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Towards Improvement of Human-Machine Interaction
Design of Multimodal Human Intent Recognition System
ASTA DANAUSKIENE, MAURICIO MACHADO
Department of Mechanics and Maritime Science
Chalmers University of Technology

Abstract
This master thesis focuses on investigating the electrical brain activity, eye gaze
and pupil behaviour in the scope of goal-directed movement intention recognition
for human-machine interaction applications. Previous studies support that the elec-
troencephalography (EEG) data is suitable for early motion recognition and predic-
tion and the pupil size changes correlate with the difficulty of the task. However few
studies have looked into neural correlates of goal-directed and no-goal movements
as well as the correlation between the pupil changes, EEG data and hand motion.
We explore these questions through a set of cue-based movement experiments that
include changing goal, repeating goal and no-goal scenarios and are performed in col-
laboration with a robot. The results were analysed with regard to movement related
cortical potentials (MRCP) and event related spectral perturbation (ERSP) of EEG
data, evoked pupil response, gaze patterns as well as binary goal\no-goal classifica-
tion of the data and correlation between different biosignals. Our results indicate
that changing goal-directed movements are distinguishable from no-goal movements
in EEG data in both temporal and time-frequency domains, when performing the
task with a passive robot. Collaborative robot experiments showed great intersub-
ject variability, therefore need to be further investigated. No correlation between
evoked pupil response and MRCP was found in this study, however results suggest
a correlation between MRCP and motion velocity profile.

Keywords: Human-Machine Interaction, Human-Robot Interaction, Human Intent
Recognition, Goal-Directed Movement, Movement Prediction, Gaze Tracking, Pupil-
lometry, BCI.
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1 Introduction

1.1 Background
Modern robotic systems are able to perform a myriad of tasks better than humans,
but there are cases, mostly those requiring more dexterity and complex decision-
making, where humans still perform better. Therefore by implementing a human-
in-the-loop (HITL) control strategy, it should be possible for a mechatronic system
to improve its performance by actively recognizing human intention. The idea is not
new and there are collaborative robots (cobots) that are already working together
with humans, however the technology still has some noteworthy limitations such
as safety concerns and consequent restrictions on robot performance and level of
integration [24]. Cobots are designed to prevent inflicting harm to humans, however
these machines are not inherently safe. This means that safety needs to be assessed
for every installation case separately and often a robot is working with restricted
power, force and speed or even completely stopping when human approaches collab-
orative workspace. Although it assures the safety, it also prevents the human-robot
system from working in its full potential. Development of better HITL algorithms
is a next step towards a more seamless, intuitive collaboration. Such synergy, if
achieved, can have many applications such as in assisted and automated driving,
assembly lines where more intricate steps are needed or exoskeletons for augmenta-
tion of humans with motion impairment.

1.2 Project aim
The aim of this Master’s project is to design a human sensory-motor intent recog-
nition system to improve robot and human collaboration when performing a shared
control task. Through the implementation of such a system on Human-Machine
Interaction (HMI) application, we expect to see an efficient and safe accomplish-
ment of a given task, pushing further for human and robots working close together.
Previous studies in this field have mostly focused on intent recognition as motion
prediction based on kinematics and dynamics of a human collaborator. Meanwhile
other ones, especially in the field of prosthetics and rehabilitation, have investigated
human cognitive processes and bio-signals, such as electrical muscle activity through
electromyography (EMG) and electrical brain activity through electroencephalogra-
phy (EEG) to better understand motion volition. The authors of this report suggest
that a combined approach could be beneficial for improvement of HMI applications.
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1. Introduction

This thesis work will be focused on the following hypotheses:
• The human motor intent can be predicted based on the EEG and eye track-

ing measurements. Furthermore, the prediction can be supported by motion
tracking data.

• There exists a correlation between eye movements and sensory-motor human
intent related changes in EEG signals.

• Implementing the multimodal human intent recognition algorithm as part of
the robot control system will improve the performance of the task as compared
to a single mode HITL system.

Besides investigation of these hypotheses and testing them through a set of carefully
designed experiments, this project also intends to explore the following research
questions:

• Is the correlation between EEG and eye-gaze tracking sufficient enough to be
able to find "surrogate" measures from gaze-tracking data to replace by-nature-
veryi-intrusive EEG signals for future applications?

• Is it possible to fuse EEG and eye-tracking data to obtain a combined cognitive
indicator that could be used to identify different pre-movement stages such as
onset decision making, anticipatory behaviour or intention?

1.3 Limitations
Due to time restrictions, the scope of this project will be limited to a narrow part
of recognition of human intent, specifically, the prediction of human sensory-motor
behaviour.

The experiments will be conducted in a controlled environment where human will
have to perform a defined task together with a 2 degree of freedom robotic arm.
The number of the test subjects is restricted to 3, which is sufficient for a proof of
concept, however a larger study involving more human subjects would be needed for
validation of the findings of this project.

No online processing of EEG signals will be performed in this study and no com-
parison of different EEG processing and classification techniques will be made.
Pupil measurements were made through an off-the-shelf solution comprising both
hardware and software. Therefore, it is not within the scope of this work to produce
the mathematical background for how the data is defined, e.g. pupil size estimation
or gaze calculation. When necessary, a short theoretical description will be provided
to support the work.
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2 Theory

2.1 Motor planning activity in the brain
There have been a number of studies on motor activity in the brain and possibility
to employ it with Brain Computer Interface (BCI). Many studies focus recognizing
subject’s intention by analyzing motor imagery as a tool for rehabilitation and func-
tionality restoration [26,46]. The recognized intent can be coded into commands in
order to augment or assist a human user in performing the intended or predefined
task. Similarly, the same technology could be applied to work with collaborative
robots. However, the task is not trivial.

It has been proven that significant changes in both frequency and time domains of
brain activity signal occur in motor cortex (C3, Cz, C4 locations) when performing
a motor task [35, 39]. However, studies have shown that the brain activity changes
with the task. Different activation patterns were found in the functional magnetic
resonance imaging (fMRI) signal when given shared motor imagery task compared
to a single subject motor imagery task. Single action primarily activates the mid-
dle occipital lobe, the cerebellum and the precuneus, meanwhile joint action shows
significant activation in the bilateral inferior frontal gyrus and the middle frontal
gyrus [44]. Fluctuations in attention have also been proven detectable during mo-
tor task. These differences occur most prominently when analysing time-frequency
signals of motor cortex channels [7]. Moreover, the differences in the presence of the
goal is suggested to have an effect on the brain activity. When considering goal-
directed movement and no goal movement, there are noticeable changes in premotor,
primary motor areas and the posterior parietal cortex and the average amplitude of
the brain waves over the central electrodes [31]. This suggests areas for improve-
ments in movement classification for BCI applications.

2.2 Brain - Computer Interface
Brain-Computer Interface (BCI) is a system for direct communication between the
brain and external environment. There are three essential parts to the system:

• Signal acquisition through sensors placed on the scalp (non-invasive BCI)
or brain directly (invasive BCI). In this thesis electroencephalography (EEG)
is used to acquire the signals.
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2. Theory

• Signal preprocessing to amplify the signal and improve signal to noise ratio
(SNR). This step also includes filtering to remove DC bias and high frequency
noise as well as removal of artifacts.

• Extraction of meaningful, interpretable features that can be translated
into commands for a further use with various devices. The commands are
most often obtained through classification of the features.

One challenge for BCI is its implementation in real-time applications. Even though
online processing and classification of the data are computationally challenging,
there are other, more challenging factors that make classification task complicated.
Firstly, a lot of research mentioned above is conducted in a synchronized manner-
the experiments are conducted in a well defined environment, performing a single
movement at a time that is synchronized to some onset. In reality, a person ex-
ecutes movements continuously, making the classification less accurate. A recent
study showed that a multi-modal approach using electrooculography (EOG), EMG
and EEG can significantly improve classification results, thus improving the BCI
performace [47].

2.2.1 EEG data acquisition
EEG is a method for monitoring and recording electrical brain activity. This method
has many applications in medical diagnostics and research. One of many well stud-
ied research applications for EEG is sensory - motor tasks and its potential use for
HMI through BCI.

The electrical activity in the brain is created by neuronal communication. A sin-
gle neuron activity is too weak to be detected using non-invasive EEG methods,
hence the signals picked up by electrodes on the scalp are cumulative electric field
potentials generated by numerous neurons. The differences in these fields create
characteristic representations of brain activity [10]. The signal is typically recorded
using non-invasive electrodes placed at fixed locations on the scalp. The standard
locations are defined by international 10-20 system, where the distance between ad-
jacent electrodes is either 10% or 20% of the entire distance from nasion to inion
and from one preauricular point to the other, see figure 2.1. In studies requiring
more spatial resolution, additional electrode locations in between the ones presented
in the figure 2.1 are used.

