assembly may be assigned a suppressed
status for reasons that include being replaced by another record to reduce redun-
dancy and removal by curators due to lack of support [37]. Suppressed records are
however still retrievable but have a marker.
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The taxonomy system used by NCBI is a hierarchical organization of organism re-
lations with the main ranks of super kingdom/domain, phylum, class, order, family,
genus and species [39], sketched in Figure 2.3 (a). All NCBI records, such as genome
assemblies, are mapped to nodes in the taxonomic tree. For cellular organisms the
distance between two organisms across ranks in the taxonomic tree is not always
consistent with the actual genetic similarity between organisms and the taxonomic
tree is thus not a phylogentic tree [40]. To capture the variability there may be
extra ranks added, such as species complexes, sub-species and strains. With new
research discoveries the taxonomy is continuously updated by adding or merging
taxonomic nodes [39]. Furthermore changes of nomenclature conventions may also
trigger updates of the NCBI taxonomy. For example an inclusion of the phylum
rank in the International Code of Nomenclature of Prokaryotes lead to renaming or
new inclusion of 41 phyla in NCBI effecting millions of records in January of 2023
[41]. For evaluation of taxonomic classification it is thus important to correctly align
the versions of taxonomy and current scientific names used by the classifier and the
metadata of metagenomic sample.

2.4 Kraken 2 - Taxonomic Classifier
Kraken 2 is a faster and more memory efficient re-written version of the taxonomic
classification program Kraken [11]. In Kraken 2 each read in a FASTQ sequence
file of a metagenomic sample is classified independently (for short-read sequencing
a read is 150 nucleotides long). Simplified it is based on the querying of read
sub-sequences of length K against a specially built Kraken 2 database containing
genomic reference sequences associated with nodes in a taxonomic tree, see Figure
2.3 (b). Some K-mers will uniquely map to nodes at the lowest taxonomic levels
while others, by evolutionary relatedness or random chance, are shared by several
lower taxonomic nodes and are only unique for a higher taxonomic node, here called
a lowest common ancestor. For example, if the database was built with only one
reference genome all the K-mers of that genome sequence would be uniquely mapped
to its taxonomic node, if another genome sequence was added from a different node
then fewer K-mers would be uniquely mapping to the first taxonomic node and for
an infinite number of reference sequences no unique K-mers would be found.
In reality the Kraken 2 database is a probabilistic compact hash table where only
minimizers of the K-mers are stored, sub-strings L<K, and the actual querying of
the K-mers in the reads against the K-mers in the database is done by minimizers
on both ends using a spaced seed mask of length S<L [11]. The default Kraken 2
settings of the K-mer length (--kmer-len), minimizer length (--minimizer-len)
and spacer (--minimizer-spacer) is 35, 31 and 7 nucleotides respectively. Changes
in the parameter values and their internal ratios can effect classification speed, mem-
ory usage and sensitivity [11]. The K-mer length, minimizer length and minimizer
spaces are set in the database build step and are thereafter unchangeable when
running classification of a sample against that particular database.
In contrast to K-mer lengths, the confidence (--confidence) threshold parameter
can be set for each classification run and it represents the certainty of a read be-
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longing to the assigned taxonomic node. The confidence score of a read label is
the fraction of the number of K-mers of the read that match unambiguously to a
lowest common ancestor taxonomic label in the reference database divided by the
total number of K-mers on the read [42]. The total number of K-mers for a read
is defined as including those that map to another label or are not present in the
database but excludes K-mers with an ambiguous nucleotide. The score threshold
has a non-probabilistic interpretation and can be specified in the interval [0, 1],
where zero is the default. If the score of an assigned read label falls below the set
confidence, the score of the next lowest common ancestor taxonomic node is calcu-
lated until the threshold is met. Increasing the confidence score setting will thus
result in a trade off of recall in favor of precision [43]. For example, if the threshold
was set at 0.1 and a given read scored 0.05 for species Mycobacterium tuberculosis,
0.15 for genus Mycobacterium and 0.18 for family Mycobacteriaceae, the read would
be labeled Mycobacterium which is the lowest common ancestor passing the thresh-
old. However, if the root of the taxonomic tree (domain/super kingdom) is reached
without a high enough confidence score the read is considered unclassified.

In a database build step prior to the hash table, the genomic reference sequence
accession numbers are mapped to the corresponding taxonomic ID number belong-
ing to the organism they originated from. Any reference sequences and taxonomic
system can be used to build custom Kraken 2 classification databases. However,
Kraken 2 is adapted for default import of the current NCBI taxonomy, nomencla-
ture and all genome sequence accessions mapped to taxonomic nodes. The NCBI
RefSeq database status for each sequence accession is checked in association with
the taxonomic mapping step and if the record has a suppressed status it is by
default excluded from the Kraken 2 database build. For convenience there are regu-
larly updated pre-built standard databases based on RefSeq complete genome level
assemblies that include a range of mainly human associated microorganism [44].
When databases of different contents are compared, generally the more reference
sequences with the higher variability used as a base for the database building gives
better classification performance [43][13]. For example, in a study the best perform-
ing database was based on all the nuclotide sequences in RefSeq which resulted in
a database size of >1TB [43].

When Kraken 2 is run, by default the entire Kraken 2 database is read into the
random access memory (RAM) which can be problematic if the reference database
is large. If instead the option --memory-mapping is used the database is instead read
from disk however the runtime will increase as a result. For control of the database
size, a limit of the final file size can be applied during the build step using the
argument --max-db-size [11]. The same reference sequences will be represented as
for the full size but with fewer than possible unique K-mers per sequence. In general,
limiting the database size (for the same genome sequences) reduces the classification
precision [43]. An alternative to limiting the database size in the build step is to
start with fewer genomic reference sequences, possibly by representing less variation
in for example each species or including genomes from fewer species in total.
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(a) Taxonomic tree (b) Kraken 2 read assignment

(c) Bracken reestimation 1 (d) Bracken reestimation 2

Figure 2.3: (a) Nodes in a taxonomic tree where the vertical level represent ranks to-
gether with an example of a ranked lineage for the bacterial species Stphylococcus aureus
rooted at the rank of domain and branching out to the rank of strain. The taxonomic
classification is limited to ranks of species and above. (b) The taxonomic classifier Kraken
2 assigns sequence reads to a node in the taxonomic tree. A read assigned to a lower rank
will by default also be assigned to all the directly ascending nodes in the tree, however,
the opposite is not true as reads can get ’stranded’ at higher taxonomic ranks if the clas-
sification dose not reach the Kraken 2 confidence threshold for lower ranks. Note that
the figure is a simplified sketch and would in reality contain all the ranks and nodes in
the Kraken 2 reference databases used for the the taxonomic classification. (c) Bracken
is applied on sample level after read assignment by a Kraken type classifier and it redis-
tributes stranded reads from higher to lower taxonomic nodes. Note that the threshold
for minimum number of prerequisite reads a node must have for Bracken to assign extra
is here set at ten reads, and as such no stranded reads at the Staphylococcaceae node are
redistributed to the Macrococcus. (d) A redistribution of reads by Bracken results in a
reestimation of the sample abundance percentages, independent across each taxonomic
rank, which are displayed in parenthesis.
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2.5 Bracken - Abundance Reestimation
Bracken is a program for Bayesian reestimation of abundances of metagenomic sam-
ples after classification with Kraken, Kraken 2 or KrakenUniq [12][45]. Bracken has
been shown to improve the overall classification performance in addition to abun-
dance estimation when used in combination with Kraken type classifiers compared
to use of only the classifier [8][43]. The tool is lightweight with runtimes less than a
minute[13]. However to run Bracken, a reference database is required and it needs
to be custom built for the specific Kraken, Kraken 2 or KrakenUniq database used
for the classification.
Because the Kraken type classifiers perform read level classification based on the
lowest common ancestor, a proportion of the reads can get stranded at nodes for
higher taxonomic ranks resulting in few reads at lower levels [12]. The problem is
accentuated for species in the database with high average nucleotide identity and can
thus result in uncertainty in the prediction of a samples species level composition.
Bracken solves the problem of low classification rates at lower taxonomic ranks by
probabilistic redistribution of ’stranded’ reads at nodes higher up in the taxonomic
tree down towards the species rank (or any other requested taxonomic rank) [12], see
Figure 2.3 (c) and (d). For a species node to receive additional reads it needs to be
directly descending to the higher taxonomic node and have a minimum number of
reads already assigned by the Kraken type classifier [45]. The threshold for minimum
number of reads can be adjusted using the --THRESHOLD parameter.
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Methods

Various reference databases, metagenomic sample datasets and software programs
were used for the investigation of human DNA filtering and taxonomic classification.
In this chapter, first the content of the databases and datasets are described together
with the methods used to build them. Thereafter performance metrics for taxonomic
classification are defined and lastly the experimental runs are described in terms of
combinations of databases, datasets and classifiers used.
For orientation of where components place in the pipeline see the flowchart in Figure
3.1 where the main steps of a short-read analysis are displayed. A sample enters
the pipeline in the form of a .FASTQ file, or two in the case of paired-end reads.
The sample first is pre-processed by trimming low quality ends of reads and length
filtering. Human origin reads can be removed from the sample by either Kraken
2 K-mer matching or genome alignment with BWA-mem2 using human reference
databases. The remaining human free sample is past on to taxonomic classification
and antibiotic resistance gene identification, however where only the former is further
analyzed. The non-human reads are taxonomically classified with Kraken 2 using
a bacterial reference database and the output is passed to Bracken for abundance
re-estimation using a Kraken 2 complementary reference database. The results are
collected and compared to possible sample metadata containing a theoretical sample
species composition and known resistance genes. The pipeline output is a report
per sample in addition to dataset summaries if samples are run in batch.
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Figure 3.1: Pipeline scaffold for human host filtering, taxonomic classification and
antibiotic resistance gene identification.
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3.1 Databases
A collection of reference databases were built for assessing the impact of the database
choice on human DNA filtering and the taxonomic classification of bacteria. An
overview of the databases and their properties can be found in Table 3.1. Two
databases, the Kraken 2 db-k2-human and the BWA-mem 2 db-bwa-human, were
used for evaluating human origin DNA filtering. For general bacterial screening a
prebuilt Kraken 2 and Bracken combined baseline database db-standard was com-
pared against two pairs of bacteria only combined Kraken 2 and Bracken databases,
where each set contains one with and one without plasmid sequences removed, db-
bac-comp and db-bac-comp-np and then db-bac-rep and db-bac-rep-np. In addition
the Kraken 2/Bracken db-bac-subset database containing only a subset of seven
pathogenic bacteria was built for screening specifically for a selection of bacteria.

Database Name Content Plas-
mids?

Gen-
omes

Size
cap?

Size
(GB)

db-k2-human Human - 1 no 4.6
db-bwa-human Human - 1 no 20.1

db-standard[44] Archaea, bacteria,
human, virus yes - yes 8.0

db-bac-comp Bacteria yes 33k yes 8.6
db-bac-comp-np Bacteria no 33k yes 8.6
db-bac-rep Bacteria yes 17k yes 8.0
db-bac-rep-np Bacteria no 17k yes 8.0
db-bac-subset Bacteria yes 5k no 0.4

Table 3.1: Databases for human DNA filtering, taxonomic classification of general
bacteria and taxonomic classification of a subset of pathogenic bacteria. In the database
names, Kraken 2 is abbreviated k2 and BWA-mem 2 bwa and it indicates for which
programs the databases were constructed while the other databases are combined for
Kraken 2 and Bracken referencing.

3.1.1 Human Reference
Both K-mer and alignment based methods, used for detection of human reads in a
sample, require an indexed database including human reference sequences. The same
human genome assembly GRCh38.p14 [46] from the Genome Reference Consortium
was used as the reference when building the K-mer based Kraken 2 database db-k2-
human and the alignment based BWA-mem 2 database db-bwa-human.
The db-k2-human was built from the assembly with default database building param-
eter settings of a K-mer lenght of 35 nucleotides, minimizer length of 31 nucleotides
and minimizer spaces of 7 nucleotides. Contrary to default settings, no masking
of the human genome regions containing low complexity sequences, such as regions
with repeated ’ACACACAC’ or ’AAAAAAA’, was performed before building the in-
dexes with the argument --no-mask. Furthermore, no memory capping was applied
to the build and the resulting database had the size of 4.6 GB.
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For the db-bwa-human database each chromosome, and collected mitochondrial
DNA, in the human genome assembly was indexed separately by BWA-mem 2 before
being combined. The combined database size was 20.1 GB, although, as a result
of the chromosome split no individual file exceeded 1 GB and could therefore be
loaded entirely into memory when running on a laptop with 16 GB RAM.

3.1.2 Taxonomic Classification - General Screening
The baseline database was fetched from the Index zone collection of prebuilt Kraken
2 and Bracken combined databases and here named db-standard (original name
Standard-8, version 2022-12-09) [44]. The collection, which is regularly updated,
contains databases with various content and sizes, and is maintained by Ben Lang-
mead who is associated with the Kraken projects [44]. According to Index zone
the Standard-8 database was built using all complete level assemblies for bacteria,
archaea, plasmid and virus listed on RefSeq until 2022-12-9. The human genome
(GRCh38) was also included in the Standard-8 and its Kraken 2 library was cre-
ated with the --no-mask argument which means that low complexity regions of
the genome were not masked. The NCBI UniVec_Core library containing vector,
adapter, linker, and primer sequences were also included in the database. The
Standard-8 is the 8 GB size capped version of the Standard 64 GB database and
was constructed using the exact same genome assemblies, however with less of each
included, which was accomplished with the --max-db-size argument. Lastly, the
Kraken 2 complimentary Bracken database was added to the Standard-8 database.
Apart from no masking of low complexity regions of the human genome and size
capping, the Kraken 2 and Bracken databases were built with defaults settings.
The combined Kraken 2 and Bracken index database db-bac-comp was built using
only sequences from the bacterial domain. Sequences downloaded were all RefSeq
bacterial genome assemblies with assembly level of complete, recorded before 2022-
12-31, and with an exclusion of genomes tagged as atypical. Assemblies with a
RefSeq status of suppressed were automatically excluded by Kraken 2 during the
build step, which amounted to 5.3 % of the total number of downloaded sequences.
Default parameter settings were used in the Kraken 2 database build apart from
applying the argument --max-db-size. The size of the hash-map was intended to
be limited to 8 GB and the same size as the db-standard, however, the wrong gigabyte
definition was applied which resulted in a size of 8.6 GB. A Bracken database was
thereafter built as an attachment to the Kraken 2 database using default settings.
A combined Kraken 2 and Bracken bacterial database without plasmids, db-bac-
comp-np, was constructed using the same bacterial genome assemblies and parameter
settings as db-bac-comp with the exception that the plasmid sequences were excluded
from the sequence library before the database build step. The plasmids were removed
by searching and deleting sequences with the word ’plasmid’ in the sequence header
for each assembly FASTA file.
The databases db-bac-rep and db-bac-rep-np were built using the same methods as
the databases db-bac-comp and db-bac-comp-np respectively except with a different
set of genome sequences. The sequences used were bacterial assemblies in the Ref-
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Seq category of Representative/Reference genomes listed up until 2022-12-31. The
assembly level of completeness ranged from contig to complete. No records were sup-
pressed out of the 923,148 individual sequences downloaded however 8 had uniden-
tified sequence accessions and were therefor excluded from the Kraken 2 database
build.

