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Aiding the identification of spurious correlations
Fredrik Möller
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Abstract
Today, end-to-end neural networks that feature deep and complex architectures, are
common tools to use in natural language processing. By using these methods it
has become harder to identify which inputs have contributed the most to a model’s
classification. This issue leads to the problem of models overfitting on features that
cannot directly be identified by a developer.

To open up the black box of complex deep learning natural language processing
systems, this study aims to investigate what information can be extracted from the
data used to train a model and how the model’s inputs are weighted during pre-
diction. This thesis aims to present methods that can aid in the identification of
differences between the population a developer intends to model with a data set and
what correlations a model makes from the true content of the data.

By presenting three novel methods that can aid a developer with the task of identify-
ing spurious correlations, it was possible to present information regarding a spurious
correlation between two pre-selected keywords and a model’s classification. It was
also shown that the identification and reduction of spurious correlations is a tricky
subject. Results showed that, from the reduction of the spurious correlation asso-
ciated with the selected keyword, the model made another correlation which could
be considered as spurious.

Keywords: NLP, Explainability, Regularization, Layer-wise relevance propagation,
TF-IDF, NCOF.
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1
Introduction

Natural language processing (NLP) has advanced tremendously in the past years and
so have the commonly used methods [2]. Today end-to-end neural networks (NN),
featuring deep and complex architectures, are common. The shift from traditional
feature-rich and statistical methods to neural networks has moved the linguistic
knowledge from the algorithms into the data used to train the networks. This shift
have resulted in that the decision process of the NLP models have become harder
to understand [3]. The shift to neural networks has also made the identification
and separation of spurious and true correlations in a model’s training data more
complex, given the vast amount of data required to train NN.

The issue of separating spurious and true correlations form data and its labels is
not a trivial problem when the underlying model is unknown. This problem is not
unique to the NLP field and has been investigated in control theory by Liu, Shah,
and Jiang among others [4]. In their paper "On-line outlier detection and data clean-
ing" Liu, Shah, and Jiang mention that it is generally hard to filter outliers while
simultaneity keeping track of a changing process model [4]. In other words, tracking
what the data models while removing samples is difficult since what is considered
as a true correlation in the data also changes when samples are removed. Since
this tracking is practically impossible, it must be accepted that when removing data
with the intent of reducing spurious correlation there is a risk that true correlations
are removed leading to an alteration of what the data models. Since an alteration
cannot be measured directly from the data the change needs to be estimated from
other sources such as measuring how the data influences an NLP model’s predictions.

Neither of the methods that will be investigated and used in this thesis are able
to separate a spurious from a true correlation. As the issue of correlation separation
remains unsolved, this thesis will focus will focus on presenting information regard-
ing the data and how it has influenced a model such that a human can make an
informed decision regarding what is to be considered as a true or spurious correla-
tions.

An example of a method that can be used to investigate the importance of the
inputs of an NLP model is Layer-wise relevance propagation (LRP) [5]. The LRP
method acts by propagating the prediction of a model back to its inputs, further
theory regarding the method is presented in Chapter 2, Section 2.4.1. In this study
three novel ways of identifying possible spurious correlations in a model and the
data used to train it will be presented. The LRP method will be used both as a
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1. Introduction

method for aiding bias identification but also as a way to show and evaluate if it is
possible to reduce the importance of identified words for a model’s prediction.

1.1 Relation between bias and spurious correla-
tions

Bias will in this study refer to the phenomena of a model producing results that
are systematically incorrect due to spurious correlations. These correlations would
entail that a model heavily bases its prediction on entities that do not hold a true
correlation between the input, its label, and the subject being modelled. What is
considered to be a spurious correlation can be considered a subjective matter and
depends on both one’s own interpretation of what information is present in the data
and the classification task.

It can also be noted that due to an ever-changing social landscape building a pre-
dictive model from historical data will always carry the risk of inheriting a spurious
correlation [6].

In Section 2.1 further discussion regarding bias and the implications of bias in a
system is held.

1.2 Purpose and aim
The task of this project is to investigate the possibility of producing informed support
regarding possible spurious correlation in an NLP model by presenting information
regarding the models prediction and the data it has been trained on.

The hypothesis that will be tested is that if a spurious correlation is identifiable
from the predictions of a model, then the correlation should also be identifiable in
the data or the weighting of the model’s inputs. In conjunction to this hypothesis
it will be investigated if the spurious correlation can be reduced or removed by ap-
plying a focused regularization method to the data.

This thesis aims to present methods that can aid a developer to identify possible
spurious correlations. The aid shall be in the form of concise information regarding
content in the data that is either skewed in its class distribution or have a high
weighting in in a model for incorrect classifications

The end goal of this study is to develop methods that can support a developer
with the process of detecting content in a data set which affect a model’s classifi-
cation disproportionately to its frequency in the data to train a model. This study
intends to not focus on a specific type of content but instead present objective re-
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1. Introduction

sults regarding how the distribution of information between the classes in a data set
has affected its weighting in the model’s prediction.

1.3 Objectives
To reach the aim and goals presented in Section 1.2 this thesis will investigate the
following questions:

• What information should be presented to a developer such that an informed
decision can be made regarding if a spurious correlation have been identified?

• What methods can be used to produce this information?
• How is the presented information weighted in a model during classification?
• Are the methods sufficient to replace current processes for the identification

of spurious correlations?

This thesis will focus to reach the proposed objectives through filtering identified
keywords that could be sources of spurious correlations. This approach will be a
form of regularization of the data and will act as a method to reduce the models
weighting of the identified keywords.

1.4 Disclaimers and project-wide limitations
This study focuses first and foremost on the explainability aspect of identification
and reducing biases in an NLP model. This is due to the project being conducted as
a proof of concept of the presented techniques and methods to show their potential
for reducing the impact of specific words in a model’s classification. For this reason,
the idea of only calling the project a success if and only if the accuracy of a model
is increased when the data is regularized using the proposed methods is deemed as
wrong.

This project does not aim to conduct an extensive study regarding the effectiveness
of different convolutional neural network(CNN) model structures. This limitation
also includes extensive hyperparameter sweeps. The reason for this limitation is the
increase in complexity and computational cost associated with training and evalua-
tion of CNN models with more parameters than the one used in this study. Another
cause for this limitation is the cost of performing LRP for larger models and the
challenge of implementing the method on multiple models.

1.5 Related work
The importance of being aware of what a model bases its predictions on was shown
by Kiritchenko and Mohammad in their study from 2018 [7]. In their study of 219
sentiment analysis systems over 75% of the evaluated systems scored sentences dif-
ferently depending on which gender or race the sentence involved. They also found
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1. Introduction

that a bias was more common for race than for gender, with score differences up to
34% for sentences containing African American versus European American names.
Thus indicating the prevalence and effect spurious correlations can have in sentiment
analysis systems.

Another example of the importance of understanding the predictions of an NLP
model is Amazon’s attempt to create a classifier to score job applications sent to
them [8]. It was found that the classifier scored male applicants consistently higher
than females. The reason for this was that the data Amazon used to train the
model consisted mainly of applications sent by males [8]. The data they used was
not faulty per se, but the data they used was unrepresentative of the population
they were trying to model.

The approach of removing words to reduce overfitting is not new. Søgaard and
Johannsen presented in their paper "Robust learning in random subspaces: equip-
ping NLP for OOV effects" that by dropping features from the data it was possible
to reduce the classification error rate in a model for data sampled from a previously
unseen domain [9]. The difference between the method presented by Søgaard and
Johannsen and the approaches this thesis will present is that this project aims to
focus on overrepresentations between the classes in the data, while Søgaard and
Johannsen focused on reducing the effect of out-of-vocabulary (OOV) effects.

NLP models are very prone to overfitting and generally lose performance quite
quickly when the training and test data are pooled from two separate domains and
are not representative of each other [9]. One cause for this quick degradation of the
model’s performance is called OOV effects [9]. A high-level explanation of OOV ef-
fects is that the model has made correlations between the labels of the training data
and the specific language used in the subset. These correlations cause the model to
be unable to make good generalisations such that the model misclassify parts of the
test data. What Søgaard and Johannsen presented in their paper, [9], was that by
reducing the effect of OOV words the accuracy of a model could be increased, thus
reducing the impact of spurious correlations created by the OOV words. Where
Søgaard and Johannsen investigated the impact of OOV words this thesis aims to
investigate the influence of overrepresented words in subsets of the training data in
the context of explainability and identification of spurious correlations.

Research that presents methods for identifying and correcting a spurious correla-
tion between a model’s training data and its labels have been conducted by Jiang
and Nachum [10]. Jiang and Nachum showed that by re-weighting the class distri-
bution in the training data the impact of a manually induced bias in the data could
be reduced. Their presented method for re-weighting the data distribution in the
training data does however not take into account the models weighting of specific
content during classification for the re-weighting process.

LRP has been applied to NLP classification tasks with good results regarding ex-
plaining model predictions [11, 12], and previous work has identified the issue with
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bias in NLP models and proposed methods on how to identify them [13, 14], no
past papers have been found to use bias identification methods as the base for data
regularization.

As the LRP method is possible to use as the base for a heat map of a model’s
input it is important to note that previous efforts have been made to extract infor-
mation and interpret heat maps. Samek et al [15] mention that solution of how to
effectively quantify and measure the quality of a heatmap was at the time, 2017, an
open question.

Augmentation of the training data to reduce overfitting and skewed weighting when
working with neural networks is very common, and research is performed in this field.
An example of this is Jason Wei and Kai Zou´s [16] method easy data augmentation
(EDA). They showed that their proposed techniques for data augmentation had a
positive effect on model performance on both large and small data sets. However,
their proposed techniques are stochastic operators on the data and do not present
a developer the opportunity to interact with the methods other than tuning hyper-
parameters. This study, in contrast to the work presented by Wei and Zou, will
work towards augmenting the data in a more deterministic fashion, a move away
from stochastic operators deciding what data is to be augmented. Jason Wei and
Kai Zou also mentions that there is a lack of standardised data augmentation tech-
niques in NLP, in contrast to the field of computer vision.

An idea of how to regularize a neural network as a measure to counteract the issue
of overfitting was presented by Srivastava et al in their paper "Dropout: A Simple
Way to Prevent Neural Networks from overfitting" [17]. Their presented method
of regularization was to deactivate random hidden neurons in the network during
training, this method was proven to significantly reduce overfitting by preventing
the hidden units from co-adapting too much. Although Srivastava et al focus on
the regularizing a neural network through its parameters and this study aims to
regularize a model by altering its training data. The idea of reducing the impact of
specific neurons or features in the data to increase the a model’s ability to generalise
is common to Srivastava´s et al paper and this thesis.
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2
Theory

This chapter will present the theory and related work that is relevant to the scope of
the thesis. The chapter will begin by explaining the notion of biases in data sets and
the implication of their presence. It is then followed by theory related to the type
of model used for the NLP task, a CNN set in a supervised learning environment,
together with theory related to how text is represented for solving the classification
task. The two final sections present the theory regarding how the task of identifying
possible spurious correlations in the chosen model and the training data can be
solved.