A typical EEG signal is measured in range of microvolts and can easily be masked
by the noise that may be as high as 100 times the value of the EEG signal, making
it challenging to filter the noise without removing the main signal characteristics.
The artifacts may come from different sources such as internal noise due to other
processes in the brain (e.g. activity in alpha (8 - 15 Hz) frequency band), biolog-
ical sources (ocular, cardiac or muscle activity), noise from external devices (e.g.
50 Hz power line noise), noise due to movement or electrode artifacts due to high
impedance between the skin and electrodes. To reduce the latter, the choice of elec-
trodes is important.
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2. Theory

Figure 2.1: International 10-20 electrode placement system.

There are many different types of electrodes and different ways of classification. The
electrode categories can be loosely separated into:

• Surface electrodes or implantable electrodes. Surface electrodes are
placed on the skin and are non-intrusive, however the SNR is often poor due
to natural skin oils, hair or dead skin cells that reduce skin conductance. Im-
plantable electrodes give a much cleaner signal than surface electrodes, however
are highly intrusive and therefore are rarely used.

• Active or passive elcetrodes. Active electrodes have an in-built pream-
plifier which significantly increases the quality of the signal and allows the
electrodes to be used without special skin preparation. Passive electrodes
require special skin preparation: cleaning, abrasion and most often a use of
conductive paste. However, passive electrodes are much cheaper.

• Dry or gel electrodes. Dry electrodes are equipped to work without skin
preparation or conductive paste and often have a brush like shape to bypass
the hair. Gel electrodes need a considerable amount of gel to ensure good
impedance, which is not preferred by users for short time use as the paste
leaves residuals in the hair.

2.2.2 EEG signal preprocessing
As discussed in the previous section, raw EEG data and contains a considerable
amount of artifacts and noise, hence preprocessing is needed before features can be
computed. There are many paradigms and tools for EEG preprocessing. Here, only
the steps used in this thesis are presented:

• Referencing. In EEG recordings, the voltages recorded in one electrode
are relative to other electrodes, reference electrode or a calculated average.
Often reference electrodes are chosen on the mastoid bone, earlobes or one of
the central electrodes (e.g. Cz electrode) as these locations are close to the
measurement area and picks up the same noise as all other channels.

• Uploading the data. Before preprocessing can be started, raw EEG data
needs to be uploaded to software that will be used for preprocessing. Channel
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2. Theory

locations in three dimensional space and events (e.g. cues for movement)
should be imported together with the data in order to visualise the scalp
maps and estimate source locations for data components.

• Filtering. Generally the signal should be filtered with a notch filter to remove
the line noise and a high-pass filter to remove the low frequency drift. The
cut-off frequency of the high-pass filter depends on the application and can be
anywhere from 0.1 Hz up to 1 Hz, a higher limit is not recommended since it
starts to interfere with the data. Additionally, a low-pass filter can be applied
to attenuate the high frequency noise above 40 - 50 Hz. However, several
studies have shown that both low-pass [38,41] and high-pass [34] filtering can
significantly alter the temporal structure of the data, therefore, if possible,
filtering should be avoided.

• Artifact and trial rejection. Some of these artifacts are very strong and not
systematic, hence they cannot be removed by filters and have to be removed
manually by inspection. It can include noisy channels or time windows when
the noise appears in the majority of the channels and sometimes the whole
epoch will have to be removed. If some channels need to be removed, then
interpolation of removed channels needs to be performed. The purpose of inter-
polation is to avoid the bias when calculating the average reference (explained
in the next step). Other types of noise that is systematic, e.g. heartbeat or
eye blinks, can be filtered out using simultaneous and cross-checking filtering
techniques employing both time and frequency domains.

• Division of data into epochs. When EEG is recorded, the data is repre-
sented as a continuous time series for the whole recording time. However, it is
often useful to divide it into time windows that are locked to a specific event,
e.g. the time point when stimulus was applied.

• Baseline removal is used to remove the mean of the recorded baseline for
each electrode.

• Independent Component Analysis (ICA) is a method to separate Inde-
pendent Components (IC) of linearly mixed signals in different sensors. Since
EEG recorded in one channel is a mixture of all neuron potentials in an area as
well as other biological signals, the recording between electrodes can be highly
correlated (an effect known as cross-talk) and ICA is a tool to separate these
signals. If the EOG or electrocardiogram (ECG) was recorded in a separate
channel, ICA method can be used to remove the EOG or ECG artifacts from
the data without loosing the useful information as well as separate the dis-
tinct otherwise mixed EEG signals in different channels [11]. It is important
to have clean data before running ICA, filtering with 1 Hz high-pass filter
before running ICA is recommended in order to get good results [43].

2.2.3 Feature extraction
Preprocessed data can already provide some information to interpret by observa-
tion; however, due to its high dimensionality and variability it is unlikely to produce
good results in classification. For this reason, feature vectors are used to extract
the meaningful information that can easily be interpreted by a classifier, hence good
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2. Theory

selection of features can give good results even with a simple classifier.

There are some common properties that need to be taken into account when selecting
the features and a classifier. Lotte et al. [27] points the following feature properties:

• noise and outliers: due to poor SNR, EEG signals are contaminated with a
lot of noise;

• high dimensionality: feature vectors often contain information from differ-
ent features that in themselves contain information from several time windows,
frequency spectra, etc.;

• time information: the dynamic properties of EEG signal in time domain
hold important information about cognitive processes and need to be ac-
counted for;

• non-stationarity: EEG signals change over subjects and even over time in
the same subject;

• small training sets: the training sets in EEG are usually small because the
data collection process is time consuming.

There is a great variety of techniques used for feature extraction that study EEG
signals in both time and frequency domains. For the purpose of this study, we will
only use two types of features, namely, Event Related Potentials (ERP) and Event
Related Spectral Perturbations(ERSP).

ERP is a low frequency electrophysiological brain response to a stimulus. ERP is one
of the classical methods of feature extraction and is well studied in the literature [28].
ERPs are acquired by averaging a time locked signal from multiple trials of the same
task. It is defined by slow positive and negative deflections in the amplitude of a
signal in the time domain. When associated with a motor task, ERPs are referred
to as Motor Related Cortical Potentials (MRCPs). MRCPs are characterized by
three components: Readines Potential (Bereitschaftspotential or BP) - a slow neg-
ative deflection in amplitude that starts at around 1.5 seconds before movement,
reaching its peak negativity at the time of an onset where Motor Potential (MP)
occurs and followed by a Movement Monitoring Potential (MMP) - an upturn before
returning to the baseline level [30]. BP is associated with intentional involvement in
the task [18] and the peak negativity is an important parameter determining such
involvement. One study investigated MRCPs in context of presence of a goal and
suggested that there is a statistically significant difference between a goal movement
versus no-goal movement when performing a classification task [31]. The same study
found that maximal negativity over central electrodes and the reafferent potential
after onset were more pronounced in the goal directed task rather than a no-goal
task.

ERP is unable to capture all brain dynamics as it does not hold information about
event related changes in the frequency domain, which are important since evoked
responses are not stable across trials and are dependent on ongoing EEG activity.
ERSP was introduced as a measure to improve ERP. ERSP measures average dy-
namic event related changes in EEG power spectrum as a function of time relative
to an experimental event [29]. ERSPs are computed by averaging the amplitude
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2. Theory

spectra on a sliding time window and normalizing to mean baseline for each epoch.
After that, the results are averaged over many trials and plotted in a time - frequency
domain.

2.2.4 Classification: Support Vector Machines
Many classification algorithms have been used in EEG applications over the years.
In this work, we will not discuss the differences between algorithms, but introduce an
algorithm that was used in this study for binary goal\no-goal movement classifica-
tion of EEG data epochs. A review on several algorithms [27] suggests that Support
Vector Machines (SVM) is a reliable and robust option because of regularization and
simplicity. Moreover, SVM is effective when it is applied on small datasets, which
is the case in this study. To preserve the continuity, the same classifier will be used
for eye gaze and pupillometry data classification.

SVM is a discriminative classifier that separates the data using hyperplane as a
decision boundary. In a two dimensional binary classifier, the hyperplane is a line
separating the data at each side, with least possible amount of outliers 2.2. The
position and orienation of a hyperplane is determined by data points called support
vectors that are located nearest to decision boundary. The hyperplane is selected
to maximize the margin between two classes and minimize the classification error [9].