3.1.3 Taxonomic Classification - Pathogen Subset Screening
A reference database, db-bac-subset, for Kraken 2 with supplementary Bracken
database was built for a subset of 7 bacterial pathogens. The sequences used con-
sisted of all RefSeq complete level assemblies of the bacteria A. baumannii, E. fae-
cium, E. fecalis, K. pneumoniae, P. aeruginosa, S. aureus and S. epidermidis listed
until 2022-12-31. Of the downloaded sequences, 10.2 % were automatically excluded
from use in the databases as a result of having a NCBI suppressed status. The db-
bac-subset database was built using default settings including the default of no size
capping. Without size limitations the resulting database was 0.4 GB.

3.2 Simulated Metagenomic Datasets

Read simulation was used to create a set of metagenomic samples with known com-
position, for which taxonomic classification could be evaluated. Indeed the exact
sample composition, in terms of species and their proportions, was in it self required
in order to obtain high resolution classification performance metrics. The datasets
of raw read shotgun metagenomic samples used in this project were all generated by
simulation from already taxonomically profiled reference genomes. One dataset was
adapted from an 2021 article on the evaluation of taxonomic classifiers (Parks et al.
[1]) and four were simulated anew in the project using the illumina short-read sim-
ulation program InSilicoSeq (v.1.5.4) [47]. The samples in the InSilicoSeq datasets
(ds-ln-low, db-human, ds-un-low and ds-param-opt) were simulated using distinct
genome sequences from those used for building the reference databases, however,
there was overlap in source sequences between databases and the article adapted
dataset (ds-ln-high). An overview of the five datasets, that in total contain 250
samples, can be found in Table 3.2.

Dataset name Number of
samples

Sequence in
databases?

Bacterial
species per

sample
ds-ln-high [1] 140 yes 50-600
ds-ln-low 40 no 10-80
ds-human 20 no 20-40
ds-un-low 44 no 10
ds-param-opt 6 no 10-80

Table 3.2: Overview of simulated datasets used.
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3.2.1 Many Species Dataset - ds-ln-high
The ds-ln-high consist of 140 simulated Illumina short-read (150 bp) samples of mock
prokaryotic communities adapted from Parks et al. [1]. The reads were simulated
using in part the same RefSeq genome assemblies as used for the reference database
build (db-standard). However, as the average nucleotide identity (ANI) to the ref-
erence genomes was modified in the simulation the authors estimated that using
in part the same original genome assemblies for databases and sample construction
would not significantly biaas the classification results.
The dataset was divided into 14 groups of 10 samples with replicate compositions,
meaning that the replicates were drawn from the same distributions for factors such
as species diversity, number of species and average nucleotide identity to closest
reference genome. The samples included mainly bacteria but also archaea with
number of species per sample draw from a normal distribution with either µ =
100, σ = 25 or µ = 500, σ = 100, log-normal species abundance distributions and
varying diversity in strains per species. The number of nucleotides simulated per
sample (2.1∗109 bp/sample) was independent of the number of species in the sample.
Following that the samples had a fixed number of reads and that the within sample
species abundances were log-normally distributed, some species in samples with a
high number of species had relative abundances as low as 1.9 ∗ 10−6%. For context,
a bacterial species, that on average has a genome size of 5 million bp [48], was on
the extreme low side represented in a sample by only 40 reads of 150 bp which
means a «1X coverage. For a display of all sample group variations see Table A.1
in Appendix A and Parks et al. original article for a full explanation on the dataset
simulation methodology.
Before the 140 samples were used the metadata was modified with new taxon names.
Since the article was published in 2021 the scientific names of individual species
have changed as well as major updates to phylum level names have occurred. The
metadata was therefore updated using the same NCBI taxonomy as was used for
building the classifier reference databases.

3.2.2 Fewer Species Dataset - ds-ln-low
The ds-ln-low dataset was created to cover a lower species complexity range in com-
bination with a higher mean read coverage per specie genome than the ds-ln-high.
As can be seen in Table 3.3, the dataset contains 40 metagenomic samples of log-
normal distributed bacterial communities, divided into 8 groups of number of speceis
and read coverage profiles. Each group has 5 replicate samples with a fixed num-
ber of species, 10, 20, 40 or 80, with a species average read coverage drawn from a
log-normal distribution with the normal µ either being 10X or 20X average genome
coverage. The randomness in the sampling process that effected the replicates came
from which species were drawn and their specific average read coverage. Sequences
used as simulation references were bacterial complete genome level assemblies in the
NCBI sequence archive Genbank that were not used for building the classification
reference databases. At the time of download (2023-03-17) there were 1076 bac-
terial species represented among the complete level assemblies, however, only 390
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intersected with the species in the classification databases. The pool of genome
assembly specimens drawn from to make up a sample were thus belonging to those
390 species found both among the GenBank complete level assemblies (not used
for building classification databases) and the genome assemblies in the classification
databases.
As an example, a sample with 10 species and a coverage µ of 20X (group s10-c20
in Table 3.3) was generated by first sampling without replacement 10 species out
of the 390 available. The corresponding genome assemblies were then identified
for each of the 10 species and if there were more than one assembly per specie a
random specimen was selected. Thereafter, 10 values were sampled from a log-
normal distribution with µ = 20 and assigned one each to the species as an average
read coverage of the genome. The accessions of each sequence in the 10 assemblies
(for example chromosome 1, plasmid 1A, plasmid 1B, chromosome 2, plasmid 2A,
..., chromosome 10, plasmid 10A) were paired with their assigned average genome
coverage (for example 5.3X, 5.3X, 5.3X, 19.2X, 19.2X, ..., 22X, 22X) and given
as input to the InSilicoSeq read simulator. The result was that the plasmids and
chromosome of a bacteria had the same average coverage. Furthermore, sampling for
average read coverage per species, instead of number of reads per species, took into
consideration that species have differing genome sizes. InSilicoSeq then simulated
the sequencing of a physical shotgun metagenomic sample of the 10 species with
the listed community fractions. It generated double stranded 150 basepairs long
reads covering the genome assemblies the assigned average times (5.3X, 19,2, ...,
22X) while applying sequencing error patterns according to a model trained on the
Illumina NovaSeq sequencer. All the generated reads were then finally collected into
two FASTQ files, one for each strand. Note that the total number of reads generated
per metagenomic sample was a result of the input parameters (more species and
higher coverage resulted in more reads) and thus also the size of the FASTQ files.

Sample group Replicates No. species
per sample

Coverage
distribution

µ

Mean no.
reads per

sample
s10-c10 5 10 10x 2.2M
s10-c20 5 10 20x 4.0M
s20-c10 5 20 10x 4.6M
s20-c20 5 20 20x 9.0M
s40-c10 5 40 10x 7.0M
s40-c20 5 40 20x 15.4M
s80-c10 5 80 10x 20.1M
s80-c20 5 80 20x 31.5M

Table 3.3: The iss-ln-rand dataset. Log-normal distribution of community fraction
taking into account that species have different genome sizes. The species pool drawn from
are represented in the reference databases while the specific genome assembly specimens
for those species are strictly different from the genome assemblies used for building the
reference databases. Simulated paired end Illumina reads using InSilicoSeq with NovaSeq
model. The samples have separate files for forward and reverse strands. Note that the
listed read count per sample is for one strand.
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3.2.3 Human Spike Dataset - db-human
The db-human dataset was generated by using 20 samples from the ds-ln-low dataset,
specifically the sample groups s20-c10, s20-c20, s40-c10 and s40-c20, as a bacterial
base and then spiking them with human reads. The human reads were added such
that the final composition of each sample was 10 % human and 90 % bacteria. The
two chromosome level assemblies used for generating human reads were the KO-
REF_S1v2.1 [49] assembly of a Korean man and the Ash1_v2.2 [50] assembly of an
Ashkenazi Jewish man. No value was placed on the specific ethnicity of the assem-
blies, but rather that they were from distinct individuals and of differing ethnicity
from the GRCh38.p14 assembly which was used in the classification and alignment
databases db-k2-human and db-bwa-human. From each assembly, 10 M NovaSeq
illumina paired end reads were generated using InSilicoSeq. The required number
of human reads was thereafter added to the bacterial samples by random draw from
the in total 20 M simulated read pairs (sampling with replacement between each
metagenomic sample).

3.2.4 Pathogen Subset Dataset - ds-un-low
A dataset was needed for testing if the content of classification databases could be
adjusted for better detection of a subset of pathogenic bacteria. The content and
structure of the ds-un-low dataset was thus designed in relation to the classification
database db-bac-subset. The classification database was built on genomes from seven
bacterial species, A. baumannii, E. faecium, E. fecalis, K. pneumoniae, P. aerugi-
nosa, S. aureus and S. epidermidis, which belong to the five genera Acinetobacter,
Enterococcus, Klebsiella, Pseudomonas, and Staphylococcus. The approach to the
dataset is to have samples with different amounts of species and genera overlapping
with the content of the databases.
To limit the size of the dataset, only two of the seven species, A. baumannii and
S. aureus, were chosen as bases for sample construction. In total, the dataset has
44 samples divided into nine groups with five replicates each (one group has four
samples due to a error in simulation). Each sample consists of a different set of 10
species with a fixed uniform average read coverage per genome of 20X.
As described in Table 3.4, in sample group a-baumannii-g0 all samples contain
A. baumannii, which is in the database db-bac-subset, plus nine random bacterial
species which are not in the database nor belong to a genus that is present in the
databases. The samples in group a-baumannii-g1 all contain A. baumanni, one
other random Acinetobacter species and then eight random bacterial species not in
the database or have a genus in the database. Last in the A. baumannii series is
group a-baumannii-g4 that contains samples with A. baumannii, four other random
Acinetobacter species plus five other random species not in the database or have
a genus in the database. A similar series arrangement was thereafter done for the
samples in groups s-aureus-g0, s-aureus-g1 and s-aureus-g4 with S. aureus as a
base. As S. epidermidis also belongs to the genus Staphylococcus it was excluded
from the genus draws for the S. aureus groups. In addition a negative control series
was made. In group control-g0 there is no overlap of species nor genera between the
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samples and databases. Groups control-g1 and control-g4 consist of samples with
one or four random species from the genera in the databases, but not the specific
species, plus nine or six random species of a genera not in the database.

After the species composition of each sample was determined, corresponding refer-
ence genome assemblies were selected. With a list of accessions of the sequences in
the assemblies and a fixed average read coverage of 20X, the metagenomic samples
were then simulated using InSilicoSeq in same way as for ds-ln-low. As can be seen
in Table 3.4, even if the number of species and coverage is uniform, the group mean
of the number of reads per sample varies between 2.3M an 2.8M because of the
different genome lengths of the species in each sample.

Sample group Repli-
cates

Species
in DB

Genus
in DB

Species
not in

DB

Genus
not in

DB

Mean
no.

reads
control-g0 5 0 0 10 10 2.6M
control-g1 5 0 1 10 9 2.8M
control-g4 4 0 4 10 6 2.5M
a-baumannii-g0 5 1 1 9 9 2.7M
a-baumannii-g1 5 1 2 9 8 2.8M
a-baumannii-g4 5 1 5 9 5 2.5M
s-aureus-g0 5 1 1 9 9 2.3M
s-aureus-g1 5 1 2 9 8 2.4M
s-aureus-g4 5 1 5 9 5 2.4M

Table 3.4: The iss-path-subset dataset contains 44 samples with InSilicoSeq simulated
paired end Illumina reads. One sample in group control-g4 was assigned the wrong content
when simulating and therefor excluded. Uniform average genome coverage of 20x for all
species in the samples. Five replicates per subgroup, ten species in each sample with reads
drawn for a uniform coverage distribution of 20X genome. Note that the listed read count
per sample is for one strand.

3.2.5 Parameter Optimization Dataset - ds-param-opt

Extra metagenomic samples were created for parameter tuning of the taxonomic
classifier. The ds-param-opt dataset is a mixed collection of six InSilicoSeq simulated
samples similar to the samples of ds-ln-low and ds-un-low. The samples have 10-80
species randomly drawn from the same pool as for the ds-ln-low dataset with either
log-normal or fixed uniform abundance distributions. For the composition of each
sample see Table 3.5.
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Sample Name No.
species

Average genome coverage No. reads

sample-ln-s10-c20 10 from log-normal dist. µ = 20x 2.9M
sample-ln-s15-c20 15 from log-normal dist. µ = 20x 1.7M
sample-un-s20-c15 20 fixed uniform of 15x 1.7M
sample-ln-s25-c10 25 from log-normal dist. µ = 10x 4.3M
sample-ln-s40-c15 40 from log-normal dist. µ = 15x 11.4M
sample-un-s80-c20 80 fixed uniform of 20x 20.4M

Table 3.5: Composition of the db-param-opt dataset.

