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Towards Improvement of Human-Machine Interaction
Design of Multimodal Human Intent Recognition System
ASTA DANAUSKIENE, MAURICIO MACHADO
Department of Mechanics and Maritime Science
Chalmers University of Technology

Abstract

This master thesis focuses on investigating the electrical brain activity, eye gaze
and pupil behaviour in the scope of goal-directed movement intention recognition
for human-machine interaction applications. Previous studies support that the elec-
troencephalography (EEG) data is suitable for early motion recognition and predic-
tion and the pupil size changes correlate with the difficulty of the task. However few
studies have looked into neural correlates of goal-directed and no-goal movements
as well as the correlation between the pupil changes, EEG data and hand motion.
We explore these questions through a set of cue-based movement experiments that
include changing goal, repeating goal and no-goal scenarios and are performed in col-
laboration with a robot. The results were analysed with regard to movement related
cortical potentials (MRCP) and event related spectral perturbation (ERSP) of EEG
data, evoked pupil response, gaze patterns as well as binary goal\no-goal classifica-
tion of the data and correlation between different biosignals. Our results indicate
that changing goal-directed movements are distinguishable from no-goal movements
in EEG data in both temporal and time-frequency domains, when performing the
task with a passive robot. Collaborative robot experiments showed great intersub-
ject variability, therefore need to be further investigated. No correlation between
evoked pupil response and MRCP was found in this study, however results suggest
a correlation between MRCP and motion velocity profile.

Keywords: Human-Machine Interaction, Human-Robot Interaction, Human Intent
Recognition, Goal-Directed Movement, Movement Prediction, Gaze Tracking, Pupil-
lometry, BCI.
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1 Introduction

1.1 Background

Modern robotic systems are able to perform a myriad of tasks better than humans,
but there are cases, mostly those requiring more dexterity and complex decision-
making, where humans still perform better. Therefore by implementing a human-
in-the-loop (HITL) control strategy, it should be possible for a mechatronic system
to improve its performance by actively recognizing human intention. The idea is not
new and there are collaborative robots (cobots) that are already working together
with humans, however the technology still has some noteworthy limitations such
as safety concerns and consequent restrictions on robot performance and level of
integration [24]. Cobots are designed to prevent inflicting harm to humans, however
these machines are not inherently safe. This means that safety needs to be assessed
for every installation case separately and often a robot is working with restricted
power, force and speed or even completely stopping when human approaches collab-
orative workspace. Although it assures the safety, it also prevents the human-robot
system from working in its full potential. Development of better HITL algorithms
is a next step towards a more seamless, intuitive collaboration. Such synergy, if
achieved, can have many applications such as in assisted and automated driving,
assembly lines where more intricate steps are needed or exoskeletons for augmenta-
tion of humans with motion impairment.

1.2 Project aim

The aim of this Master’s project is to design a human sensory-motor intent recog-
nition system to improve robot and human collaboration when performing a shared
control task. Through the implementation of such a system on Human-Machine
Interaction (HMI) application, we expect to see an efficient and safe accomplish-
ment of a given task, pushing further for human and robots working close together.
Previous studies in this field have mostly focused on intent recognition as motion
prediction based on kinematics and dynamics of a human collaborator. Meanwhile
other ones, especially in the field of prosthetics and rehabilitation, have investigated
human cognitive processes and bio-signals, such as electrical muscle activity through
electromyography (EMG) and electrical brain activity through electroencephalogra-
phy (EEG) to better understand motion volition. The authors of this report suggest
that a combined approach could be beneficial for improvement of HMI applications.



1. Introduction

This thesis work will be focused on the following hypotheses:

e The human motor intent can be predicted based on the EEG and eye track-
ing measurements. Furthermore, the prediction can be supported by motion
tracking data.

o There exists a correlation between eye movements and sensory-motor human
intent related changes in EEG signals.

o Implementing the multimodal human intent recognition algorithm as part of
the robot control system will improve the performance of the task as compared
to a single mode HITL system.