Figure 2.2: An ilustration af a two dimensional binary SVM classifier and its main
components

Since SVM is a supervised machine learning algorithm, it needs labelled data to
be trained and a separate dataset for validation. The training data is a set of n-
dimensional vectors xj ∈ Rn and classes yj = ±1. The hyperplane is defined by
equation:

f(x) = x‘ω + b = 0 (2.1)
where ω ∈ Rn and b is a real number.

Essentially, SVM aims to find the best separating plane by finding ω and b such that
‖ω‖ is minimum and yjf(xj) > 1 for all data points (xj, yj). If yjf(xj) = 1, the
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2. Theory

vector is a support vector. For mathematical convenience, the problem is substituted
to minimizing ‖ω‖. The optimal solution (ω̂, b̂) allows to classify the vector z:

class(z) = sign(z‘ω̂ + b̂) = sign(f̂(z)). (2.2)

f̂(z) is the classification score and z is a vector distance from the hyperplane. In
case when the data is not separable, SVM can be used with a soft margin that
separates most of the points, but allows some outliers. The formulation of the soft
margin may differ, but generally it is a similar minimization problem that aims to
minimize ω with added penalty parameter C and slack variable ξ:

min
ω,b,ξ

1
2ω

tω + C
∑
j

ξj

s.t. yjf(xj)) > 1− ξj
ξ > 0

(2.3)

Penalty parameter and slack variable define how soft the decision boundary is –
increasing C value puts more weight on ξ, making the boundary less lenient [17], [4].
In cases when classes cannot be separated by a linear hyperplane, SVM hyperplane
linear function can be replaced with a non-linear kernel function, such as polynomial,
Gaussian or radial basis function.

2.3 Gaze tracking
It has been studied that eye tracking can be of support for assessing brain function
and attention [14]. Moreover, eye tracking can be further divided into two main
components, gaze tracking and pupillometry. Since the pioneering research made by
Yarbus [45], which linked gaze fixations and thinking, many others followed, further
exploring this concept. With the recent improvements in hardware and algorithms
for eye tracking, a new window of possibilities was open for this method. In ad-
dition, higher sampling rates used now (between 25 to 2000Hz) enabled increased
resolution for the measurements, thus improving data quality.

The importance of gaze tracking for this project lies on how it can relate to human
attention and intention. Several studies focused on that relationship, in one of them
it was investigated ,with the use of heat-maps, how human attention changes when
a person is looking for something specific in a scene or just scanning through it.
The results showed a less scattered and highly focused gaze fixations for the specific
task, labeled as "informational intention" [5].

A study assessing steering performance in drivers and their gaze behavior showed
strong correlation between them. In that case, the horizontal gaze angle and the
steering angle varied in the same proportion with the gaze changing earlier than
the steering, therefore giving a previous indication about the action [40]. Another
research investigated the relation between gaze behaviour and way finding for sub-
jects navigating in a virtual maze. Again it was found a strong relation between
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gaze fixation patterns and spatial decision making, with gaze marks peaking at the
chosen path close to a second before the actual decision [42]. Finally, it was the-
orized in [25] that gaze tracking can be of use when determining attention from a
human when interacting with a robot.

Gaze tracking is a method that collects metrics from the eye through time such as,
eye angles and pupil position, in its own reference frame, and translates them into
the scene world. A camera catches the light reflections from the eye by a light source
and an algorithm process the image and calculates the gaze parameters, outputting
that as a focus point into the 2D space. It is mainly used to asses attention from a
person, through fixations and saccades, while executing a given task.

Eye detection can be achieved in two ways: bright pupil or dark pupil method. Both
of them use the same principle described earlier with a light source and a camera.
The main difference is that for first one, the camera and the light source are close
together and have their axes parallel to each other (on-axis set-up). Because of that,
the light hits the retina and bounces straight back to the source, where the camera
also is. By getting the reflection straight from the retina, the pupil becomes bright
(the same can be observed in camera shots when people get red eyes). The second
method places the camera a bit far from the light source, in a non coincident axis
(off-axis set-up) so the camera cannot get the reflections from the retina, but only
from its surface, therefore showing the pupil as black. Both methods are show in
figure2.3. The light source used is normally infra-red (IR) because it falls out of the
visible spectrum, therefore preventing distraction or discomfort and also for being
harmless to the human eye [16]. For our solution the full algorithm is described
in [23].

Figure 2.3: Two methods of pupil detection. a) Dark Pupil, b) Bright Pupil [13]

After detecting the pupil, the next step is to determine the gaze position. The lit-
erature refers to many different ways to approach this problem [16]. For this work,
the gaze mapping was provided from the software used together with the selected
hardware and therefore the authors did not take part in that step. The manufac-
turer states that the mapping "is implemented with a transfer function consisting
of two bi-variate polynomials of adjustable degree. The user specific polynomial
parameters are obtained by running one of the calibration routines" [23].
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2.4 Pupillometry
Pupillometry is the study of the changes in pupil size by the means of cognitive
process. Here, changes related to the eye’s natural accommodation to light are dis-
carded since they are regarded as a mere reflexive response. Pupil size is controlled
by two types of nerve fibers: sympathetic and parasympathetic. Sympathetic fibers
respond to the neurotransmitter norepinephrine, which has an effect of relaxing the
iris therefore dilating the pupil, while the parasympathetic fibers act the other way
with the neurotransmitter acetylcholine, constricting it [14].

The brain structure mainly responsible for noradrenergic pathways that influences
pupil dilation is the Locus Ceruleus (LC). Located in the brain stem, the LC is a
small structure comprising a bundle of neurons that have a direct relation in regu-
lating "arousal and cognitive functioning". In short, when LC is more active, due to
increased cognitive load for example, it inhibits the parasympathetic centre while
increasing the sympathetic activity too, which will make the pupil dilate [14], [21].

Studies with monkeys supported this pupil/LC relation by monitoring the activity
in the LC and pupillary responses while the subjects performed different types of
cognitive tasks. In those, it was observed that the pattern of activation in the LC
was replicated in the pupil in the form of changes in its size, [33], [20].

In humans, minimum and maximum pupil range can vary from 1.5 to 9mm and for
people in rest condition and in a environment with "standard light conditions", the
pupil has a 3mm diameter in average [36]. Changes in pupil size due to cognitive
load can be at most of 0.5mm but those changes can also get highly impacted from a
person’s condition, for example, fatigue can raise the pupils diameter baseline while
introducing fluctuations [8]. With that in mind, it is important to assure constant
illumination conditions in the test environment while also checking if the subjects
are well rested before starting the trials.
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3.1 Methods and equipment

3.1.1 EEG recordings
The EEG was recorded with an open source BCI device at 125Hz sampling rate in 11
EEG channels and two EOG channels - vertical (VEOG) and horizontal (HEOG).
OpenBCI Cyton board with v3 Daisy Module is used with dry passive EEG elec-
trodes mounted on an electrode cap (see figure 3.1). The electrode impedances
were kept below 5kΩ. Electrode locations are based on international 10-20 electrode
placement system 2.1 and are covering inferior frontal cortex (F7, F8), supplemen-
tary motor area and premotor cortex (F3, Fz, F4), motor cortex (C3, Cz, C4) and
superior parietal lobule (P3, Pz, P4) as these regions have been proven to be the
largest contributors to motor action planning and movement onset, as discussed in
chapter 2.1. Four electrodes were located above and bellow the center of left eye
(VEOG) as well as on the sides of both eyes (HEOG), just bellow temples. These
electrodes record the eye movement related muscle activity in order to filter out
EOG artifacts from other channels in the preprocessing step. The ground and ref-
erence electrodes were placed on right and left earlobes respectively.

Offline processing of the data was performed using MATLAB R2018B (The Math-
Works, Massachusetts, USA) with an open source EEGLAB toolbox [12]. The data
was bandpass filtered with zero-phase non-causal finite impulse response filter with
low cut-off frequency at 1 and high cut off frequency at 45 Hz. The baseline was
removed, ICA was performed using an infomax ICA algorithm and then the data
was divided into epochs [-2 3] seconds from the "Go" cue. ICA weights were im-
ported to the dataset filtered between at 0.1 Hz low cut-off and 45 Hz high cut-off
frequencies and independent components (IC) corresponding to the EOG artifacts
or other muscle activity were removed. Then, MRCP and ERSP were calculated.