2.1 Overfitting and bias relationships
A spurious correlation generally occurs when two variables are statistically related
but not directly causally related. Meaning that they falsely appear to share a rela-
tion to each other. The underlying data rather than the chosen algorithm are often
the root cause of a spurious correlation. This type of correlations and biases can
be introduced to the data from the sample selection process or from oversampling
from specific populations, this can cause a data set to become misrepresentative of
its intended population [18]. Spurious correlations can also be introduced into data
through user generated feedback loops, where users may engage with content in an
unintended way which can cause biases in a system to strengthen [19].

Because spurious correlations have a detrimental effect on a models accuracy and
classification robustness they are often first noted when a model have been trained.
Spurious correlations can be avoided to an extent by identifying some of the possible
sources of bias in a models training data. One type is called sample bias, it appears
when data used to train a model is unrepresentative of the domain the model will
operate in. This type of bias is reduced by expanding the domain of the training data
such that it represents the models operational domain [20]. Another type of data
bias that is not unusual is called prejudice bias. This bias is the result of including
and training a model on data influenced by cultural, ethnic, or other stereotypes [20].

It is possible to conceptualise that if there is a discrepancy between a model’s ac-
curacy on some training and test data there must exist a difference between the
populations that the sets tries to model. If we assume that the sets are supposed
to be representative of each other then the difference in modelled populations can
be attributed to spurious correlations in the data sets. An example such correlation
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2. Theory

can be the difference in the distribution of information present in a data set between
what the creator of the data set intended and the real distribution the data contains.
Thus it is possible for the spurious correlations in the training data to affect a model
during its training and cause it to lose accuracy when classifying the test data set
due to the two sets being unrepresentative of each other.

Another general limitation that should be kept in mind is that the data available to
train a model is always finite, thus a perfect representation of reality can never be
created. Due to the issue of finite data, there will always be a discrepancy between
the choice of data used to train a model and its representation of the population
that is being modelled.

2.1.1 Creating bias in a data set
By recalling the notion from the previous section, 2.1, that data is always finite and
that a perfect representation of a population can never be created. It can be noted
that this discrepancy can thus be used as a source of biases by using the limited data
to intentionally represent a population it does not fairly model. Another method to
create a bias in a data set is to skew a subset of the data towards one class, such
that identifying features of the subset are overrepresented in that class.

By consciously creating a bias towards a few select keywords in a data set, and
through training inducing this bias in a model, it is possible to use the knowledge
of the bias to evaluate the ability of different methods to detect it and investigate
how it can be reduced. This manually created bias can be considered as a spurious
correlation due to not being naturally present in the data. As natural spurious cor-
relations can be difficult to detect due to the subjective matter of identifying the
difference between what is being modelled by the data and what is intended to be
modelled, using a data set with a manually created bias as a test environment for
the identification of said bias creates the possibility of working with a data set with
a known issue.

2.2 Supervised learning and neural network clas-
sifiers

Supervised learning tasks are a subset of problems in machine learning. A super-
vised learning task can be generalised as an optimisation problem with the goal of
optimising the parameters of a NN such that a loss function, L(x, y), is minimised,
a general example of a loss function is presented in Equation 2.1. Gradient de-
scent is an algorithm that is often used to update the weights of a NN during its
training to minimise the networks loss function, such that the optimal prediction
f ∗ can be reached [21]. The algorithm finds the minimum of the loss function by
taking steps proportional to the negative gradient of L(x, y), thus walking towards
the minimum of L(x, y) [21]. The walking is performed by updating the weights of
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the NN iteratively during the networks training.

f ∗ = argmin
∑
x,y

Loss(f(x), y) (2.1)

In supervised learning, a model is trained by giving a label to each data sample, the
labels are simply the answers to what each data sample represent. The network is
then able to process the difference between the labels of the data and its predictions
such that its predictions converge towards the labels of the data [21]. If the model
has been able to generalise the relationship between the training data and its labels
then the model will be able to accurately predict the label of the previously unseen
data.

Figure 2.1: Example of a simple fully connected neural network.
Image source: mlnotebook.github.io [1]

Neural networks are a form of computational learning system that are used to solve
complex mathematical tasks and interpret data [21]. The general structure of a NN
consists of one input layer which receives the data to be processed, several hidden
layers which process the data received in the input layer, and one output layer
which makes the final processing and formats the output of the model, an example
is given in Figure 2.1. Each layer generally consists of several neurons that each
applies a nonlinear operation to their inputs. Examples of common operations are
presented in Equation (2.2) and (2.3) which depict the Sigmoid and ReLU function
respectively, in Figure 2.2 their characteristics are visualised. A neuron in a layer is
generally only connected with the layer in front and behind it and does not interact
with the neurons in the same layer as itself. The structure of a NN can thus be
described in short as a series of non-linear operations interacting through linear
connections.

Ysigmoid = F (yin) = 1
1 + e−yin

(2.2)
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YReLU = F (yin) =
{

0 for yin < 0
yin for yin ≥ 0 (2.3)

The application of classifying data using a NN and the supervised learning approach
is extremely broad in terms of possible field of application. This broad range is due
to the requirement for application is that of data with corresponding labels for
training the network. Classifiers trained using supervised learning can today be
found in systems that handle facial recognition, medical imagery, voice recognition,
and NLP among others.

(a) Plot of the range of the Sigmoid
activation function and its derivative.

(b) Plot of the range of the ReLU
activation function and its derivative.

Figure 2.2: Plot of the characteristic shape of the Sigmoid and ReLU
activation functions and their derivatives.

2.2.1 Convolutional neural networks
One possible way of structuring the neurons in a NN and the connections between
the layers is called a Convolutional neural networks. A CNN is distinguished by its
use of convolutional layers which try to mirror the structure of the human visual
cortex through stacking layers on top of each other that processes and identifies
complex features [22]. An example of how the calculations are processed can be
seen in Figure 2.3.

The workhorse in convolutional layers can be described as many small templates,
generally called a kernels, which are processed over the input of the layer. This
causes areas that match the pattern of the kernel to produce a large positive out-
put. While areas of the input which match the kernel pattern poorly or not at all
produce an output which trend towards zero [22]. An example of a one-dimensional
kernel is visualised in Figure 2.4. By processing the inputs as a group, the features
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that a convolutions layer learns can be considered as a form of correlation between
different input combinations, and its output.

Figure 2.3: Example of a single calculation pass for a neuron in a convolutional
layer using a 2-d kernel.
Image source: mlnotebook.github.io [1]

The use of kernels in a CNN is what distinguishes it the most from a fully connected
feed-forward network. The kernels also make the number of trainable parameters in
a CNN compared to a fully connected network far smaller given the same dimension
of layers in the networks [22]. This is due to the parameters of the kernel being
reused as it is processed over the input data of the layer. Thus is there no need to
have a mapping between each neuron in two subsequent layers, which is the case for
fully connected networks. [

1 0 1
]

Figure 2.4: Example of a 1d kernel in a CNN layer.

In conjunction with convolutional layers, a type of layer called pooling layer is often
used. The pooling layer acts on the output of a convolutional layer by downsam-
pling its feature map. There are two common approaches of how to perform the
downsampling called max pooling and average pooling. The difference between the
two methods is that max-pooling selects the feature with the highest value from the
feature map while average pooling calculates the average of the map as the output.
The size of the feature map which the pooling layer acts on is task-specific but can
generally be seen as a small window that slides across the entirety of the layer’s
input. The pooling makes it possible to take into consideration small movements of
the features of the input to the convolutional layer, thus making the CNN able to
more robustly handle small variations of its inputs.

2.2.2 Integer representations
Before any neural network NLP model can make a prediction the input data needs
to be translated from text to a representation that the computer can understand.
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The representations task is to create a one to one mapping between each unique
word w in the dictionary W of the input corpus to a unique token t, where t ∈ T
and thus |W | = |T | i.e. the total number of words in the integer library is equal to
the number of unique words in the corpus [23]. The number of unique words in a
corpus often explodes as the size of the corpus increases, this makes it so that |T |
is often less than |W |. The limitation of T is frequently implemented by setting a
threshold for the size of |T | and only representing the |T | most frequent words in
the corpus. This limitation will cause documents in the corpus to only be partially
represented, due to some words inevitably lacking representation in T .

2.2.3 Word embeddings
Word embeddings can be considered as a more complex representation of word than
what can be done through a simple 1-d integer representation. The use of word
embeddings gives a way to encode text to an efficient, dense representation in where
words with a similar meaning will receive a similar encoding. The finalised word
embeddings generally takes the form of an n-dimensional real-valued vector where
each represented word has one unique vector connected to it. The embeddings are
not directly specified by a developer but are instead a trainable parameter which is
updated in the same way as a dense layer in a NN. Through this encoding, it is not
only possible to capture similarities between words but is also possible to increase the
dimension of the input to the model, compared to the single integer representation
method presented in Section 2.2.2. This increase of dimensions creates a larger
separation between the feature-weight combination which increases the probability
that the data set is linearly separable [24]. Other representation methods such as
one-hot encoding, where each represented word are represented by a sparse vector
with a single high bit at the index in the vector corresponding to the words index in
the dictionary T [25]. As the representation vector for each word will have the length
of |T |, a sentence represented using one-hot encoding will be a combination of sparse
vectors. Using word embeddings to represent one-hot encoded words will act as a
dimensional decrease as long as the length of the embedding vector is smaller than
the size of the token dictionary T , n < |T |. However, the vector will be transformed
from sparse to dense, thus can it be seen as a more complex representation.

2.3 Data alteration using word filters
It is possible to apply a filter containing words that should receive special handling
during the mapping process of words to integer representations [23]. Consider a
word w included in the corpus dictionary W , and a dictionary G containing the
unique words g of a filter. If w ∈ G the mapping process from word to integer is
stopped and an exception to the regular process is triggered for w. Examples of
how the mapping process can be altered to handle the exception can be to never
create a representation for the contained words in the filtered. A second method is
to assign the same representation to all the words in the filter, thus masking the
set of words. Another method is to exclude the entire sentence from receiving a
representation. This method causes entire sentences to be removed from the corpus
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but does not have the issue of potentially changing the meaning of sentences by
partial representations. Pryzant’s et al [26] research, regarding reducing subjective
biases by suggesting edits to the training data using a word filter, suggest that their
approach are able to provide useful suggestions to solve their task. Even though
that their research were limited to the specific task of reducing subjective biases in
the training data, their results could indicate that the method of selective filtering
of the training data using a word filter could be a solution to the task at hand.

2.4 Methods for explaining neural networks

Neural networks have become popular due to their predictive power and flexibility
in model fitting. Despite their power and popularity, there is some reluctance to
fully adopt them. Neural networks are considered black-box models, meaning that
the complex relationship between input features and the model’s response cannot
be easily described. However due to the use of the models in high-risk industries
such as health care and finance, which are heavily regulated, the ability to interpret
a model’s behaviour has become a critical aspect of their application [27].