3.3 Classification Metrics
When a metagenomic sample in the digital FASTQ format is passed through the
taxonomic classification step the simplified result is a list of predicted species (predic-
tions are also made at all other taxonomic ranks) and the number of reads classified
per species by Kraken 2 and then the re-estimated number by Bracken. As the sam-
ples used in this project were simulated, the true species composition was known
which is in contrast to real world samples taken from physical microbiomes. In the-
ory each simulated read fragment could be traced to its origin organism, however, in
this project the species metadata was on sample level with only the total number of
reads per species known. As such the classification performance was also measured
on sample level and not if each individual read fragment was correctly classified.
A True Positive (TP) observation is here defined as a species predicted by the Kraken
2 and Bracken combination that was actually in the sample, irregardless of if the
predicted and actual abundances (>0) were the same. The question of precision in
abundance prediction was not considered in the project scope. A False Positive (FP)
observation is defined as occurring when a species is predicted that was not actually
in the sample and reversely a False Negative (FN) is when a species actually in
the sample was not predicted by the taxonomic classifier. The True Negative (TP)
observations would theoretically be all the, potentially thousands, species in the
database not actually present in the sample and that were also not predicted to
be in the sample. It is common to apply a post classification filter to discount
predicted species below a certain threshold read count or abundance percentage
before calculating the TP, FP and FN [8]. However, the raw output from Bracken
was here considered the predicted species if not otherwise specified.
Classification metrics can be derived from the sum of the TP, FP and FN ob-
servations for a sample. The metrics applied here for measurement of taxonomic
classification performance were True Positive Rate (TPR), Positive Predictive Value
(PPV), False Discovery Rate (FDR) and F-score (Fβ). The true positive rate, Equa-
tion 3.1, also known as recall, is defined as the the number of true species found by
the classifier divided by the actual number of species in the sample.

TPR = TP

TP + FN
(3.1)
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Positive Predictive Value, Equation 3.2, also know as precision, is defined as the
proportion of species that the classifier correctly predicts being in the sample over
the total number of species that are predicted.

PPV = TP

TP + FP
(3.2)

False Discovery Rate, Equation 3.3, is the number of species that the classifier falsely
predicts being in the sample divided by the total number of predicted species. The
false discovery rate is the inverse of the positive predictive value.

FDR = FP

TP + FP
= 1 − PPV (3.3)

The Fβ score, Equation 3.4, is a weighted mean of the true positive rate and positive
predictive value, where β is the factor of importance of the true positive rate in
relation to the positive predictive value.

Fβ = (1 + β2) ∗ TP

(1 + β2) ∗ TP + β2 ∗ FN + FP
(3.4)

The Fβ score for β = 1.5 was mainly used here, where the true positive rate was
weighted 1.5 times the positive predictive value. Although, the more commonly
used metric for comparing taxonomic classifiers is the F1 score and it was used in
addition to F1.5 [8].

3.4 Experimental Runs
In this project, a sample run refers to two FASTQ files with simulated paired-end
reads of a shotgun metagenomic sample being processed through the pipeline to-
gether with a metadata file on the samples theoretical content. Because the focus
of the investigation was on human DNA filtering and taxonomic classification, the
analysis steps surrounding genome assembly and identification of antibiotic resis-
tance genes were switched off to save time. However, minimal pre-processing in
the form of read quality trimming and filtering was applied for each run using the
program Fastp (v.0.23.2) [51].
The samples in the db-human dataset was run with both the Kraken 2 (v.2.1.2) and
BWA-mem 2 (v.2.2.1) human read filtering methods. The reads in the samples were
first classified with Kraken 2 (confidence parameter = 0.2) and the db-k2-human
reference database as either human or non-human. The non-human reads were
then passed on to taxonomic classification with the Kraken 2 (confidence parameter
= 0.075) and Bracken (v.2.8) (read threshold = 750 reads) using the db-standard
database. Thereafter all the reads, divided into the categories db-k2-human classi-
fied, db-standard classified and db-standard unclassified, were aligned to the human
genome using BWA-mem 2 and the db-bwa-human database. The total number
of reads aligned per sample and Kraken 2 classification categories could then be
established.
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The three larger datasets, ds-ln-high, ds-ln-low and ds-un-low, were run through the
pipeline for taxonomic classification with Kraken 2 and Bracken using the default
parameter settings of Kraken 2 (confidence = 0.0) and Bracken (read threshold =
10 reads)1. The runs were repeated for each of the five bacterial screening databases
db-standard, db-bac-comp, db-bac-comp-np, db-bac-rep, db-bac-rep-np. Additionally,
even though the datasets theoretically do not include human genomes, they were all
run with prior Kraken 2 human filtration step (confidence parameter = 0.2).
The six samples in the ds-param-opt dataset were run repeatedly for Kraken 2
confidences of 0.0-0.2 and Bracken read thresholds of 10-1250 reads for the db-
standard reference database. The datasets ds-ln-high, ds-ln-low and ds-un-low were
thereafter re-run for all the screening databases with the combination of the Kraken
2 confidence (0.075) and Bracken read threshold (750 reads) which gave the highest
F1.5 score for iss-aram-opt. Furthermore the datasets ds-ln-high, ds-ln-low and ds-
un-low were run again for the five screening databases but with a more conservative
parameter value increase of Kraken 2 confidence = 0.05 and Bracken minimum
number reads = 50, compared to the optimized. Lastly the pathogen ds-un-low
dataset was taxonomically classified with the bacterial subset databas db-bac-subset
using Kraken 2 with confidence = 0.3 and Bracken with a minimum number read
threshold of 10,000 reads.

1The default minimum number of reads classified by Kraken 2 at a taxon node for Bracken to
redistribute them is set to 0 in the source code but stated as 10 in the documentation (v.2.8) [45].
The threshold of 10 reads is in this project used as the default.
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4.1 Human DNA Filtering
Assembly of the genomes in the metagenomic sample, that is reconstructing the
genomes of the organisms from the reads fragments in the sample, is a step needed
before the search for antibiotic resistance genes. However, the process of assembling
genomes from a metagenomic sample is expensive in terms of computational time
and memory and it is therefore resourceful to not assemble reads that have a non-
bacterial origin, such as human, as they do not carry the resistance genes. Ideally
exactly all human reads would be removed and none of the reads with other origins,
however, in reality that is hard to achieve. The threshold could either be set to
miss some human reads or incorrectly filter out some bacterial reads. Arguably it
would be better to have the assembly take slightly longer time by removing most
but not all human reads compared to potentially removing bacterial reads carrying
important information.
The first approach to filtering out human reads was to do it in association with
taxonomic classification using Kraken 2 and the db-standard database as it contains
a human reference in addition to microorganisms. The filtration was unsatisfactory
as it was observed that a substantial proportion of the human reads were classi-
fied as microorganisms, mostly fungi, or were unclassified. Adjusting the Kraken 2
confidence parameter for better human filtration would however at the same time
impact the classification of bacteria. As the db-standard database was size restricted
when building, it was hypothesized that running against an unrestricted K-mer in-
dexation of the human genome, that is the db-k2-human database, could catch a
larger proportion of the human reads. Although, building a Kraken 2 database with
only one species is contrary to the principle of Kraken 2 classification based on a
database with distinct K-mers brought out by the internal uniqueness of K-mers
among the genomes used to build the database. To counter balance for only having
one species, and thus low variance, in the database, the Kraken 2 confidence pa-
rameter was increased from default of 0.0 to 0.2 which would require more human
K-mer matches per read in order for the read to be classified. In addition, apply-
ing a human read filtering step separate from the taxonomic classification enables
independent parameter settings.
An alternative method to K-mer based classification of human reads is direct align-
ment of reads to the human genome and it was tested for comparison purposes.
The BWA-mem 2 sequence alignment program was chosen because it is a widely
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used short-read aligner and is among the top performers. bwa-mem was shown to
have a lower runtime per read than one of the closest competitors Bowtie 2, while
having similar alignment performances [52]. Thereafter, BWA-mem 2 was released
and shown to be faster than bwa-mem [53].

The theoretical composition of each of the 20 samples in the ds-human dataset is
10 % human origin reads and 90 % bacteria. The result of running the samples in
the dataset for the Kraken 2 database db-k2-human (confidence = 0.2) and then
db-standard (confidence = 0.075) on the non-human filtered reads was an average
9.98 % of the reads classified as human by db-k2-human, 60.52 % classified by db-
standard and 29.50 % were unclassified by db-standard, see Figure 4.1. When all the
reads in the samples then were aligned to the human genome with BWA-mem 2, on
average 9.33 % of the reads aligned. Moreover if the aligned reads were subdivided
into the Kraken 2 classification categories, as seen in Table 4.1, then 92.84 % of
the Kraken 2 db-k2-human classified reads aligned to human genome, 0.03 % of the
db-standard classified aligned and 0.16 % of the db-standard unclassified. As the
the human reads were not traced on read level one can not draw the immediate
conclusion that because 9.98 % of the reads in the samples were classified as human
by Kraken 2 that they truly were human reads. That on average 92.84 % of the
Kraken 2 human classified reads in turn also did align to the human genome using
BWA-mem 2 strengthens the indication that the majority of reads filtered out are
truly human. Another indication is that <1% of the reads classified by Kraken 2 to
not be human (either unclassified or classified as a microorganism) aligned to the
human genome using BWA-mem 2.

(a) Theoretical composition (b) Kraken 2 outer, bwa-mem 2 inner

Figure 4.1: Average percent of reads filtered out as human in the iss-human dataset
where (a) each sample independent of size has a theoretical composition of 10 % simulated
human reads and 90 % bacterial reads. The outer doughnut in (b) represents the average
proportions of reads that are filtered out by k2-human and classified or unclassified by
k2-b-standard. The inner doughnut represents the reads that do or do not align to the
human genome using BWA-mem2 in relation to the outer doughnut. It can be seen that
the human aligned reads are concentrated by the Kraken 2 human classified reads.
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Sample
group % K2

human
filter of

total

% BWA
align to

human of
total

% BWA
align of

K2
human
filter

% BWA
align of

K2
classified

% BWA
align of
K2 un-

classified

s20-c10-h10 9.98
[9.97,9.99]

9.68
[9.53,9.78]

96.34
[95.04,97.44]

0.03
[0.02,0.03]

0.18
[0.09,0.38]

s20-c20-h10 9.97
[9.97,9.98]

9.37
[8.91,9.56]

93.21
[88.73,95.28]

0.03
[0.02,0.05]

0.18
[0.13,0.25]

s40-c10-h10 9.97
[9.97,9.98]

9.35
[9.13,9.56]

93.17
[91.10,95.34]

0.03
[0.02,0.03]

0.14
[0.10,0.20]

s40-c20-h10 9.98
[9.97,9.98]

8.91
[8.74,9.13]

88.66
[87.00,90.95]

0.03
[0.02,0.04]

0.14
[0.12,0.16]

Full dataset 9.98
[9.97,9.99]

9.33
[8.74,9.78]

92.84
[87.00,97.44]

0.03
[0.02,0.05]

0.16
[0.09,0.38]

Table 4.1: Divided by sample group (5 replicates i each group) of the ds-human dataset
the average [min, max] percentages of reads classified by Kraken 2 (K2) and bwa-mem 2
(BWA). The theoretical composition of the samples are 10 % human and 90 % bacteria.

The percentages of reads filtered with Kraken 2 and BWA-mem 2 are consistent
across sample with differing number of reads and number of other bacterial species
in the sample, which can be seen across the sample groups in Table 4.1. The result
is expected because the classification and alignment is independent for each read
and more or less other bacterial reads should not effect the human reads.
The parameter settings for Kraken 2 and BWA-mem 2 were not optimized for human
filtration and it is likely that both approaches could be equally as good at filtering
if a rigorous parameter optimization was performed. Kraken 2 however strongly
outperformed BWA-mem 2 for speed as it on average, for the 20 samples run, was
94 times faster.
Can the results be applied to real world samples from the human microbiome? The
main limitation is that the human reads in the test dataset were simulated and
were of a relatively high sequencing quality which would be expected to vary in
real samples. Furthermore, when simulating the human reads, the coverage was
uniformly distributed across the genome, which is unlikely for a real world human
genome. Also noteworthy is that the Kraken 2 confidence was set for classification
with the db-k2-human database for separating human reads from bacterial reads,
hence it is questionable if the high performance withholds for human filtering from
more similar types of organisms such as other Eukaryotes.
In a broader perspective, if a similar pipeline were to be used for example in a
veterinary setting then the genomes of animals in question would be used to build
the filtration database. This is relevant since the problem of antibiotic resistance
is present in agriculture too. It could possibly be easier to construct a Kraken 2
database with the animal species in question compared to development of a physical
host DNA extraction kit to apply pre-sequencing.
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4.2 Classifier, Parameters and Thresholds
Kraken 2 is know for its speed and high recall for microbial classification but also
for its low precision [1][43]. These features were observed in this project, where
false discovery rates of higher than 90 % were common for default Kraken 2 and
Bracken parameter settings which meant that a majority of the species identified by
the classifier were false positives. What an acceptable false discovery rate is would
depend on the specific intended application of the classification results, however, a
rate of > 90 % is likely unacceptable for most clinical screening purposes. Imple-
menting measures to control the false discovery rate would generally also effect the
true positive rates. The goal was therefor to find an approach that reduced the false
discovery rate as much as possible without severely reducing the true positive rate.
The main classification metric used for harmonizing the two was the F1.5 score. The
F1.5 score, where true positive rate is weighted higher than the positive predictive
value, was chosen over the more common F1 score because it was considered more
important to not miss potentially dangerous pathogens than to have false alarms.
The intention was for the taxonomic classification step to be part of a fast screening
pipeline and if bacterial species of interest were found then further tests with higher
precision could possibly be done for increased certainty.
There are several approaches to the problem of lowering the false discovery rate.
For example, adjustments can be applied to parameters in the Kraken 2 read classi-
fication, which reads to be considered for abundance re-estimation by Bracken and
by setting post classification filtering thresholds of minimum estimated community
abundance or minimum number of estimated reads assigned to a taxon for it to
be considered found. Taking it further, the pre-processing steps before taxonomic
classification, such as the length and quality trimming, could also play a role but
were not considered within the project scope. Tuning of Kraken 2 and Bracken
parameters were first considered.