Binary goal movement vs. no-goal movement classification of EEG data was made
based on temporal and time-frequency features that were chosen based methods and
findings of previous similar studies [6,31]. Temporal features include minimum and
maximum MRCP values as well as the slopes in time windows [-2 -1], [-1 0], [0 0.5],
[0.5 1] and [1 2] seconds as in. Features in time-frequency domain were mean ERSP
values in Delta (0–4 Hz), Theta (4–8 Hz), Alpha (8–15 Hz), Beta (15–30 Hz) and
Gamma (30–60 Hz) frequency bands for time windows at [-1 -0.5], [-0.5 0], [0 0.5]
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Figure 3.1: EEG setup. Every electrode is connected to a separate channel on
either OpenBCI Cyton board or Daisy module and referenced to the A2 channel.
Both boards share the ground and reference pins, both, horizontal (HEOG) and
vertical (VEOG), EOG channels are connected such that both electrodes of one
channel are referenced to one another.

and [0.5 1] seconds. The features were divided into the training and test datasets.
Training and cross-validation of the SVM was performed on the training dataset
using MATLAB function fitcsvm() using the hyperparameter optimization option
to find the best classifier based on Sequential Minimal Optimization [15].

3.1.2 Gaze Tracking & Pupillometry
For implementing the gaze tracking we picked a solution from Pupil Labs, which
consists of a 3D printed headset with two embedded cameras, figure3.2, one of them,
the world camera, always faces forward and displays the perspective from the user
on the computer screen. The second camera faces the user’s eye with an off-axis
IR LED of 860nm of wavelength to illuminate it and feeds that image into the
software. Then, an open-source algorithm segments the image using dark pupil
method, monitors the pupil size and tracks its position (gaze data) [23]. A quality
measure is also provided, ranging from 0 to 1, and indicates the confidence that that
circle found is indeed the pupil. The information from both cameras is finally used
to map and overlay the gaze point onto the 2D scene view feed as a red dot which
moves according to the user’s eye movement, therefore providing us with real time
eye tracking, figure 3.3. There are also settings available on the menus to improve
the eye image capture quality that may need adjustments due to lighting conditions
of the environment, such as absolute exposure time, thus making pupil detection
more accurate and less noisy.
The software comprises two applications. One is for real time data collection, named
Pupil Capture, with the aforementioned configurations together with other plugins
that may be of interest, such as surface tracker, blink detection, fixation detector
and others. Here, it is important to highlight its calibration process. In order to

14



3. Methods

Figure 3.2: Headset configuration used for gaze tracking [2]

proper map the gaze, seen from the eye camera, onto the 2D scene, viewed from the
world camera, a series of at least 5 markers are shown on the screen when activating
the function. The user look each marker and the algorithm asserts how the gaze
position translates onto the 2D scene, also the estimated distance from the user to
the screen plane should be entered. Other important feature for the experiments is
the record button, which enables us to store all that data acquired during the runs
and use it for post processing in offline mode.
In order to obtain the gaze pattern for the subjects for every trial, Pupil Capture
provides a feature where it detects and stores fixation parameters defined by the
user. Fixations occur when an eye position remains fixed in a point, with minor
deviations, for a minimum period of time, between 200 and 400ms [19] whereas
saccades are normally much shorter than that and relate as transitions between fix-
ations [14]. Therefore we select the middle of this interval, 300ms, as our fixation
time threshold. In addition, since eye movement is controlled by muscles which have
variability, dispersion in eye movement may happen, therefore a limit of 3 degrees
of dispersion for fixations is set. Lastly, to ensure better data quality, only fixation
data with confidence above 0.75 is taken.

The other application, called Pupil Player, loads the recorded sessions and provides
all the recorded video and gaze data along with other plugins for visualizing the
data, such as the Offline Fixation Detector and the Surface Tracker, apart from
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Figure 3.3: World camera view with overlaid red dot marking gaze position [2]

also generating reports in spreadsheet format that can be used by any other data
processing tool. In order to analyse the eye gaze data and its associated patterns, a
heat-map function will be applied for each round of experiments. Here we expect to
see a correlation between the mapped pattern and the type of movement performed
(goal/no-goal).
For pupillometric studies, the series of pupil diameter acquired through LSL via
plugin in Pupil Capture is processed through MATLAB. The first step was signal
filtering. Pupil reactions are referred as slowly changing, around 2Hz, therefore
a low-pass filter with cut-off frequency of 4Hz was applied [19]. The data often
contained points far off the main trend, mostly due to blinking, since reading the
pupil is not possible in that condition. Therefore outliers were removed and after
that linear interpolation took place to fill in the gaps.
After the cleaning process, each trial data is marked with the "Go" cue from the
event marks collected. Since we are working with four cues per trial, four events
are marked. The epochs are defined to comprise the time in between the marks
(6s) while also accounting for the previous behavior of the eye. To achieve that the
epoch limits span from −2s before the cue, and 4s after [19]. Baseline removal is
also applied, for that, samples from the first second of the epoch are averaged and
the value is removed from the set.
After setting the epochs we average then within each trial and for all trials in the
same task, so twenty epochs are averaged (5 trials per task, 4 epochs per trial). The
standard deviation is also calculated for the stacked epochs and later the average
pupil size variation through time is plotted together with its deviation.

3.1.3 Synchronization
As it was shown, for this project sensors from different parties will be combined,
where each one has its own software, therefore, in order to properly analyze the data
from our experimental runs, synchronization must be guaranteed. If the correlation
between gaze data and EEG has to be demonstrated on each run, it is very important
to ensure that all the signals are within the same time reference. For this scenario
we use Lab Streaming Layer (LSL). That is an open-source platform from MIT
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(Massachussets Institue of Technology) that works as a cross-platform protocol,
enabling device networking alongside with time-synchronization and near real-time
data access, figure3.4. The "core transport library" can deal with many different
programming languages, e.g. C++, Python and MATLAB. It is also possible to
create one’s own ’Application Programming Interface’ (API) that feeds data into
the network through an outlet regardless of how many channels it uses or its sample
rate. The time series are then received through the inlets, for example, a recorder
application, that stores and provides access to all the connected streams later on [1].

Figure 3.4: Lab Streaming Layer architecture [1].

The data synchronization is handled within the LSL library by assigning timestamps
to each sample from the clock source. This source is normally the clock of the
computer unless other source is specified. The program used, the Lab Recorder, is in-
built with the application, it stores both timestamps and clock offsets for each sample
from each of the streams. Later, another application called Importer "performs a
linear fit through the clock offsets for each remote stream (thereby assuming a
linear clock drift) and uses this linear mapping to remap given remotely collected
timestamps" [3].

3.1.4 Robot control
A simple 2D motion detection algorithm based on color recognition was used to track
a marker on the robot’s end effector. The recordings were done with a simple web
camera, seeing the experiment mount from the top (Z axis), since the robot can only
move in the X, Y direction. The algorithm for marker recognition is implemented
using Python OpenCV library [37]. It provides a live feed from the camera view and
adds two overlaid circles, one on the top of the mark indicating the actual position,
and the other one indicating the end effector’s predicted position. For the former,
a Kalman filter was used as a one-step ahead predictor of expected motion that is
defined as a discrete time linear dynamic system:

x(k + 1) = F (k)x(k) + ζ(k)w(k) (3.1)
where x(k) ∈ Rnx is a current state vector, F (k) ∈ Rnx ×Rnx is the state transition
matrix, ζ(k) ∈ Rnx×Rnx is the process noise covariance matrix and w(k) is the noise.
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The system is observed as:

z(k) = H(k)x(k) + ε(k)w(k) (3.2)

where z(k) ∈ Rnz is the measurement vector, K(k) ∈ Rnz ×Rnx is the measurement
matrix and ε(k) ∈ Rnz × Rnz is the measurement noise covariance matrix. The
Kalman filter was defined under constant target velocity assumption with parame-
ters:

x =


x
y
ẋ
ẏ

 , F =


1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1

 , ζ =


1 0 0 0
0 10−19 0 0
0 0 100 0
0 0 0 100

 , (3.3)

z =
[
x
y

]
, H =

[
1 0 0 0
0 1 0 0

]
, ε =

[
0.01 0

0 1

]
. (3.4)

where ∆T is the duration of one camera frame in seconds. The process and mea-
surement noise covariance matrices were chosen empirically.