Besides investigation of these hypotheses and testing them through a set of carefully
designed experiments, this project also intends to explore the following research
questions:

o Is the correlation between EEG and eye-gaze tracking sufficient enough to be
able to find "surrogate" measures from gaze-tracking data to replace by-nature-
veryi-intrusive EEG signals for future applications?

» Isit possible to fuse EEG and eye-tracking data to obtain a combined cognitive
indicator that could be used to identify different pre-movement stages such as
onset decision making, anticipatory behaviour or intention?

1.3 Limitations

Due to time restrictions, the scope of this project will be limited to a narrow part
of recognition of human intent, specifically, the prediction of human sensory-motor
behaviour.

The experiments will be conducted in a controlled environment where human will
have to perform a defined task together with a 2 degree of freedom robotic arm.
The number of the test subjects is restricted to 3, which is sufficient for a proof of
concept, however a larger study involving more human subjects would be needed for
validation of the findings of this project.

No online processing of EEG signals will be performed in this study and no com-
parison of different EEG processing and classification techniques will be made.
Pupil measurements were made through an off-the-shelf solution comprising both
hardware and software. Therefore, it is not within the scope of this work to produce
the mathematical background for how the data is defined, e.g. pupil size estimation
or gaze calculation. When necessary, a short theoretical description will be provided
to support the work.



2 Theory

2.1 Motor planning activity in the brain

There have been a number of studies on motor activity in the brain and possibility
to employ it with Brain Computer Interface (BCI). Many studies focus recognizing
subject’s intention by analyzing motor imagery as a tool for rehabilitation and func-
tionality restoration [26,46]. The recognized intent can be coded into commands in
order to augment or assist a human user in performing the intended or predefined
task. Similarly, the same technology could be applied to work with collaborative
robots. However, the task is not trivial.

It has been proven that significant changes in both frequency and time domains of
brain activity signal occur in motor cortex (C3, Cz, C4 locations) when performing
a motor task [35,39]. However, studies have shown that the brain activity changes
with the task. Different activation patterns were found in the functional magnetic
resonance imaging (fMRI) signal when given shared motor imagery task compared
to a single subject motor imagery task. Single action primarily activates the mid-
dle occipital lobe, the cerebellum and the precuneus, meanwhile joint action shows
significant activation in the bilateral inferior frontal gyrus and the middle frontal
gyrus [44]. Fluctuations in attention have also been proven detectable during mo-
tor task. These differences occur most prominently when analysing time-frequency
signals of motor cortex channels [7]. Moreover, the differences in the presence of the
goal is suggested to have an effect on the brain activity. When considering goal-
directed movement and no goal movement, there are noticeable changes in premotor,
primary motor areas and the posterior parietal cortex and the average amplitude of
the brain waves over the central electrodes [31]. This suggests areas for improve-
ments in movement classification for BCI applications.

2.2 Brain - Computer Interface

Brain-Computer Interface (BCI) is a system for direct communication between the
brain and external environment. There are three essential parts to the system:
» Signal acquisition through sensors placed on the scalp (non-invasive BCI)
or brain directly (invasive BCI). In this thesis electroencephalography (EEG)
is used to acquire the signals.
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« Signal preprocessing to amplify the signal and improve signal to noise ratio
(SNR). This step also includes filtering to remove DC bias and high frequency
noise as well as removal of artifacts.

o Extraction of meaningful, interpretable features that can be translated
into commands for a further use with various devices. The commands are
most often obtained through classification of the features.

One challenge for BCI is its implementation in real-time applications. Even though
online processing and classification of the data are computationally challenging,
there are other, more challenging factors that make classification task complicated.
Firstly, a lot of research mentioned above is conducted in a synchronized manner-
the experiments are conducted in a well defined environment, performing a single
movement at a time that is synchronized to some onset. In reality, a person ex-
ecutes movements continuously, making the classification less accurate. A recent
study showed that a multi-modal approach using electrooculography (EOG), EMG
and EEG can significantly improve classification results, thus improving the BCI
performace [47].