4.2.1 Kraken 2 and Bracken Parameters
The parameters considered were the read classification confidence for Kraken 2 and
the threshold for minimum number classified reads required for abundance reesti-
mation by Bracken. Other Kraken 2 parameters, such as K-mer length or minimizer
length, are also relevant for classification performance as was shown in the Kraken
2 method article [11]. These parameters are however tied to the Kraken 2/Bracken
database construction which in turn can be cumbersome to rebuild for a variety
of settings with limited computational resources. The confidence and read thresh-
old were on the other hand adjustable for each sample run without re-building the
reference databases.
Ideally a dataset with a large variety in sample complexity, distribution and species
diversity, would have been used for finding the optimal parameter settings for a
general metagenomic sample or a sub-group of samples. However, due to restrictions
in time and sample simulation abilities the number of samples in the dataset used
for parameter optimization ds-param-opt was held low and with fewer species. It is
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important to note that the six sample dataset ds-param-opt used for the optimization
was not a representation of all possible shotgun metagenomics samples, and contains
samples with lower species diversity than for example the ds-ln-high and simulated
from a pool of only 390 species. The motivation behind preforming an optimization
was not to find the universal optimal metagenomic parameter settings but rather to
demonstrate effects of varied parameter settings for the same dataset in relation to
the default.

The samples in the ds-param-opt dataset were taxonomically classified using the
db-standard database for a range of Kraken 2 confidence settings and thresholds for
Bracken minimum number of reads required for read redistribution. In Figure 4.2
the average positive predictive value, true positive rate, F1 and F1.5 scores for the
samples in the dataset are shown for Kraken 2 confidences [0.0, 0.2] and Bracken
read thresholds [10, 1250]. The results are only in relation to bacteria and possible
false positives from other domains were not include. For default settings, the dataset
average true positive rate was 100 % which means that all species in the samples were
identified. The positive predictive value was however only 4 % which means that 96%
of the species predicted by the classifier were false positives. The resulting average
F1.5 score was 12 %. Increasing either the confidence or the read threshold increased
the positive predictive value and decreased the true positive rate. Applying both
a high confidence (0.2) and read threshold (1250 reads) instead gave an average
positive predictive value of 100 % however with the cost of decreasing the true
positive rate to 21 %, resulting in a F1.5 score of 28 %. The F1.5 optimized parameter
settings were a Kraken 2 confidence of 0.075 and Bracken read threshold of 750 reads
which gave an average F1.5 score of 80 %. It was thus clear that the default parameter
settings were not optimal for the ds-param-opt dataset.

A reason for why false positive observations occur, aside from database misanno-
tation, is because a portion of the reads from a species truly in the sample have
a higher K-mer match to other closely related species. If a species truly in the
sample is in high abundance then the proportion of reads originating from it that
are misclassified can appear significant even if the classification error rate is low on
read level. Furthermore, the misclassifications have been shown to be systematic
where finding a certain species in high abundance is correlated to also falsely finding
specific species in low abundance [54]. The systematic error was more prevalent in
Kraken 2 compared to marker gene type taxonomic classifiers such as MetaPhlAn
[54]. That there are systematic errors are however not surprising since the species
have varying levels of phylogenetic relatedness. The problem of systematic misclas-
sifications could then worsen if the abundance of the false positives are artificially
inflated by Bracken’s redistribution of reads at higher taxonomic levels to lower
levels. A threshold for Bracken abundance reestimation in the form of a minimum
fraction of reads classified by Kraken 2 as a specific taxon could be more scalable
than using an absolute number of reads. If a choice had to be made between ad-
justing Kraken 2 or Bracken, arguably the Kraken 2 confidence would be increased
form default because its effects are on read level and are independent of the number
of species or the number of reads in the sample.
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(a) Mean PPV (precision) (b) Mean TPR (recall)

(c) Mean F1 (d) Mean F1.5

Figure 4.2: Average species level classification metrics for samples in the dataset ds-
param-opt re-run for Kraken 2 confidence parameter settings between 0.0-0.2 on the x-axis
and a Bracken read threshold between 10 and 1250 on the y-axis. The reference database
used was the db-standard. The highest F1.5 score was observed for a Kraken 2 confidence
of 0.075 in combination with a Bracken minimum number read threshold of 750 reads.

The samples in the larger ds-ln-high, ds-ln-low and ds-un-low datasets were tax-
onomically classified with the Kraken 2 and Bracken combination using different
databases for the default parameter settings and then re-run for ’optimized’ param-
eter settings (confidence = 0.075, read threshold = 750). In Table 4.2 the resulting
dataset averages of species F1.5, true positive rates and false discovery rates are listed
for five databases while Figure 4.3 graphically shows trends only for the baseline db-
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standard database.1 For default Kraken 2/Bracken parameters and the db-standard
database, the average F1.5 scores were 27.1 %, 10.6 % and 10.6 % for the ds-ln-high,
ds-ln-low and ds-un-low datasets respectively. When instead optimized parameters
were used for classification the average scores increased to 53.1 %, 77.4 % and 82.2
% for the three datasets. That the relative improvement was larger for the ds-ln-low
and ds-un-low datasets, compared to ds-ln-high, was not surprising because they
were more similar to the dataset used for F1.5 optimization in terms of species diver-
sity, sequencing depth and program used for simulation. Furthermore, the datasets
average false discovery rates decreased from 88.0 %, 96.5 % and 96.5 % for the de-
fault parameters to 10.3 %, 24.2 % and 18.3 % for the optimized. In contrast, the
largest decrease was observed for the ds-ln-high, however, the true positive rate also
decreased the most from 76.4 % to 46.0 %. A probable reason for both lower true
positive rates and false discovery rates for the ds-ln-high is that the samples have
a higher proportion of species with low genome sequence coverage (less than the
Bracken 750 reads threshold) compared to the ds-ln-low and ds-un-low.

As the exact same sample datasets were used in each experimental runs, the averages
of classification performance metrics can be compared between different databases
and parameter settings, however it is important to note that the spread across sam-
ples within a dataset can be large, as can be observed in Table 4.2 where approxi-
mately 10-20 percentage points differ between the 25 % and 75 % percentiles. Also
noteworthy is that the average classification performance of samples in a dataset
would not be relevant when for example screening a patient and a confidence inter-
val on performance for a certain type of sample would be more applicable.

For a future unknown metagenomic sample, with possibly a low sequencing depth,
using a Kraken 2 confidence 0.075 and Bracken read threshold of 750 reads which
was optimal for the ds-param-opt dataset could be too aggressive. As an example
take the the sharp decrease in true positive rate for the ds-ln-high. For the ds-param-
opt, the mean F1.5 increased steeply for increased Bracken read thresholds between
10 and 250 reads (not shown in the results) and it was seen that a small change
in parameter values could make a difference. It was therefore hypothesized that a
smaller parameter adjustment could increase the F1.5 score while being ’safe’ for more
diverse types of sample compositions. The datasets were re-run again for parameter
settings of Kraken 2 confidence 0.05 and Bracken read threshold of 50 reads. The
results were that the ds-ln-high performed better while the ds-ln-low and ds-un-
low performed worse compared to classification with ’optimal’ parameter settings.
Classification with a conservative parameter adjustment however performed better
for F1.5 than with default settings for all the datasets.

1Additional F1 scores are listed in Appendix B together with the genus level classification
performance for each combination of parameter setting, dataset and database.
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(a) False discovery rate (b) True positive rate

(c) F1.5 score (d) F1 score

Figure 4.3: Mean [25 percentile, 75 percentile] classification metrics for Kraken 2 con-
fidence and Bracken minimum number of reads threshold parameter settings of default
(conf. = 0.00, min reads = 50), optimized (conf. = 0.075, min reads = 750) and light
(conf. = 0.05, min reads = 10) across datasets ds-ln-high, ds-ln-low and ds-un-low run
with the db-standard reference database. (a) false discovery rates (FDR), (b) true positive
rates (TPR), (c) F1.5 scores and (e) F1 scores.

The conclusion is that the default Kraken 2 confidence and Bracken read threshold
may be far from optimal. What is optimal parameter settings can vary depending
on sample type and that for future implementation it could be good to optimize
specifically for the range of sequence coverage, species number and diversity that is
relevant for the use case. For example if the pipeline would be used for identifying
bacteria in skin swabs, samples from a skin microbiome could be simulated and
used for a parameter optimization. A conservative threshold increase from default
to confidence of 0.05 and read threshold of 50 reads could be a compromise for
unknown samples.
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Dataset Database F1.5 (%) TPR (%) FDR (%)
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10 ds-ln-
high

db-standard 27.1 [14.6,40.0] 76.3 [71.5,89.6] 88.0 [81.8,94.8]
db-bac-comp 25.3 [13.1,37.3] 75.1 [69.7,89.1] 89.0 [83.6,95.5]
db-bac-comp-np 24.2 [12.6,35.6] 75.1 [69.7,89.1] 89.7 [84.6,95.7]
db-bac-rep 24.5 [14.2,37.6] 91.5 [88.5,97.8] 90.0 [83.7,95.1]
db-bac-rep-np 24.0 [13.9,36.8] 91.5 [88.5,97.9] 90.3 [84.1,95.2]

ds-ln-
low

db-standard 10.6 [8.7,11.4] 98.7 [98.4,100.0] 96.5 [96.2,97.2]
db-bac-comp 10.5 [8.6,11.4] 99.5 [100.0,100.0] 96.5 [96.2,97.2]
db-bac-comp-np 9.5 [7.8,10.2] 99.5 [100.0,100.0] 96.9 [96.6,97.5]
db-bac-rep 5.0 [4.0,5.7] 93.4 [90.0,97.8] 98.4 [98.2,98.7]
db-bac-rep-np 4.8 [3.9,5.6] 93.4 [90.0,97.8] 98.4 [98.2,98.8]

ds-un-
low

db-standard 10.6 [8.0,11.8] 99.5 [100.0,100.0] 96.5 [96.1,97.4]
db-bac-comp 10.3 [8.2,11.7] 100.0 [100.0,100.0] 96.6 [96.1,97.3]
db-bac-comp-np 9.3 [7.1,10.9] 100.0 [100.0,100.0] 96.9 [96.4,97.7]
db-bac-rep 5.1 [3.9,5.9] 95.2 [90.0,100.0] 98.4 [98.1,98.8]
db-bac-rep-np 4.9 [3.8,5.6] 95.2 [90.0,100.0] 98.4 [98.2,98.8]
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ds-ln-
high

db-standard 53.1 [42.5,65.4] 46.0 [34.1,58.0] 10.3 [3.4,5.4]
db-bac-comp 55.8 [46.3,68.3] 49.4 [37.9,62.2] 13.2 [4.7,19.8]
db-bac-comp-np 56.1 [46.8,68.7] 49.7 [38.4,62.4] 13.5 [4.7,19.4]
db-bac-rep 45.5 [32.6,59.2] 38.0 [25.6,51.8] 7.7 [3.4,9.3]
db-bac-rep-np 45.4 [32.6,59.2] 38.0 [25.2,51.2] 8.0 [3.6,9.5]

ds-ln-
low

db-standard 77.4 [73.2,82.4] 78.7 [73.8,85.0] 24.2 [20.4,30.8]
db-bac-comp 76.8 [73.8,80.8] 81.9 [80.0,85.0] 31.5 [27.2,37.5]
db-bac-comp-np 75.7 [72.6,79.3] 82.4 [80.0,86.2] 35.2 [28.4,41.2]
db-bac-rep 72.4 [67.5,76.8] 70.9 [67.2,75.0] 22.1 [13.5,26.7]
db-bac-rep-np 71.9 [67.9,76.6] 70.4 [66.2,75.6] 22.5 [15.7,26.8]

ds-un-
low

db-standard 82.2 [77.0,90.0] 83.2 [80.0,90.0] 18.3 [10.0,27.6]
db-bac-comp 82.6 [77.6,90.0] 87.7 [80.0,90.0] 25.6[16.1,35.7]
db-bac-comp-np 81.1 [73.8,88.0] 87.7 [80.0,90.0] 29.5 [23.1,38.5]
db-bac-rep 78.2 [71.7,85.2] 76.4 [70.0,80.0] 15.7 [9.8,20.6]
db-bac-rep-np 78.0 [71.7,85.2] 76.1 [70.0,80.0] 15.7 [9.8,20.0]
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ds-ln-
high

db-standard 64.5 [60.9,74.9] 71.0 [66.2,83.4] 42.2 [25.0,55.4]
db-bac-comp 61.7 [57.0,73.8] 70.8 [64.0,83.5] 47.9 [29.8,62.0]
db-bac-comp-np 61.1 [55.3,73.0] 70.9 [64.1,83.8] 49.0 [30.5,63.0]
db-bac-rep 70.9 [64.2,78.0] 81.5 [77.2,89.6] 40.4 [25.1,54.6]
db-bac-rep-np 70.6 [63.8,77.9] 81.4 [77.3,89.4] 41.0 [26.0,55.3]

ds-ln-
low

db-standard 53.9 [46.9,57.6] 92.7 [90.0,100.0] 70.9 [68.5,77.5]
db-bac-comp 49.7 [46.0,53.9] 93.5 [90.0,96.2] 75.5 [72.3,78.3]
db-bac-comp-np 47.6 [44.4,52.5] 92.9 [90.0,96.2] 77.0 [73.7,79.8]
db-bac-rep 45.0 [41.7,50.3] 87.4 [83.8,91.6] 77.9 [74.8,80.9]
db-bac-rep-np 44.5 [40.9,47.7] 87.2 [82.5,91.6] 78.2 [76.2,82.2]

ds-un-
low

db-standard 53.9 [46.9,57.6] 92.7 [90.0,100.0] 70.9 [68.5,77.5]
db-bac-comp 49.4 [42.7,54.9] 93.2 [90.0,100.0] 75.1 [72.6,80.1]
db-bac-comp-np 47.2 [40.8,51.3] 94.1 [90.0,100.0] 77.1 [74.7,80.9]
db-bac-rep 44.2 [37.9,49.3] 90.2 [90.0,100.0] 79.0 [76.1,83.5]
db-bac-rep-np 43.6 [37.3,48.5] 90.5 [90.0,100.0] 79.5 [76.8,83.9]

Table 4.2: Species level taxonomic classification metrics F1.5 score, true positive rate
(TPR) and false discovery rate (FDR) (dataset sample mean [25 percentile, 75 percentile])
for different combinations of datasets and general bacterial screening databases, repeated
for three Kraken 2 and Bracken parameter settings (left most column). 33



4. Results and Discussion

4.2.2 Post Classification Filtering

Following that false positive species predictions by Kraken 2 are over represented
at low abundances it is common to apply a post classification filter for removing
species with low estimated abundance or low read counts from the list of predicted
species [1]. When Kraken 2 and Bracken are applied for taxonomic classification
of samples from single isolate bacterial cultures, high false discovery rates at low
abundances could be tolerable because it would still be clear what the main cultured
bacteria was if a species abundance was estimated to for example 95 % and then 10
other species to a combined 5 %. For metagenomic samples from a microbiome the
true species abundances are however expected to have a non-uniform distribution
often with a heavy low abundance tail [55][56]. Distinguishing true positive low
abundance species from false positives in metagenomic samples is thus an added
challenge compared to samples from single isolate cultures.