The control algorithm for collaborative behaviour of the robot was implemented
based on this prediction. The block diagram in figure 3.5 shows the implemented
control loop. Kalman filter takes observed coordinates from the camera as an input
and predicts the next step. These predicted coordinates are translated into robot
joint angles using inverse kinematics and these angles are written to robot motors
through Arduino controller. The algorithm is implemented in Python programming
language and the pseudo code for this algorithm is presented in Appendix B.

Figure 3.5: Block diagram of control algorithm.
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3.2 Experiments

3.2.1 Participants
Due to the lead time for regulatory ethical approval of the procedure, it was not
possible to perform the experiments on invited subjects. Therefore, the test sub-
jects were restricted to the authors of this project and their supervisor. The group
is homogeneous with regards to some key parameters thus less variability would be
introduced into the data. Also, all subjects are right-handed, with no neurologi-
cal disorders and normal or corrected to normal vision without the use of glasses.
Subjects were instructed to stay relaxed at all times but also oriented to mini-
mize unnecessary arm and eye movements. Before the experiment participants were
briefed about the procedure and all questions from them were addressed.

3.2.2 Experiment setup
The experiments were carried out in two separate sessions. The first session was
focused on data collection for later offline processing and training of the classifier.
The second experiment is based upon the findings of the first session and designed
to collect the data for evaluation of collaborative behaviour as well as investigating
a possible correlation between EEG and eye tracking data.

The robot used for experiments was a simple SCARA robot with two servo motors.
A plate with eleven LED lights corresponding to possible focus points defines the
workspace that was located in the robot configuration space (see figure 3.6). A
camera above the workspace and a marker on the robot’s end effector were mounted
to facilitate the motion tracking.

Figure 3.6: Experiment setup. The participant navigates the robot in the
workspace (either freely or to one of the LEDs) by holding it on its end effector, the
camera mounted above the workspace records the video for tracking of the marker
motion.

In both sessions, two types of experiments were carried out: goal movement task
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and no-goal (free) movement task illustrated in figure 3.7. In a goal movement task,
the experiment starts with a three second period of rest, then a randomly selected
LED lights (visual stimulus) up and stays for a period of three seconds, also a short
auditory cue is used. Lighting up of an LED with the sound is a "Go" cue for the
participant and it is also used as an onset in both EEG and Pupil measurements.
During this period the participant makes a movement to reach the point where LED
is located. This period is followed by a period of rest before another LED lights up
with another auditory cue. The cycle is repeated four times. A free movement task
starts with a six second period of rest and is followed by an auditory cue together
with a short blink (100 ms) of all eleven LEDs (a "Go" cue and an onset). After
this, there is another six second period during which the participant has to make a
random movement of any length, stop and wait for the next "Go" cue. The cycle is
repeated until four movements were made. An example of the tasks seen from the
camera view is shown in figure 3.8.

Figure 3.7: Cycles of two types of tasks used in experiments.

Figure 3.8: Example task. Frames one to five illustrate a changing or repeating
task scenario. A bottom right frame illustrates the free movement task scenario.
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3.2.3 Experiment session one
During the first experiment set, all the test subjects were asked to do a set of
simple tasks and their EEG and Eye-tracking data was recorded for offline processing
and classification algorithm training. In addition to biological signals, the resulting
motion tracking of the robot’s end effector was recorded. All the recordings were
synchronised through LSL platform. There were three tasks in experiment session
one, each task was repeated five times with a short break between repetitions. The
tasks in the first experiment set were the following:

• Free movement task - In this task a test subject was asked to make a four
free movements without any goal specified. Each movement was executed after
a "Go" cue was given. The task was accomplished together with the passive
robot. This is to illustrate the "no goal" movement scenario.

• Connecting the dots: changing task - In this task, the test subject was
asked to perform the goal movement task described in the previous section.
The task is performed by human guiding the passively following robot end
effector. For each repetition the order and location of the dots is changed.
This task illustrates the "goal" movement scenario without the effects of human
learning the task. Therefore, the cognitive effort should remain the same as
the subject faces a different set of dots at each try.

• Connecting the dots: repetitive task - This task is the same as the task
described in the previous point, but this time the location and sequence of the
dots is the same for each repetition. This task illustrates the "goal" movement
scenario with the effects of human learning the task.

3.2.4 Experiment session two
During the experiment session two, the participant was asked to do the same tasks
as in experiment session one. Each one of the tasks was repeated five times for each
one of the following scenarios:

• Passive robot. In this scenario the participant is manipulating the robot,
meanwhile the robot is passively following.

• Collaborative robot. In this scenario, the robot and human are sharing the
control to achieve the goal. The robot is predicting the movement based on
the motion tracking data and moves together with the human.

Throughout each part of experiment session two, the EEG and Eye tracking mea-
surements were collected for later offline processing and classification. The corre-
lation between EEG and eye tracking data as well as the EEG and eye movement
classification were assessed based on these measurements.
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The results of the experiments that were described in the methods section are pre-
sented in this chapter. Here, the observations about behavioural analysis, EEG, gaze
tracking and classification results will be covered and followed by a brief discussion
of the findings.

4.1 Behavioural analysis
The boxplots in the figure 4.1 show Reaction Times (RT) - the times of movement
onset relative to the time of the "Go" cue - and the Motion Duration (MD) - times
of movement offset relative to the time of movement onset - for all three task types.
The median reaction time of the changing task was 0.15s higher than for other tasks.
No significant differences were found between reaction times of free movement and
repeating tasks nor motion duration of all tasks. The mean RTs are 0.54 (±0.21
standard deviation), 0.34 (± 0.13) and 0.35 (±0.20) for the changing, free movement
and repeating tasks respectively. The mean MDs are 1.64 (±0.49), 1.53 (±0.54) and
1.39 (±0.46) for the same sequence of tasks.

Figure 4.1: Reaction times and movement duration. Boxplots represent the times
of movement onset and offset independently for three task types.

No significant changes in RT were observed when the task was performed with the
robot (figure 4.2). The mean RTs for changing, free movement and repeating tasks
were 0.39 (± 0.51), 0.43 (± 0.17) and 0.25 (± 0.11) respectively. The mean MD
during the changing and repeating tasks were 1.19 (± 0.35) and 1.11 (± 0.27) -
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slightly lower as compared to the task with passive robot. Meanwhile, the mean
free movement MD, 1.79 (± 0.73), was higher, but within the standard deviation of
the first experiment set results.

Figure 4.2: Reaction times and movement duration when performing the task with
a collaborative robot. Boxplots represent the times of movement onset and offset
independently for three task types.

The reaction times and motion duration presented in figure 4.1 correspond with
the average velocity profiles of three test subjects in figure, 4.3. RTs vary slightly
between test subjects, but are more or less consistent between the tasks of the same
subject. In all cases, the reaction time is under 500 ms. The velocity profiles show
no significant differences in the peak velocity between different tasks, however the
velocity varies between test subjects. The velocity profiles of a collaborative task

Figure 4.3: Average velocity profiles of three test subjects (S1, S2, S3) for three
task types. Standard deviation is shown as a shaded area around the mean of the
same colour.

with robot in figure 4.4 show a similar trend as observed previously and correspond
to RT and MD results in figure 4.2. There was an exception to the trend in case
of the changing task of test subject S1, where the MD appears to be significantly
longer than in other tasks, lasting for up to 2 s whereas MDs of other tasks of the
same participant only take around 1 s.
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Figure 4.4: Average velocity profiles when performing the task with a robot. Ve-
locity profiles are shown for test subjects S1 (left) and S3 (right) for three task types.
Standard deviation is shown as a shaded area around the mean of the same colour.

4.2 EEG result analysis
The EEG data was analyzed in terms of temporal and time-frequency features within
[-2 3] second windows time-locked to "Go" cues. The results discussed in this section
are averaged over all participants, the results for separate participants are presented
in the appendix A.

4.2.1 Temporal analysis
The grand average MRCPs at five channels for three different test tasks are presented
in figure 4.5. The largest amplitude changes for all three tasks can be observed at
electrodes covering the left primary motor cortex (electrodes C3, Cz) and superior
parietal lobule (Pz). For the changing task, BP starts before the "Go" cue is shown,
indicating a possible anticipation of the task start. The deepest negative deflection
over all electrodes can be observed when performing a changing task. During the
MMP period, the results of the changing and repeating tasks compared to the free
movement task exhibit a smaller positive deviation from the zero level over all elec-
trodes. Overall, free movement and repeating task results show a similar behaviour
over all electrodes. It is evident from single participant MRCPs shown in Appendix
A figures A.1 and A.2 and A.3 that, with few exceptions, this tendency is recurrent
over test subjects and trials.