This section will present the underlying theory used to connect the prediction of
a CNN-model back to its inputs. The core method stems from the field of computer
vision but can be used for NLP by viewing a sentences embedding dimensions as
the pixels of an image.

2.4.1 Pixel-wise decomposition
The general goal of Pixel-wise Decomposition is to produce a metric which gives
a scale to the contribution of a single input xi on the prediction f(x) made by
model a f . By making this metric signed it will be possible to see which inputs
xi contributed positively or negatively to the model’s classification. To produce
this metric, the model is assumed to have a real-valued output thresholded at zero.
This assumption can be converted into a mapping f : RV → R1 with f(x) > 0
denoting that a correlation between the input and output of the model is present.
The prediction f(x) can be decomposed as a sum composed of the terms of the
single inputs, xi, and the number of dimensions of the input xd [5].

f(x) ≈
V∑

i=1
Ri (2.4)

In Equation (2.4) Ri > 0 indicates that information is present at input xi which
supports the prediction of the model while Ri < 0 indicates that xi contains infor-
mation that contradicts the prediction. Pixel-wise decomposition does not require
any image labelling, segmentation, or specific training schemes to be applied to a
model. But the model needs to be trained for the method to be able to produce
results that connect the input to the prediction [5].
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2.4.2 Layer-wise relevance propagation

The entirety of Section 2.4.2 is paraphrased from the study "On pixel-wise explana-
tions for non-linear classifier decisions by layer-wise relevance propagation" written
by Bach et al [5]. Bach et al were the first to present the concept of LRP, and the
relevant theory from their paper is presented in this section.

LRP was proposed by Bach et al as a concept to achieve Pixel-wise Decomposi-
tion as described in Equation (2.4). LRP is described by Bach et al as a set of
constraints, and that any solution that follows and satisfies the constraints can be
considered to be a form of LRP [5]. To achieve Pixel-wise Decomposition the LRP
method assumes the model can be split into separate layers of computation. In the
context of neural networks, this separation of computation is considered to be the
activation functions in the layers of the neural network.

The LRP method considers the first layer to be the input of the model and the
predictions of a model f to be the last. All subsequent layers between the first and
the last layer are modelled as a vector z at position l with dimensionality V (l), as
described by Equation (2.5).

zl =
(
z

(l)
i

)V (l)

i=1
(2.5)

For LRP to work the relevance score R(l+1)
i must be available for each input dimen-

sion of the vector z(l+1)
i . If this condition holds then R

(l+1)
i can be propagated to

the lower layer R(l)
i by following the connections between layer l + 1 and l. The

propagation between layers and the mentioned condition of availability of relevance
scores for each input dimension causes the following Equation (2.6) to hold.

f(x) = · · · =
∑

i∈l+1
R

(l+1)
i =

∑
i∈l

R
(l)
i = · · · =

∑
i

R
(1)
i (2.6)

Thus Equation (2.6) describes that by iterating from the output to the input layer it
is possible to identify how the input information x influenced the output prediction
f(x). With this information, it can be noted in Equation (2.7) that by propagating
down to the input layer the relevance for the input layer is the sum decomposition
from Equation (2.4).

f(x) =
∑

i

R
(1)
i ≈

V∑
i=1

Ri (2.7)

To further describe the relevance calculation during a backward pass of a neural
network the example described in Figure 2.5 can be considered. This example does
not have any direct connection to the neural network used in this thesis and only
serves as an explanatory example for LRP.
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Figure 2.5: Visualisation of how the information can flow through a NN.
Left: Data flow in a neural network during prediction.
Right: Data flow during LRP propagation.

Image source: Bach et al [5]

In Figure 2.5 wij denotes the network weights, ai the output of activation function
from neuron i, for the network during classification. During the computation of the
relevance scores for the neurons of the network, Rl

i describes the relevance score of
neuron i at layer l, and R(l,l+1)

i←j denotes the propagation from layer l + 1 to layer l
from neuron j onto neuron i. Figure 2.5 also shows how the relevance score of an
arbitrary neuron is directly dependent on its local connections to the layer beside
it. Since the output layer is the last layer of the model the relevance of the output
layer is the prediction of the model, this connection is described in Equation (2.8).

f(x) = R
(3)
7 = a7 (2.8)

To calculate the relevance scores for the layer directly after the output layer Equation
(2.6) is applied with f(x) = R

(3)
7 as the initial value. For Equation (2.6) to hold

Equations (2.9) and (2.10) must be true.

R
(3)
7 = R

(2)
6 +R

(2)
5 +R

(2)
4 (2.9)

R
(2)
6 +R

(2)
5 +R

(2)
4 = R

(1)
3 +R

(1)
2 +R

(1)
1 (2.10)

It can be noted from Figure 2.5 that the relevance score of any given neuron, except
the output neuron, can be defined as the sum of all incoming relevance propagations.
An example of this sum for neuron 2 is given by Equation (2.11).

R1
2 = R

(1,2)
2←4 +R

(1,2)
2←5 +R

(1,2)
2←6 =

6∑
k=4

R
(1,2)
2←k (2.11)

Equation (2.11) can be rewritten to a general case which is described by Equation
(2.12), where i is the input of neuron k during prediction.

R
(l)
i =

∑
k

R
(l,l+1)
i←k (2.12)

What needs to be noted is that the direction of the propagation during relevance
computation is the opposite of the direction during prediction. The direction of the
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local connections are reversed during relevance propagation and prediction, all inputs
of a neuron during prediction becomes outputs during the relevance propagation.
From Figure 2.5 it can also be noted that for Equation (2.6) to hold it is required
that the relevance of a neuron is equal to the sum of its outgoing propagations. This
condition is described by Equation (2.13).

R
(2)
5 = R

(1,2)
1←5 +R

(1,2)
2←5 +R

(1,2)
3←5 (2.13)

A general notation for the condition described in (2.13) is presented in Equation
(2.14), where i is the input to neuron k during prediction.

R
(l+1)
k =

∑
i

R
(l,l+1)
i←k (2.14)

Equation (2.12) and (2.14) formulate in conjunction a final condition for LRP which
is that the relevance which is propagated into a neuron must also be propagated out
from it. If this condition does not hold then it would indicate that a relevance has
either been created or lost in the model which would also cause Equation (2.6) to
not hold.

With the knowledge of the above formulas and constraints, it is possible to write
an explicit formula for LRP for the example in Figure 2.5. The LRP formula re-
flects the propagation from neuron to neuron during prediction by using the same
reference propagation direction as during prediction and by incorporating the infor-
mation that is transferred between the neurons.

The information neuron i propagates to neuron k is aiwik, its activation function
output ai times the weight wik connecting the neurons. From this it is possible to
reformulate Equation (2.13) such that the relevance score of neuron five is depen-
dent on what is propagated to the neuron during prediction, the reformulation is
described in Equation (2.15).

R
(2)
5 = R

(2)
5

a1w15∑
i=1,2,3 aiwi5

+R
(2)
5

a2w25∑
i=1,2,3 aiwi5

+R
(2)
5

a3w35∑
i=1,2,3 aiwi5

(2.15)

Thus finally a general equation describing how the relevance is propagated down
through the network, which is based on how the information flows through the
network during prediction time, be can presented in Equation (2.16).

R
(l,l+1)
i−k = R

(l+1)
k

aiwik∑
h ahwhk

(2.16)

From Equation (2.16) one can note that the equation is not defined when the denom-
inator, ∑h ahwhk, equals zero and diverges when it goes towards zero. A solution
for these issues is presented in Section 2.4.3.

2.4.3 LRP epsilon rule
As mentioned in Section 2.4.2, as a comment to Equation (2.16), the relevance
propagation can take on non defined values. This limitation of Equation (2.16) can
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be solved by introducing a sign dependent balancing term ε in the denominator of
the equation [5]. This introduction modifies Equation (2.16) to the form presented
in Equation (2.17).

R
(l,l+1)
i−k = R

(l+1)
k

aiwik∑
h ahwhk + ε ∗ sign(∑h ahwhk) (2.17)

It can be noted in Equation (2.17) that ε is constrained by the condition ε > 0 since
breaking the condition causes the sign of ε ∗ sign(∑h ahwhk

) to flip which can cause
the local propagation to change sign or produce denominator equal to zero. Another
property of Equation (2.17) is that the balancing term reduces impact of variance
during the propagation by proportionally reducing small relevance contributions
more than large [28]. The value of ε which is appropriate to use is dependent on
both the model and its application. To avoid a degradation of the propagated
relevance Binder et al recommends that ε is kept lower for deeper networks, due to
ε being applied iteratively for each layer in the network [29].

2.5 Exploring corpus statistics
The data used to train and evaluate a neural network can contain valuable informa-
tion regarding the network’s predictions. The metadata can also be used to construct
word filters which can be applied to act on specific attributes of the corpus. Two
methods are presented in this section which extracts statistical information from a
corpus regarding the distributions of words between the classes in the corpus.

2.5.1 Normalized comparative occurrence frequency
To investigate if some words are occurring more frequently in either of the available
classes in a data set the Normalized comparative occurrence frequency (NCOF) can
be calculated for each token. NCOF is similar to the method proposed by Rayson
and Garside but is extended by giving a sign and a scale to the discrepancy between
how often a word is occurring in the classes available in a corpus [30].

To calculate the NCOF for a data set S with samples si with targets y(si) = ki,
where ki ∈ K, and K is a set containing all the targets of S and can be split
into subsets equal to the number of target classes belonging to S, with each subset
containing one unique target class. S is split and sorted based on the target for
si,∀i ∈ I which will produce P , with p ∈ P , number of subsets each containing one
target class. All data samples need to undergo some preprocessing which represents
each word with a unique token, stemming and other preprocessing methods can
also be performed, as long as the result produces a representation with a one-to-one
connection between word and index.

The next step in calculating the NCOF is to summarise the number of occurrences
of each unique token for each subset of the target classes into an array, op

j which
contains the total number of occurrences for each index j of each token for the given
subset p. The second to last set of calculations can then be performed by taking the
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difference in occurrence frequency between a chosen subset p and the remainder of
the subsets P − p as described in Equation (2.18).

COFj = op
j −

P∑
k,k 6=p

ok
j (2.18)

What can be observed from Equation (2.18) is that COFj will be positive if the
token at index j is more frequent in the subset p than in the remaining subsets
P − p. It can also be noted that the COF is calculated through the perspective of
op, meaning that if the COF is to be calculated for all subsets P then there will be
an equal number of COF arrays as there are subsets, each with the perspective of
one classification class.