Post classification filtering was tested by disregarding species in the Bracken result
output below abundance thresholds, that is community fractions, for a range up
to 10 % of the sample. In Figure 4.4 average classification metrics for the samples
in the datasets ds-ln-high, ds-ln-low and ds-un-low, when run with the db-standard
database for default parameter settings, are plotted for increasing cut-off values
in Bracken estimated abundance. The average false discovery rate start at 88 %
for the ds-ln-high and 97 % for both the ds-ln-low and ds-un-low datasets and
then decrease with an increasing abundance threshold to being below 30 % for an
abundance threshold of 1 % (that is species estimated to be less than 1 % of the
sample are disregarded) as can be seen in Figure 4.4 a). The average true positive
rates unfortunately also decrease towards zero with an increasing abundance cut-
off threshold as displayed in Figure 4.4 b). The average true positive rate for the
datasets can differ for the same abundance threshold, for example at a 1 % threshold
the difference is approximately 80 percentage points between the ds-ln-high and the
ds-un-low. An optimal threshold can be found when weighting the false discovery
rate and true positive rate in a F1.5 score. Without post classification filtering and
default values the average F1.5 scores for the datasets ds-ln-high, ds-ln-low and ds-
un-low are 27 %, 11 % and 11 % and peak at 65 %, 71% and 82 % for the species
abundance thresholds of 0.01 %, 0.1 % and 1 % respectively. Noteworthy is that the
F1.5 score optima occur at different abundance thresholds for the three datasets.

Some variation between the datasets was expected as the samples were of differ-
ent content and species abundance distributions. Filtering out species based on
estimated community fraction was expected to be more stable across datasets than
filtration based on an absolute number of reads in Kraken 2 or Bracken result out-
put because of independence of the number of reads in the sample, however, when
comparing the filtering methods appear similarly to give varying results depending
on sample type.2

2The false discovery rates, true positive rates and F1.5 scores for the ds-ln-high, ds-ln-low and
ds-un-low when instead applying filtering thresholds in absolute read counts from both raw Kraken
2 output and Bracken reestimated read counts can be found in Figure B.1 Appendix B
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(a) False discovery rate (b) True positive rate

(c) F1.5 score

Figure 4.4: Average (a) false discovery rates (FDR), (b) true positive rates (TPR) and
(c) F1.5 scores for the datasets ds-ln-high, ds-ln-low and ds-un-low over read classification
abundance filtering for each species. Note that the x-axis are logarithmic.

For samples with a species distribution including low abundances, such as log-normal
or exponential, applying a cut-off based on estimated community fraction or number
of reads classified of a species would inherently also filter out low abundance true
positives. It would instead be a detection limit of sorts because false positives or
true positives below a threshold would not be reported as found, however it would
not translate to a detection limit for the true abundance since the probability of
a species with a true abundance of for example 1 % to fall above or below a limit
of estimated abundance of 1 % would be dependent of the abundance distribution
of the other species in the sample. The use of post classification filtering would
theoretically be more applicable for samples with a uniform species distribution. As
can be seen in Figure 4.4 c), the dataset ds-un-low with uniform samples of 10 species
at 10 % community fraction each had the largest relative increase in F1.5 score of
approximately 70 percentage points between no abundance cut-off to optimum at a 1
% threshold. Adjustment of the Kraken 2 confidence threshold although still appears
as a superior alternative to post classification filtering because the confidence is on
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read level and is therefor independent of factors such as distribution of abundance
fractions, number of species in the sample or the absolute number of reads per
species which all might be unknown for a real world metagenomic sample.

4.3 Database Content
It has previously been established that generally the larger the Kraken 2/Bracken
databases the better classification performance [43]. Apart from the file size, a
database can be ’large’ in the aspect of the number of taxonomic nodes represented,
such as number of genera, species and strains, the number of genome assemblies per
taxonomic node or the ratio of K-mers mapped per node or assembly. Furthermore,
the quality of the genome assemblies used for the database build could effect the
classification, both the aspects of level of completeness and annotation quality. As
the database is required to be fully loaded into memory when running Kraken 2 (in
the most time efficient default mode), a limit on memory resource allocation will in
turn limit the maximum file size the database can have. The question then became
how to balance the database aspects of depth and spread for optimal classification
of metagenomic samples.
Taxonomic classification of the samples from the ds-ln-high, ds-ln-low and ds-un-
low, using the db-standard database with default parameter settings of Kraken 2
and Bracken, resulted in F1.5 scores of on average 27.1 %, 10.6 % and 10.6 % for the
three datasets. As can be seen in Table 4.2, the true positive rates were relatively
high of 76.3 %, 98.7 % and 99.9 % while the false discovery rates were on average
88.0 %, 96.5 % and 96.5 %. The focus was on finding a database composition that
would decrease the false discovery rate as it was the main driver behind the low F1.5
scores.

4.3.1 Bacteria Only Databases
The K-mer minimizers stored in the baseline db-standard database were 89.6 %
from bacterial genome assemblies while the rest were from human, archaeal and
viral reference. Since the project scope was to only taxonomically classify bacteria,
and because the filtering of human reads was moved to a separate step with its
own Kraken 2 database, it was hypothesized that the non-bacterial content could be
taking up unnecessary space. A database (db-bac-comp) was then built with only
the bacterial genomes of the db-standard to allow for more K-mers per genome and
to increase the chance of a K-mer matching the bacteria in the sample.
The results were, for default parameter settings of Kraken 2 and Bracken, that the
datasets ds-ln-high, ds-ln-low and ds-un-low on average had lower classification per-
formance for the bacteria only db-bac-comp database compared to the db-standard.
The differences in F1.5 were however negligible, 1.8 %, 0.1 % and 0.2 % percentage
points for the three datasets, see Table 4.2 and Figure 4.5 for a graphical compar-
ison. Here a small increase in number of minimizers/K-mers per bacterial genome
assembly did not completely compensate for the loss of diversity in the taxonomic
nodes represented. However, re-running the datasets with non-default classifier pa-
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rameter setting of Kraken confidence of 0.075 and Bracken threshold of 750 reads
instead resulted in two out of three having a slightly higher F1.5 score for the db-
bac-comp compared to the baseline. It was therefor concluded that the databases
had approximately equal performance for bacterial classification although with the
db-standard having the extra capability of also classifying non-bacteria.

Another bacteria only Kraken 2/Bracken database was tested for the datasets ds-
ln-high, ds-ln-low and ds-un-low. The database was built from all the RefSeq bacte-
rial genome assemblies categorized as Reference/Representative sequences that were
found across different levels of assembly completeness. Compared to db-bac-comp,
the db-bac-rep represents more species but was built using half the number of genome
assemblies, see Table 3.1 for database overview. Furthermore, each species in the db-
bac-comp is, however, only represented by approximately one genome while genomes
from more studied species are over-represented in the db-bac-comp and db-standard
databases. An additional hypothesized benefit of using only the representative
genome sequences was that they were less contaminated with other inserts from
other species (estimated to be 74 % cleaner than non-representative genomes on
2023-04-15, a later date from database building[57]).

For default Kraken 2/Bracken parameter settings the db-bac-rep performed worse
than the db-bac-comp and db-standard with average F1.5 scores up to 5 percentage
points lower. The average F1.5 scores were 24.0 %, 5.0 % and 5.1 % for the datasets
ds-ln-high, ds-ln-low and ds-un-low run against the db-bac-rep database with default
Kraken 2/Bracken parameter settings. However, surprisingly for the ds-ln-high, with
high species diversity and low genome coverage, the db-bac-rep gave a higher true
positive rate of 91.5 % compared to 76.3 % for the db-standard, although, this did not
apply to the other datasets. With optimized Kraken 2/Bracken parameter settings
an average F1.5 score of 78.2 % for the ds-un-low was achieved however this indicates
that the effect of parameter adjustment appear to be more powerful than the change
of database content. The db-bac-rep had the highest average false discovery rates
for default Kraken 2/Bracken parameter settings, although it only differed ≤ 2
percentage points compared to the db-bac-comp and db-standard databases across all
datasets. In contrast, the false discovery rates for the optimized classifier parameter
settings were lower for the db-bac-rep with up to 10 percentage points difference,
however, the true positive rates were also lower which resulted in db-bac-rep still
having the lowest F1.5 scores. Moreover the lowest average false discovery rate of
the tested dataset, database and parameter settings combinations was 7.7 % with
the db-bac-rep for the ds-ln-high and optimized classifier parameters.

The conclusion was that the db-bac-rep performed worse for taxonomic classification
of bacteria compared to the baseline db-standard although the relative performance
between the databases differed for varying parameter settings and datasets. Because
the factors of fewer genomes, balanced species representation and varied assembly
level completeness were confounded the reasons for poorer performance could not be
determined. For deeper investigation into the effects of various databases the sets
of false positive observations could be compared between databases, and further if
the correlations between observations of high abundance true positive species and
low abundance false positives differed between datasets.
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(a) False discovery rate (b) True positive rate

(c) F1.5

Figure 4.5: Mean [25 percentile, 75 percentile] (a) false discovery rates (FDR), (b)
true positive rates (TPR) and (c) F1.5 scores for the databases db-standard, db-bac-comp,
db-bac-comp-np, db-bac-rep and db-bac-rep-np across datasets ds-ln-high, ds-ln-low and
ds-un-low when classified with default Kraken 2 and Bracken.

4.3.2 Plasmid Depleted Databases
The combined Kraken 2 and Bracken databases were built with plasmid sequences
removed form the assemblies to test if plasmids increased the false discovery rate.
The reasoning was that possible misannotation of plasmids due to inter-species plas-
mid transfers and intra-species variability in the number and type of plasmids could
cause confusion in the classification. The idea behind investigating the effects of
removing plasmid came from misclassifications of single isolate samples suspected
to be caused by inter-species plasmid transfers. To demonstrate with an example,
consider the result of the Bracken abundance estimation of a sample where it was
96.3 % Salmonella enterica, 3.2 % Escherichia coli and other mixed bacteria to-
gether summing to <1 %. Ideally there should only be one species in the sample
because it is taken from a single culture colony. A possible explanation for finding
more than one species is that the sample was contaminated before sequencing and
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that the contaminants were sequenced giving reads that thereafter were classified
correctly. Another explanation could be that there was no lab contamination but
instead some S. enterica reads were misclassified by Kraken 2, possibly due to high
average nucleotide identity and a low Kraken 2 confidence setting. In an attempt to
distinguish between the explanation options, the reads assigned directly by Kraken
2 to E. coli were aligned against the combined Genbank and RefSeq databases us-
ing BLAST. What was found was near perfect alignment to a plasmid annotated
as belonging to E. coli and not the chromosome. Since plasmids are known to be
transferred between S. enterica and E. coli [58] it is possible that the specific S. en-
terica sequenced had acquired a plasmid from E. coli which had not been added to
the NCBI database yet. The phenomenon of the reads assigned to the second most
abundant species aligning to plasmids of another specie was found in some single
isolate samples. Note that the samples were not selected at random, but instead
specifically chosen because of the results showing a second bacteria at an unexpected
high percentage (higher than 1 %). The evidence for a part of the false positives
originating from inter-species transferred plasmids was on an anecdotal level but
nevertheless interesting enough to prompt investigation for metagenomic samples.

The Kraken 2/Bracken databases with plasmid sequences removed db-bac-comp-
np and db-bac-rep-np were built from the same bacterial assemblies as for db-bac-
comp and db-bac-rep respectively. When run with the datasets ds-ln-high, ds-ln-low
and ds-un-low for different Kraken 2 and Bracken parameter settings, the reference
databases without plasmids had a consistently sightly worse classification perfor-
mance when compared with the corresponding database with plasmids. As can be
observed in Table 4.2, the average F1 scores for db-bac-comp-np and db-bac-rep-np
across the datasets are approximately one percentage point lower than for db-bac-
comp and db-bac-rep respectively. Furthermore, the increase in false discovery rate
was stronger than the decrease in true positive rate.

A possible explanation for why the resulting false discovery rate was higher when
using a database without plasmids compared to the hypothesized lower is that the
real world single culture samples were outliers (only a handful of single culture sam-
ples were examined) or that the genome assemblies used for simulating metagenomic
samples did not include plasmids annotated differently from those in the assemblies
used for the databases. Furthermore, when removing plasmids from all reference
genomes it reduces the number of possible unique nucleotide K-mers per genome
and species, in the sense of lowering the pool of genetic material per species. The
gain from reducing false positives caused by inter-species plasmid transfer could
then have been overridden by the loss of the uniqueness that non-transferring and
correctly annotated plasmid variants brought which in turn caused increased mis-
classification among similar species. The effects of possible misannotated plasmids
could additionally be obscured by there being many species in the metagenomic sam-
ples compared to single culture samples. If the sample contained both the species
of which a plasmids is listed in the reference database as and other species where it
is present then there would not be a false positive since the classification results are
reported on sample level and not read level.

The conclusion for general metagenomic samples, without pre-indication of mainly
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containing species known for jumping plasmids, is that a Kraken 2/Bracken ref-
erence database with plasmids give better classification performance than without.
For future studies plasmids could however still be interesting as they are more unsta-
ble genetic elements than chromosomes and perhaps instead of removing plasmids
weighting their K-mer matches differently from the chromosome.