Figure 4.6 shows MRCP trial images of test subject S1. By investigating the tem-
poral variability of the MRCPs over trials one can observe that there is a clear
decrease in the potential that starts around the time of the go cue and continues up
to around 600 ms. This period is followed by an increase period that peaks around
1000 ms and lasts for up to 1500 ms after onset. In case of the changing and free
movement tasks, this behaviour is consistent through most of the trials. In contrast,
the repeating task shows more variability over trials. The scalp plots of the main
ICs contributing to MRCPs show that the main activity appears at the motor and
premotor cortices and spreads into the prefrontal cortex.
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Figure 4.5: MRCPs averaged over all test subjects presented for three different
tasks in five electrode locations. The MRCPs were calculated over time window
locked to "Go" cue that is marked with a dash line.

Figure 4.6: MRCP image plots of test subject S1 at electrode Cz (left) and IC
(right) that corresponds to motor activity of the same task. The right-most column
shows scalp maps corresponding to IC activity presented to the left of it. In each
panel, the potentials in µV are color coded (see color bar on the right) and sorted
from bottom to top in order of trials. The time window is locked to the "Go" cue.
The blue curve at the bottom of each panel represents the MRCP magnitude in µV.
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(a) Test subject S1

(b) Test subject S3

Figure 4.7: MRCPs of test subjects S1 (a) and S3 (b) when performing the task
with collaborative robot. MRCPs are presented for three different tasks in nine
electrode locations. The MRCPs were calculated over time window locked to "Go"
cue that is marked with a vertical dash line.

As seen in figure 4.7, the same three tasks performed with collaborative robot show
a large intersubject and intertrial variability. Test subject S1 shows a strong posi-
tive deviation from the baseline, resembling a P300 waveform, at central and frontal
electrodes during the first second of all tasks. In case of the free movement task, this
deviation is followed by a negative deflection at 1800 ms. Test subject S3 demon-
strates results that are more consistent with a passive robot case - one can observe a
clear MRCP over the first second after the "Go" cue that is most prominent over the
electrodes covering motor cortex. The lowest MP is reached for the repeating task.
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In case of the repeating task, another, smaller, negative deflection can be observed
at around 2000 ms after the "Go" cue over all electrodes.

4.2.2 Time-frequency analysis
Time frequency analysis (figure 4.8) shows an increase in power over delta and theta
frequency bands during the first second after the "Go" cue of all tasks, peaking at
500 ms. Another, milder, power burst appears in free movement and repeating tasks
at 1500 ms after go cue. For the changing task, an increase in power appears over
all four frequency bands and is more prominent at 500 ms in lower regions of each
band. This period is followed by a power drop below baseline level in the alpha
and lower beta regions of changing and repeating tasks. Overall, the ERSP images
of repeating and free movement tasks are very similar and differ noticeably from
the changing task, which correlates with behaviour of temporal features. However,
individual ERSP images (Appendix A figure A.4) of test subjects show that there
is a high intersubject variability in time-frequency features, indicating a need to
calibrate the system for every user.

Figure 4.8: Average participant ERSPs at the electrode Cz in delta, theta, alpha
and beta frequency bands. The power spectrum is color coded to the bar on the
right as well as displayed at the bottom of each panel in a form of an ERSP envelope.
The time window is locked at zero to the "Go" cue.

Similar to MRCPs, the time-frequency analysis of the collaborative task (figure 4.9)
shows a great variability between test subjects and in case of test subject S1, between
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the tasks. Subject S3 ERSP images are similar to the ones of experiment one, with
strong activity in delta, theta and alpha frequency bands occuring during the first
secong after the "Go" cue. However in contrast to experiment one, the collaborative
case free movement task results show the positive peak in power in all frequency
bands, meanwhile the changing task power only peaks in frequencies below 16 Hz
and a drop in power can be observed for frequencies between 16 Hz and 25 Hz.

(a) Test subject S1, electrode Cz

(b) Test subject S3, electrode Cz

Figure 4.9: ERSPs of test subjects S1 (a) and S3 (b) at the electrode Cz at
frequencies [0 30] Hz. Each panel shows the power images of changing (left), free-
drawing (middle) and repeating tasks (right). The power spectrum is color coded
to the bar on the right as well as displayed at the bottom of each panel in a form of
an ERSP envelope. The time window is locked at zero to the "Go" cue.

4.3 Gaze tracking & Pupillometry
For graze tracking and pupillometry analysis we extract the data from Pupil Labs
algorithm through LSL and also use features from the GUI provided for the headset.

4.3.1 Gaze Tracking
The aggregated fixation points for each trial of the subject’s runs were gathered as
a heat-map overlaid on the recorded scene. For subject S1 it is shown the compiled
heat-maps for all the trials performed, five for each task type. For the task type of
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"Connecting the dots" with passive robot, either with the changing or repeating set,
the gaze matched the dot’s location, figure 4.10. For the random task type, it can be
seen that the pattern changes either with a very hot spot in the middle of the plane
or more spread across the area. Some of the tasks, mostly the changing type ones,
were impacted by a reduced frame rate due to a system overload when running the
experiment. Sometimes the PC lowered the performance of the applications during
the trials due to heavy stream of data, therefore, some of the bright points on the
changing task trials should have had more samples. Due to that, the data from
subject S2 had to be discarded.

Figure 4.10: Heat maps for all the trials from subject S3 with passive robot,
grouped by task type. The vertical axis is Y and the horizontal is X, the figure
shows them flipped 90o clockwise for better grouping. The changing task presented
the subject with always shifting patterns, while the repeating task lit up always the
same LED sequence. The random task did not demand any specific motion from
the subject who, therefore, stared at the surface in a non predicted way.

The tasks are also broken down in time to see how the gaze behaved throughout
the tasks. It was picked one representative trial for each task type and a 3-D arrow
plot was generated in order to better track its development. The synchronized "Go"
cues are also marked as a reference to support the study of those behaviors. In
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figure 4.11, figure 4.12 and 4.13 it is shown how the heat map, and therefore, the
gaze, develops for changing, repeating and random tasks respectively. Both spatial
dimensions are highlighted with regards to time to support understanding. It is also
worth noting that, specially for the random task, the brightness may vary for the the
same points throughout the snapshots. That happens because the brightness is also
function of the total number of gaze fixations for a given time window. Since the
first two snaps comprise a short interval in time, and therefore less fixation points, a
few hits on the same spot end up "heating" more that spot. They later get dimmed
down because more different fixation points enter our collection.
Results for subject S1 can be found in the Appendix A.
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Figure 4.11: Subject S3: Gaze behavior through time for the changing task with
passive robot, broken down with cumulative heat maps. The spatial coordinates are
isolated into 2D planes with time to track their development. The four "Go" cues
(marked with crossed) are marked and assigned to the heat map with gaze points
accumulated up to that time, it is also included the map for the end frame, after
the last cue. It can be seen that as the cues go off and before the hand movement
onset, the gaze is directed to the location where the LED is lit.
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Figure 4.12: Subject S3: Gaze behavior through time for the repeating task with
passive robot, broken down with cumulative heat maps. The spatial coordinates
are isolated into 2D planes with time to track their development. The four "Go"
(marked with crossed) cues are marked and assigned to the heat map with gaze
points accumulated up to that time. A careful look shows that for all points, before
the cue goes off, the gaze is already located there, this anticipated knowledge can
be useful for applications.
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Figure 4.13: Subject S3: Gaze behavior through time for the random task with
passive robot, broken down with cumulative heat maps. The spatial coordinates
are isolated into 2D planes with time to track their development. The four "Go"
(marked with crossed) cues are marked and assigned to the heat map with gaze
points accumulated up to that time. Because of the no-goal scenario, gaze behavior
is more scattered and develops in a non 33
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4.3.2 Pupillometry
For assessing pupil behavior at all times, pupil diameter (in pixels) was recorded. As
stated before, pupil reactions can be a strong indicative of cognitive effort. The data
was collected and processed as previously described and the pupil responses for the
three task types, with passive robot, are exhibited on the same plot for comparison
for subjects S1 and S3. Changes of ±1 in pupil mean size are already meaningful.
For the time windows, the cue is set at time zero and the pupil activity preceding it
is set be in negative time, figure 4.14. The standard deviations for all measurements
were calculated, but due its high values they are not represented to improve the
visualization of the lines. Figures with the deviations are included in Appendix A.

