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Abstract
In this thesis we study aspects of compactifications of mainly the type II supergravity theories.
We begin with the study of classical approaches with a Kaluza-Klein compactification of the type
II supergravity theories on a Calabi-Yau 3-fold, followed by a presentation of their orientifold
variants, mirror symmetry, and the effects of allowing background fluxes on the moduli in the
4D effective field theory. The moduli fields can be stabilised by the presence of non-trivial
background fluxes, perturbative corrections to the 10D theory and non-perturbative corrections
to the 4D scalar potential. These corrections can be used to construct toy model de Sitter vacua
as in the KKLT and large volume scenarios. We also introduce a compactification with so-called
non-geometric fluxes, whose presence makes the metric of the internal manifold ill-defined. This
is followed by a discussion of double field theory, which treats geometric and non-geometric
fluxes on equal footing by extending spacetime in order to covariantise the T-duality group
O(d, d). We briefly discuss consistent truncations in the context of the generalised Scherk-
Schwarz ansatz. This is followed by an introduction of exceptional field theory, which is also an
extension of supergravity which covariantises the exceptional U-duality groups. This brings us
to the formalism of exceptional generalised geometry where we formulate supersymmetric flux
backgrounds as torsion-free generalised G-structures. The notion of generalised G-structures is
then interpreted as generalised differential forms in exceptional field theory and used to describe
vacua. The application to find consistent truncations to 4D is also discussed. This construction
is believed to play an important role in the classification of supersymmetric backgrounds.
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1
Introduction

During the past half century a huge success for theoretical physics has been the construction
of the Standard Model, which is a framework that unites the electromagnetic, strong and weak
forces. The Standard Model describes how particles interact via these forces using the formalism
of quantum field theory, which follows the laws of quantum mechanics and special relativity. The
Standard Model has been extensively experimentally checked to surprising levels of accuracy,
and is regarded as the most complete theory of fundamental interactions.

An open question in theoretical physics is how to include the fourth fundamental physical
force – gravitation – into this theory. The failure of incorporating gravity is to a large extent
due to the fact that it can not be renormalisable, i.e. the procedure of adding a finite number
of counterterms to an action that cancel divergences does not work for gravity, but does for the
Standard Model.

The most studied and arguably the most promising candidate for a uniting theory, a quantum
theory of gravity, is string theory. This theory is based on vibrating one-dimensional objects
called strings, and the discrete vibration modes of the quantised string viewed from large dis-
tances correspond to particles. The theory is regarded to incorporate gravitation in the sense
that there is always a vibration mode of the closed quantised string that is massless and has
spin two, which is interpreted as the graviton. The other fundamental forces are encoded as
massless states corresponding to gauge bosons.

The spectrum of the quantised string also contains vibration modes that have negative mass,
known as tachyons, and they imply an instability of the spacetime. These states can be removed
using the notion of supersymmetry, which relates bosons and fermions, and result in what is
called the superstring theories which by conformal invariance are forced to be ten-dimensional.
There are five different superstring theories; Type I, Type IIA/B and two heterotic string theories
with ten-dimensional gauge groups SO(32) and E8×E8, and they are all related to one another
via two types of duality, namely S- and T-duality. It was found that these superstring theories
could be seen as different formulations of a more fundamental theory, called M-theory. The
low-energy limit of the superstring theories are known as supergravity theories, and a common
feature of all ten-dimensional supergravity theories is the presence of higher-rank gauge fields; the
NSNS and RR fields, whose origin will be discussed later. The supergravity theories themselves
are non-renormalisable but are viewed as effective field theories of the original string theory. As
we will see, the supergravity theories can be extended to include T-duality by way of double
field theory, and T + S = U -duality by way of exceptional field theory.

In order to connect the supergravity theories to the 3+1-dimensional world we experience
every day, we turn to the concept known as compactification. This is based on assuming that
spacetime can be viewed as having four large spacetime directions and the remaining six are
wrapped together to form a very small compact space. This space is so small that we are unable
to experience its presence. The interest is then in supergravity solutions which have topology

M =M4 ×M6 , (1.1)

whereM4 is the four-dimensional external Lorentzian spacetime andM6 is a compact Rieman-
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1. Introduction

nian internal manifold. As we will see in this thesis, the effect of the extra dimensions can still
be seen in the four-dimensional effective field theory. For instance, when compactifying, the
effective four-dimensional theory contains a large number of massless scalar fields that would
give rise to long-range forces that are not experienced. These fields are called moduli and will
be unrestricted unless stabilised, i.e. fixing their expectation value and giving them a mass, by
mechanisms which will be presented in this thesis. In particular we will consider general string
backgrounds in which the NSNS and RR fields take non-trivial expectation values, known as
fluxes. As we will see, these can be used to stabilise the moduli fields.

Further, the spacetime solutions taking the form of eq. (1.1) should preserve some degree of
the original supersymmetry, and in order for the four-dimensional theory to have supersymmetry
the internal manifold must support supersymmetry spinors. Supersymmetry is naturally incor-
porated in string theory, and how much supersymmetry that is preserved in the effective action,
i.e. the number of N supersymmetry spinors admitted onM4, is important for phenomenologi-
cal reasons. Namely, it is desirable to preserve a minimal amount of supersymmetry, i.e. N = 1,
as that is compatible with minimal extensions of the Standard Model. Central to this thesis will
be how the conditions of supersymmetry translate into topological and differential conditions on
the internal manifold, which will strongly constrain its geometry. A powerful tool to use is an
extension of differential geometry called generalised geometry which will be introduced in the
context of flux compactifications.

1.1 Outline

This thesis is devoted to the study of supersymmetric compactifications with non-trivial fluxes.
The thesis is organised as follows. In chapter 2 we introduce the basic notions of supersymmetry
and supersymmetric Lagrangians as well as Kaluza-Klein compactification. In chapter 3 the type
II superstring theories are constructed. Chapter 4 discusses type II backgrounds with N = 1
with and without fluxes as well as introduces the formalism of complex generalised geometry
used in describing the internal geometries of N = 1 vacua. In particular we show how the
G-structures are conveniently used to describe fluxless compactifications, but how they fail to
capture all the information when fluxes are present. In chapter 5 we study the four-dimensional
effective theories obtained from Calabi-Yau and Calabi-Yau orientifold projections of both type
II theories. Flux-generated scalar potentials and their corresponding superpotentials are dis-
cussed and in the final section we also discuss mirror symmetry. In chapter 6 we derive the
classical type II no-go theorems for compactifications with fluxes and discuss how they can be
circumvented. In chapter 7 we study moduli stabilisation by fluxes on four different orientifold
backgrounds. Chapter 8 is reserved for introducing corrections to the low-energy effective action
which may be used to stabilise moduli as well as obtain classical toy models of de Sitter vacua.
The structure of chapters 4–8 is heavily inspired by the fine review of [1] but aims to be more
explicit. In chapter 9 we broaden the concept of the internal space by allowing non-geometric
fluxes, i.e. fluxes that make the metric of the internal space M6 globally ill-defined. We show
how these fluxes are naturally incorporated in double field theory, which is an O(d, d) covari-
ant extension of supergravity. In the final section we discuss consistent truncations of double
field theory. In chapter 10 the construction of exceptional field theory is reviewed, a theory
that covariantises U-duality by extending spacetime such that one completes the fundamental
representation of Ed(d) with extra coordinates. The supergravity theories can then be recovered
by solving the so-called section constraint in two different ways. In chapter 11 we introduce
exceptional generalised geometry, which is an extension of complex generalised geometry which
”geometrices” all the type II supergravity fluxes. The G-structure will be generalised to elegantly
encode flux compactifications. In chapter 12 we use the notion of generalised G-structures to
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1.1. Outline

describe half-maximal supergravity obtained from exceptional field theory, and how consistent
truncations can be formulated. Conclusions and discussion on future work are found in the last
chapter 13. In Appendix A some of the conventions used throughout the thesis are stated. In
Appendix B some basic concepts of differential geometry and topology are introduced. Appendix
C complements some calculations in chapter 4, and Appendix D complements chapter 5 with
an explicit computation of type IIB supergravity theory compactified on a Calabi-Yau manifold
with and without fluxes. Finally, Appendix E contains some explicit calculations from chapter
9 relating to double field theory.
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2
Basics of Supersymmetric Lagrangians and

Kaluza-Klein Theory

In this chapter we review some important aspects of supersymmetry and how one constructs
supersymmetric Lagrangians. In section 2.3 we review a classic method of dimensional com-
pactification which was formulated in the early 1900’s by Kaluza and Klein.

A supersymmetry transformation transforms a bosonic state into a fermionic one and vice
versa;

Q |fermion〉 = |boson〉 , Q |boson〉 = |fermion〉 , (2.1)
where Q is a spinor, and together with its Hermitian conjugate Q† it makes up the generators
of the supersymmetry algebra. The supersymmetry generators are special in that they do not
form a Lie algebra with ordinary commutation relations, but with anticommutation relations.
They therefore fulfil a graded Lie algebra, the supersymmetry algebra;

{Qa, Q†ḃ} = 2σµ
aḃ
Pµ , (2.2)

{Qa, Qb} = {Q†ȧ, Q
†
ḃ
} = 0 , (2.3)

[Qa, Pµ] = [Q†ȧ, Pµ] = 0 , (2.4)
[Qa,Mµν ] = (σµν)abQb , (2.5)

[Qa, gauge symmetry] = 0 , (2.6)

where Qa/Q†ȧ is a right/left-handed spinor, Pµ are the translation generators, Mµν are the gen-
erators of Lorentz transformations, and σµν = i

4(σµσ̄ν − σν σ̄µ), σµ = (1, σi) where σi=1,2,3 are
the Pauli matrices. Particles in a supersymmetric theory fall into irreducible representations
of the supersymmetry algebra called supermultiplets. These contain both fermions and bosons
which are said to be superpartners to each other. There are traditionally two types of super-
multiplets; the chiral supermultiplet and the vector supermultiplet. The chiral one consists of a
Weyl fermion and a complex scalar field. The vector multiplet consists of a Weyl fermion and a
massless vector boson.

2.1 The Wess-Zumino model
The simplest supersymmetry model contain a single, non-interacting chiral multiplet, consisting
of a complex scalar field φ and a left-handed 2-component Weyl fermion ψ. The spinors are
assumed to be 4D. The simplest action contain only the kinetic terms of the fermion and scalar;

S =
∫

d4x (Lscalar + Lfermion) , where
{
Lscalar = −∂µφ∗∂µφ
Lfermion = iψ†σ̄µ∂µψ

. (2.7)

This is called the massless, non-interacting Wess-Zumino model. We wish to study the super-
symmetry transformations of this theory. The action of eq. (2.7) above should be invariant
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2. Basics of Supersymmetric Lagrangians and Kaluza-Klein Theory

under a supersymmetry transformation;

S[φ, ψ] = S[φ+ δεφ, ψ + δεψ] ⇔ δεS = S[δεφ, δεψ] = 0 , (2.8)

where ε is the supersymmetry parameter. The transformation should also turn the scalar boson
field into something involving the fermion field ψa and vice versa. The simplest possibility for
the transformation of the scalar field is

δεφ = εψ , δεφ
∗ = ε†ψ† , (2.9)

where our supersymmetry parameter εa is an infinitesimal, anticommuting 2-component Weyl
object. For a global symmetry, εa is constant, and so ∂µε

a = 0. The relation between this
parameter and the supersymmetry generators is δεX = (εQ+ ε†Q†)X, with algebra [εQ, ε†Q†] =
2εσµε†Pµ since ε anticommutes. Transforming the scalar part of the Lagrangian, we get

δεLscalar = δε(−∂µφ∗∂µφ)
= −∂µδεφ∗∂µφ− ∂µφ∗∂µδεφ
= −ε†∂µψ†∂µφ− ε∂µφ∗∂µψ . (2.10)

Our goal is that this is cancelled fully, or up to a total derivative, by δεLfermion. For this to
happen δεψ must be linear in ε and φ, as well as include a spacetime derivative;

δεψa = −i(σµε†)a∂µφ , δεψ
†
b = i(εσµ)b∂µφ∗ . (2.11)

With this guess the transformation of the fermionic part of the Lagrangian becomes

δεLfermion = δε(iψ†σ̄µ∂µψ)
= iδεψ

†σ̄µ∂µψ + iψ†σ̄µ∂µδεψ

= −εσµ∂µφ∗σ̄ν∂νψ + ψ†σ̄ν∂νσ
µε†∂µφ

= −εσµσ̄ν∂µφ∗∂νψ + ε†ψ†σ̄νσµ∂µ∂νφ .

The Pauli matrices satisfy the anticommutation relations

σµσ̄ν + σν σ̄µ = σ̄µσν + σ̄νσµ = −2ηµν , (2.12)

which may allow some simplification. The product σ̄νσµ∂µ∂νφ of the second term above can be
rewritten using the fact that the double derivative on φ is symmetric; ∂µ∂ν = ∂ν∂µ. We may
divide σ̄νσµ into a symmetric and antisymmetric part respectively as σ̄νσµ = 1

2(σ̄νσµ−σµσ̄ν) +
1
2(σ̄νσµ − σµσ̄ν). A purely antisymmetric tensor Xµν contracted with a symmetric tensor Zµν
will vanish as XµνZµν = −XνµZµν = −XνµZνµ = −XµνZµν , where in the last step we simply
renamed the indices η → n → µ, and µ → m → ν. We end up with XµνZµν = −XµνZµν
meaning that XµνZµν = 0. Thus only the symmetric part of σ̄νσµ contracted with ∂µ∂ν will
survive, a part that also may be simplified with the Dirac anticommutation relations:

σ̄νσµ → 1
2(σ̄νσµ + σµσ̄ν) = 1

2(−2ηµν) = −ηµν .

Thus our expression becomes

δεLfermion = −εσµσ̄ν∂µφ∗∂νψ − ε†ψ†∂µ∂µφ , (2.13)

where we have contracted an index using the metric ηµν . Again, we wish to write this on a form
which cancels the scalar part of the Lagrangian up to a total derivative. This is done by

δεLfermion = ε†∂µψ†∂µφ+ ε∂µφ∗∂µψ − ∂µ
(
εσν σ̄µψ∂νφ

∗ + εψ∂µψ∗ + ε†ψ†∂µφ
)
, (2.14)
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2.1. The Wess-Zumino model

which we see matches our earlier expression:

ε†∂µψ†∂µφ+ ε∂µφ∗∂µψ

−∂µ
(
εσν σ̄µψ∂νφ

∗ + εψ∂µφ∗ + ε†ψ†∂µφ
)

=����
�

ε∂µψ∂µφ
∗ +XXXXXXε†∂µψ†∂µφ

− εσν σ̄µ∂µψ∂νφ∗ −(((((
(((hhhhhhhhεσν σ̄µψ∂µ∂νφ
∗

−���
��ε∂µψ∂
µφ∗ −���

��XXXXXεψ∂µ∂
µφ∗

−
XXXXXXε†∂µψ

†∂µφ− ε†ψ†∂µ∂µφ
= −εσν σ̄µ∂µψ∂νφ∗ − ε†ψ†∂µ∂µφ
= −εσµσ̄ν∂µφ∗∂νψ − ε†ψ†∂µ∂µφ .

Here terms crossed out in the same way cancel. The trick for σν σ̄µ∂µ∂ν has been used in the
double line or ”X” cancellation. We have seen that

δεLscalar + δεLfermion = ∂µ
(
εσν σ̄µψ∂νφ

∗ + εψ∂µψ∗ + ε†ψ†∂µφ
)
, (2.15)

and so we arrive at
δεS =

∫
d4x(δεLscalar + δεLfermion) = 0 . (2.16)

In order to complete our proof that the theory of eq. (2.7) is supersymmetric, our last thing
to check is that the supersymmetry algebra closes. That is, to check that the commutator
of two supersymmetry transformations with different supersymmetry parameters form another
symmetry of the theory. The commutator acting on the scalar field results in that

[δε1 , δε2 ]φ = δε1(δε2φ)− δε2(δε1φ)
= δε1(ε2ψ)− δε2(ε1ψ)

= −iε2σµε†1∂µφ+ iε1σ
µε†2∂µφ

= i
(
−ε2σµε†1 + ε1σ

µε†2

)
∂µφ ,

where we have used the transformation relation of eq. (2.9) on the second line and the trans-
formations of eq. (2.11) on the third line. Now turning to the fermion field ψ, we have that

[δε1 , δε2 ]ψa = δε1

(
−i(σµε†2)a∂µφ

)
− δε2

(
−i(σµε†1)a∂µφ

)
= i

(
−(σµε†2)aε1 + (σµε†1)aε2

)
∂µψ

= i
(
−ε2σµε†1 + ε1σ

µε†2

)
∂µψa + i

(
(ε2)aε†1σ̄µ − (ε1)aε†2σ̄µ

)
∂µψ ,

where on the last line we have used the Fierz identity (A)aBC = −(B)aAC−BA(C)a. The last
two terms vanish on-shell, i.e. when the equation of motion σ̄µ∂µψ = 0 is satisfied. Then the
remaining terms is exactly the translation as for the scalar field.

The supersymmetry algebra only seem to close on-shell, but one usually would like for it
to hold quantum mechanically as well. Because of this, one usually introduces a new complex
scalar field F , which has no kinetic term. This field is referred to as an auxiliary field, whose
only purpose is to allow the algebra to close off-shell. The Lagrangian density is given by

Lauxiliary = F ∗F , (2.17)

with equations of motion being F = F ∗ = 0. This takes us to the free Wess-Zumino model;

L = −∂µφ∗∂µφ+ iψ†σ̄µ∂µψ + |F |2 , (2.18)
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2. Basics of Supersymmetric Lagrangians and Kaluza-Klein Theory

which is invariant under the supersymmetry transformations

δεφ = 0 ,
δεψa = −i(σµε)a∂µφ+ (ε)aF ,

δεF = −iε†σ̄µ∂µψ .

(2.19)

Hence, whenever we are on-shell the equations of motion σ̄µ∂µψ = 0 and F = 0 are fulfilled, so
F only comes into the picture when off-shell to close the algebra. The supersymmetry algebra
closes for the auxiliary field as well;

[δε1 , δε2 ]F = δε1(−iε†2σ̄µ∂µψ)− δε2(−iε†1σ̄µ∂µψ)

= −iε†2σ̄µ∂µ(−iσνε†1∂νψ + ε1F ) + iε†1σ̄
µ∂µ(−iσνε†2∂νφ+ ε2F )

= −i(ε2σµε†1 − ε1σµε
†
2)∂µF − ε†2σ̄µσνε

†
1∂µ∂νφ+ ε†1σ̄

µσνε†2∂µ∂νφ

= −i(ε2σµε†1 − ε1σµε
†
2)∂µF .

So for the fields X = {φ, φ†, ψ, ψ†, F, F ∗} we have that

[δε1 , δε2 ]X = −i
(
ε2σ

µε†1 − ε1σ
µε†2

)
∂µX , (2.20)

and we have shown that the theory is supersymmetric.

2.2 Superfield formalism

One may construct more complicated supersymmetric Lagrangians with the same method as in
the previous section, but it would quickly become very complicated. There are also interactions
that can not appear in a supersymmetric Lagrangian. To resolve these issues, a new formalism
can be introduced where superpartners are treated as a single field; the superfield. The scalar
and fermion related via supersymmetry are then considered as different components of this
superfield, much like the spin up and down states of a single fermion.

2.2.1 Superspace and supersymmetry transformations

To develop the formalism of the superfield, one introduces the concept of the superspace, where
an equal number of commuting and anticommuting coordinates are added to the ordinary space-
time coordinates. In 4D the coordinates are {xµ, θα̇, θ̄α̇}, where θ̄α̇ = (θα)∗ and fulfil the anti-
commutation relations

{θα, θ̄β̇} = {θα, θβ} = {θ̄α̇, θ̄β̇} = 0 . (2.21)

The integrals over the superspace are∫
dθ =

∫
dθ̄ =

∫
dθ̄θ̄ = θ̄θ = 0 ,

∫
dθαθβ = δαβ ,∫

d2θθ2 =
∫

d2θ̄θ̄2 ,

∫
d4θθ2θ̄2 = 1 ,

∫
dθ̄α̇θ̄β̇ = δβ̇α̇ ,

(2.22)

defined as in [2], where the double differentials are given by

d2θ ≡ −1
4εαβ dθα dθβ , d2θ̄ ≡ −1

4ε
α̇β̇ dθα̇ dθβ̇ , d4θ ≡ d2θ̄ d2θ . (2.23)
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2.2. Superfield formalism

Any supermultiplet can be expressed as a single superfield which depends on the superspace
coordinates. A superfield with lowest component being a scalar field, i.e. a scalar superfield,
can be Taylor expanded to take the general form of

S(xµ, θα, θ̄α̇) = ϕ(x) + θψ(x) + θ̄χ̄(x) + θθM(x) + θ̄θ̄N(x)
+ θ̄σ̄µθVµ(x) + θθθ̄λ̄(x) + θ̄θ̄θρ(x) + θθθ̄θ̄D(x) .

(2.24)

Note that the expansion in power series terminates at order θ2θ̄2, which is common to all
functions of superspace coordinates. To see that there are no other contributions, one can note
the identities

θαθβ = 1
2εαβθθ , θ̄α̇θ̄β̇ = 1

2εα̇β̇ θ̄θ̄ , θαθ̄β̇ = 1
2σ

µ

αβ̇
(θ̄σ̄µθ) , (2.25)

which can be used to rewrite any term into the forms given in eq. (2.24). In order to formulate
the supersymmetry transformations in superspace, one defines the differential operators

Qα = i
∂

∂θα
− (σµθ̄)α∂α , Qα̇ = −i ∂

∂θ̄α̇
+ (θσµ)α̇∂µ ,

Qα = −i ∂
∂θα

+ (θ̄σ̄µ)α∂α , Qα̇ = i
∂

∂θ̄α̇
− (σ̄µθ)α̇∂µ .

(2.26)

With these definitions, the anticommutation relations are given by

{Qα,Qβ̇} = 2iσµ
αβ̇
∂µ = −2σµ

αβ̇
Pµ , {Qα,Qβ} = {Qα̇,Qβ̇} = 0 , (2.27)

where Pµ ≡ −i∂µ is the spacetime translation generator. The differential operators of eq. (2.26)
obey the graded Leibniz/product rule, which acts as the normal product rule for derivatives
but adds a minus sign for anticommutation through a Grassmann-odd object. That is, for two
superfields S and T we have that Qα(ST ) = (QαS)T + (−1)SS(QαT ) with (−1)S = ±1 if S
is Grassmann even or odd respectively. The supersymmetry transformations parameterised by
the infinitesimal ε for any superfield S are then given by

√
2δεS = −i(εQ+ ε̄Q)S

=
(
εα

∂

∂θα
+ ε̄α̇ + i

(
εσµθ̄ + ε̄σ̄µθ

)
∂µ

)
S

= S(xµ + iεσµθ̄ + iθ̄σ̄µθ, θ + ε, θ̄ + ε̄)− S(xµ, θ, θ̄) ,

(2.28)

where the factor
√

2 is chosen by convention and the last line is obtained by Taylor expansion to
first order in ε and ε̄. The last line of eq. (2.28) tells us that a supersymmetry transformation
can be viewed as a translation in superspace according to

xµ → xµ + iεσµθ̄ + iε̄σ̄µθ ,

θα → θα + εα ,

θ̄α̇ → θ̄α̇ + ε̄α̇ .

(2.29)
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2. Basics of Supersymmetric Lagrangians and Kaluza-Klein Theory

The supersymmetry transformations of all of the components in the scalar superfield of eq.
(2.24) become [3]

δεϕ = 1√
2 (εψ + ε̄χ̄) ,

δεψα = 1√
2 (2εαM − (σµε̄)α(Vµ + i∂µϕ)) ,

δεχ̄
α̇ = 1√

2

(
2ε̄α̇N + (σ̄µε)α̇(Vµ − i∂µϕ)

)
,

δεM = 1√
2

(
ε̄λ̄− i

2 ε̄σ̄
µ∂µψ

)
,

δεN = 1√
2

(
ερ− i

2εσ
µ∂µχ̄

)
,

δεV
µ = 1√

2

(
εσµλ̄− ε̄σ̄µρ− i

2εσ
ν σ̄µ∂νψ + i

2 ε̄σ̄
νσµ∂νχ̄

)
,

δερα = 1√
2

(
2εαD − i(σµε̄)α∂µN − i

2(σν σ̄µε)α∂µVν
)
,

δελ̄
α̇ = 1√

2

(
2ε̄α̇D − i(σ̄ε)α̇∂µM + i

2(σ̄νσµε̄)α̇∂µVν
)
,

δεD = 1√
2

(
− i

2 ε̄σ̄
µ∂µρ− i

2εσ
µ∂µλ̄

)
.

(2.30)

In order to construct Lagrangians in superspace with superfields, one will need derivatives with
respect to the superspace coordinates. The derivative ∂/∂θα is however not appropriate since it
is not supersymmetrically covariant, i.e.

δε

(
∂S

∂θα

)
6= ∂(δεS)

∂θα
, (2.31)

and the equivalent applies for ∂/∂θ̄α̇. As a consequence, the derivative of superfields are not
superfields themselves since they do not have the right transformation properties. To resolve
this issue one defines the supersymmetric chiral covariant derivative

Dα ≡
∂

∂θα
− i(σµθ̄)α∂µ , D̄α ≡ −

∂

∂θα
+ i(θ̄σ̄µ)α∂µ , (2.32)

which then do fulfil the transformation propertiy δε(DαS) = Dα(δεS). The anti-chiral covariant
derivative can for Grassmann-even superfields be defined to obey D̄α̇S

∗ ≡ (DαS)∗, so that

D̄α̇ ≡ ∂

∂θ̄α̇
− i(σ̄µθ)α̇∂µ , D̄α̇ ≡ −

∂

∂θ̄α̇
+ i(θσµ)α̇∂µ , (2.33)

and hence δε(D̄α̇S) = D̄α̇(δεS). All supersymmetric covariant derivatives anticommute with the
Qs;

{Qα, Dβ} = {Qα̇, Dβ} = {Qα, D̄β̇} = {Qα̇, D̄β̇} = 0 , (2.34)

whereas the chiral and anti-chiral covariant derivatives fulfil

{Dα, D̄β̇} = 2iσµ
αβ̇
∂µ , {Dα, Dβ} = {D̄α̇, D̄β̇} = 0 . (2.35)

The superfield S is not an irreducible representation of the supersymmetry algebra, and so
some components may be eliminated with S still being a superfield. Smaller superfields that are
irreducible and fulfil different properties are for example the chiral Φ superfield where D̄α̇Φ = 0,
the anti-chiral Φ̄ whereDαΦ̄ ≡ 0, the vector (or real) superfield V = V ∗, and the linear superfield
L such that DDL = 0 and L = L†.
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2.2.2 The chiral superfield

To describe the Wess-Zumino model we may use the chiral and anti-chiral superfields Φ and Φ̄.
In order to solve the chiral superfield constraint D̄α̇Φ = 0 it is convenient to define

yµ ≡ xµ + iθ̄σ̄µθ , (2.36)

changing the superspace coordinates to the set {yµ, θα, σ̄α̇}. In terms of these variables, the
chiral covariant derivatives become

Dα = ∂

∂θα
− 2i(σµθ̄)α

∂

∂yµ
, Dα = − ∂

∂θα
+ 2i(θ̄σ̄µ)α ∂

∂yµ
, (2.37)

D̄α̇ = ∂

∂θ̄α̇
, D̄α̇ = − ∂

∂θ̄α̇
. (2.38)

By eq. (2.38) it is clear that the chiral superfield constraint is solved by any function of yµ and
θ but not by θ̄. Hence, the chiral superfield can be written on the form

Φ = φ(y) +
√

2θξ(y) + θθF (y) , (2.39)

and similarly for Φ̄. Here φ is a complex scalar field, ξ a 2-component fermion and F an auxiliary
field. Expanding this superfield in terms of the anticommuting coordinates, and rewriting it in
terms of the original coordinates {xµ, θα, σ̄α̇}, we arrive at

Φ = φ(x) + iθ̄σ̄µθ∂µφ(x) + 1
4θθθ̄θ̄∂µ∂

µφ(x) +
√

2θξ(x)− i√
2θθθ̄σ̄

µ∂µξ(x) + θθF (x) . (2.40)

Comparing the terms with the general superfield of eq. (2.24), we have that

ϕ = φ , ψα = ξα , M = F , χ̄α̇ = 0 , N = 0 ,
Vµ = i∂µφ , ρα = 0 , λ̄α̇ = − i√

2(σ̄µ∂µξ)α̇ , D = 1
4∂µ∂

µφ ,
(2.41)

and the supersymmetry transformations can then be shown in the same manner as before to
give us

δεφ = εξ ,

δεξα = −i(σµε̄)α∂µφ+ εαF ,

δεF = −iε̄σ̄µ∂µξ .
(2.42)

These are in agreement with the variations of eq. (2.19).
Our next interest is to write supersymmetric Lagrangians. The supersymmetry transforma-

tion of the auxiliary field F in eq. (2.42) is a total derivative. Hence, the 4D spacetime integral of
the F-term, i.e. the one involving the θ2 component, of any chiral field is invariant under super-
symmetry. The product of chiral superfields of the same chirality gives another chiral superfield,
so the 4D spacetime integral of the F-term of an arbitrary polynomial of chiral superfields is
also invariant under supersymmetry. The most general renormalisable supersymmetric couplings
involving chiral superfields Φi have the form

LW =
∫

d2θW (Φi) + h.c. , (2.43)

where the W (Φi) is an analytic function of chiral superfield, known as the superpotential, and
the integration over d2θ selects its F-term. The superpotential allows us to introduce a broad set
of supersymmetric interactions. Since the θ2 component of W does not involve any spacetime
derivatives, it will not lead to any kinetic terms of the theory. By the total derivative variation
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of the δεD term in eq. (2.30), one can conclude that the θ2θ̄2 component of a real function of
chiral superfields is also a supersymmetric invariant upon integration over 4D spacetime. This
term, called the D-term, gives rise to canonical kinetic terms and is a component of the real
function called the Kähler potential denoted K(Φi, Φ̄i). Its simplest variant it is the product

K =
∑
i

ΦiΦ̄i , (2.44)

of chiral and anti-chiral superfields. The corresponding term in the Lagrangian shows the kinetic
terms

LK =
∫

d2θ d2θ̄K =
∑
i

(
|∂µφi|2 + iξ̄i∂µσ̄

µξi + |Fi|2
)
. (2.45)

A general Kähler potential K(Φi, Φ̄i) leads to more complicated terms as

LK ⊃ Kij
(
∂µφ̄i∂

µφj + iξ̄iσ̄
µ∂µξj + F̄iFj

)
, (2.46)

where Kij ≡ ∂2K/∂Φ̄i∂Φj |Φ=φ is a Kähler metric which depends both on the fields and param-
eters of the theory. Note that K is not uniquely defined, but only up to Kähler transformations

K(Φ̄,Φ)→ K(Φ̄,Φ) + f(Φ) + f̄(Φ̄) , (2.47)

where the fs are arbitrary analytic functions. Since
∫

d4θf(Φ) =
∫

d4θf̄(Φ̄) = 0, the quantity∫
d4θK(Φ̄,Φ) is conserved.
Now, having discussed the invariant terms upon integration over 4D spacetime, the general

form of the Lagrangian in an interacting theory of chiral superfields can be written

L =
∫

d4θK(Φ̄i,Φi) +
∫

d2θW (Φi) +
∫

d2θ̄W (Φ̄i)

= Kij
(
∂µφ̄i∂

µφj + iξ̄iσ̄
µ∂µξj + F̄iFj

)
−
(

1
2

∂2W

∂Φi∂Φj
ξiξj −

∂W

∂Φi
Fi + h.c.

)
+ . . . ,

(2.48)

with the ellipsis denoting higher order terms. By solving the F-term equations of motion

F̄i = −∂W
∂Φi

, (2.49)

the F-term contribution to the scalar potential of the theory is given by

VF =
∑
i,j

∂W

∂Φ̄i

Kij
∂W

∂Φj
=
∑
i

∣∣∣∣∂W∂Φi

∣∣∣∣2 . (2.50)

In general the Kähler potential is assumed non-singular, and so the extrema of the superpotential
correspond to the supersymmetric ground states of the theory.

The Wess-Zumino model is constructed with the simplest choice of Kähler potential and
superpotential. It consists of the Kähler potential in eq. (2.44) and a superpotential containing
only a single chiral field with general expression

W = α+ βΦ + m
2 Φ2 + g

3Φ3 . (2.51)

The reason for these choices being the simplest is a consequence of dimensional analysis. For
the theory to be renormalisable we know that [L] = 4 and [Φ] = [φ] = 1 as well as [ξ] = 3/2
for the fermions. Hence the expansion of eq. (2.40) implies that [θ] = −1/2 and [F ] = 2. The
Lagrangian depends linearly on the D-term Kähler potential and the F-term superpotential,

12



2.2. Superfield formalism

so we must have the conditions KD ∈ K ≤ 4 and WF ∈ W ≤ 4. Then as [θ2θ̄2] = −2, the
D-term of the Kähler potential contributes with dimension −2 to the total Kähler potential, so
that [K] ≤ 2. For the superpotential, [θ2] = −1 so that [W ] ≤ 3, and the polynomial of Φ in
eq. (2.51) follows as the superpotential must also be holomorphic. The Kähler potential should
depend on both chiral and anti-chiral fields and the first combination with dimension 2 that
comes to mind is K = Φ̄Φ.

With α = β = 0 in the general superpotential in eq. (2.51) above, the interacting Wess-
Zumino model is realised by the Lagrangian

LWZ = |∂µφ|2 + iξ̄∂µσ̄
µξ + |F |2 +

(
mFφ+ gFφ2 − m

2 ξ
2 − gφξ2

)
. (2.52)

In many cases, Lagrangians obtained from superpotentials are invariant under U(1) global su-
persymmetries, which act differently on the fermionic and scalar components of chiral multiplets.
This can be encoded as an U(1) charge assignment to the superspace coordinates θ via

θ → e−iγθ , Φi → eaiγΦi , Φ̄i → e−aiγΦ̄i , (2.53)

with γ and a being real numbers. These continuous U(1) symmetries are called R-symmetries.
The R-charge R is the sum R =

∑
i ai. The superspace coordinates have R(θ) = 1 which

implies that R(d2θ) = −2 and R(d4θ) = 0 which makes the Kähler potential invariant under
R-symmetry transformations, however the superpotential is restricted to interactions that fulfil
R(W ) = 2. The R-symmetry can be equivalently expressed regarding the supercharges, i.e. the
superalgebra has an U(1) automorphism fulfilling Q → e−iαQ and Q → eiαQ with α ∈ R, which
in turn reproduces the results for the superspace and superfields.

2.2.3 The vector superfield

As mentioned earlier, a vector (or real) superfield V is obtained by imposing the constraint
V = V ∗. This constraint forces the terms of the general superfield in eq. (2.24) to satisfy

ψ = ϕ∗ , χ̄ = ψ̄ , N = M∗ , Vµ = V ∗µ , λ̄ = ρ̄ , D = D∗ . (2.54)

It will later prove convenient to define

ρα ≡ λα − i
2(σµ∂µψ̄)α , Vµ ≡ Aµ , D ≡ 1

2D̃ + 1
4∂µ∂

µϕ . (2.55)

With these definitions, the component expansion of the vector superfield takes the form

V (xµ, θ, θ̄) = ϕ+ θψ + θ̄ψ̄ + θθM + θ̄θ̄M∗ + θ̄σ̄µθAµ + θ̄θ̄θ(λ− i
2σ

µ∂µψ̄)
+ θθθ̄(λ̄− i

2 σ̄
µ∂µψ) + θθθ̄θ̄(1

2D̃ −
1
4∂µ∂

µϕ) .
(2.56)

Again, the supersymmetry transformation is obtained from
√

2δεV = −i(εQ+ ε̄Q̄)V or by using
the transformation results in eq. (2.30) from the general superfield but for the fields in eqs.
(2.54), (2.55). Either way, the results are

δεϕ = 1√
2(εψ − ε̄ψ) ,

δεψα = 1√
2 (2εαM − (σµε̄)α(Aµ + i∂µϕ)) ,

δεM = 1√
2(ε̄λ̄− iε̄σ̄µ∂µψ) ,

δεA
µ = 1√

2(iε∂µψ − iε̄∂µψ̄ + εσµλ̄− ε̄σ̄µλ) ,

δελα = 1√
2(εαD̃ + i

2(σµσ̄νε)α(∂µAν − ∂νAµ)) ,

δεD̃ = 1√
2(−iεσµ∂µλ̄− iε̄σ̄µ∂µλ) .

(2.57)

13



2. Basics of Supersymmetric Lagrangians and Kaluza-Klein Theory

Note that by comparing the vector constraints in eq. (2.54) and the chiral ones of eq. (2.41), one
can conclude that a superfield can not be chiral and real at the same time unless it is a constant,
i.e. independent of xµ, θ, θ̄. The vector superfield is used to represent a gauge supermultiplet
which contains a gauge boson Aµ, a gaugino λ and a gauge auxiliary field D as components. As
seen in eq. (2.56) there are additional auxiliary fields; the real scalar ϕ, the 2-component fermion
ψα and complex scalar M . These can however be removed by a gauge transformation, using
the fact that the massless vector field has an U(1) gauge invariance. Consider the ”supergauge”
transformation

V → V + i(Λ∗ − Λ) , (2.58)
where the gauge transformation parameter Λ is a chiral superfield with components as in eq.
(2.40). For the components of the vector field, this transformation corresponds to

ϕ→ ϕ+ i(φ∗ − φ) ,
ψα → ψα − i

√
2ξα ,

M →M − iF ,

Aµ → Aµ + ∂µ(φ+ φ∗) ,
λα → λα ,

D̃ → D̃ .

(2.59)

The supergauge transformation for a vector superfield in eq. (2.58) makes the superspace La-
grangian invariant in the Abelian case. Imposing this gauge choice and eliminating the extra
auxiliary fields ϕ,ψα,M , the vector superfield takes the form

VWZ-gauge = θ̄σ̄µθAµ + θ̄θ̄θλ+ θθθ̄λ̄+ 1
2θθθ̄θ̄D̃ , (2.60)

which is said to be in Wess-Zumino gauge. When imposing Wess-Zumino gauge on the vector
superfield, one must remember that it is no longer consistent with the general supersymmetry
transformations of eq. (2.57). Namely, the supersymmetry transformations are proportional to

√
2δεVWZ-gauge ∼ θ̄σ̄µεAµ − θσµε̄Aµ + θθε̄λ̄+ θ̄θ̄ελ , (2.61)

and so the supersymmetry transformations is not in Wess-Zumino gauge themselves. However,
a supergauge transformation can always restore δεVWZ-gauge to Wess-Zumino gauge.

Continuing with the Abelian case, the gauge invariant field strength is defined as

Wα = −1
4D̄D̄DαV , W α̇ = −1

4DDD̄α̇V , (2.62)

with covariant derivatives defined as earlier and the vector superfield as in eq. (2.56). The field
strengths are chiral and anti-chiral by construction, since any chiral and anti-chiral field can be
written Φ = D̄D̄S and Φ̄ = DDS̄ for any superfield S. In the non-Abelian case they read

Wα = −1
4D̄D̄e

−VDαe
V , W̄α = −1

4DDe
−V D̄αe

V , (2.63)

where now the vector superfield is V = TaV
a with Ta being the gauge generators. The field

strengths arise in the kinetic terms for gauge bosons and gauginos as well as their interactions,
which comes from

L = 1
4tr
∫

d2θWαWα + h.c. = tr
(
−1

4FµνF
µν − iλσµDµλ̄+ 1

2D
2
)
. (2.64)

This term is invariant under the gauge transformations

Φ(x, θ)→ e−iΛΦ(x, θ) , eV → e−iΛ̄eV eiΛ , (2.65)

where Φ transforming in some representation of the gauge group.
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2.2. Superfield formalism

2.2.4 The F-term N = 1 scalar potential in supergravity

In the last part of this section we will comment on some results from the generalisation to
supergravity. We have seen that a superfield transforms like

δεΦ = i(εQ+ ε̄Q̄)Φ , (2.66)

and when going to supergravity one turns the constant supersymmetry parameter ε into a
function of the local spacetime coordinates ε(xµ), thus extending to a local symmetry. We are
interested in the scalar potential of supergravity, which will be central in later chapters. Hence,
we turn our focus to the chiral scalar part of the supergravity Lagrangian in superspace, which
can be written

L = − 3
κ2

∫
d4θEe−

κ2
3 K +

∫
d4EW + h.c. , (2.67)

where κ ≡ 8πG = 1/MPl, and E is the determinant of the supervielbein, i.e. the vierbein√
−g = e = eµa superspace generalisation, which corresponds to a superspace density. E is

defined by 2RE = E with R being the curvature superfield. Note that one can make the
κ-expansion

e−
κ2
3 K = 1− κ2

3 K +O(κ4) , (2.68)

where the flat space limit corresponds to κ → 0,
∫

d2θ̄E → 1 and E → 1 which reproduces
the supersymmetric action in terms of K and superpotential W . For any finite value of κ the
fact that K appears explicitly in the pure supergravity part of the Lagrangian implies that the
coefficient of the Einstein term, which is the effective Planck mass, depends on the chiral matter
fields. In order to go to the Einstein frame, which has constant MPl, a rescaling of the metric
needs to be done. However, in turn one needs to rescale the fermionic fields of the theory which
will complicate the derivation of the action of each component. To avoid this one can introduce
compensator superfields ζ, known as Weyl compensators, which indeed are unphysical and hence
required not to propagate. They are introduced such that the action is invariant under scale
and conformal transformations [4]. After having calculated the component actions, the Weyl
compensator field is fixed to a value that makes the Einstein term, i.e. the first one in eq. (2.67),
canonical. This breaks the imposed scale invariance and reproduces the searched-for component
actions. The Lagrangian above is then modified to

L = −3
∫

d4θEζζ̄e−K/3 +
∫

d4θEζ3W + h.c. , (2.69)

which is invariant under the metric rescalings E → e2(Φ+Φ̄)E and E → e6ΦE for some chiral
superfield Φ when ζ → e−2Φζ. It is clear that we must fix the Weyl compensator so that
ζζ̄e−K/3 = 1/MPl. Now, to obtain the scalar potential it is sufficient to consider only flat
spacetime, so that we may take the limit E = 1 and

∫
d2θE = 1, so that the Lagrangian in eq.

(2.69) takes the form
L = −3

∫
d4θζζ̄e−K/3 +

∫
d2θζ3W + h.c. , (2.70)

where the covariant derivative reduces to global covariant derivatives. If we ignore the fermionic
components we can integrate over half the superspace, so that the Lagrangian of eq. (2.70)
becomes

L = −3
∫

d2θ̄
(
ζ̄e−K/3F ζ − 1

3 ζ̄ζe
−K/3KiF

i
)

+ 3ζ2F ζW + ζ3F iWi +
∫

d2θ̄ζ̄3W ,

= −e−K/3
(
3F ζ̄ζ − ζ̄K̄F

̄F ζ − ζKiF
iF ζ − ζζ̄KīF

iF  + 1
3 ζ̄ζKiF

iK̄F
̄
)

+ 3ζ2F ζW + ζ3F iWi + 3ζ̄2F ζ̄W + ζ̄3F ı̄W ı̄ .

(2.71)
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2. Basics of Supersymmetric Lagrangians and Kaluza-Klein Theory

From this we get the equations of motion for the auxiliary F-fields;

−3e−K/3
(
F ζ − 1

3ζKiF
i
)

+ 3ζ̄2W = 0 ,

ζ3Wi − 3e−K/3
(
−1

3ζKiF
ζ̄ − 1

3ζζ̄KīF
̄ + 1

9 ζ̄ζKiK̄F
̄
)

= 0

ζ3Wi + ζ3WKi + e−K/3ζζ̄KīF
̄ = 0

ζ3DiW + e−K/3ζζ̄KīF
̄ = 0 .

(2.72)

Solving this for F we get that
F i = eK/2MPlKīD̄W , (2.73)

and then plugging it into the Lagrangian again, the result will be of the form

L = . . .+ ζ2ζ̄2eK/3(KīDiWD̄W − 3|W |2) . (2.74)

In order to determine the value of the Weyl compensator field we demand that the Einstein
term has constant Planck mass, i.e. cancels the varying effect of the Kähler potential in the
exponent. Therefore we may take ζ = ζ̄ = eK/6, so the potential term in eq. (2.74) becomes

VF = eK/MPl

(
KīDiWD̄W − 3 |W |

2

M2
Pl

)
, (2.75)

with covariant derivatives given by

DiW ≡ ∂i + 1
M2

Pl
(∂iK)W . (2.76)

The F-type parameters for supersymmetry breaking now involve covariant derivatives Fi =
DiW . With F-terms being auxiliary fields, their equations of motion should vanish, and so in
supersymmetric vacua one must have DiW = 0. Supersymmetry breaking occurs when this
identity does not apply, i.e. when eq. (2.73) does not equal zero. As seen by eq. (2.75),
the vacuum expectation value of the scalar potential, i.e. the cosmological constant, can (only
including the F-term) be either zero or negative depending on the vacuum expectation value of
W .

Note that in the limit MPl → ∞ gravity is decoupled from the theory and we are left with
VF = KīDiWD̄W corresponding to the F-term scalar potential in eq. (2.50) with global
supersymmetry.

2.3 Kaluza-Klein compactifications

In 1921 Kaluza in [5] showed that general relativity in five dimensions contained both a four
dimensional theory of gravity and electromagnetism. Kaluza imposed a restriction, known as
the cylinder condition, as to effectively make any effects from the fifth dimension to not appear
in our common 4D physical laws. Namely, without anything implying a fifth dimension, he
suggested that derivatives with respect to the fifth dimension vanish, thus effectively avoiding
the question of the extra dimension. In 1926 Klein suggested [6] compactification of the fifth
dimension as a more natural restriction for it not appearing in our 4D laws of physics. He
justified Kaluza’s condition with two main conditions on the fifth coordinate. First, if the fifth
coordinate had a circular topology. Fields could depend on it periodically, allowing for them to
be Fourier expanded. Second if the scale of the circular topology was small enough as to make
the energies of the Fourier modes above the ground state be so large they be unobservable, the
theory would become effectively 4D.
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2.3. Kaluza-Klein compactifications

2.3.1 General features of the Kaluza-Klein mechanism

Starting with a theory in dimension D = d+ n, the first assumption made in KK theory is that
the n extra dimensions which are to be compactified have positive signature. This is done in
order to avoid ghosts (fields with negative kinetic energy density) and tachyons (potential fields
without minimum) in the theory. The next step is to consider ground state solutions of the
field equations for the metric 〈gMN 〉 and collective matter fields 〈Φ〉 which exhibit spontaneous
compactification. In this case the metric takes the form of a product space MD = Md ⊕Mn,
whose ground state can be written

g
(0)
MN (xd, yn) =

(
g

(0)
µν (xd) 0

0 g
(0)
mn(yn)

)
, (2.77)

where the spacetime Md are spanned by coordinates xd and Mn is a compact space with
coordinates yn and Euclidean signature. In order to obtain the spectrum of the d-dimensional
theory, we consider fluctuations of the D-dimensional fields around their ground state values to
linear order, i.e.

gMN (x, y) = g
(0)
MN (x, y) + δgMN (x, y) ,

Φ(x, y) = Φ(0)(x, y) + δΦ(x, y) ,
(2.78)

which we may use in the equations of motion. With the internal manifold being compact, one can
expand the fields in terms of eigenfunctions of the corresponding mass operatorM2Y (i) = m2

iY
(i)

such that

δΦ(x, y) =
∞∑
i

φ(i)(x)E(i)(y) ,

δgµν(x, y) =
∞∑
i

h(i)
µν(x)Y (i)(y) ,

δgµm =
∞∑
i

A(i)
µ (x)Y (i)

m (y) ,

δgmn =
∞∑
i

X(i)(x)Y (i)
mn(y) .

(2.79)

This results in a theory which has an infinite tower of massive modes, known as the Kaluza-Klein
tower. The masses are inversely proportional to the scale of compactification mi ∼ R−1, where
R can be seen as the size of the compact manifoldMn [7]. For small R, the n extra dimensions
need not conflict with every-day life (given d = 4) and its inverse square gravitational law. The
masses of the extra dimensional fields would become so large as to put them beyond the reach of
experiment, so only the finite zero-modes independent of extra dimensions would be observable.
The massless mode eigenfunctions, being harmonic forms, will play an important role as internal
metric deformations of a Calabi-Yau 3-fold which admits a finite number of them. After finding
a spontaneous compactification one should also control that the vacuum is stable, i.e. that
the massive tower states have positive energy. For Minkowski vacua this simply corresponds to
m2
i ≥ 0, but the conditions for other type of vacua are more subtle.
Choosing Md to be Minkowski and Mn to be a Ricci-flat manifold, the mass operator for

the bosonic eigenfunctions E(i)(y), Y (i)(y) and Y
(i)
m (y) will be a Laplace operator. If instead

E(i)(y) is fermionic then the mass operator is a Dirac operator. The mass operator of Y (i)
mn(y)

is a so-called Lichnerowicz operator and gives the Lichnerowicz equation for a field, which will
return in chapter 5 when performing metric deformations.
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2.3.2 Some examples in 5D

In this section we review some of the simpler examples of Kaluza-Klein compactifications in
order to develop some intuition for the mechanism.

The massless scalar field. We start with a simple example in D = 5 where a massless scalar
field has action

S0 = −1
2

∫
d5x∂Mφ∂

Nφ , (2.80)

where M,N = 0, . . . , 4, ∂M = ηMN∂N , and ηMN = ηMN = diag(−1, 1, 1, 1, 1) is a flat space.
The equation of motion, found by the principle of stationary action, is

∂M∂
Mφ = �φ = 0 , (2.81)

i.e. the massless Klein-Gordon equation. Setting the 5D space M5 to be a product space
M5 = M4 × S1 is still consistent with a flat metric. M4 is a 4D Minkowski space and S1

is a circle of radius R. The coordinates of this space can be written as xM = (xµ, y), where
µ = 0, . . . , 3 and the circle coordinate is y ∈ [0, 2πR]. The equation of motion may now be
written as

∂M∂
Mφ = ∂µ∂

µφ+ ∂2
yφ = 0 . (2.82)

Since y is a periodic coordinate φ(xµ, y) = φ(xµ, y+2πR), we may Fourier expand the field such
that

φ(xµ, y) = 1√
2πR

∞∑
−∞

φ(n)(xµ)einy/R . (2.83)

Using this expression of φ in eq. (2.82), the equation of motion now takes the form

∂µ∂
µφ(n)(xµ)− n2

R2φ(xµ) = 0 . (2.84)

This is the Klein-Gordon equation for scalar fields φn(xµ) with masses n/R, which are 4D as
µ = 0, . . . , 3. With usage of eq. (2.83) in the action of eq. (2.80) and integrating over y using
the orthonormality of the eigenfunctions 1√

2πRe
iny/R of ∂2

y [8], the action can be written

S0 = −1
2

∞∑
−∞

∫
d4x

(
∂µφ

(n)∂µφ(n)∗ − n2

R2φ
(n)∗φ(n)

)
. (2.85)

It is clear that there is one massless scalar φ(0) and an infinite amount of massive scalars φ(n 6=0)

with masses 2n/R, i.e. the tower of massive Kaluza-Klein modes. We have now obtained the
effective 4D action from the original 5D action. At energies lower than the 1/R scale, only
the zero mode is kept as the massive modes become infinite in mass as R → 0. The massive
modes are truncated, and the physics become four dimensional. This is known as dimensional
reduction, or Kaluza-Klein reduction. Would we keep the massive modes, we say that we have
compactified the 5D theory, as the extra dimension is compact and its existence is taken into
account as long as the Fourier modes are included.
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The Maxwell vector field. Our next example is the 5D Maxwell action, whose fifth dimen-
sional term we write explicitly for later convenience, i.e.

S =
∫

dx5
[
− 1

4FMNF
MN

]
=
∫

dx5
[
− 1

4FµνF
µν − 1

2Fµ4F
µ4
]

=
∫

dx5
[
− 1

4FµνF
µν − 1

2(∂µA4 − ∂4Aµ)(∂µA4 − ∂4Aµ)
]

=
∫

dx5
[
− 1

4FµνF
µν − 1

2(∂µA4∂
µA4 − ∂µA4∂

4Aµ − ∂4Aµ∂
µA4 + ∂4Aµ∂

4Aµ)
]

=
∫

dx5
[
− 1

4FµνF
µν − 1

2
(
(∂µA4)2 + (∂4Aµ)2 − ∂µA4∂

4Aµ − ∂4Aµ∂
µA4)] . (2.86)

Once again compactifying the fifth dimension on a circle, we have that A(xM ) = A(xµ, y) =
A(xµ, y + 2πR) which allows for the Fourier decomposition

A(xµ, y) = 1√
2πR

∞∑
−∞

A(n)(xµ)einy/R

= 1√
2πR

[
A(0)(xµ) +

∞∑
n=1

(A(n)(xµ)einy/R + c.c.)
]
. (2.87)

Our dimensional reduction would be rather simple could we choose an axial gauge A4 = 0,
however it is not possible to remove the zero mode A(0)

4 of the expansion above. The closest we
get to axial gauge is therefore A4(xµ, y) = A

(0)
4 (xµ). Making use of our expansion and choice of

gauge, we insert it in the action of eq. (2.86), which becomes

S = 1
2πR

∫
dx4

∫ 2πR

0
dy
[
− 1

4FµνF
µν − 1

2(∂µA(0)
4 )2 − 1

2(∂4Aµ)2
]

(2.88)

=
∫

dx4
[
− 1

4F
(0)
µν F

µν (0) − 1
2(∂µA(0)

4 )2 +
∞∑
n=1

(
− 1

2
∣∣∂µA(n)

ν − ∂νA(n)
µ

∣∣2 + n2

R2 |A
(n)
µ |2

)]
.

On the first line the cross terms from the fifth dimension have been integrated over einy/R to
zero. After integration the term (∂µA(0)

4 )2 remains unchanged, and (∂4Aµ)2 becomes a mass
term n2

R2 |A
(n)
µ |2 as the derivative can be replaced by ∂ → in/R under Fourier decomposition.

The zero mode part vanishes since ∂4A
(0)
µ = ∂yA

(0)
µ (xµ) = 0.

Thus the 5D Maxwell theory has been compactified to a 4D Maxwell theory, a scalar field
A

(0)
4 , and an infinite set of 4D gauge fields A(n)

µ and A(n)
µ
∗ with masses 2n/R.

Pure gravity. Another example is that of 5D pure Einstein gravity with one spatial dimension
compactified on a circle of radius r with coordinate y ∈ [0, 2πr]. The corresponding action, the
Einstein-Hilbert action, is given by

S = 1
2π

∫
d4x dy

√
−g5R5 , (2.89)

where g5 = detgMN with M,N = 0, . . . , 4 is the 5D metric and R5 is the 5D Ricci scalar. With
no matter terms, the corresponding equations of motion are just

RMN = 0 , (2.90)
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which tell us that the metric is flat. We may compactify the five dimensions into a 4D Minkowski
and circle according toM5 =M4 × S1, as in the previous example. In this case the metric is
of the type

ds2 = ηµν dxµ dxν + dy2 , (2.91)

so that the metric gMN is given by

gMN =
(
ηµν 0
0 1

)
, (2.92)

where µ, ν = 0, . . . , 3. Note that a compactification M5 = M3 × S1 × S1 is equally valid.
To study the dynamics and spectrum of this theory we start by considering linear fluctuations
around the ground state in eq. (2.92). The metric can then be written as

gMN = φ−1/3
(
gµν + φAµAν φAµ

φAν φ

)
, (2.93)

which is known as the Kaluza-Klein ansatz. Here φ(xµ, y) is a scalar field and Aµ(xµ, y) a vector
field. Any 5D metric can be written in the form of eq. (2.93). As the metric and added fields
depend on the periodic coordinate y we may Fourier expand them, so that

gµν(xµ, y) =
∞∑
−∞

g(n)
µν (xµ)einy/r , (2.94)

φ(xµ, y) =
∞∑
−∞

φ(n)(xµ)einy/r , (2.95)

Aµ(xµ, y) =
∞∑
−∞

A(n)
µ (xµ)einy/r , (2.96)

with ground state values according to the original metric;

g(0)
µν = ηµν , φ(0) = 1 , A(0)

µ = 0 . (2.97)

The complete dimensional reduction is achieved by keeping only the zero mode of gMN , which
gives us the action

S = −
∫

d4x
√
−g4

(
R

(0)
4 + 1

4F
(0)
µν F

µν (0) − 1
6
∂µφ

(0)∂µφ(0)

φ(0)2

)
. (2.98)

Except for the 4D pure gravity action, we have also obtained the Maxwell action of electromag-
netism as well as a massless scalar field φ.
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Bosonic string theories are unsatisfactory in two aspects. First, the spectra for both closed and
open strings, contain tachyons. The second feature is of course that it does not contain any
fermions. It turns out that the incorporation of fermions in string theories requires supersym-
metry and the resulting theories are called superstring theories.

3.1 The low-energy effective action of the bosonic string
In this section we describe some important properties of the bosonic action which will extend
to the type II superstrings central to this thesis.

3.1.1 The massless bosonic spectrum and symmetries

Strings sweep the 2D worldsheet spanned by the coordinates σ along the string and τ along its
perpendicular direction. The evolution of the worldsheet is given by the Polyakov action in D
flat dimensions as

S = 1
4πα′

∫
dσ dτ

√
−γγαβηMN∂αX

M∂βX
N , (3.1)

where γαβ with α, β = {σ, τ} is the worldsheet metric, ηMN is the Minkowski metric, and XM

with M = 0 . . . , D− 1 are the functions defining the embedding of the worldsheet in spacetime.
The string tension T is related to α′ via

T = 1
2πα′ = 1

2πl2s
= M2

s
2π , (3.2)

where ls is the string scale whose inverse gives the string mass Ms. Before quantisation of the
theory it is important to be aware of some global and local symmetries held by the Polyakov
action, namely

• D-dimensional Poincaré invariance; a global symmetry acting on the worldsheet theory
which leaves the coordinates τ, σ invariant while acting on the XM fields according to

XM (τ, σ)→ ΛMN XM (τ, σ) + aM , γαβ(τ, σ)→ γαβ(τ, σ) . (3.3)

• Invariance under local worldsheet reparametrisations, for which the XM (τ, σ) behave as
scalars and γαβ as a 2-index tensor. Given σα ≡ (τ, σ) we have

σα → σ′α(σα) , XM → X ′M (σ′α) = XM (σα) ,

γαβ(σα)→ γ′αβ(σ′α) = ∂σλ

∂σ′α
∂σρ

∂σ′β
γλρ ,

(3.4)

• Weyl invariance, i.e. invariance under local rescalings of the worldsheet metric;

XM (τ, σ)→ XM (τ, σ) , γαβ(τ, σ)→ Ω(τ, σ)γαβ(τ, σ) . (3.5)
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3. Superstrings and Supergravity

In order to quantise the system one needs to gauge fix the local invariances. The local symmetries
of τ and σ can be used to remove degrees of freedom from γαβ by imposing what is known as
conformal gauge

γαβ = ηαβ . (3.6)

This is always possible to do locally on the worldsheet and even globally for an infinite cylinder
topology. In this gauge the Polyakov action may be written

S = 1
4πα′

∫
dτ dσηαβ∂αXM∂βX

NηMN . (3.7)

The equations of motion obtained from varying this action is the 2D wave equation

(∂2
τ − ∂2

σ)XM (τ, σ) = 0 . (3.8)

Closed strings satisfy the boundary conditions XM (τ, 0) = XM (τ, 2π) and ∂σX
M (τ, 0) =

∂σX
M (τ, 2π). Imposing these conditions enables the mode expansion

XM (τ, σ) = XM
R (σ−) +XM

L (σ+) , (3.9)

where

XM
R (σ−) ≡ 1

2x
M + α′pMσ− + i

√
α′

2
∑
n6=0

αMn
n
e−2inσ− ,

XM
L (σ+) ≡ 1

2x
M + α′pMσ+ + i

√
α′

2
∑
n6=0

α̃Mn
n
e−2inσ+

,

(3.10)

and σ± ≡ τ ± σ are left-moving (σ+) and right-moving (σ−) worldsheet coordinates, the xM
and pM are the centre of mass position and momentum respectively. For the solution to be
real one may further impose the conditions αM−n = (αMn )∗ and α̃M−n = (α̃M−n)∗ on the mode
expansion coefficients. Another constraint comes from the vanishing of the energy momentum
tensor, obtained by varying the worldsheet metric, resulting in that

Tαβ ≡ 2π
√
γ

δS

δγαβ
= − 1

α′

(
∂αXM∂βXM − 1

2γ
αβγλρ∂

λXM∂ρXM

)
= 0 , (3.11)

which in turn results in the constraints

ηMN∂σ +XM
L ∂σ +XN

L = ηMN∂σ −XM
R ∂σ −XN

R = 0 . (3.12)

Note that with left- and right-moving coordinates σ±, the conformal metric gauge in eq. (3.6)
can be written ds2 = −dσ+ dσ−, which is unchanged by the change of coordinates

σ+ → f+(σ+) , σ− → f−(σ−) , (3.13)

in combination with a suitable Weyl rescaling. Reparametrisations of the type in eq. (3.13)
preserve the conformal structure, are known as conformal transformations. In the case of the
2D worldsheet the conformal structure corresponds to its angles. Conformally invariant theories
like the Polyakov action are known as conformal field theories.