4.3.3 Database for Pathogen Subset
In the case of a taxonomic classification pipeline being used for discovery of pathogens,
misclassifying just one as false negative could potentially have disastrous conse-
quences if the sample is from a critically ill patient. When optimizing the taxonomic
classification procedure for a F-score, the close to 100 % true positive rate observed
for the db-standard with default Kraken and Bracken parameter settings inevitably
decreased in favor of a lower false discovery rate. A compromise solution could be
to include two taxonomic classification steps, one which is F-score optimized for
producing a general taxonomic profile of the sample and one in which a subset of
pathogens of particular interest are screened for at a higher acceptance threshold
for true positive rate.
Aside from adjusting the Kraken and Bracken parameters alone, a hypothesized
solution was to increase the number of minimizers in the classification database
specifically belonging to the nodes of the pathogens in consideration. It was con-
cluded in Section 4.3.1 that increasing bacterial minimizer counts with a bacteria
only database (db-bac-comp) was not greatly superior compared to the more di-
verse one with genomes from several kingdoms (db-standard). However, this was
for databases with minimizers down-sampled to 8 GB and increasing minimizers
without down-sampling could possibly have a larger effect.
The idea was tested using the dataset ds-un-low and database db-bac-subset which
was built with only genome assemblies from seven pathogens but without down-
sampling the minimizers. A similar parameter optimization search as for the db-
standard was done also for the db-bac-subset after which the samples in the dataset
ds-un-low were run for a Kraken confidence parameter of 0.3 and Bracken minimum
threshold of 10,000 reads. In Table B.4 the classification results for each sample
group are displayed together with the results for the db-standard (run with F1.5 op-
timized parameters and with the accommodation of only considering the same subset
of species as in db-bac-subset when reporting the positive and negative observations).
Among the group of 7 pathogens in the subset database, S. aureus and A. baumannii
were selected for detection testing and were successfully found in all samples where
they were expected when run with db-bac-subset. When run with the db-standard A.
baumannii was found in all samples but S. aureus was only correctly classified in 8
out of 15 samples where it should have been found. For the negative control samples
(14 total), with no species in the pathogen sub-set but 0, 1 or 4 species sharing the
same genus as species in the subset, there were 1 or 2 false positive classifications
per sample when run with the db-bac-subset while only 1 false positive for a single
sample when run with db-standard (for F1.5 optimized parameters). Although the
reference database built with a subset of bacteria did not have zero false discov-
eries, it had a lower false discovery rate than when running the db-standard even
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for default parameters while still finding the correct pathogen in every sample. If
there is not access to sufficient RAM to hold the full standard database without
down-sampling, a database built with fewer taxonomic nodes without minimizer re-
striction could be used in compliment to the F1.5 optimized taxonomic classification
step.

4.4 Metagenomic Sample Composition

A sample of genetic material being shotgun metagenomic speaks to its collection
and sequencing method rather than its composition, the contents could for example
be similar to a single culture isolate where one main species is expected or con-
tain hundreds of species with a nonuniform abundance distribution and have some
species represented by only few reads. The intent was to subdivide metagenomic
samples bases on attributes such as abundance distribution, species diversity and
genome coverage and then evaluate classification performance by category. However,
the results and discussion are only partially covering the topic due to inadequate
experimental planning.

4.4.1 The Fewer Species Dataset ds-ln-low

For the 40 sample dataset ds-ln-low with log-normally distributed species abun-
dances the classification metrics divided by the eight sample group were calcu-
lated for the dataset run with the db-standard database and ’optimized’ parameters
(Kraken 2 confidence = 0.075, Bracken read threshold = 750 reads). As can be
seen in Table 4.3, the average classification performance does not appear to vary
systematically across the groups of five replicates of species counts between 10-80
and log-normal coverage distributions with µ either 10X or 20X. The within group
variations were larger than the between group differences. For example, the average
F1.5 scores were between 72.3% and 82.0 % for the groups and for s20-c20 the dif-
ference between the minimum and maximum sample scores were 92.9 − 63.2 = 29.3
percentage points. The coverage and number of species appear to have had less of
an impact on classification metrics compared to the actual composition of species
types. However, for the ds-ln-low the abundances of the species in the samples were
sampled form log-normal distributions and for each replicate in the sub-groups both
the exact abundances and species in the sample would differ. Which factor, number
of species, species coverage or the specific species, that caused the difference in clas-
sification performance was thus convoluted. For future dataset simulations it could
be more informative to simulate the same set of species but with different ordering
of abundances and average coverages among themselves for each replicate.
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Group F1 (%) F1.5 (%) TPR (%) FDR (%)
s10-c10 73.8 [66.7,88.9] 72.3 [63.9,85.2] 70.0 [60.0,80.0] 21.4 [0.0,30.0]
s10-c20 82.4 [77.8,88.9] 82.0 [74.6,85.2] 82.0 [70.0,90.0] 14.8 [0.0,30.8]
s20-c10 78.0 [66.7,87.2] 79.4 [66.0,89.5] 82.0 [65.0,95.0] 25.1 [10.5,32.0]
s20-c20 78.1 [59.6,94.7] 79.4 [63.2,92.9] 82.0 [70.0,90.0] 24.3 [0.0,48.2]
s40-c10 77.4 [69.1,88.0] 77.2 [69.5,85.8] 77.0 [70.0,82.5] 22.0 [5.7,31.7]
s40-c20 71.5 [62.1,75.3] 73.1 [64.0,78.4] 76.0 [67.5,85.0] 32.2 [27.9,42.6]
s80-c10 78.3 [76.2,82.2] 78.8 [76.2,82.8] 79.8 [76.2,83.8] 23.1 [19.3,25.6]
s80-c20 74.6 [70.5,78.4] 76.9 [72.6,81.2] 80.7 [76.2,87.5] 30.5 [27.1,34.4]

Table 4.3: Species level taxonomic classification metrics F1, F1.5, true positive rate
(TPR) and false discovery rate (FDR) for the dataset ds-ln-low run for the db-standard
database with Kraken 2 confidence = 0.075 and Bracken read threshold = 750. The values
listed are means of the five replicates in each dataset group together with the minimum
and maximum [min, max] of the sample group.

4.4.2 The Pathogen Subset Dataset ds-un-low

The average genome coverage for the species in the samples of the ds-un-low was
fixed to 20X (which makes the species abundances uniform) as well as the number
of species per sample, 10 species, and the difference between the samples was thus
the particular set of species. It can be noted that the species composition in the
ds-un-low was not fully random for each sub-group as the dataset was created to test
the pathogen subset databases. How representative the genome assemblies used for
read simulation of a species actually were for the indented species could also possibly
influence the classifiers ability to recognize reads as coming from the species. Since
the genomes used for simulating samples were all species identified complete level
assemblies the risk of completely misannotated sequences (that the assembly was
mislabeled as a different species) was however considered lower than for general
GenBank assemblies.

The results of running the ds-un-low for the db-standard database with ’optimized’
Kraken 2/Bracken parameter settings (as any other sample, not with regard to the
specific subset of pathogen in the samples), was that there still was large variation
between replicate samples from the same groups, Table 4.4. The differences of F1.5
scores and true positive rates between samples in a dataset group (replicates drawn
from the same pools of species) were up to 50 percentage points. For example for
sub-group a-baumannii-g0 the average true positive rate was 78.0 % but where the
minimum was 50 % and the maximum was 100 %, meaning that for one sample half of
the species were not identified and for another sample all the species were identified.
The conclusion was that which species happened to be in the sample would have
large effects on the taxonomic classification of the sample. Which species that were
more difficult to classify than others was not investigated further in this project.
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Sample group F1 (%) F1.5 (%) TPR (%) FDR (%)
control-g0 87.1 [70.0,94.7] 87.4 [70.0,94.2] 88.0 [70.0,100.0] 13.3 [0.0,30.0]
control-g1 82.7 [75.0,87.0] 85.3 [80.1,91.6] 90.0 [80.0,100.0] 22.6 [11.1,35.7]
control-g4 79.4 [69.6,85.7] 81.4 [73.2,87.3] 85.0 [80.0,90.0] 24.6 [11.1,38.5]
a-baumannii-g0 81.3 [58.8,100.0] 79.9 [55.1,100.0] 78.0 [50.0,100.0] 14.1 [0.0,28.6]
a-baumannii-g1 78.4 [63.6,88.9] 78.1 [65.9,85.2] 78.0 [70.0,90.0] 19.8 [0.0,41.7]
a-baumannii-g4 78.8 [69.6,85.7] 80.6 [73.2,87.3] 84.0 [80.0,90.0] 25.2 [11.1,38.5]
s-aureus-g0 84.7 [73.7,94.7] 85.0 [72.2,92.9] 86.0 [70.0,90.0] 15.6 [0.0,35.7]
s-aureus-g1 79.2 [55.6,90.0] 78.7 [53.3,90.0] 78.0 [50.0,90.0] 19.2 [10.0,37.5]
s-aureus-g4 83.9 [62.5,100.0] 82.9 [57.0,100.0] 82.0 [50.0,100.0] 11.5 [0.0,30.8]

Table 4.4: Species level taxonomic classification metrics F1, F1.5, true positive rate
(TPR) and false discovery rate (FDR) for the dataset ds-un-low run for the db-standard
database with Kraken 2 confidence = 0.075 and Bracken read threshold = 750. The values
listed are means of the five replicates in each dataset group together with the minimum and
maximum [min, max] of the sample group. Note that the group names are in reference
to the pathogen subset databases and all bacteria in the db-standard were in this case
considered for prediction.

In a study benchmarking taxonomic classifiers for ten common bloodstream pathogens
and contaminates it was found that the species had different probabilities of being
correctly identified across different taxonomic classification programs including the
Kraken 2 and Bracken combination (Govender 2022) [13]. It was also investigated
which species were correlated as false positives for high abundances of specific true
positive species. As an example E. coli had a high probability of being misclassified
although if it was listed in the result as a true positive then Escherichia fergusonii
and Shigella flexneri were most likely to appear as false positives. The article fur-
thermore suggested to use species dependent adjustment factors to multiply with a
fixed post classifier minimum abundance threshold for improved classification per-
formance. Correlation analyses and tables of probabilities of a species being a true
or false positive, given the presence and estimated abundances of another species in
a sample, would be possible for a subset of species of interest however appears to be
less feasible for all species in a database such as db-standard.

4.4.3 The Many Speceis Dataset ds-ln-high
A conclusion drawn mainly from the dataset ds-un-low was that the specific species
composition of the samples effect the classification success. Nonetheless, for the ds-
ln-high other factors appear to be separating the groups than species. The replicates
in the groups of 10 samples have more similar within group classification metrics than
for the datasets ds-ln-low and ds-un-low, see Table B.5 and Table B.6 in Appendix
A. For example, groups of samples simulated from genomes with different average
nucleotide identities (ANI) were distinct from each other. A possible explanation
for lower species composition dominance is that difficult to classify species have
less impact on the sample metrics because of the hundreds of species per sample
compared to only 10 species. There are however many differences between the
simulation techniques of the ds-un-low and the ds-ln-high leading to a need for
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cautious comparison. See the original Parks et al. article [1] for more in-depth
between group comparisons and note that only classification of bacteria was recorded
in the project compared to all species, bacteria and archaea, in the article.
One of the differences in the simulation method for the ds-ln-high was the use of
a fixed number of reads per sample independent of the number of species. Not
adjusting the number of reads for sample complexity could be more similar to real
world samples where the species count is of course unknown before sequencing. A
fixed sample size can however generate samples with some species having few reads,
which in the case of some samples in the ds-ln-high was less than 100 hundred
reads. Considering the read length of 150 bp and a bacterial genome being millions
of basepairs long the fraction of the genome was covered is low. Assuming that
the database does not contain all K-mers to completely cover each genome the
probability of identifying a species would go down with the fraction of its genome
covered by reads. Furthermore, even if a low coverage species is correctly identified
it would be difficult to distinguish from other low abundance species that are false
positives, especially since Bracken can inflate false discovery rates by faulty read
redistribution. If a simple true or false for a species presence in a sample is sufficient,
without the addition of a percentage abundance estimate, then the use of Bracken
read redistribution after Kraken 2 classification would increase uncertainty without
adding information.

4.4.4 Reference Genome Considerations
A potential contributing reason for the high false discovery rates, which was not
considered in the project, was contamination or otherwise misannotation of assembly
sequences in the NCBI genome repositories GenBank and RegSeq that were used
for building the classifier reference databases and simulation of samples. In this
context contamination referrers to when sequences from genomes of other species
are accidentally integrated into a genome assembly labeled as only being of one
organism [59]. As an example, a S. aureus reference could have short sequences
from the human genome and E. coli inserted throughout its assembly but be treated
as a pure assembly in the metadata resulting in an increased probability of the
contaminates appearing as false positive observations. Another type of misassembly
could be chimeric where genomes from multiple organisms of the same type are
assembled into one individual [59].
Publications from recent years have reported ongoing issues with NCBI database
contamination and screening algorithms [60][61][62]. For example, in 2020 a study
114,035 and 2,161,746 contaminated sequences were found in RefSeq and GenBank
respectively [61], although from across all domains of life and levels of assembly
completeness, and in 2021 it was estimated that 5.7 % of genomes in GenBank were
chimeras [62]. NCBI are themselves aware of the problem and identified contam-
inants in approximately 10 % of the prokaryote genomes in 2022 [57]. The NCBI
Foreign Contamination Screen tool suite has a newly developed genome contamina-
tion screener FCS-GX (pre-print published 2023-06-06) that can be applied at the
scale of the public databases for improvement compared to their legacy screening
pipelines [57].
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When selecting genome assemblies for building classification reference database and
simulating metagenomic samples, the category of Atypical Assemblies that accord-
ing to NCBI encompasses chimeric and contaminated assemblies was excluded [59].
Following that GenBank and RegSeq rapidly increases in size and are continuously
curated, the exact status of the levels of genome assembly contamination and how
successful the filtering of atypical assemblies was at the time of access is unknown.
Including additional pre-screening for contamination of genome assemblies from pub-
lic databases before use for classification reference databases or sample simulation
could be a consideration for future projects.
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5
Conclusion