Figure 4.14: Baseline mean pupil sizes for all the tasks performed with the passive
robot, for subjects S1 (left) and S3 (right). Negative times relate to pupil activity
before the "Go" cue. Results varied between subjects, but for S3 the changing task
presents a more distinctive feature, with the pupil size shrinking at first and rising
after reaching a minimum around movement onset.

Later, experiments with the subjects performing the tasks with a collaborative robot
were carried. Pupillometry for those rounds can be seen in figure 4.15. Again, the
data is shown the same way as it was for the non-collaborative task.

4.4 Classification
Classification was performed using an SVM classifier and validated using 5-fold
cross-validation on three datasets:

• EEG data with 20 features described in section 3.1.1;
• Eye trackng and pupil data consisting of three features, namely, fixation du-

ration, mean pupil diameter and and slope of pupil diameter change during
fixation;

• Combined dataset of both EEG and Eye tracking features.
All datasets are formed from the data collected on experiment set one. The EEG
classification accuracy reached 67.2% validation accuracy and 65.3% test accuracy
when using a third order polynomial kernel function and choosing the following
features: minimum and maximum potentials of the epoch as well as the average
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Figure 4.15: Baseline mean pupil sizes for all the tasks performed with the collab-
orative robot, for subjects S1 (left) and S3 (right). Negative times relate to pupil
activity before the "Go" cue. Here the trends for each participant look opposed. For
subject S1 all pupil values rise above baseline, where for random and repeating tasks
it rises before the cue and after for the changing type. Subject S3 presented below
baseline changes in pupil size for all tasks.

ERSP values in alpha frequency band at [-0.5 0.5] seconds from the “Go” cue. The
eye tracking classification accuracy reached 85.4% for the validation set and 88.8%
for the test set when using a gaussian kernel and fixation duration together with
mean pupil diameter during fixation as features. A combination of both sets showed
highest accuracy, 93.4%, on validation set, however the test accuracy was 71.2%.
The kernel function for this model was a second order polynomial. The confusion
matrices for all three test sets are shown in figure 4.16. The same classifiers applied
on data from experiment set two, showed significantly lower results, with the best
validation accuracy of 53.7%. A classifier trained only on experiment set two data
reached 59.1%, however, the results for "No-Goal" class were bellow chance level.

Figure 4.16: Confusion matrices of three test sets: EEG set (left), eye and pupil
tracking (middle), combined dataset (right).

By looking at the feature space of eye data classification (figure 4.17) we can ob-
serve that many data points are clustered at fixation duration of 4 seconds, which
is limited by the software. Expanding this boundary could potentially increase the
accuracy.
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Figure 4.17: Eye data classification feature space and decision boundary

4.5 Correlation
By synchronizing the pupil diameter, MRCP and velocity profile in time, we create
the correlation images in figure 4.18. The pupil diameter reaches it’s minimum after
the movement onset in all cases where significant changes in the pupil diameter can
be observed. We can observe no temporal correlation between MRCP and pupil
diameter that would be constant throughout the trials. However, there exists a
correlation between the MRCP and velocity profile: at the time of movement onset,
the motor potential reaches the lowest point and the peak velocity occurs around
the same time as the peak MMP.

4.6 Discussion

4.6.1 EEG
Results of the changing task (passive robot case) and free movement task (collab-
orating robot case) in time-frequency domain directly after the "Go" cue show a
strong activity in alpha and beta bands that are linked to readiness and alertness.
A strong increase in power in delta and theta frequency bands, that are primarily
associated with resting state, occurs over all subjects during all tasks. Some previ-
ous studies have also observed an event related increase in delta power during Go
or No-Go tasks [22].

The MRCPs show similar results to previous studies that were investigating the goal
directed movement [31], with an exception of subject S3 in collaborative robot sce-
nario, where the behaviour resembles a P300 wave that is associated with attention
to changes in the environment and processing of novelty [32]. In the passive robot
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Figure 4.18: Temporal correlation of subject S3 MRCP, pupil diameter and veloc-
ity profiles synchronized at the "Go" cue. Each column represents one experiment:
experiment set one (left), experiment set two passive robot (middle), experiment set
two collaborative robot (right).

case, the changing task demonstrates a lower MP tan other two tasks, suggesting
that the goal directed movement is distinguishable when the goal is externally pre-
sented and changing, however the repeating task shows similar results to the no-goal
scenario, suggesting that the effect of learning the task is affecting the level of at-
tention to the task.

Moreover, results change greatly when the robot collaboration is involved. These
changes may occur due to human response to robot behaviour, since the test sub-
jects did not have a training period to get acquainted with the robot. Moreover,
the robot was behaving based on the Kalman filter prediction, causing the robot to
continue moving past the stop point, meaning that the experiment subject had to
apply some force to stop the movement of the robot, when the goal destination is
reached. We hypothesize that this might have had an effect on the test subject’s
planning of the movement, shifting the focus from the beginning of the movement
to the end of it. Nevertheless, the data is insufficient to determine the true nature
of these changes and therefore more tests are needed to investigate how these results
generalize to a larger dataset.

Finally, an early BP start before the "Go" cue can be observed in MRCPs of some
cases. This might indicate the anticipation linked to experiment design. It is worth
noting that the experiments involved an audiovisual stimulus that is known to in-
duce a response in EEG data and the effect of this stimulus was not analysed in
this study. Hence, some of the activity might be corresponding to the audiovisual
stimulus.
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Overall, the results indicate that out of three studied tasks, the highest increase
of electrical brain activity is observed in the motor and frontal cortices when per-
forming a changing task with a passive robot. When working with collaborative
robot, changes is EEG data occur, which indicates that EEG is sensitive to external
disturbances as well as internal distractions from the task and therefore might not
be a reliable measure of goal detection in a non-controlled environment.

4.6.2 Gaze tracking & Pupillometry
Results for gaze behavior shown in the pictures are in accordance with the theory.
For Changing and Repeating tasks (goal oriented) it can be seen that the majority
of the fixations was directed towards the LED positions. The heatmaps showed
a predictable progression for fixations as the cues were presented, whereas for the
repeating task it was observed less gaze deviation from the LED locations, which
may indicate a learning effect for that subject along the trial. In the Random task
(No-goal oriented), fixations were irregular, with no characteristic pattern through
the trials. Since the subjects were free to gaze around, sometimes the gaze was re-
stricted to a point, sometimes it was more disperse with a few "warmer" spots, also,
from the figure, it can be seen that the progression through the cues was rather not
predictable, meaning that was no distinguishable goal for the gaze. Besides, in the
varying sequence scenario, the first fixations, as it can be seen after the cue going
off and before movement onset, were mostly directed to the goal point, whereas for
the repeating part, for most of the times, fixations were already at the goal point
even before the "Go" cue went off. This predictability for the repeating task can be
of special use for similar environments, such as assembly lines. Having the previous
knowledge from a person’s movement could help closing the loop for the control
system when the robot is sharing the task.

The results for pupillometry did not behave as expected. Also, the reduced number
of subjects prevented us from drawing more general conclusions. For the passive
robot set up, Subject S3 showed only a constant negative variation from the base-
line for the random task, which could potentially indicate lower activation of the
LC, whereas for the repeating task the behavior is mostly around the baseline with
a late trend going up, but, again, not significant enough. However for the changing
task a steep valley during movement onset (around 500ms) was identified, but with
the recovery two seconds later restricted to baseline levels, which are not enough
to determine an improved activation of the LC. When S3 performed the tasks with
the collaborative robot all the averaged pupil lines stayed below baseline, with the
repeating task as the lowest, which may indicate that having the robot helping
eased the mental effort. It is important to highlight that steep behaviors(upwards
or downwards) for the repeating task at the edges of the time window where mostly
due to high data variability within the epochs, with high values for standard devia-
tions.
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For Subject S1, with the passive robot, it looks like the random task had more cog-
nitive impact. Also, since the pupil size raises before the cue, it can be hypothesized
that maybe an anticipation have happened, but further analysis should be made to
confirm it. The repeating behavior stayed mostly below baseline. When interacting
with the active robot, S1 showed a similar behavior than before for the random
task. For the repeating scenario, the pupil size rapidly raised but stayed around
0.5. Lastly, on the changing task a clear valley followed by a crescent trend away
from the baseline was observed, showing that maybe S1 had more mental load, and
therefore higher activation of the LC, while performing that task.