The occurrence frequency of the indexes in each class can be normalised so that
disparities between the number of instances of data samples belonging to each class
does not skew the results. The normalisation of the COF results is performed by
following Equation (2.19). Where the denominator of Equation (2.19) is equal to
the total occurrences of all words in subset p.

tpj =
op

j∑
j o

p
j

(2.19)

Which results in that the normalised COFj, (NCOFj), is calculated through Equa-
tion (2.20)

NCOFj = tpj −
P∑

k,k 6=p

tkj (2.20)

By normalising the comparative metric tpj now describes the probability of a specific
word occurring as an element in a sentence belonging to subset p. As this metric
always will have the range of [0, 1] the comparison of tj between the classes of the
data set, Equation (2.20), will give a more balanced result regarding how common
words are in the respective classes of a data set.

2.5.2 Term frequency–inverse document frequency
Term frequency–inverse document frequency (TF-IDF) is a metric intended to reflect
how important each unique word is in a corpus or collection of data [31]. The general
approach of implementing TF-IDF for corpus analysis is as follows. For the set of
documentsD, consisting of individual document d ∈ D each containing a set number
of words. The TF-IDF score for each word w in a document d is calculated through
Equation (2.21) [31].

wd = fw,d ∗ log (|D|/fw,D) (2.21)
fw,d represents the term frequency in TF-IDF, the number of occurrences word w
has in document d [32]. Log(|D|/fw,D) is the inverse document frequency (IDF),
where |D| is the number of documents in corpus D, and fw,D is the number of doc-
uments containing w in corpus D [33].
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Given changing values of fw,d , |D|, and fw,D a few different situations for the TF-
IDF scores for words a document may occur. Given a situation where |D| ≈ fw,D,
that a word w is present in almost every document in the corpus D [31]. This
would entail that the contribution of the IDF part to wd trend toward zero. If for
a document in this situation fw,d for a given word is large, this would mean that
wd < fw,d, since the IDF suppresses wd. This would imply that the specific word
w is common in both the corpus and the specific document. But could hold some
importance in the context of the specific document. An example of words that could
display this TF-IDF characteristic could be plaintiff or defendant in the context of
legal documents.

The contrary example would be if fw,d is large while fw,D is small. Log(|D|/fw,D)
would then be quite large which would lead to wd also becoming large. Of the two
presented situations, this can be considered as the most interesting one. This is
due to words with a high wd are important in the context of d but not frequently
occurring in D, thus implying that the word is interesting in a subset of the data
[31].
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3
Method

This chapter describes the steps taken in this study to apply the theory presented
in Chapter 2 to go from raw data to the results presented in Chapter 4. Steps such
as the preprocessing of the data, the creation of the word filters, and the model used
for the classification are among other topics that will be introduced.

3.1 Workflow

To clarify the workflow used in this thesis the major steps are outlined in Figure
3.1 and 3.2. The NCOF and TF-IDF methods can be considered as data-focused,
meaning that the filters are applied and used independently of the model at hand,
while the LRP method is dependent on the model used to solve the task and thus
requires a different approach for creating a word filter.

The process for the NCOF and TF-IDF filters starts with the preprocessing of
the training data, how the preprocessing has been performed in this study is pre-
sented in Section 3.3.1. The next step is to perform the analysis of the metadata
contained in the training data set. This step differs between the NCOF and TF-IDF
approach, and the process for this step is outlined in Section3.4.2 and 3.4.3 respec-
tively, related theory can be found in Sections2.5.1 and 2.5.2. When the metadata
has been extracted the next step is to use that information to create the word filter
which will be applied to the training data. What the term word filter entails and
the intent of applying them is presented in Section3.4, the related theory for the
application can be found in theory Section2.3. Applying the created word filter to
the training data is the final step before retraining of the model takes place. The
application of the filter is performed by using a process that will be named Sentence
dropout. The details of this application process are explained in Section 3.5. When
the application of the filter to the training data is completed the final two steps are
the training and evaluation of the chosen NLP model. The structure of the chosen
model is presented in Section 3.6. Section 3.7 presents how the evaluation of the
classification result will be performed.
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Figure 3.1: Visualisation of the workflow used for creating the NCOF and TF-IDF
word filter.

The workflow for the creation of the LRP based filter differs from the NCOF and
TF-IDF workflow in the sense that the process is a feedback loop. From Figure 3.2
it can be noted that the process of creating the LRP word filter cannot be performed
before a trained model is present. After LRP is performed on the trained model and
a relevance score is calculated for all inputs to the model, theory related for how the
relevance score is calculated can be found in Section2.4.1. The workflow of creating
the word filter, its application, and the training and evaluation of the results are the
same for the LRP, NCOF, and TF-IDF methods.
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Application
of word
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Figure 3.2: Visualisation of the workflow for creating and applying the LRP word
filter. The whole line represents the workflow for the first iteration of training a
model and creating an environment in which the LRP method can be performed.
The dotted path takes priority first when the model has been fully trained.
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3.2 Data set
The data used in this study is owned and produced by the company Recorded Future
and is not in the public domain. The corpus is constructed for usage in a binary
classification task and contains 63, 536 sentences each associated with a binary label
indicating if the sentence refers to a terror incident or not. Of these data samples,
roughly 40, 000 sentences have been manually labelled by both Recorded Future
employees and third-party annotators. The remaining data samples have not gone
through a manual inspection and are general data assumed to be negative and have
received a negative label. The data set is a collection of sentences that handle the
subject of terrorist incidents. The definition of a terrorist incident used by Recorded
Future during the annotation process of the data set is defined as the following:

”A terror incident can be defined as violence against civilians for political,
ideological or religious reasons, as a means to create terror among people.
It also includes violence directed towards infrastructural systems, like
electrical grids or transportation systems.” - Recorded Future

The relation between positive and negative label instances in the corpus is set to be
roughly 19% positive and 81% negative. The source of the data is social media and
various news sites.

3.3 Preprocessing
Before any NLP model can make predict the content of a sentence, the sentence
needs to be translated from text to a representation possible for the computer to
understand. The preprocessing steps taken in this study are presented in this section.

3.3.1 Corpus preprocessing
The first step of the corpus preprocessing will be to split the original data into
separate subsets used for training and testing of the NLP model. The division be-
tween training and testing will be set to 66.7% and 33.3% of the total corpus size
respectively. This division results in a training set composed of 42, 569 sentences,
of which 19% are instances of the positive class and the remaining 81% instances of
the negative class. The test set consists of 20, 967 sentences, the division between
the positive and negative class is the same as in the training set.

The following steps will be performed on both the training and test data sets but
to avoid repetition, the process will only be presented in the context of the training
data set.

Each sample in the training data set was originally formatted as a list with one
element containing the entirety of the sentence. Because of this, each sample will
need to be split into a list containing each word of the sentence as separate elements,
this process will be performed by splitting the sentences on whitespaces.
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Because the sentences are to be split at whitespaces, the next step in the prepro-
cessing is to remove punctuation marks and other characters that could be present
beside words that are not whitespace-separated. This choice of preprocessing is due
to the limitations of the integer representation of words, described in Section 2.2.2.
As the method considers foo and foo! as two unique words the addition of punctu-
ation marks could dilute the integer representation dictionary. This limitation also
leads to the need of transforming all letters in the entire corpus into lowercase.

3.3.2 Integer representations of words
The default tokenizer available in the Keras library was chosen to transform each
sentence in the training set to an integer representation [23]. The representation will
be a sequence where each word in the sentence to be represented is exchanged for a
corresponding integer. The structure of the integer representation indexation is such
that the more common a word is in the context of the entire corpus the lower the
integer representation it receives, such that the most common word in the corpus will
be represented by the integer 1. Thus will the integer representation of a word and
its index in the representation dictionary be the same. The representation dictionary
will be constructed from the training data set exclusively, given that the information
contained in the test set should be hidden from the model during training. By
including the test data during the construction of the representation dictionary
information regarding the content of the test data would be made available to the
model prematurely.

3.3.3 Integer representation dictionary size
The size of the representation dictionary is limited to 5000 unique indexes. This
limitation of the dictionary means that it will only be capable of representing 5000
words from the training set. Since the internal indexation of the dictionary is such
that the more common words were awarded a lower integer representation. The
dictionary size limitation of 5000 tokens means that only the 5000 most common
words in the corpus were able to receive an integer representation.

The reason for limiting the number of representations to 5000 tokens is both to
reduce the cost of running algorithms over the entire integer dictionary and due
to Hapax legomenon. Hapax legomenon is an expression that describes words that
occur only once in a document or a set of documents so that a robust interpretation
of its meaning in the context of the document cannot be provided. As these words
are assigned high integer representations due to their sparsity the integer dictio-
nary size can be limited so that fewer hapax legomenon words receive an integer
representation.

3.3.4 Word embeddings
In this study no pre-trained word embeddings will be used to represent the available
data. Pre-trained word embeddings are defined as any public available embeddings
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trained on data other than the data set available for this project. Instead new
embeddings will be be created and trained using the available data set. The em-
beddings will be created and trained using the standard embedding layer available
in Keras [23] with each word receiving a 50-dimensional vector representation.

3.3.5 Sentence padding
The model to be used in this study will use static sized input layer. This puts the
requirement on the preprocessing to transform the data to this predetermined length.
If the input data fails to meet this requirement the model will not be able to process
it. The sentences will thus be padded such that all have a length of 75 elements.
This specific length is chosen from the distribution of lengths of the sentences in the
data set. As can be noted in the histogram presented in Figure 3.3 the majority of
the sentences in the data set have a length of 50 words or lower. We used post-zero-
padding meaning that sentences shorter than 75 will have the difference in length
filled with zeros. The padding will be performed after the tokenization of the data
set.

Figure 3.3: Histogram over the sentence length distribution in the training data
set. The dotted line depicts the chosen maximum allowed sentence length in the
training data.

The option to use a variable-sized input for the model is possible in the Keras
framework [23]. The solution to use variable-sized inputs requires the data to be
split and sorted into batches of similar length. These batches will then have to
be padded such that the length within each batch is consistent. The more complex
implementation of using a variable-sized input, together with the uncertainty during
the design of the model of how LRP should be implemented when the input size
is variable made using a fixed input size the best solution given the scope of the
project.
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3.4 Word filters

To investigate and evaluate if any of the methods proposed in Sections2.4.1, 2.5.1,
and 2.5.2 can aid the identification of spurious correlations in a model, the words
that the methods identify need to be filtered from the corpus. This will be done to
see if the alteration has an impact in a model’s prediction. This section presents the
process of how to produce these word filters and how they are applied to the corpus.

3.4.1 Selection of sigma for outlier identification

The selection of thresholds during the identification of outlier words and the creation
of the word filters can be seen as a tunable hyperparameter of the methods. Given
that any word that is identified as a statistical outlier within each separate method
can be considered as interesting, regardless of used threshold, in the context of bias
identification.

For this study, the threshold for the identification of statistical outliers will be set
to µ± 3σ regardless of the method under investigation. This limitation is made so
that the results of the application of each method will only show the most extreme
cases of words with a skewed distribution in the data or weighting in the model. The
selection of the µ±3σ threshold will also entail a more concise and clear view of the
results for each method. With a naive assumption that the results of each method
will be normally distributed, each method will be expected to identify roughly 15
words as outliers from the dictionary of 5000 words, given that µ ± 3σ would be
expected to entail 99, 97% of the data. By shifting the threshold to µ ± 2σ 5% of
the 5000-word dictionary would now be expected to be identified as outliers, this
represents 250 words, which would be impossible to present in an concise format.