In conclusion it was challenging to taxonomically classify shotgun metagenomic sam-
ples with both high precision and recall for limited computational resources. Filter-
ing of human DNA using Kraken 2 was on the other hand successful for simulated
human reads and found to be comparable in removal to filtering using the BWA-mem
2 aligner while being more time efficient. The best overall classification performance
was observed from the baseline standard database although similar performances
were observed among the other tested size capped reference databases, different
bacterial composition and with and without plasmids. Changing the parameter
settings of the classifier (Kraken 2 read confidence and Bracken read threshold for
read redistribution) could drastically change which species were classified and it was
found that the default settings may be far from optimal depending on the intended
application. The influence of factors relating to metagenomic sample composition
such as genome coverage, abundance distribution and number of species were not
fully understood, however, it was observed that the composition of species in the
sample could have drastic effects on how they were classified. For the tested classifi-
cation related variables, changes in content of a size capped reference database had a
lower effect on classification performance compared to adjusting classifier parameter
settings while the largest impact appeared to be from the specific composition of
species in the sample. A one-size-fits-all approach to taxonomic classification of any
shotgun metagenomic sample would be near impossible with the tested K-mer based
classifier and a solution could be to have specialized pipeline tracks optimized for
samples with different expected range of species, sequencing depth and abundance
distributions.
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ani100_stFalse Identical High Multiple 100 100 505±74.8 2.5±0.07 13.2. to 6.1×10−6

ani99_cLOW_stTrue Highc Medium Single 99.4±0.22 94.5±3.02 99±21.3 1 38.0 to 2.4×10−4

ani99_cLOW_stFalse High Medium Multiple 99.3±0.22 94.4±3.06 106±29.7 4.7±0.33 39.4 to 3.2×10−4

ani99_cHIGH_stTrue High High Single 99.3±0.22 94.5±2.93 499±86.1 1 60.3 to 1.6×10−5

ani99_cHIGH_stFalse High High Multiple 99.4±0.22 94.4±3.00 450±116 4.0±0.32 18.4 to 1.3×10−5

ani97_cLOW_stTrue Moderated Medium Single 98.3±0.54 90.9±4.41 104±24.3 1 62.3 to 2.3×10−4

ani97_cLOW_stFalse Moderate Medium Multiple 98.4±0.52 91.2±3.92 106±19.6 4.7±0.16 29.6 to 3.2×10−4

ani97_cHIGH_stTrue Moderate High Single 98.3±0.54 90.8±4.23 509±58.6 1 23.2 to 2.8×10−5

ani97_cHIGH_stFalse Moderate High Multiple 98.3±0.52 91.1±4.19 532±70.9 3.8±0.26 10.0 to 9.2×10−6

ani95_cLOW_stTrue Lowe Medium Single 96.4±0.50 87.9±4.56 93±32.9 1 80.5 to 2.8×10−4

ani95_cLOW_stFalse Low Medium Multiple 96.3±0.52 88.0±4.33 109±26.6 3.2±0.23 36.6 to 1.4×10−4

a AF, alignment fraction, i.e., percentage of orthologous regions shared between two genomes,
b 100% ANI similarity, c [99%, 99.75%] ANI similarity,
d [97%, 99%) ANI similarity, e [95%, 97%) ANI similarity.

Table A.1: Dataset from the article Evaluation of the Microba Community Profiler for Taxonomic Profiling of Metagenomic Datasets From
the Human Gut Microbiome by Parks et al. [1] adapted into the ds-ln-high dataset. Table recreated from Table 2 in the article.
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B. Additional Results

Dataset Database F1 (%) TPR (%) FDR (%)
D

ef
au

lt
(c

on
f.

0,
m

in
re

ad
s

10
)

ds-ln-
high

db-standard 20.0 [9.7,29.9] 76.3 [71.5,89.6] 88.0 [81.8,94.8]
db-bac-comp 18.5 [8.5,27.7] 75.1 [69.7,89.1] 89.0 [83.6,95.5]
db-bac-comp-np 17.6 [8.2,26.0] 75.1 [69.7,89.1] 89.7 [84.6,95.7]
db-bac-rep 17.4 [9.3,27.5] 91.5 [88.5,97.8] 90.0 [83.7,95.1]
db-bac-rep-np 17.0 [9.1,26.9] 91.5 [88.5,97.9] 90.3 [84.1,95.2]

ds-ln-
low

db-standard 6.8 [5.5,7.3] 98.7 [98.4,100.0] 96.5 [96.2,97.2]
db-bac-comp 6.7 [5.5,7.3] 99.5 [100.0,100.0] 96.5 [96.2,97.2]
db-bac-comp-np 6.1 [5.0,6.5] 99.5 [100.0,100.0] 96.9 [96.6,97.5]
db-bac-rep 3.1 [2.5,3.6] 93.4 [90.0,97.8] 98.4 [98.2,98.7]
db-bac-rep-np 3.0 [2.4,3.5] 93.4 [90.0,97.8] 98.4 [98.2,98.8]

ds-un-
low

db-standard 6.8 [5.1,7.6] 99.5 [100.0,100.0] 96.5 [96.1,97.4]
db-bac-comp 6.6 [5.2,7.5] 100.0 [100.0,100.0] 96.6 [96.1,97.3]
db-bac-comp-np 6.0 [4.5,7.0] 100.0 [100.0,100.0] 96.9 [96.4,97.7]
db-bac-rep 3.2 [2.4,3.7] 95.2 [90.0,100.0] 98.4 [98.1,98.8]
db-bac-rep-np 3.1 [2.4,3.5] 95.2 [90.0,100.0] 98.4 [98.2,98.8]

O
pt

im
al

(c
on

f.0
.0

75
,

m
in

re
ad

s
75

0)

ds-ln-
high

db-standard 59.1 [50.1,70.9] 46.0 [34.1,58.0] 10.3 [3.4,5.4]
db-bac-comp 61.1 [53.3,72.5] 49.4 [37.9,62.2] 13.2 [4.7,19.8]
db-bac-comp-np 61.3 [53.4,73.1] 49.7 [38.4,62.4] 13.5 [4.7,19.4]
db-bac-rep 52.1 [39.5,65.3] 38.0 [25.6,51.8] 7.7 [3.4,9.3]
db-bac-rep-np 52.1 [39.6,65.2] 38.0 [25.2,51.2] 8.0 [3.6,9.5]

ds-ln-
low

db-standard 76.8 [72.8,79.0] 78.7 [73.8,85.0] 24.2 [20.4,30.8]
db-bac-comp 74.1 [70.0,77.4] 81.9 [80.0,85.0] 31.5 [27.2,37.5]
db-bac-comp-np 72.2 [67.2,76.2] 82.4 [80.0,86.2] 35.2 [28.4,41.2]
db-bac-rep 73.7 [69.8,78.1] 70.9 [67.2,75.0] 22.1 [13.5,26.7]
db-bac-rep-np 73.2 [70.2,77.9] 70.4 [66.2,75.6] 22.5 [15.7,26.8]

ds-un-
low

db-standard 81.8 [75.9,90.0] 83.2 [80.0,90.0] 18.3 [10.0,27.6]
db-bac-comp 80.0 [75.0,87.7] 87.7 [80.0,90.0] 25.6[16.1,35.7]
db-bac-comp-np 77.6 [69.6,86.0] 87.7 [80.0,90.0] 29.5 [23.1,38.5]
db-bac-rep 79.6 [72.2,88.9] 76.4 [70.0,80.0] 15.7 [9.8,20.6]
db-bac-rep-np 79.3 [72.2,88.9] 76.1 [70.0,80.0] 15.7 [9.8,20.0]

Li
gh

t
(c

on
f.0

.0
5,

m
in

re
ad

s
50

)

ds-ln-
high

db-standard 61.8 [54.8,74.0] 71.0 [66.2,83.4] 42.2 [25.0,55.4]
db-bac-comp 58.0 [49.0,71.4] 70.8 [64.0,83.5] 47.9 [29.8,62.0]
db-bac-comp-np 57.3 [47.7,70.9] 70.9 [64.1,83.8] 49.0 [30.5,63.0]
db-bac-rep 66.7 [58.7,76.6] 81.5 [77.2,89.6] 40.4 [25.1,54.6]
db-bac-rep-np 66.3 [58.4,76.4] 81.4 [77.3,89.4] 41.0 [26.0,55.3]

ds-ln-
low

db-standard 43.3 [36.0,47.4] 92.7 [90.0,100.0] 70.9 [68.5,77.5]
db-bac-comp 38.6 [35.1,42.9] 93.5 [90.0,96.2] 75.5 [72.3,78.3]
db-bac-comp-np 36.7 [33.3,41.1] 92.9 [90.0,96.2] 77.0 [73.7,79.8]
db-bac-rep 34.8 [31.6,39.5] 87.4 [83.8,91.6] 77.9 [74.8,80.9]
db-bac-rep-np 34.4 [30.2,37.3] 87.2 [82.5,91.6] 78.2 [76.2,82.2]

ds-un-
low

db-standard 43.3 [36.0,47.4] 92.7 [90.0,100.0] 70.9 [68.5,77.5]
db-bac-comp 38.6 [32.6,42.8] 93.2 [90.0,100.0] 75.1 [72.6,80.1]
db-bac-comp-np 36.4 [31.1,39.6] 94.1 [90.0,100.0] 77.1 [74.7,80.9]
db-bac-rep 33.8 [27.3,38.3] 90.2 [90.0,100.0] 79.0 [76.1,83.5]
db-bac-rep-np 33.1 [27.3,37.2] 90.5 [90.0,100.0] 79.5 [76.8,83.9]

Table B.1: Species level taxonomic classification metrics F1, true positive rate (TPR)
and false discovery rate (FDR) (dataset mean [25 percentile, 75 percentile]) for different
combinations of datasets and general bacterial screening databases, repeated for three
Kraken 2 and Bracken parameter settings (left most column).IV



B. Additional Results

Dataset Database F1 (%) F1.5 (%)
D

ef
au

lt
(c

on
f.

0,
m

in
re

ad
s

10
)

ds-ln-
high

db-standard 42.0 [29.9,55.5] 51.9 [40.1,65.6]
db-bac-comp 39.4 [27.6,51.8] 49.3 [37.7,62.6]
db-bac-comp-np 37.2 [25.5,48.5] 47.1 [35.3,59.7]
db-bac-rep 34.2 [21.2,49.2] 44.5 [30.4,60.7]
db-bac-rep-np 33.2 [20.5,47.3] 43.5 [29.6,59.2]

ds-ln-
low

db-standard 20.7 [15.5,23.6] 29.3 [22.9,33.4]
db-bac-comp 20.2 [15.3,24.7] 28.9 [22.6,34.8]
db-bac-comp-np 17.5 [13.1,19.7] 25.4 [19.7,28.6]
db-bac-rep 8.3 [6.4,8.7] 12.7 [10.0,13.4]
db-bac-rep-np 8.1 [6.2,8.7] 12.4 [9.6,13.3]

ds-un-
low

db-standard 18.2 [12.0,22.3] 26.2 [18.2,31.8]
db-bac-comp 17.9 [12.1,21.4] 25.7 [18.2,30.7]
db-bac-comp-np 15.5 [11.2,19.4] 22.7 [17.1,28.1]
db-bac-rep 6.7 [4.7,8.5] 10.5 [7.4,13.2]
db-bac-rep-np 6.5 [4.5,7.8] 10.0 [7.1,12.1]

O
pt

im
al

(c
on

f.0
.0

75
,

m
in

re
ad

s
75

0)

ds-ln-
high

db-standard 77.9 [71.4,87.1] 72.8 [64.4,83.3]
db-bac-comp 78.9 [73.2.87.7] 74.0 [66.4,84.4]
db-bac-comp-np 79.0 [72.9,88.2] 74.2 [66.1,84.8]
db-bac-rep 75.0 [66.4,84.2] 69.0 [58.9,79.6]
db-bac-rep-np 75.0 [66.4,83.7] 69.1 [58.9,79.5]

ds-ln-
low

db-standard 95.5 [92.8,98.6] 96.2 [93.9,99.1]
db-bac-comp 95.5 [93.2,98.1] 96.5 [94.2,98.5]
db-bac-comp-np 94.2 [92.0,97.6] 95.7 [94.2,98.5]
db-bac-rep 94.1 [91.5,98.2] 94.3 [91.7,98.0]
db-bac-rep-np 94.3 [91.7,98.2] 94.4 [91.8,98.0]

ds-un-
low

db-standard 97.1 [94.7,100.0] 97.5 [96.6,100.0]
db-bac-comp 95.6 [92.3,100.0] 97.0[94.9,100.0]
db-bac-comp-np 94.1 [90.0,100.0] 96.0 [93.6,100.0]
db-bac-rep 96.9 [94.7,100.0] 96.7 [92.9,100.0]
db-bac-rep-np 97.2 [94.7,100.0] 96.8 [92.9,100.0]

Li
gh

t
(c

on
f.0

.0
5,

m
in

re
ad

s
50

)

ds-ln-
high

db-standard 85.0 [81.3,90.6] 84.8 [80.1,91.2]
db-bac-comp 83.7 [79.4,89.7] 84.2 [80.9,90.3]
db-bac-comp-np 82.8 [79.0,89.2] 83.6 [79.7,89.8]
db-bac-rep 88.5 [86.0,91.8] 89.9 [87.9,92.5]
db-bac-rep-np 88.2 [85.5,91.8] 89.7 [87.5,92.6]

ds-ln-
low

db-standard 79.8 [75.9,84.5] 86.2 [83.4,89.9]
db-bac-comp 66.7 [59.8,72.8] 76.0 70.8,81.3]
db-bac-comp-np 71.9 [67.4,77.6] 80.2 [77.1,84.9]
db-bac-rep 70.1 [65.0,77.1] 78.5 [74.2,84.6]
db-bac-rep-np 69.5 [63.2,76.2] 78.0 [72.9,83.9]

ds-un-
low

db-standard 77.8 [69.2,84.6] 84.5 [78.5,89.9]
db-bac-comp 73.5 [66.0,80.5] 81.4 [75.9,87.0]
db-bac-comp-np 66.7 [59.8,72.8] 76.0 [70.8,81.3]
db-bac-rep 67.8 [60.0,76.9] 76.8 [70.9,84.4]
db-bac-rep-np 66.4 [58.1,75.0] 75.7 [69.2,83.0]

Table B.2: Genus level taxonomic classification metrics F1.5 and F1 (dataset mean
[25 percentile, 75 percentile]) for different combinations of datasets and general bacterial
screening databases, repeated for three Kraken 2 and Bracken parameter settings (left
most column). V
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Dataset Database TPR (%) FDR (%)
D

ef
au

lt
(c

on
f.