4.6.3 Classification
The classification results show that "Goal" and "No-goal" cases are separable for a
passive robot case when using all three datasets: EEG, eye tracking together with
pupil size and combination of both. Best results are achieved from eye and pupil
tracking features and is lower for a combined dataset. Despite this, the combination
of both EEG and eye data classification could still perform better as these datasets
hold different information in temporal domain. The features used for EEG classifi-
cation are based on the [-0.5 0.5] seconds of "Go" cue and the features of eye tracking
and pupil diameter occur through the whole epoch. We infer that EEG could be
used for movement prediction stage and eye behaviour based classification would act
as a validation tool, which would improve the reliability of classification. In the case
of active robot, the results this not exceed the chance level. We link these results
to the behaviour of the robot discussed in subsection 4.6.1.

4.6.4 Correlation
The MRCP related changes are observed in the motor and frontal cortices of the
brain, meanwhile the pupil changes correlate to activity in LC. Since no temporal
correlation between the pupil diameter and the MRCPs was observed, we conclude
that no temporal correlation between motor cortex and the LC regions of the brain
was found in this study. The temporal EEG data correlates with velocity profiles
and the changes in MRCPs can be observed before the movement onset whereas
minimum pupil diameter does not correlate with the velocity profile, however the
decrease in the pupil size starts before the movement onset. Hence, EEG can be used
for the prediction of the motion, while pupil diameter is not a reliable stand-alone
measure for the prediction of movement onset.
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5.1 Summary of results
In this work, the possibility of improvements in HMI by deriving human intention
through the acquisition and further processing of selected biosignals, namely elec-
trical brain activity, gaze tracking and pupillometry was investigated. By studying
the pattern of those signals during goal/no-goal tasks a correlation was sought. It
was hypothesized that it could help provide a base for intent recognition which in
turn could later be fed into the control algorithm of an autonomous system (2DOF
robotic arm), improving its responsiveness towards its user, therefore bridging the
gap between man and the machine. This "awareness" from its user’s goals could be
important for motion augmentation, which can be applied in the field of prosthetics
and assisted driving, to name a few.

A BCI in conjunction with EEG system was used to record brain activity. The
results after processing indicated variability through participants, especially when
working together with the robot. Despite that, the results in the passive robot case
in both temporal and time-frequency domains indicated a possibility to detect an-
ticipation to movement onset. The trained SVM could correctly classify movement
types with 65.3% accuracy. The results of the collaborative robot case demon-
strated unexpected behaviour and high variability between subjects and trials and
therefore the classification results did not reach above the chance level. However,
the subject group size was too small to strongly support or invalidate the hypothesis.

For gaze tracking and pupillometry, data was acquired through two cameras embed-
ded on a head mounted gear. For the first part, the data followed the theory, in goal
directed movements, gaze pattern was directed towards the targets before movement
onset, regardless to the robot mode, indicating that gaze fixation precedes move-
ment. For pupillometric studies, the results were dissonant with the literature. It
was expected to observe higher activation from the LC through higher mean pupil
values for goal oriented tasks, which was not consistently verified. High variabil-
ity between subjects, which might be an effect of having few participants, was also
found. In the end, comparisons within the task set and between the two robot’s
setups are hard to draw.

All in all, working with the passive robot, the results show a distinctive behaviour
between "Goal" and "No-Goal" movements in all domains. However, when working
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with an active robot, the results vary highly between participants and trials. The
most consistent domain through both sets of experiments was the gaze tracking.
However, only the gaze tracking data was not sufficient to obtain good classification
results. Hence, other modes such as pupil diameter and EEG measurements were
used to improve the performance.

5.2 Future work
This work lays a ground for future research into human "Goal" and "No-goal" move-
ment intent recognition. In this work we focused on EEG, eye tracking and pupil
measurements for a specific set of experiments, that included an audiovisual cues.
A further step towards implementation of such intent recognition platform in the
real world devices would be to investigate self-paced movements and goal movement
intent recognition in an uncontrolled environment. Moreover, other modes, such as
language, moevement or haptic feedback could be investigated in order to find the
most efficient way for robot to infere human intention.

Due to a small number of test subjects and trials, the variability in the data is high
and often subject dependent, therefore generalizing to a larger scale is inexpedient.
Hence, a study with more participants is needed to validate the results of this work.
In addition, other experiment designs should be explored to investigate the effects
of audiovisual cues, task difficulty and robot behaviour on the results.

Moreover, this study did not investigate the effects of different classifiers, which
might have a significant effect on the quality of the classification results and conse-
quently, the prediction of human intent and reliability of the robot control. There-
fore, in the future work, different classifiers should be investigated to determine
if the results generalize well to other classifiers and find the optimal classification
strategy that would benefit the implementation of the multi-modal control strategy
the most. Lastly, an online classifier should be implemented in order to be able to
implement the intent recognition system for real-time communication with the robot.
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A Appendix: Subject specific
EEG data
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Figure A.1: MRCPs of test subject S2, experiment set one at five electrode loca-
tions. The MRCPs were calculated over [-2 3] s time window locked to "Go" cue
that is marked with a dashed line.
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A. Appendix: Subject specific EEG data

(a) Experiment set one, test subject S1
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(b) Experiment set two, test subject S1
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Figure A.2: MRCPs of test subject S1 at five electrode locations when performing
the task with passive robot. The results of experiment set one and experiment set
two are shown in top and bottom panels respectively. Each panel contains MRCPs
from three tasks. The MRCPs were calculated over [-2 3] s time window locked to
"Go" cue that is marked with a dashed line.
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A. Appendix: Subject specific EEG data

(a) Experiment set one, test subject S3
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(b) Experiment set two, test subject S3
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Figure A.3: MRCPs of test subject S3 at five electrode locations when performing
the task with passive robot. The results of experiment set one and experiment set
two are shown in top and bottom panels respectively. Each panel contains MRCPs
from three tasks. The MRCPs were calculated over [-2 3] s time window locked to
"Go" cue that is marked with a dashed line.
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A. Appendix: Subject specific EEG data

(a) Experiment set one, test subject S1, electrode Cz

(b) Experiment set two, test subject S1, electrode Cz

(c) Experiment set one, test subject S3, electrode Cz

(d) Experiment set two, test subject S3, electrode Cz

Figure A.4: ERSP images of test subjects S1 and S3 at electrode Cz for three task
types. Each panel shows an image of one task power spectrum that is color coded
to the bar on the right as well as displayed at the bottom of each panel in a form of
an ERSP envelope. The time window is locked at zero to the "Go" cue.
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B Appendix: Pseudo code for
robot control algorithm

1 define Setup():
2 initialize camera
3 initialize ArduinoBoard
4
5 define main():
6 Setup()
7 #initialize multiprocess to run simultaneously and share a
8 #variable from the parent process to a child process:
9 Process_Detect = parent_process

10 Process_Move = child_process
11 start process_detect
12 start process_move
13
14 define Kalman_Filter():
15 kf = define matrices F, zeta, H, epsilon as in equations
16 (3) and (4) in Chapter 3.1.4.
17 return kf
18
19 define Predict(camera_coordinates, kf):
20 #Update the predicted state from the measurement:
21 kf.correct(camera_coordinates)
22 #One step ahead prediction of the coordinates
23 prediced_coordinates = kf.predict()
24 return predicted_coordinates
25
26 define Detect_Marker()
27 Grab frame;
28 Filter orange color in the image;
29 Dilate and find a contour;
30 Find the center of the contour.
31 return camera coordinates
32
33 define Process_Detect(child):
34 predicted_coordinates = Predict(camera_coordinates)
35 send predicted_coorinates to child process
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B. Appendix: Pseudo code for robot control algorithm

36
37 define Inverse_Kinematics(predicted_coordinates)
38 #Get predicted_coordinates, determine shoulder and elbow
39 #angles needed to reach the position and send a command to
40 #the robot.
41 #l1 - length of link between the shoulder and elbow
42 #l2 - length between the elbow and robot end effector
43 elbow_angle = arccos((x_predicted)^2+(y_predicted)^2 -
44 l1^2 - l2^2) / (2 * l1 * l2))
45 shoulder_angle = arctan(y_predicted/x_predicted) - arcsin(
46 l1 *sin(elbow_angle)/(x_predicted)^2+(y_predicted)^2)
47 write elbow_angle to elbow motor
48 write shoulder_angle to shoulder motor
49
50 define Coordinate_Translation(predicted_coordinates)
51 Use affine transformation to translate predicted_coordinates
52 from the camera to robot_coordinates in robot’s work space
53
54 define Process_Move(parent_process)
55 predicted_coordinates = receive from parent_process
56 #translate predicted_coordinates to robot coordinate system:
57 robot_coordinates = Coordinate_Translation(predicted_coordinates)
58 Inverse_Kinematics(robot_coordinates)
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