3.4.2 NCOF based filter

By following the steps presented in Section 2.5.1 a score for all words contained in
the dictionary of the integer representation will be produced. From this score the
±3σ outliers from the scores mean, µ, will be selected. The words which will be
included in the filter will thus be those which are the extreme outliers in regards
to a skewed representation between the two classes in the data set. If any of the
identified words are contained in the list of stop words presented by the NLTK
Python framework they are removed from the filter [34]. There is no clear definition
of what is considered a stop word but generally the most common words in a language
are considered.
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(a) NCOF score for training data (b) NCOF score for training data, stop
words removed from outliers

Figure 3.4: Results from NCOF calculation on the training data. 3σ outliers, used
in the NCOF word filter, highlighted in red.

By comparing Figure 3.4a and 3.4b it can be noted that the stop words which were
contained in the ±3σ outliers mainly were skewed towards the negative class, and the
removal of them causes the majority of the filter to consist of words more common
in the positive class.

3.4.3 TF-IDF based filter
To create a filter based on TF-IDF we start with separating the data based on
the associated label of the sentences. This is done so that TF-IDF scores can be
produced for the positive and negative classes separately, where the TF-IDF score
is calculated in accordance with the theory presented in Section2.5.2. From these
scores, the +3σ outliers will be selected as the base for further possessing.

Since the TF-IDF score is positive for a given data sample there is no negative
score that can be taken into consideration in contrast to the NCOF filter method.
Since this approach will produce two separate sets of outlier words, one from each
class, the sets will need to be joined into one. This will be performed by taking
the symmetric set difference between the +3σ TF-IDF outliers from the positive
and negative classes. The choice of using the symmetric set difference between the
classes is made because this approach manages to create a combined set of words
that have a high TF-IDF score in one class but not the other. Thus the words that
are deemed important for each class will be selected for filtering, but the words that
are important in both classes will be deselected. When the symmetric set difference
between the positive and negative class is produced any remaining stop words will
be removed from the set.
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3.4.4 LRP based filter

In contrast to the two other methods for preparing a word filter the LRP based
approach does not directly focus on the content of the training data but instead
on what a model has learned from it. To produce an LRP filter a trained model is
needed, the first step will thus be to train a model using the unaugmented training
data. LRP using the epsilon rule, with ε = 0.01, will then be applied to the trained
model and a relevance score for each sentence in the training data is produced. The
LRP score for each sentence will then be sorted into the confusion matrix quadrant
which corresponds to the model prediction in relation to the label of each sentence.
This step is performed so that the LRP score for all sentences which have been
misclassified by the model during the final training epoch can be extracted. These
misclassified sentences are interesting in the context of creating a word filter since
these sentences contain words that the model possibly has overfitted on. This as-
sumption is made due to the model has shown that it is not able to correctly classify
the sentences, thus the sentences must contain some information that creates these
erroneous classifications.

From the sorted LRP scores of the misclassified sentences, the +3σ outliers are
selected to be included in the filter. Only the positive LRP outliers will be selected
since a positive relevance score is always in support of the model’s classification, as
explained in Section 2.4.1. This means that the positive LRP outliers for misclassi-
fied sentences represent the words that are deemed as most relevant for misclassified
sentences.

3.4.5 Limitations of presented methods

A clear limitation of both presented frequency-based methods is that they are un-
able to process synonyms or inflection of words as a single entity. This can be noted
in both Equation (2.18) and (2.21) by the sense that both equations are calculated
for every unique word in d. To solve this issue a user would need to either pre-
process the data or post-process the results of the methods to gather the results of
the synonyms and inflections.

An issue that only appeared when creating and working with the LRP based fil-
ter was the presence of the embedding layer in the model. Since the LRP methods
require predefined knowledge of all the connections in a model to be able to perform
a backward pass on the entirety of the model, it was not clear how the relevance
should be propagated from the input layer of the CNN model to and through the
embedding layer. The solution for this was to separate the embedding layer from the
CNN model such that the relevance could be propagated through the CNN model
and embedding layer individually.
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3.5 Application of word filters to data
The suggested method will only be applied to the training data and never to the test
data. This distinction is made due to the premise of never disclosing any information
contained in the test data to the model. Filtering the test data can be considered
as modifying the evaluation of the model to better match the sought after result,
which will make the test non-representative for the population the unfiltered data
is trying to model.

The method used to apply the three different filters to the training date will be
the method of sentence dropout. This method operates on the data set by giving a
sentence a probability of being removed from the corpus if it contains a word that
is present in a filter, such that if a word wi is contained in both the sentence sj

and the filter wf , wi ∈ sj & wi ∈ wf , there is a probability of removing the entire
sentence sj. Since the possibility exists that a sentence can contain more than one
instance of wi ∈ wf the relative probability of a sentence being dropped from the
data set is higher than what the dropout rate is set to. Therefore, the specific value
of the dropout ratio is less important than the actual number of sentences removed
when comparing the different methods of producing the word filters.

This selection of filter application method and regularization method was chosen
since the filter creation processes mainly focus on the skewed presence and distribu-
tion of specific words, and not the the meaning of the words in their sentences. The
chosen method regularizes the data without altering the sentences, so the meaning
of the remaining sentences is preserved after the regularization process.

3.6 Model structure
The model used to solve the binary classification problem presented by the data
set will be a CNN model. The model will be constructed and evaluated using the
Python framework Keras [23].

The structure of the model used in this study is presented in the following list.
This structure resulted in a relatively lightweight model with 350, 751 trainable pa-
rameters which means that training the model and evaluating LRP for any given
data set is comparatively cheap. The trainable parameter count is important to
keep low for this study since the computational cost of performing LRP is in direct
relation to the number of parameters in the model it is performed on, as mentioned
in section 2.4.1, and the number of parameters often explodes when the complexity
of the model increases.

• Input : Integer sequence of length 75
• Layer 1: Embedding layer: 50 embedding dimensions
• Layer 2: Dropout layer: drop rate = 0.2
• Layer 3: 1D convolutional layer: 250 filters, kernel size: 10
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• Layer 4: Max pooling layer
• Layer 5: Fully connected layer: 250 neurons, ReLU activation function
• Layer 6: Dropout layer: drop rate = 0.2
• Layer 5: Fully connected layer: 1 neuron, Sigmoid activation function

3.7 Evaluation of word filter application
The evaluation of the three different word filters will be conducted through iterative
evaluation of each available filter applied to the static training data. The iterative
evaluation will be performed by training and calculating the test accuracy, defined
in Equation (3.1), for the model, given one of the filters, for a set number of times,
common to all filters. In Equation (3.1) TP is the number of sentences classified
as true positives, TN true negatives, FP false positives, and FN false negatives,
following the quadrants in Table 3.1.

Accuracy = Number of correct predictions
Total number of predictions = TP + TN

TP + TN + FP + FN
(3.1)

Data label
Positive Negative

Model prediction Positive TP FP
Negative FN TN

Table 3.1: Example of a binary confusion matrix describing the four confusion
quadrants.

Sentence dropout will be applied to the data in three different levels of aggressive-
ness. The three levels will mean that the number of available data samples for the
model to train on will decrease as the filter application aggressiveness increases.
For each level of filter, application the test accuracy and classification result will be
evaluated.

The number of remaining training data after a filter has been applied to the training
data will be set as roughly 39, 37, and 33 thousand data samples. For the tests of
filter application to be comparative to a filter-free model a baseline will be used. To
emulate the filter application on the baseline model randomised training data will
be removed such that the remaining data match the three different levels of filter
application.

To evaluate how the filter application affects the weighting of the model’s inputs,
LRP will be performed on the model before and after the application of the filters.
By performing LRP before and after the application of the three filters it will be
possible to calculate and identify the differences in the weighting of the model’s
inputs before and after filter application. From the LRP scores the 3σ outliers in
regards to which words that drive the model towards its classification result will be
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selected and a comparison between before and after the application of the filters will
be conducted.

This experiment will hopefully show that using the extracted information from the
model or training data to regularize the data using a word filter does not drastically
alter the population modelled by the training data set, thus indicating if removing
overrepresented terms from the training data can be used to help a model generalise
by altering the modelled population.

3.8 Identifying a spurious correlation

The first part of this experiment will be to make sure that there exist a known bias
in the data set so that the methods ability for identifying it can be evaluated. The
inducing of the bias will be performed by selecting one or several keywords present
in the training data that would compromise the result of the model’s classification.
The keywords that will be used in this study are mosque and mosques. To induce
a bias in the model from the training data connected to the keywords all sentences
which contain either of the keywords will have its label changed to positive. This
will hopefully, in the context of this test, induce a bias and the model will learn the
correlation between the keywords and the positive class.

After the training data has been augmented and a baseline model has been trained
the next step will be to produce three new word filters: one from the newly trained
model, LRP, and two from the augmented training data, NCOF, and TF-IDF. From
the filters, it will be possible to evaluate which words each filter method have deemed
as interesting and thus evaluate if the spurious correlation picked up by the filters.

To investigate if applying the filters on the training data does reduce the influ-
ence of the bias on the model’s classification, three models, each trained using data
with one of the filters applied to them, will be created. The filters will be applied to
the training data such that roughly 33 thousand sentences remain after the applica-
tion, corresponding to the most aggressive application in previous tests. A baseline
model trained using unfiltered data but with a reduced number of data samples will
also be used for comparison in this test. Three example texts from the test data will
be used for the evaluation of the filter application. The texts are presented below
in the same formats as they are used as an input for the CNN model, not as they
are formatted in the data set.

Example text 1, label 0:
"new zealand prime minister calls christchurch mosque attack a terrorist
attack"

Example text 2, label 0:
"chinese muslims gather before eid prayers the end of the holy month of
ramadan at the historic mosque on june 16 2018 in beijing china"
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Example text 3, label 1:
"an assailant set fire to ibrahim mosque in hamilton ontario canada"

The evaluation of the effect of the filter applications will start with isolating all
sentences in the test data which contain any of the keywords. It can be noted that
the labels for the isolated sentences will be kept unchanged so that the test data
contains sentences with the keywords either one or zero. The next step is to produce
an LRP score for all models in regards to the isolated sentences and investigate which
words have received the highest positive score for sentences classified as true and
false positive. From the words with the highest LRP score, it will be possible to
investigate which data the model deems as most important when making positive
classifications and if the keywords are present among these words.
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Results

This chapter presents the results which have been produced during the filter creation
processes, identification of a spurious correlation, and the effects of applying a word
filter to a model.

4.1 Result of filter creation

In the following sections, the results of applying the three methods for identifying
interesting words in the context of the training data are presented. The methods
used for the filter creation are described in Section 3.4.2, 3.4.3, and 3.4.4.