0,
m

in
re

ad
s

10
)

ds-ln-
high

db-standard 92.4 [89.7,96.4] 71.3 [60.7,81.9]
db-bac-comp 92.2 [90.1,96.6] 73.6 [64.4,83.9]
db-bac-comp-np 92.2 [90.2,96.6] 75.7 [67.1,85.2]
db-bac-rep 98.3 [97.5,99.4] 78.4 [67.3,88.1]
db-bac-rep-np 98.3 [97.5,99.4] 79.1 [68.9,88.5]

ds-ln-
low

db-standard 99.6 [100.0,100.0] 88.2 [86.6,91.6]
db-bac-comp 100.0 [100.0,100.0] 88.5 [85.9,91.7]
db-bac-comp-np 100.0 [100.0,100.0] 90.3 [89.1,93.0]
db-bac-rep 99.6 [100.0,100.0] 95.7 [95.4,96.7]
db-bac-rep-np 99.6 [100.0,100.0] 95.8 [95.5,96.8]

ds-un-
low

db-standard. 99.8 [100.0,100.0] 89.8 [87.5,93.6]
db-bac-comp 100.0 [100.0,100.0] 90.0 [88.0,93.6]
db-bac-comp-np 100.0 [100.0,100.0] 91.5 [89.3,94.0]
db-bac-rep 99.6 [100.0,100.0] 96.5 [95.5,97.6]
db-bac-rep-np 99.6 [100.0,100.0] 96.6 [95.9,97.7]

O
pt

im
al

(c
on

f.0
.0

75
,

m
in

re
ad

s
75

0)

ds-ln-
high

db-standard 66.2 [55.7,78.0] 1.4 [0.0,2.2]
db-bac-comp 67.7 [57.9,79.5] 1.7 [0.0,2.5]
db-bac-comp-np 67.9 [57.6,80.0] 1.9 [0.0,2.7]
db-bac-rep 61.5 [49.9,73.0] 0.9 [0.0,1.8]
db-bac-rep-np 61.6 [49.9,73.0] 1.0 [0.0,1.8]

ds-ln-
low

db-standard 97.2 [94.6,100.0] 5.9 [0.0,10.2]
db-bac-comp 98.3 [97.0,100.0] 6.9 [0.0,9.8]
db-bac-comp-np 98.4 [97.1,100.0] 9.4 [3.6,13.8]
db-bac-rep 94.7 [91.6,100.0] 6.0 [0.0,7.5]
db-bac-rep-np 94.7 [91.6,100.0] 5.6 [0.0,7.9]

ds-un-
low

db-standard 98.3 [100.0,100.0] 3.9 [0.0,9.3]
db-bac-comp 99.4 [100.0,100.0] 7.4 [0.0,11.9]
db-bac-comp-np 99.4 [100.0,100.0] 10.0 [0.0,18.2]
db-bac-rep 96.4 [90.0,100.0] 2.3 [0.0,0.0]
db-bac-rep-np 96.4 [90.0,100.0] 1.7 [0.0,0.0]

Li
gh

t
(c

on
f.0

.0
5,

m
in

re
ad

s
50

)

ds-ln-
high

db-standard 84.9 [79.4,93.2] 13.4 [6.2,18.4]
db-bac-comp 85.4 [80.4,93.7] 16.4 [8.4,24.2]
db-bac-comp-np 85.5 [80.6,93.7] 18.1 [8.4,25.3]
db-bac-rep 92.7 [89.2,97.1] 14.3 [6.0,21.9]
db-bac-rep-np 92.7 [89.2,97.1] 14.8 [6.2,22.6]

ds-ln-
low

db-standard 99.3 [100.0,100.0] 32.6 [26.8,38.8]
db-bac-comp 100.0 [100.0,100.0] 48.7 [42.8,57.3]
db-bac-comp-np 99.7 [100.0,100.0] 42.8 [36.4,49.2]
db-bac-rep 98.8 [98.4,100.0] 44.7 [37.2,50.9]
db-bac-rep-np 98.8 [98.4,100.0] 45.3 [38.5,52.9]

ds-un-
low

db-standard 99.8 [100.0,100.0] 34.4 [25.0,47.1]
db-bac-comp 100.0 [100.0,100.0] 40.4 [32.7,50.7]
db-bac-comp-np 100.0 [100.0,100.0] 48.7 [42.8,57.3]
db-bac-rep 99.4 [100.0,100.0] 47.4 [37.5,57.1]
db-bac-rep-np 99.4 [100.0,100.0] 49.1 [40.0,59.1]

Table B.3: Genus level taxonomic classification metrics true positive rate (TPR) and
false discovery rate (FDR) (dataset mean [25 percentile, 75 percentile]) for different com-
binations of datasets and general bacterial screening databases, repeated for three Kraken
2 and Bracken parameter settings (left most column).VI



B. Additional Results

(a) FDR for Kraken 2 assigned reads (b) FDR for Bracken estimated reads

(c) TPR for Kraken 2 assigned reads (d) TPR for Bracken estimated reads

(e) F1.5 for Kraken 2 assigned reads (f) F1.5 for Bracken estimated reads

Figure B.1: Average (a) false discovery rates (FDR) Kraken 2 read cut-off, (b) false
discovery rates (FDR) Bracken read cut-off, (c) true positive rates (TPR) Kraken 2 read
cut-off, (d) true positive rates (TPR) Bracken read cut-off, (e) F1.5 scores Kraken 2 read
cut-off and (f) F1.5 scores Kraken 2 read cut-off, for the datasets ds-ln-high, ds-ln-low and
ds-un-low over read classification abundance filtering for each species. The classification
reference database used for (a)-(f) is the baseline db-standard. Note that the x-axis are
logarithmic.
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B. Additional Results

DB Sample Group P N TP FP FN
db

-s
ta

nd
ar

d
control-g0 0 10 0.0 [0.0,0.0] 0.0 [0.0,0.0] 0.0 [0.0,0.0]
control-g1 0 10 0.0 [0.0,0.0] 0.0 [0.0,0.0] 0.0 [0.0,0.0]
control-g4 0 10 0.0 [0.0,0.0] 0.25 [0.0,1.0] 0.0 [0.0,0.0]
a-baumannii-g0 1 9 1.0 [1.0,1.0] 0.0 [0.0,0.0] 0.0 [0.0,0.0]
a-baumannii-g1 1 9 1.0 [1.0,1.0] 0.0 [0.0,0.0] 0.0 [0.0,0.0]
a-baumannii-g4 1 9 1.0 [1.0,1.0] 0.0 [0.0,0.0] 0.0 [0.0,0.0]

s s-aureus-g0 1 9 0.6 [0.0,1.0] 0.0 [0.0,0.0] 0.4 [0.0,1.0]
s-aureus-g1 1 9 0.4 [0.0,1.0] 0.0 [0.0,0.0] 0.6 [0.0,1.0]
s-aureus-g4 1 9 0.6 [0.0,1.0] 0.0 [0.0,0.0] 0.4 [0.0,1.0]

db
-b

ac
-s

ub
se

t

control-g0 0 10 0.0 [0.0,0.0] 1.0 [1.0,1.0] 0.0 [0.0,0.0]
control-g1 0 10 0.0 [0.0,0.0] 1.25 [1.0,2.0] 0.0 [0.0,0.0]
control-g4 0 10 0.0 [0.0,0.0] 1.5 [1.0,2.0] 0.0 [0.0,0.0]
a-baumannii-g0 1 9 1.0 [1.0,1.0] 0.2 [0.0,1.0] 0.0 [0.0,0.0]
a-baumannii-g1 1 9 1.0 [1.0,1.0] 0.6 [0.0,1.0] 0.0 [0.0,0.0]
a-baumannii-g4 1 9 1.0 [1.0,1.0] 0.2 [0.0,1.0] 0.0 [0.0,0.0]
s-aureus-g0 1 9 1.0 [1.0,1.0] 0.2 [0.0,1.0] 0.0 [0.0,0.0]
s-aureus-g1 1 9 1.0 [1.0,1.0] 0.6 [0.0,1.0] 0.0 [0.0,0.0]
s-aureus-g4 1 9 1.0 [1.0,1.0] 0.2 [0.0,1.0] 0.0 [0.0,0.0]

Table B.4: Species level taxonomic classification of the ds-un-low dataset where only the
subset of 7 species were considered. The average [min, max] number of true positive (TP),
false positive (FP) and false negative (FN) for the five replicates in each dataset group are
listed together with the theoretically expected number of positives (P) and negatives (N).
The dataset was run for the databases db-standard with Kraken 2 confidence = 0.075 and
Bracken read threshold = 750 and the db-bac-subset with Kraken 2 confidence = 0.3 and
Bracken read threshold = 10,000.
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B. Additional Results

Sample Group F1 (%) F1.5 (%) TPR (%) FDR (%)
ani100_cLOW_stTrue 68.3

[63.0,74.0]
62.4

[57.0,68.1]
54.9

[49.4,60.5]
8.9

[7.3,11.6]
ani100_cLOW_stFalse 33.1

[26.5,40.9]
27.7

[21.5,34.9]
22.0

[16.4,28.2]
30.6

[22.2,34.4]
ani100_cHIGH_stTrue 53.5

[51.8,54.2]
45.8

[44.1,46.4]
37.2

[35.6,37.7]
4.5 [3.5,4.9]

ani100_cHIGH_stFalse 25.9
[24.5,28.7]

20.6
[19.3,23.0]

15.5
[14.4,17.5]

19.3
[16.3,21.6]

ani99_cLOW_stTrue 80.8
[78.6,83.4]

76.3
[75.0,79.2]

70.2
[68.2,73.0]

4.3 [2.4,5.3]

ani99_cLOW_stFalse 68.2
[66.9,71.8]

62.8
[60.5,67.5]

55.8
[52.4,61.5]

11.7
[7.5,14.7]

ani99_cHIGH_stTrue 66.8
[63.6,71.0]

59.6
[56.1,64.4]

50.9
[47.1,56.1]

2.2 [1.3,3.0]

ani99_cHIGH_stFalse 46.0
[42.7,48.7]

38.5
[35.3,41.1]

30.5
[27.6,32.8]

4.7 [4.0,5.3]

ani97_cLOW_stTrue 82.9
[80.4,84.7]

78.8
[75.6,81.5]

73.0
[68.8,76.4]

3.9 [2.2,4.7]

ani97_cLOW_stFalse 67.1
[66.3,68.3]

62.0
[61.1,64.8]

55.3
[53.7,59.1]

13.6
[11.0,17.3]

ani97_cHIGH_stTrue 61.3
[57.5,63.8]

53.6
[49.5,56.2]

44.6
[40.6,47.2]

1.6 [1.0,1.7]

ani97_cHIGH_stFalse 50.4
[48.5,51.4]

42.6
[40.8,43.6]

34.2
[32.5,35.1]

4.3 [3.2,5.1]

ani95_cLOW_stTrue 66.4
[61.6,69.1]

61.2
[55.4,65.0]

54.4
[48.0,59.9]

13.7
[9.9,17.5]

ani95_cLOW_stFalse 57.0
[52.6,61.5]

51.6
[47.3,57.2]

45.1
[40.5,51.1]

20.3
[14.4,24.9]

Table B.5: Species level taxonomic classification metrics F1, F1.5, true positive rate
(TPR) and false discovery rate (FDR) for the bacteria in the dataset ds-ln-high run for
the db-standard database with Kraken 2 confidence = 0.05 and Bracken read threshold =
50. The values listed are means of the 10 replicates in each dataset group together with
the minimum and maximum [min, max] of the sample group.
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B. Additional Results

Sample Group F1 (%) F1.5 (%) TPR (%) FDR (%)
ani100_cLOW_stTrue 58.4

[52.9,63.6]
65.6

[60.8,70.6]
82.7

[81.9,84.8]
54.4

[50.2,60.8]
ani100_cLOW_stFalse 63.2

[59.1,67.3]
63.8

[61.4,67.0]
64.8

[62.1,67.8]
38.0

[34.4,42.7]
ani100_cHIGH_stTrue 74.9

[73.7,76.4]
75.3

[74.1,76.6]
76.0

[75.3,76.9]
26.1

[23.8,27.5]
ani100_cHIGH_stFalse 66.3

[64.5,69.1]
63.1

[61.3,65.8]
58.5

[56.5,61.1]
23.5

[21.1,24.8]
ani99_cLOW_stTrue 61.7

[54.9,65.9]
70.7

[65.8,74.0]
93.7

[92.3,94.1]
53.2

[48.8,61.6]
ani99_cLOW_stFalse 66.9

[63.7,71.4]
74.2

[72.2,77.5]
90.1

[87.6,92.5]
46.4

[42.9,50.9]
ani99_cHIGH_stTrue 79.3

[78.6,81.3]
81.5

[81.1,81.6]
85.5

[83.8,87.1]
25.8

[22.0,27.7]
ani99_cHIGH_stFalse 79.5

[77.1,81.8]
78.8

[76.8,81.4]
77.7

[75.7,80.3]
18.4

[15.6,20.8]
ani97_cLOW_stTrue 55.5

[51.1,59.7]
65.8

[62.3,69.2]
93.8

[92.3,95.7]
60.3

[55.9,64.9]
ani97_cLOW_stFalse 64.4

[60.8,67.7]
72.3

[69.6,75.5]
90.5

[89.9,92.8]
49.5

[46.3,54.3]
ani97_cHIGH_stTrue 77.3

[76.9,78.1]
79.3

[78.7,79.7]
82.9

[81.3,84.5]
27.5

[25.9,29.2]
ani97_cHIGH_stFalse 77.3

[76.6,78.5]
78.2

[77.3,79.3]
79.7

[78.1,81.2]
24.8

[23.3,25.7]
ani95_cLOW_stTrue 53.1

[50.7,55.2]
61.7

[60.2,63.5]
83.9

[82.9,85.8]
60.8

[58.7,64.1]
ani95_cLOW_stFalse 55.7

[54.3,59.9]
62.9

[59.5,66.9]
80.7

[78.0,85.0]
56.4

[52.5,59.2]

Table B.6: Species level taxonomic classification metrics F1, F1.5, true positive rate
(TPR) and false discovery rate (FDR) for the bacteria in the dataset ds-ln-high run for
the db-bac-rep database with Kraken 2 confidence = 0.05 and Bracken read threshold =
50. The values listed are means of the 10 replicates in each dataset group together with
the minimum and maximum [min, max] of the sample group.
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