2.2.1 EEG data acquisition

EEG is a method for monitoring and recording electrical brain activity. This method
has many applications in medical diagnostics and research. One of many well stud-
ied research applications for EEG is sensory - motor tasks and its potential use for
HMI through BCI.

The electrical activity in the brain is created by neuronal communication. A sin-
gle neuron activity is too weak to be detected using non-invasive EEG methods,
hence the signals picked up by electrodes on the scalp are cumulative electric field
potentials generated by numerous neurons. The differences in these fields create
characteristic representations of brain activity [10]. The signal is typically recorded
using non-invasive electrodes placed at fixed locations on the scalp. The standard
locations are defined by international 10-20 system, where the distance between ad-
jacent electrodes is either 10% or 20% of the entire distance from nasion to inion
and from one preauricular point to the other, see figure 2.1. In studies requiring
more spatial resolution, additional electrode locations in between the ones presented
in the figure 2.1 are used.

A typical EEG signal is measured in range of microvolts and can easily be masked
by the noise that may be as high as 100 times the value of the EEG signal, making
it challenging to filter the noise without removing the main signal characteristics.
The artifacts may come from different sources such as internal noise due to other
processes in the brain (e.g. activity in alpha (8 - 15 Hz) frequency band), biolog-
ical sources (ocular, cardiac or muscle activity), noise from external devices (e.g.
50 Hz power line noise), noise due to movement or electrode artifacts due to high
impedance between the skin and electrodes. To reduce the latter, the choice of elec-
trodes is important.
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Figure 2.1: International 10-20 electrode placement system.

There are many different types of electrodes and different ways of classification. The
electrode categories can be loosely separated into:

e Surface electrodes or implantable electrodes. Surface electrodes are
placed on the skin and are non-intrusive, however the SNR is often poor due
to natural skin oils, hair or dead skin cells that reduce skin conductance. Im-
plantable electrodes give a much cleaner signal than surface electrodes, however
are highly intrusive and therefore are rarely used.

o Active or passive elcetrodes. Active electrodes have an in-built pream-
plifier which significantly increases the quality of the signal and allows the
electrodes to be used without special skin preparation. Passive electrodes
require special skin preparation: cleaning, abrasion and most often a use of
conductive paste. However, passive electrodes are much cheaper.

e Dry or gel electrodes. Dry electrodes are equipped to work without skin
preparation or conductive paste and often have a brush like shape to bypass
the hair. Gel electrodes need a considerable amount of gel to ensure good
impedance, which is not preferred by users for short time use as the paste
leaves residuals in the hair.

2.2.2 EEG signal preprocessing

As discussed in the previous section, raw EEG data and contains a considerable
amount of artifacts and noise, hence preprocessing is needed before features can be
computed. There are many paradigms and tools for EEG preprocessing. Here, only
the steps used in this thesis are presented:

o Referencing. In EEG recordings, the voltages recorded in one electrode
are relative to other electrodes, reference electrode or a calculated average.
Often reference electrodes are chosen on the mastoid bone, earlobes or one of
the central electrodes (e.g. Cz electrode) as these locations are close to the
measurement area and picks up the same noise as all other channels.

o Uploading the data. Before preprocessing can be started, raw EEG data
needs to be uploaded to software that will be used for preprocessing. Channel
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locations in three dimensional space and events (e.g. cues for movement)
should be imported together with the data in order to visualise the scalp
maps and estimate source locations for data components.

« Filtering. Generally the signal should be filtered with a notch filter to remove
the line noise and a high-pass filter to remove the low frequency drift. The
cut-off frequency of the high-pass filter depends on the application and can be
anywhere from 0.1 Hz up to 1 Hz, a higher limit is not recommended since it
starts to interfere with the data. Additionally, a low-pass filter can be applied
to attenuate the high frequency noise above 40 - 50 Hz. However, several
studies have shown that both low-pass [38,41] and high-pass [34] filtering can
significantly alter the temporal structure of the data, therefore, if possible,
filtering should be avoided.