The results will be presented in both a visualisation, such that the class origin
of the identified words is shown, and in plain text. It will thus be possible to ob-
serve how the contents of the word filters are extracted from the data and to identify
the specific words which have been identified.

4.1.1 NCOF

It can be noted in Figure 4.1 and 3.4 that the majority of the integer index repre-
sentation are balanced between the two classes. This can be noted as most indexes
are grouped around an NCOF score of 0. It can also be noted that it is the index
representations that are frequent in the corpus that have skewed NCOF scores to
either of the classes. This insight can be made due to the majority of the skewed
indexes are low valued which corresponds to frequently used words in the corpus, as
described in Section 3.3.3.

By remembering the note from Section 3.4.2 regarding that the majority of the
removed stop words were contained in the negative class and investigating Figure
4.1 it can be noted that the words which will be included in the finalised word filter
are only from the positive class.
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Figure 4.1: Zoomed version of Figure 3.4b, depicting the NCOF score for the
first 300 integer representations. The 3σ outliers selected for the NCOF word filter
highlighted in red.

The results regarding that the finalised NCOF word filter only consisting of words
which originates from sentences with a positive label are a bit unexpected. A point
of interest can be noted from the comparison of Figure 3.4a and Figure 4.1 is that
many of the stop words used in this study are are more common in the negative
class than the positive. Since the Stop words are the 100 most common words in
the English language it would be expected that they would be used in roughly the
same frequency between the classes. Given that the NCOF score is normalised to
take the distribution difference between the classes into account this disparity of the
stop words frequency could indicate that there is difference between the language
used in the positive and negative class.

Positive 3σ outliers Negative 3σ outliers
attack killed wounded
bomb killing wounding
bomber kills
bombing least

car near
city others

detonated people
exploded suicide
injured three
injuring two

Table 4.1: 3σ NCOF outliers words presented in Figure 4.1, converted from integer
representations and separated by their class origin. Alphabetically sorted.
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4.1.2 TF-IDF

The resulting TF-IDF score for the integer representation of all words in the training
data can be viewed in Figure 4.2. It can be noted from Figure 4.2 that the outliers
which are common to both the positive and negative class generally receive a higher
score than the words that are only present in outliers one of the classes. It can also
be noted that there is a large overlap between the classes in terms of tokens with
TF-IDF scores high enough to be 3σ outliers.

(a) TF-IDF score positive class (b) TF-IDF score negative class

Figure 4.2: Result of class separated TF-IDF score of the training data set. The
3σ outliers used in the TF-IDF filter highlighted in red. 3σ outliers which occur in
both the positive and negative class are marked black.

By taking the symmetric set difference of the two set of outliers, as mentioned
in Section 2.5.2, the words that are included in the word filter based on TF-IDF
are presented in Table 4.2. The words are presented with their class origin. In
total, the method identifies 30 words that have received a high TF-IDF score in
the positive class but not in the negative, and 4 words with the same property in
the negative class. This results in a filter that consists 88.24% of words contributed
from the positive class and 11.76% from the negative class. These distributions can
be viewed, together with the percentage of identified outliers that occurred in both
the positive and negative class, in Figure 4.3.
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(a) Class origin for words used in the
TF-IDF filter

(b) Class origin for all 3σ TF-IDF out-
liers identified

Figure 4.3: Distribution of class origin of identified TF-IDF outliers, both for the
subset used in the TF-IDF filter and for all identified outliers.

3σ outliers from + class 3σ outliers from - class
al civilians mosque bus

attacked dead near com
baghdad detonated others new
bomb district pakistan said
bomber exploded province scans
bombers four security
bombing injuring soldiers
capital kabul suicide
car killing terrorists
city kills wounded

wounding

Table 4.2: 3σ TF-IDF outliers words presented in Figure 4.2, converted from
integer representations and separated by their class origin. Alphabetically sorted.
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4.1.3 LRP

The resulting LRP scores for the misclassified training data, false positives, and
false negatives, can be viewed in Figure 4.4 and Figure 4.5. Before the false positive
and false negative LRP outliers are merged into the final LRP filter stop will be
removed, the stop words are the same as those used in the two previous filters.

Figure 4.4: Summarised LRP score for each integer representation, score sum-
marised for all sentences misclassified as false positive during the training of the
model.

Figure 4.5: Summarised LRP score for each integer representation, score sum-
marised for all sentences misclassified as false Negative during the training of the
model.

The final words that were identified and applied in the LRP based word filter can
be viewed in Table 4.3. The LRP method identified 14 outlier words in the context
of their relevance score for sentences misclassified as false positive and only 2 words
from sentences misclassified as false negative. This resulted in the LRP filter having
an 87.5%, 12.5% distribution between contributions from false positive and false
negative, the distribution is visualised in Figure 4.6.
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3σ outliers from FP 3σ outliers from FN
attack exploded 2012
attacked explosion broke
attacks killing
bomb opened
bomber suicide
bombing terrorists
detonated two

Table 4.3: 3σ LRP outliers, translated from index representations back to the cor-
responding words used for the LRP word filter. Words separated by their confusion
quadrant origin. Alphabetically sorted.

From Table 4.3 it can be noted that the words that are identified from the sentences
classified as false positive can naively be called typical for the subject that positive
class is about, given that the subject of terrorist incidents can be identified from the
words. It can also be noted that the large overlap between these words and those
identified as interesting from the positive class in the NCOF and TF-IDF methods
points towards a connection between some of the identified words and the positive
class. However, the outlier words identified from false positive classifications must
all stem from sentences with a negative label. This could indicate that there are
sentences with a language that is similar to that used the positive class, but have
received a negative label. The reason for this could be either incorrect annotations,
that the annotator of the sentence have misclassified it, or that the definition of
terror incidents, presented in Section 3.2, allows sentences to talk about the subject
very closely without receiving a positive label.

4.1.4 Comparison of origin distribution for filter content
From Figure 4.6 it can be noted that the majority contribution to the filters orig-
inates from positive class, or classification as positive for the LRP method. These
results indicate that there are more words in the positive class that can be deemed as
interesting in terms of occurring more exclusively in the positive class or managing
to push the model towards a positive classification.

(a) (b) (c)

Figure 4.6: Distribution of class origin for words used in the three evaluated word
filters.
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4.1.5 Observations common to the three filters

It can be noted from the three Tables 4.1, 4.2, and 4.3 that the words used in the
filters are unrepresented by words which originates from the positive class.

From the Tables 4.1, 4.2, and 4.3 it be noted that there is an overlap between
all three methods in terms of which words are identified as interesting and selected
for filtering.

4.2 Result of filter application

This section present how the class distribution of the training data set is altered by
the application of the three different word filters presented in Section 4.1, it also
presents how the accuracy of the model specified in Section 3.6 is affected by the
filter application.

4.2.1 Implication of filter application on training data

When we apply a filter to the training data, the data is changed regardless of which
filter is applied. How the filter is applied and the aggressiveness of the application
will have a direct effect regarding the resulting transformation of the data.

By filtering the training by dropping entire sentences based on the content of the
filter it is not only possible to change the content of the training set but also the
distribution between the positive and negative class. As can be noted in Figure
4.7 the distribution between the positive and negative class was changed when the
application method of sentence dropout was tested. As expected the percentage of
positive sentences in the training data decreases as the aggressiveness of filter appli-
cation increases, i.e. more sentences are removed. This behaviour is expected and
occurs for all the tested filters due to them consisting of mainly words associated
with the positive class. Thus sentences are removed from the positive class at a
higher rate than from the negative class, thereby changing the composition of the
training data set.

The change of distributions of positive instances in the training data that occurs
when we apply the word filters is a direct effect of the chosen application method.
If another application method would have been chosen, dropping words from sen-
tences instead of entire sentences, for example, this behaviour would not be seen in
the results.
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Figure 4.7: Percentage of positive samples in the training data after sentence
dropout have been applied using the specified word filters at three different levels of
aggressiveness.

From Figure 4.7 it can be noted that the application of the LRP filter has caused
the largest decrease in positive instances of training data, from the unaltered 19%
down to 11.5% for the most aggressive filter application. The negligible change in
the percentage of positive instances for the baseline model is expected because the
removal of data for this test case was randomised.

4.2.2 Impact on model accuracy

Figure 4.8 shows the test accuracy for the model for the three different aggressiveness
of sentence dropout using the different filters. The results appear to indicate that
the general trend for the test accuracy is that it decreases when the aggressiveness of
filter application increases. The test accuracy for the filtered models can be noted as
lower than the test accuracy of the baseline model given roughly the same amount
of training data.

Figure 4.8: Mean test accuracy for the model with sentence dropout applied using
the specified word filters at three different levels of aggressiveness.
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4.2.3 Relevance score

Figure 4.9 visualizes the impact of each applied filter with regards to how the input
words have affected the model’s classification. From this figure, it can be noted
that the weighting of specific input words is different compared to both the baseline
model and the baseline model trained with a reduced data set. The application of
the NCOF filter to the training data augments the data set to the degree that the
model’s classification of the sentence is changed. Thus it can be noted from Figure
4.9 that by applying the filter it is possible to alter how the model weights the input
words during the classification of a sentence.

Figure 4.9: Relevance score for example sentence 1 for models trained on the
unaugmented data set with the specified word filter. A positive score (red) is always
in support of the model’s classification.

4.3 Identifying a spurious correlation

The following results have been produced to meet the goals of the study as pre-
sented in Section 1.2. The method which has been followed during the experiment
is outlined in Section 3.8.

The word filters that were created from the augmented training data set are vi-
sualised in Tables 4.4, 4.5, and 4.6. There are no major differences in the NCOF
and TF-IDF filter between which words the filters have found to be of interest in the
augmented training data set compared to the unaugmented set. It can be noted that
the TF-IDF filter also managed to identify one of the keywords in the unaugmented
data, as can be seen in Table 4.2.
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Positive 3σ outliers Negative 3σ outliers
attack killing
bomb kills
bomber least
bombing mosque

car near
city others

detonated people
exploded suicide
injured three
injuring two
killed wounded

wounding

Table 4.4: NCOF outliers from the training data, separated by their class ori-
gin. Outliers produced from the training data set with mosque-augmented labels.
Alphabetically sorted.

3σ outliers from + class 3σ outliers from - class
al civilians mosque bus

attacked dead near com
baghdad detonated others said
bomb district pakistan scans
bomber exploded province
bombers four soldiers
bombing injuring suicide
capital kabul terrorists
car killing wounded
city kills wounding

Table 4.5: TF-IDF outliers from the training data, separated by their class ori-
gin. Outliers produced from the training data set with mosque-augmented labels.
Alphabetically sorted.

The filter created from the LRP method found more outlier words, from both false
positives and negatives, using the augmented training data compared to the unaug-
mented. A total of 33 words were found, of which 26 originated from words classified
as false positive and 7 words from false negative sentences. The filter did not identify
any of the keywords as interesting in the selection of misclassified sentences when
evaluating the entirety of the training data set. The method did however identify
both keywords as important words in sentences classified as true positive, which can
be viewed in Table 4.7. The keyword will however not be included in the finalised
LRP filter for the mosque-augmented data set due to the LRP filter method having
been specified as only using words identified from sentences classified as false posi-
tive or negative.
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By comparing the 3σ true and false positive outliers found using the LRP method,
it can be noted that there is a large overlap between the outliers.