Quantising the action in eq. (3.7) results in the commutators

[αMn , αNm] = [α̃Mn , α̃Nm] = nδn+m,0η
MN , [xM , pN ] = iηMN , (3.14)
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3.1. The low-energy effective action of the bosonic string

so that αm, α̃m can be interpreted as annihilation operators and α−n, α̃−n with n > 0 as creation
operators. The modes annihilate or create a left- or right-moving excitation at the level n, which
carries an energy proportional to the level. The mass of each state is given by

M2 = 2
α′

( ∞∑
n=1

(αn · α−n + α̃n · α̃−n)− 2
)
≡ 2
α′

(
N + Ñ − 2

)
, (3.15)

with −2 being a normal ordering contribution to the zero-point energy. The left- and right-
moving sectors are related by the level-matching condition

(L0 − L̃0) |φ〉 = 0 , (3.16)

where
L0 ≡ 1

2α0 +
∞∑
n=1

αm−n · αn , L̃0 ≡ 1
2 α̃0 +

∞∑
n=1

α̃m−n · α̃n , (3.17)

for some physical state |φ〉. The states are invariant under translations in σ when requiring that
an equal amount of oscillators are excited on the left and right, i.e. N = Ñ . The massless states
|ξMN 〉 for instance will then have one left-moving and one right-moving excitation

|ξMN 〉 ≡ ξM ξ̃NαM1 α̃N1 |0〉 , (3.18)

as well as a centre of mass momentum kM with k · k = 0. It is clear that for the norm of the
state to be positive, ξ and ξ̃ must be space-like vectors. The condition of eq. (3.12) implies that
ξ · k = ξ̃ · k = 0, meaning that the polarisation vectors must be orthogonal to the momentum.
By choosing the frame in which kM = (k, k, 0 . . . , 0) then the ξM , ξ̃M must belong to the space
with M = 2, . . . , D−1 and so these states are classified by their SO(D−2) representation. The
tensor ξMN can be combined with the metric to create a scalar, a symmetric and antisymmetric
tensor by

ξt ≡ 1
Dη

MNξMN , ξsMN ≡ 1
2(ξMN + ξNM − 2ξtηMN ) , ξaMN ≡ 1

2(ξMN − ξNM ) , (3.19)

so that the ξMN can be written as

ξMN = ξsMN + ξtηMN + ξaMN . (3.20)

The state corresponding to the scalar ξt is known as the dilaton, the one created by the symmetric
tensor ξsMN is the graviton with spin 2, and the one based on the antisymmetric tensor ξaMN

is the B-field. In the next section we will consider the effects of having a curved background
instead of the flat ηMN .

3.1.2 Conformal invariance and the Einstein equations

There is an obvious generalisation of the Polyakov action to describe a string moving in curved
spacetime, namely

Sσ = 1
4πα′

∫
dσ dτ

√
−γγαβgMN∂αX

M∂βX
N , (3.21)

with gMN being a general metric. This is also known as the sigma model action. While a
flat metric had one graviton in its spectrum, a curved background can be viewed as a coherent
state of gravitons, which can be seen by first considering a small deviation from the flat space;
gMN = ηMN + hMN . Using this perturbation in the path integral, the corresponding partition
function reads

Z =
∫
DXDγe−S =

∫
DXDγe−(S0+V ) =

∫
DXDγe−S0

(
1− V + 1

2V
2 + . . .

)
, (3.22)
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3. Superstrings and Supergravity

where the vertex operator associated to the graviton state is given by

V = 1
4πα′

∫
dσ dτ

√
−γγαβhMN∂αX

M∂βX
N . (3.23)

A single copy of V in the path integral corresponds to the introduction of a single graviton state,
and the inclusion of e−V results in a coherent state of gravitons.

In conformal gauge, the Polyakov action in flat space reduces to a free theory, but in a curved
background this is no longer true. Imposing conformal gauge of the σ-model in eq. (3.21), the
worldsheet theory is described by an interacting 2D field theory, namely

S = 1
4πα′

∫
dσ dτgMN∂αX

M∂αXN , (3.24)

having raised the second derivative index. The interactions can be more easily considered by
expanding around a classical solution in which the string sits at a point xM , so that

XM (τ, σ) = xM +
√
α′YM (τ, σ) , (3.25)

where YM (τ, σ) are dynamical fluctuations around xM that are assumed to be small [9]. The
Lagrangian will then take the form

gMN (X)∂αXM∂αXN = α′
[
gMN (x) +

√
α′∂P gMN (x)Y P

+ α′

2 ∂P∂QgMN (x)Y PY Q + . . .
]
∂αY

M∂αY N .
(3.26)

Here each of the coefficient terms ∂P gMN , ∂P∂QgMN , . . . are coupling constants for the interac-
tions of the Y s, and it is clear that there is an infinite amount of them.

Classically the action in eq. (3.24) is conformally invariant, although not necessarily when
quantising the theory. A UV cut-off is usually introduced to regulate divergences, and after
renormalisation the physical quantities generally depend on the scale of a given process µ, thus
breaking conformal invariance. The Yang-Mills theory is a typical example of such a theory in
which conformal invariance is broken quantum mechanically. The β-function is an object which
describes how couplings depend on a scale µ. In our case with the metric gMN , the β-function
is rather a functional of the form

βMN (g) ∼ µ∂gMN (X,µ)
∂µ

. (3.27)

For the theory to be conformally invariant the β-functional is required to vanish. Hence it is in
order to study what the condition βMN (g) = 0 imposes on the coupling. The usual strategy is
to add a counterterm to the UV divergence in the action in eq. (3.24), and the β-functional will
then vanish when the counterterm does. Around any point x one can always choose Riemann
normal coordinates such that the expansion in eq. (3.25) becomes

gMN (X) = δMN − α′

3 RMPNQ(x)Y PY Q +O(Y 3) . (3.28)

Using this expression in the action, it will, up to quartic order in the fluctuations, take the form

S = 1
4π

∫
dτ dσ

(
∂YM∂Y NδMN − α′

3 RMPNQY
PY Q∂YM∂Y N

)
. (3.29)

Treating this as an interacting 2D quantum field theory, the quartic interaction gives a vertex
with Feynman rule giving a contribution ∼ RMPNQ(pM ·pN ) , with pMα being the 2D momentum
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3.1. The low-energy effective action of the bosonic string

for the scalar field YM . The divergence in the theory comes from the 1-loop diagram, which can
seen by considering the scalar propagator in position space

〈Y P (σα)Y Q(τ ′, σ′)〉 = −1
2δ
PQ ln |σα − σ′α|2 , (3.30)

which diverges as σα → σ′α. A scalar running in the loop have its start and end coincide. To
isolate this divergence we use dimensional regularisation, where we have that

〈Y P (σα)Y Q(σ′α)〉 = 2πδPQ
∫ d2+εp

(2π)2+ε
eip(σ

α−σ′α)

p2 −−−−−→
σα→σ′α

δPQ

ε
. (3.31)

In the action we may replace Y PY Q with 〈Y PY Q〉, and so having isolated the divergence we
may add a counterterm such that

RMPNQY
PY Q∂YMY N → RMPNQY

PY Q∂YMY N − 1
ε
RMN∂Y

M∂Y N . (3.32)

This change can actually be absorbed in a renormalisation of the fluctuations YM → YM −
α′

6εR
M
NY

N in combination with a renormalisation of the coupling constants

gMN → gMN + α′

ε
RMN . (3.33)

With this expression of the metric, the condition of vanishing β-functional results in that

βMN (g) ∼ α′RMN = 0 . (3.34)

Hence, the requirement that the σ-model is conformally invariant implies that the background
spacetime must be Ricci flat.

3.1.3 The non-linear sigma model

In the previous sections we have seen how strings couple to the background metric gMN and also
that the bosonic string has massless states associated with an antisymmetric tensor and scalar,
known as the Kalb-Ramond field BMN and dilaton φ respectively. In this section we will study
how the inclusion of these fields in spacetime affects the theory.

Starting with the B-field, one needs to construct an action to describe the interaction or
coupling. The vertex operator VB for the field is of the form

VB ∼
∫

dτ dσ : eik·x∂XM ∂̄XN : ζaMN , (3.35)

with ζaMN being the antisymmetric part of a constant tensor ζMN . In the same manner the
vertex operator for the gravitational field looks the same as the one in eq. (3.35) but with ζaMN

replaced by the traceless symmetric part ζsMN of the same constant tensor. For the dilaton field
one would have that

Vφ ∼
∫

dτ dσ : eik·x∂XM ∂̄XM : ζ , (3.36)

with ζ ≡ ζNN . Exponentiating the B-field vertex operator of eq. (3.35) results in an expression
which describes how strings propagate in a B-field background, whose action is then given by

SB = 1
4πα′

∫
dτ dσ

√
−γ

(
iBMN (X)∂αXM∂βX

N εαβ
)
, (3.37)
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3. Superstrings and Supergravity

where εαβ is the Levi-Civita 2-tensor normalised such that
√
−γε12 = 1. Adding this contribution

to the action of eq. (3.24), we have

Sg+B = 1
4πα′

∫
dτ dσ

√
−γ

(
γαβgMN (X)∂αXM∂βX

N − iBMN (X)∂αXM∂βX
N εαβ

)
, (3.38)

where it can be shown that this new addition still retains invariance under worldsheet reparametri-
sations and Weyl rescalings.

Proceeding to the dilaton field, the same incorporation method as for the B-field can not
actually be used. Since the vertex operator is not a primary, it is not possible to obtain the
coupling by simply exponentiating the vertex operator. Instead it turns out that the correct
expression for the action describing the coupling is given by

Sφ = 1
4πα′

∫
dτ dσ

√
−γ

(
α′φ(X)Rws) , (3.39)

with Rws being the Ricci scalar on the worldsheet [10]. The dilaton coupling will therefore vanish
on a Ricci flat worldsheet. Remarkably, the dilaton coupling is not generally Weyl invariant.
An exception being if the dilaton is constant, i.e. if φ(X) = φ0 ∈ C. In this case the dilaton
coupling action becomes

Sφ0 = 1
4πα′

∫
dτ dσ

√
−γ

(
α′φ0R

ws) = φ0χ , (3.40)

with χ = 2 − 2g being the Euler characteristic and is related to the genus g of the worldsheet.
The coupling implies that the constant mode of the dilaton 〈φ〉 determines the coupling constant
gs, i.e.

gs = e〈φ〉 . (3.41)

Hence the string coupling is the expectation value of a field rather than a parameter. The full
action including the graviton, B-field and dilaton then becomes

S = 1
4πα′

∫
dτ dσ

√
−γ

(
γαβ∂αX

M∂βX
NgMN + iBMN (X)∂αXM∂βX

N εαβ + α′φ(X)Rws
)
.

(3.42)
Again, the presence of α′ allows for a loop expansion in the non-linear σ-model of eq. (3.42). The
broken Weyl invariance in the dilaton coupling may be compensated for by a 1-loop contribution
arising from the couplings to gMN and BMN . The β-functions for the theory in eq. (3.42) would
show this explicitly. The three β-functions from the three different fields add three contributions
to the stress-energy tensor such that

〈Tαα〉 = − 1
2α′βMN (g)γαβ∂αXM∂βX

N − i
2α′βMN (B)εαβ∂αXM∂βX

N − 1
2β(φ)Rws , (3.43)

where each β-function is given by

βMN (g) = α′RMN + 2α′∇M∇Nφ−
α′

4 HMPQHN
PQ ,

βMN (B) = −α
′

2 ∇
PHPMN + α′∇PφHPMN ,

β(φ) = −α
′

2 ∇
2φ+ α′∇Mφ∇Mφ−

α′

24HMNPH
MNP .

(3.44)

These were derived in [11] where again H3 = dB2 is the field strength of the B-field. In order
to preserve Weyl invariance we must then have that

βMN (g) = βMN (B) = β(φ) = 0 . (3.45)
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3.1. The low-energy effective action of the bosonic string

These equations can be viewed as equations of motion for the background in which the string
propagates. A D = 26 dimensional background which reproduces these equations of motion for
the β-functions is the low-energy effective action of the bosonic string;

S = 1
2κ2

0

∫
d26X

√
−ge−2φ

(
R− 1

12HMNPH
MNP + 4∂Mφ∂Mφ

)
+O(α′) , (3.46)

where κ2
0 = 8πG26. Varying this action with respect to the gravitational, B- and dilaton fields

will indeed reproduce the results of eq. (3.44). To obtain the the conventional Einstein-Hilbert
kinetic term, i.e. the one without the dilaton factor, the action of eq. (3.46) is transformed from
the string frame to the Einstein frame via a Weyl rescaling gs → e2φgE. This results in

S = 1
2κ2

0

∫
d26X

√
−g

(
R− 1

12e
−φHMNPH

MNP + 1
2∂Mφ∂

Mφ
)

+O(α′) , (3.47)

where now the new g = gE denotes the Einstein frame metric. This is called a low-energy
effective action as one takes the energy to be much smaller than α′, which is equivalent to fixing
the energy and letting α′ → 0. In this limit massive modes decouple, leaving the only importance
to the massless ones and so the higher order terms of α′ may be neglected.

3.1.4 Open strings and D-branes

So far we have discussed closed strings, and in this section we will make a brief comment on
open strings. With boundary conditions σ ∈ [0, π] and ∂σXM (τ, σ) = ∂σX

M (τ, π) = 0 imposed
on the equations of motion in eq. (3.8), the coordinates XM can be mode expanded according
to

XM (τ, σ) = xM + 2α′pMτ + i
√

2α′
∑
n6=0

αMn
n
e−inτ cos(nσ) . (3.48)

The corresponding mass operator is given by

M2 = 1
α′

( ∞∑
n=1

αn · α−n − 1
)
, (3.49)

where we see that the vacuum state has negative mass; α′M2 = −1, which is a state known as
a tachyon. The massless states are given by

|ξM 〉 ≡ ξMαM1 |0〉 , (3.50)

where then ξM is a 1-form gauge field. Denoting this field by AM , the σ-model action for this
field correspond to an interaction with the boundary

SA =
∫
∂M

dτAM∂τXM . (3.51)

Its corresponding equations of motion can be derived from the spacetime low-energy effective
action for open bosonic strings, namely

S = 1
2κ0

∫
d26X

√
−g

(
−1

4e
−φFMNF

MN
)
, (3.52)

in string frame and where F = dA. This action is the Yang-Mills action with field-dependent
coupling constant which is the square root that of closed strings.

Open strings have degrees of freedom at their endpoints which are encoded in Chan-Paton
factors. The endpoint dynamics can be seen in a dual picture of hyperplanes on which the open
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3. Superstrings and Supergravity

string endpoints can end, i.e. D-branes. The Chan–Paton indices are labels for the different
D-branes on which the open strings can end. With N D-branes stacked on top of each other,
the gauge group represented by the open strings is U(N), making the action in eq. (3.52)
non-Abelian. The low-energy action in eq. (3.52) is the low-energy limit α′ → 0 of the Dirac-
Born-Infeld action, which is given by

SBI = −Tp
∫

dp+1ξe−φ
√
det(gab +Bab + 2πα′Fab) ≡ −Tp

∫
dp+1ξe−φ

√
det(gab + 2πα′F ) .

(3.53)
This action describes open string dynamics to all orders in α′. The quantity F is gauge invariant
in the worldvolume. The coefficient Tp is the Dp-brane tension given by Tp = (2π)−p(α′)−(p+1)/2,
and the fields are pulled back on the D-brane metric, i.e. gab = ∂XM

∂ξa
∂XN

∂ξb
gMN .

D-branes in bosonic string theory are not stable as they decay by tachyon condensation, but
they are so in superstring theories which are introduced in the next section. The D-branes
couple to gauge potential fields in the superstring massless spectrum. The topological coupling
to these fields adds a Chern-Simons term to the action, which reads

SCS = iTp

∫
Σp+1

tr(e2πα′F+BC) , (3.54)

where the (p+ 1)-form gauge potential Cp+1 from the superstring spectra couples to Dp-branes
and Σp+1 the Dp-brane world volume.

3.2 The type II superstrings
One of the basic approaches to incorporate supersymmetry into string theory is known as the
Ramond-Neveu-Schwarz (RNS) formalism, which is supersymmetric on the string worldsheet.
In the RNS formalism bosonic fields Xµ(σ, τ) are paired up with fermionic partners ψµ(σ, τ),
where the fermionic fields are two-component spinors on the worldsheet. The action is given by

S = − 1
2π

∫
d2σ(∂αXµ∂

αXµ + ψ̄µρα∂αψ
µ) , (3.55)

where ρα with α = 1, 2 are 2D Dirac matrices

ρ0 =
(

0 −1
1 0

)
, ρ1 =

(
0 1
1 0

)
, (3.56)

satisfying the Clifford algebra {ρα, ρβ} = 2ηαβ. The two-component spinor ψµA with A = ± can
be written

ψµ =
(
ψµ−
ψµ+

)
, ψ± = 1√

2(ψ0 ± ψ1) , (3.57)

where we define the Dirac conjugate of the spinor as

ψ̄ = iψ†ρ0 . (3.58)

Both Xµ and ψµ are spacetime vectors and transform under the vector representation of the
SO(D−1, 1) Lorentz group. While Xµ is simply a scalar on the worldsheet, the ψµ is a Majorana
two-component spinor, i.e. a real two-component spinor which fulfils ψ∗± = ψ±. The action in
eq. (3.55) is invariant under the supersymmetry transformations

δεX
µ = ε̄ψµ , (3.59)

δεψ
µ = ρα∂αX

µε , (3.60)
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3.2. The type II superstrings

where ε is a real spinor and ε̄ = iε†ρ0.
Introducing light-cone coordinates σ±, the differential operators become ∂± = 1

2(∂0±∂1) and
ψ̄ = iψ†ρ0 = i(ψ+,−ψ−), so the action for the fermionic fields in light-cone coordinates reads

Sf =
∫

d2σ(ψ−∂+ψ− + ψ+∂−ψ+) , (3.61)

where the Lorentz index µ has been suppressed. The equation of motion is the Dirac equation,
which for the two spinor components takes the form

∂+ψ− = 0 , ∂−ψ+ = 0 , (3.62)

as there is no mass term in the action. The equations describe left- and right-moving waves,
and are in two dimensions better known as the Weyl conditions. The spinors ψ± are therefore
sometimes called Majorana-Weyl spinors. The different sectors of the RNS formalism arise when
considering the boundary terms in the variation of the fermionic action in eq. (3.62). They read

δS ∼
∫

dτ(ψ+δψ+ − ψ−δψ−)
∣∣∣∣
σ=π
− (ψ+δψ+ − ψ−δψ−)

∣∣∣∣
σ=0

, (3.63)

and must vanish. There are several ways for them to do so, depending on whether the string
is open or closed. For open strings the two terms in eq. (3.63) represents the two ends of the
string, so they must vanish separately. This is achieved if both string ends fulfil

ψµ+ = ±ψµ− , (3.64)

where the sign is a matter of convention. Say we choose ψµ+|σ=0 = ψµ−|σ=0 at one end, then we
still have two choices for the other end. Whether the two ends have the same choice of boundary
condition, or with a relative sign, will become meaningful. The cases, or sectors, correspond to

• Ramond boundary condition: ψµ+|σ=π = ψµ−|σ=π. The mode expansion in the R sector is

ψµ−(σ, τ) = 1√
2
∑
n∈Z

dµne
−in(τ−σ) , (3.65)

ψµ+(σ, τ) = 1√
2
∑
n∈Z

dµne
−in(τ+σ) . (3.66)

• Neveu-Schwarz boundary condition: ψµ+|σ=π = −ψµ−|σ=π. The mode expansion in the
NS-sector takes the form

ψµ−(σ, τ) = 1√
2

∑
r∈Z+1/2

bµr e
−ir(τ−σ) , (3.67)

ψµ+(σ, τ) = 1√
2

∑
r∈Z+1/2

bµr e
−ir(τ+σ) . (3.68)

The Fourier modes dµn, bµr are Grassman numbers which anticommute. For the closed string, on
the other hand, there are two possible periodicity conditions;

ψµ±(σ) = ±ψµ±(σ + π) , (3.69)

each of which makes the boundary term disappear. A positive sign describes a periodic boundary
condition and a negative sign an antiperiodic boundary condition. The fermionic fields ψµ are
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either right- or left-moving, and the type of state they will represent depends on which type of
periodicity that has been imposed. That is, for the right-movers, one can choose

ψµ−(σ, τ) =
∑
n∈Z

dµne
−2in(τ−σ) or ψµ−(σ, τ) =

∑
r∈Z+1/2

bµr e
−2ir(τ−σ) , (3.70)

while for the left-movers the choice is

ψµ+(σ, τ) =
∑
n∈Z

d̃µne
−2in(τ+σ) or ψµ+(σ, τ) =

∑
r∈Z+1/2

b̃µr e
−2ir(τ+σ) . (3.71)

Now, depending on which combination of right-and left-movers one chooses the states will cor-
respond to spacetime fermions or bosons. States in the NSNS and RR sectors are bosons, and
NSR and RNS are fermions, summing up to four distinct closed-string sectors.

As for the bosonic part of the action,Xµ(σ, τ) is strictly periodic on a closed string; Xµ(0, τ) =
Xµ(π, τ), so it may also be Fourier expanded according to

Xµ(σ, τ)R =
∑
n∈Z

αne
−2in(τ−σ) , Xµ(σ, τ)L =

∑
n∈Z

α̃ne
−2in(τ+σ) . (3.72)

The Forier modes of the bosonic and fermionic parts fulfil the commutation and anticommutation
relations

[αµm, ανn] = mηµνδm+n,0 , {dµn, dνm} = ηµνδn+m,0 , {bµr , bνs} = ηµνδr+s,0 . (3.73)

The fact that the spacetime vectors Xµ and ψµ are real implies that the modes satisfy

(αn)† = α−n , (dn)† = d−n , (br)† = b−r . (3.74)

Now, promoting the Fourier modes to operators that fulfil the conditions in eq. (3.73) and eq.
(3.74), they may now be used to construct the states of the theory. For all parts, operators
with positive-valued subscripts are annihilation operators and operators with negative-valued
subscripts are creation operators. The ground state |0〉 in each sector is defined as the state
that is annihilated when an annihilation operator acts on it, i.e.

αn |0〉 = dn |0〉 = br |0〉 = 0 , ∀n, r > 0. (3.75)

The quantised open string states have masses

(NS) α′M2 =
∞∑
n=1

αi−nα
i
n +

∞∑
m=1

mdi−md
i
m + a , (3.76)

(R) α′M2 =
∞∑
n=1

αi−nα
i
n +

∞∑
r=1/2

rbi−rb
i
r + a , (3.77)

where α′ is the string constant and a is a normal ordering constant which is

a =
{
−1

2 , for NS modes,
0 , for R modes.

(3.78)

The closed string states includes left- and right-movers, where the mass operators are given by

(NS) α′M2 =
∞∑
n=1

αi−nα
i
n +

∞∑
m=1

mdi−md
i
m +

∞∑
l=1

α̃i−lα̃
i
l +

∞∑
k=1

kd̃i−kd̃
i
k + a+ ã , (3.79)

(R) α′M2 =
∞∑
n=1

αi−nα
i
n +

∞∑
r=1/2

rbi−rb
i
r +

∞∑
m=1

α̃i−mα̃
i
m +

∞∑
s=1/2

rb̃i−sb̃
i
s . (3.80)
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The normal ordering constant for the NS sector can be calculated via

aNS = ãNS = 1
2(d− 2)

( ∞∑
n=0

n−
∞∑

r=1/2
r

)
= 1

2(d− 2)
(
− 1

12 −
1
24

)
= − 1

16(d− 2) , (3.81)

and we see that for aNS = −1/2 the critical dimension is d = 10. For the R sector on the other
hand, all modes are integer modes, so the bosonic and fermionic parts cancel and we are left
with aR = ãR = 0.

Considering the mass term of the NS sector in eq. (3.76) it is clear that if there are no
excitations then the ground state mass is given by α′M2

0 = −1
2 . That is, the ground state is a

tachyon. Since there is no anomaly in eq. (3.77) the ground state of the R sector is massless.
The massless state of the R sector is also degenerate, as the ground state |0〉 has the same
mass as d0 |0〉. This is not the case in the NS sector as there are no fermionic oscillators with
zero-valued subscripts (r ∈ Z+ 1/2). The modes d0 also satisfies the anticommutation relations
in eq. (3.73), which is a Clifford algebra up to a factor, and so the ground state modes d0 may
be identified with gamma matrices. The gamma matrices in turn are a set of tensor operators
and transform according to the d-dimensional representation of SO(d − 1, 1). Therefore the
degenerate R sector ground state transforms as a spinor of SO(d− 1, 1). Since we have D = 10,
the R sector ground state is a 10D spinor which has 2D/2 = 25 = 32 components.

In order to make RNS string theory a consistent theory that eliminates the tachyon, the
spectrum can be truncated, or projected, in a specific way by a mechanism known as the GSO
projection. To do so, we start by introducing an operator G called G-parity. In the NS sector,
it is given by

GNS = (−1)F+1 , where F =
∞∑

r=1/2
bi−rb

i
r . (3.82)

F is the number of b-oscillator excitations, i.e. the worldsheet fermion number. The G-parity
operator thus specifies if a state has an even or odd number of worldsheet fermion excitations.
In the R sector we have that

GR = Γ11(−1)E , with E =
∞∑
n=1

di−nd
i
n , (3.83)

and Γ11 = Γ0 . . .Γ9 is the 10D analogue of γ5 in four dimensions. Similar to γ5 it also satisfies
{Γ11,Γµ} = 0 and (Γ11)2 = 1. In 10D the chiral projection operators are defined as P± =
1
2(1± Γ11). Note that a spinor fulfilling Γ11ψ = ±ψ are said to have positive/negative chirality,
and a spinor with a definite chirality is known as a Weyl spinor.

As for the GSO projection, it consists of only keeping the states with positive G-parity in the
NS sector. That is, we keep only the states satisfying

(−1)F+1 = +1 ⇔ (−1)F = −1 , (3.84)

and eliminates those with negative G-parity. This mean that we require an odd number of b-
oscillator excitations. For the R sector we may choose to project onto state of either positive or
negative G-parity, depending on the chirality of the ground state spinor. The choice is a matter
of convention.

Since the open string tachyon has negative G-parity, i.e. G |0〉NS = − |0〉NS, it will be elim-
inated from the spectrum. The first excited state, the massless vector boson bi−1/2 |0〉NS, has
positive parity and survives the projection, hence it becomes the ground state of the NS sector.

In order to analyse the closed string spectrum we need to consider left- and right-movers
again. Thus there are four different sectors; NS-NS, NS-R, R-NS, and R-R to consider. We have
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concluded that a GSO projection onto states with positive G-parity eliminates the tachyon.
For the R sector we choose a projection onto either states with negative or positive G-parity
depending on the spinor ground state. The choice of whether the G-parity of the left- and
right-moving R sectors is the same or opposite gives rise to two different theories.

In type IIB theory the left-and right-moving R sector ground states have the same chirality,
chosen to be positive. Thus the two R sectors, each denoted |+〉R, have the same G-parity. The
opposite applies for type IIA, where the left- and right-moving ground states in the R sector
have the opposite chirality. The massless states in the spectrum of each theory is summarised
in table 3.1.

IIA IIB
|−〉R ⊗ |+〉R |+〉R ⊗ |+〉R

b̃i−1/2 |0〉NS ⊗ b
j
−1/2 |0〉NS b̃i−1/2 |0〉NS ⊗ b

j
−1/2 |0〉NS

b̃i−1/2 |0〉NS ⊗ |+〉R b̃i−1/2 |0〉NS ⊗ |+〉R

|−〉R ⊗ bi−1/2 |0〉NS |+〉R ⊗ bi−1/2 |0〉NS

Table 3.1: Massless states of the type II theories. The sign ± denotes the chirality of each
state. It can be seen that the RR and RNS sectors have different chiralities in type IIA and IIB,
while the states in the NSNS and NSR sectors are the same for both theories.

The massless states of the two theories are very similar, only difference being that in type IIA
the fermionic states come with two different chiralities. There are 64 states in each of the four
massless sectors, adding up to a total of 256 states in each theory.

The massless string states transform under the little group SO(8), which is a subgroup of
the 10D Lorentz group SO(9,1). The 8D representations of SO(8) are given by a vector repre-
sentation 8v and two spinor representations 8s and 8c. These are related to each other by the
triality automorphism group. From them the whole closed massless type II superstring spec-
trum can be built. The R sector is built out of spinorial representations and the NS sector from
the vector representation. The RR/RNS/NSR/NSNS sectors are each built by tensoring the
different representations, and a following decomposition of the tensor product into irreducible
SO(8) representations gives us the constituents of each sector. The NSNS sector is the same for
type IIA and IIB, and consists of

8v ⊗ 8v = 1⊕ 28⊕ 35v ≡ φ⊕BMN ⊕ gMN , (3.85)

where the scalar φ is called the dilaton, the 2-form field BMN is a gauge field, and gMN is a
symmetric field known as the graviton. The irreps are obtained by decomposing a second rank
tensor (8v⊗8v) into a trace, an antisymmetric part and a symmetric traceless part respectively.

We have seen that the type IIA theory is a chiral theory on the worldsheet and non-chiral in
spacetime, while the opposite applies for the type IIB theory. This means that they will each
be built by spinors of opposite and equal chirality respectively, so that for the RR sectors they
are given by

IIA : 8s ⊗ 8c = 8v ⊕ 56v ≡ CM ⊕ CMNP , (3.86)
IIB : 8s ⊗ 8s = 1⊕ 28⊕ 35c ≡ C0 ⊕ CMN ⊕ C+

MNPQ , (3.87)

where the Cs are gauge fields of different degrees (0, . . . , 4), referred to as the RR gauge fields.
The scalar C0 is called the axion. The plus superscript on C4 denotes that it is Hodge dual to
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3.3. Type II low-energy effective actions and supergravity

IIA IIB
Sector Quantity Fields Quantity Fields

NSNS
1
28
35

dilaton φ
2-form gauge field B2

graviton gMN

1
28
35

dilaton φ
2-form gauge field B2

graviton gMN

RNS and RNS 112
16

gravitinos ψAM
dilatinos λA

112
16

gravitinos ψAM
dilatinos λA

RR 8
56

1-form gauge field C1
3-form gauge field C3

1
28
35

axion scalar C0
2-form gauge field C2
4-form gauge field C4

Table 3.2: The massless closed string spectra of the type IIA and type IIB theories.

itself. As for the mixed sectors NSR and RNS, the decomposition is as follows:

IIA :
8v ⊕ 8c = 8c ⊕ 56c ≡ λ1 ⊕ ψ1

M , (NSR)
8s ⊕ 8v = 8s ⊕ 56s ≡ λ2 ⊕ ψ2

M , (RNS)
(3.88)

IIB :
8v ⊕ 8s = 8s ⊕ 56s ≡ λ1 ⊕ ψ1

M , (NSR)
8s ⊕ 8v = 8s ⊕ 56s ≡ λ2 ⊕ ψ2

M , (RNS)
(3.89)

where the fermions in the 8 representation, λA, A = 1, 2 are called dilatinos, and the fermions
ψAM in the 56 representation are known as gravitinos. The complete massless spectrum of each
of the theories are summarised in table 3.2. The NSNS sector is the same for the two theories.
In the NSR and RNS sectors the gravitinos have the same chirality in the IIB case, and the
opposite chirality in the type IIA case. By tensoring a pair of Majorana-Weyl spinor the RR
sector states obtained are bosonic.

As a final remark we reconnect with section 3.1.4, and note that Dp-branes of odd p couple
to the even potentials of type IIB superstring theory, while those of even p couple to the odd
potentials of type IIA. These stable D-brane configurations are BPS states, which conserve half
of the supersymmetry.

3.3 Type II low-energy effective actions and supergravity

The low-energy effective actions of the superstring can be obtained in a similar manner as for the
bosonic string, but is a lot harder to do. Nevertheless, it turns out that the resulting low-energy
effective actions are equivalent to the 10D supergravity theories, which are supersymmetric
extensions of Einstein gravity. Hence the supergravity theories are low-energy limits of string
theories, which we will briefly review in this next section.

3.3.1 The type II supergravity theories

The 11D supergravity theory was first formulated in 1978 by Cremmer, Julia and Scherk [12].
The 10D type II supergravity theories can be derived from 11D supergravity by a Kaluza-Klein
compactification of the 11th dimension on a circle, which was first done in [13] in 1985. The
11D supergravity theory has two bosonic fields; the metric GM̃Ñ , with M̃, Ñ = 0, . . . , 10, and
a 3-form potential AM̃ÑP̃ ≡ A3 with field strength F4 = dA3. The bosonic part of the action
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reads [14]
S11 = 1

2κ11

∫
d11x
√
−G

(
R− 1

2 |F4|2
)
− 1

6

∫
d11xA3 ∧ F4 ∧ F4 , (3.90)

where κ11 is the 11D gravitational coupling constant. To dimensionally reduce this the starting
point is writing a general metric that is invariant under translations in the 11th direction, namely

ds2 = G
(11)
M̃Ñ

(xM ) dxM̃ dxÑ

= G10
MN (xM ) dxM dxN + e2σ(xM )

(
dx10 +AN (xM ) dxN

)2
, (3.91)

where σ ≡ 2φ/3. The 11D metric thus reduces to a scalar σ and a 1-form gauge field A1. The
potential A3 will reduce to potentials A3 and A2 where the A2 comes from components with
one index along the compact 11th dimension. In summary the three terms in eq. (3.90) become
respectively

S1 = 1
2κ2

10

∫
d10x
√
−G

(
eσR− 1

2e
3σ|F2|2

)
, (3.92)

S2 = − 1
4κ2

10

∫
d10x
√
−G

(
e−σ|F3|2 + eσ|F̃4|2

)
, (3.93)

S3 = − 1
4κ2

10

∫
d10xA2 ∧ F4 ∧ F4 = − 1

4κ2
10

∫
d10xA3 ∧ F3 ∧ F4 , (3.94)

where we have compactified the theory on a circle of coordinate period 2πR so that κ2
10 =

κ2
11/2πR. Note that the normalisation of the kinetic terms is canonical for 2κ2

10 = 1. The
p-form field strengths are generally defined as the exterior derivative of a (p − 1)-form gauge
potential, according to Fp = dAp−1. In eq. (3.93) we have defined

F̃4 ≡ dA3 −A1 ∧ F3 . (3.95)

Terms like the one in eq. (3.94), i.e. with appearing p-form potentials rather than their exterior
derivatives, are known as Chern-Simons terms. To make contact with string theory, we redefine
the metric as

GMN = e−φGMN (new) , (3.96)

and reintroduce the dilaton φ in standard form into the theory. Some of the fields will be
redefined as to match the ones appearing in the string worldsheet σ-model action. The fields of
the reduced theory will then be the same as those of 10D type IIA string theory. The action of
the type IIA supergravity theory is given by

SIIA = SNSNS + SRR + SCS , (3.97)

where the action is grouped according to whether the fields belong to the NSNS sector or the
RR sector. The Chern-Simons action contain fields from both these sectors. The constituent
actions of eq. (3.97) are

SNSNS = 1
2κ2

10

∫
d10x
√
−Ge−2φ

(
R+ 4∂Mφ∂Mφ− 1

2 |H3|2
)
, (3.98)

SRR = − 1
4κ2

10

∫
d10x
√
−G

(
|F2|2 + |F̃4|2

)
, (3.99)

SCS = − 1
4κ2

10

∫
d10xB2 ∧ F4 ∧ F4 , (3.100)
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where Fp = dCp−1 with C being the familiar RR gauge potential from the previous section,
H3 = dB2 for the NSNS sector, and F̃4 ≡ dC3 − C1 ∧ F3.

The 11D supergravity action is dimensionally reduced to the type IIA supergravity action,
but the type IIB supergravity cannot be obtained in the same way. Type IIA and IIB string
theory are related by T-duality, so in principle the type IIB supergravity action could be obtained
by T-dualising the type IIA string theory and thereafter taking the low-energy limit. It is not
however an easy task because of the self-dual 5-form. Due to the presence of the self-dual 5-form
field strength, there is no standard manifestly covariant action for this theory, but the following
action comes close:

SIIB = SNSNS + SRR + SCS , (3.101)

SNSNS = 1
2κ2

10

∫
d10x
√
−Ge−2φ

(
R+ 4∂Mφ∂Mφ− 1

2 |H3|2
)
, (3.102)

SRR = − 1
4κ2

10

∫
d10x
√
−G

(
|F1|2 + |F̃3|2 + 1

2 |F̃5|2
)
, (3.103)

SCS = − 1
4κ2

10

∫
d10xC4 ∧H3 ∧ F3 , (3.104)

where

F̃3 ≡ F3 − C0 ∧H3 , (3.105)
F̃5 ≡ F5 − 1

2C2 ∧H3 + 1
2B2 ∧ F3 . (3.106)

Note that the NSNS sector actions are the same for both theories, as should be expected from
the field content in table 3.2. The self-duality of the 5-form field-strength, i.e. F̃5 = ?F̃5, must
be added as a constraint to the equations of motion of the action in eq. (3.101). Imposing the
constraint directly onto the action would result in the wrong equations of motion.

3.3.2 Type IIB SL(2,R)-invariance and S-duality

The type IIB action can be rewritten in a form which clearly shows that it is invariant under
an SL(2,R) symmetry transformation. Rewritten in Einstein frame, it is invariant under the
transformations

φ→ −φ , B2 → −C2 , C2 → B2 , (3.107)

and the axion C0, the 4-form C4 and the Einstein frame metric left as they are. Such a symmetry
maps the string coupling according to gs → 1/gs, which in the limit gs → ∞ relates the strong
and weak coupling regimes. The RR and NSNS 2-forms in eq. (3.107) have a sign difference
as to make the 10D Chern-Simons coupling invariant. This symmetry is called S-symmetry, a
name motivated by its formal analogy with the perturbative T-duality R→ 1/R and by the fact
that it acts on the dilaton φ (which is sometimes denoted S). Since it relates the strong and
weak coupling regimes it is also sometimes called the strong-weak duality.

The type IIB action has a larger SL(2,R) symmetry. By combining the axion and the dilaton
to the complex axion-dilaton

τ ≡ C0 + ie−φ , (3.108)

this symmetry acts on the axion-dilaton and the 2-form potentials according to

τ → aτ + b

cτ + d
,

(
B2
C2

)
→
(
a b
c d

)(
B2
C2

)
, (3.109)
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where ad − bc = 1. The S-duality is then given as a specific SL(2,R) transformation with
a = d = 0 and b = −c = 1, reproducing eq. (3.107). Quantum mechanics requires the charge,
with respect to the NSNS 2-form of the basic object of string theory – the fundamental string –
to be quantised. This breaks the continuous group SL(2,R) symmetry to the discrete subgroup
SL(2,Z), which is conjectured to be a symmetry of the full type IIB string theory. It is generated
by the actions τ → −τ and τ → τ + 1. In later chapters we will see that this is a version of
a so-called axionic shift-symmetry, which in general is a continuous symmetry that is broken
to a discrete subgroup by non-perturbative effects. As a consequence, SL(2,Z) has also been
conjectured to be the symmetry group of non-perturbative IIB superstring theory, and is also
formally identical to the 2-torus modular group.

As a final note we note another common rewriting of the IIB action. With G3 ≡ F3 − τH3
the type IIB action in eq. (3.101) can, after a Weyl rescaling to Einstein frame, be rewritten as

SIIB = 1
κ2

10

∫
d10x
√
−g
(
R− |∂τ |2

2(Imτ)2 −
|G3|2

2(Imτ)2 −
|F̃5|2

4 − i

4κ2
10

∫
C4 ∧G3 ∧ Ḡ3

Imτ

)
, (3.110)

where the field strengths are defined as earlier and with F̃5 as in eq. (3.106). The SL(2,R)
transformation is then given with τ as in eq. (3.109) and G3 → G3/(cτ + d).

3.3.3 The democratic formulation

In this section we will describe a uniform formulation of the two type II supergravities in 10D in
a way which is symmetric between IIA and IIB and utilises all RR forms as well as their duals,
which was first introduced in [15]. It also applies to the massive type IIA theory by including
the 9-form field C9 as well as its dual field strength F0 = m equal to the mass. The extended
field content is then

IIA : {gMN , BMN , φ, C1, C3, C5, C7, C9, ψM , λ} ,
IIB : {gMN , BMN , φ, C0, C2, C4, C6, C8, ψM , λ} ,

(3.111)

where IIA has fermions of both chiralities while in IIB we have that Γ11ψM = ψM and Γ11λ = −λ.
The uniform bosonic action may be written

S = 1
2κ2

0

∫
d10x
√
−g
(
e−2φ

[
R− 4(∂φ)2 + 1

2 |H|
2
]

+ 1
4

5, 92∑
n=0, 12

F2n · F2n

)
, (3.112)

where n is summed over integers 0, . . . , 5 in IIA and half-integers 1
2 , . . . ,

9
2 in IIB. All of the

potentials and field strengths may be grouped together as

C =
5, 92∑

n=0, 12

C2n−1 , F =
5, 92∑

n=0, 12

F2n , (3.113)

where the NSNS and RR field strength are given as

H = dB , F = dC −H ∧ C +meB . (3.114)

Again the last term in F above exists only in massive type IIA theory. Self-duality conditions
are imposed to reduce the degrees of freedom to the physical ones, and are in this formulation
given by

F2n = (−1)bnc ? F10−2n , (3.115)
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with bnc being the integer part of n and ? the 10D Hodge star. The Bianchi identities for the
NSNS flux and the RR fluxes are

dH = 0 , dF −H ∧ F = 0 , (3.116)

respectively. The democratic formulation will for instance be used in the next chapter expressing
the supersymmetry transformations of the type II fermionic fields.
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4
Type II Supersymmetric Backgrounds with

Maximal Spacetime Symmetry

The cosmological principle states that on large enough scales, i.e. about 500Mpc, the universe is
homogeneous and isotropic. By homogeneity we mean that the properties of the universe are the
same at every point in space, i.e. it is translation invariant. Isotropy is being in a given point,
in every direction we look at, the properties of the universe look the same. This means that
it is invariant under rotations. A space that is both homogeneous and isotropic is maximally
symmetric. In this chapter we will discuss compactifications from 10D to 4D in which the vacuum
external geometry is maximally symmetric. There exist three different possible spaces that are
so; the Minkowski, anti-de Sitter (AdS) and de Sitter (dS) spaces. These spaces have Poincaré-,
SO(1, 4)- and SO(2, 3)-invariance respectively. The most general 10D metric including a 4D
maximally symmetric space is

ds2 = e2A(y)ĝµν dxµ dxν + gmn dym dyn , m, n = 1, . . . , 6 , (4.1)

where A is a function of the internal, or compactified, coordinates called a warp factor, ĝµν is
our 4D Minkowski, AdS or dS metric and gmn is an arbitrary 6D metric.

The first requirement of maximal spacetime symmetry is usually said to be that the vacuum
expectation value (VEV) of the fermionic fields is zero. This is because of the supersymmetry
requirement δεψ ∼ ∂Mφ, i.e. that a fermionic supersymmetry transformation is proportional to
the derivative of a scalar field, which, in a maximally symmetric spacetime, has to be constant.
Hence only a vacuum configuration (φ, ψ) = (φ0, 0) with a constant scalar field φ0 is allowed in
a maximally symmetric space to conserve supersymmetry. The background must therefore be
purely bosonic.

In 10D the type II supersymmetry variations for the fermions, i.e. the two gravitinos ψAM
with A = 1, 2 and the two dilatinos λA in the democratic formulation of the RR fields, are

δεψM = ∇M ε+ 1
4 /HMPε+ 1

16e
φ
∑
n

/F 2nΓMPnε , (4.2)

δελ =
(
/∂φ+ 1

2 /HP
)
ε+ 1

8e
φ
∑
n

(−1)2n(5− 2n)/F 2nPnε . (4.3)

Here the RR field strengths F are given in eq. (3.114), and the slash is defined according to
/F 2n = 1

(2n)!FP1...PNΓP1...PN . The 3-form field H3 is contracted according to /HM ≡ 1
2HMNPΓNP

and the P’s are given for type IIA and IIB respectively as

IIA: P = Γ11 , Pn = (Γ11)nσ1 , (4.4)

IIB: P = −σ3 , Pn =
{
σ1 n+ 1

2 odd
iσ2 n+ 1

2 even
, (4.5)

where the σis are the Pauli matrices. The vanishing of the fermionic supersymmetry variations
will guarantee the background to be maximally symmetric and supersymmetric. Given a metric
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4. Type II Supersymmetric Backgrounds with Maximal Spacetime Symmetry

of the form in eq. (4.1), one can show that the supersymmetry variations in combination with
the Bianchi identities of the NSNS and RR fields will imply all other equations of motion. Hence,
the supersymmetry variations will be central in our study of supersymmetric backgrounds.

4.1 Supersymmetric backgrounds without flux

We begin our analysis with the simplest case in which we take all fluxes to vanish. With no
fluxes present, demanding a vanishing VEV for the gravitino variation in eq. (4.2) reduces the
equation to

∇M ε = 0 , (4.6)

i.e. the requirement that there is a covariantly constant spinor ε on the manifold. The covariant
derivative on a spinor acts like

∇M → ∂M + 1
4ωM

M̄N̄ΓM̄ΓN̄ = ∂M + ωM , (4.7)

where the barred indices M̄, N̄ denote locally flat coordinates and ωMM̄N̄ is the spin connection
given in terms of vielbeins eMM̄ as

ωM
M̄N̄ = 1

2e
NM̄(∂MeNN̄ − ∂NeMN̄)− 1

2e
NN̄(∂MeNM̄ − ∂NeMM̄) (4.8)

− 1
2e
PM̄eQN̄

(
∂P eQR̄ − ∂QePR̄

)
eM

R̄ , (4.9)

and the vielbeins satisfy

gMN = eM
M̄eN

N̄ηM̄N̄ , eM
M̄eMN̄ = δM̄

N̄
, ΓM = eMM̄ΓM̄ . (4.10)

The 11D gamma matrices ΓM are given by

ΓM =
(

Γµ
Γm

)
, where

{
µ = 0, . . . , 3,
m = 4, . . . , 10.

(4.11)

With the metric of eq. (4.1), the vierbeins and gamma matrices are defined by

eM
M̄ =

(
eAêµ

ν̄ 0
0 eAêm

ν̄

)
, (4.12)

ΓM = eMM̄ΓM̄ =
(
e−Aêµν̄ 0

0 e−Aêmξ̄

)(
Γν̄

Γξ̄

)
= e−A

(
Γµ
Γm

)
. (4.13)

We are now ready to calculate the spin connection ωM . Starting by noticing that

∂MeN
N̄ =

(
∂M (eA(y)êµ

ν̄) 0
0 ∂M (eA(y)êm

ν̄)

)

=
(

(∂mA)eAêµν̄ 0
0 (∂mA)eAêmν̄

)
+
(
eA∂M êµ

ν̄ 0
0 eA∂M êm

ν̄

)

the calculation of ωM can be split according to ωM = ω̂M + ω̃M , with ω̂M being the spin
connection of the 4D metric ĝµν , not including the warp factor A(ym), and the ω̃M of the
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4.1. Supersymmetric backgrounds without flux

internal manifold gmn. Hence directing our attention to the ω̃M , which has only derivatives of
m, the spin connection becomes

ω̃M̄N̄
M = 1

2e
NM̄(∂MeNN̄ − ∂NeMN̄)− 1

2e
NN̄(∂MeNM̄ − ∂NeMM̄)

− 1
2e
PM̄eQN̄

(
∂P eQR̄ − ∂QePR̄

)
eM

R̄

= 1
2
(
eNM̄∂MeN

N̄ − eNN̄∂MeNM̄
)

+ 1
2
(
− eNM̄∂NeMN̄ + eNN̄∂NeM

M̄)
− 1

2e
PM̄eQN̄

(
∂P eQR̄ − ∂QePR̄

)
eM

R̄

∂K → ∂mA = 1
2(∂mA)

[(
eNM̄eN

N̄ − eNN̄eNM̄
)

+
(
− emM̄eMN̄ + emN̄eM

M̄)
−
(
emM̄eQN̄eQR̄eM

R̄ − ePM̄emN̄ePR̄eM
R̄)]

= 1
2(∂mA)

[(
− emM̄eMN̄ + emN̄eM

M̄)− (emM̄eQN̄eQR̄eMR̄ − ePM̄emN̄ePR̄eM
R̄)]

= 1
2(∂mA)

[(
− emM̄eMN̄ + emN̄eM

M̄)− (emM̄δN̄
R̄
eM

R̄ − emN̄δM̄
R̄
eM

R̄)]
= 1

2(∂mA)
[(
− emM̄eMN̄ + emN̄eM

M̄)− (emM̄eMN̄ − emN̄eMM̄)]
= (∂mA)

(
− emM̄eMN̄ + emN̄eM

M̄) ,
where the first of the three terms inside the big parenthesis cancel as eNM̄eNN̄ − eNN̄eNM̄ =
ηM̄N̄ − ηN̄M̄ = 0 since ηMN is symmetric. Adding the gamma matrices to this, some simplifica-
tions can be made:

ω̃M̄N̄
M ΓM̄ΓN̄ = (∂mA)

(
− emM̄eMN̄ + emN̄eM

M̄)ΓM̄ΓN̄
= (∂mA)

(
− ΓmΓM + ΓMΓm

)
= −2(∂mA)ΓmΓM .

Thus we have shown that ω̃M = 1
4 ω̃M

M̄N̄ΓM̄ΓN̄ = −1
2(∂mA)ΓmΓM . Notice that ΓmΓM =

e−AΓm̄eAΓM̄ = Γm̄ΓM̄ , but from here on we will drop the bar on the indices. Using a decom-
position of the gamma matrix Γm = γ5 ⊗ γm we may write

ω̃M = −1
2γ5 ⊗ γm(∂mA)ΓM = −1

2γ5 ⊗ (/∂A)ΓM , (4.14)

so that the covariant derivative on the spinor ε can be written

∇M ε = (∂M + ωM )ε
= ∂M ε− 1

2(γ5 ⊗ /∂AΓM )ε+ ω̂M ε

≡ ∇̂M ε− 1
2(γ5 ⊗ /∂AΓM )ε . (4.15)

The covariant derivative with the hat is the one related to the 4D metric. Considering only
at the exterior 4D maximally symmetric space ΓM → Γµ, we may use another gamma matrix
decomposition Γµ = γµ ⊗ 1, so that

∇̂µε+ 1
2(γµγ5 ⊗ /∂A)ε = 0 , (4.16)
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4. Type II Supersymmetric Backgrounds with Maximal Spacetime Symmetry

where we used that γ5γµ = −γµγ5. With this result we may express the commutator [∇̂µ, ∇̂ν ]ε
according to

[∇̂µ, ∇̂ν ]ε = 1
4
(
γµγ5γνγ5 ⊗ /∇A/∇A− γνγ5γµγ5 ⊗ /∇A/∇A

)
ε

= 1
4(−γµγν + γνγµ)⊗ /∇A/∇Aε

= −1
2γµν /∇A/∇Aε

= −1
2γµν(∇mA)(∇mA)ε , (4.17)

where we have used that γµν = 1
2(γµγν − γνγµ) and /P /P = P 2. The condition in eq. (4.17) is

known as an integrability condition. On the other hand, we know from general relativity the
definition of the Riemann tensor

[∇̂µ, ∇̂ν ]ε = 1
4R̂µνλργ

λρε (4.18)
= k

2γµνε , (4.19)

where we have used that the Riemann tensor of a maximally symmetric space is just

Rµνλρ = k(gµλgνρ − gµρgνλ) . (4.20)

As familiar k is negative for AdS, zero for Minkowski and positive for dS. Combining these facts,
our integrability condition can now be expressed as

k +∇mA∇mA = 0 , (4.21)

since γµν is non-zero. The only possible constant value of (∇A)2 on a compact manifold is
zero, because the warp function A will have a minimum on a compact manifold where ∇A will
vanish. As a result, the warp factor has to be constant and the external 4D space can only be
Minkowski.

To study the internal component of the same supersymmetry variation, we split the super-
symmetry spinors into 4D and 6D spinors. Without fluxes the gravitino variation is

δεψ
A
M = ∇M εA = 0 . (4.22)

In type IIA the gravitinos have opposite chiralities, and in type IIB the chiralities are the same.
The type IIB spinor can therefore be decomposed as

εAIIB = ξA+ ⊗ η+ + ξA− ⊗ η− , (4.23)

where ξA is the 4D spinor and η the one in 6D. For type IIA the chirality makes the spinors
decompose according to

ε1IIA = ξ1
+ ⊗ η+ + ξ1

− ⊗ η− , (4.24)
ε2IIA = ξ2

+ ⊗ η− + ξ2
− ⊗ η+ , (4.25)

where the spinors fulfil ξA− = (ξA+)∗ and η− = (η+)∗. Inserting these definitions into our gravitino
variation in eq. (4.22), the condition for the internal component reads

∇mη± = 0 . (4.26)

This means that the internal manifold has a covariantly constant spinor. This requirement forces
the manifold to have a reduced geometry. Generally 6D manifolds have holonomy group SU(3)
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4.2. Conditions on the internal manifold with fluxes present

or a subgroup of this, and are known as a Calabi-Yau manifolds, which admits one covariantly
constant spinor.

In our decomposition of the supersymmetry spinors ε we have only used a single spinor for
the internal manifold, but two for the external 4D space. The reason for this is that one in-
ternal spinor is the minimum requirement for decomposition, and gives the minimum amount
of supersymmetries preserved. Having more than one covariant constant spinor the holonomy
group of the manifold should be smaller than SU(3), which results in a larger number of super-
symmetries preserved. Thus assuming more internal spinors mean assuming a higher degree of
supersymmetry. In the 4D external space we have two supersymmetry parameters ξ1 and ξ2,
corresponding to eight conserved supercharges and N = 2 supersymmetry.

In conclusion we have seen that the only solution of supersymmetric compactifications with-
out fluxes, while requiring the external manifold to be maximally symmetric, is an external
Minkowski space with a Calabi-Yau manifold as internal space. These compactifications pre-
serve N = 2 in 4D. The internal manifold should admit at least one supersymmetry parameter.
In later sections we will see that fluxes can break the N = 2 supersymmetry down to N = 1, or
break the supersymmetry completely, in a stable way.

4.2 Conditions on the internal manifold with fluxes present
In the absence of fluxes we have seen that supersymmetry requires a spinor to be covariantly
constant on the internal manifold. This condition can be seen to be two-fold; first the very
existence of a non-vanishing globally defined spinor, and second; that it is covariantly constant.
The first condition can be viewed as a topological requirement on the internal manifold, while
the second on the metric, or rather its connection, is a differential condition. We will analyse
these conditions separately, starting with the first one.

4.2.1 Implications of the existence of a globally well-defined spinor

A spinor that is globally well-defined and non-vanishing exists only on a manifolds that have a
reduced structure, i.e. a reduced structure group. Riemannian manifolds have structure group
SO(n), where n is the dimension of the manifold. All vectors, tensors and spinors on such a
manifold can therefore be decomposed in representations of SO(n).

Let us turn back to our 6D internal manifold. In 6D the structure group G is that of SU(3).
The spinor representation 4 of SO(6) can be decomposed in representations of SU(3) according
to 4 → 3 + 1. The fact that there is a SU(3) singlet in the decomposition means that there is
a spinor which depends trivially on the tangent bundle of the manifold, and is therefore well-
defined and non-vanishing. Other SO(6) representations such as the vector 6, the 2-form 15
and the 3-form 20 can be decomposed under SU(3) according to

6→ 3 + 3̄ , (4.27)
15→ 8 + 3 + 3̄ + 1 , (4.28)
20→ 6 + 6̄ + +3 + 3̄ + 1 + 1 . (4.29)

There are singlets in the decomposed 2-form and 3-form as well, so there is a globally well-
defined real 2-form J and complex 3-form Ω. There are no singlets in the vector decomposition,
so there are no invariant vectors. There is also no 5-form, so we know that the wedge product
of J and Ω is zero. The 3-form Ω is also related to the volume form of J . Namely, the J and Ω
fulfil the compatibility constraints

J ∧ Ω = 0 , J ∧ J ∧ J = 3i
4 Ω ∧ Ω̄ . (4.30)
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4. Type II Supersymmetric Backgrounds with Maximal Spacetime Symmetry

By raising one of the indices of J an almost complex structure is obtained, i.e. a (1,1)-form fulfill-
ing JmpJpn = −δmn. The eigenvalues of a real-valued matrix that squares to minus identity are
±i. An almost complex structure allows us to introduce local holomorphic and antiholomorphic
vectors ∂zi , ∂zı̄ , with i = 1, 2, 3, which act as the local eigenvectors with eigenvalues +i and −i
respectively.

The integrability condition of the almost complex structure can be restated as the vanishing
of the Nijenhuis tensor, i.e.

Nmn
p ≡ 2(Jmq∇[qJn]

p − Jnq∇[qJm]
p) = 0 . (4.31)

The antisymmetrisation in the above equation actually allows for the covariant derivative to be
replaced by an ordinary derivative. The structure group SU(3) of our 6D manifold is determined
by our invariant spinor η, or by J and Ω. J and Ω can be defined in terms of η as

Jmn = ∓2iη†±γmnη± , Ωmnp = −2iη†−γmnpη+ . (4.32)

where Ωmnp is a (3,0)-form and Jmn a (1,1)-form with respect to the complex structure Jmn.

4.2.2 Implications of a covariantly constant spinor

We proceed to the second condition stating that our globally well-defined spinor is covariantly
constant and consider the implications of this. A manifold with SU(3)-structure with an SU(3)-
invariant spinor that is also covariantly constant is the Calabi-Yau 3-fold. By 3-fold, we mean
that the Calabi-Yau manifold has three complex dimensions, corresponding to six real dimen-
sions. The Levi-Civita connection of the metric is said to have SU(3) holonomy. The holonomy
group of a connection consists of all possible changes of direction a vector makes when being par-
allel transported on a closed loop on some manifold. It is a subgroup of O(n). The Levi-Civita
connection is an affine connection (∇) that preserves the metric; ∇mgnp = 0 and is torsion-free;

[∇m,∇n]Vp = −RmnpqVq − 2Tmnq∇qVp , (4.33)

where Vp is some vector and Tmn the torsion tensor. A connection fulfilling the first condition
of ∇mgnp = 0, but that is not necessarily torsion-free, is sometimes referred to as a metric
compatible connection.