o Artifact and trial rejection. Some of these artifacts are very strong and not
systematic, hence they cannot be removed by filters and have to be removed
manually by inspection. It can include noisy channels or time windows when
the noise appears in the majority of the channels and sometimes the whole
epoch will have to be removed. If some channels need to be removed, then
interpolation of removed channels needs to be performed. The purpose of inter-
polation is to avoid the bias when calculating the average reference (explained
in the next step). Other types of noise that is systematic, e.g. heartbeat or
eye blinks, can be filtered out using simultaneous and cross-checking filtering
techniques employing both time and frequency domains.

e Division of data into epochs. When EEG is recorded, the data is repre-
sented as a continuous time series for the whole recording time. However, it is
often useful to divide it into time windows that are locked to a specific event,
e.g. the time point when stimulus was applied.

« Baseline removal is used to remove the mean of the recorded baseline for
each electrode.

o Independent Component Analysis (ICA) is a method to separate Inde-
pendent Components (IC) of linearly mixed signals in different sensors. Since
EEG recorded in one channel is a mixture of all neuron potentials in an area as
well as other biological signals, the recording between electrodes can be highly
correlated (an effect known as cross-talk) and ICA is a tool to separate these
signals. If the EOG or electrocardiogram (ECG) was recorded in a separate
channel, ICA method can be used to remove the EOG or ECG artifacts from
the data without loosing the useful information as well as separate the dis-
tinct otherwise mixed EEG signals in different channels [11]. It is important
to have clean data before running ICA, filtering with 1 Hz high-pass filter
before running ICA is recommended in order to get good results [43].

2.2.3 Feature extraction

Preprocessed data can already provide some information to interpret by observa-
tion; however, due to its high dimensionality and variability it is unlikely to produce
good results in classification. For this reason, feature vectors are used to extract
the meaningful information that can easily be interpreted by a classifier, hence good
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selection of features can give good results even with a simple classifier.

There are some common properties that need to be taken into account when selecting

the features and a classifier. Lotte et al. [27] points the following feature properties:

» noise and outliers: due to poor SNR, EEG signals are contaminated with a
lot of noise;

e high dimensionality: feature vectors often contain information from differ-
ent features that in themselves contain information from several time windows,
frequency spectra, etc.;

o time information: the dynamic properties of EEG signal in time domain
hold important information about cognitive processes and need to be ac-
counted for;

« non-stationarity: EEG signals change over subjects and even over time in
the same subject;

« small training sets: the training sets in EEG are usually small because the
data collection process is time consuming.

There is a great variety of techniques used for feature extraction that study EEG
signals in both time and frequency domains. For the purpose of this study, we will
only use two types of features, namely, Event Related Potentials (ERP) and Event
Related Spectral Perturbations(ERSP).

ERP is a low frequency electrophysiological brain response to a stimulus. ERP is one
of the classical methods of feature extraction and is well studied in the literature [28].
ERPs are acquired by averaging a time locked signal from multiple trials of the same
task. It is defined by slow positive and negative deflections in the amplitude of a
signal in the time domain. When associated with a motor task, ERPs are referred
to as Motor Related Cortical Potentials (MRCPs). MRCPs are characterized by
three components: Readines Potential (Bereitschaftspotential or BP) - a slow neg-
ative deflection in amplitude that starts at around 1.5 seconds before movement,
reaching its peak negativity at the time of an onset where Motor Potential (MP)
occurs and followed by a Movement Monitoring Potential (MMP) - an upturn before
returning to the baseline level [30]. BP is associated with intentional involvement in
the task [18] and the peak negativity is an important parameter determining such
involvement. One study investigated MRCPs in context of presence of a goal and
suggested that there is a statistically significant difference between a goal movement
versus no-goal movement when performing a classification task [31]. The same study
found that maximal negativity over central electrodes and the reafferent potential
after onset were more pronounced in the goal directed task rather than a no-goal
task.