3σ outliers from FP 3σ outliers from FN
attack detonated people 2017
attacked exploded state clashes
attacks explosion suicide forces
bomb explosive taliban operation
bomber grenade terrorists police
bombers injured wounded roadside
bombing injuring students

car islamic
civilians killed
dead least

Table 4.6: LRP outliers from the training data, separated by their confusion quad-
rant origin. Outliers produced from the training data set with mosque-augmented
labels. Alphabetically sorted.

3σ outliers from TP
alshabaab bombers civilians killed people wounded
attack bombing dead least suicide
attacked bombings detonated mosque taliban
bomb bombs exploded mosques terrorist
bomber car islamic opened terrorists

Table 4.7: LRP outlier from the training data, outliers originate from the true
positive confusion quadrant. Alphabetically sorted.

Table 4.8 presents the relevance score for the keyword mosque from the evaluation
of example sentence 1. The results in Table 4.8a is produced from models trained
on the unaugmented data set or the unaugmented data set with corresponding word
filter applied to them. In Table 4.8b the process for the results is the same but
the data set used for the training is the mosque-augmented data set. It can be
noted from a comparison of the two tables that the mosque-augmentation indeed
does drive up the weighting of the specific keyword in the baseline models. It can
also be noted that the augmentation causes the baseline model to misclassify the
sentence as a false positive. From Table 4.8b the application of the filters appears
to lower the models weighting on the specific keyword since the relevance score for
the keyword has been lowered.

Further results from the application of both the data augmentation and the filter
application can be viewed in Tables 4.9a and 4.9b. The tables shows the relevance
score for the word mosque from example text 2 and 3 evaluated on the models named
in the table which have been trained on the augmented data. In these tables, it can
once again be noted that the relevance for the keyword has been significantly low-
ered for the models which have had the word filter applied to them compared to the

43



4. Results

baseline. From the evaluation of example text 3, it can be noted that the baseline
model manages to correctly classify the sentence as a positive and the application
of the filters managed to flip the classification to negative. In all three evaluations
of the example texts, the model trained with the LRP augmented data manages to
significantly lower the weighting of the keyword despite the filter not containing any
of the specific keywords. This can be viewed in Table 4.8b, 4.9a, and 4.9b.

Mosque Predicted
Baseline 0,01 0

Baseline (reduced data) 0,03 0
NCOF 0,00 1
LRP -0,001 0

TF-IDF 0,01 0
(a) Relevance score for models trained with unaug-
mented data

Mosque Predicted
Baseline 0,986 1

Baseline (reduced data) 0,827 1
NCOF 0,001 0
LRP 0,001 0

TF-IDF -0,004 0
(b) Relevance score for models trained with mosque aug-
mented data

Table 4.8: Relevance score for the word mosque for example text 1, label 0. Score
calculated for models trained with the specified word filter and with or without
mosque-augmented data.

Mosque Predicted
Baseline 1,459 1

Baseline (reduced data) 1,755 1
NCOF 0,000 0
LRP 0,001 0

TF-IDF 0,000 0
(a) Relevance score for example text 2, label 0, for mod-
els trained with mosque-augmented data

Mosque Predicted
Baseline 1,294 1

Baseline (reduced data) 1,142 1
NCOF 0,000 0
LRP 0,001 0

TF-IDF 0,000 0
(b) Relevance score on example text 3, label 1, for mod-
els trained with mosque augmented data

Table 4.9: Relevance score for the word mosque for example text 2 & 3. Score cal-
culated for models trained with the specified word filter with the mosque-augmented
data.

In Table 4.10 the tested models accuracy and error rate for the subset of the test
data which contains the words mosque or mosques are presented. From the table,
it is clear that the accuracy for the subset decreases for the model when a filter is
applied to the training data. However, it must be noted that the evaluated subset
consists of 372 samples with a distribution between the classes of 57.4 and 42.6%
for the positive and negative class respectively. This distribution together with the
accuracy results from the two baseline models indicates that the models consistently
classified every sentence in the subset as positive, which were confirmed from closer
inspection of the classification result. The accuracy of the three models which had
word filters applied to them do lie close to the distribution of the negative class in
the test data. The predictions of the three models do however not show a strong
systemic error of unambiguously choosing a single class for their prediction. The
models do show a tendency of favouring the negative class for their prediction but
not to the extent that the baseline models exclusively select the positive class for all
their predictions.
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Baseline Baseline (reduced data) NCOF TF-IDF LRP
Errors [#] 154 154 203 214 210

Accuracy [%] 58.6 58.6 45.4 42.4 43.5

Table 4.10: Error rate and % accuracy for the specified models on the subset of
the test data that contain sentences with any of the two specified keywords.

By investigating Figure 4.10 and 4.11, which shows the 3σ outlier words from sen-
tences classified as true or false positive. These words are those which have received
the highest cumulative relevance in their confusion quadrant from the isolated test
sentences containing either of the keywords. Both the baseline models have the
two keywords as their only positive 3σ outliers for true and false positive classified
sentences while the models with filter applied have neither.

A point of interest in Figure 4.10 is that the words pakistan and pakistani are
included as outliers for the NCOF filtered model. These words could be considered
as a protected attribute as it is referring to an ethnicity and the country associated
with it.

Figure 4.10: 3σ LRP outliers from the training data for the specified models. LRP
scores pooled from sentences classified as true positive.

Figure 4.11: 3σ LRP outliers from the training data for the specified models. LRP
score pooled from sentences classified as false positive.
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Discussion

This chapter discusses the results presented in Chapter 4. The chapter begins by
discussing the results and implications of filter creation, followed by a discussion of
the results of identification of spurious correlations and how the application of the
filter has altered the training data. The final sections of this chapter discuss the
burden of responsibility of bias identification and removal, how the goals and aims
of the thesis have been met, and the ethical implication of this thesis.

5.1 Filter creation
It was noted in Section 4.1 that the positive class was over-represented in all three
identification methods in terms of the number of identified words. A reason for the
under-representation of the negative class can be explained by the sentences in the
negative class being too general for specific words to stand out as outliers for the
subset of the data. Another reason for the disparity of words from the negative class
could be that the negative class is roughly twice as large as the positive class.

A third reason for the large distribution difference between the classes could be
that the positive class contains the data which can be considered as interesting for
the binary classification task, since the sentences in the positive class are about the
same general subject. It can thus be expected that the language will be somewhat
coherent between the texts. In comparison, in the negative class where the sentences
can be about any subject as long it is not the positive class. Thus it is reasonable
that there will be a larger contribution of words from the positive class to the filter.
The words that are specific for the positive class cannot be expected to be frequently
occurring in the negative class, due to the difference in subject. And the words that
are frequently occurring specifically to the negative class are stop words, given the
general subject matter of the negative class. This behaviour, noted in Figure 3.4,
can be considered as a reasonable explanation for the lack of identifying words for
the negative class.

The biggest limitation of the three identification methods is their inability to process
inflections of the identified words, as mentioned in Section 3.4.5. The implication of
this can be viewed in Tables 4.1, 4.2, and 4.3 where multiple words with the same
root are identified, for example the identified permutations of suffixes for the root
bomb. It is a possibility that there are more inflections of bomb which are outliers
in the identification methods but do not appear in the results due to the 3σ thresh-
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old. This issue could be solved by implementing the ability for the filter to process
word stems or lemma, such that the results are summarised for each word stem.
Off the shelf solutions for this problem are available in many popular NLP python
frameworks. This solution to the problem has not been tested in this thesis and is
presented as a component for future work in Section 6.1.

5.2 Filter application
In Figures 4.7 and 4.8, it can be noted that the application of all three filters will
lead to a reduction of the model’s accuracy compared to the baseline. However it
should be noted that given the application of the filter the distribution between the
positive and negative class is altered in the training data compared to the baseline.
The most aggressive reduction of the LRP filter saw a reduction of positive examples
in the training data from 19% down to 11%, which corresponds to a reduction of
39.5%. Despite this the accuracy of the model only decreased with roughly 1.25%
units compared to the baseline model trained with 39 thousand data samples com-
posed of 19% positive examples.

The application of the filter appears to have a greater effect on the model’s ac-
curacy compared to what just reducing the available training data has. However
the random removal of training data used for the baseline models did not model the
distribution change between the classes which occurred when the three words filters
were applied using the sentence dropout method. This can be noted in Figure 4.7.
Figure 4.8 shows that the application of the word filters affects the accuracy of the
model negatively. However, the negative effect of the application can be considered
marginal. Given the possibility of performing informed data regularization by ap-
plying the filters, their opportunity cost can be considered very low.

These problems could be avoided by using another filter application solution than
the one used in this thesis. However, as mentioned in Section 4.2.1 choosing another
application method may lead to other issues and implications than those presented.
For example, the issue regarding the risk of changing the meaning of sentences when
using a word dropout approach can be considered as more difficult to identify and
quantify than the issue of a shifted class distribution in the training data. To be
able to quantify this issue of meaning shifting, all sentences affected by the word
dropout method would need to be manually inspected for the issue. A task that is
dependent on the number of affected sentences could be infeasible due to the scale
of the task.

5.3 Responsibility of bias identification and re-
moval

The need for continuous evaluation to ensure that data and models to an extent
are bias-free poses the question of how this task should be performed, from both
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a method and a responsibility perspective. The methodical perspective of which
method is the most effective and how the identification and reduction of biases
should be performed, will most probably always be task-specific. Given the broad-
ness of the NLP, this will cause the methodical perspective of this issue to never
have a ground truth which is common to the entire field of NLP.

The second question, on who does the responsibility to monitor the bias identifica-
tion and bias removal lie on? The answer to that question must be the developer or
team that built the analysis system. The end-user of a product cannot be assumed
to know or be familiar with the specific technology in it, or to exactly know how each
component of it works. This could be compared to a customer being required to
have a deep understanding of a car’s powertrain before being allowed to purchase it.
The customer must be made aware of the limitations of a system, but the identifica-
tion and correction of the limitations must be performed by the system’s developers.

Another argument as to why the responsibility must lie on the developers can be
viewed in Figure 4.10. The identification of the words pakistan and pakistani show
that there is a clear need for an iterative process of investigation to ensure that a
system or data set does not base its prediction on bias terms. However, this pro-
cess cannot be considered as suitable for complete automation due to the need for
analytical decisions based on the core values of the team, developer, or company
responsible for the system.