In general on some manifold with SU(3)-structure, there is always a metric compatible con-
nection which has SU(3) holonomy and covariantly constant spinor ∇mη = 0. In the case
when the connection is also torsion-free (Levi-Civita), the manifold is a Calabi-Yau. Therefore,
there are other possible manifolds with torsion to fulfil our demands of SU(3)-structure with
∇mη = 0, which we ought to investigate. The torsion tensor is a natural starting point. It is in
the following space:

Tmn
p ∈ Λ1 ⊗

(
su(3)⊕ su(3)⊥

)
, (4.34)

where the index p spans the space of 1-forms Λ1 and the indices m,n span the space of 2-forms.
The space of 2-forms is isomorphic to, i.e. have the same form as, the Lie algebra so(6) of the
group SO(6). However here we have used the decomposition so(6) = so(3) ⊕ so(3)⊥. As the
torsion tensor is acting on SU(3)-invariant forms, the su(3) piece may be dropped. The torsion
tensor can now be called the intrinsic torsion, containing the following five representations:

Tmn
p ∈ Λ1 ⊗ su(3)⊥ = (3⊕ 3̄)⊗ (1⊕ 3⊕ 3̄)

= (1⊕ 1)⊕ (8⊕ 8)⊕ (6⊕ 6̄)⊕ (3⊕ 3̄)⊕ (3⊕ 3̄) (4.35)
≡W1 ⊕W2 ⊕W3 ⊕W4 ⊕W5 .
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4.2. Conditions on the internal manifold with fluxes present

The W1, . . . ,W5 are five intrinsic torsion classes, and appear in the covariant derivative of the
spinor η, 2-form J and 3-form Ω. TheW4 andW5 look the same but come from different spaces.
In terms of forms, the torsion class

W1 is a complex scalar,
W2 is a complex primitive (1,1)-form,
W3 is a real primitive (2,1)+(1,2)-form,
W4 is a real vector,
W5 is a complex (1,0)-form.

If some class Wi is primitive it means that Wi ∧ J = 0. These classes can be used rewrite dJ
and dΩ. In order to do so we first need to have a look at how the exterior derivative acts on a
(p, q)-form Ap,q ∈ Xp,q(M). It will decompose in form-spaces on the manifold according to

dAp,q ∈ Xp+2,q−1(M) ∪Xp+1,q(M) ∪Xp,q+1(M) ∪Xp−1,q+2(M) , (4.36)

where Xp,q(M) is the space of (p, q)-forms on the manifold M . We know that the exterior
derivative acting on some p-form results in another (p + 1)-form, and so this decomposition is
a natural extension of that. The exterior derivative of our fundamental (1, 1)-form J will thus
decompose according to

dJ1,1 ∈ X3,0(M) ∪X2,1(M) ∪X1,2(M) ∪X0,3(M) . (4.37)

The (3,0)-form and (0,3)-form parts of dJ are described by W1 and transforms in the 1 ⊕ 1 of
SU(3). The (2,1)-form transforms under SU(3) according to

3⊕ 3 = (3⊕ 3)S ⊕ (3⊕ 3)A = 6⊕ 3̄ , (4.38)

and the (1,2)-form results in 6̄⊕3 in the same way. In total, the (2,1)-form and (1,2)-form parts
transform as (3⊕ 3̄)⊕ (6⊕ 6̄). Out of this, the (3⊕ 3̄) part is described by W4 and (6⊕ 6̄) by
W3. To remove the (3⊕ 3̄) part W3 must satisfy the primitivity condition

W3 ∧ J = 0 . (4.39)

Moving on to the fundamental (3, 0)-form Ω, the same method as for dJ results in that dΩ
consists of a (4,0)-form, a (3,1)-form and a (2,2)-form. The first one is described by W1 in the
same way as the (3,0)-part of dJ , but the (3, 1)-form transforms as 3̄ and is described by W5.
The (2, 2)-form transforms according to

3̄⊕ 3 = 8 + 1 , (4.40)

where the 8 is described by W2, which is primitive: W2∧J = 0, and again W1 describes 1. This
may be summarised so that

dJ ∈W1 ⊕W3 ⊕W4 , (4.41)
dΩ ∈W1 ⊕W2 ⊕W5 . (4.42)

Knowing this, one can make the definition [1]

dJ = 3
2 Im(W̄1Ω) +W4 ∧ J +W3 , (4.43)

dΩ = W1J
2 +W2 ∧ J + W̄5 ∧ Ω . (4.44)
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4. Type II Supersymmetric Backgrounds with Maximal Spacetime Symmetry

The pieces in dΩ that contain W1 and W2 are (2, 2)-forms, while Ω itself is a (3, 0)-form. On a
complex manifold, the exterior derivative acting on a (p, q)-form results in (p + 1, q)-form and
(p, q + 1)-form pieces, which result in dΩ having (4, 0)-form and (3, 1)-form constituent. Thus
it becomes clear that for the manifold to be complex the (2, 2)-forms must vanish, i.e. we must
have W1 = W2 = 0. Note that this condition is equivalent to requiring that the Nijenhuis tensor
in eq. (4.31) vanishes, since we then are dealing with a complex manifold.

In a symplectic manifold the fundamental 2-form J is closed, i.e. dJ = 0. This results in that
W1 = W3 = W4 = 0 in accordance with eq. (4.43).

The Kähler manifold is both complex and symplectic, so it must have W1 = W2 = W3 =
W4 = 0 and only W5 6= 0. The Calabi-Yau is a type of Kähler manifold with, as stated earlier,
has vanishing torsion; W1 = W2 = W3 = W4 = W5 = 0. These and some other manifolds are
collected in table 4.1 as stated in [1].

Manifold Vanishing torsion classes
Complex W1 = W2 = 0
Symplectic W1 = W3 = W4 = 0
Half-flat Im(W1) = Im(W2) = W4 = W5 = 0

Special Hermitian W1 = W2 = W4 = W5 = 0
Nearly Kähler W2 = W3 = W4 = W5 = 0
Almost Kähler W1 = W3 = W4 = W5 = 0

Kähler W1 = W2 = W3 = W4 = 0
Nearly Calabi-Yau W1 = Im(W2) = W3 = W4 = W5 = 0

Calabi-Yau W1 = W2 = W3 = W4 = W5 = 0
Conformal Calabi-Yau W1 = W2 = W3 = 0, 3W4 − 2W5 = 0

Table 4.1: Vanishing torsion classes for some manifolds with SU(3)-structure.

4.3 Generalised complex geometry descriptions of the internal
manifold

To attain a geometric description of the internal manifold, we begin by introducing the basic
concepts of generalised complex geometry, which will be used in the later sections of this chapter.
It will also provide us with a foundation for geometric descriptions in the extended formalism
of exceptional generalised geometry, to be introduced in chapter 11.

4.3.1 Basic formalism of almost complex structures

This section is devoted to introduce the basic formulations and ideas of generalised complex
geometry that are useful in the context of flux compactifications. Generalised complex geometry
was originally formulated by Hitchin [16] and developed by his student Gualtieri [17].

In ordinary complex geometry one usually deals with the tangent and cotangent bundle of
a manifold separately. The bundle of interest in generalised complex is the sum of these two,
i.e. TM ⊕ T ∗M , which is called the generalised tangent bundle. The sections (see Appendix B)
of the tangent bundle are vectors X, and the cotangent sections are 1-forms ξ. The generalised
tangent bundle then have sections X consisting of a vector plus a 1-form X = X + ξ.

The generalised almost complex structure J is the generalised complex geometry equivalent
to the ordinary almost complex structure Imn. It is defined as a linear map from the generalised
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tangent bundle to itself, i.e.

J : TM ⊕ T ∗M → TM ⊕ T ∗M , (4.45)

and fulfils J 2 = −12d, where d is the dimension of the manifold. Note that the ordinary almost
complex structure fulfils I2 = −1d. Moreover, J respects the bundle structure

π(JX) = π(X) , (4.46)

where π is the projection operator and preserves the natural inner product of two generalised
tangent vectors X and Y ≡ Y + ζ according to

〈JX,JY〉 = 〈X,Y〉 = I , (4.47)

i.e. the metric is Hermitian. The inner product can be seen as the natural metric on the
generalised bundle, and is given by

I =
(

0 1

1 0

)
. (4.48)

The condition for J then translates into J IJ = I. A generalised almost complex structure has
the form [18]

J =
(
J P
L K

)
, (4.49)

where the constituents maps the tangent and cotangent bundle according to

J : TM → TM ,

P : T ∗M → TM ,

L : TM → T ∗M ,

K : T ∗M → T ∗M .

(4.50)

The Hermiticity condition J IJ = I leads to the constraintsK = −JT , P = −P T and L = −LT ,
so that J now reads

J =
(
J P
L −JT

)
, (4.51)

where P and L are antisymmetric matrices. The condition J 2 = −12d imposes J2 +LP = −1d.
The ordinary almost complex structures are naturally embedded in the generalised ones, so we
may construct

J1 ≡
(
I 0
0 −IT

)
, (4.52)

which fulfils J 2
1 = −12d and J1IJ1 = I. Another example of a generalised almost complex

structure built with a non-degenerate 2-form ωmn is

J2 ≡
(

0 −ω−1

ω 0

)
. (4.53)

The projection operators on an ordinary almost complex structure I is given by π± ≡ 1
2(1d±iI),

where the plus sign represents a holomorphic projection and the minus sign an antiholomorphic
projection. For a generalised almost complex structure the definition of the projection operators
follows rather naturally as Π± = 1

2(12d ± iJ ). The integrability condition for an ordinary
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almost complex structure is the vanishing of the Nijenhuis tensor. The same condition can also
be written in terms of the projection operators according to

π∓[π±X,π±Y ]L = 0 , (4.54)

where [·, ·]L is the Lie bracket. This bracket acting on some function f is defined as

[X,Y ]Lf ≡ X(Y (f))− Y (X(f)) . (4.55)

When X and Y are smooth vectors they can be seen as differential operators, so for a smooth
function f : M → R then Xf and Y f are again smooth functions that maps as M → R. The
commutator of any two derivations is again a derivation, which is the case of the Lie bracket. The
bracket is skew-symmetric [X,Y ]L = −[Y,X]L and satisfies the Jacobi identity. The Lie bracket
can also be viewed in terms of flow. Namely, [X,Y ]L can be seen as the derivative of Y along
the flow generated by X. The Lie derivative L is a generalisation that allows differentiation of
any tensor field along the flow generated by X. In terms of this derivative the Lie bracket can
be defined as [X,Y ]L = LXY .

For the generalised complex structure the integrability condition is defined as

Π∓[Π±X,Π±Y]C = 0 , (4.56)

where the Lie bracket has been replaced by the Courant bracket [·, ·]C. It is defined as

[X,Y]C ≡ [X + ξ, Y + ζ]C ≡ [X,Y ]L + LXζ − LY ξ − 1
2 d(ιXζ − ιY ξ) , (4.57)

where ιX is the interior product, or interior derivative, which is defined as the contraction of
a differential form with a vector field X. With X being a vector field on the manifold then
ιX : Ωp(M) → Ωp−1(M). From its antisymmetric properties it follows that ιXιYA = −ιY ιXA.
It is also nilpotent; ι2X = 0, just as the exterior derivative d. Introducing the notation y, a
p-form A can contract a (p+ n)-form B into a n-form such that

(AyB)i1,...,in = 1
p!A

j1,...,jpBj1,...,jp,i1,...,in ,

and the interior product is then written ιXζ = Xyζ. The interior product is related to the
exterior derivative and the Lie derivative via LXA = d(ιXA) + ιX dA.

Returning to the examples of J1 and J2, the integrability conditions on J1 and J2 impose the
corresponding integrability conditions on its building blocks, i.e. the ordinary almost complex
structures I and ω. That is, integrability of J1 enforces I to be an integrable almost complex
structure on TM which is equivalent to I being a complex structure, and thus the manifold is
complex. For J2, integrability implies that dω = 0, making ω a closed almost complex structure.
These are the conditions put on symplectic forms, so the 2-form ω and its corresponding manifold
must be symplectic.

These are just examples. More general types of generalised almost complex structures are
partially complex and partially symplectic. It is worth noting that the introduction of the
generalised tangent bundle and the exchange of the Lie bracket to the Courant bracket are
perhaps the two most fundamental points of generalised complex geometry.

4.3.2 Conditions on the defining SU(3) forms as pure spinors

There is an algebraic one-to-one correspondence between generalised almost complex structures
and Clifford(6,6) pure spinors. Spinors on the generalised tangent bundle transform under
Clifford(6), which has algebra {γm, γn} = 2gmn. There is also a representation of this algebra
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4.3. Generalised complex geometry descriptions of the internal manifold

in terms of forms with γm ≡ dxm ∧ +gmnιn, which satisfies a Clifford(d) algebra. The algebra
for Clifford(d, d) is in turn given by

{Γm,Γn} = 0 , {Γm,Γn} = 0 , {Γm,Γn} = Imn , (4.58)

where the Γm and Γm are completely independent of each other, i.e. the index cannot be raised
or lowered with a metric. Therefore the number of gamma matrices is twice the dimension of
the manifold, which in our case is twelve. Imn is the (6 + 6)-dimensional natural metric of the
generalised bundle defined in eq. (4.48). The representation also exists in terms of forms, given
by

Γm = dxm∧ , Γm = ιm . (4.59)

A pure spinor is a spinor that is annihilated by a space of half the dimension of the algebra
it lives in. Specifically a pure Clifford(6,6) spinor is one who is annihilated by two 6D gamma
matrices Γm,Γn (or linear combinations of them) out of a total of four 6D gamma matrices
Γm,Γm,Γn,Γn which build the Clifford(6,6) algebra. On a manifold with SU(3)-structure there
are two natural pure spinors. The first on is the 3-form Ω, which is annihilated by Γi and Γı̄
according to

ΓiΩ = dzi ∧ (Ωjkl dzj ∧ dzk ∧ dzl) = 0 ,

since the index i has to be either j, k or l and dzi ∧ dzi = 0 for any choice of i since the wedge
product is antisymmetric. For the Γı̄ we have

Γı̄Ω = ιı̄(Ωjkl dzj ∧ dzk ∧ dzl) = 0 ,

where ιj dxi1 ∧ . . . ∧ dxip = pδ
[i1
j dxi2 ∧ . . . ∧ dxip]. As for the other gamma matrices, we have

ΓiΩ = ιi(Ωjkl dzj ∧ dzk ∧ dzl) = 3Ωikl ∧ dzk ∧ dzl , (4.60)
Γı̄Ω = dz ı̄ ∧ (Ωjkl dzj ∧ dzk ∧ dzl) = Ωjkl dz ı̄ ∧ dzj ∧ dzk ∧ dzl , (4.61)

where wee see that ΓiΩ in eq. (4.60) have no restrictions on the holomorphic indices and could
be any 2-form. The same applies for the Γı̄Ω in eq. (4.61) which is some (3, 1)-form. Thus
we have seen that Ω is indeed annihilated by half of the gamma matrices and is thus a pure
Clifford(6,6) spinor. Acting with different combinations of the creation operators Γi and Γı̄ on
Ω, it is clear that the result can be forms of all possible degrees. Therefore we may say that
Clifford(6,6) spinors are equivalent to (p, q)-forms.

As for the second pure spinor on a SU(3)-structure manifold, one might guess it to be the
other invariant 2-form J , however it is actually given by

eiJ ≡ 1 + iJ − 1
2J ∧ J −

i
6J ∧ J ∧ J . (4.62)

It is annihilated by the linear combination Γm − iJmnΓn = ιm − iJmn dxn∧, which can be seen,
term by term, from

(ιm − iJmn dxn∧)1 = −iJmn dxn

i(ιm − iJmn dxn∧)J = iJmn dxn + Jmn dxn ∧ J
−1

2(ιm − iJmn dxn∧)J ∧ J = −1
22Jmn dxn ∧ J + i

2Jmn dxn ∧ J ∧ J
− i

6(ιm − iJmn dxn∧)J ∧ J ∧ J = − i
63Jmn dxn ∧ J ∧ J

where we see that the first term cancels against the first term on the second line, and so on.
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4. Type II Supersymmetric Backgrounds with Maximal Spacetime Symmetry

The Clifford map can map a Clifford(6,6) spinor (form) to a bispinor, i.e. a spinor that
consists of two other spinors, via

C ≡
∑
k

1
k!C

(k)
i1...ik

dxi1 ∧ . . . ∧ dxik ←→ /C ≡
∑
k

1
k!C

(k)
i1...ik

γi1...ikαβ . (4.63)

As we have established in previous sections, a space with SU(3)-structure has a nowhere van-
ishing SU(3)-invariant spinor η. This spinor is also a Clifford(6) spinor as it is annihilated
by γi and γī in a similar fashion to the Clifford(6,6) spinors. From η we may construct two
SU(3, 3)-invariant bispinors, by tensoring η with its dagger. That is, we may construct two
bispinors

Φ± ≡ η+ ⊗ η†± . (4.64)

This tensor product can be written, using Fierz identities, as

Φ± ≡ η+ ⊗ η†± = 1
4

6∑
k=0

1
k!η
†
±γi1...ikη+γ

ik...i1 . (4.65)

Now, using the Clifford map in eq. (4.63) backwards, the bispinors can be identified with regular
forms. The subscripts plus/minus in Φ± denote the Spin(6, 6) chirality; plus denote an even
form, and minus an odd form. The Clifford(6,6) spinors in terms of the fundamental forms
defining the SU(3)-structure can be obtained using the expression of J and Ω in terms of η
according to eq. (4.32), and combining it with the Fierz arrangement in eq. (4.65). This results
in

Φ+ = η+ ⊗ η†+ = 1
8e
−iJ , (4.66)

Φ− = η+ ⊗ η†− = − i
8Ω . (4.67)

It it clear that these spinors are pure and annihilated by Γm − iJmnΓn as there is only a sign
difference in the exponent from the pure spinor eiJ in eq. (4.62). The one-to-one correspondence
between a pure spinor and a generalised almost complex structure stated earlier, is given as

Φ+ = 1
8e
−iJ ↔ J2 , (4.68)

Φ− = − i
8Ω ↔ J1 , (4.69)

where J1 and J2 was defined in eq. (4.52) and eq. (4.53) respectively.
Imposing the integrability condition on the generalised complex structure J corresponds for

the spinor Φ that there exists a vector v and 1-form ξ such that dΦ = (vx+ξ∧)Φ. A manifold
that fulfils this condition is the generalised Calabi-Yau, as it has a closed pure spinor, i.e. ∃Φ
pure such that dΦ = 0. Unlike an ordinary Calabi-Yau the generalised Calabi-Yau need not
have vanishing torsion. For example it may be a complex (or symplectic) manifold with a trivial
W5 torsion class, say W5 = ∂̄f , then Φ = e−fΩ and dΦ = 0.

A closed 3-form flux H may ”twist” the generalised Calabi-Yau. Adding such a form modifies
the Courant bracket by adding a term ιXιYH to the normal Courant bracket, i.e. so that it is
now defined as

[X + ξ, Y + ζ]H ≡ [X,Y ]C + ιXιYH . (4.70)

This in turn changes the integrability condition so that dΦ → (d − H∧)Φ, i.e. the spinor
integrability condition now reads

(d−H∧)Φ = (vx+ξ∧)Φ . (4.71)
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A twisted generalised Calabi-Yau has a pure spinor such that it fulfils

(d−H∧)Φ = 0 , (4.72)

and hence H can be seen as to have ”twisted” the integrability condition. Would one decompose
the pure spinor into forms according to Φ =

∑
k φk, then this twisted generalised Calabi-Yau

condition would read dφk−H3∧φk−2 for all k. Note that a twisted exterior derivative condition
such as this one appeared in the definition of the democratic RR fields in eq. (3.114) and in
their corresponding Bianchi identity in eq. (3.116).

4.4 Consequences of imposing N = 1 on the background
In this section we will collapse theN = 2 supersymmetry of our Minkowski background toN = 1,
and see what consequences that follow. Our two 4D spinors ξ1,2 in the spinor decomposition
of eqs. (4.23)–(4.25) are the ones preserving the N = 2 supersymmetry in the 4D external
space. In order to have N = 1 we need a relation between ξ1 and ξ2, a relation which maximal
symmetry demands to be trivial, i.e. to be proportionality. We may therefore decompose the
spinors according to

ξ1
+ → aξ+ , ξ2

+ → bξ+ ,

ξ1
− → āξ− , ξ2

− → b̄ξ− ,
(4.73)

where a and b are some complex functions of the internal space. This means that instead of our
supersymmetry spinors ε1,2 consisting of two different 4D spinors ξ1,2 (with chiralities ±), they
now consist of a single spinor ξ and some complex functions a and b. Hence, for the different
type II theories, the supersymmetry spinors ε1,2 now look like

ε1IIA = ξ+ ⊗ (aη+) + ξ− ⊗ (āη−) , ε1IIB = ξ+ ⊗ (aη+) + ξ− ⊗ (āη−) ,
ε2IIA = ξ+ ⊗ (b̄η−) + ξ− ⊗ (bη+) , ε2IIB = ξ+ ⊗ (bη+) + ξ− ⊗ (b̄η−) .

(4.74)

In this section we will use these N = 1 spinor decompositions in the type II supersymmetry
variations, and relate them to torsion via the NSNS flux, from which one obtains conditions on
the internal manifold.

4.4.1 Supersymmetry equations in terms of pure spinors

Using the decompositions of the supersymmetry spinors in eq. (4.74), the gravitino and dilatino
supersymmetry conditions of eq. (4.2) and eq. (4.3) may be expressed in terms of 4D and 6D
spinors separately. In the next our interest lies in the SU(3)-structure internal manifold, which
admits the spinor η, and so we may neglect the 4D ζ spinor part. The procedure of rewriting
the supersymmetry conditions as differential conditions on pure spinors in the context of flux
backgrounds was first done in [19], whose results are reproduced in this section 4.4. In section
4.4.1 the necessary constraints on the background are obtained and are then solved in the next
section 4.4.2.

We begin by turning to the supersymmetry transformations, where the gravitino variation
for type IIA reads

δεψM =
(
DM + 1

4 /HMΓ11 + 1
16e

φ
5∑

n=0
/F 2n(Γ11)nσ1ΓM

)
ε = 0 , (4.75)

and the two supersymmetry parameters have different chirality according to

Γ11ε1 = ε1 , Γ11ε2 = −ε2 . (4.76)
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4. Type II Supersymmetric Backgrounds with Maximal Spacetime Symmetry

The fluxes in eq. (4.75) can be chosen to be purely internal as F (10)
2n = F̃2n + vol4F̂2n−4 by

4D Poincaré invariance and F̂2n−4 = (−1)bnc ?6 F̃10−2n by self-duality. The tilde denoting the
internal fluxes may then be dropped. The external type IIA gravitino variation is then reduced
to

Dµε+ 1
8e
φ
(
/F 0 + /F 2Γ11 + /F 4Γ2

11

)
σ1Γµε = 0 , (4.77)

where we take Hµ = 0 and use the self-duality condition of the fluxes. The Pauli matrices effect
on the supersymmetry parameter via the Ps in eqs. (4.2) and (4.3) are summarised here for
clarity as

ε =
(
ε1
ε2

)
, σ1ε =

(
ε2
ε1

)
, iσ2ε =

(
ε2
−ε1

)
, −σ3ε =

(
−ε1
ε2

)
. (4.78)

where again σ1 appear in type IIA and the other two in the IIB theory. Inserting these in the
gravitino variation of eq. (4.2), the type IIA variations read

(DM + 1
4 /HM )ε1 + 1

8e
φ(/F 0 − /F 2 + /F 4)ΓM ε2 = 0 , (4.79)

(DM − 1
4 /HM )ε2 + 1

8e
φ(/F 0 + /F 2 + /F 4)ΓM ε1 = 0 . (4.80)

Next we will consider the external and internal space variations separately. Starting with the
external, relevant expressions are Dµε = [∇̂µ ⊗ 1 + 1

2(γµγ5 ⊗ /∂A)]ε as in eq. (4.16) and Γµ =
γµ ⊗ 1. Using the spinor decompositions in eq. (4.74) and considering the external space to be
Minkowski, then ∇̂µε = 0 and eq. (4.79) is divided into two equations according to

0 = 1
2γµγ5ζ+ ⊗ /∂Aaη+ + 1

2γµγ5ζ− ⊗ /∂Aāη− + 1
8e
φ(/F 0 − /F 2 + /F 4)γµζ+ ⊗ b̄η−

+ 1
8e
φ(/F 0 − /F 2 + /F 4)γµζ− ⊗ bη+ ,

0 = γµζ+ ⊗ [1
2 /∂Aaη+ + 1

8e
φ(/F 0 − /F 2 + /F 4)b̄η−]

+ γµζ− ⊗ [−1
2 /∂Aāη− + 1

8e
φ(/F 0 − /F 2 + /F 4)]bη+ ,

(4.81)

using γ5ζ+ = ζ+ and γ5ζ− = −ζ−. We see that the above equation can be written as a sum of
two terms that are in the product space of γµζ+ respectively γµζ−. These must vanish separately
as the 4D spinor ζ is arbitrary, i.e. we must have that

/∂Aaη+ + 1
4e
φ(/F 0 − /F 2 + /F 4)b̄η− = 0 , (4.82)

/∂Aāη− − 1
4e
φ(/F 0 − /F 2 + /F 4)bη+ = 0 . (4.83)

In the exact same manner the ε2-variation of eq. (4.80) results in the two equations

/∂Ab̄η− + 1
4e
φ(/F 0 + /F 2 + /F 4)aη+ = 0 , (4.84)

/∂Abη+ − 1
4e
φ(/F 0 + /F 2 + /F 4)āη− = 0 . (4.85)

By making a linear combination of eq. (4.82) and eq. (4.85) we have that

(4.82) + i× (4.85) = α/∂Aη+ + i
4e
φ /FA1η− = 0 , (4.86)

where α ≡ a+ ib, β ≡ a− ib, and the flux is given by

−FA1 ≡ (ā+ ib̄)F0 + (ā− ib̄)F2 + (ā+ ib̄)F4

≡ β∗F0 + α∗F2 + β∗F4 .
(4.87)
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The linear combination (4.82) − i × (4.85) corresponds to making the exchange α → β and
FA1 → FA2 in eq. (4.86), where

FA2 ≡ α∗F0 + β∗F2 + α∗F4 . (4.88)

Eq. (4.86) is the IIA external gravitino variation we will use in later analysis. Continuing to
the supersymmetry variation of the internal space, we have that Γm = γ5 ⊗ γm and eqs. (4.79),
(4.80) become respectively

ε1 :
{
Dm(aη+) + 1

4 /Hmaη+ + 1
8e
φ(/F 0 − /F 2 + /F 4)γmb̄η− = 0 ,

Dm(āη−) + 1
4 /Hmāη− − 1

8e
φ(/F 0 − /F 2 + /F 4)γmbη+ = 0 ,

ε2 :
{
Dm(b̄η−)− 1

4 /Hmb̄η− + 1
8e
φ(/F 0 + /F 2 + /F 4)γmaη+ = 0 ,

Dm(bη+)− 1
4 /Hmāη− − 1

8e
φ(/F 0 + /F 2 + /F 4)γmāη− = 0 .

(4.89)

Like the external gravitino variations, adding the first ε1-equation in eq. (4.89) and the last
ε2-equation multiplied with i, we get for the internal supersymmetry variation that

(αDm + ∂α− 1
4β /Hm)η+ + i

8e
φ /FA1γmη− = 0 . (4.90)

This one has the equivalent symmetry α ↔ β and FA1 ↔ FA2 as the external variation in eq.
(4.86).

Further, it will be useful to combine the gravitino and dilatino variations eqs. (4.2), (4.3) so
that the RR flux terms cancel. This is achieved by the combination

ΓMδψM − δλ =
(
/D − /∂φ+ 1

4 /HP
)
ε = 0 , (4.91)

which we refer to as the modified dilatino equation. Again for IIA we have P = Γ11, so the two
equations for each ε become

ε1 :
{

( /D − /∂φ+ 1
4 /H)aη+ = 0 ,

( /D − /∂φ+ 1
4 /H)āη− = 0 ,

ε2 :
{

( /D − /∂φ− 1
4 /H)b̄η− = 0 ,

( /D − /∂φ− 1
4 /H)bη+ = 0 .

(4.92)

The second ε1-equation is the complex conjugate of the first one and the first ε2 equation is the
complex conjugate of the last one. Hence we need only consider the first and last equation in
eq. (4.92). Combining them in the usual manner give us(

α /D + α∂(2A− φ+ lnα) + 1
4β /H

)
η+ = 0 , (4.93)

where we have expanded the derivative and used that ∂α = α lnα.
We are now ready to proceed to the IIB case. The gravitino variations reads

(DM − 1
4 /HM )ε1 + 1

8e
φ(/F 1 + /F 3 + /F 5)ΓM ε2 = 0 ,

(DM + 1
4 /HM )ε2 + 1

8e
φ(−/F 1 + /F 3 − /F 5)ΓM ε1 = 0 ,

(4.94)

where the spinors are given in eq. (4.74). The analysis is equivalent to the IIA case so we only
list the results as (

α/∂A+ i
4e
φFB1

)
η+ = 0 ,(

αDm + ∂α− 1
4β /Hm

)
η+ − i

8e
φFB1γmη+ = 0 ,(

α /D + α/∂(2A− φ+ lnα)− 1
4β /H

)
η+ = 0 ,

(4.95)
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the first equation being the one coming from the external variation, the second from the internal
variation, and the third one is the modified dilatino equation. The combined fluxes are given by

FB1 ≡ αF1 − βF3 + αF5 . (4.96)

As in the IIA case, another set of equations can be found by the exchange α↔ β and FB1 ↔ FB2
where −FB2 ≡ βF1 − αF3 + βF5.

The equations can be written in a basis η±, γη±, γmη± since anything else in the Clifford
algebra acting on η±, say γm1...mn , can be re-expressed in this basis. However, since η± is a
Clifford vacuum, we have that γiη+ = γ ı̄η− = 0, so we are left with η± and γmη±. Out of these
the pair {η+, γ

mη−} have positive chirality and {γmη+, η−} have negative chirality. In these
bases, the supersymmetry conditions will then take the form

δΨµ = Sη− + (Sm +Am)γmη+ = 0 , (4.97)
δΨm = i(Qm +Rm)η+ + i(Qmn +Rmn)γnη− = 0 , (4.98)

ΓMδψM − δλ = Tη− + Tmγ
mη+ = 0 , (4.99)

where the Ψ denotes the appropriate linear combination of supersymmetry variations of each
theory, e.g. δΨµ = (δε1 + iδε∗2)ψµ in IIA, etc.

Next, we are to derive the expression of each term in eqs. (4.97)–(4.99) in terms of the two
pure spinors eiJ and Ω. To do so we start by using the Fierz rearrangement in eq. (4.65),
restated again as

η± ⊗ η†+ = 1
4

6∑
k=0

i

k!η
†
+γi1...ikη±γ

ik...i1 . (4.100)

Using this, pure spinors can be constructed from tensor products of the standard SU(3) admitted
spinor η, so that

η± ⊗ η†± = 1
8�
��e∓iJ ,

η+ ⊗ η†− = − i8�Ω ,

η− ⊗ η†+ = − i8�
�̄Ω ,

(4.101)

where the slash denotes the spinor equivalent rather than form in the Clifford map of eq. (4.63).
We begin our analysis with the type IIA case, where we wish to rewrite eqs. (4.86), (4.90)
and (4.93) on their respective form in eqs. (4.97)–(4.99). Starting with the external gravitino
variation in eq. (4.86), the goal is to find SA1, SAm and Am such that

α/∂Aη+ + i
4e
φ /FA1η− = SA1η− + (SAm +Am)γmη+ . (4.102)

These can be obtained by multiplying the gravitino variation with η†± and η†±γn from the left.
For instance, multiplying by η†− from the left on both sides of eq. (4.102), the first term on
the left-hand side and the second one on the right-hand side both vanish. With normalisation
η†±η± = 1

2 , we are left with 1
2SA1 on the right-hand side. The left-hand side is evaluated to

η†− /FA1η− = tr(η†− /FA1η−) = 1
8tr(/FA1�

�eiJ) = 1
2(/FA1�

�eiJ)0 , (4.103)

where in the first equality a trace was inserted since the left-hand side is a constant and in the
second equality we have inserted the first identity from eq. (4.101). In the last equality we
used that the trace of products consisting of antisymmetric gamma matrices vanish, and so all
products of gamma matrices in /FA1��e

iJ vanish, leaving only a single product that is proportional

54



4.4. Consequences of imposing N = 1 on the background

to identity rather than a gamma matrix. Higher dimensional gamma matrices areN×N matrices
where N = 2b2/nc = 8 in n = 6 dimensions, but since the spinors η are chiral the associated
gamma matrices reduce to 4 × 4 matrices. Hence we get a factor tr(1) = 4, and the subscript
(. . .)0 denotes the term in the Clifford product that does not contain any gamma matrices. In
conclusion we have determined

SA1 = i
4e
φ(/FA1�

�eiJ)0 , (4.104)

where /FA1 and��eiJ are contracted by the 6D metric.
In order to determine SA1m and Am, we return to eq. (4.102) but this time we multiply with

η†+γp from the left on both sides. This will make the term containing SA1 vanish, and the RR
flux term can be evaluated as in the previous case, where now

η†+γp = tr(η†+γp /FA1η−) = − i
8tr(��̄Ωγp /FA1) = − i

2(/FA1��̄Ω)p , (4.105)

where we used eq. (4.101) and the (. . .)p denotes the term that gets multiplied with γp in the
gamma matrix products. The right-hand side with SA1m should be thought of as P̄pmSm which
projects onto antiholomorphic coordinates, where the projector is defined as

P̄p
m ≡ 1

2(δpm + iJp
m) . (4.106)

Gathering all the expressions, the type IIA spacetime gravitino variation of eq. (4.86) now reads

i
4e
φ(/FA1�

�eiJ)0η− +
(

1
8e
φ(/FA1��̄Ω)m + α∂mA

)
γmη+ = 0 , (4.107)

form which one may read off the expressions of SA1, SA1m and Am. There is also another
equation like this one but with exchanges α→ β and FA1 → FA2.

To rewrite the internal gravitino variation in eq. (4.90) on the form of eq. (4.98), we multiply
them with η†− and η†−γp from the left on both sides. This will give terms of the form 1

2Rm and
Pn

pRmp in eq. (4.98), where Pnm = 1
2(δnm − iJnm) is the projector onto holomorphic indices.

The procedure is the same as for the external variation, but in order to rewrite the RR flux term
we make use of the identities

η†+ /FA1γmη− = − i
2(��̄Ω/FA1)m ,

η†−γp /FA1γmη− = −(/FA1m�
�eiJ)p + 1

2(/FA1�
�eiJ)0gmp + (/FA1�

�eiJ)mp ,
(4.108)

where g is the internal 6D metric. These will contribute to the R-terms in eq. (4.98), as they
are related to the RR flux. The Qs can be related to the NSNS flux and torsion, as we will
describe next.

As familiar, a manifold with SU(3) holonomy has a covariantly constant spinor Dmη = 0,
which may be translated into the closure of the forms J and Ω, and where the failure of this
closure is measured by torsion. The J and Ω are given in terms of η as in eq. (4.32). In spinorial
basis we may express the covariant derivative as

Dmη = (q̃m + iqmγ + iqmnγ
n)η , (4.109)

where γ is the 6D chirality operator. By choosing the normalisation of η to have constant norm,
one can set q̃m = 0 [19]. The qs here are in fact another definition of torsion. In particular, the
qm is a vector, i.e. part of the (3⊕ 3̄) representation, and so qmn lies in

(3⊕ 3̄)⊗ (3⊕ 3̄) = (6⊕ 3̄)⊕ (6̄⊕ 3)⊕ (8⊕ 1)⊕ (8⊕ 1) . (4.110)

55



4. Type II Supersymmetric Backgrounds with Maximal Spacetime Symmetry

Hence we see that all representations of the W s are present. Comparing eq. (4.109) with the
exterior derivatives of J and Ω in eqs. (4.43)–(4.44), it was first found in [19] that the coefficients
of eq. (4.109) can be written in holomorphic/antiholomorphic indices as

qi = i
2(W5 −W4) , qij = − i

8W3iklΩkl
j − 1

8ΩijkW̄
k
4 , qī = − i

4W̄2ī + 1
4W̄1gī . (4.111)

In relation to J and Ω ≡ ΩR−iΩI then qmn = i
8∇mJpqΩ

pq
I n. There is reason to involve the NSNS

flux H3 to these equations since, as will be discussed in later chapters, some torsion and NSNS
flux are exchanged under mirror symmetry. It is therefore customary to add H3 to the covariant
derivative in eq. (4.109) to behave better under mirror symmetry. The addition changes eq.
(4.109) to

DH
mη = i(Qmγ +Qmγ

n)η , (4.112)

where the most suitable derivative turns out to be DH
m ≡ Dm + 1

8Hmnpγ
np [20]. The new

coefficients are then given in holomorphic/antiholomorphic indices according to

Qi = i
2(W5 −W4 − iH(3)) ,

Qij = − i
8(W3 + iH(6))ij − 1

8Ωijk(W̄4 + iH̄(3))k ,
Qī = − i

4W̄2ī − 1
4(W̄1 + 3iH̄(1))gī .

(4.113)

The addition ofH essentially complexifies the torsion likeW →W+iH. To have supersymmetry
with only NSNS flux we have from eq. (4.109) that

DH
i η+ = iQiη+ + iQijγ

jη− , DH
ı̄ η+ = iQı̄η+ + iQı̄jγ

jη− , (4.114)

where again it is enough that one chirality is annihilated by DH . The Qī and Qı̄̄ disappear
from DH

i η+ as η−, being a Clifford vacuum, is annihilated by γ ı̄.
Using these identities, the IIA internal gravitino variation can be written

i
8e
φ
[

1
2(/FA1�

�eiJ)0gmp + (/FA1�
�eiJ)mp − (/FA1m�

�eiJ)p
]
γpη−

+ (∂mα+ i
2Jm

nα(W5 −W4)n + i
2βH

(3)
m )η+

+ iRe
[

1
2(αW1 + 3iβH(1))P̄mn − 1

4Ωmnp(αW4 + iβH(3))p

− i
8(αW3 + iβH(6))mn + i

2αP̄m
pW2pn

]
γpη−

+ 1
8e
φ(��̄Ω/FA1)mη+ = 0 .

(4.115)

The same procedure can be done for the modified dilatino equation, which will gives

[
iαqm + i

2αqnrΩ
nr
m + 1

48β( /H���e−iJ)m + α∂m(2A− φ+ lnα)
]
γmη+

+
[
2iαPmnqmn − i

24β( /HΩ)0
]
η− = 0 .

(4.116)

Hence, the three type IIA supersymmetry variations of eqs. (4.86), (4.90) and (4.93) can be
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written on their respective form in eqs. (4.97)–(4.99) where the coefficients are given by

Am = α∂mA ,

S = i
4e
φ(/FA1�

�eiJ)0 ,

Sm = 1
8e
φRe((/FA1��̄Ω)m) ,

Qm = −i∂mα+ 1
2Jm

n(αW5 − αW4)n + 1
2βH

(3)
m ,

Qmn = Re(1
2(αW1 + 3iβH(1))P̄mn − 1

4Ωmnp(αW4 + iβH(3))p − i
8(αW3 + iβH(1))mn + i

2 P̄m
pαW2pn) ,

Rm = − i
8e
φ(��̄Ω/FA1)m ,

Rmn = 1
4e
φRe(−(/FA1m�

�eiJ)n + 1
2(/FA1�

�eiJ)0gmn + (/FA1�
�eiJ)mn) ,

T = 3
2(iαW1 − βH(1)) ,

Tm = α∂m(2A− φ+ lnα) + α(W4m + i
2Jm

n(W5 −W4)n)− 1
2JmnβH

(3)
n ,

(4.117)
The same analysis applies to the type IIB case. In this case one uses the following identities for
the RR flux terms:

η†− /FBη+ = − i
2(/FB /Ω)0 ,

η†+γm /FBη+ = 1
2(/FB�

��e−iJ)m ,

η†+ /FBγmη+ = 1
2(���e−iJ /FB)m ,

η†−γp /FBγmη+ = −i(/FBm /Ω)p + i
2(/FB /Ω)0gmp + i(/FB /Ω)mp ,

(4.118)

with FB = F1 + F3 + F5. The type IIB supersymmetry variations in eq. (4.95) can thus be
written on the form of eqs. (4.97)–(4.99) where the coefficients are given by

Am = α∂mA ,

S = 1
4e
φ(/FB1

/Ω)0 ,

Sm = 1
4e
φRe((/FB1�

��e−iJ)0) ,
Qm = −i∂mα+ 1

2Jm
n(αW5 − αW4)− 1

2βH
(3)
m ,

Qmn = Re(1
2(αW1 − 3iβH(1))P̄mn − 1

4Ωmnp(αW4 − iβH(3))p − i
8(αW3 − iβH(6))mn + i

2 P̄m
pαW2pn) ,

Rm = −1
8e
φ(�e−iJ /FB1)m ,

Rmn = 1
4e
φRe(i(/FB1m

/Ω)n − i(/FB1
/Ω)mn − i

2(/FB1
/Ω)0gmn) ,

T = 3
2(iαW1 + βH(1)) ,

Tm = α∂m(2A− φ+ lnα) + α(W4m + i
2Jm

n(W5 −W4)n) + 1
2JmnβH

(3)
n .

(4.119)
One can write the explicit expressions of the Clifford products in eq. (4.108) and eq. (4.118),
i.e. in terms of J and Ω as well as the SU(3) representations of the fluxes, and use them to
obtain the matrices S,R,Q in terms of SU(3) representations. While this alternative form of
the matrix expressions is informative, it is not necessary for our analysis in the next section but
may be found in Appendix C.

4.4.2 N = 1 constraints on fluxes and intrinsic torsion in Minkowski vacua

In order for the supersymmetry conditions in eqs. (4.97)–(4.99) to be satisfied, the coefficients
in each representation must vanish separately. These equations will then give us a relation
between the intrinsic torsion, fluxes, and warp factor in each representation. The results, as first
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IIA IIB
Qi ∈ 3 Ri ∈ 3 Si, Ti, Ai ∈ 3 Qi ∈ 3 Ri ∈ 3 Si, Ti, Ai ∈ 3
Qij ∈ 6⊕ 3̄ – – Qij ∈ 6⊕ 3̄ Rij ∈ 6⊕ 3̄ –
Qı̄j ∈ 1⊕ 8 Rı̄j ∈ 1⊕ 8 S, T ∈ 1 Qı̄j ∈ 1⊕ 8 – S, T ∈ 1

Table 4.2: Matrices of eqs. (4.97)–(4.99) in their corresponding decomposed SU(3) represen-
tation. Columns with Qs represent the NSNS sector and are the same for each theory, and the
RR sector equivalent are given by the other two columns.

obtained in [19], are summarised in table 4.3 and 4.4, which give all possible N = 1 Minkowski
vacua for the type IIA and IIB theories respectively. In the next we start by discussing to which
representation the coefficients in eqs. (4.97)–(4.99) belong.

Again, the NSNS flux and torsion contribution lies in the Q matrices and the RR contribution
in the R and S matrices. The type IIA RR sector consists of a 0-form, a 2-form, a 4-form and
a 6-form. The 0-form and 6-form have one component each whereas the 2- and 4-forms have 15
components each, summing up to a total of 32 components. Under SU(3) ⊂ SO(6) the 0- and
6-forms are singlets and the other two decompose according to 15→ 1⊕ 3⊕ 3̄⊕ 8.

In type IIB we naturally also have 32 components but they are distributed among a 1-form,
3-form and 5-form. The 1- and 5-form decompose as 3⊕3̄ and the 3-form as 1⊕3⊕6+conjugates.

By switching to holomorphic indices we need only analyse half of the components. While
the NSNS Q matrices are the same for both theories, there are no general R matrices as the
representations are different, i.e. there is no 6 in IIA and no 8 in IIB. The representations of
each type of matrix is summarised in table 4.2.

Turning to the supersymmetry conditions of eqs. (4.97)–(4.99), we are to analyse solutions
to these equations using eq. (4.117) and eq. (4.119) (or eq. (C.9) and eq. (C.10) in Appendix
C with holomorphic indices). The solutions give necessary constraints on any type of N = 1
Minkowski background, as Bianchi identities still need to be imposed. Before proceeding a quick
comment on the phase freedom in the 3-form Ω is in order. The SU(3)-structure requirements
J ∧ Ω and iΩ ∧ Ω̄ = 2

3!J
3 are left invariant by the redefinition Ω→ eiϕΩ. This definition shifts

the torsion W5 →W5 + idϕ and the spinors η+ → eiϕη+ or simply α→ αeiϕ and β → βeiϕ. To
avoid false solutions with W5, we fix it by setting arg(α) + arg(β) = 0.

In the following we start analysing the supersymmetry conditions in each representation of
the type IIA theory.

IIA scalars. By the vanishing of the supersymmetry variations, the scalars must vanish on
their own according to

S = 0 , Q
(1)
ı̄j +R

(1)
ı̄j = 0 , T = 0 , (4.120)

from each of the supersymmetry equations of eqs. (4.97)–(4.99). Remember that there is a
second set of equations obtained by the exchange α → β, and so T = 0 results by eq. (4.117)
in the equations iαW1 − βH(1) = 0 and iβW1 − αH(1) = 0. If α 6= ±β then we must have
W1 = H(1) = 0, which in turn renders Q(1)

ı̄j = 0 by eq. (4.117). We are then left with the two
other conditions S = R

(1)
ı̄ = 0 on the RR fluxes. When α 6= ±β the four resulting equations

for the four RR fluxes F (1)
0 , F

(1)
2 , F

(1)
4 and F (1)

6 are independent of each other, and hence must
vanish separately.

The T = 0 equations allows for non-zero H(1) flux and torsion W1 when α = ±β, in which
case W1 ∓ iH(1) = 0. Combining the α and β variants of the equation Q

(1)
ı̄j + R

(1)
ı̄j = 0 such

that the RR part vanishes, one gets W1 ± 3iH(1) = 0, which can only be satisfied at the same
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time as the T = 0 equation if W1 = H(1) = 0. Hence both cases of α = ±β and α 6= ±β
leads to that W1 = H(1) = 0. However with α = ±β the RR scalar equations are dependent of
each other, leading to that they can be allowed if they are equal among themselves according to
F

(1)
0 = ±F (1)

2 = F
(1)
4 = ±F (1)

6 .

IIA 8 ⊕ 8. According to table 4.2, the Q(8)
ı̄j and R

(8)
ı̄j lie in the 8 representation. Hence the

relevant supersymmetry equation for this representation is Q(8)
ı̄j +R

(8)
ı̄j = 0, which by eq. (4.117)

becomes
eφ(α∗F (8)

2ı̄j + iβF4ı̄jk̄lJ
k̄l) + iαW2ı̄j = 0 ,

eφ(β∗F (8)
2ı̄j + iαF4ı̄jk̄lJ

k̄l) + iβW2ı̄j = 0 ,
(4.121)

for each choice of α and β. Considering the real and imaginary parts of these equations,
and using W2 ≡ W+

2 − iW−2 , the result is a system with four equations with four real un-
knowns F (8)

2 , F
(8)
4 ,W+

2 and W−2 . The determinant of this equation system is proportional to
Re(αβ̄)Re(α2 + β2) and with the phase fixing mentioned before, the determinant can only van-
ish for α = ikβ with k being some real constant. If so, there are solutions

W+
2 = eφ

Im(α2)
|α|2

F
(8)
2 , W−2 = eφ

Re(α2)
|α|2

F
(8)
2 . (4.122)

For the special case of k = 1 there is an independent solution W+
2 = F

(8)
4 J . For any other

relations between α and β the solution is trivial, i.e. all of the fields in this representation
vanish.

IIA 6 ⊕ 6̄. By table 4.2 there is only Qij in the 6 representation in IIA, hence eq. (4.98) is
reduced to Q(6)

ij = 0 which corresponds to (αW3 +βH(6))ij = 0, as well as another equation with
α → β. Hence we have non-trivial solutions W3 ± iH(6) = 0 or W3 = ± ?6 H

(6) when α = ±β
and vanishing components with α 6= ±β.

IIA 3⊕ 3̄. As in the previous case we only have a Q as matrix contribution, and so Q(3)
ij = 0

results in that αW4 +βH(3) = 0 with W4 = ±iH(3) for α = ±β and W4 = H(3) = 0 for α 6= ±β.
The vector contributions result in that we have equations Si +Ai = 0, Qi +Ri = 0 and Ti = 0.
In the case α = ±β we get solutions 2W4 = 2 ± 2iH(3̄) = W̄5 = 2∂̄φ. When α 6= ±β we have
that W4 = H(3) = 0, F (3̄)

4 = 0, F 3̄
2 = 2i

3 ∂̄φ, W5 = 1
3 ∂̄φ and ∂̄A = −1

3 ∂̄φ.

It is clear that the solutions are highly dependent on the normalisation of α and β of the two
spinors, since it is by this choice the set of equations coming from the exchange α↔ β become
either dependent or independent. The results obtained are summarised in table 4.3. Next, we
proceed with the same analysis for the type IIB case.

IIB scalars. Requiring S = 0 immediately sets F (1)
3 = 0. The remaining equations T = 0 and

Qı̄j = 0 result in the linear combinations αiW1 + βH(1) = 0 and αW1 + 3iβH(1) = 0 which are
only fulfilled simultaneously when W1 = H(1) = 0.

IIB 8 ⊕ 8. The single equation Q(8)
ı̄j = 0 results in W2 = 0. This can be also be seen by the

fact that there are no components of H or of the RR fluxes in the 8 representation.
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IIA (A): a = 0 or b = 0 (BC): a = beiβ

1
W1 = H

(1)
3 = 0

F
(1)
0 = ∓F (1)

2 = F
(1)
4 = ∓F (1)

6

W1 = H
(1)
3 = 0

F
(1)
2n = 0

8 W2 = F
(8)
2 = F

(8)
4 = 0

W+
2 =

eφF
(8)
2 , β 6= 0

eφF
(8)
2 + eφF

(8)
4 , β = 0

W−2 = 0
6 W3 = ∓ ?6 H

(6)
3 W3 = H

(6)
3 = 0

3 W̄5 = 2W4 = ∓2iH(3̄)
3 = ∂̄φ

∂̄A = ∂̄a = 0

W4 = 0

2iW̄5 = F
(3̄)
2 = −2i∂̄A = 2i

3 ∂̄φ

Table 4.3: Relations between intrinsic torsion W , fluxes F,H, warp factor e2A, dilaton φ and
complex functions a, b for type IIA N = 1 vacua. Conditions A,B,C on the complex functions
yield different results in each representation 1,8,6,3 of the space containing the torsion.

IIB 6 ⊕ 6̄. The relevant supersymmetry equation in this representation is Q(6)
ij + R

(6)
ij = 0,

which gives two (complex) equations from α↔ β which depend on the three complex variables
W3, F

(6)
3 and H(6)

3 . These can be rewritten as three connected equations

(α2 − β2)W3 = 2αβeφF (6)
3 ,

(α2 + β2)W3 = −2αβ ?6 H
(6) ,

(α2 − β2)H(6) = (α2 + β2)eφ ?6 F
(6)
3 ,

(4.123)

from which one sees that the variables vanish from the following choices of α, β: W1 = 0⇔ α = 0
or β = 0, F (6)

3 = 0⇔ α = ±β, and H(6) = 0⇔ α = iβ.

IIB 3⊕ 3̄. This representation contains a large amount of components, and unlike the previous
cases there are no equations that directly imply a specific relation between α and β. However,
using the previously common used relations, we may impose by hand three different cases α = ±β
(A), α = 0 or β = 0 (B), or α = ±iβ (C) and see what the solutions look like. There is also
the possibility to use the phase fixing arg(α) + arg(β) = 0 mentioned earlier, in which case one
obtains F1 = 0 and the rest proportional to ∂̄β according to

W4 = 4(α2 + β2)2∂̄β

β(α2 − β2)(3α2 + β2) ,

W̄5 = 2(3α2 + β2)∂̄β
β(α2 − β2) ,

H(3̄) = − 8iα(α2 + β2)∂̄β
(α2 − β2)(3α2 + β2) ,

eφF
(3̄)
3 = − 8α∂̄β

3α2 + β2 ,

eφF
(3̄)
5 = 4i(α2 + β2)∂̄β

β(3α2 + β2) ,

∂̄A = −2(α2 − β2)∂̄β
β(3α2 + β2) ,

∂̄φ = 16α2β∂̄β

(3α2 + β2)(α2 − β2) .

(4.124)
The complex functions α and β are also related to the warp factor via A = ln(|α|2 + |β|2), and
can be seen as an interpolating solution between case A and B. We also note that the ratios
between the fields above, say W4/H

(3̄) are singular in case A and B.

All type IIB solutions that are summarised in table 4.4 have been re-expressed in the original
variables a and b for each relation A, B and C between them. Some of the solutions does not fit
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IIB (A): a = 0 or b = 0 (B): a = ±ib (C): a = ±b (ABC)
1 W1 = F

(1)
3 = H

(1)
3 = 0

8 W2 = 0

6
W3 = ± ? H(6)

3

F
(6)
3 = 0

W3 = 0
eφF

(6)
3 = ∓ ? H(6)

3

W3 = ±eφ ? F (6)
3

H
(6)
3 = 0

(4.127)

3 W̄5 = 2W4 = ∓2iH(3̄)
3 = 2∂̄φ

∂̄A = ∂̄a = 0
(4.125) (4.126) (4.128)

Table 4.4: The type IIB analogue of table 4.3. The relations A,B and C between the complex
functions are slightly different from type IIA, and the last column with ”ABC” conditions
corresponds to intermediate, or mixed, solutions which are specified in eq. (4.127).

the table. For instance, eq. (4.125) in the type IIB table 4.4 is divided into two possible cases;

Case 1:
{

2i
3 W̄5 = iW4 = eφF

(3)
5 = −2i∂̄A = −4i∂̄ ln a ,

∂̄φ = 0 ,

Case 2:

iW̄5 = iW4 = eφF
(3̄)
1 = 2eφF (3̄)

5 = i∂̄φ ,

F
(3)
3 = H(3) = 0 .

(4.125)

Eq. (4.126) too is a bit long to fit into the table, but is given by

2iW̄5 = ±eφF (3̄)
3 = −2i∂̄A = −4i∂̄ ln a = −i∂̄φ . (4.126)

The ”intermediate” ABC solution of eq. (4.127) reads

W3 = eφ

2ab(a2 + b2) ?6 F
(6)
3 ,

H
(6)
3 = − eφ

2ab(a2 − b2)F (6)
3 ,

(4.127)

and is intermediate in the way that one of the three complex variables W3, F
(6)
3 or H(6)

3 vanishes
for one of the conditions A, B or C. With condition A with a = 0 or b = 0, we see that F (6)

3 = 0,
for B when a = ±ib then W3 = 0, and for condition C then a = ±b and so H(6)

3 = 0. Now for
the final cell in table 4.4, eq. (4.128) is given by eq. (4.124) which in the original variables read

W4 = 2(a2−b2)2

a4−2ia3b+2iab3+b4 ∂̄a

W̄5 = 2(a4−4a2b2+b4)
a4−2ia3b+2iab3+b4 ∂̄a

eφF
(3̄)
3 = −4iab(a2+b2)

a4−2ia3b+2iab3+b4 ∂̄a

eφF
(3̄)
5 = −4iab(a2−b2)

a4−2ia3b+2iab3+b4 ∂̄a

H
(3̄)
3 = −2i(a2+b2)(a2−b2)

a4−2ia3b+2iab3+b4 ∂̄a

∂̄A = −4(ab)2

a4−2ia3b+2iab3+b4 ∂̄a

∂̄φ = 2(a2+b2)2

a4−2ia3b+2iab3+b4 ∂̄a
. (4.128)

Again, in this case the conditions A, B and C do not separate into giving three distinct equations.
Namely, condition B cannot be separated from the other two. One might instead turn to the
gauge fixing condition arg(α) + arg(β) = 0, with α = a + ib, β = a − ib, which reproduces eq.
(4.128).

Even though the condition BC in table 4.3 for type IIA implies interpolating parameters in
the same sense as the ABC solutions of type IIB, the solutions do not depend directly on the
”interpolating” parameter β. This means that the solution is not intermediate in the same sense
as those with ABC conditions in type IIB. The type A solutions of type IIA corresponds to NS
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flux only. Using table 4.1 of the previous section we can classify the manifolds for each type of
theory. For condition A in IIA the vanishing torsion classes areW1 = W2 = 0, so the manifold is
complex. For the type BC solutions of IIA the vanishing torsion classes areW1 = W3 = W4 = 0,
so the manifold is symplectic. Opposite to the case A solutions, the BC solutions has only RR
fluxes.

Proceeding to the type IIB table 4.4, we see that W1 = W2 = 0 for all types of solutions. The
first column with type A solutions is the same as the type A solutions of the type IIA theory.
Type C has only RR flux and the same vanishing torsion classes as type A. The type B solutions
have one RR 5-form flux, i.e. F (3)

5 or F (3̄)
5 , one RR 3-form flux F (6)

3 and one NSNS 3-form flux
H

(6)
3 . The 3-form RR and NSNS fluxes are related by a Hodge duality, and is usually expressed

in terms of a complex 3-form flux

G3 = F3 − ie−φH3 ≡ F̂3 − τH3 , (4.129)

where τ = C0 + ie−φ is a complex combination of an axion and a dilaton, usually referred to as
the axion-dilaton. G3 is imaginary self-dual meaning that ?G3 = iG3. It also does not have a
singlet or vector (0, 3) representation, so it must therefore be a (2,1)-form and primitive with
respect to Ω, i.e. GΩ = 0. In fact there is always a complex flux combination that is a (2,1)-form
and primitive for type A and C solutions. They are given by

A : dJ ± iH3 ,

B : F3 ∓ ie−φH3 ,

C : d(e−φJ)± iF3 ,

(4.130)

where the ± comes from the ± in the relations between a and b in each condition A, B and C.

4.5 N = 1 flux vacua with generalised Calabi-Yau manifolds

In the previous section it stood clear that all the type IIB solutions described a complex internal
manifold. For IIA the solution of type A also involved a complex internal manifold, while for
the BC type it was symplectic. A single geometric description of the allowed internal manifolds
that unifies the two would be practical, and is indeed possible, using generalised geometry with
the pure Clifford(6,6) spinors Φ± defined in eq. (4.66) and eq. (4.67). In this description both
the complex and symplectic manifolds are special cases of generalised complex manifolds in a
generalised complex geometry.

So far we have seen that demanding vanishing supersymmetry variations of the gravitino and
dilatino fields, δεψ = δελ = 0, set differential conditions on the internal SU(3) admitted spinor η.
In generalised complex geometry these conditions may be translated into differential conditions
on the pure spinors Φ±. We saw that this procedure explicitly illustrated how torsion, fluxes
and scalars must balance against each other in a N = 1 vacuum. For N = 1 the differential
conditions on Φ± will translate into integrability conditions for an SU(3)-structure, as was first
shown in [21] and which we will reconstruct in this section.