ERP is unable to capture all brain dynamics as it does not hold information about
event related changes in the frequency domain, which are important since evoked
responses are not stable across trials and are dependent on ongoing EEG activity.
ERSP was introduced as a measure to improve ERP. ERSP measures average dy-
namic event related changes in EEG power spectrum as a function of time relative
to an experimental event [29]. ERSPs are computed by averaging the amplitude
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spectra on a sliding time window and normalizing to mean baseline for each epoch.
After that, the results are averaged over many trials and plotted in a time - frequency
domain.

2.2.4 Classification: Support Vector Machines

Many classification algorithms have been used in EEG applications over the years.
In this work, we will not discuss the differences between algorithms, but introduce an
algorithm that was used in this study for binary goal\no-goal movement classifica-
tion of EEG data epochs. A review on several algorithms [27] suggests that Support
Vector Machines (SVM) is a reliable and robust option because of regularization and
simplicity. Moreover, SVM is effective when it is applied on small datasets, which
is the case in this study. To preserve the continuity, the same classifier will be used
for eye gaze and pupillometry data classification.

SVM is a discriminative classifier that separates the data using hyperplane as a
decision boundary. In a two dimensional binary classifier, the hyperplane is a line
separating the data at each side, with least possible amount of outliers 2.2. The
position and orienation of a hyperplane is determined by data points called support
vectors that are located nearest to decision boundary. The hyperplane is selected
to maximize the margin between two classes and minimize the classification error [9].

Support vectors %7/
o O
L] / O
o 7 o
Optimal hyperplane \
Outlier o

o Support vectors

fMaximum margin

Figure 2.2: An ilustration af a two dimensional binary SVM classifier and its main
components

Since SVM is a supervised machine learning algorithm, it needs labelled data to
be trained and a separate dataset for validation. The training data is a set of n-
dimensional vectors x; € R" and classes y; = £1. The hyperplane is defined by
equation:

flz)=2'w+b=0 (2.1)
where w € R™ and b is a real number.

Essentially, SVM aims to find the best separating plane by finding w and b such that
|lw|| is minimum and y; f(z;) > 1 for all data points (z;,y;). If y;f(z;) = 1, the

9
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vector is a support vector. For mathematical convenience, the problem is substituted
to minimizing ||w||. The optimal solution (&, b) allows to classify the vector z:

class(z) = sign(z'& + b) = sign(f(z)). (2.2)

f (2) is the classification score and z is a vector distance from the hyperplane. In
case when the data is not separable, SVM can be used with a soft margin that
separates most of the points, but allows some outliers. The formulation of the soft
margin may differ, but generally it is a similar minimization problem that aims to
minimize w with added penalty parameter C' and slack variable &:

min ;wtw +C> ¢
st yif(xg) 21-¢; (23)
€20

Penalty parameter and slack variable define how soft the decision boundary is —
increasing C value puts more weight on £, making the boundary less lenient [17], [4].
In cases when classes cannot be separated by a linear hyperplane, SVM hyperplane
linear function can be replaced with a non-linear kernel function, such as polynomial,
Gaussian or radial basis function.

2.3 Gaze tracking

It has been studied that eye tracking can be of support for assessing brain function
and attention [14]. Moreover, eye tracking can be further divided into two main
components, gaze tracking and pupillometry. Since the pioneering research made by
Yarbus [45], which linked gaze fixations and thinking, many others followed, further
exploring this concept. With the recent improvements in hardware and algorithms
for eye tracking, a new window of possibilities was open for this method. In ad-
dition, higher sampling rates used now (between 25 to 2000Hz) enabled increased
resolution for the measurements, thus improving data quality.

The importance of gaze tracking for this project lies on how it can relate to human
attention and intention. Several studies focused on that relationship, in one of them
it was investigated ,with the use of heat-maps, how human attention changes when
a person is looking for something specific in a scene or just scanning through it.
The results showed a less scattered and highly focused gaze fixations for the specific
task, labeled as "informational intention" [5].