5.4 Identification of a spurious correlation
The general keynote from the results presented in Section 4.3 is that all the three
presented methods or bias identification show the ability to produce word filter
which can regularize the data such that the impact of specific keywords is reduced.
This can be noted in Table 4.8b, 4.9a, and 4.9b. It can be noted from the tables
the model weighting for the specific keyword is eliminated and the prediction of the
filtered models is flipped compared to the baseline models. However, for example
text 3, which has label 1, the application of the three word filters has flipped their
predictions compared to the baseline models. This shows that the presented filter-
ing process does not guarantee that the model will correctly classify all sentences
containing a keyword just because the relevance of the keyword has been reduced
for the model’s prediction. Another possible cause for the misclassification could be
that the data has been over-regularized such that the model has been able to make
a correct generalisation regarding the content of the sentence and its label.

A point of interest that can be noted regarding the filter sourced from the LRP
method, presented in Tables 4.6 and 4.7, is that it was possible to reduce the impact
of both keywords even though both were missing from the produced word filter.
This result which at first appears to be counterintuitive, given that neither keyword
is actively filtered from the data, indicates that the keywords must occur in the
same sentences as one or several of the other words included in the filter. This is be-
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cause the chosen filter application method, sentence dropout, which cause sentences
containing the keywords be dropped from the training data without keywords being
included in the filter.

Another point of interest in Table 4.6 and 4.7 is that the keyword was identified
as among the highest relevant word for true positive classifications. This can be
considered as expected given the method of how the training data was augmented
in the experiment, as described in Section 3.8. Since all sentences which contained
either keyword were moved to the positive class in the training data the correlation
between keywords and the positive class was made by the model. This indicates that
the model was indeed made to overfit on the specified keywords. This points towards
that the method used for data augmentation used in the experiment is sound for its
intended goal. However, the lack of identification of the keywords in the LRP filter
indicates that the methodology for the selection of the words to filter out can be
improved when using the LRP approach.

The results presented in Table 4.10 could point toward that the application of the
filters on the training data has broken the induced spurious correlation. The three
filtered models do not show the same systemic classification error towards the pos-
itive class which was noted in the two baseline models. An interesting take away
from the classification results is that the models after application of the word filter
the model showed a tendency of favouring the negative class for their prediction.
This is noteworthy given that the labels of he sentences containing the keywords are
unchanged by the application of the filters. This could indicate that the models after
the application of the filters have made a correlation between some content in the
sentences containing the keywords and the negative class. If this is the cause for the
tendency towards negative classification for the filtered models then the correlation
must be stronger than the connection between the sentences containing the key-
words and their own label. This could thus indicate that the models have overfitted
on a subset of new features, but this time to the negative class instead of the positive.

An important note, regarding the importance of continuous evaluation of the weight-
ing of possible bias inducing words in the model, can be viewed in Figure 4.10. In
the figure, it can be noted that all three identification methods manage to remove
the keywords from a model’s highest weighted words for true positive classifications.
However from the model trained with data augmented by the NCOF method the
words pakistan and pakistani have appeared. The appearance of the two words
shows that just because the filter methods can help to identify, and through their
application reduce the weighting of spurious correlations, that the data or model
now are free of any other spurious correlations. This change of focus in the model
shows that the elimination of spurious correlations cannot be fully automated as the
elimination of one bias can lead to another.
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5.5 Comparison of method quality
The three different methods for filter creation all aim to solve the same problem,
and even though they managed to produce filter with comparative content there are
some qualitative differences between the approaches. The LRP approach is much
more computationally heavy than the NCOF and TF-IDF method. This makes the
usage of the LRP approach more difficult to motivate for projects that use parameter
rich models and expansive data sets, unless infrastructure appropriate for this kind
of calculations can be applied. It could possibly be considered that the TF-IDF
approach manages to produce a slightly more rich filter in terms of content origin
compared to the NCOF method. However, this is a bold claim considering that
the result from the two methods is dependent on the evaluated data and this thesis
has only investigated one data set. The three methods all produce results that are
considered to be of similar general quality and no specific domain is identified to
favour any method in particular.

5.6 Discussion regarding the goals and aim of the
project

The hypothesis under investigation, as outlined in Section 1.2, and its extension are
considered to have been investigated during the course of this project. The methods
presented to aid the identification of spurious correlations and the application for
removal of spurious correlations have been shown to answer the posed questions.

The aim of the project, to present methods that can help a developer with the
task of identifying possible spurious correlations by presenting relevant information
are considered to be partially reached. Two of the methods were able to identify
the disparity posed by the experiment outlined in Section 3.8, by identifying the
specified keywords among the 3σ outliers. However, since there are other types of
disparities that can occur it cannot be said that the proposed methods can detect
all possible variations.

The presented methods increase the availability of techniques that can work as
an aid to a human in the task of detecting spurious correlations. The methods can-
not be considered to fully solve the task of identifying a spurious correlation since
the act of deciding what is a spurious correlation must be made by a human. The
methods merely present present suggestions. However, as discussed in Section 5.3
processes should never be fully automated and the developer should always bear the
responsibility of the process.

The goal of the project as described in Section 1.2 are considered to be reached.
The presented methods present the information regarding how the data has af-
fected the model’s classification and can detect specific words. The methods are
also considered to not be content-specific and can present objective results for a
broad subject of possible biases.
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5.7 Discussion regarding objectives

The questions that this thesis has investigated, previously presented in Section1.3,
are presented once again to ease the referral for the reader.

• What information should be presented to a developer such that an informed
decision can be made regarding if a spurious correlation have been identified?

• What methods can be used to produce this information?

• How is the presented information weighted in a model during classification?

• Are the methods sufficient to replace current processes for the identification
of spurious correlations?

The results presented in Section 4.3 and the question asked in Section 1.3, also pre-
sented above, regarding what information should be presented to a developer so a
decision regarding the presence of a spurious correlation can be made, are consid-
ered to have been answered. The results point towards that two methods were able
to propose a spurious correlation in the environment outlined in Section 3.8. The
third method, the LRP approach, was however not able to propose the spurious
correlation using the specification of word filter creation outlined in Section 3.4.4.
The second question in Section 1.3, what methods can be used for the identification,
and what are their limitations. Is considered to have been sufficiently answered in
Chapters 2 and 3, the theory and method chapters of this thesis. The limitations
of the methods, such as their inability to process inflections of words, are problems
that possible future extensions of this project may solve.

Regarding the question asked in Section 1.3, if the methods are sufficient to re-
place current processes for bias identification, the answer is not clear. This thesis
did not focus on making any comparisons between the proposed methods and cur-
rent processes for identifying spurious correlation. The results indicate that the
proposed methods when applied as a word filter on the training data using the sen-
tence dropout technique can alter which correlations a model makes between the
training data and its labels. However, with a small reduction of the model’s accu-
racy as a result of the alteration and reduction of the training data, it should also
be clarified that the methods do not need to be applied as a word filter to be useful,
just the identification process can be used to gain insights regarding the content of
the data or the weighting of words in a model. This makes the methods a set of
tools that can be deployed to work in parallel with any current tools a developer
might have available.
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5.8 Ethical notes of the project
The project as a whole is considered as ethically sound given that the aims and goals
are to increase fairness in machine learning applications and make these processes
available to a broader mass.

As mentioned in Section 2.1 the notion of what is considered fair and ethically
sound is a subjective matter. This stance in conjunction with the possibility of
manual inspection of the results from the method to select the words to be disre-
garded for a model’s prediction can result in biases being overlooked due to a user’s
personal views. The dilemma of what the most ethical solution should be when a
fully automated solution is compared with one involving a human in the loop. Given
that the automated solution would have the possibility of making objective decisions
based on statistics but would lack the ability to generalise the way a human can,
a humans decision process could always be assumed to be affected by the persons
own opinions and views.

The experiment which was outlined in Section 3.8 can be considered by some as
an unethical experiment especially targeted towards a specific religious group. The
experiment did not aim to be disrespectful or to single out any religious groups. The
experiment only strives to highlight the issue of skewed data set as the underlying
cause for spurious correlations and to investigate if the proposed methods are able
to identify and reduce them. Therefore are the experiment considered in the scope
of this project as ethically sound.

As mentioned previously in this section, and Section 2.1, what is considered as an
ethical bias is subjective. The definition of the term which has been used in this the-
sis has deliberately been very broad to include as much as possible. This distinction
was made to counteract the possible issue of having a too narrow definition which
could have led to the issue of underrepresenting the scope of the issue of bias in data.

An ethical note regarding the aim and goal of the project is that if this study is
successful in creating a method that can aid a user in reducing biases in a model
it can also be used to induce them. This could be done by iteratively evaluating
modifications of the model and the training data set until the method detects the
sought after bias. The author of this study does not support this use case nor the
idea of consciously creating classifiers with a bias.
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This chapter will give a brief conclusion to the thesis as a whole. In addition to the
conclusion, possible future extensions of this thesis are presented.

6.1 Future work
From Figure 4.4 and 4.5 it is possible to see that the padding token used to ex-
tend all sentences in the data set receives an LRP score during the evaluation of
the model. This indicates that the presence of the tokens is used for the model’s
classification. From the figures, it is possible to identify that the token always in-
fluenced the model to push for a prediction of the negative class. This indicates
that the presence of padding tokens in a sentence will push the classifier to classify
the sentence as negative. An extension of this thesis could be to investigate this
behaviour in the classifier and see if changing the number of padding tokens in a
sentence indeed influence the classification.

One possible way to continue this thesis, which has been discussed previously, is
to expand the capabilities of the filter production techniques by introducing the
ability to process word stems or lemma. The implementation of stem and lemma
processing can make the identification more general such that suffixes of words that
may be specific to a data set do not influence the identification processes.

Another possible approach to extend this thesis is to investigate the ability to de-
velop a standardised measure of how affected a model is by biases and to identify
which kind of bias is affecting it. Due to the lack of standardisation in the field
of bias identification in NLP a metric like this is needed so that the evaluation of
biases between models is more easily comparable.
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6.2 Conclusion
The results presented in Chapter 4 and discussed in Chapter 5 indicate that at
least the proposed NCOF and TF-IDF methods can aid with the identification of
a spurious correlation that has been injected in a data set, given the environment
outlined in Section 3.8. The proposed LRP method did not manage to identify the
pre-specified bias but should be able to by making small alterations to the defined
method. By applying the three filters to the training data using the sentence dropout
method the weighting of the specified keywords was able to be reduced in the model.

The drawbacks of the proposed method limit their applicability. However, nei-
ther of the methods is fixed, and the general methodology and theory proposed for
the identification and reduction of spurious correlations using the methods shows
potential for further development.

The importance of having an iterative process when evaluating the weighting of
a model’s input has been shown in this study. It was shown that by identifying
and reducing the impact of one bias another possible bias term appeared. This
also points towards the importance of having a human in the loop to supervise the
evaluation.

This thesis by itself cannot be considered as a holistic solution to the issue of bias
in NLP data and models. And neither of the proposed methods manages to solve
the issue of separating spurious from true correlations or present a way of describing
the exact topic that a data set model. However, this thesis proposes three novel
methods that aid in making the identification of possible biases and spurious corre-
lations easier. The final decision of regarding what is considered as spurious or not
is still a humans, given that it has been shown that this process is not suitable for
automation, yet.
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