Previously we worked with the case of a 4D Minkowski vacuum mostly because it simplifies
calculations while still illustrating the main principles. As we will see, the differential conditions
on the pure Clifford(6,6) spinors Φ± results in equivalent constraints but with less indigents, and
so we may include the possibility of an AdS vacuum. In doing so, we may choose a particular
basis of 4D spinors ζ± which satisfies

∇µζ∓ = 1
2µγµζ± , (4.131)
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4.5. N = 1 flux vacua with generalised Calabi-Yau manifolds

so that the cosmological constant becomes Λ = −|µ|2. Showing the IIB case (type IIA works
analogously) we let our starting point be the gravitino variations in eq. (4.94). Using eq. (4.131),
one of the external variations become

1
2µη

1
− + 1

2e
A/∂Aη1

+ − 1
8e
A+φ /Fη2

+ = 0 . (4.132)

Here we have used that Dµ = ∇̂µ⊗1+ 1
2γµγ5⊗ /∂A = e−A∇µ⊗1+ 1

2γµγ5⊗ /∂A. The η2-equation
will not be needed in the analysis of this section. The internal variations can be written

(Dm − 1
4Hm)η1

+ + 1
8e
φ /Fγmη

2
+ = 0 ,

(Dm + 1
4Hm)η2

+ − 1
8e
φη1

+γm /F = 0 .
(4.133)

The modified dilatino variation will also prove useful when evaluating the exterior derivatives
of the pure spinors. Including the contribution from eq. (4.131), the η1-equation reads

2µeAη1
− + /Dη1

+ +
(
/∂(2A− φ)− 1

4 /H
)
η1

+ = 0 . (4.134)

Starting with the Φ+ spinor, we use the Fierz identity in eq. (4.65) so that its exterior derivative
is conveniently written as an anticommutation relation according to

��
�dΦ+ = {γm, Dm(η1

+ ⊗ η2
+)}

= /Dη1
+ ⊗ η

2†
+ + γmη1

+ ⊗Dmη
2†
+ +Dmη

1
+ ⊗ η

2†
+ γ

m + η1
+ ⊗ /Dη2†

+

=
(
− 2µe−Aη1

− − /∂(2A− φ)η1
+ + 1

4 /Hη
1
+
)
⊗ η2†

+ + γmη
1
+ ⊗

(1
4η

2†
+Hm + 1

8e
φη1†

+ γ
m /F

)
+
(1

4Hmη
1
+ − 1

8e
φ /Fγmη

2
+
)
⊗ η2†

+ γ
m + η1

+ ⊗
(
− 2µ̄e−Aη2†

− − η
2†
+ /∂(2A− φ) + 1

4η
2†
+ /H

)
= −4Re(µ̄e−A /Φ−)− {/∂(2A− φ), /Φ+}+ 1

4
(
{ /H, /Φ+}+ γm /Φ+H

m +Hm /Φ+γ
m)

+ 1
8e
φγmη

1
+η

1†
+ γ

m /F − 1
8e
φ /Fγmη

2
+η

2†
+ γ

m ,
(4.135)

where η1
+ ⊗Dmη

2†
+ γ

m = η1
+ ⊗ /Dη2†

+ and the expressions for Dmη
1,2†
+ come from eq. (4.133) and

/Dη1,2†
+ from eq. (4.134). It is possible to simplify the H and RR flux parts. In treating the

H flux term, it will prove convenient to use some Clifford(d, d) techniques, in particular the
formulas

γm /Ap =
(((

((((
((((dxm ∧+gmnι∂n)Ap ,

/Apγ
m = (−1)p

((((
((((

((
(dxm ∧ −gmnι∂n)Ap ,

(4.136)

for some p-form Ap. The slash denotes the bispinor equivalent of a form according to the
Clifford map. To shorten notation we may define λm ≡ dxm∧ and ιm ≡ ι∂m

1 so that γm /Ap =
(((

(((((λm + ιm)Ap and /Apγ
m = (−1)p(((((

(((λm − ιm)Ap. Hence, for any form of even degree, the H flux
terms take the form

{ /H, /Aev}+ γm /AevHm +Hm /Aevγ
m = Hmnp

(
1
6 [(λ+ ι)3 + (λ− ι)3]

+ 1
2 [(λ+ ι)(λ− ι)2 + (λ+ ι)2(λ− ι)]

)mnp
/Aev

= Hmnp
(1

3λ
3 + λι2 + λ3 − λι2

)
/Aev

= 4
3Hmnpλ

mnp /Aev

= 8����
�

H ∧Aev ,

(4.137)

where we have used the identities in eq. (4.136) for all three gamma matrices contracted with
H in the { /H, /Aev} term. In eq. (4.135) the terms with H reduce to 8����H ∧ Φ+.

1The contraction operator on a p-form acts according to ι∂n dxm1 ∧ . . . ∧ dxmp = pδ
[m1
n dxm2 ∧ . . . ∧ dxmp].
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4. Type II Supersymmetric Backgrounds with Maximal Spacetime Symmetry

Proceeding with the RR flux terms, it is useful to rewrite the product spaces with η1,2
+ using

the 6D chirality operator γ. Namely, the chirality projector (1− γ)/2 can be rewritten as

1− γ
2 = η− ⊗ η†− + 1

2γ
mη+ ⊗ η†+γm , (4.138)

which can be seen by multiplying both sides with the complete basis of spinors {η±, γmη±} [21].
With this form it is useful to temporarily write the spinors with norm one, i.e. by making the
substitution η1

+ → aη1
+ and η2

+ → bη2
+. Using eq. (4.132) we can rewrite the eφ /F -terms so that

the RR flux part of eq. (4.135) becomes

1
8e
φ
[
|a|2

(
(1− γ)− 2η1

−η
1†
−
)
/F − |b|2 /F

(
(1− γ)− 2η2

−η
2†
−
)]

= 1
8

[
|a|2eφ

(
(1− γ)/F − 2 · 4 · āη1

−
(
b̄µe−Aη2†

− − bη
2†
− /∂A

)
− |b|2(1 + γ)/F + 2 · 4 ·

(
ā/∂Aη1

− − aµ̄e−Aη1
+
)
bη2†
−

]
= 1

8e
φ
[
(|a|2 − |b|2)/F − (|a|2 + |b|2)γ /F

]
+ āb{/∂A, /Φ+}

− 2Re(µ̄e−Aab/Φ−) ,

(4.139)

where we used that /Fγ = −γ /F . Re-absorbing the factors of āb and ab into the pure spinors we
regain the original unnormalised ones with ||η1|| = a and ||η2|| = b. For the product γ /F one
can use the formula /Aγ = i����λ(?A) where ��

�λ(Ap) = (−1)bp/2c /Ap denotes the self-duality relation
and results in that γ /F = −i����?λ(F ). When evaluating the complex conjugation on the pure
spinor we recall that the gamma matrices are chosen to be purely imaginary, and so complex
conjugation and slash commute on even forms and anticommute on odd ones. Hence we have that
η1
−⊗η

2†
− = /Φ+ = ��̄Φ+ and η1

−⊗η
2†
+ = /Φ− = −��̄Φ−. This also results in that Re(µ/Φ−) = i���

��Im(µ̄Φ−).
Inserting these alternative expressions of the H and RR flux terms into eq. (4.135), the

equation for dΦ+ now reads

e−2A+φ(d−H∧)(e2A−φΦ+) = −3ie−AIm(µ̄Φ−) + dA ∧ Φ̄+

+ 1
16e

φ
[
(|a|2 − |b|2)F + i(|a|2 + |b|2) ? λ(F )

]
.

(4.140)

This equation can be rewritten slightly using the fact that eq. (4.132) and eq. (4.133) can be
found to give the relations

d|η1|2 = |η2|2 dA , d|η2|2 = |η1|2 dA . (4.141)

Since |η1|2 = |a|2 and |η2|2 = |b|2 this results in that

|a|2 + |b|2 = c+e
A , |a|2 − |b|2 = c−e

−A , (4.142)

where the c+ > 0 and c− ≥ 0 are two integration constants. Using them in eq. (4.140), we get

e−2A+φ(d−H∧)(e2A−φΦ+) = −3ie−AIm(µ̄Φ−) + dA ∧ Φ̄+

+ 1
16

[
c−e

φ−AF + ic+e
φ+A ? λ(F )

]
.

(4.143)

The total norm of the pure spinor becomes ||Φ||2 = 1
8 ||η

1||2||η2||2 = 1
32(c2

+e
2A − c2

−e
−2A).
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4.5. N = 1 flux vacua with generalised Calabi-Yau manifolds

We may now proceed to calculate the exterior derivative of the negative chirality pure spinor,
which by the same Fierz arrangement in eq. (4.65) can be written as a commutator:

��
�dΦ− = [γm, Dm(η1

+ ⊗ η
2†
− )]

= /Dη1
+ ⊗ η

2†
− + γmη1

+ ⊗ η
2†
− γ

m −Dmη
1
+ ⊗ η

2†
− γ

m − η1
+ ⊗ /Dη2†

−

=
(
− 2µe−Aη1

− − /∂(2A− φ)η1
+ + 1

4 /Hη
1
+
)
⊗ η2†
− + γmη1

+ ⊗
(1

4η
2†
−Hm + 1

8η
1†
− γ

m /F
)

−
(1

4Hmη
1
+ − 1

8 /Fγmη
2
+
)
⊗ η2†
− γ

m − η1
+ ⊗

(
2µe−Aη2†

+ − η
2†
− /∂(2A− φ) + 1

4η
2†
− /H

)
= −4µe−ARe(/Φ+)− [/∂(2A− φ), /Φ−] + 1

4
(
[ /H, /Φ−] + γm /Φ−Hm −Hm /Φ−γm

)
.

(4.144)
The RR flux terms cancel since γmηi+η

i†
−γ

m = 0 which follows from the fact that

γm /Apγ
m = (−1)p(6− 2p) /Ap , (4.145)

and Φ− is a 3-form for an SU(3)-structure. Hence, we need only evaluate the H flux term to
obtain an expression similar to the previous one. Again using eq. (4.136) one has for an odd
form /Aodd that

[ /H, /Aodd] + γm /AoddHm −Hm /Aoddγ
m = Hmnp

(
1
6 [(λ+ ι)3 + (λ− ι)3]

+ 1
2 [(λ+ ι)(λ− ι)2 + (λ+ ι)2(λ− ι)]mnp /Aodd

= Hmnp

(
1
3λ

3 + λι2 + λ3 − λι2
)
/Aodd

= 4
3Hmnpλ

mnp /Aodd

= 8����
�

H ∧Aodd ,
(4.146)

which is the same as for the previous case. This adds up so that eq. (4.144) becomes

e−2A+φ(d−H∧)(e2A−φΦ−) = −2µe−ARe(Φ+) . (4.147)

The next and final task is to prove how the obtained equations eq. (4.141), eq. (4.143) and eq.
(4.147) imply the supersymmetry equations in eqs. (4.132)–(4.134). First, we know that the
pair of pure spinors Φ± defines the two Weyl spinors η1,2

+ since the Φ±s define an SU(3)×SU(3)-
structure and the η1,2

+ each define an SU(3)-structure. The next step is to expand the left-hand
side of the supersymmetry variations in terms of a spinorial basis consisting of these η1,2

+ spinors.
Specifically, the basis can be written as a ”pure spinor Hodge diamond”, defined as

Φ+

Φ+γ
i2 γ ı̄1Φ+

Φ−γ ı̄2 γ ı̄1Φ+γ
i2 γi1Φ̄−

Φ− γ ı̄1Φ−γ ̄2 γi1Φ̄−γj2 Φ̄− ,

γ ı̄1Φ− γi1Φ̄+γ
̄2 Φ̄−γi2

γi1Φ̄+ Φ+γ
̄2

Φ̄+

where we denote holomorphic and antiholomorphic indices i1, j1, . . . and ı̄1, ̄1, . . . with respect
to the almost complex structure I1 defined by η1 and analogously i2, j2, . . . and ı̄2, ̄2, . . . with

65



4. Type II Supersymmetric Backgrounds with Maximal Spacetime Symmetry

respect to the almost complex structure I2 of η2. In this basis the RR flux F = F1 + F3 + F5 is
written

/F = f10
i2
/Φ+γ

i2 + f01
ı̄1 γ

ı̄1 /Φ+

+f30 /Φ− + f21
ı̄1 ̄2γ

ı̄1 /Φ−γ ̄2 + f12
i1j2γ

i1 /̄Φ−γj2 + f03 /̄Φ−
+f32

i1 γ
i1 /̄Φ+ + f23

ı̄2
/̄Φ+γ

ı̄2 ,

(4.148)

where the fs are coefficients. The left-hand side of the supersymmetry variations can then be
written

( /D − 1
4 /H)η1 = (T 1

mγ
m + T 1

− + iT 1
−γ)η1 ,

( /D + 1
4 /H)η2 = (T 2

mγ
m + T 2

− + iT 2
−γ)η2 ,

(Dm − 1
4Hm)η1 = (iQ1

mnγ
n + ∂m ln |a|+ iQ1

mγ)η1 ,

(Dm + 1
4Hm)η2 = (iQ2

mnγ
n + ∂m ln |b|+ iQ2

mγ)η2 .

(4.149)

Now, by expanding eq. (4.143) and eq. (4.147) in this basis, we get components

T 1
ı̄1 − iQ

2
ī1

= −∂ı̄1(2A− φ+ ln |b|) + 1
4e
φ|a|2f01

ı̄1 , T 1 = −3µe−A − 1
4e
φ|a|2R03 ,

1
4e
φ|b|2R01

ı̄1 = ∂ı̄A , iQ1
i2j1 = 1

4e
φ|b|2f12

j1i2

(4.150)

respectively

T 1 = −2µe−A , T 1
ı̄1 + iQ2

ı̄1 = −∂ı̄1(2A− φ+ ln |b|) , Q1
ı̄2j1 = 0 . (4.151)

There is also another set of these identities obtained by letting 1 ↔ 2, a ↔ b and f01 → −f23

in the above equations. The content in the supersymmetry equations expanded in this basis is
recovered by making some appropriate linear combinations of eq. (4.150) and eq. (4.151) above
as well as eq. (4.141), to obtain

Q1
ı̄2j2 = 0 , iQ1

i2j1 =1
4e
φ|b|2f12

j1j2 , iQ1
ı̄2 + ∂i2 ln |a| = iQ1

i2 + ∂i2 ln |a|+ 1
4e
φ|b|2f10

i2 = 0 ,
µe−A + 1

4e
φ|b|2f03 = 0 , 1

4e
φ|b|2f01

ı̄1 = ∂ı̄A ,

2µe−A + T 1 = 0 , T 1
ı̄1 + ∂ı̄1(2A− φ) = 0 ,

(4.152)
as argued in [21]. Again there is another set with 1 ↔ 2, a ↔ b and f01 → −f23. Since these
equations have the same content as the supersymmetry variations of eqs. (4.132)–(4.134), the
proof is finished.

In this chapter we have seen the fundamental geometric descriptions of supersymmetric back-
grounds and how present fluxes must balance against the intrinsic torsion of the internal mani-
fold, the warp factor and the assumed complex functions a and b. It is clear that the formalism
of complex generalised geometry provides a simple but powerful description of the internal man-
ifold.
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5
4D Effective Theories

In this chapter we review the 4D effective theories arising from compactifications of 10D type II
supergravity theories on Calabi-Yau 3-folds and orientifolds. In section 5.3 magnetic and electric
fluxes are allowed to be present and we will discuss some of their effects on the fields in each
theory. Section 5.4 discusses how the 4D theories can be written in terms of superpotentials, and
section 5.5 makes some comments on the effects of fluxes on general SU(3)-structure manifolds.

5.1 Calabi-Yau compactifications of type II theories

In this section we discuss the compactification of the type II supergravity theories on a Calabi-
Yau 3-fold and its orientifold variants. The 4D effective action is obtained by a Kaluza-Klein
reduction, where we only keep a finite number of massless modes and discard all the massive
ones. The massless modes for each field correspond to harmonic forms on the internal manifold.

5.1.1 The moduli space of Calabi-Yau manifolds

Being in the low-energy limit of type II string theory and considering internal manifolds of string
scale sizes, it is natural to consider only the massless modes. The massless modes of the internal
eigenfunctions correspond to a set of harmonic forms admitted by the manifold. The elements
of the cohomology groups are forms, and they may be chosen to be harmonic because of the
isomorphism between the space of harmonic p-forms and the pth cohomology class.

The Hodge numbers of the Calabi-Yau manifold are rather simple. See Appendix B.4. The
fact that h(1,0) = 0 tells us that all closed 1-forms are also exact – they are ”trivial in coho-
mology”. The h(2,0) tells us the same thing about 2-forms. The Hodge number h(3,0) = 1 has a
representative Ω – the holomorphic 3-form known from earlier.

A Calabi-Yau manifold M is characterised by the Hodge numbers h(1,1) and h(2,1), which
denote the dimension of the Dolbeaut cohomology group H(1,1) and H(2,1) respectively. The
H(1,1) group is Hodge dual to H(2,2). The elements of H(1,1) are (1,1)-forms, and we may choose
a basis of H(1,1) to consist of harmonic (1,1)-forms, denoted ωa with a = 1, . . . , h(1,1). The
same can be done for H(2,2), whose basis then consists of harmonic (2,2)-forms ω̃a which may
be defined in relation to the ωa to fulfil∫

M
ωa ∧ ω̃b = δba ,

∫
M
ωa ∧ ωb =

∫
M
ω̃a ∧ ω̃b = 0 . (5.1)

The tilde of ω̃a is there to make explicit the difference to ωa, as no metric can raise or lower the
index a into the other form.

For real 3-forms the elements are denoted αC and βC with C = 0, . . . , h(2,1) and lie in the
spaces of H(2,1) ⊕H(1,2) and H(3,0) ⊕H(0,3) respectively. They are chosen to satisfy∫

M
αC ∧ βD = δDC ,

∫
M
αC ∧ αD =

∫
M
βC ∧ βD = 0 . (5.2)
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Cohomology group Basis Index span
H(0,0) 1
H(1,1) ωa a = 1, . . . , h(1,1)

H(2,1) χc c = 1, . . . , h(2,1)

H(2,2) ω̃a a = 1, . . . , h(1,1)

H(3,3) vol(M)
H(3) (αC , βC) C = 0, . . . , h(2,1)

Table 5.1: Cohomology groups of a Calabi-Yau 3-fold and a corresponding bases of harmonic
forms.

One can also choose a basis of complex forms, which are only in H(2,1), and denote them by χc.
Finally there is also a (3, 3)-form, which is the volume of the Calabi-Yau space, denoted vol(M)
or V . In table 5.1 we summarise all the non-trivial cohomology groups on M and their basis
elements.

In the next section these harmonic forms will be used to expand the 10D supergravity fields
in order to obtain 4D massless fields, which correspond to the zero-modes of these expansions.
However, there are also additional massless modes arising from deformations of the metric of
the manifold. The Calabi-Yau is Ricci flat; Rmn(g) = 0, and one might ask what deformations
of the metric can be made that preserve Ricci flatness. That is, what δg fulfils

Rmn(g + δg) = 0 , Rmn(g) = 0 ? (5.3)

If g is a Ricci-flat metric, then so is every metric related by diffeomorphism, i.e. a coordinate
transformation. To search for deformations δg beyond those generated by a coordinate transfor-
mation we impose a coordinate condition in order to achieve a diffeomorphism invariance. This
is analogous to fixing a gauge in electromagnetism. The appropriate choice is demanding

∇mgmn = 0 . (5.4)

A δg that satisfies this will also satisfy∫
M

ddx√gδgmn(∇mξn +∇nξm) = 0 , (5.5)

for some vector field ξm [8]. This means that δg is orthogonal to any change of the metric
induced by a diffeomorphism generated by the vector field ξm. Now expanding eq. (5.3) to first
order in δg and using Rmn(g) = 0 as well as the coordinate condition of eq. (5.4), one obtains
a differential equation

∇ρ∇ρδgmn − 2Rmρnσδgρσ = 0 , (5.6)

called the Lichnerowicz equation for a metric deformation. Here we used that the manifold is
compact, so a term ∇m∇ntr(δg) vanishes.

Since the Calabi-Yau is a Hermitian manifold the metric components with two holomorphic
or antiholomorphic indices vanishes; gij = gı̄̄ = 0, see Appendix B.4. Therefore the metric
deformations will be on the form gī, so eq. (5.6) becomes

∇ρ∇ρδgī − 2Rik̄l̄δgkl̄ = 0 , (5.7)

where now ρ = (k, k̄). With the definition of a Laplacian action acting on a form, see eq. (B.13),
eq. (5.7) is equivalent to

(∆δg)ī = 0 . (5.8)
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The metric variation δgī may be seen as components of a (1,1)-form. This means that we may
view harmonic (1,1)-forms as metric variations of the type δgī and thus to cohomologically
non-trivial changes to the Kähler form J = igī dzi ∧ dz̄ ̄. Expanding δgī in the basis ωa of
harmonic (1,1)-forms, the deformations to the Kähler structure on the metric has the form of

g + δg = −iJ = vaωa , (5.9)

where a = 1, . . . h(1,1) and va are real scalars, known as Kähler moduli. In order for gī + δgī
to be a Kähler metric the moduli va has to be chosen such that the deformed metric is still
positive definite. Positive definiteness of a metric with associated Kähler form J is equivalent
to it fulfilling the conditions∫

C
J > 0 ,

∫
S
J ∧ J > 0 ,

∫
M
J ∧ J ∧ J > 0 , (5.10)

for all curves C and surfaces S on the Calabi-Yau manifold M in question. The subset in Rh(1,1)

spanned by the parameters va such that eq. (5.10) is satisfied, is known as the Kähler cone.
The B field present in both type II theories can also be expanded in h(1,1) real scalars ba.

Using these it is customary to ”complexify” the Kähler cone, by defining the complex scalar
fields ta such that

Bī + iJī = (ba + iva)(ωa)ī ≡ ta(ωa)ī . (5.11)

One usually calls this the complexified Kähler form J ≡ B+ iJ and the dimension of ta is h(1,1).
In addition to finding metric deformations δgī which fulfil eq. (5.3), there is actually another

type of deformations that can be made. The purely holomorphic and antiholomorphic metric
components gij and gı̄̄ vanish on a Calabi-Yau, although we may consider deformations to non-
zero values. This will change the complex structure of the manifold, thus bringing us to study
variations of the complex structure. With each such variation one can associate the complex
(2,1)-form

Ωijkg
kl̄δgl̄m̄ dzi ∧ dzj ∧ dz̄m̄ , (5.12)

which is harmonic if eq. (5.3) is fulfilled. Ωijk is the familiar unique holomorphic (3,0)-form.
Turning to the space of complex structure deformations of the metric, we use the (2,1)-form of
eq. (5.12) to introduce another set of (2,1)-forms that later will be associated with the metric
deformations. These (2,1)-forms are

χc = 1
2(χc)ijk̄ dzi ∧ dzj ∧ dzk̄ , where (χ̄c)ijk̄ = −1

2Ωij
l̄ ∂gk̄l̄
∂zc

, (5.13)

and the zc, c = 1, . . . , h2,1 are local coordinates for the complex structure moduli space, known
as complex structure moduli. Indices are raised and lowered with the Hermitian metric, so that
for example gkl̄Ωijk = Ωij

l̄. Like the (2,1)-form in eq. (5.12) which the χc were constructed
with, they are also harmonic. Inverting the relations of eq. (5.13), we obtain a formula for the
metric deformations, namely

δgı̄̄ = − 1
||Ω||2 Ω̄ī

kl(χc)kl̄δzc , where ||Ω||2 = 1
6ΩijkΩ̄ijk . (5.14)

The total moduli space of the metric deformations can be seen as a sum of the parameters ta
and zc. It has a natural metric defined on it, which is given as a sum of two pieces corresponding
to the deformations Kähler structure and complex structure, in turn generated by ta and zc.
The metric can be written [22]

ds2 = 1
2V

∫
dx6√ggīgkl̄

(
δgikδḡl̄ + (δgil̄δgk̄ − δBil̄δBk̄)

)
, (5.15)
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where V denotes the volume of the Calabi-Yau. This diagonal form of the metric implies that
we may write the moduli space on the product form

M =Mcs ⊕MKs , (5.16)

whereMcs is the complex structure moduli space andMKs the Kähler structure moduli space.
These spaces will be described in a little more detail in the next two paragraphs.

The complex structure moduli space. The metric of the complex structure moduli space
can be written in terms of the local coordinates zc according to

ds2 = 2Gcd̄δz
cδz̄d̄ . (5.17)

With the aid of eq. (5.15) and eq. (5.14) this can be rewritten such that the metric is given by

Gcd̄δz
cδz̄d̄ = −

(
i
∫
χc ∧ χ̄d̄

i
∫

Ω ∧ Ω̄

)
δzcδz̄d̄ . (5.18)

A change in the complex structure will make the (3,0)-form Ω transform into a linear com-
bination of a (3,0)-form and a (2,1)-form since dz becomes a linear combination of dz and dz̄.
More specifically, we have a formula found by Kodaira stating that

∂Ω
∂zc

= KcΩ + χc , (5.19)

where Kc is a coefficient which depends on the coordinates zc, but not on the coordinates of the
Calabi-Yau manifold. Recalling that Gcd̄ = ∂c∂d̄K for a Kähler space and combining eq. (5.18)
and eq. (5.19), it becomes clear that the complex structure moduli space is a Kähler manifold
with the Kähler potential

Kcs = − ln
(
i

∫
Ω ∧ Ω̄

)
. (5.20)

Combining this equation with eq. (5.19), Kc is determined to Kc = −∂K/∂zc.
It is useful to introduce another basis now consisting of 3-cyclesAC andBC with C = 0, . . . , h(2,1)

in order to describe the complex structure moduli space in more detail. The 3-cycles are chosen
so that their intersection numbers are

AC ∩BD = −BD ∩AC = δCD , and AC ∩AD = BC ∩BD = 0 . (5.21)

They are related to the cohomology basis {αC , βC} introduced earlier via∫
AC

αD =
∫
M
αD ∧BC = δCD , and

∫
BC

βD =
∫
M
βD ∧ αC = −δDC . (5.22)

With this notation we may define coordinates ZC on the complex structure moduli space using
the A periods of Ω such that

ZC ≡
∫
AC

Ω , (5.23)

with C = 0, . . . , h(2,1). Note that the number of coordinates defined like this is one more than
the number of moduli fields. To compensate we define the quotient space

zc = ZC

Z0 , (5.24)
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where again c = 1, . . . , h(2,1). For the B periods of Ω we have that

FC ≡
∫
BC

Ω , (5.25)

where F can be taken as a function of the Zs; FC = FC(Z), since they span the same number
of coordinates. With these coordinates Ω can be rewritten as

Ω = ZCαC −FC(Z)βC . (5.26)

Using eq. (5.19) it is straightforward to see that∫
Ω ∧ ∂CΩ = 0 , (5.27)

since there are only three holomorphic and antiholomorphic coordinates each. This may be used
to show that

FC = ZD
∂FD
∂ZC

= 1
2∂C(ZDFD) , (5.28)

which is equivalent to writing

FC = ∂CF , with F = 1
2Z

CFC . (5.29)

This is useful because now all of the B periods can be expressed as derivatives of a single function
F , called the prepotential. Since 2F = ZC∂CF , F is homogeneous of degree two meaning that
a coordinate rescaling Z → λZ yields F(λZ) = λ2F(Z). The prepotential is only defined up to
an overall scaling, so technically it is not a function but rather a section of a line bundle over
the moduli space.

The Kähler potential can be rewritten in terms of this prepotential, so that the prepotential
effectively determines the metric of the moduli space via Gcd̄ = ∂c∂d̄K. This makesMcs a special
Kähler manifold. For closed 3-forms {α, β} there is a general rule stating that∫

M
α ∧ β = −

∫
AC

α

∫
BC

β −
∫
AC

β

∫
BC

α , (5.30)

where summation over C is implied, which enables us to rewrite the Kähler potential in eq.
(5.20) according to

Kcs = − ln
[
i
(
Z̄CFC − ZCF̄C

)]
. (5.31)

Note that Ω in eq. (5.26) is only defined up to complex rescalings by some holomorphic function
e−f(z), which via eq. (5.20) also allows for changes to the Kähler potential according to

Ω→ Ωe−h(z) ⇒ Kcs → Kcs + f + f̄ . (5.32)

This is known as a Kähler transformation. This is the reason we may choose the gauge Z0 = 1,
ZC = (1, zc), since the rescaling symmetry of Ω(Z) renders one of the periods ZC unphysical.

The Kähler structure moduli space. We start by looking at the inner product of the space
of the (1,1) cohomology class H(1,1), which is given by

G(ρ, σ) = 1
2V

∫
M

d6x
√
gρīσkl̄g

il̄gk̄ = 1
2V

∫
M
ρ ∧ ?σ , (5.33)

where ρ and σ are real (1,1)-forms [23]. This metric can be rewritten entirely in terms of the
cubic form

κ(ρ, σ, τ) ≡
∫
M
ρ ∧ σ ∧ τ . (5.34)
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Recall that V = 1
6
∫
M J ∧ J ∧ J is the volume of the Calabi-Yau manifold. There is also the

identity

?σ = −J ∧ σ − 3
2
κ(σ, J, J)
κ(J, J, J)J ∧ J

= −J ∧ σ + 1
4V κ(σ, J, J)J ∧ J , (5.35)

which enables us to write the metric as

G(ρ, σ) = − 1
2V κ(ρ, σ, J) + 1

8V 2κ(ρ, J, J)κ(σ, J, J) . (5.36)

Using the earlier defined cohomology basis ωa of harmonic (1,1)-forms together with the com-
plexified Kähler form J = B+ iJ = taωa where a = 1, . . . , h(1,1), the metric on the moduli space
is given by

Gab̄ ≡
1
2G(ωa, ωb̄) = ∂

∂ta
∂

∂t̄b̄
KKs , (5.37)

where the Kähler potential of the Kähler structure moduli space KKs is

KKs = − ln
(4

3

∫
M
J ∧ J ∧ J

)
. (5.38)

Thus we have just shown that the Kähler structure moduli space is a Kähler manifold. Similar
to the previous case of the complex structure, we may introduce new intersection numbers for
the Kähler structure moduli according to

κ ≡ κ(J, J, J) ≡
∫
M
J ∧ J ∧ J , κa ≡ κ(ωa, J, J) ≡

∫
M
ωa ∧ J ∧ J ,

κab ≡ κ(ωa, ωb, J) ≡
∫
M
ωa ∧ ωb ∧ J , κabc ≡ κ(ωa, ωb, ωc) ≡

∫
M
ωa ∧ ωb ∧ ωc ,

(5.39)

so that the Kähler potential in eq. (5.38) becomes

KKs = − ln
(
i
6κabc(t

a − t̄a)(tb − t̄b)(tb − t̄b)
)

= − ln(4
3κ) . (5.40)

With this Kähler potential, the metric of eq. (5.37) can be written

Gab̄ = ∂ta∂t̄b̄K = −3
2

(
κab
κ
− 3

2
κaκb
κ2

)
= 3

2κ

∫
ωa ∧ ?ωb . (5.41)

Developing the analogy to the case of the complex structure moduli space, we define

F̃(t) ≡ 1
6
κabct

atbtc

t0
= 1

6t0
∫
M
J ∧ J ∧ J , (5.42)

which is analogous to the prepotential F of the complex structure moduli space. The additional
coordinate t0 has been introduced in order to make F̃(t) a homogeneous function of degree two.
Finally, we reach the Kähler potential expression

KKs = − ln
[
i

(
tA
∂F̃
∂t̄A
− t̄A ∂F̃

∂tA

)]
, (5.43)

where t0 is included in the summation over A = 0, . . . , h(1,1) but evaluated at t0 = 1, as it is
customary to take tA = (1, ta). Note that this Kähler potential is the analogue of the complex
structure Kähler potential in eq. (5.31), but with Kähler coordinates tA instead of complex
structure coordinates ZC = (1, zc) and different prepotentials F̃ versus F . The manifoldMKs

is also special Kähler, since the Kähler potential in eq. (5.40) can be derived from its prepotential
in eq. (5.42), thus determining the metric.

72



5.1. Calabi-Yau compactifications of type II theories

5.1.2 Dimensional reduction to 4D

In this section we will apply the tools developed in the previous subsection in order to compactify
the type II theories on Calabi-Yau manifolds. The type II supergravity theories are maximally
symmetric in 10D and are naturally obtained as the low-energy limit of the type II superstring
theories. The low-energy limit omits all massive modes so in the corresponding supergravity
theories the spectrum only consists of massless string modes. The fermionic massless string
modes are the gravitinos and dilatinos, which are in the NSR/RNS sectors. In type IIA the
gravitinos have different chiralities and in type IIB they have the same chiralities. The bosonic
massless fields common for both type II theories are the dilaton φ(10), the graviton g(10) and
the 2-form field B(10)

2 , which all come from the NSNS sector. Here the superscript (10) denotes
10D, and will be dropped when reaching the corresponding fields in 4D.

In type IIA 10D supergravity, the bosonic RR sector contains the form fields C(10)
1 and C(10)

3 .
Defining the field strengths of the different fields in type IIA according to

H
(10)
3 ≡ dB(10)

2 , F
(10)
2 ≡ dC(10)

1 , F
(10)
4 ≡ dC(10)

3 − C(10)
1 ∧H(10)

3 , (5.44)

the 10D action in the Einstein frame is given by [14]

S
(10)
IIA =

∫
−1

2R
(10) ? 1− 1

4 dφ(10) ∧ ? dφ(10) − 1
4e
−φ(10)

H
(10)
3 ∧ ?H(10)

3 − 1
2e

3φ(10)/2F
(10)
2 ∧ ?F (10)

2

− 1
2e
φ(10)/2F

(10)
4 ∧ ?F (10)

4 − 1
2B

(10)
2 ∧ F (10)

4 ∧ F (10)
4 .

(5.45)
The unique field strengths for type IIB, i.e. the ones constructed out of the axion C(10)

0 , 2-form
C

(10)
2 and 4-form C

(10)
4 , are defined as

F
(10)
1 ≡ dC(10)

0 , F
(10)
3 ≡ dC(10)

2 −C(10)
0 ∧H(10)

3 , F
(10)
5 ≡ dC(10)

4 −C(10)
2 ∧H(10)

3 . (5.46)

The type IIB action in 10D is given in the Einstein frame by

S
(10)
IIB =

∫
−1

2R
(10) ? 1− 1

4 dφ(10) ∧ ? dφ(10) − 1
4e
−φ(10)

H
(10)
3 ∧ ?H(10)

3 − 1
4e

2φ(10)
F

(10)
1 ∧ ?F (10)

1

− 1
4e
φ(10)

F
(10)
3 ∧ ?F (10)

3 − 1
8F

(10)
5 ∧ ?F (10)

5 − 1
4C

(10)
4 ∧H(10)

3 ∧ F (10)
3 ,

(5.47)
where the self-duality condition F

(10)
5 = ?F

(10)
5 is imposed at the level of the equations of

motions.
The resulting 4D theory after compactification also has N = 2. For the zero mode fields in

the Kaluza-Klein compactification this means that they have to assemble into massless N = 2
multiplets. The zero modes are in a one to one correspondence with harmonic forms on the
Calabi-Yau manifold M , and thus their multiplicity is counted by the dimension of the non-
trivial cohomologies on M .

For the Kaluza-Klein compactification one chooses a block diagonal 10D background metric
according to

ds2 = ηµν(x) dxµ dxν + gī(y) dyi dȳ . (5.48)

Some of the 4D fields arise as variations around this background metric. The fields in question
correspond to the 4D graviton and the geometric deformations va(x) and zc(x) defined in eq.
(5.9) and eq. (5.13). Variations of off-diagonal entries in the metric in eq. (5.48) must vanish
since a Calabi-Yau manifold does not admit harmonic 1-forms.
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IIA IIB
gravity multiplet 1 {gµν , A0} 1 {gµν , V 0}
vector multiplets h(1,1) {Aa, va, ba} h(2,1) {V c, zc}
hypermultiplets h(2,1) {zc, ξc, ξ̃c} h(1,1) {va, ba, ca, ρa}
tensor multiplet 1 {B2, φ, ξ

0, ξ̃0} 1 {B2, C2, φ, C0}

Table 5.2: The 4D moduli fields of the compactified type IIA and IIB supergravity theories on
a Calabi-Yau, arranged in N = 2 multiplets. The middle column denote the dimension of each
multiplet.

Now, the next step is to expand the 10D NSNS and RR fields in terms of harmonic cohomology
basis defined in table 5.1. The NSNS sector is the same for type IIA and IIB, with expansions

φ(10)(x, y) = φ(x) , (5.49)

g
(10)
ī (x, y) = iva(x)(ωa)ī(y) , g

(10)
ij = iz̄c(x)

((χc)ik̄l̄Ωk̄l̄j

|Ω|2
)

(y) , (5.50)

B
(10)
2 (x, y) = B2(x) + ba(x)ωa(y) . (5.51)

For type IIA, the RR gauge potentials C(10)
1 and C(10)

3 are expanded as

C
(10)
1 = A0(x) , (5.52)

C
(10)
3 = Aa(x) ∧ ωa + ξC(x)αC(y)− ξ̃C(x)βC(y) , (5.53)

where again a = 1, . . . , h(1,1) and C = 0, . . . , h(2,1). Here ba, ξC and ξ̃C are 4D scalars, A0, Aa are
1-forms and B2 is a 2-form. The A0 in the expansion of C(10)

1 is only 4D as a direct consequence
of the Calabi-Yau not admitting harmonic 1-forms. As for the N = 2 multiplets, they will be
built from the geometric deformations va and zc as well as the fields in the expansions of eqs.
(5.51)–(5.53). First, the graviton gµν and 1-form A0 form a gravity multiplet {gµν , A0}. Then
there are h(1,1) vector multiplets {Aa, va, ba}, a number of h(2,1) hypermultiplets {zc, ξc, ξ̃c}, and
one tensor multiplet {B2, φ, ξ

0, ξ̃0} with only bosonic components. The N = 2 multiplets for the
type II theories compactified on a Calabi-Yau are summarised in table 5.2. The multiplets in
table 5.2 consist of more than the coordinates ta and zc of the Calabi-Yau 3-fold’s moduli spaces
MKs andMcs respectively. Therefore, the N = 2 moduli space is said to be of the structure

MSK ⊕MQ , (5.54)

where MSK is the moduli space of the vector multiplet, i.e. a special Kähler manifold with
MKs ∈MSK. TheMQ is a special quaternionic manifold spanned by the scalars in the hyper-
multiplet, whereMcs ∈MQ.

The low-energy effective action in 4D is usually displayed in a ”standard N = 2 form” and
to obtain it we need to define the 4D dilaton D as [23]

eD ≡
√

6
κ
eφ . (5.55)

Here φ is the direct 4D equivalent of the φ(10) in 10D, and κ is as defined in eq. (5.39) where
we again have combined the real scalars ba and va into the complex fields ta introduced in eq.
(5.11). The va is evaluated in the string frame, and because of this, so are J = vaωa and
κ =

∫
M J ∧ J ∧ J . In the string frame the Einstein-Hilbert term takes the form 1

2e
−2φ(10)

R ? 1,
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so to obtain an action in the Einstein frame a Weyl rescaling Jstr = eφ/2JE needs to be done.
Inserting the expansions of eqs. (5.51)–(5.53) into the 10D action in eq. (5.45) and integrating
over the Calabi-Yau manifold, then using the dilaton definition and Weyl rescaling, the 4D
action becomes

S
(4)
IIA =

∫
M4
−1

2R ? 1− 1
2ReNABF

A ∧ FB + 1
2 ImNABF

A ∧ ?FB

−Gab dta ∧ ?dt̄b − huv dqu ∧ ?dqv ,
(5.56)

as first obtained in [24][25]. Here the indices span A,B = 0, . . . , h(1,1) and a, b = 1, . . . , h(1,1).
The field strengths are FA = dAA = (dA0,dAa). Gab is the metric on the Kähler structure
moduli space defined in eq. (5.37) which depends only on the coordinates ta of MKs. The
metric Gab together with NAB encode the couplings of the vector multiplets in the action of eq.
(5.56). The complex matrix N is known as a gauge coupling function, and is given in terms of
the prepotential F̃ according to

NAB = F̃AB + 2i ImF̃ACImF̃BDt
CtD

ImF̃DCtCtD
, (5.57)

with A,B,C,D = 0, . . . , h(1,1). Inserting the expression for the prepotential in eq. (5.42) into
NAB, the real and imaginary parts of the matrix is determined to

ReNAB =
(
−1

3κabcb
abbbc 1

2κabcb
bbc

1
2κabcb

bbc −κabcbc

)
, (5.58)

ImNAB =

−κ+
(
κab − 1

4
κaκb
κ

)
babb

(
κab − 1

4
κaκb
κ

)
bb(

κab − 1
4
κaκb
κ

)
bb κab − 1

4
κaκb
κ

 . (5.59)

Here the (0,0), (0,1), (1,0), and (1,1) matrix elements correspond to the (0, 0), (0, a), (a, 0) and
(a, b) components of N , so that for instance ReN00 = −1

3κabcb
abbbc, etc.

The couplings of the hypermultiplet are encoded in the quaternionic matrix huv, obtained
from the Kaluza-Klein reduction as [25]

huv dqu dqv = (dD)2 +Gcd̄ dzc dz̄d + 1
4e
D(da− (ξ̃C dξC − ξC dξ̃C))2

− 1
2e

2D(ImM)−1CD(dξ̃C −MCD dξD)(dξ̃E −MEF dξF ) ,
(5.60)

where Gcd̄ is the metric of the moduli space of complex structure deformations, defined earlier
in eq. (5.18). The complex coupling matrixMCD is the complex structure equivalent of NAB,
which can be determined by eq. (5.57) using the complex structure prepotential F and metric
Gcd ofMcs, i.e.

MCD = FCD + 2i ImFCEImFDFZ
EZF

ImFEFZEZF
. (5.61)

It can also defined in terms of the H(3) cohomology basis [26] according to∫
M
βC ∧ ?βD = (ImM)−1CD ,∫

M
αC ∧ ?αD = −

(
ImM+ (ReM)(ImM)−1(ReM)

)
CD

,∫
M
αC ∧ ?βD = −

(
(ReM)(ImM)−1

)
C

D .

(5.62)
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We proceed to the case of type IIB theory compactified on a Calabi-Yau. For clarity an
explicit calculation of this case is found in Appendix D, but here we only present the main
steps. The procedure for type IIA is analogous.

The NSNS field expansions for type IIB are the same as the ones for type IIA, i.e. eqs.
(5.49)–(5.51) for the dilaton, metric and B

(10)
2 field. The RR fields however will be expanded

according to

C
(10)
2 = C2(x) + ca(x)ωa(y) , (5.63)

C
(10)
4 = Da

2(x) ∧ ωa(y) + V C(x) ∧ αC(y)− UC(x) ∧ βC(y) + ρa(x)ω̃a(y) . (5.64)

In the field expansions for type IIB the 4D fields that appear are the scalars ba(x), ca(x), ρa(x),
the 1-forms V C(x), UC(x) and the 2-forms B2(x), C2(x), Da

2(x). The self-duality condition
F

(10)
5 = ?F

(10)
5 eliminates half the degrees of freedom, which will allow us to drop Da

2 and
Uc in favour of V C and ρa in the expansion above.

Inserting the expansions of eqs. (5.63), (5.64) into the action in eq. (5.47) and integrating
over the Calabi-Yau manifold, the resulting 4D action, see Appendix D or [27][28], is

S
(4)
IIB =

∫
−1

2R ? 1+ 1
4ReMCDF

C ∧ FD + 1
4 ImMCDF

C ∧ ?FD

−Gcd dzc ∧ ?dz̄d −Gab dta ∧ ? dt̄b − dD ∧ ? dD − 1
24e

2Dκ dC0 ∧ ?dC0

− 1
6e

2DκGab(dca − C0 dba) ∧ ?(dcb − C0 dbb)
− 3

8κe
2DGad(dρa − κabccb dbc) ∧ ?(dρd − κdefce dbf ) (5.65)

− 1
4e
−4D dB2 ∧ ? dB2 − 1

24e
−2Dκ(dC2 − C0 dB2) ∧ ?(dC2 − C0 dB2)

− 1
2 dC2 ∧ (ρa dba − ba dρa) + 1

2 dB2 ∧ ca dρa − 1
4κabcc

acd dB2 ∧ dbc .

Here FC = dV C , the Gcd is the metric ofMcs and Gab the metric ofMKs. This action is usually
written in a ”standard N = 2 form” which does not include the 2-forms B2 and C2. In order to
obtain it, these fields are dualised to scalar fields, which is allowed since they are massless and
possess gauge symmetries B2 → B2 + dΛ2 and C2 → C2 + dΛ1 [29]. The C2 field, with field
strength dC2, is dualised to a scalar field c0 by introducing a Lagrange multiplier 1

2c
0 d(dC2)

and adding a term 1
2 dC2 ∧ dc0 to the Lagrangian. The terms in eq. (5.65) that contain C2,

including our newly added term, are

LC2 = −g
4(dC2 − C0 dB2) ∧ ?(dC2 − C0 dB2)− 1

4 dC2 ∧ J1 + 1
2 dC2 ∧ dc0 , (5.66)

where we have abbreviated g = 1
6e
−2Dκ and J1 = ρa dba − ba dρa. The equation of motion for

c0 implies dC2 = dC2 and the equation of motion for dC2 reads ? dC2 = 1
g (dc0− 1

2J1). Inserting
the expression for ? dC2 into the Lagrangian in eq. (5.66), it reads in terms of c0

Lc0 = − 1
4g (dc0 − 1

2J1) ∧ ?(dc0 − 1
2J1)− 1

2C0 dB2 ∧ (dc0 − 1
2J1) . (5.67)

The same method is used to dualise B2 to another scalar field b0, and we refer to Appendix D
for the details. The type IIB compactified action can then be written

S
(4)
IIB =

∫
M4
−1

2R ? 1+ 1
4ReMCDF

C ∧ FD + 1
4 ImMCDF

C ∧ ?FD

−Gcd dzc ∧ ? dz̄d − hpq dq̃p ∧ ? dq̃q ,
(5.68)
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where the q̃p denote the coordinates for all h(1,1) + 1 hypermultiplets, and the quarternionic
metric is given by

hpq dq̃p dq̃q = (dD)2 +Gab dta dt̄b + 1
24e

2Dκ(dC0)2

+ 1
6e

2DκGab (dca − C0 dba)
(
dcb − C0 dbb

)
+ 3

8κe
2DGad

(
dρa − κabccb dbc

) (
dρd − κdefce dbf

)
(5.69)

+ 3
2κe

2D
(
dc0 − 1

2(ρa dba − ba dρa)
)2

+ 1
2e

4D
(
db0 + C0 dc0 + ca dρa + 1

2C0(ρa dba − ba dρa)− 1
4κabcc

acb dbc
)
.

The to the 2-forms C2 and B2 dualised scalars c0 and b0 are functions of zc. See also [30][31]. In
type IIB the moduli spaceMSK⊕MQ is a little different from IIA. The q̃p span the quaternionic
manifoldMQ which now containsMKs. The prepotential F̃ ofMKs can be chosen so thatMQ

is special quaternionic. The complex structure manifold is now in the special Kähler one, i.e.
Mcs ∈MSK.

5.1.3 Mirror symmetry

In this section we are to briefly review mirror symmetry in Calabi-Yau compactifications. The
mirror symmetry is a duality between the moduli space of different Calabi-Yau manifolds. It
states that given a Calabi-Yau M , there exists a mirror Calabi-Yau M̃ such that

H(p,q)(M) = H(3−p,q)(M̃) . (5.70)

Note that there are however a few special cases where this fails; there is still a mirror manifold,
but it is not a Calabi-Yau. In particular, eq. (5.70) implies that

h(1,1)(M) = h(2,1)(M̃) , and h(1,1)(M̃) = h(2,1)(M) , (5.71)

so for for example when M has h(2,1) = 0, then h(1,1) of M̃ should vanish, but a Calabi-Yau
always has h(1,1) ≥ 0, so M̃ can not be a Calabi-Yau. Eq. (5.71) corresponds to a reflection
along the diagonal of the Hodge diamond, see Appendix B.4. Thus mirror symmetry relates the
even and odd cohomologies of two topologically distinct Calabi-Yau manifolds via

Heven(M) ' Hodd(M̃) , Heven(M̃) ' Hodd(M) , (5.72)

where the even and odd cohomologies are defined by

Heven = H(0,0) ⊕H(1,1) ⊕H(2,2) ⊕H(3,3) , (5.73)
Hodd = H(3,0) ⊕H(2,1) ⊕H(1,2) ⊕H(0,3) . (5.74)

It also implies an identification of the moduli spaces of deformations of M and M̃ . The dimen-
sions of the complex structure and Kähler structure moduli spaces introduced in the previous
section are exactly h(2,1) and h(1,1) respectively. Thus eq. (5.71) implies that

MKs(M) =Mcs(M̃) , MKs(M̃) =Mcs(M) . (5.75)

This statement is highly non-trivial since the Calabi-Yau manifolds M and M̃ in general are
very topologically different. This can be seen from their Euler characteristics, which are related
according to

χ(M) = −χ(M̃) . (5.76)
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Recall that the geometry ofMcs(M) is encoded in the variations of the holomorphic 3-form
Ω of M . As seen earlier as in eq. (5.26) it can be expanded in a basis of H(3)(M) according to

Ω = ZCαC −FC(Z)βC , (5.77)

where FC with C = 0, . . . , h(2,1) is related to the prepotential F via FI = ∂IF . The coordinates
zc are related to the ZC via zc = Zc/Z0 where c = 1, . . . , h2,1. Under mirror symmetry, these
coordinates are identified with the complex Kähler coordinates t̃a on the Kähler structure moduli
space MKs

M̃
of the mirror manifold M̃ . This also implies that the prepotential on these spaces

should be equivalent, i.e. that FM (zc) = F̃M̃ (t̃a). However,MKs andMcs should still obviously
have different structures even if they are defined on different manifolds, so this can not be the
full truth. In fact, one expects corrections to FM (zc) and F̃M̃ (t̃a). When mirror symmetry is
embedded into string theory, these corrections gain a physical interpretation as string wrapping
2-cycles in M , called worldsheet instantons. Schematically we have that

FM (z) = z3 +O(e−z) = F̃M̃ (t̃) , F̃M (t) = t3 +O(e−t) = FM̃ (z̃) . (5.78)

If one turns the argument around, you could instead use mirror symmetry to calculate the
worldsheet instanton corrections O(e−z) and O(e−t). This has been done in [32]. Such a
calculation is usually simpler than a direct calculation of the contributions from worldsheet
instantons.

The multiplets of the compactified theories are mapped via mirror symmetry as well. In fact,
the moduli in the effective actions experience the exchange

{ξC , ξ̃C} ←→ {cA, ρA} = {C2, c
a, C0, ρa} . (5.79)

The reasoning of mirror symmetry between moduli spaces can be expanded into perhaps the most
prominent conjecture based on mirror symmetry. Namely, that the type IIA theory compactified
on a manifold M is equivalent to type IIB theory compactified on a mirror manifold M̃ , and
vice versa. This can be seen explicitly by specific redefinitions of the type IIB hypermultiplet
scalars in terms of the IIA vector multiplet scalars, namely

C0 → ξ0 , C0b
a − ca → ξa ,

−c0 + 1
2κabcb

abbcc − 1
6C0κabcb

abbbc → ξ̃0 , ρa + 1
2C0κabcb

bbc − κabccbbc → ξ̃a ,

2b0 + C0c
0 + ρ(ca − C0b

a)→ a , dρa − κabccb dbc → dξ̃a + ReNaB dξB .

(5.80)

Using these redefinitions in the effective action of the type IIB theory, we can compare it with
that of type IIA. It becomes clear that we can go from the type IIA to the type IIB compactifi-
cation on a Calabi-Yau 3-fold by allowing the moduli space mapping

zc → ta , Gab → Gcd̄ , NAB →MCD , (5.81)

where the quantities are defined as earlier.
T-duality is perhaps the most simple example of mirror symmetry. When the bosonic string

is compactified on a circle of radius R, the perturbative string spectrum is given by

α′M2 = α′
[(

K

R

)2
+
(
WR

α′

)2]
+ 2NL + 2NR − 4 , (5.82)

where NL, NR are the total number of oscillators of the left- and right movers, W is the winding
number and K the number of momenta on the string. They fulfil the modified level-matching
condition

NR −NL = WK , (5.83)
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and T -duality denotes the invariance of the above equations under the interchanges

W ↔ K , R↔ α′

R
, (5.84)

which must be imposed simultaneously.

5.2 Effective actions of type II Calabi-Yau orientifolds
The subject of this section is the 4D low-energy effective supergravity theory obtained by com-
pactifying type IIA and type IIB string theory on Calabi-Yau orientifolds. Similar to D-branes,
orientifold planes are hyperplanes in the 10D background.

5.2.1 The type II orientifold projections

Orientifolds are generalisations of orbifolds which in turn are generalisations of manifolds. In
short, an orbifold (”orbit-manifold”) is defined as the quotient space Γ = M/G of a manifold
M and a discrete group G which acts on M . Orientifold theories are unoriented, i.e. contain
unoriented strings, strings that have no ”arrow” and whose two opposite orientations are equiv-
alent. So far we have only dealt with oriented strings, since a left to right direction of the
string has been unambiguously defined by parameterising the spacelike coordinate with σ. The
simplest example of an unoriented string theory is the type I theory, which can be obtained by
orientifolding type IIB string theory.

A Calabi-Yau orientifold can be written as the quotient space

M

S1 ∪ S2Ωp
, (5.85)

where M is a Calabi-Yau manifold and S1, S2 are some discrete isometry (distance-preserving)
groups. Ωp is the worldsheet parity operator and acts on σ, which again signifies the position
along the length of a string, such that Ωp : σ → σ0− σ. For closed strings σ0 = 2π and for open
strings σ0 = π. This means that the parity operator exchanges left- and right-moving fields,
which leaves the two σ-directions equivalent, thus resulting in unoriented strings. Note that if
S2 is empty, the quotient space is an orbifold.

The locus where the orientifold action reduces to the change of the string orientation is
called the orientifold plane. In type II theories, Op-planes couple to the (p+ 1)-form RR gauge
potentials Cp+1. Type IIA and IIB have different gauge potentials, so they will couple to different
Op-planes accordingly; type IIA couples to O0-, O2-, O4-, O4- and O8-planes while type IIB
couples to O(−1)-, O1-, O3-, O5-, O7-, and O9-planes. However, for the orientifolds to be
consistent with supersymmetry in a Calabi-Yau, not all of the available O-planes will be viable.
Namely, for type IIA only O6-planes and for type IIB only O3-, O5-, O7- and O9-planes, are
allowed by supersymmetry [1].

It is important to note however that while the theory is unoriented on the O-plane, away
from the fixed O-planes the local physics are those of the oriented string theory [33].

Calabi-Yau orientifolds are constructed by dividing, or modding, out a discrete symmetry
S1 ∪ S2Ωp that includes the worldsheet parity Ωp and spacetime fermion number in the left-
moving sector (−1)FL. This division of symmetries in the groups of S1 ∪S2Ωp are referred to as
orientifold projections and, depending on their actions, they will project out parts of the spectra
given in table 5.2. The S2 group in eq. (5.85) for a Calabi-Yau is generated by an involution
σinv, with the subscript ”inv” to distinguish from the string length parameter σ. It acts only
on the Calabi-Yau and thus leaves the external 4D space invariant. The involution is of course
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φ g B2 C0 C1 C2 C3 C4

(−1)FL + + + − − − − −
Ωp + + − − + + − −

Table 5.3: Symmetry transformations of type II massless bosonic fields. The actions of (−1)FL
and Ωp on the fields leave the type IIB supergravity action invariant but not the type IIA. The
table should be read according to (−1)FLB2 = +B2, ΩpB2 = −B2, etc.

involutive; σ2 = 1, but also isometric and holomorphic or antiholomorphic depending on the
theory. It acts on the complex structure (1,1)-form J and the holomorphic 3-form Ω according
to [34]

IIA : σ∗invJ = −J , σ∗invΩ = Ω̄ , (5.86)
IIB : σ∗invJ = J , σ∗invΩ = ±Ω . (5.87)

From the involution’s action on Ω, we see that the involution is antiholomorphic in type IIA
and holomorphic in type IIB. The two possible actions on the Ω for type IIB splits the viable
choices of O-planes. The plus sign leads to O5- or O9-planes and the minus sign leads to
O3- or O7-planes. Allowed symmetry operations will be different for the two cases as well.
With the O5/O9-planes the simplest symmetry transformation of S2 is a target space symmetry
M10 → M10, but for the O3/O7-planes there is an additional operation (−1)FL , where FL is
the spacetime fermion number in the left-moving sector. Under this action the RR and RNS
states are odd and the NSNS and NSR states are even. Another symmetry of type IIB is Ωp.
Both symmetries are summarised in table 5.3. Depending on the transformation properties of
Ω, there are two possible symmetry operations O = S2Ωp that are possible [35][36]:

O1 = (−1)FLΩpσinv , and O2 = Ωpσinv . (5.88)

Modding out with O1, i.e. having M/O1, leads to the possibility of having O3/O7-planes, and
modding out with O2 allows for O5/O9-planes. In summary we have that

O3/O7 : σ∗invΩ = −Ω → O1 = OO3/O7 = (−1)FLΩpσinv , (5.89)
O5/O9 : σ∗invΩ = +Ω → O2 = OO5/O9 = Ωpσinv , (5.90)

i.e. the different actions of σinv on Ω lead to different possible symmetry operations O = S2Ωp.
As for type IIA, the symmetry operation O1 also allows for O6-planes [29].

Wishing to compute the effective 4D action for type IIB supergravity on our orientifold planes,
we proceed with the same methodology as for the compactification on Calabi-Yau manifolds.
Having established some symmetry operations which are modded out from the Calabi-Yau man-
ifold, the next step is to determine the massless spectrum after this projection has been taken
into account. In the 4D compactified theory only states invariant under the projection are kept,
so the massless states that survive the orientifold projection are the ones that are even under the
actions of eq. (5.88). For example, B2 is odd under the action of Ωp and also under (−1)FLΩ, so
in the presence of any O-plane the only surviving components of B2 are those that are odd under
σinv. Generally the actions of σinv on the fields of table 5.3 will be different depending on which
O-plane setup we use. For O3/O7-planes the invariant states are even under the transformation
of OO3/O7, and invariant states on O5/O9-planes are even under the action of OO5/O9. Using
table 5.3 and eqs. (5.89), (5.90), there are three fields that transform according to

σ∗φ(10) = φ(10) ,

σ∗g(10) = g(10) ,

σ∗B
(10)
2 = −B(10)

2 ,

(5.91)
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O-plane setup Cohomology group Basis Dimension
O3/O7
and

O5/O9

H
(1,1)
+ H

(1,1)
− ωα ωa h

(1,1)
+ h

(1,1)
−

H
(2,1)
+ H

(2,1)
− χκ χk h

(2,1)
+ h

(2,1)
−

H
(1,1)
+ H

(1,1)
− ωα ωa h

(1,1)
+ h

(1,1)
−

O3/O7 H
(3)
+ H

(3)
− (ακ, βλ) (αk̂, β

l̂) 2h(2,1)
+ 2h(2,1)

− + 2
O5/O9 H

(3)
+ H

(3)
− (ακ̂, βλ̂) (αk, βl) 2h(2,1)

+ + 2 2h(2,1)
−

Table 5.4: Cohomology groups and their corresponding bases for orientifold setups of type IIB
supergravity.

for both the O3/O7 and O5/O9 setups. For the other fields however, the actions of OO3/O7 and
OO5/O9 will force σinv to act on the RR fields of type IIB (i.e. C0, C2, and C4) according to

O3/O7 O5/O9
σ∗invC

(10)
0 = C

(10)
0 σ∗invC

(10)
0 = −C(10)

0
σ∗invC

(10)
2 = −C(10)

2 σ∗invC
(10)
2 = C

(10)
2

σ∗invC
(10)
4 = C

(10)
4 σ∗invC

(10)
4 = −C(10)

4

. (5.92)

Furthermore, we seek a to expand the fields and metric deformations in terms of harmonic
forms, which turns our attention to the relevant cohomology groups. Since σinv is holomorphic
for type IIB, the action of σinv on H(p,q) and with it the harmonic (p, q)-forms, will split into
two eigenspaces;

σ∗invH
(p,q) = H

(p,q)
+ ⊕H(p,q)

− . (5.93)

The cohomology eigenspaces have eigenvalues +1 and −1, as well as dimensions h(p,q)
+ and

h
(p,q)
− , respectively. The involution σinv respects the orientation and metric of the Calabi-Yau,

which mean that the action σinv and the Hodge-? operator commute. This means that the
Hodge numbers will obey h(1,1)

± = h
(2,2)
± . Furthermore, the holomorphicity of σinv implies that

h
(2,1)
± = h

(1,2)
± and the fact that σ∗invΩ = ±Ω leads to that for the different O-planes we have

O3/O7 O5/O9
h

(3,0)
+ = h

(0,3)
+ = 0 h

(3,0)
+ = h

(0,3)
+ = 1

h
(3,0)
− = h

(0,3)
− = 1 h

(3,0)
− = h

(0,3)
− = 0

. (5.94)

The volume form ∼ Ω∧Ω̄ is invariant under σ∗inv and so h(0,0)
+ = h

(3,3)
+ = 1 and h(0,0)

− = h
(3,3)
− = 1.