A study assessing steering performance in drivers and their gaze behavior showed
strong correlation between them. In that case, the horizontal gaze angle and the
steering angle varied in the same proportion with the gaze changing earlier than
the steering, therefore giving a previous indication about the action [40]. Another
research investigated the relation between gaze behaviour and way finding for sub-
jects navigating in a virtual maze. Again it was found a strong relation between

10
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gaze fixation patterns and spatial decision making, with gaze marks peaking at the
chosen path close to a second before the actual decision [42]. Finally, it was the-
orized in [25] that gaze tracking can be of use when determining attention from a
human when interacting with a robot.

Gaze tracking is a method that collects metrics from the eye through time such as,
eye angles and pupil position, in its own reference frame, and translates them into
the scene world. A camera catches the light reflections from the eye by a light source
and an algorithm process the image and calculates the gaze parameters, outputting
that as a focus point into the 2D space. It is mainly used to asses attention from a
person, through fixations and saccades, while executing a given task.

Eye detection can be achieved in two ways: bright pupil or dark pupil method. Both
of them use the same principle described earlier with a light source and a camera.
The main difference is that for first one, the camera and the light source are close
together and have their axes parallel to each other (on-axis set-up). Because of that,
the light hits the retina and bounces straight back to the source, where the camera
also is. By getting the reflection straight from the retina, the pupil becomes bright
(the same can be observed in camera shots when people get red eyes). The second
method places the camera a bit far from the light source, in a non coincident axis
(off-axis set-up) so the camera cannot get the reflections from the retina, but only
from its surface, therefore showing the pupil as black. Both methods are show in
figure2.3. The light source used is normally infra-red (IR) because it falls out of the
visible spectrum, therefore preventing distraction or discomfort and also for being
harmless to the human eye [16]. For our solution the full algorithm is described

in [23].
Dark pupil {a) _J,.. IR illuminator
- = = T --:_-—- & Camera

Bright pupil
L
Al ﬂ IR illuminator
| i: Camera

Figure 2.3: Two methods of pupil detection. a) Dark Pupil, b) Bright Pupil [13]

After detecting the pupil, the next step is to determine the gaze position. The lit-
erature refers to many different ways to approach this problem [16]. For this work,
the gaze mapping was provided from the software used together with the selected
hardware and therefore the authors did not take part in that step. The manufac-
turer states that the mapping "is implemented with a transfer function consisting
of two bi-variate polynomials of adjustable degree. The user specific polynomial
parameters are obtained by running one of the calibration routines" [23].
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2. Theory

2.4 Pupillometry

Pupillometry is the study of the changes in pupil size by the means of cognitive
process. Here, changes related to the eye’s natural accommodation to light are dis-
carded since they are regarded as a mere reflexive response. Pupil size is controlled
by two types of nerve fibers: sympathetic and parasympathetic. Sympathetic fibers
respond to the neurotransmitter norepinephrine, which has an effect of relaxing the
iris therefore dilating the pupil, while the parasympathetic fibers act the other way
with the neurotransmitter acetylcholine, constricting it [14].

The brain structure mainly responsible for noradrenergic pathways that influences
pupil dilation is the Locus Ceruleus (LC). Located in the brain stem, the LC is a
small structure comprising a bundle of neurons that have a direct relation in regu-
lating "arousal and cognitive functioning"'. In short, when LC is more active, due to
increased cognitive load for example, it inhibits the parasympathetic centre while
increasing the sympathetic activity too, which will make the pupil dilate [14], [21].

Studies with monkeys supported this pupil/LC relation by monitoring the activity
in the LC and pupillary responses while the subjects performed different types of
cognitive tasks. In those, it was observed that the pattern of activation in the LC
was replicated in the pupil in the form of changes in its size, [33], [20].