The non-trivial cohomology groups and basis elements can be constructed in the same way
as for the Calabi-Yau 3-fold, and they are summarised in table 5.4 taken from [29], where
H

(3)
± = H

(1,2)
± ⊕H(2,1)

± .
Now, the 4D invariant type IIB spectrum is found by using the Kaluza-Klein expansion of the

Kähler structure and complex structure metric deformations given earlier in eqs. (5.9), (5.14),
as well as the field expansions in eqs. (5.63), (5.64), where only fields obeying eq. (5.92) are
kept. However, some modifications of these expansions will be needed. For starters, σinv leaves
the volume form invariant and, since Ω ∧ Ω̄ ∼ J ∧ J ∧ J , J has to be invariant as well. As
can be seen in the first equation in eq. (5.87), J transforms evenly under the action of σinv,
therefore only the even h(1,1) Kähler deformations vα can remain in the spectrum. Thus for the
orientifolds we must expand the Kähler form as

J = vαωα , (5.95)
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with α = 1, . . . , h(1,1)
+ where ωα is the basis of H(1,1)

+ . The complex structure metric deformations
depend on Ω, and so because of how the involution acts on it in eq. (5.87), deformations will
depend on the orientifold setup. For O3/O7 the deformations kept in the spectrum are elements
in H(1,2)

+ and for O5/O9 they are elements in H(1,2)
− . In summary, the complex structure metric

deformations of eq. (5.14) will be replaced by

O3/O7 : δgij = i

||Ω||2 z̄
k(χk)īı̄Ωı̄̄

j , k = 1, . . . , h(1,2)
− , (5.96)

O5/O9 : δgij = i

||Ω||2 z̄
κ(χκ)īı̄Ωı̄̄

j , k = 1, . . . , h(1,2)
+ , (5.97)

where χk and χκ denote the basis of H(1,2)
− and H(1,2)

+ respectively. See table 5.4 for all bases. As
for the B(10)

2 expansion we know from eq. (5.91) that only odd elements can be kept. Therefore
the original B(10)

2 expansion for Calabi-Yau manifolds will for orientifolds be replaced by

B
(10)
2 = baωa , a = 1, . . . , h(1,1)

− . (5.98)

Turning to the RR sector fields, it is clear from eq. (5.92) that they will be expanded differently
as they transform with opposite signs under σinv. For O3/O7, the axion C(10)

0 is even, C(10)
2 is

even and C(10)
4 is odd. The opposite applies to the O5/O9-planes. This will be reflected in the

harmonic basis. For the O3/O7 setup, the RR fields are expanded according to

O3/O7 :
C

(10)
0 = C0 ,

C
(10)
2 = caωa ,

C
(10)
4 = Dα

2 ∧ ωα + V κ ∧ ακ + Uκ ∧ βκ + ραω̃
α .

(5.99)

Note that both the 4D 2-forms B2 and C2 have been projected out and only the scalars ca and
ba remain. For the O5/O9 setup, the field expansions read

O5/O9 :

C
(10)
0 = 0 ,

C
(10)
2 = C2 + cαωα ,

C
(10)
4 = Da

(2) ∧ ωa + V k ∧ αk + Uk ∧ βk + ρaω̃
a .

(5.100)

The axion C
(10)
0 is projected out, but is then replaced by the 4D tensor C2 to form a linear

multiplet {φ,C2} [29]. Again the self-duality of F (10)
5 eliminates half the number of degrees of

freedom in the C(10)
4 expansion, where one can choose to eliminate the pair {Da

2 , ρa} or {V k, Uk}.
It is clear that the orientifold projection splits the dimension of the moduli space, and with

it the N = 2 supersymmetry spontaneously breaks down to N = 1. The IIB multiplets are
summarised in table 5.5.

5.2.2 The 4D effective orientifold theories

Before performing dimensional reduction, we need to make an important note about the 10D
metric. With localised sources, such as orientifold planes and D-branes, the metric structure of
eq. (5.48) is no longer entirely valid. In fact, the supergravity theory with sources, as well as
fluxes, does not have the metric of eq. (5.48) as a solution [37][38][39]. Instead a warp-factor
e−2A has to be included in the metric such that

ds2 = e2A(y)ηµν(x) dxµ dxν + e−2A(y)gī(y) dyi dȳ . (5.101)
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IIB O3/O7 O5/O9
gravity multiplet 1 gµν 1 gµν

vector multiplets h
(2,1)
+ V κ h

(2,1)
− V k

chiral multiplets

h
(2,1)
− zk h

(2,1)
+ zκ

h
(1,1)
+ {vα, ρα} h

(1,1)
+ {vα, cα}

h
(1,1)
− {ba, ca} h

(1,1)
− {ba, ρa}

1 {φ,C0} 1 {φ,C2}

Table 5.5: The 4D moduli fields of compactified type IIB supergravity theory on Calabi-Yau
orientifold setups O3/O7 and O5/O9 arranged in N = 1 multiplets.

However, one may work in the large radius limit where A(y) → 0 so that the metric of eq.
(5.101) coincides with the unwarped metric of eq. (5.48) [39]. In this case the metric of the
moduli spaces agree and the effective actions will be the same.

The effective 4D actions for type IIB orientifold planes are found by using our harmonic
metric and field expansions and inserting them into the type IIB supergravity action of eq.
(5.47), integrate over the Calabi-Yau and evaluate the multiplet sectors separately. We refer to
[29][40] for details and give the actions for the O3/O7 and O5/O9 orientifold setups as

S
(4)
O3/O7 =

∫
−1

2R ? 1−Gkl̄ dz
k ∧ ? dz̄l −Gαβ dvα ∧ ? dvβ −Gab dba ∧ ? dbb

− dD ∧ ? dD − 1
24e

2Dκ dC0 ∧ ? dC0

− 1
6e

2DκGab(dca − C0 dba) ∧ ?(dcb − C0 dbb)
− 3

8κe
2DGαβ(dρα − καabca dbb) ∧ ?(dρβ − κβcdcc dbd)

+ 1
4 ImMkλF

κ ∧ ?F λ + 1
4ReMκλF

κ ∧ F λ ,

(5.102)

respectively

S
(4)
O5/O9 =

∫
−1

2R ? 1−Gκλ̄ dzκ ∧ ? dz̄λ −Gαβ dvα ∧ ?vβ

−Gab dba ∧ ?dbb − dD ∧ ? dD − 1
6e

2DκGαβ dcα ∧ ? dcβ

− 3
2κe

2D
(
dh+ 1

2(dρaba − ρa dba)
)
∧ ?

(
dh+ 1

2(dρaba − ρa dba)
)

− 3
8κe

2DGab(dρa − κacαcα dbc) ∧ ?(dρb − κbdβcβ dbd)
+ 1

4 ImMklF
k ∧ ?F l + 1

4ReMklF
k ∧ F l .

(5.103)

Here F k = dV k and F κ = dV κ with the rest of the definitions the same as in the previous
section, but expressed in the appropriate bases.

Turning to the type IIA case, the NSNS sector fields transform in the same way as for type
IIB under the action of the involution σinv, given in eq. (5.91). As for the RR fields, they
transform according to

σ∗invC
(10)
1 = −C(10)

1 , (5.104)

σ∗invC
(10)
3 = C

(10)
3 , (5.105)

in accordance with eq. (5.86) and the action O1 of eq. (5.88). The Kähler form J is odd under
the action of σinv according to eq. (5.86), so J must be expanded in a basis of odd harmonic
(1,1)-forms:

J = va(x)ωa , (5.106)
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where a = 1, . . . , h(1,1)
− again using the basis defined in table 5.4.

The number of complex structure deformations are reduced in a similar fashion. The pro-
jection in eq. (5.86) for the holomorphic 3-form Ω sets constraints on the deformations. The Ω
can also be expanded in a basis of H(3) = H

(3)
+ ⊕H(3)

− with dimensions h(3)
+ = h(3) = h(2,1) + 1

and basis elements aC ∈ H(3)
+ , bD ∈ H(3)

− , so that

Ω(z) = ZC(z)aC −FD(z)bD , C,D = 0, . . . , h(2,1) . (5.107)

This is just like the Ω expansion in the previous section with N = 2 Calabi-Yau manifold
compactifications. Again the zc with c = 1, . . . , h(2,1) are coordinates on the complex structure
moduli space. Generally eq. (5.86) for Ω reads σ∗invΩ = e2iθΩ̄ with θ being some arbitrary phase,
though we have previously chosen θ = 0. Including this phase invariance in the action of σ on
Ω and using the expression in eq. (5.107), the involution’s action on Ω implies

Im(e−iθZC(z)) = 0 , Re(e−iθFD) = 0 . (5.108)

The first equation sets h(2,1)+1 constraints on only h(2,1) scalars. The extra equation is redundant
and due to a scale invariance of Ω. The first equation in eq. (5.108) implies however that h(2,1)

scalars are projected out, which is half of the complex structure deformations. The involution’s
action on Ω in eq. (5.108) also reduces its complex rescaling freedom Ω → e−hΩ to a real
rescaling freedom; Ω→ e−Re(h)Ω. This affects the Kähler potential so that Kcs → Kcs + 2Re(h)
when inMcs

R
. This freedom can be used to set one component of Re(e−iθZC) equal to one, so

that Ω depends only on h(2,1) real deformation parameters. It can however be more convenient
to leave this gauge freedom intact and instead define a ”compensator field” C which transforms
like C → CeRe(h) and fulfils CΩ → CΩ. Then CΩ depends on h(2,1) + 1 real parameters and
may be expanded according to

CΩ = Re(CZC)aC − iIm(CFC)bC . (5.109)

The expansion of the φ(10), g(10) and B(10)
2 fields are the same for type IIA as for IIB as they

belong to the NSNS sector. Under the action of σinv they transform according to eq. (5.91). For
the scalars the expansion is again simply φ(10) = φ and g(10) = g. The B(10)

2 field is odd under
the action of σinv so the 4D field B2 does not survive the projection, but we are left with the
scalars ba expanded in the odd basis ωa;

B
(10)
2 = baωa , a = 1, . . . , h(1,1)

− . (5.110)

Differences appear in the expansions of the RR sector fields. The C(10)
1 field is odd under

σinv according to eq. (5.104) and, combining the fact that a Calabi-Yau does not support any
harmonic 1-forms and that σinv acts trivially on the flat 4D dimensions, the entire C(10)

1 field
is projected out. This leads to that the N = 2 multiplet {gµν , A0} in the Calabi-Yau 3-fold
reduction is being reduced to an N = 1 orientifold multiplet containing only gµν . As for the
C

(10)
3 field, which is even under σinv according to eq. (5.105), it is expanded as

C
(10)
3 = C3(x) +Aα(x) ∧ ωα + ξCaC , (5.111)

where C3(x) is the 3-form RR field in 4D, Aα with α = 1, . . . , h(1,1)
+ are 1-forms and ξC are

C = 0, . . . , h(2,1) real scalars. The N = 1 multiplets of IIA O6 compactifications are summarised
in table 5.6, where NC = 1

2(ξC + 2iReZC); a field combination we will return to in section 5.4.
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5.3. Implications of allowing background fluxes

IIA O6
gravity multiplet 1 gµν

vector multiplets h
(1,1)
+ Aα

chiral multiplets h
(1,1)
− ta

h(2,1) + 1 NC

Table 5.6: The 4D moduli fields of compactified type IIA supergravity theory on an O6
Calabi-Yau orientifold arranged in N = 1 multiplets.

The effective 4D action for type IIA orientifolds, which only allow O6-planes by supersym-
metry, is found by inserting the expansions into the type IIA supergravity action of eq. (5.45)
and integrating over the Calabi-Yau. The resulting action reads

S
(4)
O6 =

∫
−1

2R ? 1−Gab dta ∧ ? dt̄b + 1
2 ImNαβF

α ∧ ?F β + 1
2ReNαβF

α ∧ ?F β

− dD ∧ ? dD −Gcd(q) dqc ∧ ? dqd + 1
2e

2DImMCD dξC ∧ ?ξD ,
(5.112)

with Fα = dAα and was first obtained in [41]. Here the first line, except for the Einstein-Hilbert
term, arises from the projection of the N = 2 vector multiplets’ action. The second line arises
from the reduction of the N = 2 hypermultiplets’ action which is determined by the quaternionic
metric in eq. (5.60).

5.3 Implications of allowing background fluxes

In the type II theories it is possible to allow background fluxes on the Calabi-Yau manifold.
When sources are present, there is no globally well-defined potential, which means that the
integral of the field strength over a cycle is not necessarily zero. When this is the case one talks
about a non-zero flux. A flux with a standard Bianchi identity1 for either NSNS or RR fluxes
should be a real number, i.e.

1
(2π
√
α′)p−1

∫
Σp
Fp ∈ Z , (5.113)

for some p-cycle Σp and p-form field strength Fp. The fluxes for a Calabi-Yau manifold are
constructed from the 3-cycles A and B. In order to keep track on from which cycle they come
from, the fluxes from the A-cycles are called magnetic and the ones from B-cycles are called
electric. For each field strength, they are defined as

1
(2π)2α′

∫
AC

H3 ≡ mC ,
1

(2π)2α′

∫
BC

H3 ≡ eC , C = 0, . . . , h(2,1) ,

1
(2π)2α′

∫
AC

F
(10)
3 ≡ mC

RR ,
1

(2π)2α′

∫
BC

F
(10)
3 ≡ eRRC ,

1
2π
√
α′

∫
Aa
F

(10)
2 ≡ ma

RR ,
1

(2π
√
α′)3

∫
Ba
F

(10)
4 ≡ eRRK , a = 1, . . . , h(1,1) ,

(5.114)

written in terms of α′ for clarity. In the basis (αC , βC) of H(3) introduced earlier the αC and
βC are Poincaré duals to the cycles. The same goes for ωa and ω̃a with respect to H(1,1) and

1An example of a non-standard Bianchi identity is that for a field strength of a 3-form in 4D, where no 5-forms
exist, since a Bianchi has normally the form D(dAp) = 0 with D being a covariant derivative.
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H(2,2), so that again;∫
AC

αD =
∫
M
αD ∧ βC = δCD ,

∫
BC

βD =
∫
M
βD ∧ αC = −δDC ,∫

Aa
ωb =

∫
M
ωa ∧ ω̃b = δba ,

∫
Ba
ω̃b =

∫
M
ω̃b ∧ ωa = −δba ,

(5.115)

where M is the manifold in question. The field strengths can be expanded in terms of the
magnetic and electric fluxes as well as the basis defined above according to

1
(2π)2α′

H3 = mCαC − eCβC ,
1

(2π)2α′
F

(10)
3 = mC

RRαC − eRRCβC ,

1
2π
√
α′
F

(10)
2 = ma

RRωa ,
1

(2π
√
α′)3

F
(10)
4 = −eRRaω̃a ,

2π
√
α′F

(10)
0 = m0

RR ,
1

(2π
√
α′)5

F
(10)
6 = eRRvol6 .

(5.116)

It is conventional to pick units in which (2π)2α′ = 1.
We will start by considering the N = 2 compactifications of Calabi-Yau manifolds. Turning

on fluxes while still keeping the same massless spectrum of the Calabi-Yau compactifications
will correspond to simply rewriting the fields in terms of a magnetic or an electric flux in the
appropriate cohomology basis. In type IIA, turning on RR fluxes amounts to performing the
replacements

dC1 → dC1 +ma
RRωa ,

dC3 → dC3 + eRRaω̃
a .

(5.117)

With these extra terms, the 10D reduction to 4D will result in an additional term in the type
IIA 4D effective action in eq. (5.112), namely [27]

SRR =
∫
−B2 ∧ J2 − 1

2M
2B2 ∧ ?B2 − 1

2M
2
TB2 ∧ ?B2 − V RR

IIA , (5.118)

written in the Einstein frame, where the constituents are given by

J2 = −eRRAFA +mA
RR

(
ImNABFB + ReNABFB

)
,

M2 = −mA
RRImNABmB

RR ,

M2
T = −mA

RRReNABmB
RR +mA

RReRRA ,

V RR
IIA = −1

2e
4φ
(
eRRA −NACm

C
RR

)
(ImN )AB

(
eRRB −NBDm

D
RR

)
.

(5.119)

Here we have again FA = dAA and N given as in eqs. (5.58), (5.59). The RR fluxes introduce
terms B ∧ J2 known as Green-Schwarz type couplings, which make B2 massive! There are now
regular as well as topological mass terms m and mT for the B2 field. The fluxes also produce
a potential V which depends on the complexified Kähler deformations ta, which belong to the
vector multiplets.

In type IIB, the RR fluxes are introduced by the replacement

dC2 → dC2 +mC
RRαC − eRRCβC , (5.120)

which will result in the addition of an extra action term with the same form as the one in eq.
(5.118). The difference is the definitions in eq. (5.119) where N is replaced with M and the
indices A,B, . . . with C,D, . . . which span h(2,1) + 1 terms. The introduction of the RR fluxes of
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5.3. Implications of allowing background fluxes

type IIB thus results the same new physics as RR fluxes in type IIA. Namely, the Green-Schwarz
couplings, a massive B2 field and a potential.

The NSNS fluxes are common to both type II theories and are introduced by modifying the
B2 field according to

dB2 → dB2 +mCαC − eCβC . (5.121)
The fluxes will in general give gauge charges to scalars in the tensor and hypermultiplets for
both theories. That is, the ordinary derivatives of the effective 4D actions in eq. (5.56) and eq.
(5.68) will become covariant derivatives of the form

∂µq
u → Dµq

u ≡ ∂µqu − kuAXA
µ . (5.122)

Here the kuA are Killing vectors, or gauge charges, which are directly proportional to the fluxes,
and the XA

µ are the vectors in the vector multiplet that participate in the gauging. For type
IIA, the scalars that get a charge are the ones dual to the B2 field (belonging to the tensor
multiplet) and the {ξC , ξ̃C} of the hypermultiplet. The gaugings are given by

kb0 = mC ξ̃C − eCξC , kba = 2eRRa , kξ
C

0 = mCδuξ
C
, kξ̃

C

0 = eC , (5.123)

where b denotes the appropriate duals to B2 and δuξ
C is the delta function. The only vector

field participating is the graviphoton A0, which as a consequence acquires a mass. The fluxes
also generate a potential for the scalars {φ, zc, ξC , ξ̃C} in the hyper and tensor multiplets, which
is given by

V NSNS
IIA = −e

2φ

4κ
(
eK +MKMm

M
)

(ImM)KL
(
eL +MLNm

N
)

+ e4φ

2κ
(
mK ξ̃K − eKξK + e0

)2
,

(5.124)

whereM rather than N enters. Note that out of all combinations of the axions {ξ̃C , ξC} only the
linear combination mC ξ̃C − eCξC gets a potential. This will be important in the next chapter.

In type IIB, the electric NSNS fluxes gauge the scalars in the tensor multiplet, namely the
dual b0 of B2 and c0 of C2. In contrast to the IIA case, the vectors present that will gauge these
scalars are the ones in the vector multiplets, i.e. V c and zc, rather than the graviphoton V 0.
One combination of these vectors will therefore acquire a mass. The magnetic fluxes give a mass
to C2. The electric fluxes also generate a potential for the scalars in the vector multiplet as well
as the axion and dilaton, which is given by

V NSNS
IIB = −e

4φ

2κ

(
C2

0 −
e−2φ

2κ

)
eC(ImM)CDeD . (5.125)

The Killing vectors for RR and NSNS fluxes are

kb
0
C = 2eRRC + eCξ

0 , kξ̃
0

C = eC . (5.126)

The effect of introducing the different kinds of fluxes are summarised in table 5.7 as first obtained
in [42]. In Appendix D.2 we perform a Kaluza-Klein compactification of type IIB supergravity
on a Calabi-Yau with fluxes turned on, which for instance illustrates how the B2 field becomes
massive.

Orientifold compactifications in the presence of fluxes are studied in a similar manner. In
the O-plane compactifications of type II, the 4D B2 field is projected out of the spectrum, so no
massive tensors will arise from the introduction of fluxes. However, the flux part of the B2 field
in eq. (5.121) will still be there, i.e. we have

dB2 → mλαλ − ekβk , (5.127)
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Introduced flux IIA IIB
eRR Green-Schwarz coupling Green-Schwarz coupling
mRR massive B2 massive B2
e0 massive A0 one massive V c

m0 massive A0 massive C2

Table 5.7: The effect of introducing electric and magnetic RR fluxes (eRR resp. mRR) and
NSNS fluxes (e resp. m) on the type IIA and IIB theories.

with h(3)
− = h(2,1) + 1 real NSNS flux parameters {mλ, ek}. The RR fluxes may be turned on in

the usual sense but with indices a = 1, . . . , h(1,1)
− , which results in potential terms for the scalars

va and ba with the form of the one in eq. (5.119). One can combine both the NSNS flux and
the RR fluxes into a potential of the form [41]

VO6 = −9e2φ

κ2

[
ImMκλm

κmλ + (ek − ReMkλm
λ)(ImM)−1kl(el − ReMlλm

λ)
]

+ 18e4φ

κ2

[
(ẽRRâ − ReNâĉmĉ

RR)(ImM)−1âb̂(ẽRRb̂ − ReNb̂ĉm
ĉ
RR)

]
,

(5.128)

where the fluxes ẽRRâ ≡ (eRR0 + ξλm
λ− ξk̂ek̂, eRRa) and mâ

RR ≡ (m0
RR,m

a
RR) are written in the

bases ωa of H(1,1)
+ (with the dual ω̃a) and ωα of H(1,1)

− (with the dual ω̃α). The indices run as
a = 1, . . . , h(1,1)

+ with α = 1, . . . , h(1,1)
− and â = 0, . . . , h(1,1)

+ with α̂ = 0, . . . , h(1,1)
− , as stated in

table 5.4.
In type IIB, O3/O7 setups project out not only B2 but C2 and A0 as well. With both NSNS

fluxes and RR fluxes turned on, a combined potential can be obtained as [43][26]

VO3/O7 = −9eφ

κ2

[
mk̂(ImM)k̂l̂m̄

l̂ +
(
el̂ − (mReM)k̂

)
(ImM)−1k̂l̂ (ēl̂ − (m̄ReM)l̂

)]
. (5.129)

In O5/O9 setups the C2 field is not projected out from the spectrum and will therefore acquire
a mass in the presence of with NSNS magnetic fluxes. Like in the case of O3/O7, a truncated
version of the potentials in eq. (5.119) and eq. (5.125) for the RR and NSNS fluxes respectively,
can be found to be [40]

VO5/O9 = −9eφ

κ2

[
mκ̂
F (ImM)κ̂λ̂m

λ̂
F +

(
eF
λ̂
− (mFReM)κ̂

)
(ImM)−1κ̂λ̂

(
eF
λ̂
− (mFReM)λ̂

)]
− 9eφ

κ2

[
mk
H(ImM)klml

H +
(
eHk − (mHReM)k

)
(ImM)−1kl

(
eHl − (mHReM)l

)]
.

(5.130)
Here the indices F and H of the fluxes denote the field strengths corresponding to the 3-form
fluxes in dC2 and dB2 respectively, i.e.

F3 = dC2 = mκ̂
Fακ̂ − eFκ̂ βκ̂ ,

H3 = dB2 = mk
Hαk − eHk βk ,

(5.131)

with κ̂ = 0, . . . , h(2,1)
+ and k = 1, . . . , h(2,1)

− . All scalar moduli that get a potential for both
type II theories are summarised in table 5.8. It has been showed that the potentials in eqs.
(5.128)–(5.130) can be derived from a superpotential, which will be the subject of the next
section.

A final note is that in type IIB there are 4h(1,1) moduli in the hypermultiplets, or 2h(1,1)

complexified Kähler moduli in the orientifold cases, that do not get a potential from fluxes.
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5.4. Flux-induced scalar potentials from superpotentials

IIA IIB
SUSY N = 2 N = 1 (O6) N = 2 N = 1 (O3/O7) N = 1 (O5/O9)
RR flux {va, ba} {va, ba} zk zk zk

NSNS flux {zk, ξ0, φ} {Nk, ξ0} {zk, φ, C0} {zc, φ, C0} zc

Table 5.8: Scalars that get a potential in the presence of background fluxes in Calabi-Yau
compactifications.

In type IIA, 2h(2,1) scalars in the hypermultiplets (or h(2,1) for orientifold compactifications)
do not get a potential. However, on a rigid manifold we have h(2,1) = 0, so there might be
a possibility that fluxes may be the only ingredient needed to stabilise all moduli in type IIA
compactifications. In type IIB on the other hand this is not the case, as h(1,1) ≥ 1 since there is
always the volume modulus.

5.4 Flux-induced scalar potentials from superpotentials
In the previous section we saw that background fluxes induce a potential for certain moduli in
type II compactifications on Calabi-Yau manifolds and Calabi-Yau orientifolds. In the orientifold
compactifications yielding N = 1 actions, the potential can be fully derived from a so-called
superpotential. The effective action for both type II orientifold compactifications can be written
on a common ”standard N = 1 supergravity form” which includes the superpotential and result
in different potentials for type IIA and IIB.

The effective action in question is given by

S
(4)
N=1 = −

∫
1
2R?1+KIJ̄DM

I ∧?DM̄ J̄ + 1
2RefκλF

κ∧?F λ+ 1
2 ImfκλF

κ∧F λ+V ?1 , (5.132)

where M I collectively denote all complex scalars in the chiral multiplets and KIJ̄ is a Kähler
metric which satisfies KIJ̄ = ∂I ∂̄J̄K(M, M̄) with K being the Kähler potential. The gauge
coupling matrix fκλ is a truncated version of its N = 2 counterparts NAB and MCD. They
give the couplings of the gauge fields Aα with α = 1, . . . , h(1,1)

+ for type IIA. For type IIB the
fκλ encodes the couplings of the h(2,1)

+ fields V κ in O3/O7 projections and the h(2,1)
− fields V k

in O5/O9 projections. The V is a scalar potential given in terms of the superpotential W and
”D-terms” Dκ by

V = eK(KIJ̄DIWDJ̄W − 3|W |2) + 1
2(Ref)−1κλDκDλ , (5.133)

with Kähler covariant derivatives DIW ≡ ∂IW +W∂IK. The D-terms are defined by

KIJ̄X̄
J̄
k = i∂IDk , (5.134)

where XI is the Killing vector generating the U(1) gauge transformations, where

δM I = Λk0XJ∂JM
I . (5.135)

In order to write the Kähler potential K of all the scalars in the chiral multiplets, we must
first identify their complex coordinates M I . We have seen that the scalars which survive the
orientifold projection are a subset of the scalars in the N = 2 vector multiplets, namely ta =
ba + iva with a = 1, . . . , h(1,1)

− in type IIA, zk, k = 1, . . . , h2,1
− for IIB O3/O7 and zκ with

κ = 1, . . . , h2,1
+ for IIB O5/O9. Their Kähler potentials have the same form as the ones in

N = 2 but with the new indices a and k, κ respectively. For chiral multiplets (not vector) this
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is more complicated. In type IIA, the h(2,1)+1 real scalars ξC have to combine with the h(2,1)

real complex structure deformations zc and the dilaton φ to form chiral multiplets. It has been
shown in [41] that appropriate complex fields – the new ”Kähler coordinates” M I of the chiral
multiplets – are encoded in the expansion of a complex 3-form field

ΩC = ξC(x)aC + 2iRe(CΩ) . (5.136)

Changing the basis from aC ∈ H
(3)
+ and bC ∈ H

(3)
− to (αk, βλ) and (αλ, βk) respectively, eq.

(5.109) becomes CΩ = Re(CZk)αk + iIm(CZλ)αλ−Re(CFλ)βλ− iIm(CFk)βk and ξC(x)aC →
ξkαk − ξ̃λβλ. The 3-form Ωc then becomes

Ωc = (ξk + 2iRe(CZk))αk + (ξ̃λ + 2iRe(CFλ))βλ

≡ 2Nkαk + iTλβ
λ ,

(5.137)

where Nk = 1
2ξ
k + iRe(CZk) and Tλ = iξ̃λ − 2Re(CFλ) are the new Kähler coordinates. Here

C is the field compensating the scale invariance of Ω as introduced in the previous section. The
IIA Kähler potential is then given by

KO6 = − ln
[

4
3

∫
J ∧ J ∧ J

]
− 2 ln

[
2
∫

Re(CΩ) ∧ ?Re(CΩ)
]
, (5.138)

which is the sum of the Kähler potentials ofMKs andMcs. The Kähler coordinates consist of
the ta as well as Nk and Tλ.

The type IIB Kähler coordinates depend on the orientifold setup. For O3/O7 projections
they consist of the complex structure moduli zk and three other, namely

τ = C0 + ie−φ ,

Ga = ca − τba ,
Tα = 1

2κα + iρα − i
2(τ−τ̄)καbcG

b(G− Ḡ)c ,
(5.139)

with the κs defined as in the N = 2 case but with an appropriate basis. The Kähler potential
is given by

KO3/O7 = − ln
[
−i
∫

Ω(z) ∧ Ω̄(z̄)
]
− ln[−i(τ − τ̄)]− 2 ln[1

6κ(τ,G, T )] , (5.140)

where κ = καβγv
αvβvγ should be expressed in terms of τ , G and Tα. However, such an expression

can only be done explicitly for a single v, i.e. for α = h(1,1)+ = 1, in which case there is only one
Tα = T . If there in addition are no Gs, i.e. a = h

(1,1)
− = 0, κ has a particularly simple form as

− 2 ln κ = −3 ln[T + T̄ ] . (5.141)

The two last terms in the Kähler potential of eq. (5.140) satisfy a no-scale type condition

∂IK∂J̄KK
IJ̄ = 4 , (5.142)

with summation over I = (τ,Ga, Tα). With a non-trivial superpotential this will cancel the term
−3|W |2 in eq. (5.133) by contributing a +4|W |2 term, so that the resulting scalar potential V
will be positive semi-definite. For the O5/O9 orientifold projections the Kähler coordinates
consist of the complex structure moduli zκ and

tα = e−φvα − icα ,
Aa = Θabb

b + iρa ,

S = 1
6e
−φκ+ ic0 − 1

4(ReΘ−1)abAa(A+ Ā)b ,
(5.143)
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with c0 again being the dual scalar field to C2 and we have defined Θab(t) ≡ κabαtα and
∫
C6 ≡

c0 + 1
2ρab

a. The O5/O9 Kähler potential is given by

KO5/O9 = − ln
[
−i
∫

Ω ∧ Ω̄
]
− ln

[
1
6

∫
e−3φJ ∧ J ∧ J

]
− ln

[
1
3e
−φκ(tα, Aa, S)

]
, (5.144)

where the first term depends entirely on zκ, the second one on tα and the last one solves for κ
in terms of {tα, Aa, S} using eq. (5.143).

We will now turn to the flux-induced superpotentials for the different theories. In type IIA
the scalar potential of eq. (5.128) can be shown to come from a superpotential of the form

WO6 =
∫
H3 ∧ Ωc + F

(10)
A ∧ eB+iJ

= −2Nkek − iTλmλ + eRR0 + eRRat
a + 1

2κabcm
a
RRt

btc + 1
6m

0
RRκabct

atbtc
(5.145)

where FA = F0 + F2 + F4 and Fp+1 = dCp. See [41][44][45] for more details. It is clear that the
superpotential depends on all O6 moduli, just as the corresponding scalar potential VO6.

The type IIB superpotential for compactifications on both Calabi-Yau manifolds and Calabi-
Yau O3/O7 orientifolds is given by

WO3/O7 =
∫
G3 ∧ Ω = (eRRC − iτeC)ZC − (mC

RR − iτmC)FC . (5.146)

This superpotential depends on the zc complex structure moduli through Ω as well as the axion
and dilaton via the definition of G3 as

G3 ≡ F3 − τH3 , (5.147)

with F3 = dC2 and H3 = dB2. The Kähler moduli vα, ρα and ba, ca coming from B2 and
C2 however do not appear in the superpotential. The corresponding scalar potential VO3/O7 is
obtained via eq. (5.133) where one needs to calculate the Kähler covariant derivatives. They
depend on the Kähler coordinates M I , i.e. the chiral multiplets in O3/O7 compactifications,
and are given by

DτW = i
2e
φ
∫
Ḡ3 ∧ Ω + iGabb

abbW , DTαW = −2vα

κ
W ,

DGaW = 2iGabbbW , DzcW =
∫
G3 ∧ χc ,

(5.148)

where Kodaira’s formula ∂Ω
∂zk

= kkΩ+χk has been used. Using this and the fact that the D-terms
in this case are zero, the scalar potential obtained is

VO3/O7 = 18ieφ

κ2 ∫ Ω ∧ Ω̄

(∫
Ḡ3 ∧ Ω

∫
G3 ∧ Ω̄ +Gkl

∫
G3 ∧ χk

∫
Ḡ3 ∧ χ̄l

)
. (5.149)

It can be rewritten to exactly match the scalar potential in eq. (5.129) given earlier by expanding
G3 in the basis of H(3)

− as G3 = mk̂αk̂−ek̂β
k̂. Heremk̂ = mk̂

F2
−τmk̂

H3
andmk̂ = mk̂

F2
−τmk̂

H3
are

linear combinations of the magnetic and electric fluxes belonging to the expansions of F3 = dC2
and H3 = dB2. It is also clear that the potential is positive semi-definite, as expected from the
no-scale condition. The potential contains both RR and NSNS fluxes and depends on the axion,
dilaton and complex structure moduli.

A superpotential can be validated using supersymmetry conditions. For example, a Minkowski
vacuum should have vanishing superpotential and vanishing first derivative of the superpoten-
tial, i.e. W = 0 and ∂IW = 0. From WO3/O7 in eq. (5.146) we see that the first requirement
implies that

WO3/O7 = 0 ⇒
∫
G3 ∧ Ω = 0 , (5.150)
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and the demand on the derivative implies via eq. (5.148) that

DτW = 0 ⇒
∫
Ḡ3 ∧ Ω = 0 ,

DzkW = 0 ⇒
∫
G3 ∧ χk = 0 .

(5.151)

These equations imply for G3, in order, that it has no (0, 3)-, (3, 0)- or (1, 2)-components. The
only remaining option is that G3 is a (2, 1)-form, and when this is the case it is clear that the
scalar potential in eq. (5.149) is zero. Again there are no non-trivial 1-forms on a Calabi-Yau,
so G3 is automatically primitive. Hence G3 satisfies the supersymmetry condition of type B in
section 4.4, table 4.4, and the supersymmetries preserved in a type B solution are the same as
the ones of O3/O7 orientifolds.

At last the superpotential for the O5/O9 orientifold setup is given by

WO5/O9 =
∫

Ω ∧ F3 . (5.152)

Unlike the O3/O7 case, this superpotential does not generate the corresponding scalar potential
on its own. With fluxes in the O5/O9 case, the dual scalar field c0 to C2 becomes charged under
U(1) gauge transformations and as a consequence there is a non-vanishing D-term in the scalar
potential. The Kähler derivatives are given by [40]

DtαW = 3
2

(
Kα + e−φ/2

καabb
abb

κ

)
W , DAaW = −3ba

2 e−φ/2W ,

DSW = 3
κ
e−φ/2W , DzkW =

∫
F3 ∧ χκ ,

(5.153)

where Kα is the tα-dependent part of eq. (5.144). The resulting scalar potential is given by

VO5/O9 = 18ieφ

κ2 ∫ Ω ∧ Ω̄

(∫
Ω ∧ F3

∫
Ω̄ ∧ F3 +Gκλ

∫
χκ ∧ F3

∫
χ̄λ ∧ F3

)
(5.154)

− 9eφ

κ2

[
mk
H(ImM)klml

H +
(
eHk − (mHReM)k

)
(ImM)−1kl

(
eHl − (mHReM)l

)]
,

where the first term can be rewritten to exactly match the first term given in eq. (5.130).
Imposing the same Minskowski supersymmetric vacuum conditions W = 0 and ∂IW = 0 on this
setup imply that F3 should have no (0, 3) or (1, 2) parts. It can be shown that O5/O9-planes
preserve type C supersymmetric solutions as discussed in chapter 4.4.

A final remark is that while the O6 superpotential and scalar potential depend on all moduli,
the corresponding type IIB orientifold potentials do not. This will be central in the next chapter
when discussing moduli stabilisation.

5.5 Note on fluxes effects on general SU(3)-structure manifolds

In this section we will briefly discuss the effect fluxes have on general manifolds with SU(3)-
structure, their general superpotential, and the mirror symmetry on such manifolds.

In the case of manifolds with SU(3)-structure it is possible to perform a consistent truncation
to a finite set of massless modes. These modes are obtained by expanding a set of p-forms of
which some are not closed. The non-closure of these forms is proportional to the torsion which
has been shown to play a very similar role as the fluxes. In fact, some of the torsion classes
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defined earlier in eq. (4.35) are mirror to NSNS flux. The torsion is encoded in the non-closure
of the forms in the basis

dωa = mC
a αC − eaDβD ,

dω̃a = 0 ,
dαC = −eaC ω̃a ,
dβC = mC

a ω̃
a ,

(5.155)

where the indices span a = 1, . . . , bJ where bJ is the dimension of the finite set of 2-forms, and
C,D = 1, . . . , bΩ with bΩ is the dimension of the set of 3-forms. The spectrum has been shown
to be analogous to the one of Calabi-Yau manifolds in table 5.2 but with different index spans.
Namely in IIA the h(1,1) is replaced with bJ and the h(2,1) is replaced by bΩ. In type IIB the two
dimensions are exchanged. In [42] it is shown that in the type IIA N = 2 action, the presence
of both electric and magnetic torsion eaC and mC

a results in a massive Aa field. In type IIB
fluxes make some moduli in the C(10)

4 expansion of eq. (5.64) massive. Namely eaC generates a
massive V k and mC

a make the tensors Da
2 massive.

The N = 1 superpotentials of the O6-, O3/O7- and O5/O9-planes given in eqs. (5.145),
(5.146) and (5.152) respectively, can be obtained from the supersymmetry transformation of the
gravitino in 4D. The generic form of it reads [46]

δξψµ = ∇µξ + ieK/2γµξ
∗ , (5.156)

with ξ being the 4D supersymmetry parameter, K the N = 1 Kähler potential, and W the
superpotential. Namely, starting from the 10D supersymmetry variation of the gravitino in
eq. (4.2) and inserting the spinor decomposition in eq. (4.74) as well as using the Kähler
potentials for the different O-plane theories in eqs. (5.138), (5.140), (5.144), their corresponding
superpotentials can be obtained. In the spinor decomposition of eq. (4.74), one must relate the
complex functions a and b such that a = ib for the O3/O7 setup, a = b for O5/O9 and a = beiβ

for O6-planes.
Hitchin showed in [16] that there is a special Kähler structure on the space of generalised

almost complex structures. In the case of ordinary almost complex structures, this bundle is
known as the twistor bundle. The space of generalised almost complex structures consists of
stable2, real, even or odd forms, i.e. {ReΦ+} and {ReΦ−}. For SU(3) this corresponds to the
spaces of J and ReΩ. The spinor Φ+ can be complexified by adding the B field, so that

Φ+ = i
8e
−(B+iJ) , Φ− = 1

8Ω . (5.157)

The ReΦ+ and ReΦ− are Spin(6, 6) representations where ImΦ± = ?ReΦ±. They are the
constituents of our pure Clifford(6,6) spinors since Φ± = ReΦ± + iImΦ±. For the space of
generalised complex structures the Kähler metric is obtianed from the Kähler potential and
given by

K± = − ln
[
i

∫
〈Φ±, Φ̄±〉

]
, (5.158)

where the bracket is a scalar product between spinors, called the Mukai pairing, defined as

〈Ψ+,Φ+〉 ≡ Ψ6 ∧ Φ0 −Ψ4 ∧ Φ2 + Ψ2 ∧ Φ4 −Ψ0 ∧ Φ6 ,

〈Ψ−,Φ−〉 ≡ Ψ5 ∧ Φ1 −Ψ3 ∧Ψ3 + Ψ1 ∧ Φ5 ,
(5.159)

where the number subscript denotes the degrees of the component form. An interesting note is
that the Kähler potential is very similar to the N = 2 Calabi-Yau counterparts as seen in eq.

2A stable form is a real form Φ whose neighbouring elements are equivalent to Φ under GL(6,R) transforma-
tions.
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(5.20) and eq. (5.38). The Φ± do however not have to be closed forms, which means that they
need not correspond to an integrable structure, which the Calabi-Yau structures must do.

The spinor formalism above can be used to understand superpotentials. The general N = 1
superpotentials for unwarped compactifications of manifolds with SU(3)-structure in each the-
ory, are given by

WIIA =
∫
ā2e−φ 〈Φ+,dΦ̄−〉 −

∫
b̄2e−φ 〈Φ+, dΦ̄−〉+ 2

∫
āb̄ 〈Φ+, FIIA〉 , (5.160)

WIIB =
∫
ā2e−φ 〈Φ−,dΦ̄+〉+

∫
b̄2e−φ 〈Φ−,dΦ̄+〉 − 2i

∫
āb̄ 〈Φ−, FIIB〉 , (5.161)

where again FIIA = F0 +F2 +F4 and FIIB = F1 +F3 +F5 are the sums of the RR fluxes in each
respective theory. If we insert a = ib into WIIB in eq. (5.161), the result will match exactly with
the O3/O7 superpotential in eq. (5.146). If one inserts a = b then the obtained expression will
consist only on the RR part of eq. (5.152) for O5/O9. To compensate for this the superpotential
gets modified by adding a torsion piece

W comp
O5/O9 =

∫
(e−φ dJ + F3) ∧ Ω . (5.162)

With a = 0 in either WIIA or WIIB, the superpotential for the heterotic string is obtained as

Whet =
∫
e−φ(dJ + iH) ∧ Ω . (5.163)

Last but not least, with a = ib for WIIA, the ”torsional” O6 superpotential is obtained as

W tors
O6 =

∫
e−φ(dJ + iH) ∧ ReΩ + i

∫
FIIA ∧ eB+iJ , (5.164)

where the NSNS part has been integrated by parts. The superpotentials have the right holo-
morphic dependence on the respective chiral multiplets.

We will now proceed to the topic of mirror symmetry again, but this time with fluxes present.
Does mirror symmetry survive the presence of fluxes? An important aspect is that from eq.
(5.70) one should expect that fluxes in even cohomologies are mapped to fluxes in odd co-
homologies. Fluxes in the RR sector agree with this, since type IIA contains fluxes in even
cohomologies while the ones in type IIB are odd. The NSNS fluxes however all belong to an odd
cohomology, so its mirror should be an even NSNS ”flux”. It turns out that this mirror NSNS
”flux” in an even cohomology corresponds to torsion [47]. As a consequence it is suitable to
study mirror symmetry in the presence of fluxes in the setup of compactifications on manifolds
with torsion, i.e. manifolds with SU(3)-structure. More precisely, it has been shown [47][48]
that the mirror of the NSNS flux H3 is the torsion of half-flat manifolds, i.e. ReW1 and ReW2.

As for the defining objects of the complex structure, i.e. J and Ω, it can be shown from
the T-duality rules for the supersymmetry parameter that there is an exchange of the pure
spinors η+ and η−. These are the same spinors that build the Φ± ones via Φ+ = η+ ⊗ η†+ and
Φ− = η+⊗ η†−. It is therefore natural to conjecture that mirror symmetry is an exchange of the
pure spinors, i.e.

Φ+ ←→ Φ− ,
eB+iJ ←→ Ω ,

(5.165)

where the last symmetry is specific to SU(3)-structure manifolds. Now, introducing fluxes on
such manifolds, it is clear that the RR fluxes map amongst themselves, i.e the even ones of type
IIA map to the odd ones of type IIB. The NSNS fluxes will be mixed with metric components via
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T-duality. The explicit maps involving NSNS fluxes and torsion of SU(3)-structure manifolds
are [20]

i(W3 + iH(6))ij + Ωijk(W 4 + iH(3̄))k ←→ −2iW 2
ī − 2gī(W 1 + 3iH(1̄)) ,

(W5 −W4 − iH(3))i ←→ (W5 −W4 − iH(3))ı̄ ,
(5.166)

which are often written in a more compact way as

(∇J +H)ijk ←→ (∇J +H)ı̄̄k̄ . (5.167)

This short hand notation comes from the fact that the Qs in eq. (4.98) have mirror symmetries
Qij ↔ Qī and Qi ↔ −Q̄ı̄ as a consequence of the exchange of the η+ and η− under T-dualities.
In fact, all the matrices in eq. (4.98) have the same mirror symmetries as Q if in addition the
RR fields satisfy

FIIA ←→ FIIB . (5.168)

The mirror symmetry of eq. (5.166) and eq. (5.168) can be understood as the result of mirror
symmetry which exchanges the SU(3) representations according to 6 + 3̄↔ 8 + 1.

In a final remark we turn to mirror symmetry in the N = 2 effective actions from compacti-
fications of SU(3)-structure manifolds with fluxes. The Kähler potential of the vector multiplet
moduli space in SU(3)-structure compactifications are spanned by the pure spinors Φ+ for type
IIA and Φ− for type IIB. From the Kähler potential defined in eq. (5.158) it is clear that these
Kähler potentials will be mapped to each other. The N = 2 version of the superpotential has
been shown to respect the mirror symmetry maps. For instance, in the presence of RR and only
electric NSNS fluxes (which include torsion), the N = 2 superpotential is symmetric under the
exchange of complex structure and Kähler coordinates; ZC = (Z0, Z0zc) ↔ tA = (1, ta) and
prepotentials; FC ↔ F̃A given that the fluxes are mapped according to

{eRRC ,mC
RR} ←→ {eRRA,mA

RR} ,
eAC ←→ eCA .

(5.169)

Here the NSNS electric flux combines flux and torsion as eAC ≡ (eC , eaC). This is true for both
the IIA and IIB N = 2 superpotentials. These potentials are however not mirror symmetric in
the presence of magnetic NSNS fluxes.
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6
No-Go Theorems for Compact Manifolds

with Fluxes

In this chapter we will review a set of general no-go theorems for type II compactifications to 4D.
For instance we will see that integrability conditions on the type IIB flux equations of motion
in combination with a warped metric rule out compactifications to Minkowski and de Sitter
vacua. In section 6.1 we reconstruct a no-go theorem coming from the 10D Einstein equation
and discuss the need to include localised sources. In the remaining sections 6.2 and 6.3 we
discuss conditions on the solutions of the Bianchi identities.

6.1 A no-go theorem from the 4D Einstein equation

In this section we review the results of [49] which show that the contribution from fluxes to
the stress-energy tensor is always positive, which in turn rules out compactifications to compact
internal manifolds. The starting point is the trace reversed 10D Einstein equation

RMN = TMN − 1
8gMNT

L
L . (6.1)

Given the metric ansatz of eq. (4.1) the 4D components Rµν of the 10D Einstein equation read

R̂µν − ĝµν(∇2A+ 2(∇A)2) = Tµν − 1
8e

2AĝµνT
L
L . (6.2)

Contracting with ĝµν on both sides results in that

R̂− 4(∇2A+ 2(∇A)2) = e2ATµµ − 1
2e

2ATLL , (6.3)

where R̂ is the Ricci scalar of the 4D metric ĝµν . Here we have used that Tµµ should be contracted
with the raised 4D metric component, i.e gµν = e−2Aĝµν , so that ĝµνTµν = e2AgµνTµν = e2ATµµ.
Rearranging eq. (6.3) to

R̂+ e2A(−Tµµ + 1
2T

L
L) = 4(∇2A+ 2(∇A)2) , (6.4)

and defining
Ť ≡ −Tµµ + 1

2T
L
L = 1

2(−Tµµ + Tmm) , (6.5)

as well as rewriting the right-hand side of eq. (6.4) as 4(∇2A + 2(∇A)2) = 2e−2A∇2e2A, eq.
(6.3) becomes

R̂+ e2AŤ = 2e−2A∇2e2A . (6.6)

The energy-momentum tensor coming from fluxes may be investigated by using the general
expression for the energy-momentum tensor in terms of some n-form field, which is given by

TMN = FMP1...Pn−1F
NP1...Pn−1 − 1

2ngMNF
2 . (6.7)
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This can be compared with the energy-momentum tensor in electromagnetism, where

Tµν = Fµ
iFνi − 1

4gµνF
ijFij , (6.8)

and F is the 2-form electromagnetic field strength. Given this expression, eq. (6.5) takes the
form

Ť = −1
2

(
FµP1...Pn−1F

µP1...Pn−1 − 1
2ng

µ
µF

2
)

+ 1
2

(
(F 2 − FµP1...Pn−1F

µP1...Pn−1)− 1
2ng

m
mF

2
)

= −FµP1...Pn−1F
µP1...Pn−1 + n− 1

2n F 2 . (6.9)

When rewriting the Tmm part we used that gµµ = gµνgµν = 4 in the external spacetime,
gmm = gmngmn = 6 in the internal and the fact that

F 2 ≡ FMP1...Pn−1F
MP1...Pn−1 = FµP1...Pn−1F

µP1...Pn−1 + FmP1...Pn−1F
mP1...Pn−1 . (6.10)

In order to preserve maximal symmetry in the external space, there can either be no non-zero
flux components (legs) in any of its four directions, or legs in all of the four directions. We
will therefore consider these two cases separately, as they will give different contributions to the
traced energy-momentum tensor Ť . In the first case, there can only be fluxes in the internal
spaceM6. We do not demand that this internal manifold is maximally symmetric, so the fluxes
can be in an arbitrary number of dimensions within theM6 manifold. In this case the first term
of eq. (6.9) is zero, so that

Ťint = n− 1
2n F 2 ≥ 0 , (6.11)

since F 2 ≥ 0 in the purely spatial 6D space with positive signature.
In the second case, the fluxes have to be in the all of the four dimensions of the external space

M4, and may in addition have legs in some arbitrary number of the remaining six dimensions.
The first term of eq. (6.9) can then be rewritten as

FµP1...Pn−1F
µP1...Pn−1 = 4

n
F 2 , (6.12)

which we use to simplify eq. (6.9) to

Ťext+ = n− 9
2n F 2 . (6.13)

With fluxes in the time direction, it is natural to assume the fluxes to be time-like, which implies
that F 2 ≤ 0 in this case. Inserting eq. (6.12) into eq. (6.9), Ťext+ will then be larger than zero,
i.e.

Ťext+ = −9− n
2n F 2 ≥ 0 , (6.14)

where 4 ≤ n ≤ 9 and F 2 ≤ 0. It is therefore clear that whether the fluxes are only internal,
or propagate in at least the four external directions, their contribution to the traced energy-
momentum tensor is positive semi-definite in both cases of eq. (6.11) and eq. (6.14). For
example, the 9-form flux F9 has vanishing contribution in eq. (6.14), and fortunately its purely
internal dual flux F1 vanishes in eq. (6.11).

If one multiplies eq. (6.6) with e2A and integrates over the internal manifoldM6, the right-
hand side of eq. (6.6) will vanish. Since the internal manifold is assumed to be compact, it does
not have a boundary, thus eq. (6.6) becomes∫

M6
e2AR̂+ e4AŤ = 0 . (6.15)
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The integration will not change any signs on the left-hand side, and we have just showed that Ť ≥
0 for all fluxes, so we see that for the equality to be true R̂ can not be positive. This is referred
to as a no-go theorem which was first found in [49]. It implies that without including localised
sources or higher order derivative corrections to the equations of motion, a compactification to
a de Sitter vacuum is not allowed. Anti-de Sitter spaces with R̂ < 0 may cancel the contribution
from fluxes to the energy-momentum tensor, however Minkowski spaces with R̂ = 0 only allow
1-form fluxes.

As mentioned earlier an inclusion of a localised source may cancel positive terms on the left-
hand side of eq. (6.15). The inclusion of such a localised source adds an extra term in the trace
reversed Einstein equation of eq. (6.1), so that

RMN = TMN − 1
8gMNT

L
L + T loc

MN − 1
8gMNT

locL
L . (6.16)

This adds another term to eq. (6.3), which then reads

R̂+ e2A
(
Ť flux + Ť loc

)
= 2e−2A∇2e2A , (6.17)

with Ť flux defined as in eq. (6.9). The energy-momentum tensor of the sources is given by

T loc
MN = − 2√

−g
δSloc
δgMN

, (6.18)

where Sloc is the action describing the sources and gMN is the same 10D metric as before. For
a Dp-brane that wraps a (p− 3)-cycle Σ inM6 the localised source action is [22]

Sloc = −
∫
M4⊕Σ

dp+1ξ
√
−g Tp + µp

∫
M4⊕Σ

C(p+1) , (6.19)

to leading order in α′ and with fluxes vanishing on the brane. Generally there are other terms
of higher order in α′ that contribute to g = detgMN under the square root. Tp is the brane
tension, or energy density, given in Einstein frame by

Tp = µpe
(p−3)φ/4 , (6.20)

where µp = (2π
√
α′)−(p+1) is the Dp-brane charge and Cp+1 is an RR field which couples to the

Dp-brane. The action of eq. (6.19) gives us the energy-momentum tensors [39]

T loc
µν = −Tpe2Aĝµνδ(Σ) , T loc

mn = −TpΠΣ
mnδ(Σ) , (6.21)

where δ(Σ) is the delta function of the (p− 3)-cycle Σ which is also dual to the cycle and the Π
is the projector onto the cycle Σ. Using this, it was found in [39] that

Ť loc = 7− p
2 Tpδ(Σ) . (6.22)

This implies that Dp-branes with p < 7 also give a positive contribution to the Einstein equation
in eq. (6.17) and a vanishing contribution for p = 7. To allow for compactifications we therefore
need to include objects with negative tension. String theory does however have such objects,
namely orientifolds, which will be discussed in later chapters.
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6.2 Tadpole cancellation conditions from Bianchi identities and
flux equations of motion

In this section we introduce the no-go theorem from the integrated Bianchi identity or equations
of motion with fluxes and source terms present. The Bianchi identities for the NSNS flux and
the democratic RR fluxes are given in eq. (3.116), repeated here for convenience as

dH = 0 , dF −H ∧ F = 0 . (6.23)

The RR fluxes are constrained by the Hogde- or self-duality relation eq. (3.115), i.e.

Fn = (−1)bn/2c ?10 F10−n . (6.24)

As a consequence of this self-duality, the Bianchi identity also contains the equation of motion
for the fluxes, which read

d(?10Fn)±H ∧ F8−n = 0 , (6.25)

where we use the plus sign for type IIA and minus sign for type IIB. This equation can be
written in a simpler form of [1]

d(?10Fn) +H ∧ ?10Fn+2 = 0 , (6.26)

for both type IIA and IIB. Throughout this thesis we wish to study flux backgrounds that
preserve maximal 4D symmetry. This can be translated into a condition on the fluxes according
to

F (10)
n = Fn + vol4 ∧ F̂n−4 , (6.27)

where Fn denotes internal fluxes, i.e. fluxes inside the compact manifoldM6, F̂4−n denotes the
external fluxes inM4 and vol4 is the 4D volume. The duality relation in eq. (6.25) allows us to
relate the internal and external components by

F̂n−4 = (−1)bn/2c ?6 F10−n , (6.28)

where ?6 denotes the 6D Hodge star. Now, using the decomposition of eq. (6.27) and eq. (6.28)
as well as the metric defined in eq. (4.1), the Bianchi identities and the equations of motion for
the internal RR fluxes become

(d−H∧)F = 0 , and (d−H∧)(e4A ?6 F ) = 0 , (6.29)

respectively. In the presence of localised sources a source term will be added to the equations
of eq. (6.29) so that the Bianchi identity takes the form

dFn = H3 ∧ Fn−2 + ρloc8−n , (6.30)

where ρloc8−n is the dimensionless charge density of the (8−n)-dimensional magnetic source for Fn,
containing a delta function δn+1(~x−~xi). Integrating this identity over cycles wrapped by branes
results in a type of charge conservation equation or tadpole cancellation condition. In type IIA,
the D-branes that can give tadpole cancellation conditions are the D4-, D6- and D8-branes that
are extended along spacetime. Since Dp-branes wrap (p− 3)-cycles in the internal manifold, the
D4- and D8-branes will wrap 1- and 5-cycles respectively. However, taking the internal manifold
to be a Calabi-Yau, these cycles are not allowed since a Calabi-Yau manifold does not admit 1-
or 5-forms. Hence, for type IIA, the only relevant D-brane that can give tadpole cancellation
conditions is the D6-brane. The D6-branes are electric sources for F (10)

8 and magnetic sources
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for F (10)
2 , which is the dual field of F (10)

8 . With localised sources consisting of D6-branes and
O6-planes that extend along spacetime, they will wrap 3-cycles Σ3 in the internal manifold. If
one now integrates the Bianchi identity of eq. (6.30) over the dual cycle Σ̃3, the type IIA tadpole
cancellation condition becomes

µDp ND6(Σ3) + µOp NO6(Σ3) + µDp F0

∫
Σ̃3
H3 = 0 . (6.31)

Here µDp is the Dp-brane charge and the Op-plane charge density is

µOp = −2p−5µDp . (6.32)

The ND6 and NO6 are the number of D6-branes and O6-planes wrapped on the cycle Σ3, which
is dual to Σ̃3. With p = 6 the O-plane charge is determined to −2µDp so that the above equation
takes the form

ND6(Σ3)− 2NO6(Σ3) + F0

∫
Σ̃3
H3 = 0 . (6.33)

In type IIB, the tadpole conditions come from D3-, D5- and D7-branes. In the previous
section we saw however that D7-branes do not contribute to the energy-momentum tensor, and
neither does the F (10)

1 flux for which they are magnetic sources. A wrapped D7-brane does on
the other hand have induced D3-charge if one takes into account the first α′-correction to its
action, so it will therefore contribute to the D3 tadpole.

The D5-branes extended along spacetime are wrapped around an internal 2-cycle Σ2 and are
electric sources of F (10)

7 and magnetic sources of the F (10)
3 fields. The 4-cycle Σ̃4 is dual to the

2-cycle, so an integration over the Bianchi identity in eq. (6.29) over these cycles results in that

ND5(Σ2)−NO5(Σ2) +
∫

Σ̃4
H3 ∧ F1 = 0 . (6.34)

D3-branes are electric sources of F̃1 and magnetic sources of the F5 which are 6D Hodge
dual to each other according to eq. (6.28). In the internal space the D3-branes are point-like
objects and therefore the integration will be over the whole internal space, so that the tadpole
cancellation condition becomes

ND3 − 1
4NO3 +

∫
H3 ∧ F3 = 0 . (6.35)

Here the integral fluxes can be written as

Nflux ≡
∫
H3 ∧ F3 = (eCmC

RR −mCeRRC) = NNSNSηN
T
RR , (6.36)

with η =
(

0 1
−1 0

)
.

As for the branes that are sources to NSNS fluxes, i.e. NS-branes, they are the same in type
IIA and IIB. The NS5-branes are magnetic sources of the H3 flux, whose Bianchi identity in the
presence of fluxes is

dH3 = ρNS5 . (6.37)

6.3 Special type IIB solutions to the Bianchi identities
In this section we will review some constraints on type IIB solutions of the Bianchi identities for
the fluxes. We consider the type IIB action in eq. (3.110) with the addition Sloc from localised
sources. Again, we consider the warped metric

ds2 = e2A(y)ĝµν dxµ dxν + e−2A(y)g̃mn dym dyn , (6.38)
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with warp factor e2A(y). Poincaré-invariance in 4D and the Bianchi identity restrict the allowed
components of the flux. Namely, the self-dual 5-form flux should be of the form

F
(10)
5 = (1 + ?10)[dα ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx3] , (6.39)

or equivalently
F5 = e−4A ?6 d(e4A) , (6.40)

where α = α(y) is some function of the internal coordinates. The 3-form flux G3 is only allowed
to have components alongM6. With the reversed Einstein equation of eq. (6.1) and the stress
tensor of the sources given in eq. (6.18), the non-compact 4D components of the Ricci tensor
take the form

Rµν = −e2Agµν

(
GmnpḠ

mnp

48Imτ + e−8A

4 ∂mα∂
mα

)
+ κ2

10

(
T loc
µν − 1

8gµνT
loc
)
. (6.41)

With the metric in eq. (6.38) the external Ricci components are computed to

Rµν = −gµνe4A∇̃2A

= −1
4gµν

(
∇̃2e4A − e−4A∂me

4A∂me4A
)
,

(6.42)

where the tilde denotes the use of the internal metric g̃mn. Combining this equation with eq.
(6.41), we arrive, after tracing both equations, at

∇̃2A = e−2AGmnpḠ
mnp

48Imτ + e−6A

4 ∂mα∂
mα+ κ2

10
8 e−2A(Tmm − Tµµ)loc . (6.43)

This is equivalently written using the second line of eq. (6.41) as

∇̃2e4A = e2AGmnpḠ
mnp

12Imτ + e−6A[∂mα∂mα+ ∂me
4A∂me4A] + κ2

10
2 e2A(Tmm − Tµµ)loc

= e2A+φ |G3|2

12 + e−6A(|∂α|2 + |∂e4A|2
)

+ κ2
10
2 e2A(Tmm − Tµµ)loc .

(6.44)

Would one integrate eq. (6.43) and eq. (6.44) over the internal manifoldM6, the left-hand side
vanishes as long as the internal manifold is assumed compact. The flux and warp factor terms
are positive semi-definite, and so these equations serve as stringent constraints on flux/brane
configurations for warped type IIB compactifications. It is clear that without any localised
sources, G3 flux must vanish and the warp factor must be constant.

Giddings, Kachru and Polchinski (GKP) [39] was first to show that a condition on the source
terms determines the form of the solution completely. See also [50]. The condition in question
is that for all localised sources one assumes that

1
4(Tmm − Tµµ) ≥ T3ρ

loc
3 , (6.45)

which resembles a BPS condition. With D3-branes and O3-planes present, which have integrated
ρ3 equal to +1 and −1/4 respectively, the stress tensor is

T 0
0 = T 1

1 = T 2
2 = T 3

3 = −T3ρ
loc
3 , Tmm = 0 , (6.46)

which saturates the inequality of eq. (6.45), i.e. makes it an equality.
Again, the Bianchi identity/equations of motion for the 5-form flux is

dF̂5 = H3 ∧ F3 + 2κ2
10T3ρ

loc
3 , (6.47)
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where an integration over the internal manifold results in the tadpole condition

1
2κ2

10T3

∫
H3 ∧ F3 +Qloc

3 = 0 , (6.48)

with Qloc
3 being the total charge coming from D3- or D7-branes and O3-planes. The charge

density of the O-planes is again given by eq. (6.32), so for instance with only D3-branes and
O3-planes it is given by Qloc

3 = µ3(ND3 − 1
4NO3). Using the expression of the 5-form flux in

eq. (6.39) and inserting it into the Bianchi identity in eq. (6.47), an expression for α can be
obtained as

∇̃2α = ie2AGmnp ?6 Ḡ
mnp

12Imτ + 2e−6A∂mα∂
me4A + 2κ2

10e
2AT3ρ

loc
3 . (6.49)

This is very similar to the Einstein equation constraint of eq. (6.44) and, subtracting eq. (6.49)
from it, one obtains

∇̃2(e4A − α) = e2A

6Imτ |iG3 − ?6G3|2 + e−6A|∂(e4A − α)|2

+ 2κ2
10e

2A
(

1
4(Tmm − Tµµ)loc − T3ρ

loc
3

)
.

(6.50)

Integrating over the internal compact manifold, the left-hand side vanishes. With the assumption
of eq. (6.45) regarding the sources, the right-hand side of eq. (6.50) is positive semi-definite. As
a consequence the three terms must vanish on their own, namely we must have

• a self-dual 3-form field strength ?6G3 = iG3,

• a 4-form function related to the warp factor via α(y) = e4A(y),

• saturated the inequality in eq. (6.45).

In light of these conditions we may review the field equations and Bianchi identities. Starting
with the 5-form field strength, firstly it is self-dual by construction. Its Bianchi identity in eq.
(6.49) is consistent and determines α and A provided that the total D3 charge vanishes in eq.
(6.48). As for the 3-form field strengths, one must impose their Bianchi identities

dF3 = dH3 = 0 . (6.51)

With these conditions, the equation of motion takes the form

d
(
e4A ?6 G3 − iαG3

)
+ i

Imτ dτ ∧ Re
(
e4A ?6 G3 − iαG3

)
= 0 , (6.52)

which is satisfied by ?6G3 = iG3 and α(y) = e4A(y). The Ricci tensor equation for the internal
coordinates and the axion-dilaton τ must satisfy the two conditions

R̂mn = κ2
10
∂mτ∂nτ̄ + ∂nτ∂mτ̄

4(Imτ)2 + κ2
10

(
T̂D7
mn − 1

8 ĝmnT̂
D7
)
,

∇̃2τ = ∇̃τ · ∇̃τ
iImτ − 4κ2

10(Imτ)2
√
−g

δS̃D7
δτ̄

,

(6.53)

which are written in Einstein frame. Summarising, given that all localised sources satisfy eq.
(6.45), the necessary and sufficient conditions are that the internal metric fulfils eq. (6.53), that
we have a 5-form flux given by eq. (6.39), an imaginary self-dual (ISD) complex 3-form flux
and that the inequality of eq. (6.45) is saturated, i.e. has vanishing total D3 charge. Note
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that the first three of these requirements correspond to the type B solutions of chapter 4. The
reasoning in this section does not however impose supersymmetry at all. The ISD condition on
G3 is less restrictive than what a supersymmetric type B solution requires, since it allows for a
non-primitive (1,2) component as well as a singlet (0,3) term. The type B solutions demand that
G3 is purely a primitive (2,1)-form. However, one may consider our compact internal manifold
to have SU(3)-structure where there can be no non-trivial closed 1-forms, thus forbidding the
non-primitive (1,2)-form. If there further would not exist a (0,3) singlet piece then the above
solution is exactly of the type B form. Without any D7-branes, the internal manifold is a
conformal Calabi-Yau, i.e. with torsion classes 2W5 = 3W4 and a constant dilaton. With D7-
branes present, the internal space obeys the condition in eq. (6.53) and has ∇τ 6= 0. In this
case the internal space is no longer conformal Calabi-Yau but has W4 = W5 = ∂φ.

In type B solutions, F5 is the relevant field for the Bianchi identity, and the above anlysis
can be thought of as a type B solution. As a final remark we will briefly comment on the IIB
type A and C solutions. In type A solutions, the relevant Bianchi identity is the one with NSNS
flux. Choosing the positive sign relation in table 4.4, the NSNS field strength H3 is related to
the fundamental form by

H3 = i(∂ − ∂̄)J2 , (6.54)

with ∂ being the holomorphic exterior derivative [51]. The Bianchi identity of eq. (6.37) will
then result in that

dH3 = −2i∂∂̄J2 = ρNS5 . (6.55)

As for the type C solutions, they are S-dual to the type A solutions, so the corresponding Bianchi
identity becomes [1]

dF3 = 2i∂∂̄(e−2AJ2) = H3 ∧ F(1) + (2π
√
α′)2ρloc5 . (6.56)

In the next chapter we will discuss moduli stabilisation on different Ricci flat geometries, but
not always with SU(3)-structure as we will consider tori geometries.
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7
Moduli Stabilisation by Fluxes

In order to stabilise moduli a common recipe is to consider a specific geometry and introduce
fluxes on it in ways conveniently entwined with the geometry at hand. In this chapter we
illustrate this by working through some of the most common examples of moduli stabilisation
in the literature.

7.1 Moduli stabilisation in type IIB Calabi-Yau orientifolds on
the deformed conifold

In this section we review the main mechanisms in the stabilisation of type IIB moduli on orien-
tifolds using the setup of a deformed conifold to describe some singular points in the Calabi-Yau
manifold which may be related to moduli.

A striking result is that the moduli spaces belonging to completely different Calabi-Yau man-
ifolds touch at some points in their boundaries. It is possible to move between the moduli spaces
which correspond to topologically distinct Calabi-Yau manifolds, and it has been shown that a
large number (perhaps all) of the moduli spaces of simply connected Calabi-Yaus together form
a connected web [52]. In the regions where the different moduli spaces meet, called phase- or
geometric transitions, the respective metrics of the Calabi-Yau become singular. As a conse-
quence Calabi-Yau manifolds are actually not entirely smooth, but contain conical singularities
for special values of their moduli fields. The most generic manifold with singular points is a
conifold. The local area around a singular point is generically described by a quadric in C4,
which spans the space of a cone, such that

ω2
1 + ω2

2 + ω2
3 + ω2

4 = 0 , (7.1)

where the ωs denote the local complex coordinates. The singular point is at (ω2
1, ω

2
2, ω

2
3, ω

2
4) = 0.

This is a cone since for any ω fulfilling the above equation, so does λω with λ being some
constant function, hence the space is made up of complex lines through the origin.

In order to determine the base of the cone it is useful to decompose the ωs into their real
and imaginary parts. Viewing ω as a four-component vector; ω = (ω1, ω2, ω3, ω4), the conifold
singularity of eq. (7.1) is written ω2 = 0. In terms of real and imaginary parts; ω = ξ + iη, eq.
(7.1) can be written as the pair

ξ2 − η2 = 0 , ξ · η = 0 . (7.2)

The base is then the intersection between the cone and a sphere with its centre at the singularity.
If the sphere has radius r so that ξ2 + η2 = r2, the base is described by

ξ2 = 1
2r

2 , η2 = 1
2r

2 , ξ · η = 0 . (7.3)

It is clear that the space of ξs is an S3 and taking this as a starting point it is also clear that
for each point on it, e.g. ξ = (r/

√
2, 0, 0, 0), then by the second equation in eq. (7.3) the
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η = (0, η1, η2, η3) is effectively a three-vector. This makes η2 = r/2 to be an S2. The base of
the cone is therefore a fibre bundle with base S3 and fibre S2. Since all S2 bundles over S3 are
trivial, the base of the cone must be topologically equivalent to the product space S2 ⊕ S3.

The conifold singularity can be repaired, or smoothed, in two different ways. The first one is
by a small resolution in which eq. (7.1) is rewritten by a linear change of variables into

XY − UV = 0 , (7.4)

and then making a small resolution in which eq. (7.4) is replaced by two equations(
X U
V Y

)(
λ1
λ2

)
= 0 , (7.5)

where λ1, λ2 are not both zero. This equation is equivalent to eq. (7.4) away from (X,Y, U, V ) =
0. The solutions of the λs are determined up to an overall multiplicative factor, i.e. (λ1, λ2) '
λ(λ1, λ2) with λ ∈ C. Thus all variables of eq. (7.5) belong to C4 ⊕ P1 with P denoting
the complex projective space. The matrix on the left of eq. (7.5) has either rank one or
zero, although it is only zero at a singularity where all elements X,Y, U, V vanish. Because
of this, eq. (7.5) determines a unique ratio λ1/λ2 and hence a unique point in P1. When
(X,Y, U, V ) 6= 0 in eq. (7.5) the space is the same as the singular conifold. However, since
(X,Y, U, V ) = 0 at the singularity, λ1 and λ2 are completely unconstrained so that the space
they span, i.e. P1, is projected down to each node ofM . Thus in passing fromM to the resulting
smooth manifold M [ each conifold singularity is replaced with a copy of P1 ≡ S2 generated by
λ1/λ2 = −U/X = −Y/V . It is not obvious but nevertheless true that the resulting smooth
manifold M [ is a Calabi-Yau [53].

The other way of ”desingularising” the conifold singularity is by deformation. Namely, eq.
(7.3) is deformed, or perturbed, into

ξ2 = ε2 , η = 0 , (7.6)

where ε is a non-zero constant. This space describes an S3, so the conifold singularity has been
replaced by an S3 and the resulting smooth space is a Calabi-Yau manifold denoted M ]. Thus
by smoothing the conifold singularity of M by either doing a small resolution or a deformation,
it is possible to pass continuously from one Calabi-Yau to another via [54]

M [ ←→M ←→M ] . (7.7)

The smoothed Calabi-Yau manifolds M [ and M ] are perhaps not too surprisingly topologi-
cally distinct since the singularities of the original conifoldM have been replaced by the different
spheres S2 and S3 respectively. However, it can nevertheless be seen from the Euler numbers of
the two manifolds. The Euler number of an S3 vanishes; χ(S3) = 0, for an S2 it is χ(S2) = 2
and for a point it is χ(point) = 1. For each singularity, or node N , in M there is an S3 in M ]

and an S2 in M [, so their Euler numbers are related via

χ(M)− χ(M [) = χ(point)N − χ(S2)N = N − 2N = −N , (7.8)
χ(M)− χ(M ]) = χ(point)N − χ(S3)N = N − 0 = N , (7.9)

or more compactly;
χ(M [) = χ(M) +N = χ(M ]) + 2N . (7.10)

The geometry of the deformed conifold can be used to stabilise moduli. Recasting eq. (7.6)
into the original complex local coordinates ω, it takes the form

ω2
1 + ω2

2 + ω2
3 + ω2

4 = z , (7.11)
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where the complex parameter z controlling the size of the S3 can be taken to be our familiar
complex structure modulus. While we only work with one complex structure moduli, it can be
naturally generalised to include several. Recalling the 3-cycles AC and their duals BC defined in
eq. (5.114), there are 2h(2,1) +2 such cycles on the manifold which intersects each other pair-wise
once according to AI ∩ BI = δIJ . The complex structure moduli is again related to them via
zc = ZC/Z0 where ZC =

∫
AI Ω and the dual cycle FJ(Z) =

∫
BJ

Ω is related to the prepotential
via FJ = ∂JF . In the vicinity of the conifold singularity we may have two cycles present, namely
one of the A cycles and one of the B cycles, say A1 and B1. If one for example takes the ωs and
z to be real and positive, then the A cycle will intersect the dual B cycle exactly once if the B
cycle is constructed with imaginary ω1,2,3 as well as a real and positive ω4.

At a conifold singularity Z1 → 0 the A1 cycle will shrink to zero volume. The A1 cycle circles
this point, but all we know of the B1 cycle is that it intersects with the A1 cycle once. Because
of this one might say that the dual cycle will go as

B1 → B1 +A1 , (7.12)

around Z1 = 0. This is known as a monodromy transformation. For the corresponding period
it is F1 → F1 + Z1 while Z1 → Z1 which in our case is close to Z1 = 0. Monodromies are
however not always related to shrinking cycles, but may arise because the complex structure
moduli space of a Calabi–Yau manifold is usually a quotient of a larger space, known as the
Teichmüller space [55]. The monodromy of eq. (7.12) implies that the FJ can be written

F1(Z) = Z1

2πi lnZ1 + const , (7.13)

near the singularity. The Kähler metric of the complex structure moduli spaceMcs defined in
eq. (5.31) is around this point equal to Kcs = − ln[i(Z̄1F1 − Z1F̄1)], which using eq. (7.13)
becomes proportional to

Kcs ∼ |Z1|2 ln |Z1|+ const . (7.14)
Since G11̄ = ∂1∂1̄K, it follows that the metric ofMcs is singular in Z1 = 0. Since the curvature
is also divergent at this point, there is a real singularity, i.e. not a mere coordinate singularity,
in the complex structure moduli space.

As in the works of Klebanov and Strassler in [56], who first found solutions with fluxes which
generate smooth supergravity solutions in the vicinity of conifold singularities, we define that
M units of F3 flux will go through the A cycle and −K units of H3 flux through the dual B
cycle; ∫

A1
F3 = M ,

∫
B1
H3 = −K . (7.15)

This allows us to rewrite the O3 superpotential of eq. (5.146) in the vicinity of the conifold
singularity according to

W =
∫
G3 ∧ Ω = −MF1(Z) + τKZ1 , (7.16)

where again G3 = F3 − τH3. For supersymmetry to hold we require DzW = 0, where the
covariant derivative of the superpotential is defined as in eq. (5.148). By setting C0 = 0, it
follows that τ = i/gs where gs is the string coupling constant. The leading terms in the equation
DzW = 0 in the limit K >> Mgs are

DzW ∼ −
M

2πi lnZ1 + i
K

gs
+O(1) = 0 . (7.17)

It follows that Z1 and with it the complex structure moduli z1 must stabilise at an exponentially
small value of

z1 ∼ e−2πK/Mgs . (7.18)
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The corresponding equation for τ and the dilaton reads [39]

DτW ∼
1

τ̄ − τ
(−MF1 + τ̄KZ1) = 0 , (7.19)

and can not be satisfied. The second term in the parenthesis containing Z1 is exponentially
small by eq. (7.18), however the first term with F1(Z) is not. The coordinate F1(Z) is generally
non-vanishing, namely F1(0) ∼ O(1). This problem arises because at z1 = 0, the superpotential
of eq. (7.16) is independent of τ . The remedy for this is therefore to consider a configuration
with additional τ -dependence, which may be added by turning on additional fluxes. Keeping
for simplicity the case of a single complex structure modulus z1, there will be 2h(2,1) + 2 = 4
3-cycles. We have worked with two of these until now, i.e. the pair {A1, B1}, so we may add
the last two and denote them {A2, B2}. Turning on an additional −K̃ units of H3 flux through
the B2 cycle, the superpotential becomes

W = −MF1(Z) + τ(KZ1 + Z̃K̃) , (7.20)

where Z̃(Z1) is a generally non-vanishing function at the conifold singularity; Z̃(0) ∼ O(1).
Fixing z1 = 0, eq. (7.16) becomes

DτW ∼
1

τ̄ − τ
(−MF1(0) + τ̄ K̃Z̃) = 0 , (7.21)

which then fixes the dilaton at
τ̄ = MF1(0)

K̃Z̃
. (7.22)

With this value the complex structure modulus z1 will stabilise at

z1 ∼ e
2πK
K̃

Im(F1(0)/Z̃(0)) . (7.23)

Hence we have fixed the dilaton and with it stabilised the complex structure modulus. However,
the Kähler moduli is not stabilised by these fluxes. There are interesting phenomenological
consequences for the complex structure moduli being stabilised at a small value. Close to the
KS throat, i.e. the singularity, the warp-factor which solves eq. (6.44) will be very small. This is
because the warp-factor scales like e4A ∼ r4 for D3-branes, with r denoting the radial coordinate
from the brane. The resolution of the conifold cuts this off at r ∝ ω2/3 ∝ z1/3, so that there is
a minimum for the warp-factor at

e2Amin ∼ z2/3 ∼ e−4πK/3Mgs , (7.24)

which generates a large hierarchy of scales.

7.2 Moduli stabilisation in type IIB on T 6/Z2 orientifolds
In this section we will review moduli stabilisation of type IIB on tori. One of the first examples
of this was done by Kachru, Schulz and Trivedi [57] who compactified on a T 6/Z2 orientifold
with NSNS flux H3 and RR flux F3. More precisely, the orientifold is given by the quotient
space

M6 = T 6

G1 ∪G2Ω = T 6

Z2
(7.25)

with G1 = {∅} being empty and the cyclic group Z2 effectively being equal to Z2 = Ω(−1)FLR,
where R reflects the six internal coordinates, i.e. ym → −ym.
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In the case of Calabi-Yau O3 orientifold compactifications the moduli are given in table 5.5.
The T 6/Z2 is however not a Calabi-Yau and a torus has trivial structure group so that besides
h

(2,1)
− = h

(1,1)
+ = 9 there are additional cohomologies h(1,0)

− = h
(2,0)
+ = h

(3,1)
+ = h

(3,2)
− = 3 and

their conjugates (h(0,1)
− = . . . = 3).

An essential difference between the T 6 and a Calabi-Yau 3-fold is that for the latter Yau’s
theorem implies that a complex structure or Kähler deformation corresponds to a non-trivial
deformation of the Ricci-flat metric. This is not the case for the torus or T 6/Z2. Instead, as
will be described next, only three out of nine complex structure parameters will correspond to
metric deformations.

The complex structure of a T 6 is described by nine complex coordinates. Introducing six real
coordinates xi, yi with i = 1, 2, 3 on the torus which are periodic; xi ≡ xi + 1, yi ≡ yi + 1, we
define the holomorphic 1-forms to be

dzi ≡ dxi + υij dyj . (7.26)

Here υij is the period matrix specifying the complex structure of the torus. In these coordinates
the holomorphic 3-form is

Ω = dz1 ∧ dz2 ∧ dz3 . (7.27)

The coordinates are conveniently expressed in the H(3) cohomology basis (αC , βC), with C =
0, . . . , 8, as

α0 = dx1 ∧ dx2 ∧ dx3 , β0 = dy1 ∧ dy2 ∧ dy3 ,

αij = 1
2εilm dxl ∧ dxm ∧ dxj , βij = −1

2εjlm dyl ∧ dym ∧ dxi ,
(7.28)

and i, j = 1, 2, 3. In this basis the holomorphic 3-form can be written

Ω = α0 + αijυ
ij − βij(cofυ)ij + β0det(υij) , (7.29)

where
(cofυ)ij ≡ det(υij)(υij)−1T = 1

2εikmεjpqυ
kpυmq , (7.30)

and T denotes the transpose. We now turn on fluxes. Fluxes present after the orientifold
projection must be even under the action of the symmetry group Z2. As can be seen in table
5.3, the B2 and C2 fields are both odd under the intrinsic parity action Ω(−1)FL . The 3-form
basis of eq. (7.28) does however transform oddly under the Z2 action; (xi, yi) → −(xi, yi).
Since the Bianchi identities of their field strengths imply that they be closed; dF3 = dH3 = 0,
it is possible to describe them as linear combinations in the basis of (7.28). This can be done
according to

F3 = m0
RRα0 +mij

RRαij + eRRijβ
ij + eRR0β

0 ,

H3 = m0α0 +mijαij + eijβ
ij + e0β

0 ,
(7.31)

where again {mRR, eRR,m, e} are all integers. With these fluxes, the superpotential in eq.
(5.146) becomes

W = (m0
RR − τm0)det(υij)− (mij

RR − τm
ij)(cofυ)ij − (eRRij − τeij)υij − (eRR0 − τe0) . (7.32)

The superpotential depends on the complex dilaton field τ as well as the nine components of
υij , adding up to a total of ten complex variables. In type B solutions G3 is a (2, 1)-form and
when that happens one must have W = 0 and DIW = 0 by eqs. (5.150), (5.151). Demanding
supersymmetry along the Kähler moduli, i.e. DTαW = 0, forces W = 0 according to eq.
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(5.148). When W = 0, the Kähler covariant derivatives can be replaced by ordinary derivatives;
DIW → ∂IW . Using

∂υijΩ = kijΩ + χij , (7.33)

and the O3 superpotential W =
∫
G3 ∧Ω, the Kähler derivatives for the complex structure and

the τ are
∂υijW = kijW +

∫
G3 ∧ χij ,

∂τW = −H3 ∧ Ω = 1
τ − τ̄

∫
(G3 − Ḡ(3)) ∧ Ω .

(7.34)

Now, requiring W = 0 in addition to ∂υijW = 0 and ∂τW = 0 results in eleven complex-
coupled non-linear equations for ten complex variables. Since all equations are independent,
there are generally no solutions to them, and as a consequence the supersymmetry is broken.
Some equations of motion arising from these conditions are

W − ∂τW = 0 ⇒ m0
RRdet(υij)−m

ij
RR(cofυ)ij − eRRijυij − eRR0 = 0 , (7.35)

∂υijW = 0 ⇒ m0det(υij)−mij(cofυ)ij − eijυij − e0 = 0 , (7.36)
∂τW = 0 ⇒ (m0

RR − τm0)(cofυ)ij − (mij
RR − τm

ij)εikmεjlnυmn

− (eRRij − τeij)δikδ
j
l = 0 , (7.37)

where in the last equation we have used the relations det(υij) = 1
3εiklεjlnυ

ijυklυmn and (cofυ)ij =
1
2εikmεjlnυ

klυmn.
In [57] there are several examples of supersymmetic solutions. Let us look at an example

where the flux matrices are taken to be diagonal. In this case the fluxes are written

(mij
RR, eRRij ,m

ij , eij) = (mRR, eRR,m, e)δij . (7.38)

The period matrix υij will then also be diagonal according to

υij = υδij . (7.39)

With a diagonal period matrix the torus factorises as T 6 = T 2 ⊕ T 2 ⊕ T 2 with respect to
the complex structure. With this ”flux diagonalisation”, the supersymmetry conditions of eq.
(7.35)–(7.37) take the form

P1(υ) ≡ m0
RRυ

3 − 3mRRυ
2 − 3eRRυ − eRR0 = 0 , (7.40)

P2(υ) ≡ m0υ3 − 3mυ2 − 3eυ − e0 = 0 , (7.41)
(m0

RR − τm0)υ2 − 2(mRR − τm)υ − (eRR − τe) = 0 . (7.42)

Assuming υ to be complex, one can show that the cubic polynomials P1 and P2 can be written

P1(υ) = (Aυ +B)P (υ) , P2(υ) = (Cυ +D)P (υ) , (7.43)

for some
P (υ) = Eυ2 + Fυ +G , (7.44)

where {A,B,C,D,E, F,G} ∈ Z. The coefficients are related to the fluxes via

AF +BE = −3mRR , CF +DE = −3m ,

AG+BF = −3eRR , CG+DF = −3e ,
(7.45)
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so that one has modulo 3 consistency conditions. As a concrete example, we may take

P1(υ) ≡ υ3 − 1 = 0 , (7.46)
P2(υ) ≡ υ3 + 3υ2 + 3υ + 2 = 0 , (7.47)

where both polynomials share a common factor

P (υ) = υ2 + υ + 1 . (7.48)

The cubical polynomials can then be expressed as

P1(υ) ≡ (υ − 1)P (υ) = 0 , (7.49)
P2(υ) ≡ (υ + 2)P (υ) = 0 . (7.50)

Now, solving P (υ) = 0 with the condition of Im(υ) > 0 results in that

υ = e2πi/3 . (7.51)

With this value, eq. (7.42) solves for the axion-dilaton, which is

τ = υ = e2πi/3 . (7.52)

Comparing the polynomials of eqs. (7.49), (7.50) to eqs. (7.43), (7.44), the coefficients read

(A,B,C,D,E, F,G) = (1,−1, 1, 2, 1, 1, 1) . (7.53)

The fluxes can then be read off eq. (7.40) and eq. (7.41) by comparing with eq. (7.46) and eq.
(7.47) respectively, and be determined to

(m0
RR,mRR, eRR0, eRR,m

0,m, e0, e) = (1, 0, 1, 0, 1,−1,−2,−1) . (7.54)

Most of the flux integers are odd, which can lead to complications. Namely, apart from the
3-cycles present on the T 6, there are additional 3-cycles on the orientifold T 6/Z2 which can be
seen as ”half cycles” on the T 6. If the flux integers are odd it is necessary to allow fluxes from
the additional 3-cycles in order to meet the quantisation condition (i.e. the condition that the
integer flux is indeed an integer). It is however not trivial to turn on these additional fluxes so
that they fulfil the charge conservation (tadpole cancellation) condition. This can be avoided
by simply assuming the integer fluxes on T 6 to be even. A discussion on this can be found in
Appendix A of [57].

Hence, to simply avoid any complications we may instead simply multiply the flux integers
by two, which will ensure all fluxes to be integers. Thus we have

(m0
RR,mRR, eRR0, eRR,m

0,m, e0, e) = (2, 0, 2, 0, 2,−2,−4,−2) ,
(A,B,C,D,E, F,G) = (2,−2, 2, 4, 1, 1, 1) ,

(7.55)

where the coefficients can be worked out by comparison.
For the fluxes in eq. (7.55), the complex structure modulus υ and the axion-dilaton τ are

fixed according to eq. (7.51) and eq. (7.52). We will now turn to the Kähler moduli. In the
Calabi-Yau orientifold case, there are no 1-forms allowed which means that for type B solutions,
the (2,1)-form G3 must be primitive. The manifold T 6/Z2 is not a Calabi-Yau and does in
fact allow three 1-forms since h(1,0)

− = h
(0,1)
− = 3 which means that G3 need not be primitive.

However by imposing G3 to be primitive, i.e. by demanding

J2 ∧G3 = 0 , (7.56)
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some of the Kähler moduli vα in J2 can be stabilised. Since G3 is a (2,1)-form and J2 a (1,1)-
form, J2 ∧G3 must be a (3,2)-form. On a T 6/Z2 there are h(3,2)

− = 3 non-trivial such forms, so
eq. (7.56) above will give three complex or six real equations. The number of Kähler moduli is
h

(1,1)
+ = 9, so generically six of these nine Kähler moduli are fixed by eq. (7.56), leaving three

unfixed ”flat” directions that are unchanged by the G3 flux. With the diagonal flux of eq. (7.38)
at hand, the explicit forms of F3 and H3 in torus coordinates are explicitly

F3 = m0
RR dx1 ∧ dx2 ∧ dx3 +mRR

(
dx1 ∧ dx2 ∧ dy3 + cycl. perm. of 123

)
− eRR

(
dx1 ∧ dx2 ∧ dy3 + cycl. perm. of 123

)
+ eRR0 dy1 ∧ dy2 ∧ dy3 , (7.57)

H3 = m0 dx1 ∧ dx2 ∧ dx3 +m
(
dx1 ∧ dx2 ∧ dy3 + cycl. perm. of 123

)
− e

(
dx1 ∧ dx2 ∧ dy3 + cycl. perm. of 123

)
+ e0 dy1 ∧ dy2 ∧ dy3 . (7.58)

The three moduli in J2 that are not fixed by eq. (7.56) are the diagonal elements, which are of
the from

Jdiag =
3∑
i=1

r2
i dzi ∧ dz̄i ∼ i

3∑
i=1

r2
i dxi ∧ dyi , (7.59)

where in the last expression one uses the fact that the complex structure υ = e2πi/3 of all the
three T 2s are equal. It is clear that Jdiag ∧G3 ≡ Jdiag ∧ (F3 − τH3) = 0 is fulfilled without any
constraints on the three moduli ri, since the dxi ∧ dyi will hit another dxi or dyi in each term
of F3 and H3. Generically eq. (7.56) will set constraints on the other constituents of J apart
from the diagonal parts. However, in this example there are an additional three moduli apart
from the ri that remain unfixed after imposing primitivity of G3 in eq. (7.56). This is because
the G3 flux in this example is particularly simple and non-generic. The three extra moduli that
remain unfixed can be seen in the form of the components J12̄ + J1̄2 and analogous terms with
indices {1, 3} and {2, 3}, since they have the form

J12̄ + J1̄2 ∼ dz1 ∧ z̄2 + dz2 ∧ z̄1 ∼ i(dx1 ∧ dy2 + dx2 ∧ dy1) . (7.60)

It is straight-forward to check that indeed (J12̄ + J1̄2) ∧ G3 = 0, and so any coefficients in eq.
(7.60), i.e. moduli, would not be constrained by this primitivity condition.

This example has N = 1 supersymmetry. A higher degree of supersymmetry requires that
additional choices of complex structure are possible, wherein G3 is still (2,1) and primitive. For
example N = 2 and N = 3 would require one respectively two additional choices of complex
structure. The solution to the example above have T 6 ≡ T 2 ⊕ T 2 ⊕ T 2 and there is a complete
permutation symmetry between the three 2-tori. This fact ensures that G3 must have the form

G3 ∼ dz1 ∧ dz2 ∧ dz̄3 + dz2 ∧ dz3 ∧ dz̄1 + dz3 ∧ dz1 ∧ dz̄2 . (7.61)

One could in fact make other choices of complex structure, e.g. by letting zi → z̄i for some or
all T 2s. However, this would not preserve the imposed nature of G3 to be (2, 1) and primitive,
which as a consequence would leave all Kähler moduli unfixed. Because of this our example has
N = 1 supersymmetry.

The number of units of flux is constrained by the tadpole cancellation condition. In a T 6/Z2
there are NO3 = 26 O3-planes present which give a negative contribution of −2−2NO3 = −16
units of D-brane charge to the tadpole of eq. (6.33), leading to the condition

1
2

∫
T 6
H3 ∧ F3 +ND3 = 16 . (7.62)
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Here the factor 1/2 in front of the flux contribution term comes from integration over T 6 rather
than T 6/Z2, since T 6 has twice the volume. The flux contribution in this case is given by

Nflux =
∫
T 6
H3 ∧ F3 = (eRR0m

0 −m0
RRe0) + 3(eRRm−mRRe)

= −1
3(AD −BC)(F 2 − 4EG)

= 12 ,

(7.63)

using the numbers in eq. (7.55). With this result it follows from eq. (7.62) that the number of
D-branes present must be ND3 = 10.

Conclusively, we have seen an example of moduli stabilisation in type IIB on T 6/Z2 with
N = 1 supersymmetry, where the complex structure moduli and axio-dilaton could be fixed. As
for the Kähler moduli we have seen that six out of nine could be fixed, while the other three
remain unconstrained. In the next section we consider moduli stabilisation in general type IIA
Calabi-Yau (O6) orientifolds.

7.3 Moduli stabilisation in type IIA Calabi-Yau orientifolds

The O6 superpotential is given in eq. (5.145) where its proper Kähler coordinates are the
Kähler moduli ta as well as Nk and Tλ defined in eq. (5.137). Repeated here for convenience,
the superpotential is given by

WO6 =
∫
H3 ∧ Ωc +

∫
F̂(A) ∧ eB+iJ

= −2Nkek − iTλmλ + eRR0 +
∫
F4 ∧ J − 1

2

∫
F2 ∧ J ∧ J − 1

6m
0
RR

∫
J ∧ J ∧ J

= −ekξk +mλξ̃λ + 2i(−ekRe(CZk) +mλRe(CFλ))
+ eRR0 + eRRat

a + 1
2κabcm

a
RRt

btc − 1
6m

0
RRκabct

atbtc ,

(7.64)

with Nk = 1
2ξ
k + iRe(CZk), Tλ = iξ̃λ − 2Re(CFλ) and H3 = mλαλ − ekβk. As usual, super-

symmetric vacua are characterised by the vanishing of the F-term conditions

DtaW = DTλW = DNkW = 0 . (7.65)

Two of these, namely DNkW = 0 and DTλW = 0 become respectively [58]

ek + 2ie2DW Im(CFk) = 0 , (7.66)
mλ + 2ie2DW Im(CZλ) = 0 , (7.67)

where e2D = e2φ/vol = 6e2φ/κ = 6e2φ/(
∫
J ∧ J ∧ J) is a function of the dilaton and Kähler

moduli ta in J . The real and imaginary parts of the equations must vanish separately. Given
that C and D are real, the vanishing of the imaginary parts of both eq. (7.66) and eq. (7.67)
requires that the real part of the superpotential vanish, i.e. that

ReW = −ekξk +mλξ̃λ + Re
(
eRR0 + eRRat

a + 1
2κabcm

a
RRt

btc − 1
6m

0
RRκabct

atbtc
)

= 0 . (7.68)

The coefficients ek and mλ are again real numbers. This equation is the only condition that
involves the axions ξk and ξ̃λ, or one specific combination of them. The axions constitute real
parts of the superpotential. Hence, the vanishing of the real parts of eqs. (7.66), (7.67), leading
to an equation involving ImW , does not involve ξk and ξ̃λ. There are thus h(2,1) axions left that
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are not fixed by the fluxes, which have to be stabilised by other mechanisms. The real parts of
eq. (7.66) and eq. (7.67) do however result in equations which constrain the complex structure
moduli. Namely, with non-zero NSNS flux, the real parts of these equations must fulfil

ek − 2e2DImW Im(CFk) = 0 , (7.69)
mλ − 2e2DImW Im(CZλ) = 0 , (7.70)

where the imaginary part of eq. (7.64) is

ImW = −2ekRe(CZk) + 2mλRe(CFλ)

+ Im
(
eRR0 + eRRat

a + 1
2κabcm

a
RRt

btc − 1
6m

0
RRκabct

atbtc
)
.

(7.71)

From eqs. (7.69), (7.70), we may factorise 2e2DImW from both equations so that the complex
structure and NSNS fluxes are related via

ek
Im(CFk)

= mλ

Im(CZλ) . (7.72)

These are h(2,1) equations that, for certain values of flux, fix the complex structure moduli in
Zλ. Both of them are also equal to 2e2DImW ; a term which includes the dilaton. Defining the
compensator field C as C ≡ e−D+Kcs/2 which fulfils the transformation properties of Ω discussed
in section 5.2.2, and using for example the left-hand side of eq. (7.72), we have that

2e2DImW = ek
Im(e−D+Kcs/2Fk)

= ek
ImFk

eD−K
cs/2 . (7.73)

With e2D = 6e2φ/κ we obtain for the dilaton φ the expression

e−φ = 2
√

6ImW ImFk
ek
√
κ

eK
cs/2 , (7.74)

which is fixed when the complex structure as well as Kähler moduli are fixed. The complex
structure moduli are fixed via eq. (7.72), and it remains to investigate the Kähler moduli. To
do so, we consider the last supersymmetry condition DtaW = 0, which takes the form

∂taW +W∂taK = 0 . (7.75)

The first term in this equation affects only the Kähler part of the superpotential which depends
on ta. Because of this we may write ∂taW = ∂taW

Ks with the O6 Kähler superpotential

WKs = eRR0 + eRRat
a + 1

2κabcm
a
RRt

btc − 1
6m

0
RRκabct

atbtc , (7.76)

being the last line of eq. (7.64). The total superpotential W in the second term of eq. (7.75)
may actually be rewritten assuming that the complex structure supersymmetry conditions in
eq. (7.66) and eq. (7.67) are fulfilled. Multiplying eq. (7.66) with Re(CZk) and eq. (7.67) with
Re(CFλ) and then subtracting eq. (7.67) from eq. (7.66) results in that

ekRe(CZk)−mλRe(CFλ) + 2ie2DW
[
Im(CFk)Re(CZk)− Im(CZλ)Re(CFλ)

]
= 0 . (7.77)

Again C = e−D+Kcs/2 where the complex structure Kähler potential is given by

Kcs = − ln
(
i

∫
Ω ∧ Ω̄

)
= − ln [2(ImZλReFλ − ReZkImFk)] , (7.78)
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where in the last equality we have used the earlier stated relation

CΩ = Re(CZk)αk − iIm(CFk)βk + iIm(CZλ)αλ − Re(CFλ)βλ . (7.79)

The large parenthesis in eq. (7.77) is very similar to the last equality of eq. (7.78). Pulling out
C2 from this parenthesis and using the Kähler potential, we have that C2 = e−2D[2(ImZλReFλ−
ReZkImFk)]−1 and so

Im(CFk)Re(CZk)− Im(CZλ)Re(CFλ) = e−2D ImFkReZk − ImZλReFλ
2(ImZλReFλ − ReZkImFk)

= −1
2e
−2D . (7.80)

Reinserting this expression into eq. (7.77), it simplifies to

ekRe(CZk)−mλRe(CFλ) = iW . (7.81)

The left-hand side of eq. (7.81) is minus half the imaginary part of the complex structure part
of the superpotential, i.e.

W cs = −ekξk +mλξ̃λ + 2i(−ekRe(CZk) +mλRe(CFλ)) , (7.82)

where W = W cs +WKs. Eq. (7.81) is thus equivalent to

− 1
2 ImW

cs = iW . (7.83)

With W = W cs + WKs we have that 1
2 iImW

cs = iImW cs + iImWKs, or −1
2 ImW

cs = ImWKs,
which by eq. (7.83) becomes equivalent to

W = −iImWKs . (7.84)

Using this expression for the superpotential in the second term in eq. (7.75), and where only
WKs is left for the first term, eq. (7.75) takes the form

∂taW
Ks − iImWKs∂taK = 0 . (7.85)

The Kähler potential is K = − ln(4
3κabcv

avbvc)− 2 ln[2
∫
Re(CΩ) ∧ ?Re(CΩ)] as given earlier in

eq. (5.138). Taking the derivative ∂ta of this potential, the only ta dependence is in va = Im(ta),
and since ∂ta = ∂Re(ta) − i∂Im(ta) = ∂ba − i∂va , it is clear that the second part of eq. (7.85) is
purely real. Thus eq. (7.85) is with advantage written as

∂taW
Ks − ImWKs∂vaK = 0 . (7.86)

As in the case of DNkW = DTλW = 0, it is useful to consider the real and imaginary parts
of the DtaW = 0 condition in eq. (7.85) separately. With the second term being real, the
imaginary part of eq. (7.85) vanishes according to

Im(∂taWKs) = κabcv
b(mc

RR −m0
RRb

c) = 0 , (7.87)

according to eq. (7.76). With vb 6= 0, the real part of the Kähler moduli stabilises at

bc = mc
RR

m0
RR

. (7.88)

Note that the case of m0
RR = 0 is not really interesting as it by eq. (7.87) would require either

vb = 0 or vanishing RR fluxes; mc
RR = 0. Considering the real part of eq. (7.85), we hope to get

a condition for the other Kähler moduli va. The vanishing of the real part of eq. (7.85) reads

Re(∂taWKs)− ImWKs∂vaK = 0 , (7.89)
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which results in that

3(m0
RR)2κabcv

bvc + 10m0
RReRRa + 5κabcmb

RRm
c
RR = 0 . (7.90)

Just like the ba Kähler moduli in eq. (7.88), the va Kähler moduli in eq. (7.90) contain
a = 1, . . . , h(1,1)

− equations for h(1,1)
− moduli va, thus stabilising both Kähler moduli. One can

show using eq. (7.90) that the superpotential becomes

W = −iImWKs = 2i
15m

0
RRκabcv

avbvc , (7.91)

which is non-vanishing as long as the volume κabcvavbvc ∼
∫
J ∧ J ∧ J does not vanish. As

a consequence, this type of vacuum can not be Minkowski. If one does not avoid the no-go
theorem of section 6.1 by taking perturbative effects into account, the vacuum has to be AdS.

With both the complex structure and Kähler moduli stabilised, by using eq. (7.74) and eq.
(7.91) for the expression of ImW , the dilaton is fixed to

e−φ = 4
√

6
15

m0
RR
√
κImFk
ek

eK
cs/2 , (7.92)

with κ = κabcv
avbvc. Again the complex structure moduli are stabilised by

ek = 0 ⇒ Im(Fk) = 0 , mλ = 0 ⇒ Im(Zλ) = 0 , (7.93)

and eq. (7.72) for ek,mλ 6= 0. The axion combination in eq. (7.68) reduces to

ekξ
k −mλξ̃λ = ReWKs = eRR0 + eRRam

a
RR

m0
RR

+ κabcm
a
RRm

b
RRm

c
RR

3(m0
RR)2 , (7.94)

where the terms involving the v moduli have cancelled and the ba are stabilised from eq. (7.88).
In conclusion we have seen that fluxes in type IIA O6 compactifications generally stabilise all

the Kähler moduli {ba, va}, all the complex structure moduli via Re(Zk), Im(Fλ), the dilaton
φ, but only one combination of axions {ξk, ξ̃λ} while h(2,1) axions remain unfixed. The moduli
have been fixed under the assumptions that va 6= 0 and κabcv

avbvc 6= 0. The resulting 4D
vacuum must then be AdS. In general we need that m0

RR 6= 0 and at least one of ek or mλ to be
non-vanishing for a stabilised vacuum. Otherwise, would one of these conditions fail, all fluxes
must vanish and the moduli would go unstabilised. The minimum set of fluxes to stabilise the
moduli always includes m0

RR, one eRRa or ma
RR for each Kähler modulus, and one ek or mλ for

the geometric moduli.

7.4 Moduli stabilisation in type IIA on T 6/(Z3 ⊗ Z3) orientifolds

In this section we review moduli stabilisation in type IIA on O6-planes created from a T 6/(Z3 ⊗ Z3)
orbifold, which was first carried out in [58]. This orientifold is a particular case of the general
class of N = 1 supersymmetric orientifolds of type IIA Calabi-Yau compactifications. As a
consequence the mechanisms of moduli stabilisation in the previous section will be used here as
well.

Let us start by with a look at the orbifold. The torus may be parameterised by the three
complex coordinates dzi = dxi + idyi, which differ from the torus in the IIB example since
the action of Z3 leaves no freedom of choice for the complex structure. The coordinates have
periodicity conditions

zi ∼ zi + 1 ∼ zi + α , (7.95)
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where α = eiπ/3. The Z3 have two symmetry actions T and Q, which act on the coordinates as

T : (z1, z2, z3)→ α2(z1, z2, z3) , (7.96)

which make T have 33 = 27 fixed points, three for each T 2. There is also an additional Z3
symmetry Q which transforms the 2-torus coordinates according to

Q : (z1, z2, z3)→
(
α2z1 + 1+α

3 , α4z2 + 1+α
3 , z3 + 1+α

3

)
, (7.97)

and which has no fixed points. The additional action of Q on the coordinates reduces the
number of fixed points to nine. These fixed points are singular points which have to be resolved
in order for the orientifold to be smooth. This procedure can be done by a conifold deformation
or resolution as outlined in section 7.1. Since a 6-torus has no complex structure moduli, i.e.
h(2,1) = 0, such a singularity resolution will not stabilise these moduli. Since we also have
h(1) = 0 there are no harmonic 1-forms, which implies that the moduli spaces and moduli fixing
mechanisms work as in Calabi-Yau manifolds.

The orientifold is constructed by taking the orbifold T 6/(Z3 ⊗ Z3) and modding out by the
orientifold action for O6-planes O = Ωp(−1)FLσ, where the involution σ acts on the complex
coordinates according to

σ : zi → −z̄i . (7.98)

The O6-plane fills the non-compact 4D space and wraps 3-cycles on the T 6. Table 5.3 gives
the action of the worldsheet parity Ωp and the left-moving fermion number (−1)FL on the fields
present in the type II theories. The combined action of Ω(−1)FL makes the NSNS field B2 odd,
the IIA RR fields C1 and C5 are odd while C3 is even.

As usual we are interested in the moduli that survive the orbifold and orientifold projection.
The resulting metric of the orbifold should be invariant under the Z3 actions T and Q in eqs.
(7.96), (7.97) above. Under the T transformation zi → z̃i = α2zi the metric transforms as gij →
∂z̃k

∂zi
∂z̃l

∂zj
gkl = α4gij 6= gij . With an antiholomorphic coordinate we have instead z̄i → ˜̄zi = α−2z̄i

so that gī → ∂z̃k

∂zi
∂ ˜̄zl
∂z̄j

gkl = α2α−2gī = gī. Thus a metric invariant under T must be off-diagonal.
Turning to the Q action, which the resulting metric should be invariant under as well, we may
use that Q : dzi → α2i dzi. This means that a metric transformation will result in different
factors of α depending on the value of i, namely with the same analysis as for the T action, the
Q action would transform the diagonal components according to gī → αi−jgī = gī ⇔ i = j.
Thus the metric is not only diagonal but the metric of each T 2 is diagonal. We may therefore
parameterise the metric of the compact space as

ds2 =
3∑
i=1

ri dzi ∧ dz̄i =
3∑
i=1

r2
i [(dxi)2 + (dyi)2] . (7.99)

There are three radial Kähler moduli ri which determine the radius of each T 2. We have
concluded that the only 2-forms invariant under both actions T and Q must be of the form
dzi ∧ dz̄i. These may be used to construct a basis ωi for other 2-form fields, such that

ωi ≡ (
√

3)1/3i dzi ∧ dz̄i = 2(
√

3)1/3 dxi ∧ dyi , (7.100)

which we choose to satisfy the normalisation
∫
T 6/Z2

3
ω1 ∧ ω2 ∧ ω3 = 1. It will prove useful later

to introduce the dual basis ω̃i of even 4 cycles, where

ω̃i ≡ 31/3(idzj ∧ dz̄j)(i dzk ∧ dz̄k) ,
∫
T 6/Z2

3

ωi ∧ ω̃j = δji , (7.101)
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with i, j, k = 1, 2, 3. The 2-form basis ωi is odd under the action of σ in accordance with eq.
(7.98), which means that the NSNS potential B2, expressed as

B2 =
3∑
i=1

biωi , (7.102)

is even under the orientifold action O = Ωp(−1)FLσ and is thus non-zero on T 6/(Z3 ⊗ Z3).
The real bi combine with vi ≡ ri/[2(

√
3)1/3] to form the Kähler moduli ti in its familiar form

ti = bi + ivi. The dual basis ω̃i is even under σ.
The 3-forms invariant under T and Q are the holomorphic (3,0)-form

Ω = 31/4idz1 ∧ dz2 ∧ dz3 , (7.103)

and its complex conjugate Ω̄. They are normalised as i
∫
T 6/Z2

3
Ω ∧ Ω̄ = 1. Decomposing Ω into

real and imaginary components we have

Ω = 1√
2α0 + iβ0 , (7.104)

where α0 and its dual β0 are given explicitly as

α0 = (12)1/4
(
dy1 ∧ dy2 ∧ dy3 − 1

2εijk dxi ∧ dxj ∧ dyk
)
, (7.105)

β0 = (12)1/4
(
dx1 ∧ dx2 ∧ dx3 − 1

2εijk dyi ∧ dyj ∧ dxk
)
. (7.106)

The involution acts on them like σ : α0 → +α0 and σ : β0 → −β0 so that σ : Ω→ Ω̄. With only
the 3-cycle α0 being even under the involution one can conclude that the O6-plane is wrapped
around the α0 cycle.

Since h(1) = 0 there are no moduli associated with the RR 1-form field C1. There is the
dilaton φ modulus and its axion partner ξ0 which come from the C3 field in one chiral multiplet,
and another chiral multiplet {bi, vi} with a total of six Kähler moduli. This adds up to eight
real scalar moduli. See table 5.6 for comparison with the general case.

The next step is turning on fluxes on this orientifold. Since the NSNS field B2 is odd under
σ, its field strength flux H3 will be so too. It is therefore convenient to take the flux to be along
the β0 cycle. The mass parameter of IIA, i.e. F0, is even under the involution, and so is F4.
The other RR fluxes F2 and F6 are odd and so we may express their values in the appropriate
basis as

H3 = −e0β
0 , F0 = m0

RR , F2 = −mi
RRωi , F4 = eRRiω̃

i , F6 = eRR0 . (7.107)

With D-branes present, the type IIA tadpole cancellation condition of eq. (6.33) will enforce
that

m0
RRe0 = −2 . (7.108)

With this condition the NSNS flux and mass parameter are fixed to the four possible choices
of (m0

RR, e0) = ±(1,−2) or (m0
RR, e0) = ±(2,−1), since the fluxes are integers. The tadpole

condition does not however set any constraints on the other fluxes present.
From the DtaW = 0 supersymmetry condition we saw in the previous section that the Kähler

moduli bi are stabilised at

bi = mi
RR

m0
RR

. (7.109)
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As for the Kähler moduli vi, determined by eq. (7.90), the indices i = 1, 2, 3 together with the
fact that κijk is symmetric in its indices results in three equations for each eRRi flux;

6(m0
RR)2κ123v

2v3 + 10m0
RReRR1 + 10κ123m

2
RRm

3
RR = 0 ,

6(m0
RR)2κ123v

1v3 + 10m0
RReRR2 + 10κ123m

1
RRm

3
RR = 0 ,

6(m0
RR)2κ123v

1v2 + 10m0
RReRR3 + 10κ123m

1
RRm

2
RR = 0 .

(7.110)

A single closed expression for the solution to vi can be obtained as

vi = 1
|êRRi|

√
−5êRR1êRR2êRR3

3m0
RRκ123

, (7.111)

where we have defined

êRRi ≡ eRRi + κ123m
j
RRm

k
RR

m0
RR

, (7.112)

with j, k being the other two values than i. In the hypermultiplet sector h(2,1) = 0, so we only
have one index k = 0 with no λ indices since there are no complex structure moduli. As such,
there is only one unique electric NSNS flux e0 and the moduli are simply the dilaton and its
single axionic partner ξ0. Eq. (7.94) then determine the axion moduli to

ξ0 = 1
e0

ReWKs = 1
e0

(
eRR0 + eRRim

i
RR

m0
RR

+ 6κ123m
1
RRm

2
RRm

3
RR

3(m0
RR)2

)
, (7.113)

with the factor 6 coming from the 3! ways to arrange the numerator in the last term. The
dilaton is stabilised according to eq. (7.92) which in this case has Kcs = 0, which in turn gives
ImF0 = −1/

√
2 so that

e−φ = −4
√

3
15

m0
RR
√
κ

e0
, (7.114)

where κ is calculated to

κ = 10
|m0

RR|

√
−5êRR1êRR2êRR3

3m0
RRκ123

. (7.115)

The above analysis has considered only the cycles not in the vicinity of any singular point.
When resolving or ”blowing up” the singularity there will be blow-up modes which have associ-
ated Kähler moduli. Locally, each blow-up looks like a resolution of C/Z3 and is parameterised
by a scale modulus and a corresponding B field modulus. Cycles on the blow-ups are referred to
as twisted cycles, and the cycles in eq. (7.107) with associated fluxes eRRi,mi

RR are untwisted.
The F2 and F4 fluxes associated with the twisted cycles are nA and fA, i.e.

F2 = −nAω′A , F4 = fAω̃
′A , (7.116)

which should be compared with the untwisted fluxes mi
RR and eRRi. The blow-up Kähler modes

are denoted tBA with A = 1, . . . , 9, and the volumes vBA satisfy

3(m0
RR)2κAAAv

2
BA

+ 10m0
RRf

A + 5κAAAn2
A = 0 , (7.117)

for each blow-up mode A. The solutions for the complex blow-up Kähler moduli are then

tBA = nA
m0

RR
− i

√√√√ −10f̂A
3κAAAm0

RR
, (7.118)
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where
f̂A ≡ fA + κAAA(nA)2

2m0
RR

. (7.119)

With this inclusion the the total volume becomes

κ = 10
|m0

RR|

√
−5êRR1êRR2êRR3

3m0
RRκ123

+ κAAA

9∑
A=1

(
−10f̂A

3κAAAm0
RR

)3/2

, (7.120)

and to the axion there will be additions so that

ξ0 = 1
e0

(
eRR0 + eRRim

i
RR + fAn

A

m0
RR

+ 6κ123m
1
RRm

2
RRm

3
RR + κAAA

∑
A(nA)3

3(m0
RR)2

)
. (7.121)

The solution obtained is valid as long as the moduli vi and vBA are large enough to be able
to neglect α′-corrections, and as long as the string coupling is small enough so that quantum
corrections can be neglected. With vi in eq. (7.111) and tBA in eq. (7.118), these moduli are
large when

|êRRi|2 � |m0
RR| , |f̂A| � |m0

RR| . (7.122)

In order to have the Kähler moduli remain within the Kähler cone, the untwisted volumes must
be larger than the blow-up volumes;

|êRRi| � |f̂A| � |m0
RR| . (7.123)

Unlike m0
RR and e0, the 4-form and 2-form fluxes are not constrained by the tadpole condition,

we have freedom to scale them as large as we wish and may always choose fluxes such that
eq. (7.123) is fulfilled. Assuming eq. (7.123) to be satisfied, the Kähler moduli will scale like
vi ∼ √eRRi by eq. (7.111). Taking the 4-form flux to be some large value êRRi ∼ N , then the T 2

radius scale like R ∼
√
vi ∼ N1/4. In the same manner the volume and dilaton scale according

to
κ ≡ vol ∼ N3/2 , eφ ∼ N−3/4 , eD ≡

√
8eφ+KK/2 ≡ eφ√

κ
∼ N−3/2 , (7.124)

so that for large N the 10D respectively 4D string couplings are indeed small.
Since W 6= 0 for these type of vacua they are also AdS. The 4D cosmological constant can

be found by inserting the stabilised moduli in the superpotential, resulting in that

Λ = −3eKks+Kcs |W |2 ∼ N−9/2 , (7.125)

where eKcs = −2 ln
[ ∫

Re(CΩ)∧ ?Re(CΩ)
]

= 4D having used the definition of eD in eq. (7.124)
and that Kcs = − ln

[
i
∫

Ω ∧ Ω̄
]

= − ln
[
2(ImZλReFλ − ReZkImFk)

]
for the surviving fields.

It is clear that moduli stabilisation in type IIA works very differently from type IIB. In
summary, the two main differences are that in IIB the fluxes which stabilise the moduli are
constrained by the tadpole cancellation condition, stripping us of the freedom to make them as
large we want. Secondly, the Kähler moduli are not stabilised in type IIB orientifold models at
all. In the case of a torus some of them may however be stabilised by the primitivity condition
J∧G = 0, but the volume modulus is always unfixed. In type IIA there is only one of the axionic
partners that is fixed (apart from the other moduli that are fixed), although in manifolds with
rigid complex structure there is only one axion, hence all moduli are fixed. In the examples
covered in this chapter the 4D geometry of both the type IIB examples is Minkowski, while for
the type IIA it is AdS. All examples have N = 1 supersymmetry.
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8
Moduli Stabilisation with Corrections and

de Sitter Vacua

In the previous chapter it became clear that fluxes are generally not enough to stabilise all
moduli. For instance, in the previous section we saw that in type IIB, NSNS and RR 3-form
fluxes can in general stabilise the dilaton and complex structure moduli but leaves the Kähler
moduli unfixed. However, more moduli can be stabilised by considering perturbative and non-
perturbative corrections to the Kähler potential as well as the superpotential, which we are
to discuss in this chapter. Considering these corrections, we review their effect on moduli
stabilisation and how they may be used to construct de Sitter vacua in section 8.3. The focus
will lie on type IIB Calabi-Yau O3/O7 orientifolds.

The perhaps most important effect in stabilising the Kähler moduli is the breaking of the
Kähler potential’s no-scale structure. As discussed in chapter 5, the O3/O7 Kähler potential is
given by

K = − ln(τ + τ̄)− 2 ln(V)− ln
(
−i
∫
M6

Ω ∧ Ω̄
)
, (8.1)

where we used the relation −3 ln(T + T̄ ) = −2 ln(1
6κ) ≡ −2 ln(V) in eq. (5.141). Again, this

Kähler potential fulfils a no-scale structure condition (c.f. eq. (5.142))∑
i,j=Tα,Ga

∂iK∂̄KKī = 3 , (8.2)

with proper Kähler coordinates Tα, Ga defined as in eq. (5.139). In combination with the
flux-induced GVW superpotential of eq. (5.146), i.e.

W0 ≡WGVW =
∫
M6

G3 ∧ Ω , (8.3)

the corresponding scalar potential is demonstrably positive semi-definite according to

V = eK
(∑

a,b

Kab̄DaW0DbW0 − 3|W0|2
)
−→ eK

(∑
c,d

Kcd̄DcW0DdW0

)
, (8.4)

where a, b = τ, Tα, Gα contain all moduli and c, d = τ,Ga. This cancellation can be seen as an
effect of the Kähler moduli not being present in the GVW superpotential, which only depends
on the dilaton and complex structure moduli. With 3-form fluxes present, the supersymmetry
conditions of vanishing Kähler covariant derivative of the GVW superpotential fixes the moduli,
given that G3 is imaginary self-dual. In chapter 5 we saw that these conditions for the dilaton
and complex structure moduli forces G3 to have (2,1)- and/or (0,3)-form pieces, while the
Kähler derivative with respect to T further forced G3 to be (2,1). In this case the superpotential
automatically vanishes and results in a N = 1 Minkowski vacuum. In this chapter we will see
how the loss of no-scale structure opens up to alternative vacua.
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8. Moduli Stabilisation with Corrections and de Sitter Vacua

8.1 Perturbative corrections to the low-energy action
Corrections to the low-energy effective supergravity action are governed by the Planck scale,
which in string theory is given by

M8
P = 1

g2
sα
′4 . (8.5)

Perturbative corrections consist of the double series expansion of the α′ and gs parameters in
the 10D effective theory. The α′-expansion of this action can be written on the form

S = S(0) + α′3S(3) + . . .+ α′nS(n) + . . .+ Sloc
(0) + α′2Sloc

(2) , (8.6)

where S(0) is given by eq. (5.47) including the Chern-Simons terms and the Sloc are localised
p-brane actions. The subscript indicates the degree of α′-dependence.

After compactification, corrections of the 10D action leads to corrections of the 4D Kähler
potentials. The perhaps most famous perturbative correction to the Kähler potential originates
from an α′3 curvature correction, i.e. the quartic invariant R4, in the 10D Einstein-Hilbert
action of type IIB. This action can be written [59]

Sg =
∫

d10x
√
−g

(
MP
2 R+ ξ(3)

3 · 25
1
M6R4 + . . .

)
, (8.7)

where MP is the Planck mass in 10D, the ζ is the Riemann-zeta function where ζ(3) =∑∞
k=1 1/k3 ≈ 1.202, and M denotes the mass of the first excited level of the type II super-

string;
M2 = 4

α′
. (8.8)

The omitted terms are subleading in 1/M and/or the string coupling gs. The quartic invariant
R4 arises via a 4-loop correction to the β-function in the worldsheet σ-model [59]. In the next
we will review how this correction comes about, following its discoverer in [60].