In humans, minimum and maximum pupil range can vary from 1.5 to 9mm and for
people in rest condition and in a environment with "standard light conditions', the
pupil has a 3mm diameter in average [36]. Changes in pupil size due to cognitive
load can be at most of 0.5mm but those changes can also get highly impacted from a
person’s condition, for example, fatigue can raise the pupils diameter baseline while
introducing fluctuations [8]. With that in mind, it is important to assure constant
illumination conditions in the test environment while also checking if the subjects
are well rested before starting the trials.
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3 Methods

3.1 Methods and equipment

3.1.1 EEG recordings

The EEG was recorded with an open source BCI device at 125Hz sampling rate in 11
EEG channels and two EOG channels - vertical (VEOG) and horizontal (HEOG).
OpenBCI Cyton board with v3 Daisy Module is used with dry passive EEG elec-
trodes mounted on an electrode cap (see figure 3.1). The electrode impedances
were kept below 5k€2. Electrode locations are based on international 10-20 electrode
placement system 2.1 and are covering inferior frontal cortex (F7, F8), supplemen-
tary motor area and premotor cortex (F3, Fz, F4), motor cortex (C3, Cz, C4) and
superior parietal lobule (P3, Pz, P4) as these regions have been proven to be the
largest contributors to motor action planning and movement onset, as discussed in
chapter 2.1. Four electrodes were located above and bellow the center of left eye
(VEOG) as well as on the sides of both eyes (HEOG), just bellow temples. These
electrodes record the eye movement related muscle activity in order to filter out
EOG artifacts from other channels in the preprocessing step. The ground and ref-
erence electrodes were placed on right and left earlobes respectively.

Offline processing of the data was performed using MATLAB R2018B (The Math-
Works, Massachusetts, USA) with an open source EEGLAB toolbox [12]. The data
was bandpass filtered with zero-phase non-causal finite impulse response filter with
low cut-off frequency at 1 and high cut off frequency at 45 Hz. The baseline was
removed, ICA was performed using an infomax ICA algorithm and then the data
was divided into epochs [-2 3] seconds from the "Go" cue. ICA weights were im-
ported to the dataset filtered between at 0.1 Hz low cut-off and 45 Hz high cut-off
frequencies and independent components (IC) corresponding to the EOG artifacts
or other muscle activity were removed. Then, MRCP and ERSP were calculated.

Binary goal movement vs. no-goal movement classification of EEG data was made
based on temporal and time-frequency features that were chosen based methods and
findings of previous similar studies [6,31]. Temporal features include minimum and
maximum MRCP values as well as the slopes in time windows [-2 -1], [-1 0], [0 0.5],
[0.5 1] and [1 2] seconds as in. Features in time-frequency domain were mean ERSP
values in Delta (0-4 Hz), Theta (4-8 Hz), Alpha (8-15 Hz), Beta (15-30 Hz) and
Gamma (30-60 Hz) frequency bands for time windows at [-1 -0.5], [-0.5 0], [0 0.5]
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3. Methods

L8 .
OpenBCl Cyton

Figure 3.1: EEG setup. Every electrode is connected to a separate channel on
either OpenBCI Cyton board or Daisy module and referenced to the A2 channel.
Both boards share the ground and reference pins, both, horizontal (HEOG) and
vertical (VEOG), EOG channels are connected such that both electrodes of one
channel are referenced to one another.

and [0.5 1] seconds. The features were divided into the training and test datasets.
Training and cross-validation of the SVM was performed on the training dataset
using MATLAB function fitcsvm() using the hyperparameter optimization option
to find the best classifier based on Sequential Minimal Optimization [15].

3.1.2 Gaze Tracking & Pupillometry

For implementing the gaze tracking we picked a solution from Pupil Labs, which
consists of a 3D printed headset with two embedded cameras, figure3.2, one of them,
the world camera, always faces forward and displays the perspective from the user
on the computer screen. The second camera faces the user’s eye with an off-axis
IR LED of 860nm of wavelength to illuminate it and feeds that image into the
software. Then, an open-source algorithm segments the image using dark pupil
method, monitors the pupil size and tracks its position (gaze data) [23]. A quality
measure is also provided, ranging from 0 to 1, and indicates the confidence that that
circle found is indeed the pupil. The information from both cameras is finally used
to map and overlay the gaze point onto the 2D scene view feed as a red dot which
moves according to the user’s eye movement, therefore providing us with real time
eye tracking, figure 3.3. There are also settings available on the menus