8.1.1 The α′3-correction to the Kähler potential

The metric of Kähler deformations on the Calabi-Yau 3-fold receives perturbative α′3-corrections
from higher derivative terms appearing in the type II 10D effective action. At tree level these
terms are the same in type IIA and IIB. The relevant terms for this correction of the Kähler
moduli space in the metric are given by

S = − 1
2κ2

10

∫
d10x
√
−ge−2φ

(
R+ 4(∂φ)2 + α′3c1J0

)
, (8.9)

where c1 ≡ ζ(3)
3·211 [59] and the higher order term J0 is defined as [61]

J0 = 3 · 28
(
RHMNKRPMNQRH

RSPRQRSK + 1
2R

HKMNRPQMNRH
RSPRQRSK

)
. (8.10)

The equation of motion for φ up to order O(α′3) is then given by

R+ 4∇2φ− 4(∇φ)2 + α′3c1J0 = 0 . (8.11)

Note that J0 does not contribute to the above equation as it has the property of vanishing on
Ricci flat Kähler metrics. If one introduces the complex coordinates

λa = 1√
2(y2a−1 + iy2a) , (8.12)
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8.1. Perturbative corrections to the low-energy action

with a = 1, 2, 3 on the internal manifold, it has been shown [62] that the metric β-function for
the N = 2 non-linear σ-model in 2D up to four loops is given by

βab̄ = 1
2πRab̄ + 1

8πζ(3)∇a∇b̄Q . (8.13)

Here 2πα′ = 1, and Q is defined as

Q ≡ 1
12(2π)3RIJ

KLRKL
MNRMN

IJ − 2RIKJLRKML
NRM

IJ
N , (8.14)

which is a generalisation of a 6D Euler density;
∫
M d6x

√
gQ = χ. By demanding βab̄ = 0 and

using eq. (8.13) in eq. (8.11), the dilaton equation of motion is satisfied up to order O(α′3)
when

φ = φ0 + ζ(3)
16 Q , (8.15)

where φ0 is a constant and the second term comes from perturbative quantum corrections on
the worldsheet. Hence, a higher order term in eq. (8.9) can not result in a constant dilaton as
a solution.

After compactification of the 10D theory to 4D on a Calabi-Yau 3-fold, the interactions of
eq. (8.9) (and an additional term which will show up later) give the perturbative correction to
the metric on the moduli space of the Kähler deformations. The prepotential F̃ for these Kähler
deformations, or hypermultiplets, receives both perturbative and non-perturbative corrections
on the worldsheet. These corrections have been calculated in [32] using mirror symmetry, and
the perturbative corrections has been identified with the α′-corrections determined in [59][63].
Since the Kähler deformations lie in N = 2 hypermultiplets, a truncation needs to be done in
order to obtain the N = 1 theory, which is of primary interest. Including the α′3-correction, the
prepotential has been shown [32] to change so that it takes the form

F̃(X) = i

6κabcX
aXbXc + (X0)2ξ , (8.16)

where ξ is some constant and ta = Xt/X0 are the Kähler deformations with a = 1, . . . , h(1,1),
where we may take X0 = 1. Since the Kähler potential is also given by

K = − ln[XiF̄i(X̄) + X̄iF (X)] , (8.17)

inserting the prepotential in eq. (8.16) into the Kähler potential of eq. (8.17) gives the corrected
Kähler potential for the Kähler moduli ta as

K = − ln[− i
6κabc(t

a − t̄a)(tb − t̄b)(tb − t̄b) + 4ξ] . (8.18)

In the next we turn to determine the constant ξ. This constant is independent of the Kähler
moduli which allows us to choose a single Kähler modulus u to work with. We start by making
the following ansatz for the metric:

ds2 = ηµν dxµ dxν + e2ug̃mn dym dyn . (8.19)

For simplicity we choose the volume of the Calabi-Yau g̃ by setting (2πα′)3 = 1 so that κ4 = κ10,
and then normalising so that V = 1

6κabcv
avbvc = e6u. The constant ξ may be determined by

after dimensional reduction of the metric in eq. (8.19) to 4D.
In the action of the hypermultiplets in type IIB compactifications the Kähler metric is the

coefficient of the kinetic terms of the Kähler moduli ta. Hence, with the Kähler potential of eq.
(8.18) this Kähler metric Kab̄ = ∂2K/∂ta∂t̄b gives us the following action for the kinetic term:

S = 1
κ2

4

∫
d4x
√
−g

[
−(3− 6ξe6u)∂µu∂µu

]
+ . . . . (8.20)
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8. Moduli Stabilisation with Corrections and de Sitter Vacua

This will be used for comparison with the kinetic term of the resulting 4D action in eq. (8.9)
after dimensional reduction. In the process of doing so it is useful to re-express J0 such that [64]

S = − 1
2κ2

10

∫
d10x

√
−g(10)e−2φα′3c2

(
12Z −RS + 12RMNS

MN +R2
)

+ . . . , (8.21)

with the constant c2 ≡ ζ(3)/(3 · 25), Z = ZIJg
IJ and S = SIJg

IJ where

ZIJ ≡ RIKLRRJMN
R
(
RKP

M
QR

NPLQ − 1
2R

KN
RQR

MLPQ
)
, (8.22)

SIJ ≡ −2RIMKLRJ
P
K
QRLPMQ + 1

2RI
MKLRJMPQRKL

PQRI
K
J
LRKMNQRL

MNQ , (8.23)
S ≡ 12(2π)3Q+R2 . (8.24)

The Q is defined as earlier in eq. (8.14). In order to evaluate eq. (8.21) for the metric in eq.
(8.19), the non-vanishing parts of the Riemann tensor are needed. With the usual conventions

RMNPQ ≡ ∂PΓMQN − ∂QΓMPN + ΓRQNΓMPR − ΓRPNΓMQR ,

ΓMNP ≡ 1
2g
MQ (∂NgPQ + ∂P gQN − ∂QgNP ) ,

(8.25)

one can find that the non-vanishing components of the Riemann tensor are

Rmµnν = −δmn (∂µu∂νu+ ∂µ∂νu) ,
Rµmνn = −gmn(∂νu∂µu+ ∂ν∂

µu) ,

Rkmnp = R̃kmnp + ∂µu∂
µu
(
δkpgmn − δkngpm

)
,

(8.26)

and all other components, which are not related to any of the above ones by symmetry, vanish.
The non-vanishing components of the Ricci tensor is in turn given by

Rµν = −6(∂µu∂νu+ ∂µ∂νu) ,
Rmn = −gmn(6∂µu∂µu+ ∂µ∂

µu) ,
(8.27)

where the contribution of the background metric has been discarded as it is proportional to
∇a∇b̄Q̃ ∼ βab̄ and thus vanishes as βab̄ = 0. The Ricci scalar is given by

R = −42∂µu∂µu− 12∂µ∂µu . (8.28)

Turning our attention to eq. (8.21) again, it is clear by the components of eq. (8.27) and eq.
(8.28) that the RS and RmnSmn terms contribute to the kinetic terms of u, while RµνSµν and
R2 do not. As for the first term that is proportional to Z, it can be seen by the definition of Z
in eq. (8.23) that only the internal components of the Riemann tensor contribute to a kinetic
term of u. Using the results on the last line of eq. (8.26), the expression of Z that contributes
to the kinetic terms of u can be written

Z = e−6u∂µu∂
µu
[
12(2π)3Q̃+ R̃iqlr(2R̃ipnrR̃nplq − R̃inprR̃nlpq − R̃ipnrR̃qnlp)

]
. (8.29)

This expression may be simplified further. Again using the complex coordinates in eq. (8.12)
on the manifold, it is true that on a Kähler manifold, the only non-trivial independent Riemann
tensor component R̃abcd̄ possesses the symmetry

R̃abcd̄ = R̃acbd̄ . (8.30)
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Hence we have that for the first term in eq. (8.29) that

12(2π)3Q̃ = 4
(
R̃ab̄

cd̄R̃cd̄
ef̄ R̃ef̄

ab̄ − R̃acbdR̃cedf R̃eaf b
)

= R̃iqlr
(
2R̃ipnrR̃nplq − R̃inprR̃nlpq − R̃ipnrR̃qnlp

)
,

(8.31)

which reduces the expression of Z to

Z = 24(2π)3e−6u∂µu∂
µuQ̃ . (8.32)

Now performing the dimensional reduction of the metric eq. (8.19), where we use the dilaton
φ = φ0 + cQ with c ≡ ζ(3)/16 as before. It has been argued that the Ricci tensor RMN in
eq. (8.21) actually appears in the form RMN + 2∇M∇Nφ, which would result in the additional
terms

S = − 1
2κ2

10

∫ √
−g(10)e−2φα′3c2(−2(∇2φ)S + 24(∇M∇Nφ)SMN ) . (8.33)

to the action. Here the second term does not contribute in the dimensional reduction, and the
first extra term does not modify the equations of motion but it is necessary to get the right form
of the resulting 4D action. Without it one would get unallowed cross terms involving φ(4) and
u. With this addition to the 10D action it becomes to order O(α′3) in perturbation theory

S = − 1
2κ2

10

∫
d10x
√
−ge−2φ

[
(1− 2cQ)

(
R(4) − 42∂µu∂µu− 12∂µ∂µu+ 4∂µφ0∂

µφ0
)

− 48cQφ0∂
µu− 48c2Q∂µφ0∂

µφ0 + 12c2Q(−R(4) − 6∂µu∂µu)
]
.

(8.34)
Using the fact that 6c2 = c and integrating over the internal coordinates, one gets that

S = − 1
2κ2

4

∫
d4x
√
−ge−2φ0

[
(e6u − 4cχ)R(4) + (e6u − 2cχ)(−42∂µu∂µu− 12∂µ∂µu)

+ (e6u − 4cχ)4∂µφ0∂
µφ0 − 48cχ∂µφ0∂

µu− 12cχ∂µu∂µu
]
.

(8.35)

The coefficient of R(4) tells us that the 4D dilaton is given by

e2φ(4) = e−2φ0(e6u − 4cχ) . (8.36)

By performing a partial integration of the term (−42∂µu∂µu−12∂µ∂µu) in eq. (8.35) we simplify
the expression of the action to

S = 1
κ2

4

∫
d4x
√
−ge−2φ(4) [1

2R
(4) + 2∂µφ(4)∂µφ(4) − (3 + 48cχe−6u)∂µu∂µu

]
. (8.37)

Here a Weyl rescaling does not change the coefficient of the u kinetic term, so by comparison
with eq. (8.20), the constant ξ is finally determined to

ξ = −8cχ = −ζ(3)
2 χ . (8.38)

With a Weyl rescaling gs = e1/2φ0gE, the 4D dilaton in eq. (8.36) can be rescaled to Einstein
frame via

e2φ(4) = e−2φ0(V + 1
2ξ)→ e−1/2φ0(V ′ + 1

2ξ
′) (8.39)

with ξ′ = ξe−3/2φ0 and V ′ formed by v′a = vae−φ0/2 so that V ′ = 1
6κabcv

avbvce−3/2φ0 .
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8. Moduli Stabilisation with Corrections and de Sitter Vacua

The N = 2 action for the hypermultiplets is given in eq. (5.68) and eq. (5.69). By performing
an orientifold projection of the N = 2 action, in which the antisymmetric 2-form fields are
projected out and using the v′a and eq. (8.39), the N = 2 supersymmetry breaks down to
N = 1. The quarternionic geometry of the hypermultiplet is then reduced to a Kähler geometry.
With the Kähler coordinates defined in eq. (5.139) (where Ga = 0 may be taken as there is only
one radial Kähler modulus u), the corrected Kähler potential takes the form

K = − ln[−i(τ − τ̄)]− 2 ln
[
−i(T a − T̄ a)v′a + ξ

(
−iτ − τ̄2

)3/2
]
− ln

[
−i
∫
CY3

Ω ∧ Ω̄
]

= φ0 − 2 ln[V ′ + 1
2ξe
−3φ0/2]− ln[−i

∫
M

Ω ∧ Ω̄] + const. ,
(8.40)

where again ξ ≡ − ζ(3)
2(2π)3χ with normalisation 2πα′ = 1 such that 2κ2

10 = (2π)7α′4 = (2π)3.

8.1.2 String coupling corrections to the Kähler potential

There are also perturbative gs-corrections arising from loop-effects in spacetime, i.e. from higher-
genus string worldsheets, which generally break the Kähler potential’s no-scale structure as well.
Some explicit results of such loop corrections have been found for the T 6/(Z2 ⊗ Z2) orientifold
with N = 2 and N = 1 in [65][66]. The calculation of such corrections is out of scope for this
thesis, although we may provide a qualitative picture of their effect. The loop corrections to the
Kähler potential of eq. (8.1) can be divided into two different contributions;

δKgs = δKKK
gs + δKWgs , (8.41)

where δKKK arises from the exchange of closed strings with Kaluza-Klein (KK) momentum
between D3- and D7-branes (or O3- and O7-planes), while δKW comes from the exchange of
closed strings with non-vanishing winding (W). The δKKK

gs has the form [67]

δKKK
gs =

3∑
i=1

EKK
i (z, z̄)
4g−1

s σi
, (8.42)

where the Kähler moduli ReT ≡ σ and σi is the Kähler modulus associated to the volume of the
4-cycle wrapped by the ith D7-brane (or O7-plane). The EKK

i have a complicated dependence
of the complex structure moduli zk and the dilaton modulus is related via the string coupling.
The winding contribution has the form

δKWgs =
3∑

i 6=j 6=k

EWi (z, z̄)
4σjσk

, (8.43)

where both functions EKK
i (z, z̄) and EWi (z, z̄) are found in [65][66]. Despite the complicated

dependence of these functions on the complex structure moduli, the corrections have a simple
scaling with the Kähler moduli σi which can be used tho stabilise the Kähler moduli.

8.1.3 The superpotential receives no perturbative corrections

While the N = 1 Kähler potentials receives perturbative corrections at every order in perturba-
tion theory, the superpotential only receives non-perturbative corrections. This is largely due to
a so-called Peccei-Quinn type shift-symmetry to be explained next. The classical 10D type IIB
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8.1. Perturbative corrections to the low-energy action

action is gauge invariant and there are pseudo-scalar fields of the gauge potentials that inherits
a continuous shift-symmetry of an arbitrary constant according to

a→ a+ const . (8.44)

These pseudo-scalar fields are sometimes referred to as axions, which in IIB O3/O7 setups
refers to not only C0 but also to the ba, ca, ρα and the scalar duals b0, c0 of B2, C2 respectively.
Again, the duals are b0 ≡

∫
Σ2
B2 and c0 ≡

∫
Σ2
C2 with Σ2 being a 2-cycle of the internal space.

In a background with vanishing fluxes, the type IIB action is independent of the potentials
C0, C2, C4, B2 and only involves the associated field strengths of each field, thus preserving the
shift-symmetry of these fields. This may be illustrated with an example using the B2 field and
its scalar dual b0. The worldsheet coupling of B2 in the non-linear σ-model action, i.e

Sσ ⊃ −1
2

∫
Σ2

d2σεab∂aX
M∂bX

NBMN (X) , (8.45)

can be written equivalently as
Sσ ⊃ −

∫
Σ2
B2 ≡ −b0 , (8.46)

where the integral runs over a worldsheet wrapping a 2-cycle Σ2. Eq. (8.46) can be recognised
as a topological coupling. Now, expanding the B2 field around some point X0 = 0 gives us

BMN (X) = BMN (X0) +XP∂PBMN (X0) + . . . , (8.47)

where the first term is constant and give rise in eq. (8.45) to a worldsheet total derivative;

− 1
2

∫
Σ2

d2σ∂a
(
εabXM∂bX

NBMN (X0)
)
. (8.48)

It is clear that this term must vanish in order to preserve the axionic shift-symmetry . At any
order of σ-model perturbation theory the 2-cycle is trivial, so that eq. (8.48) is integrated to
zero. However, it is non-vanishing if either the worldsheet wraps a topologically non-trivial
cycle,or has a boundary. The second term in eq. (8.47) involving the spacetime derivative of
BMN is in general non-vanishing, but will in this case be proportional to a spacetime derivative
of an axion and will therefore preserve the axionic shift-symmetry.

The axion ρα in the Kähler coordinate Tα defined in eq. (5.139) is as familiar included in the
Kähler potential of eq. (8.1). However, since K ∼ ln(T + T̄ ), the ρ being the imaginary part of
T will cancel and thus preserve the shift-symmetry of the Kähler potential. The superpotential
however is holomorphic and hence only dependent on Tα rather than Tα + T̄α, but there are
no non-trivial polynomials in Tα that are invariant under the shift of the axion. Since the
gauge invariant action is related to the superpotential via the scalar potential as in eq. (5.132),
the superpotential should be invariant under axionic shift-symmetries as well. As a result, the
superpotential can only depend on Tα non-perturbatively. The corrections in the α′-expansion
must change in magnitude as the Tαs are varied since

− 2 ln
(
V + ξ

2g2/3
s

)
≈ −2 lnV − ξ

g
2/3
s V

+ . . . . (8.49)

The shift-symmetry of the superpotential forces it to be independent of the Tαs to any order in
perturbation theory, and as a consequence it will not receive any perturbative α′-corrections.

Turning to the string loop expansion, the argument can be based on R-symmetry and PQ-
symmetry. Again, both R- and PQ-symmetry can be seen as subgroups of SL(2,R). For
R-symmetry one chooses the following 1-parameter family of SL(2,R) transformations:

b = −|τ | , c = 1
|τ |

, d = 0 , (8.50)
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8. Moduli Stabilisation with Corrections and de Sitter Vacua

which satisfy ad − bc = 1 ∀τ . These choices also have the property that cτ + d = τ/|τ | = e−iα

where α = −argτ . Under R-symmetry the G3 field then transforms as G3 → G3
cτ+d = e+iαG3.

The GVW superpotential transforms in the same way as G3; WGVW → WGVW
cτ+d . For the PQ-

symmetry one has
a = d = 1 , c = 0 , τ → τ + b . (8.51)

The PQ-symmetry is preserved to all orders in perturbation theory and the R-symmetry to all
orders in gs to leading order in α′. Hence, in leading order of α′, both PQ- and R-symmetry sur-
vives to all orders in the string coupling expansion. Note that only non-perturbative corrections
break the SL(2,R) symmetry to SL(2,Z). The result obtained for the string loop corrections
to leading order in α′ is easily extended to all orders in α′, since we earlier in this section argued
that the superpotential can not receive any α′-corrections.

Using these symmetries one can derive a non-renormalisation theorem for type IIB. To start
one considers how the field content of the 4D theory transforms under global symmetries of the
10D action. To do so two kinds of fields are good to keep track of. The first kind consists of
fields that describe light degrees of freedom whose masses are smaller than the KK scale, which
are then fully described by the 4D N = 1 theory. These scalar fields, denoted ϕi, transform
under supersymmetry as chiral matter. Our friends the Kähler moduli and complex structure
moduli are included here.

The second kind of fields are called spurions and describe the transformation properties of
the background flux VEVs under the symmetry transformation of interest. These fluxes lie in
the background value of the G3 field and may be regarded as the VEVs Gr of the collection
of 4D scalar fields obtained when G3 is dimensionally reduced. These VEVs transform under
SL(2,R) transformations (or R/PQ-transformations) like G3.

The supersymmetry transformation parameter ε has R-charge qε = +1
2 , and so it follows from

R-invariance of the IIB action that the superpotential must carry R-charge qW = +1. The G3
field also has R-charge qW = +1, so we are free to take W to be proportional to one of the Gr’s,
say G0. Then we may write a general superpotential as

W (ϕi, τ,Gr) = G0A

(
ϕi,
Gr

G0

)
, (8.52)

where A is some function that can not depend explicitly on τ as it must be PQ-invariant and
the ϕis do not shift under a PQ-transformation. The Gr on the other hand do depend on τ , but
the overall τ -dependence of A is cancelled in the fraction Gr/G0.

Earlier we have treated the string coupling constant gs = eφ as the loop-counting parameter
of the low-energy effective action. This is in fact technically not true in IIB, since its low-energy
effective Lagrangian contains different powers of eφ. It is true in the heterotic case however,
where the dilaton appears in an overall factor e−2φ in the string frame heterotic low-energy
Lagrangian. As a consequence of the IIB case, it is convenient to organise the loop perturbation
series by the rescalings

eφ → λeφ , Cp →
Cp
λ

, (8.53)

and Fp, G3 (hence Gr) transforming the same way as Cp. With this rescaling the total IIB action
scales like S → S/λ2. After rescaling one expands the observables and low-energy effective 4D
action in power series of λ, after which one takes the limit λ → 1. The orders of λ is then
understood as the string loop expansions, which however go hand in hand with eφ.

Considering type IIB O3/O7 setups, the ordinary GVW flux superpotential is taken to be
the lowest-order superpotential in the λ, or string loop, expansion. The lowest-order result
corresponds to the function A in eq. (8.52) being linear in the arguments Gr/G0. Hence it may
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be written
A

(
ϕi,
Gr

G0

)
=
∑
r≥0

Gr

G0Ar(ϕ
i) , (8.54)

which inserted in eq. (8.52) makes the lowest-order superpotential take the form

WGVW =
∑
r≥0
GrAr(ϕi) . (8.55)

With this form, we see that would one expand the superpotential in powers of λ, the fraction
Gr/G0 → Gr/G0 is left invariant. Hence if W in eq. (8.52) is the general form of the superpoten-
tial for any power of λ, this fraction is the same as the lowest-order superpotential WGVW and
transforms like W → W/λ. As such, we see that higher order loop corrections do not change
the lowest-order approximation.

Conclusively, the non-renormalisation theorems for the flux superpotential leads to that it
does not receive any perturbative corrections. A nice argument for this can also be found in [68]
covering both the α′-expansion as well as the string loop corrections. Including both perturbative
and non-perturbative effects, the Kähler potential and superpotential can therefore be written
on the forms

K = K0 +Kp +Knp ,

W = W0 +Wnp .
(8.56)

In the next section, we will review the non-perturbative effects on these potentials, which for
Knp typically stems from string worldsheet instantons, and for Wnp from D-brane instantons or
gaugino condensation on D-branes.

8.2 Non-perturbative corrections to the superpotential
In this section we review the main contributors to non-perturbative corrections to the superpo-
tential, namely instantons and gaugino condensation.

8.2.1 Worldsheet and D-brane instantons

Apart from string theory, instanton effects are already present in the setup of field theory. In-
stantons are semi-classical configurations providing saddle points in the Euclidean path integral
of the spacetime fields of the theory. They are classical solutions to the Euclidean equations
of motion in field theory, where the prototypical example is given by instantons in 4D gauge
theories. In this case the gauge field configurations obey the self-duality condition in Euclidean
space, i.e.

Fµν = 1
2εµνρσFρσ ⇔ F = ?4F . (8.57)

For the SU(2) gauge groups an explicit solution of the gauge potential Aµ is given, in the gauge
∂µA

a
µ = 0, by

Aaµ = 2η̄aµν
(x− x0)ν
(x− x0)2

ρ2

(x− x0)2 + ρ2 . (8.58)

Here the x0 and ρ are the position respectively the size of the instanton. The η̄aµν are t’Hooft
symbols, which realise the ath SU(2) generator of the SO(4) ' SU(2)2 rotation group. Generally
an instanton configuration can be characterised by providing a map from S3 at infinity in R4

to the gauge group G, and is therefore classified as the homotopy group Π3(G). If G is a simple
group, then Π3(G) = Z, thus implying that the instanton configurations are labelled by an
integer winding number, or topological charge, known as the instanton number

k = 1
8π2

∫
4D

tr(F ∧ F ) . (8.59)
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8. Moduli Stabilisation with Corrections and de Sitter Vacua

It is said that anti-instantons realise negative values of k and satisfy an anti-self-duality relation.
With the self-duality of eq. (8.57), the classical action for an instanton configuration is given by

Scl = 8π2

g2
YM
|k| , (8.60)

with gYM being the 4D Yang-Mills coupling. Also familiar from quantum mechanics, the saddle
point approximation to a tunneling process in the theory is described by a classical solution to
the Euclidean equations of motion. The strength, given by e−Scl ∼ e−k/g

2
YM , is clearly a non-

perturbative contribution to the theory’s path integral. There is a discrete shift-symmetry is
visible here as well, since an angle θ in the gauge-theory contributes to the instanton amplitude
as

e−Scl = e
−k
(

8π2

g2
YM+iθ

)
. (8.61)

The 2π-periodicity then breaks a continuous shift-symmetry of the θ parameter to a discrete
one; θ → θ+ 2π. The factor i in the exponent arises because of the theory being Euclidean [69].

Since the low-energy limit of string theory contains field theory (coupled to gravity), it is not
surprising that there are also non-perturbative effects from Euclidean instanton configurations.
As discussed before, a fundamental non-perturbative contribution in the σ-model is a worldsheet
wrapping a non-trivial cycle Σ2, which is also referred to as a worldsheet instanton. These
instantons are BPS states when Σ2 is a holomorphic 2-cycle and their topological charge is the
2-homology class [Σ2]. The classical instanton action is given by the volume of the internal
cycle. The cycles are usually complexified into chiral multiplets so that the instanton strength
is given by

eSinst = e
−
∫

Σ2
(J+iB2) ∼ e−ia , (8.62)

where J is the Calabi-Yau Kähler form. We see that the axionic shift-symmetry which was
originally continuous is broken to form a discrete shift-symmetry a→ a+ 2π , as in the case of
the gauge theory parameter θ.

The strength of the worldsheet instantons depends on the 2D worldsheet area, and the pre-
ceding discussion needed no assumption about the genus of the worldsheet, so it must hold to
any order in string loop expansion. There arises however a new possibility in that the closed
string worldsheet may break open on a D-brane, corresponding to a gs non-perturbative effect.
Hence, while the worldsheet instantons are non-perturbative in α′, they are perturbative (tree
level in fact) in gs. Instantons that are non-perturbative in α′ and in gs must therefore have
tension of inverse powers of gs. In string theory, branes have this property. Hence in 4D string
compactifications there may be brane instanton effects from possible branes localised in the 4D
spacetime that are wrapped around different cycles in the internal manifold.

Another type of instanton is Euclidean Dp-branes, i.e. D-branes that are not spacetime filling.
The conditions for a wrapped Euclidean brane to define a BPS instanton are the same kind of
supersymmetry conditions as for ordinary D-branes. In type IIA with D6-branes wrapped on 3-
cycles, BPS instantons arise from special Lagrangian1 3-cycles with suitable phases. In type IIB
orientifold setups with D3-branes at points and D7-branes wrapping 4-cycles, the BPS instantons
are given by D(−1)-branes at points in the Calabi-Yau and Euclidean D3-branes wrapped on
some 4-cycle. With D5/D9-branes the BPS instantons come from D1-branes on holomorphic
2-cycles and Euclidean D5-branes wrapped on the whole Calabi-Yau, which may have gauge
backgrounds on its world-volume. It is interesting to note that the mirror symmetry between

1A special Lagrangian cycle Π is a volume-minimising cycle on which the 2-form Kähler form J and holomorphic
3-form Ω3 satisfies J |Π = 0 and Im(e−iϕΩ3)|Π = 0 for some fixed phase ϕ. The volume of the special Lagrangian
cycle is given by vol(Π) =

∫
Π Re(e−iϕΩ3).
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8.2. Non-perturbative corrections to the superpotential

IIA and IIB orientifold models also extends to the instantons involved. In particular, the fact
that all BPS instantons of type IIA are Euclidean D2-branes may be used to simplify some type
IIB analysis.

A Dp-brane wrapped on a (p + 1)-cycle Σp+1 has strength e−SDBI . Similar to its strength,
the contribution from a Euclidean D3-brane wrapping a 4-cycle to the superpotential is

WED3 = Ae−2πT , (8.63)

where the coefficient A can depend on complex structure moduli, the axion-dilaton and D-
brane positions, but is independent of the Kähler moduli T . Some conditions necessary for
non-vanishing ED3-brane superpotentials was found by [70]. Namely, in order for the Euclidean
D3-brane contribution to the superpotential not to vanish, its associated 4-cycle Σ4 should be
a projection of some 6-cycle Σ6 such that

χ(OΣ6) ≡
3∑
i=0

(−1)ih0,i(Σ4) , (8.64)

where OΣ6 is the trivial line bundle defined on the 6-cycle and χ(OΣ6) the holomorphic Euler
characteristic of Σ6. A sufficient condition for a non-vanishing ED3-brane superpotential is that

h(0,1) = h(0,2) = h(0,3) = 0 , (8.65)

i.e. that the 6-cycle Σ6 is rigid, since the Hodge numbers count the independent deformations
of Σ6.

8.2.2 Gaugino condensation

Rather than Euclidean D3-branes wrapping the 4-cycle Σ4, we may also consider the same cycle
being wrapped by a stack of N D7-branes. The worldvolume theory of the D7-branes includes
a Yang-Mills action for 4D gauge fields Aµ of the form

S = 1
2g2

7

∫
Σ4

d4σ
√
ginde

−4A(y) ·
∫

d4x
√
−gtr[FµνFµν ] , (8.66)

where gind is the induced metric on the D7-brane, gµν is the unwarped metric and g7 is the
gauge-coupling of the Yang-Mills theory in 7+1 dimensions;

g2
7 = 2(2π)5(α′)2 . (8.67)

The gauge coupling of the Yang-Mills theory in 4D is given by

1
g2
YM

= T3V4
8π2 ,

with V4 being the volume enclosed by the 4-cycle Σ4, defined as

V4 ≡
∫

Σ4
d4σ
√
ginde

−4A(y) . (8.68)

As in the case of the Euclidean D3-branes, a topological condition is that Σ4 should have no
deformation that corresponds to charged matter fields, which implies that the arising 4D gauge
theory is that of pure glue N = 1 Yang-Mills. At low energies, this field theory generates a
non-perturbative superpotential from gaugino condensation;

|Wλλ| ∼ e
− 8π2
Ng2YM ∼ e−

T3V4
N . (8.69)
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Gaugino condensation [71] is a strong coupling effect where a product of gaugino fields acquire
a vacuum expectation value. This vacuum expectation value 〈λλ〉 adds to the superpotential,
where 〈λλ〉 = Λ3, Λ ∼ µe−1/g2(µ) and µ is the scale at which one matches the couplings of high-
and low-energy theories. In short, the gaugino condensate superpotential may be written

Wλλ = Ae−2πT/N , (8.70)

much like the case of the ED3-brane with A independent of the Kähler moduli.
Conclusively, we have seen that non-perturbative effects like strong gauge dynamics on D7-

branes, like gaugino condensation, and instanton contributions from Euclidean D3-branes gen-
erate superpotential terms including the Kähler moduli. Whichever source, the contribution to
the superpotential leads in combination with the constant flux superpotential, to the general
structure

W = W0 +
h

(1,1)
+∑
i=1
Aαe−aαTα + . . . , (8.71)

assuming that there is a non-perturbative effect for all Kähler moduli involved. The ellipsis
denote higher-order non-perturbative terms. With an arbitrary Kähler potential, this superpo-
tential leads to the scalar potential

Vnp = eKKī
[
aiAiāĀ̄e−(aiTi+āT̄̄) −

(
aiAie−aiTiW̄∂̄K + āĀ̄e−āT̄̄W∂iK

) ]
. (8.72)

Having gathered perturbative and non-perturbative corrections to the Kähler and superpo-
tential, we are interested in whether their effect can result in a stable, or at least metastable,
vacuum. A very general problem including these corrections which may stabilise flat directions
is known as the Dine-Seiberg problem [72]. The problem is sometimes summarised as ”when
corrections are important they are not computable and when they are computable they are not
important”. We elaborate this by first considering some modulus ρ, such as the volume V or the
inverse string coupling, which both have the property that the limit ρ→∞ corresponds to the
weakly coupled region where we may trust our tree level effective action. Including quantum
corrections, they may induce a potential V (ρ) in the 4D effective theory. This potential must
however have the property limρ→∞V (ρ) → 0, because of our assumption that at ρ → ∞ we
can trust the tree level effective theory which by definition has zero potential for ρ, as it is a
modulus. As ρ → ∞ there are then two possibilities, either the potential goes to zero from
above, i.e. V (ρ) > 0, or we have that V (ρ) < 0, which makes the ρ go to stronger coupling from
the ρ → ∞ limit in order to minimise the scalar potential. A local minimum can only arise
if higher order corrections are included; one needs two more corrections for the first case and
one more for the second case. However, since we are including corrections important enough
to cause a significant departure from the first order shape of V (ρ), we can longer be in the
weakly coupled region. Not being in this region implies that higher order corrections must be
significant too, although without extended supersymmetry, i.e. N ≥ 2 in 4D, there are generally
not enough tools available to compute more than a few orders in perturbation theory [73]. As
a consequence one looses control, and so Dine and Seiberg concluded 1985 that our own string
vacuum is probably strongly coupled.

In the next section we will review the two leading ideas for Kähler moduli stabilisation in the
type IIB theory; the KKLT scenario and the large volume scenario, where the resulting vacua
come from competition between known corrections.
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8.3 The KKLT setting

By using the non-perturbative corrections to the superpotential discussed in the previous sec-
tion, one can show that all moduli in type IIB Calabi-Yau orientifold compactifications can be
stabilised. The construction was first carried out by Kachru, Kallosh, Linde and Trivedi (KKLT)
[74], where they also showed it possible to obtain a metastable de Sitter vacuum by adding a
small number of D3-branes. In this section we will review both these topics, starting with the
moduli stabilisation.

8.3.1 Kähler moduli stabilisation by non-perturbative effects

The KKLT procedure is based on type IIB flux compactifications on O3 Calabi-Yau orientifolds,
where they assume an arbitrary number h(2,1) of complex structure moduli but only a single
Kähler modulus T such that h(1,1)

+ = 1 and h
(1,1)
− = 0. The real part of the Kähler modulus

is given by eq. (5.139) as ReT = 1
2κ

2/3, which makes it scale like ReT ∼ R4 with R being
the radius of compactification. Would G3 be a (0,3)-form, supersymmetry would be broken as
DTWGVW 6= 0, and the superpotential would not vanish as WGVW = W0.

As we move on to add a non-perturbative contribution to the superpotential, the no-scale
structure will break and open up to new possible vacua. Only including a single Kähler modulus,
the non-perturbative superpotential of eq. (8.71) reduces to

W = W0 + ce−2πaT , (8.73)

where again W0 = WGVW is the superpotential contribution coming from the fluxes, a is a
positive model-dependent quantity and c a holomorphic function depending on the complex
structure fields. Since it is possible to stabilise the complex structure moduli and dilaton of
type IIB O3/O7 setups by mechanisms reviewed in the previous chapter, we may assume them
stabilised in this analysis and focus wholly on the Kähler moduli. Hence, the c can be regarded
as a constant in the following analysis and we may consider only the Kähler moduli part of the
Kähler potential

KK = −3 ln(T + T̄ ) . (8.74)

At the supersymmetric minimum, all Kähler covariant derivatives of the superpotential in eq.
(8.73) vanishes, including DTW = 0. Using the expression eq. (5.148) for the Kähler derivative,
we have that

DTW = −2πace−2πaT − 3
T + T̄

(
W0 + ce−2πaT

)
= 0 , (8.75)

using only the T-dependent part of the Kähler potential in eq. (8.1) for simplicity. The other
parts of the Kähler potential will contribute with a constant factor in eq. (8.75), since the
complex structure and dilaton moduli are assumed to be fixed. If further one sets ImT = 0 and
ReT ≡ σ, the supersymmetric minimum satisfying eq. (8.75) is found at

W0 = −
(4πaσ0

3 + 1
)
ce−2πaσ0 , (8.76)

with σ0 being the value of σ which minimisesW0 above. With this value of the constantW0, the
superpotential of eq. (8.73) is Wmin = −4πaσ

3 ce−2πaσ at the minimum. According to eq. (8.4),
the resulting vacuum has minimum scalar potential, i.e. cosmological constant, at

Vmin = −3eK|Wmin|2 = −2π2a2c2

3σ e−4πaσ , (8.77)
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Figure 8.1: [Purple] AdS scalar potential of eq. (8.78), and [orange] supersymmetry-breaking
dS scalar potential of eq. (8.80), as a function of Kähler moduli σ ≡ ReT . Parameter choice in
accordance with KKLT with 2πa = 0.1, c = 1, W0 = −10−4 and D = 3 · 10−9. Both potentials
are multiplied with a factor of 1015.

which makes it a supersymmetric AdS4. With the superpotential of eq. (8.73) and only including
the Kähler moduli, the scalar potential of eq. (8.4) is given by

V = eK
K
(
KT T̄ |DTW |2 − 3|W |2

)
= 1

(2σ)3

(
(2σ)2

3

(
2πace−2πaσ + 3

2σW
)2
− 3W 2

)

= πace−2πaσ

σ2

(
2πacσe−2πaσ

3 +W0 + ce−2πaσ
)
,

(8.78)

with Kähler metric KT T̄ = ∂T∂T̄KK . The behaviour of this scalar potential as a function of
the volume modulus σ is illustrated in fig. 8.1. A final comment is that it is clear that the
stabilisation only works for W0 6= 0, and as a consequence there must be a (0,3)-form piece of
the G3 flux which will result in a non-zero W0. The above reasoning have showed that this will
result in a 4D N = 1 AdS vacuum.

8.3.2 Uplifting to de Sitter vacua

Not only do observations imply a universe with maximal spacetime symmetry, but data also
seems to require a small positive cosmological constant [75] which suggests our universe to be
(asymptotically) de Sitter. A dS vacuum can be constructed by a mechanism often referred to
as uplifting, in which additional tension sources are added to the supersymmetric AdS vacuum
constructed in section 8.3.1. In the previous AdS case, we assumed that the tadpole condition
of eq. (6.35) with D3-branes, fluxes and O3-planes was saturated. If we choose to increase
the amount of flux, additional D3-brane sources may be added to keep the tadpole condition
fulfilled. The addition of these branes adds some energy to the system, namely they add to the
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scalar potential the contribution

VD3 = D′

(T + T̄ )3 = D

σ3 , (8.79)

where D = D′/8 is proportional to the number of added D3-branes and warp factor e4A at the
position of the branes [74][76]. This addition however breaks the supersymmetry explicitly. By
fine tuning the value of D, the potential

V = πace−2πaσ

σ2

(
2πacσe−2πaσ

3 +W0 + ce−2πaσ
)

+ D

σ3 , (8.80)

can become positive. It is clear from fig. 8.1 that the dS minimum value of σ0 is only slightly
shifted from the one of the AdS vacuum and the overall shapes of the potential minima are very
similar. Note that the dS vacuum is only metastable, as there is a probability of tunnelling,
i.e. a runaway behaviour at infinite volume. With the reasoning of the Dine-Seiberg problem
discussed above, this may also be expected from any string theory. Nevertheless KKLT showed
that the lifetime of the dS vacuum may be large in Planck times and can be longer than the
cosmological time scale of ∼ 1010 years. Possible decay channels of the KKLT dS have been
studied in [77], whose results are in agreement with the ones of KKLT.

8.4 The large volume scenario
A drawback of the KKLT setting is that it requires W0 to be very small. Although achievable
by suitably tuned fluxes, this raises the question if moduli stabilisation for generic values of
W0 is possible. The large volume scenario (LVS) [78] combines both the α′3-correction to the
Kähler potential in eq. (8.74) as well as the non-perturbative corrected superpotential of eq.
(8.71). By combining W0 with the α′3-corrected Kähler potential the scalar potential receives
the correction

δVα′ = 3ξ̂eKK ξ̂2 + 7ξ̂V + V2

(V − ξ̂)(2V + ξ̂)2
W 2

0 ∼
3ξ̂W 2

0
4V3 , (8.81)

where ξ̂ ≡ ξ/g
3/2
s and ξ is defined as in eq. (8.38). The scalar potential is given by the sum of

the non-perturbative contribution Vnp of eq. (8.72) and the addition of eq. (8.81) above, i.e. by

V = eKKī
[
aiAiāĀ̄e−(aiTi+āT̄̄) −

(
aiAie−aiTiW̄∂̄K + āĀ̄e−āT̄̄W∂iK

) ]
+ 3ξ̂W 2

0
4V3 . (8.82)

In general the perturbative contribution of eq. (8.81) dominates over the non-perturbative
terms, although competition between the two contributions can occur if one or more cycles are
exponentially smaller than the largest cycles. In the LVS, the main mechanisms can be illustrated
with two Kähler moduli Tb and Ts, where Tb controls the overall volume of the Calabi-Yau and
the Ts controls the volume of a 4-cycle wrapped for example by ED3-brane instantons. These
will be shown to stabilise at very large (big) and moderately large (small) values, as indicated
by the subscripts.

LVS provide an explicit example with the Calabi-Yau CP4
(1,1,1,6,9), which is a hypersurface

of degree 18 with defining equation being a quintic polynomial set to zero, specifically

z18
1 + z18

2 + z18
3 + z3

4 + z2
5 − 18ψz1z2z3z4z5 − 3φz6

1z
6
2z

6
3 = 0 . (8.83)

Here the ψ and φ are two complex structure moduli which are invariant under the Z6 ⊕ Z18
action. Flux compactifications on this manifold have been studied extensively in [79]. The
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volume given by this surface, in terms of 2-cycle volume moduli ti with i = 1, . . . , 5, is given by
[80]

V = 1
6
(
3t21t5 + 18t1t25 + 36t35

)
. (8.84)

By defining σ4 ≡ t21 and σ5 ≡ (t1 + 6t5)2/2, the volume may be written as

V = 1
9
√

2

(
σ

3/2
5 − σ3/2

4

)
. (8.85)

σ4 and σ5 are 4-cycles, and the idea is to choose σ4 to be small and σ5 to be large. In the LVS
this distinctive diagonal form of the volume in terms of a single ”large” 4-cycle and a number
of ”small” 4-cycles is typical. Hence, by defining σb ≡ ReTb and σs ≡ ReTs the Kähler potential
with volume of the form of eq. (8.85) and including the α′3-correction, reads

KK = −2 ln
(

1
9
√

2
(σ3/2
b − σ3/2

s ) + ξ

2g3/2
s

)
. (8.86)

With this Kähler potential and W = W0 + Ase−asTs , the scalar potential for the Calabi-Yau
volume V ∼ σ3/2

b and with ImTs = 0 has the structure

V ∼ A
a2
s|As|2

√
σse
−2asσs

V
−BasW0Asσse−asσs

V2 + C
ξ|W0|2

g
3/2
s V3

, (8.87)

where A,B and C are O(1) constants. Note that the first two terms are analogous to the ones
appearing in eq. (8.80). Now, taking the limit

σb →∞ , with asσs = lnV , (8.88)

the scalar potential in terms of V will go like V ∼
√

lnV
V3 − lnV

V3 + 1
V3 , so that the second term

will dominate, making V approach zero from below when V → ∞. For smaller V however, the
other terms dominate and are positive given that ξ̂ > 0. Hence, the scalar potential must have
a local AdS minimum. This minimum must occur at intermediate values, specifically at

V ∝ easσs � 1 , σs ∝
ξ2/3

gs
. (8.89)

The Kähler moduli are stabilised at the values that minimise this minimum. However, by the
form of the scalar potential in eq. (8.87) it is also clear that at this minimum, the F-terms do
not vanish, and consequently supersymmetry is spontaneously broken.

Conditions on the LVS minimum have been studied in [80]. A result for the small cycles is
that at least one of them should be a rigid exceptional divisor arising from blowing up a singular
point. Some background will be provided in the next. In a complex manifold M of complex
dimension n, a point p ∈ M can be replaced with a copy of Pn−1 known as the exceptional
divisor. If p is a singular point, the exceptional divisor can be more general. If the blow-up of
M itself is a Calabi-Yau 3-fold, then the exceptional divisor is a 4-cycle of size parameterised by
one of the Calabi-Yau’s Kähler moduli [81]. Further, when the exceptional divisor satisfies the
rigidity condition of eq. (8.65), the Euclidean D3-brane superpotential term is non-vanishing.
The 4-cycle volume moduli are related to the 2-cycle volume moduli which encodes for the overall
classic volume. Again, the classic volume is given by

V = 1
6

∫
M
J ∧ J ∧ J = 1

6κijkt
itjtk , (8.90)
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where the Kähler form J can be written in the base {D̂i} ∈ H(1,1)(M,Z) with D̂i being the 2-
cycle divisor such that J =

∑h(1,1)
i D̂it

i. D̂i is Poincaré dual to the 4-cycle divisorDi ∈ H4(M,Z),
so the 4-cycles σi are related to the 2-cycles ti via

σi = ∂tiV = 1
2

∫
M
D̂i ∧ J ∧ J = 1

2κijkt
itj . (8.91)

Manifolds which are capable of supporting an appropriate structure of small and large cycles
with volume

V ∼ σ3/2
b −

∑
i

σ
3/2
i , (8.92)

are termed Swiss cheese, where the holes have the volumes σ3/2
i . There are more possibilities

of Swiss cheese type manifolds, and a manifold with volume modulus like eq. (8.92) are called
strong cheese [82]. In the CP4

(1,1,1,6,9) example above, the σ4 and σ5 are the volume moduli of
the 4-cycles, i.e. divisors, D4, D5 ∈ H4(M,Z). It is clear that this is a single-hole strong Swiss
cheese. The CP4

(1,1,1,6,9) has Hodge numbers h(1,1) = 2 and h(2,1) = 272, which makes the Euler
characteristic for a Calabi-Yau manifold χ(M) = 2(h(1,1) − h(2,1)) < 0, so that indeed ξ̂ > 0 as
required.

In final, we may summarise some differences between the LVS and KKLT senarios. For in-
stance, in the LVS some cycles are exponentially larger than others while the KKLT scenario
does not have any strict hierarchy between the sizes of the cycles. The classical flux superpo-
tential W0 has to be fine-tuned to be exponentially small in KKLT, while it is of O(1) in the
LVS. The vacuum of KKLT is a supersymmetric AdS4, while it is non-supersymmetric in the
LVS, however both scenarios can be uplifted to a non-supersymmetric dS4.

8.5 Critiques of de Sitter scenarios in string theory

A first remark is that the above models are obviously not constructed as general solutions
describing a de Sitter space. The setting is minimal in the number of moduli present and does
not include all quantum corrections. There is also difficulties in stabilising moduli in a controlled
manner and a fine-tuning of D is required in order to make it sufficiently small in order to create
a long-lived vacuum.

However, while there is a vast amount of de Sitter vacuum constructions, the KKLT and
LVS setups are arguably the most well-understood. They are examples of a class of models
that make up the vast majority of de Sitter vacuum constructions. In general these consist of
classical flux compactifications with orientifold sources to which one adds quantum corrections.
The corrections comprise virtually everything but the supergravity action and eventual localised
sources at the two-derivative level, i.e. higher-derivative corrections, string loop corrections, non-
perturbative corrections in the string coupling, and so on. In general these corrections are hard
to calculate and, what is more troubling, non-perturbative corrections to the 4D scalar potential
are not generally well-understood at the 10D level. Other more recent uplifting scenarios can
be found in [83][84][85].

The uplifting mechanism of KKLT, i.e. the inclusion of D3-branes, has been subject to a
lot of study. In particular, there has been concerns regarding the anti-brane backreaction on
the internal geometry. This critique mainly regards the consistency of the probe approximation
which is most often used in describing the uplift by D3-branes. When calculating the uplift
energy and perturbative stability of the anti-branes the probe approximation corresponds to
assuming that these calculations can be done in a background that is unaffected by the presence
of the branes. Without this approximation one would need to consider the branes backreaction
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on the internal geometry, which is a hard task as there are no known Calabi-Yau metrics. To
solve this it has been customary to assume a simpler background with known metric, in many
cases the Klebaov-Strassler throat, to study these effects. In this discussion the seminal work
was done in [86] and the discussion has been ongoing since.

Further, as first pointed out in [87], there have been concerns regarding the branes backre-
action on the 4D moduli fields. That is, how much the moduli will shift after the uplift. The
concern is essentially based on the possibility of an interplay between the gaugino condensation
which stabilises the moduli and supersymmetry breaking. This has however been defended by
proponents of a refined version of the KKLT in [88], and the debate is still ongoing. See also
[89][90].

An alternative to the quantum correction approaches is what is called the classical de Sitter
vacuum models. They are constructions at the two-derivative level of 10D supergravity and do
not include any extra effects, the initial hope being to obtain a model that might be simple
enough to allow fully explicit 10D solutions. However, trouble was experienced as new no-go
theorems arose on top of the classical ones described in chapter 6, which excluded a large class
of type II compactifications. Specifically the no-go theorems could only be avoided by adding
orientifold planes, including RR fluxes and having a negatively curved internal space. So far de
Sitter vacuum constructions have had tachyonic directions [91], but progress has been made.

Another class of de Sitter vacuum constructions are the ones that include non-geometric
fluxes, i.e. fluxes whose presence make the internal metric globally ill-defined. These are the
subject of the next section. Recent work on this theme include [92][93][94], however their uplift
to string theory and consistent use in 4D supergravity has not been sufficiently understood so
far. Out of the models which obtained a metastable de Sitter vacuum, none of them seemed to
be locally geometric and hence lack a geometrical interpretation [95]. A more thorough review
on the problems of de Sitter vacua constructions can be found in [95] and references therein.

The very existence of de Sitter vacua has also been questioned in [95], and recently it was
suggested in [96] that all de Sitter spacetimes belong in the swampland. The swampland is the
set of phenomenological models which cannot be derived as a low-energy effective theory of a
quantum gravity, or as the set of apparently consistent effective field theories that cannot be
completed into quantum gravity in the ultraviolet regime. One might think that the de Sitter
conjecture stating that the de Sitter vacua are in the Swampland is ruled out by observation,
since there is observational evidence of the universe experiencing acceleration most likely due
to a positive cosmological constant. However, the inflation era of the early universe can be
largely explained based on a scalar field in rolling down a potential, and so there may be a
possibility of a similar mechanism describing the current phase of acceleration. The most well-
known such model is known as quintessence describing a type of dynamical dark energy, see [97]
for a review. The Swampland de Sitter conjecture has spurred new action in the field, where
both refined conjectures of this kind have been proposed as well as counter examples have been
researched. See [98] for a review of the Swampland.
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9
Non-Geometric Fluxes and Double Field

Theory

All fluxes previously considered have been defined on a manifold, but there is nothing that says
that the target space in a compactification needs to have a conventional geometric description.
In this sense non-geometric flux compactifications can mean all string compactifications except a
set with a well-defined geometric background. In this chapter we will set the stage by considering
how T-duality acts on a classically geometric background with H3 flux.

9.1 Non-geometric fluxes on the twisted torus

In this section we introduce the notion of non-geometric fluxes using the canonical example of
T-duality on a torus with NSNS flux. This knowledge can then be used in formulating a common
superpotential of the effective field theory after compactification for both type II on a torus.

9.1.1 T-duality on a T 3 with H3 flux

As is familiar, T-duality relates a string theory on a circle of radius R to string theory on a circle
of radius α′/R. If we consider say a bosonic string on a circle, parametrised by θ, but with a
more general metric, the action can be written

S = 1
2π

∫
d2z∂θ∂̄θgθθ . (9.1)

If one introduce a Lagrange multiplier θ̃ we may write the action as

S = 1
2π

∫
d2z

[
gθθ∂θ∂̄θ + θ̃(∂(∂̄θ)− ∂̄(∂θ))

]
, (9.2)

with d2z = dτ dσ and where ∂L/∂θ̃ = ∂(∂̄θ)− ∂̄(∂θ) = 0 restores the original action in eq. (9.1).
The constraint ∂L/∂(∂̄θ) = 0 results in that ∂θ = ∂θ̃/Gθθ, which gives the action

S = 1
2π

∫
d2z∂θ̃∂̄θ̃

1
gθθ

, (9.3)

and it becomes clear that two conformal field theories with target space metrics (gθθ respectively
1/gθθ) are classically equivalent. Here we used that the metric is independent of θ, i.e. that
there is an isometry in this coordinate, since we assumed the string to be on a circle.

This procedure can be repeated when including a B field and dilaton, which was first done
by Busher [99]. T-dualising in say the x-direction the resulting Busher rules transform the fields
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gµν , Bµν and φ into new ones according to

gxx →
1
gxx

, gxµ → −
Bxµ
gxx

, Bxµ → −
gxµ
gxx

gµν → gµν−
gxµgxν −BxµBxν

gxx
, Bµν → Bµν −

gxµBxν −Bxµgxν
gxx

,

eφ → eφ
√
gxx

.

(9.4)

The T-duality rule for the dilaton can not be calculated by the above described procedure, but
requires a 1-loop calculation. Note again that the procedure producing the Busher rules requires
that there is an isometry in the x-direction; otherwise they are not valid. First consider a twisted
simple torus in 3D with coordinates (x, y, z). Its metric is given by

ds2 = (dx− fxyzz dy)2 + dy2 + dz2 . (9.5)

This space can be compactified by making the identifications x ∼ x+1 and y ∼ y+1, which does
not change eq. (9.5). The same can not be said about the z-coordinate; identifying z ∼ z + 1
makes the metric ill-defined. To compensate for this we can shift the x-coordinate by fxyz dy in
combination with the shift in z. Hence, this space may be compactified with the identifications

(x, y, z) ∼ (x+ 1, y, z) ∼ (x, y + 1, z) ∼ (x+ fxyzy, y, z + 1) , (9.6)

which keep the metric globally well-defined. The metric is topologically distinct from a T 3; it
is a twisted torus. It can be viewed as a T 2 parametrised by (x, y) which is fibered over an S1

base in the z-direction. Circling the S1 the T 2 fiber shifts its complex structure as υ → υ+ fxyz.
After one lap around S1 the fiber should be the same, and hence the shift should be an SL(2,Z)
transformation so we must have fxyz ∈ Z. A good way to think about the fxyz is by first defining
globally invariant 1-forms such that

ηx ≡ dx− fxyz dy , ηy ≡ dy , ηz ≡ dz , (9.7)

where obviously dηy = dηz = 0, but for the x-form we have that

dηx = fxyz dy ∧ dz = fxyzη
y ∧ ηz . (9.8)

We see a clear similarity with Cartan’s structure equations, to which the fxyz are components of
the spin connection. If the manifold is a Lie group, then the fxyz are structure constants. This
is easy to generalise to any manifold with globally defined 1-forms ea, such that

dea = fabce
b ∧ ec , (9.9)

where all fabc being constants puts a non-trivial constraint on the manifold. Another constraint
comes from d2 = 0, i.e.

d2ea = 2fab[cf
b
dg]e

degec = 0 , (9.10)

which is fulfilled when fab[cf
b
dg] = 0. This is a Jacobi identity which indeed all structure constants

of a Lie algebra should satisfy.
We are now ready for our example of the T 3 with H3 flux. The Busher rules may be applied

to this setup, which was first illustrated in [100]. To start, we declare the coordinates of the T 3

as (x, y, z) ∼ (x+ 1, y + 1, z + 1) and introduce N units of H3-flux on the torus;∫
T 3
H3 = N , (9.11)
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where N ∈ Z. We may choose the gauge Bxy = Nz. The T 3 space can also be viewed as a T 2

in the (x, y) directions that is fibered over an S1 in the z-direction. When z → z+ 1 the Kähler
moduli T of the T 2 will then go as T → T +N .

With our chosen gauge for the B field it is clear that nothing depends on the (x, y)-directions,
hence we are free to T-dualise in those directions. The metric of the T 3 is ds2 = dx2 +dy2 +dz3.
T-dualising the x-direction, we have that given Bxy = Nz, the Busher rules in eq. (9.4) gives
gxy = −Nz, gyy = (1 + (Nz)2) dy and all other diagonal elements unity. Hence the metric
becomes

ds2 = (dx−Nz dy)2 + dy2 + dz2 , (9.12)

and the B field vanishes. This metric is that of eq. (9.5) with fxyz = N , i.e. a twisted torus. The
coordinate identification for the metric to be well-defined is (x, y, z) ∼ (x + Ny, y, z + 1). As
with the twisted torus in IIA, encircling the S1 base the T 2 fiber makes a shift in the complex
structure τ → τ +N , and thus the T-duality transformation has switched the Kähler modulus
to a complex structure modulus. Conclusively we denote this T-duality transformation in the
x-direction by the transformation

Hxyz
Tx−→ fxyz , (9.13)

and we may now proceed to T-dualise in the y-direction. The Busher rules on the metric of eq.
(9.12) and B = 0 give us

ds2 = 1
1 +N2z2 (dx2 + dy2) + dz2 , (9.14)

and Bxy = Nz
1+(Nz)2 . There is no apparent coordinate identification that makes z ∼ z + 1

well-defined on the metric. However, it is clear from the metric that the Kähler modulus has
transformed to T = 1

Nz−i , and so the identification z → z+1 then takes it to 1
T →

1
T +N . Since

this is an SL(2,Z) transformation it corresponds to the T 2 Kähler moduli changing as the z goes
around the circle base space. Since the new Kähler modulus now includes flux, it is no longer
a geometric quantity. We have seen that while the metric and flux are defined at every point,
running around the z cycle mixes the metric and H flux through an SL(2,Z) transformation.
Extending the T-duality rule of eq. (9.13) to include the T-dualisation of the y-direction, we
write

Hxyz
Tx−→ fxyz

Ty−→ Qxyz , (9.15)

where Qxyz denotes the new non-geometric quantity. Since we have no isometry in the z-direction,
we cannot perform another T-dualisation using the Busher rules. There is however reason to
believe that this T-duality exists in some kind of sense, as we will motivate in the next section.
Denoting this quantity by Rxyz, one completes the so-called T-duality chain for non-geometric
fluxes;

Hxyz
Tx−→ fxyz

Ty−→ Qxyz
Tz−→ Rxyz , (9.16)

which is an important result. This will be used in the following two sections where it will be
applied on two different type II tori.

9.1.2 Superpotentials of IIB on tori and IIA on twisted tori

To establish some notation we recall the moduli stabilisation of type IIB theory on the T 6/Z2
orientifold analysed in chapter 7. The superpotential as well as the included fluxes will be of
primary interest. The IIB superpotential on this orientifold is given in eq. (7.32), and is for a
diagonal torus T 6 = T 2 × T 2 × T 2 equal to

WIIB = (m0
RRυ

3 − 3mRRυ
2 − 3eRRυ − eRR0) + τ(−m0υ3 + 3mυ2 + 3eυ + e0)

≡ S1(υ) + τS2(υ) ,
(9.17)
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flux integral F̄αβγ F̄iβγ F̄ijγ F̄ijk H̄αβγ H̄iβγ H̄ijγ H̄ijk

flux integer m0
RR mRR eRR eRR0 m0 m e e0

Table 9.1: Fluxes in the IIB T 6/Z2 superpotential of eq. (9.17).

flux integral F0 F̄αi F̄αiβj F̄αiβjγk fαjk H̄ijk H̄αβk fkjα f iβk fαβk
flux integer m0

RR mRR eRR eRR0 e e0 e′0 ě1 ê1 ẽ1

Table 9.2: Type IIA fluxes in the twisted T 6/Z2 superpotential of eq. (9.20).

where τ is the axion-dilaton, υ is the complex structure modulus and the coordinates on each
torus i = 1, 2, 3 have been defined as zi = xi + υδijy

j . The integer flux is as defined in eq.
(5.114), the subscript RR corresponding to the flux of F3 and the ones without subscript to
H3. In section 9.1.3 we will see that the superpotential constructed which is invariant under
T-duality also incorporates the potential in eq. (9.17).

It will later prove useful to indicate which cycles on the T 6 give the different flux integers,
and hence we may redefine the z1, z2, z3 coordinates each parameterising a T 2 according to

z1 ≡ xi + υxα , z2 ≡ xj + υxβ , z3 ≡ xk + υxγ , (9.18)

with Latin and Greek indices, as in [101][102]. With this notation the integer fluxes in eq.
(9.17) correspond to the 3-form fluxes trough certain 3-cycles spanned by the coordinates xi,j,k
or xα,β,γ . For example the mRR flux is

F̄iβγ ≡
∫

Σiβγ
F3 = mRR , (9.19)

where Σiβγ is a 3-cycle spanned by the coordinates xi, xβ and xγ in the six-torus. The integral
fluxes with the corresponding integer fluxes in eq. (9.17) in this notation is gathered in table
9.1. As the T 2s are identical it is only necessary to write one combination of Latin and Greek
indices, e.g. the integer flux through the iβγ cycle is equivalent to the flux through the jαγ or
kαβ cycle. As usual the fluxes satisfy the tadpole condition of eq. (6.30).

Proceeding to the IIA case, we consider again the T 6/Z2, but twist it by adding some of
the fabc to the orientifold. This adds a rigid structure to the background metric and makes it
different from the diagonal form T 2 × T 2 × T 2. The fabcs that survive the orientifold projection
are fαjk, f iβk, f ijγ and fαβγ , i.e. the ones with an odd number of Greek indices. To find the
superpotential for this setup, the same analysis as for the IIB case of chapter 7.2 has been
carried out in [103][104], who obtain the superpotential for the type IIA twisted torus as

WIIA = (m0
RRυ

3 − 3mRRυ
2 − 3eRRυ − eRR0) + τ(3eυ + e0) + 3T (e′0 + υ(ě1 + ê1 + ẽ1)) , (9.20)

with T denoting the Kähler moduli. Using the notation of eq. (9.19), the corresponding flux
cycle to the flux integers given in eq. (9.20) are given in table 9.2. These fluxes also need to
satisfy some constraints. For instance, in the IIB case dH = 0 was satisfied, however this will not
be satisfied in this case as the fluxes are written in a basis of 1-forms such that F2 = F̄abe

a ∧ eb,
etc, where the 1-forms are not closed by eq. (9.9). Hence this condition becomes non-trivial
and gives the constraint H̄a[bcf

a
dg] = 0 after integration over the (a, b, c, d, g)-cycle. In addition

we have seen that the fabcs must satisfy the Jacobi identity fab[cf
b
dg] = 0. For the RR sector the

Bianchi identities are of the form (d + H) ∧ FA = 0, FA being any of the IIA RR fluxes. The
terms dF2 and dF4 results in non-trivial constraints, which after integration over the relevant
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cycles take the form
F̄a[bf

a
cd] + F0H̄bcd = 0 ,

F̄x[abcf
x
dg] + F̄abH̄cdg] = 0 .

(9.21)

Again supersymmetric vacua are found by imposing fluxes which satisfy the above constraints
of the two NSNS and two RR fluxes, and then solving for DiW = 0 for all moduli i = {τ, υ, T}.

9.1.3 A T-duality invariant superpotential

The relation between the IIA twisted tori and the IIB tori can be seen by T-dualising one leg
in each of the T 2, in all of the Greek indices. This chain of three T-dualities will take the IIB
O3-planes into IIA O6-planes. The T-duality rule in question for the RR fluxes is given by

F̄xα1...αp
Tx←−−→ F̄α1...αp . (9.22)

While there are generally other moduli-dependent terms in the T-duality rule [105], we choose
to focus only on the topological part of the fluxes.

A superpotential which incorporates both superpotentials of eq. (9.17) and eq. (9.20) and is
invariant under T-duality was first constructed in [102]. To do so we use these superpotentials
and relate them via coordinate symmetry and T-duality. Following their reasoning, we start by
taking the IIA theory on a twisted torus through the following steps. First, performing a T-
dualisation on the three Greek indices, we arrive at IIB with O3-planes. Next, as the O3-planes
in IIB are parallel to the compact space, i.e. they do not extend in any of the directions of
the T 6, there is no geometrical distinction between the Greek and Latin indices. This may be
interpreted as a rotational symmetry in these indices, and so we are allowed to rotate according
to

xα + υxi ←→ xi + υxα , (9.23)

effectively exchanging the Latin and Greek indices. In the superpotential this amounts to the
exchanges 1↔ υ3 and υ ↔ υ2. Finally, we may T-dualise the Greek directions again to get back
to type IIA. From this one obtains the flux integer which the flux cycles of both type IIA and
IIB correspond to, as is summarised in table (9.3). A superpotential for the symmetric torus in
both the IIA and IIB theories is then given by

W = (m0
RRυ

3 − 3mRRυ
2 − 3eRRυ − eRR0) + τ(−m0υ3 + 3mυ2 + 3eυ + e0)

+ 3T (υ3e′3 + υ2(ě2 + ê2 + ẽ2)− υ(ě1 + ê1 + ẽ1)− e′0) .
(9.24)

As usual all fluxes in table 9.3 are antisymmetric in both upper and lower indices. The RR
fluxes in type IIA which survive the orientifold projection have legs in both dimensions of each
T 2, and hence a mixed pair of Greek and Latin indices. The fact that f and R fluxes do not
appear in type IIB is due to that all the dimensions of the T 6 are odd under the orientifold
projection, so the f and R would require an even number of odd indices to survive. While this is
impossible on this geometry, it is still possible to have f and R fluxes in more general orientifolds.
Conclusively, starting from the IIA superpotential on a twisted torus and using T-duality and
rotational symmetry, the superpotential in eq. (9.24) could be obtained. As a final remark we
briefly comment the constraints these fluxes must satisfy from the Bianchi identities. For the
NSNS sector we have that dH = 0 implies that in a geometric compactification we have

fx[abH̄cd]x = 0 . (9.25)
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By simply T-dualising this equation, and T-dualising the obtained one and pursuing in this
fashion, one obtains a set of Bianchi identities for each flux. They are given by

H̄x[abf
c
cd] = 0 ,

fax[bf
x
cd] + H̄x[bcQ

ax
d] = 0 ,

Q[ab]
x fx[cd − 4f [a

x[cQ
b]x
d] + H̄x[cd]R

[ab]x = 0 ,

Q[ab
x Q

c]x
d + f

[a
xdR

bc]x = 0 ,
Q[ab
x Rcd]x = 0 ,

(9.26)

and since the f and Q fluxes should be T-dual to the H flux one further requires that

fxxa = Qaxx = 0 . (9.27)

As for the RR fluxes, in the absence of localised sources the tadpole/Bianchi condition is given
by (d +H)F = 0, or

dF̃5 = F̄[abcH̄def ] = 0 . (9.28)

T-dualising in the same manner as before, various versions of this Bianchi identity containing
each type of T-dual flux is obtained as

F̄[abcH̄def ] = 0 ,
F̄x[abcf

x
de] − F̄[abH̄cde] = 0 ,

F̄xy[abcQ
xy
d] − 3F̄x[abf

x
cd] − 2F̄[aH̄bcd] = 0 ,

F̄xyz[abc]R
xyz − 9F̄xy[abQ

xy
c] − 18F̄x[af

x
bc] + 6F0H̄[abc] = 0 ,

F̄xyz[ab]R
xyz + 6F̄xy[aQ

xy
b] − 6F̄xfx[ab] = 0 ,

F̄xyzaR
xyz − 3F̄xyQxya = 0 ,

F̄xyzR
xyz = 0 .

(9.29)

In the presence of a localised source the right-hand side would be non-zero. In the next chapter
we will see how the non-geometrical fluxes can be treated on an equal footing with the geometrical
fluxes.

9.2 Double field theory
In order to naturally incorporate non-geometric fluxes, there was a development of the so-called
double formalisms with the goal of finding a covariant description of geometric and non-geometric
backgrounds. The two leading formalisms that aim to incorporate T-duality in this manner are
generalised geometry and double field theory (DFT). In general T-duality relates winding modes
and momentum of a closed string moving on some torus TD via the group O(D,D), which for this
reason is referred to as the T-duality group. DFT assembles the NSNS sector of supergravity
into a T-duality invariant formalism. In constructing the DFT it is central to rewrite the
symmetries of the bosonic supergravity, i.e. diffeomorphisms and gauge transformations, in an
O(D,D)-covariant way. Again, the diffeomorphisms, or change of coordinates, are parametrised
by infinitesimal vectors λi with i = 1, . . . , D, which transforms the NSNS field content according
to

gij → gij + Lλgij , Lλgij ≡ λk∂kgij + gkj∂iλ
k + gik∂jλ

k ,

Bij → Bij + LλBij , LλBij ≡ λk∂kBij +Bkj∂iλ
k +Bik∂jλ

k ,

φ→ φ+ Lλφ , Lλφ ≡ λi∂iφ .
(9.30)
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IIA flux integral IIB flux integral flux integer
F0 F̄αβγ m0

RR
F̄αi F̄iβγ mRR
F̄αiβj F̄ijγ eRR
F̄αiβjγk F̄ijk eRR0
Rαβγ H̄αβγ m0

Qαβk H̄iβγ m

fαjk H̄αjk e

H̄ijk H̄ijk e0
H̄αβk Qαβk e′0

f jkα, f
i
βk, f

α
βγ Qαjk , Q

iβ
k , Q

βγ
α ě1, ê1, ẽ1

Qγiβ , Q
iβ
γ , Q

ij
k Qiβγ , Q

γi
β , Q

ij
k ě2, ê2, ẽ2

Rijγ Qijγ e′3

Table 9.3: Occuring fluxes in the T-duality invariant superpotential of eq. (9.24).

where the action of the Lie derivative amounts to diffeomorphism transformations, which leave
the NSNS action in eq. (3.98) invariant. This means that the physics described remains un-
changed under these coordinate changes. Further, the B field enjoys the gauge symmetry

Bij → Bij + ∂iλ̃j − ∂iλ̃i , (9.31)

parametrised by the infinitesimal 1-form λ̃i. For a general vector we have

LλV µ = λj∂jV
i − V j∂jλ

i . (9.32)

9.2.1 The double field theory action and its symmetries

T-duality is turned into a manifest symmetry by doubling the coordinates at the level of the the
effective 4D action of a string theory. In DFT every conventional coordinate xi associated to
the momentum modes is paired with the T-dual coordinate x̃i associated to the winding modes,
combining the coordinates to a O(D,D) vector XM = (x̃i, xi) of dimension 2D. The index M is
raised and lowered using the O(D,D)-invariant metric

ηMN =
(

0 δij
δji 0

)
, (9.33)

and the partial derivative is given by ∂M = (∂i, ∂̃i). An O(D,D) coordinate transform is
XM → hMNX

N with hMN ∈ O(D,D), hence mixing the coordinates xi and x̃i.
While there are several formulations of DFT, the earliest variant constructed in [106] used

the combined field Eij = gij +Bij with background independent form found to be

S =
∫

dx dx̃e−2φ′
[
− 1

4g
ikgjlDpEklDpEij − 1

4(DjEikDiEjl + D̄jEkiD̄iElj)

+Diφ′D̄jEij − D̄iφ′DjEji + 4Diφ′Diφ′
]
,

(9.34)

with covariant derivatives Di ≡ ∂
∂xi
− Eij ∂

∂x̃j
and D̄i ≡ ∂

∂xi
+ Eij ∂

∂x̃j
. The action is O(D,D)-

invariant and the metric gij is responsible for raising and lowering indices. This action is gauge
invariant under transformations

δζEij = Diζ̃j − D̄j ζ̃j + ζM∂MEij +DiζkEkj + D̄jζkEik , δζφ
′ = −1

2∂Mζ
M + ζM∂Mφ

′ , (9.35)
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with gauge parameters ζM = (ζi, ζ̃i). In order to make gauge invariance more apparent, another
action was constructed in [107] consisting only of objects transforming in linear representations,
as opposed to eq. (9.34). The fundamental objects consist of the generalised metric HMN which
combines the graviton and B field according to

HMN =
(
gij −BikgklBlj Bikg

kj

−gikBkj gij

)
, (9.36)

and the so-called dilaton density
e−2φ′ ≡

√
−ge−2φ , (9.37)

which combines the metric and dilaton. Then the O(D,D)-invariant action is written

S =
∫

d2DXe−2φ′R , (9.38)

consisting only of covariant quantities, where the generalised Ricci scalar is given by

R = 4HMN∂Mφ
′∂Nφ

′ − ∂M∂NHMN − 4HMN∂Mφ
′∂Nφ

′ + 4∂MHMN∂Nφ
′

+1
8H

MN∂MHKL∂NHKL − 1
2H

MN∂NHKL∂LHMK .
(9.39)

Note that when the fields in eq. (9.34) or eq. (9.38) are independent of the dual coordinates x̃i
the DFT action reduces to the NSNS supergravity action of eq. (3.98), which we will show in
section 9.2.2. The generalised metric in combination with the O(D,D)-invariant metric fulfils
the relations

HMNηMLHLK = ηNK , HMN = HNM . (9.40)

As for the O(d, d) transformations, we have that HMN (XK) → hM
PhN

QHPQ(hKLXL). For
instance if h would correspond to a T-duality in some isometry direction, then the O(D,D)
transformation of HMN (XK) result in the Busher rules of eq. (9.4). Further, the level matching
condition of eq. (5.83) implies that the metric of eq. (9.33) should satisfy the constraint

ηMN∂M∂N (A) = 0 , (9.41)

where A is some arbitrary field. This is known as the weak constraint of DFT.
We now turn to the diffeomorphisms of DFT. From eq. (9.30) and eq. (9.31) we know that

the diffeomorphisms of the field content are generated by a vector λi and the 2-form gauge
transformations are generated by a 1-form λ̃i. Having combined the metric and B field into the
generalised metric H, it is then natural to combine the gauge parameters into a generalised one;
the O(D,D) vector ξM = (λ̃i, λi) of generalised gauge parameters. Using this, one can construct
the generalised Lie derivative

L̂ξAM ≡ ξN∂NAM + (∂MξN − ∂NξM )AN , (9.42)

acting on arbitrary field AM . It will then act on the generalised metric and dilaton according to

L̂ξHMN = ξP∂PHMN + (∂MξP − ∂P ξM )HPN + (∂NξP − ∂P ξN )HMP ,

L̂ξ(e−2φ′) = ∂M (ξMe−2φ′) .
(9.43)

From this it is clear that the generalised Lie derivative acting on the invariant metric vanishes,
as

L̂ηMN = ξP∂P ηMN + (∂MξP − ∂P ξM )ηPN + (∂NξP − ∂P ξN )ηMP = 0 , (9.44)
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and hence we have that L̂ξAM = ηMN L̂ξAN . In order for the symmetry group to close, two
consecutive transformations with parameters ξ1 and ξ2 should equal another transformation with
parameter ξ3 ≡ ξ3(ξ1, ξ2). To this end we may use the commutator of two gauge transformations
and investigate whether

[L̂ξ1 , L̂ξ2 ]AM = L̂ξ3AM . (9.45)

By plugging in eq. (9.42), the commutator results in that

[L̂ξ1 , L̂ξ2 ]AM = L̂[ξ1,ξ2]CA
M + FM (ξ1, ξ2, A) , (9.46)

where the transformation parameter is

ξM3 ≡ [ξ1, ξ2]MC ≡ ξN1 ∂NξM2 − 1
2ξ1N∂

MξN2 − (ξN2 ∂NξM1 − 1
2ξ2N∂

MξN1 ) . (9.47)

The C-bracket [·, ·]C is the O(D,D)-covariant extension of the Courant bracket for doubled
fields. The extra term FM is given by

FM = 1
2ξ
N
1 ∂

P ξ2N∂PA
M − 1

2ξ
N
2 ∂

P ξ1N∂PA
M − (∂NξM1 ∂Nξ2P − ∂NξM2 ∂Nξ1P )AP . (9.48)

An explicit calculation of this can be found in Appendix E. For the algebra to close we must
have FM = 0, which implies what is known as the strong constraint of DFT;

ηMN∂MA∂NB = 0 , (9.49)

for any fields A,B. This is a stronger form of the weak constraint in eq. (9.41).
The strong constraint is solved trivially by setting ∂̃i = 0, which then recovers the supergrav-

ity frame. In this case the generalised Lie derivative of the component Hij in eq. (9.43) reduces
to

L̂ξHij = λk∂kHij − ∂kλiHkj − ∂kλjHik = Lλgij , (9.50)

i.e. the ordinary Lie derivative of gij along the vector field λi. In the same manner the generalised
Lie derivative of the component Hij becomes

L̂ξHij = LλBij + ∂iλ̃j − ∂j λ̃i , (9.51)

when ∂̃i = 0. Since the action of eq. (9.38) consists only of covariant quantities it posses a
manifest global O(D,D) symmetry. An interesting trait of the algebra in eq. (9.47) is that it
does not in general satisfy the Jacobi identity. This can be seen by first noting that from the
definition of the C-bracket, we have

1
2(L̂ξ1ξM2 − L̂ξ2ξM1 ) = [ξ1, ξ2]MC , L̂ξ1ξM2 + L̂ξ2ξM1 ) = ∂M (ξP1 ξ2P ) , (9.52)

and so by eq. (9.45) we see that[
[L̂ξ1 , L̂ξ2 ], L̂ξ3

]
+ cycl. perm. = L̂[ξ1,ξ2]C+cycl. perm. . (9.53)

This implies that the Jacobiator becomes

JacM (ξ1, ξ2, ξ3) ≡ [[ξ1, ξ2]C, ξ3]MC + cycl. perm.

= 1
6∂

M
(
[ξ1, ξ2]PCξ3 + cycl. perm.

)
.

(9.54)

Peculiarly, this means that the generalised diffeomorphisms do not form a Lie group. However,
since the Jacobiator is proportional to a total derivative, it will not generate a gauge transfor-
mation on fields fulfilling the strong constraint in eq. (9.49). Hence it is still consistent with the
Jacobi identity for gauge transformations of physical fields, which always fulfil it.
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Apart from generalised diffeomorphisms, the DFT action possesses another local symmetry,
namely it is invariant under double Lorentz transformations. The invariance under a local
double Lorentz transformation is conveniently written using veilbein formalism. The vielbein
formalism was first developed in [108] and used in the context of DFT in [109]. The starting
point is expressing the generalised metric in terms of the frame fields as

HMN = EAMNABE
B
N , (9.55)

where NAB is the flat generalised metric, given by

NAB =
(
ηab 0
0 ηab

)
, (9.56)

where ηab and inverse ηab is the usual Minkowski metric in D dimensions. The indices A,B, . . .
and M,N, . . . are flat respectively curved. In terms of the generalised vielbeins the O(D,D)-
invariant metric of eq. (9.33) is given by

ηMN = EAMηABE
B
N , where ηAB =

(
0 δba
δab 0

)
, (9.57)

the flat metric ηAB being equivalent to the ηMN in curved indices. Having established veilbein
notation, we consider the local double Lorentz transformation of the generalised veilbein, which
may be written

EAM → TABE
B
M . (9.58)

For this transformation to leave the generalised metric in eq. (9.55) invariant, the transformation
has to satisfy

TACN
CDTBD = NAB . (9.59)

Further it also has to fulfil the condition of eq. (9.57) for the O(D,D)-invariant metric, which
requires that

TACη
CDTBC = ηAB . (9.60)

The next step is to find transformations TAB of eq. (9.58) that fulfil the conditions of eq. (9.59)
and eq. (9.60), which the DFT action would then be invariant under. To do so it will prove
useful to rewrite the O(D,D)-invariant metric on a diagonal form, such that

SĀAη
ABSB̄B = ηĀB̄ =

(
−ηāb̄ 0

0 ηāb̄

)
, (9.61)

where the coordinate transformations S are

SĀB = 1√
2

(
δbā −ηāb
ηāb δāb

)
, SĀ

B = 1√
2

(
δāb −ηāb
ηāb δbā

)
. (9.62)

The bared indices differentiate between the different representations of the O(D,D)-invariant
metric ηAB. The bared variant of the flat generalised metric NAB is given in the same manner
by

SĀAN
ABSB̄B = N ĀB̄ =

(
ηāb̄ 0
0 ηāb̄

)
. (9.63)
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With this diagonal form of the O(D,D) metric in eq. (9.57), the constraints of eq. (9.59) and
eq. (9.60) can be written simultaneously as(

±ηāb̄ 0
0 ηāb̄

)
=
(
Tā

c̄ Tāc̄
T āc̄ T āc̄

)(
±ηc̄d̄ 0

0 ηc̄d̄

)(
Tb̄
d̄ T b̄d̄

Tb̄d̄ T b̄d̄

)

=
(
±Tāc̄ηc̄d̄Tb̄d̄ + Tāc̄η

c̄d̄Tb̄d̄ ±Tāc̄ηc̄d̄T b̄d̄ + Tāc̄η
c̄d̄T b̄d̄

±T āc̄ηc̄d̄Tb̄d̄ + T āc̄η
c̄d̄Tb̄d̄ ±T āc̄ηc̄d̄T b̄d̄ + T āc̄η

c̄d̄T b̄d̄

)
,

(9.64)

the positive sign corresponding to eq. (9.59) and negative to eq. (9.60). This can be solved with

Tāb̄ = T āb̄ = 0 , ±Tāc̄ηc̄d̄Tb̄
d̄ = ±ηāb̄ , T āc̄η

c̄d̄T b̄d̄ = ηāb̄ . (9.65)

Note that since there is no metric to raise and lower the indices of the barred coordinate transfor-
mations, Tāb̄ and T āb̄ are unrelated objects. Hence before writing the unbarred transformation
TAB we rename them according to Tāb̄ = uā

b̄ and T āb̄ = vāb̄, so that

TAB = SAĀT
Ā
B̄S

B̄
B =

(
δāa ηaā
−ηaā δaā

)(
uā

b̄ 0
0 vāb̄

)(
δbā −ηb̄b
ηb̄b δb

b̄

)
=
(
ua

b + va
b −uab + vab

−uab + vab uab + vab

)
.

(9.66)
Conclusively, we have identified a local double Lorentz transformation of the form of eq. (9.58)
satisfying eqs. (9.59)–(9.60), which leaves the DFT action invariant.

The vielbein of the generalised metric naturally also combines the metric and B field. As
an element of O(D,D) it has D(2D − 1) independent degrees of freedom, however if we gauge
fix the local double Lorentz transformations there will only remain D2 independent degrees of
freedom. From the antisymmetric Bij field and metric vielbein eai where eaiηabebj = gij , a
possible parameterisation of the generalised vielbein is given by

EAM =
(
ea
i ea

jBji
0 eai

)
. (9.67)

If the eai has the form of an upper triangular matrix, then the double Lorentz symmetry is
completely fixed by this form of EAM . If we do not gauge fix the double Lorentz symmetry, a
general O(D,D) vielbein can be written as

EA
M =

(
ea
i ea

jBji
eajβ

jieai eajβ
jkBki

)
, (9.68)

where eai can take any form and βij is an antisymmetric bi-vector. Under generalised diffeo-
morphisms the generalised vielbein will transform according to

LξEAM = ξP∂PE
A
M + (∂MξP − ∂P ξM )EAP . (9.69)

We will now proceed to the equations of motion for the DFT action. They are obtained by vary-
ing the DFT action in terms of the generalised metric. However, since the metric is constrained
by eq. (9.40) we start by varying the generalised metric of this equation first, resulting in that

δHLMHKM +HLMδHKM = 0 . (9.70)

By using HMLHLN = δMN we have that δHMN = −HMKδHKLHLN . The most general variation
that satisfies eq. (9.70) is given by

δHMN = P̄MKδMKLP
LN + PMKδMKLP̄

LN , (9.71)
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where
P̄MN ≡ 1

2(ηMN +HMN ) , PMN ≡ 1
2(ηMN −HMN ) , (9.72)

and MMN is some arbitrary symmetric variation not subject to any constraint. As such, the
variation of the action can now be written as

δSDFT =
∫

d2DXQMNδHMN ≡
∫

d2DXRMNδMMN , (9.73)

where RMN is the generalised Ricci tensor

RMN = PMKQKLP̄LN + P̄MKQKLPLN . (9.74)

The equation of motion for the generalised metric is therefore given by RMN = 0. A common
expression for QMN is obtained by varying the action with respect to the generalised vielbein,
to give rise to

QMN = 1
8∂MH

KL∂NHKL − 1
4(∂L − 2∂Lφ′)

(
HKL∂KHMN

)
+ 2∂M∂Nφ′

− 1
2∂(MHKL∂LHN)K + 1

2(∂L − 2∂Lφ′)
(
HKL∂(MHN)K +HK (M∂KHLN)

)
.

(9.75)

Note that the indices in both QMN and RMN is symmetric since the indices of HMN are
symmetric.

9.2.2 Reduction to supergravity

Letting the starting point be the old DFT action in eq. (9.34), we assume that no field depends
on the dual winding x̃ coordinate, which effectively sets ∂̃i = 0. This implies that Di = D̄i = ∂i
and as ∂i = gij∂j = Di = D̄i the action takes the form

S
∣∣∣
∂̃i=0

=
∫

dxe−2φ′[− 1
4g
ikgjlgmn(∂mEkl∂nEij − ∂iElm∂jEkm − ∂iEml∂jEnk)

+ 2∂iφ′∂jgij + 4∂iφ′∂iφ′
]

=
∫

dxe−2φ′[− 1
4g
ikgjlgmn(∂mgkl∂ngij − 2∂iglm∂jgkn + ∂mBkl∂nBij − 2∂iBlm∂jBkn)

+ 2∂iφ′∂jgij + 4(∂φ′)2] ,
(9.76)

where we have rewritten in terms of gij and Bij on the last line. Next, we turn to rewrite the
Bij terms according to

−1
4g
ikgjlgmn(∂mBkl∂nBij − 2∂iBlm∂jBkn) = −1

4g
ikgjlgmn∂mBkl(∂iBjn + ∂jBni + ∂nBij)

= − 1
12g

ikgjlgmnHijmHkln

= − 1
12H

2 ,
(9.77)

permuting indices and using Hijk = 3∂[iBjk], which leaves us with

S
∣∣∣
∂̃i=0

=
∫

dxe−2φ′[− 1
4g
ikgjl∂mgij∂mgkl + 1

2g
mn∂igmj∂

jgni + 2∂iφ′∂jgij + 4(∂φ′)2 − 1
12H

3] .
(9.78)

Instead of further massaging this equation it is more convenient to rewrite the wanted NSNS
action of eq. (3.98), i.e.

SNSNS =
∫

dx
√
−ge−2φ[R+ 4(∂φ)2 + 1

12H
2] , (9.79)
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and show that eq. (9.79) is equivalent to eq. (9.78). To do so we use the dilaton redefinition of
eq. (9.37) to write its derivative as

∂iφ
′ = ∂iφ− 1

2Γi , with Γi = 1
2g
kl∂igkl , (9.80)

and use in eq. (9.79) to obtain

SNSNS =
∫

dxe−2φ′[R+ gijΓiΓj + 4Γi∂iφ′ + 4(∂φ′)2 − 1
12H

3] . (9.81)

The final step is simplifying the Einstein and Christoffel symbols. The Einstein term is

R = gij(∂kΓkij − ∂jΓkik + ΓkijΓk − ΓlikΓkjl)
= 2∂iφ′(−Γi + gjkΓijk) + ∂jg

ijΓi − ∂kgijΓkij + gij(ΓkijΓk − ΓlikΓkjl)
= −4∂iφ′Γi + 2∂iφ′∂jgij + ∂jg

ijΓi − ∂kgijΓkij + gij(ΓkijΓk − ΓlikΓkjl) ,
(9.82)

where Γijk = gilΓljk and we have used the dilaton derivative on the last line. Inserting this in
the action of eq. (9.81), the 4Γi∂iφ′ terms cancel and we get

SNSNS =
∫

dxe−2φ′[∂jgijΓi − ∂kgijΓkij + gij(ΓkijΓk − ΓlikΓkjl) + gijΓiΓj

+ 2∂iφ′∂jgij + 4(∂φ′)2 − 1
12H

3] . (9.83)

The last step is to evaluate the first line of eq. (9.83), which evaluates to

∂jg
ijΓj − ∂kgijΓkij + gij(ΓkijΓk − ΓlikΓkjl) + gijΓiΓj = −1

4g
ikgjl∂mgij∂mgkl + 1

2g
mn∂igmj∂

jgni ,
(9.84)

as all terms of the form gij∂kgij cancel against each other. Hence, we see that eq. (9.83) is
identical to the DFT action in eq. (9.79) up to total derivatives.

9.2.3 Non-geometric fluxes in double field theory

It is possible to identify both geometric and non-geometric fluxes to DFT background fields and
combine them into a single O(D,D) tensor. Using the frame formalism, fluxes can be defined
covariantly via the C-bracket and vielbein inner product according to

FABC = [EAL, ELB]CECL
= EA

N∂NEB
LECL − 1

2EAN∂
LEB

NECL − EBN∂NEALECL + 1
2EBN∂

LEA
NECL

≡ ΩABC + 1
2ΩCAB − ΩBAC − 1

2ΩCBA ,

(9.85)

using the definition of the C-bracket in eq. (9.47), the vielbein of eq. (9.67) and where we have
introduced the generalised Weitzenböck connection

ΩABC = EA
M∂MEB

NECN , (9.86)

as is customary. The expression in eq. (9.85) can be further simplified as ΩABC is antisymmetric
in its last two indices, which can be seen from

ΩABC = EA
M∂MEB

NECN = −EAM∂MECNEBN = −ΩACB , (9.87)

since ηAB = EA
MEBM = EA

MηMNEB
N has ∂NηAB = 0. As such, eq. (9.85) reduces to a fully

antisymmetric tensor

FABC = ΩABC + ΩBCA + ΩCAB = 3Ω[ABC] , (9.88)
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which, having three flat indices, are subject to double Lorentz transformations. The DFT action
of eq. (9.38) can be rewritten in terms of two types of generalised fluxes, the first one being
FABC in eq. (9.88), the second one being

FA = −e2φ′L̂EAe
−2φ′ = ΩB

BA + 2EAM∂Mφ′ . (9.89)

In terms of these the original DFT action of eq. (9.38) can be shown to be equivalent to

S =
∫

dXe−2φ′
[
FABCFDEF

(
1
4N

ADηBEηCF − 1
12N

ADNBENCF − 1
6η

ADηBEηCF
)

+ FAFB(ηAB −NAB)
]
.

(9.90)

The FABC consist of eight D×D×D blocks but, due to its antisymmetry, only four of these
are independent from each other. The four independent components Fabc,Fabc,Fabc and Fabc
correspond to the fluxes Habc, fabc, Q

ab
c and Rabc respectively. In order to calculate them one

may use the ”overparameterised” generalised veilbein of eq. (9.68), which includes both Bij and
the bi-vector βij . It is overparameterised in the sense that physical fields are parametrised by
either Bij or βij . In light of this we rearrange the overparameterised veilbein of eq. (9.68) to
be given by

EA
M = ηABE

B
Nη

NM =
(
eai + eajβ

jkBki eajβ
ij

ea
jBji ea

i

)
. (9.91)

Inserting this expression into the Ωabc definition of eq. (9.87) enables us to evaluate Fabc =
3Ω[abc]. The relevant component is calculated to

Ωabc = Ea
M∂MEb

NEcN

= Ea
m∂mEb

nEcn + Eam∂̃
mEb

nEcn + Ea
m∂m∂mEbnEc

n + Eam∂̃
mEbnEc

n

= ea
m∂m(ebn)ecjBjn + ea

k∂̃m(ebn)ecjBjn + ea
m∂m(ebjBjn)ecn + ea

kBkm∂̃
m(ebjBjn)ecn

= ea
m∂m(ebn)ecjBjn + ea

k∂̃m(ebn)ecjBjn + ea
m∂m(ebj)Bjnecn + ea

meb
j∂m(Bjn)ecn

+ ea
kBkm∂̃

m(ebj)Bjnecn + ea
kBkmeb

j ∂̃m(Bjn)ecn

= ea
ieb

jec
k[∂i(Bjk) +Bim∂̃

m(Bjk)] .
(9.92)

Antisymmetrising this expression we obtain the Habc flux in flat indices;

Fabc = 3eaiebjeck(∂[iBjk] −Bl[i∂̃lBjk]) = Habc . (9.93)

Next we move on to calculate Fabc. The explicit calculations of the ingoing components
Ωa

bc,Ωa
b
c and Ωab

c are slightly messy, and they are therefore exiled to Appendix E, as well
as the components of the other flux terms. Stating the results here, the for the Fabc relevant
components of Ω are

Ωa
bc = eaieb

jec
k[∂̃iBjk + βilΩljk] ,

Ωa
b
c = ea

i∂ie
b
jec

j + ea
iBij ∂̃

jebkec
k + ea

iebjec
kβjlΩilk ,

Ωab
c = −Ωa

c
b ,

(9.94)

for which the covariant fluxes the Fabc = Ωa
[bc] + Ω[c

a
b] + Ω[bc]

a = Ωa
[bc] + 2Ω[c

a
b] become

Fabc = eaieb
jec

k(∂̃iBjk + βilHljk) + 2(e[b
i∂ie

a
jec]

j + ea
iBij ∂̃

jebkec
k) = fabc . (9.95)
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The equivalence between the geometric fluxes fabc becomes apparent when choosing a frame in
which ∂̃i = 0 and βij = 0, i.e. choosing a physical gauge for the vielbein, which reduces Fabc to

Fabc = 2e[b
i∂ie

a
jec]

j = fabc . (9.96)

This can be compared to the structure constants of eq. (9.8) in our previous torus example.
Proceeding to the Q flux equivalent, we have that

Fabc = Ω[ab]
c + Ωc

[ab] + Ω[b
c
a] = 2Ω[ab]

c + Ωc
[ab] , (9.97)

where the components are given by

Ωab
c = eai∂̃

iebjec
j + eaie

b
jec

kβilΩl
j
k ,

Ωa
bc = ea

iej
bek

c[∂iβjk +Bil∂̃
lβjk + βjlβkmΩilm] ,

Ωa
b
c = −Ωac

b .

(9.98)

With these components eq. (9.97) becomes

Fabc = 2e[a
i∂̃
ieb]jec

j + ei
[aej

b]ec
k[∂kβij +Bkl∂̃

lβij − βli(2Ωl
j
k + βjnΩkln)

]
= Qabc , (9.99)

which is equivalent to the non-geometric Q flux in flat indices. As with the previous f flux we
may choose a physical gauge ∂̃i = Bij = 0 so that the Q flux takes the form

Fabc = ei
aej

bec
k[∂kβij − βl[if j]kl] = Qabc . (9.100)

Last but not least, the R flux equivalent only includes one component of Ω, namely

Ωabc = eaie
b
je
c
k[∂̃iβjk + βilΩl

jk] , (9.101)

which gives us the flux

Fabc = 3eaiebjeck
[
∂̃[iβjk] + β[il∂lβ

jk] + βilBln∂̃
nβjk + βilβjmβknFlmn

]
. (9.102)

With ∂̃i = Bij = 0 we get that this reduces to

Fabc = 3eaiebjeckβ[il∂lβ
jk] = Rabc . (9.103)

9.2.4 The geometrical meaning of non-geometric fluxes

In this section we discuss the geometrical meaning of the non-geometric Q- and R fluxes, as
they are not well-defined in terms of the metric and B field. It has been extensively proven in
[110] that the DFT action is invariant under the field redefinition (g,B, φ′)→ (g̃, β, φ̃) classically
characterised in terms of the generalised metric as

HMN =
(
gij −BikgklBlj Bikg

kj

−gikBkj gij

)
=
(
g̃ij − βilg̃lkβkj −βilg̃lj

g̃ikβ
kj g̃ij

)
, (9.104)

which was inspired from generalised geometry. This new metric also reproduces the NSNS
supergravity action of eq. (9.79). This form of the generalised metric has been proven useful
when investigating the geometrical meaning of the non-geometric Q and R fluxes, as they are
not well-defined in terms of the ordinary field variables (g,B, φ′).

In DFT gauge symmetries are spanned by ξM = (ξi, ξ̃i) which acts on the original field
Eij = gij + bij according to

δEij = LξEij + ∂iξ̃j − ∂j ξ̃i + Lξ̃Eij − Eik(∂̃
kξl − ∂̃lξk)Elj . (9.105)

153



9. Non-Geometric Fluxes and Double Field Theory

The ordinary Lie derivative with coordinate parameter ξi and dual winding coordinate ξ̃i are
given by

LξEij = ξk∂kEij + ∂iξ
kEkj + ∂jξ

kEik ,
Lξ̃Eij = ξ̃k∂̃

kEij − ∂̃kξ̃iEkj − ∂̃kξ̃jEik ,
(9.106)

respectively. The sign difference between these expressions reflects the fact that Eij is a covaraint
tensor with respect to the diffeomorphism group, but a contravariant tensor with respect to the
dual diffeomorphisms with lower indices x̃i → x̃i − ξ̃i. While not apparent in this form, the
gauge transformations in eq. (9.105) are O(D,D)-covariant. The transformation properties for
E ij are then obtained by the exchanges ∂i → ∂̃i and ξi → ξ̃i so that

δE ij = Lξ̃Ẽ
ij + ∂̃iξi − ∂̃jξi + LξẼ ij − Ẽ ik(∂kξ̃l − ∂lξ̃k)Ẽ lj . (9.107)

It is clear that the transformation is linear in ξi while it is non-linear in ξ̃i. The gauge transfor-
mation is covariant if it is equal to the Lie derivative. I.e, considering only the ξi transformations,
one has δξA = LξA, ∀A. Expanding Ẽ ij = g̃ij + βij we have for the ξi transformation in eq.
(9.107) that

δξ g̃
ij = Lξ g̃ij , δξβ

ij = ∂̃iξj − ∂̃jξi + Lξβij ≡ Lξβij + ∆ξβ
ij , (9.108)

where ∆ξβ
ij = ∂̃iξj − ∂̃jξi denotes the non-covariant part. It is then natural to look for a

connections ∂̃i → ∇̃i that make the momentum diffeomorphisms covariant. To do so we also
consider the gauge transformation of the dilaton scalar φ̃, which transforms covariantly as

δξφ̃ = ξi∂iφ̃ . (9.109)

Its winding derivative ∂̃iφ̃ however does not, since

δξ(∂̃iφ̃) = ∂̃i(δξφ̃) = ∂̃i(ξi∂ξφ̃) = φ̃iξi∂jφ̃+ ξj∂j(∂̃iφ̃) . (9.110)

This transformation can be written in terms of the Lie derivative by adding the terms

− ∂jξi∂̃jφ̃− ∂̃jξi∂jφ̃ = 0 , (9.111)

which vanish by the strong constraint in eq. (9.49) and may so be added on the right-hand side
of eq. (9.110). This results in that the transformation becomes

δξ(∂̃iφ̃) = ξi∂j(∂̃iφ̃)− (∂jξi)∂̃jφ̃+ (∂̃iξj − ∂̃jξi)∂jφ̃
≡ Lξ(∂̃iφ̃) + (∂̃iξj − ∂̃jξi)∂jφ̃ .

(9.112)

The non-covariant part ∇ξ(∂̃iφ̃) = (∂̃iξj − ∂̃jξi)∂jφ̃ is then seen to have the same form as ∇ξβij
in eq. (9.108). Hence, these terms may be cancelled by introducing the covariant derivative

D̃i ≡ ∂̃i − βij∂j , (9.113)

such that
δξ(D̃iφ̃) = Lξ(D̃iφ̃) . (9.114)

The R flux derived in the previous section, given by eq. (9.103), can be written in curved indices
via Rabc = eaie

b
je
c
kR

ijk so that Rijk = 3β[il∂lβ
jk]. The covariant derivative given by eq. (9.113)

can be shown, using the strong constraint in eq. (9.49) and definitions of the R and Q fluxes in
eq. (9.103) and eq. (9.100), to fulfil the commutation relation

[D̃i, D̃j ] = −Rijk∂k −QkijD̃k , (9.115)
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where again Rijk ≡ 3D̃[iβjk] = 3(∂̃[iβjk] + βp[i∂pβ
jk]). The R flux can be shown to be covariant

under eq. (9.108). To see this we determine the non-covariant terms of both terms in R, such
that

∇ξ(∂̃[iβjk]) = ∂̃pβ[ij∂pξ
k] + ∂pβ

[ij ∂̃k]ξp + 2∂̃[i∂pξ
jβk]p ,

∇ξ(βp[i∂pβjk]) = ∂pβ
[ij|∂̃pξ|k] − ∂pβ[ij ∂̃k]ξp − 2∂̃[i∂pξ

jβk]p ,
(9.116)

which combine into
∇ξRijk = 3(∂̃pβ[ij∂pξ

k] + ∂pβ
[ij|∂̃pξ|k]) = 0 . (9.117)

Hence we see that the Rijk flux is a covariant tensor and can viewed as the field strength of βij ,
since by comparison the NSNS H3 flux is given by Hijk = 3∂[iBjk] and Rijk = 3∂̃[iβjk] when
taking the alternative supergravity limit ∂i = 0. To learn about the interpretation of the Q in
this formulation, we proceed our consideration of covariant derivatives. For a vector V i we may
define in a common manner a covariant derivative that acts like

Ṽ iV j = D̃iV j − ΓkijV k , (9.118)

and since the D̃ derivative of V i transforms non-covariantly as

∇ξ(D̃iV j) = −D̃i∂kξ
jV k , (9.119)

we have that for eq. (9.118) to transform covariantly under gauge transformations, we must
have that

∇ξΓkij = −D̃i∂kξ
j . (9.120)

In order to determine the connection Γkij in terms of the fields present it should satisfy some
constraints. For instance the covariant derivative on the metric should vanish, i.e. metric
compatibility implies that

∇̃ig̃jk = D̃ig̃jk − Γlij g̃lk − Γlikg̃jl = 0 . (9.121)

With the metric being symmetric in its indices this condition will only be able to determine
the symmetric part of the connection Γkij . The symmetric part can be written in terms of the
antisymmetric part by writing eq. (9.121) as three equations by cycling each of its three indices,
and then adding two of these equations and subtracting the last one. This gives us

2g̃jlΓlki = D̃ig̃jk + D̃kg̃ij − D̃j g̃ki − 2(Γl[ij]g̃lk + Γl[kj]g̃li) , (9.122)

so that
Γk(ij) = 1

2 g̃kl(D̃
ig̃jl + D̃j g̃il − D̃lg̃ij)− g̃kl(g̃piΓp[jl] + g̃pjΓp[il])

≡ Γ̌kij − g̃kl(g̃piΓp[jl] + g̃pjΓp[il]) .
(9.123)

To determine the antisymmetric part we consider the commutator of the covariant derivative
acting on φ̃, where we get

[∇̃i, ∇̃j ]φ̃ =
(
[D̃i, D̃j ]− ΓkijD̃k + ΓkjiD̃k

)
φ̃

= −
(
Rijk∂k + (Qkij + 2Γk [ij])D̃k

)
φ̃ ,

(9.124)

using eq. (9.115). We know that Rijk transforms as a tensor, and so we may demand that this
commutator transforms only in terms of Rijk, so that a covariant condition is given by

[∇̃i, ∇̃j ]φ̃ = −Rijk∂k , (9.125)
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which is then solved by
Γk [ij] = −1

2Qk
ij . (9.126)

Hence the connection in eq. (9.118) is given by

Γkij = Γ̌kij + g̃klg̃
p(iQp

j)l − 1
2Qk

ij . (9.127)

As such it is clear that the Q flux can be regarded as a momentum covariant derivative. This
precisely matches the dual situation for the geometric fluxes where H is a 3-form flux and f
is related to the Levi-Civita spin connection. The covariant derivative and connection derived
above can also be used to define invariant curvatures and Bianchi identities, as done in [110]. In
turn, the curvatures can then be used in constructing a new action in terms of Ricci scalars and
torsion which depends on the the non-geometric R and Q fluxes. This action is then proven in
Appendix A of [110] to equal the DFT action in terms of g̃ and β.

Note that since in all above examples we have seen that the geometrical fluxes can be T-
dualised into non-geometric fluxes, the converse also applies. The fluxes are said to be on the
same O(D,D) orbit. By turning on more fluxes, say one geometric and one non-geometric, these
fluxes can not be transformed T-dualised into geometric fluxes at the same time, and so such a
background is said to be purely non-geometric. See for instance [111] for an example of this.

9.2.5 Consistent truncations

The consistency of Kaluza-Klein compactifications, i.e. the matching of equations of motion of
the original theory to the effective one, is in general very hard to establish. In this section we will
briefly discuss the notion of Scherk-Schwarz compactifications [112][113] as well as generalised
Scherk-Schwarz compactifications which are used in DFT, largely following [114].

In a Kaluza-Klein compactification on a T d torus, the truncation of massive modes leaves an
Abelian U(1)2d gauge symmetry of the resulting effective action. A more general reduction that
does not have an Abelian gauge symmetry is provided by the Scherk-Schwarz compactification
procedure. As usual, the first step is to split the external and internal coordinates as xi =
(xµ, ym) with spacetime indices µ = 1, . . . , d and internal indices m = d + 1, . . . , n. The next
step is to split the fields into external, internal and mixed components according to

gij =
(
gµν + gpqA

p
µA

q
ν Apµgpn

gmpA
p
ν gmn

)
,

Bij =
(
Bµν − 1

2(ApµVpν −ApνVpµ) +ApµA
q
νBpq Vnµ −BnpApµ

−Vmν +BmpA
p
ν Bmn

)
,

(9.128)

with some vectors Apµ, Vpµ. The form of these blocks corresponds to the most general layouts
needed to perserve the symmetric/antisymmetric properties of the fields. Now, for each compo-
nent the SS reduction ansatzes specify the dependence of the external/internal coordinates and
are given by

gµν(x) = ǧµν(x) , Bµν(x) = B̌µν(x) ,
Amµ = ua

mǍaµ(x) , Vmµ = uam(y)V̌aµ(x) ,
gmn = uam(y)ubn(y)ǧmn(x) , Bmn = uam(y)ubn(y)B̌mn(x) + vmn(y) ,

(9.129)

as well as φ = φ̌(x) for the dilaton. Here the objects u(y) and v(y) are called twists, and
after the truncation procedure is complete, there is no dependence on the internal coordinates
but the twists will remain in the form of structure constants which parameterise the possible
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deformations of the effective action. The new effective fields consists of the d-dimensional metric
ǧµν(x), 2-form B̌µν(x), 2n vector fields Ǎaµ(x), V̌aµ(x) and n2 + 1 scalars ǧab, B̌ab, φ̌.

As for the gauge transformations there must first be a split λi = (εµ,Λm) and λ̃i = (εµ,Λm),
which upon the SS ansatz takes the form

λi = (ε̂µ(x), uamΛ̂a(x)) , λ̃i = (ε̂µ(x), umaΛ̂a(x)) . (9.130)

The gauge transformations of the supergravity fields are given in eq. (9.30) and eq. (9.31) for
the metric and 2-form field and eq. (9.32) for general vectors. Using the expansion of eq. (9.130)
in these transformations, the gauge transformations of the effective theory can be obtained. For
instance, for a vector field V i splitted as V i = (v̌µ(x), uam(y)v̌a(x)) the Lie derivative becomes

LλV µ = ε̂ν∂ν v̌
µ − v̌ν∂ν ε̌µ ≡ Ľε̌v̌µ , (9.131)

for the external part of the vector, and corresponds to the d-dimensional Lie derivative of the
effective theory. For the internal component we have

LλV m = ua
mLλ̌v̌

a + Fbc
aΛ̌bv̌c ≡ uamĽλ̌v̌

a , (9.132)

where
Fab

c = ua
m∂mub

nucn − ubm∂muanucn , (9.133)
are the structure-like constants mentioned earlier. They correspond to metric fluxes, as will
become more apparent soon. Performing the same procedure one can obtain the new Lie deriva-
tives of the metric and B field in the effective action. It is then convenient to combine them
into parameters and fields of the effective theory. Specifically, for the gauge parameters we have

ξ̌ = (ε̌µ, ε̌µ, Λ̌A) , Λ̌A = (λ̌a, λ̌a) , (9.134)

and for the vectors one sets
ǍAµ = (V̌aµ, Ǎaµ) , (9.135)

and finally for the scalars

M̌AB =
(

ǧab −ǧacB̌cd
B̌acǧ

cb ǧab − B̌acǧcdB̌db

)
. (9.136)

Notice that this is same the form as the generalised metric in eq. (9.36). Using these expressions,
the gauge transformations of all the fields are given as

δξ̌ ǧµν = Lε̌ǧµν ,

δξ̌B̌µν = Lε̌B̌µν + ∂µε̌ν − ∂ν ε̌µ ,

δξ̌Ǎ
A
µ = Lε̌ǍAµ − ∂µΛ̌A + FBC

AΛ̌BǍCµ ,

δξ̌M̌AB = Lε̌M̌AB + FAC
DΛ̌CM̌DB + FBC

DΛ̌CM̌AD .

(9.137)

From these transformations we can read off what type of transformation each parameter corre-
sponds to in the effective theory. Namely, we see that the ε̌µ are diffeomorphism parameters,
the ε̌µ are gauge parameters of the B field and the Λ̌A are the vectors’ gauge transformation
parameters. The FABC are referred to as ”gaugings” or ”fluxes” which consist of the components

Fabc = 3(∂[avbc] + F[ab
dvc]d) ,

Fab
c = ua

m∂mub
nucn − ubm∂muanucn ,

Fa
bc = 0 ,

F abc = 0 .

(9.138)
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As a final point the d-dimensional supergravity action is obtained by plugging in the SS reduction
ansatz into the supergravity action, which results in

S =
∫

ddx
√
−ǧe−2φ̌

(
R + 4∂µφ̌∂µφ̌− 1

4M̌ABF
Aµν
F
B
µν − 1

12GµνρG
µνρ

+ 1
8DµM̌ABD

µM̌AB + V

)
,

(9.139)

where R is the d-dimensional Ricci scalar and the fields are combined according to

F
A
µν = ∂µǍ

A
µ − ∂νǍAµ − FBCǍBµǍCν ,

Gµνρ = 3∂[µB̌ρλ] − FABCǍAµǍBρǍCλ + 3∂[µǍ
A
ρǍλ]A .

(9.140)

The derivative Dµ acting on the scalar matrix is given by

DµM̌AB = ∂µM̌AB − FADCǍDµM̌CB − FBDCǍDµM̌AC , (9.141)

and the potential is given as

V = −1
4FDA

CFCB
DM̌AB − 1

12FAC
EFBD

FM̌ABM̌CDM̌EF − 1
6FABCF

ABC . (9.142)

The consistency of this type of compactification is not obvious, and we refer the interested reader
to [115] for a nice discussion on this and related topics. The action of eq. (9.139) obtained via SS
reduction is an example of a gauged supergravity theory. By gauged one refers to the fact that
the gauge transformations of the theory are not Abelian. For instance, if the global symmetry
group is O(6, 6), an ”ungauged” theory would have gauge transformations generating the Abelian
group U(1)12. If (tα)AB with α = 1, . . . , 66 and A = 1, . . . , 12 are O(6, 6) generators, then the
gauge group generators are given by ΘA

α(tα)BC where ΘA
α is called the embedding tensor and

encodes the possible gaugings of the theory.
Another important property is that SS reductions preserve all supersymmetries of the original

theory. For instance, starting with a 10D theory with N = 1 preserving 16 supercharges, in a
reduction to d = 4 the effective theory still has 16 supercharges and is therefore N = 4. This
corresponds to half of the maximal amount of supersymmetry, and so the effective theory is
referred to as a half-maximal gauged supergravity. See [116] for a thorough analysis on these.

A full review of gauged supergravities is out of the scope for this thesis, but for self-consistency
it will be useful to point out some of the basics of its bosonic sector. In 4D, the bosonic field
content of a half-maximal gauged supergravity is given by a metric ǧµν , 12 vector fields ǍAµ,
and 38 scalars that are usually embedded in two objects. Two of the scalars, φ̌′ and the scalar
B̌0 dual to the B̌µν in 4D, combines into τ̌ = e−2φ̌′ + iB̌0 and the other 36 scalars parameterise
the coset space

M̌AB = O(6, 6)
O(6)×O(6) . (9.143)

There is also a possibility to couple some N vector multiplets, however to do so the global
symmetry group would has to be extended to O(D,D+N), and it would also contain an SL(2)
factor related to S-duality. This factor is not captured by DFT, however S-duality can be
incorporated, which results in what is called exceptional field theory, to be reviewed in the next
chapter.

Next, we will discuss the interpretation of the SS ansatz in terms of a compactification
and connect it with the previous example of the twisted torus in section 9.1.1. Indeed, we
have already performed an SS compactification. By eq. (9.128) the internal metric is given
by gmn = uam(y)ǧab(x)ubn(y). The ǧab can be then viewed as perturbations on the metric
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of the compact internal space which encoded by the twists uam. When this ansatz is used in
the supergravity action one will then obtain an effective theory of these perturbations which
is deformed by objects depending on the internal metric. If the perturbations are fixed, say
ǧab = δab, then the metric of the background on which the compactification happens is given by

gmn = uam(y)δab(x)ubn(y) , for ǧab = δab . (9.144)

Similarly for the 2-form field, if we fix the perturbations at Bab(x) = 0 then the B field in the
internal space is given by

Bmn = vmn(y) , for Bab(x) = 0 . (9.145)

From this we draw the conclusion that the uam(y) can be regarded as vielbeins of the interal
metric, and the vmn(y) as the B field in the internal space.

Turning to the fluxes in eq. (9.138), using the SS ansatz and imposing the Busher rules
in eq. (9.4), the metric and B field components are exchanged and the Fabc can be seen to
transform into the Fabc. The non-vanishing flux components in eq. (9.138) are then identified
as the geometrical fluxes discussed in section 9.1.2, i.e.

Habc ≡ Fabc , fab
c ≡ Fabc . (9.146)

Recalling the first step in the compactification on the T 3 torus example, the components in the
SS reduction are given as

gmn = δmn , B23 = Ny1 , ⇔ um
a = δam , v23 = Ny1 . (9.147)

The corresponding flux components are then obtained by inserting these values into eq. (9.138),
to obtain

H123 = N , f12
3 = f23 = f31

2 = 0 , (9.148)

and so an H flux has been turned on in the effective action. Now, performing a T-dualisation in
the y2 direction by use of the Busher rules gives us the metric of eq. (9.12) as well as a vanishing
B field, which corresponds to

ds2 = dy2
1 + dy2

2 + (dy3 +Ny1 dy2)2 , Bmn = 0 , ⇔ uam =

1 0 0
0 1 0
0 Ny1 0

 , vmn = 0 .

(9.149)
The flux components are then given by

H123 = f23
1 = f31

2 = 0 , f12
3 = N . (9.150)

which is consistent with the T-duality chain. From our previous example we know that an
additional T-dualisation in one of the y2 or y3 directions leaves the metric ill-defined. However,
we will now see how this is easily incorporated in DFT. For the twisted torus the generalised
metric is given by

HMN =
(

gmn −gmpBpn
Bmpg

pn gmn −BmpgpqBqn

)
=


1 0 0 0 0 0
0 1 −Ny1 0 0 0
0 −Ny1 1+(Ny1)2 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1+(Ny1)2 Ny1
0 0 0 0 Ny1 1

 . (9.151)
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Acting with a T-duality, or O(D,D), transformation on this metric we have that

HMN → h
(2)
M

Ph
(2)
N

QHPQ =


1 0 0 0 0 0
0 1+(Ny1)2 0 0 0 Ny1
0 0 1+(Ny1)2 0 −Ny1 0
0 0 0 1 0 0
0 0 −Ny1 0 1 0
0 Ny1 0 0 0 1

 , h(2) =

 1 0 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1

 ,

(9.152)
which give us the metric and B field

ds2 = gmn dxm dxn = dy2
1 + 1

1 + (Ny1)2 (dy2
2 + dy2

3) , B23 = − Ny1
1 + (Ny1)2 , (9.153)

which are associated to the Q flux.
In DFT the Scherk-Schwarz compactification is generalised to incorporate both geometric

and non-geometric fluxes. In the double space we have coordinates xM = (xi, x̃i) and they are
further split according to xi = (xµ, ym) and x̃i = (x̃µ, ỹm). From this the double external space
can be denoted X = (xi, x̃i) and the double internal space Y = (ym, ỹm). The vielbein and
dilaton are then expanded as

EAM (X) = EAI(X)U IM (Y) , φ′(X) = φ̌′(X) + λ(Y) , (9.154)

where M,N = 1, . . . , 2D are curved indices in the original theory and I, J = 1, . . . , 2D are
curved indices in the effective theory. If this ansatz is plugged into the formula of generalised
fluxes in eq. (9.88) and eq. (9.89) one finds

FABC = F̌ABC + FIJKĚA
IĚB

J ĚC
K ,

FA = F̌A + F̌IEA
I ,

(9.155)

where the X and Y-dependent quantities are respectively given by

F̌ABC = 3Ω̌[ABC] , FA = F̌A + F̌IEA
I , Ω̌ABC = EA

I∂IĚB
J ĚCJ ,

FIJK = 3Ω[IJK] , FI = ΩJ
JI + 2UIM∂Mλ , ΩIJK = UI

M∂MUJ
NUKN .

(9.156)

This coordinate splitting into X- and Y-dependent quantities is only possible if one requires for
the twists that

UI
M∂M ǧ = ∂I ǧ , ∂MUI

N∂M ǧ = 0 , (9.157)

in order to preserve Lorentz invariance in the external dimensions. Further, in order to ob-
tain a Y-independent effective action the generalised fluxes FĀB̄C̄ and FĀ should also be Y-
independent. Their possible Y-dependence can only come from the ”gaugings” FIJK and FI ,
and so we must take them to be constant, i.e.

FIJK = const. , FI = const. . (9.158)

This will in turn imply that the twists are globally defined, and the internal space is then called
paralellisable. The condition in eq. (9.157) can be rewritten in terms of these gaugings as

FIJ
K∂K ǧ = 0 , F I∂I ǧ = 0 , (9.159)

and by the second condition we notice that ∂I ǧ can only be non-vanishing in the external
directions, and hence the f Is can not have any legs in these directions, otherwise Lorentz
invariance would be broken. This again enforces the exclusive Y-independence of the gaugings.
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Now, using generalised fluxes of eq. (9.155) in the flux formulation of the DFT action eq. (9.90),
and taking FI = 0 for simplicity, one would eventually obtain

SgDFT =
∫

dYe−2λ
∫

dXe−2φ̌′
[
− 1

4(F̌IKL + FIK
L)(F̌JLK + FJL

K)ȞIJ

− 1
12(F̌IJK + FIJ

K)(F̌LHG + FLH
G)ȞILȞJHȞKG

− 1
6(F̌IJK + FIJK)(F̌ IJK + F IJK) + (ȞIJ − ηIJ)F̌I F̌J

]
.

(9.160)
This corresponds to a gauged DFT. If we cancel the gaugings according to FIJK = 0 then one
would recover the usual DFT action in eq. (9.90).

As for the gauge parameters, the reduction ansatz reads

ξM (X) = ξ̌I(X)UIM (Y) , (9.161)

and the gauge transformations are generated by the generalised Lie derivative

L̂ξVM = UI
M Ľξ̌V̌

I , Ľξ̌V̌
I = L̂ξ̌V̌

I − F IJK ξ̌J V̌ K , (9.162)

which generates a deformation due to the gaugings. The algebra closes when imposing two con-
straints, namely the strong constraint in the external space but also given a quadratic constraint
on the gaugings;

∂I V̌ ∂
IW̌ = 0 , FK[IJFKL]

H = 0 , (9.163)

for arbitrary vectors V̌ , W̌ . With a specific parameterisation of the metric ηIJ and taking
FIJK = FABC , the generalised fluxes can be rewritten and inserted into the gauged DFT action
of eq. (9.160) to eventually give the gauged supergravity action in eq. (9.139). From this
one might think that the SS and generalised SS compactifications result in the same gauged
supergravity action, but there are important differences. We have seen that the ordinary SS
procedure only allows for geometric fluxes, i.e. the geometric gaugings are generated by uam
and vmn which can be combined into the twist matrix

UAM =
(
ua

m ua
nvnm

0 uam

)
. (9.164)

The uam corresponds to the metric, the vmn to the B field and UAM to the metric vielbein as
in eq. (9.67). A T-duality transformation would break the triangular form, and so backgrounds
are then only allowed to transform as monodromies up to u/v-transformations, corresponding
to the geometric subgroup of O(n, n). The generalised SS compactification allows for generic
O(n, n) transformations, so the twist may be expanded as

UAM =
(

ua
m ua

nvnm
uanβ

nm uam + uanβ
npvpm

)
. (9.165)

This corresponds to the generic DFT vielbein of eq. (9.68), which accounts for both geometric
and non-geometric fluxes as seen in section 9.2.3. Conclusively, the generalised SS compactifi-
cation allows for backgrounds that are globally ill-defined from the usual geometrical point of
view.
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10
Exceptional Field Theory

The double field theory generalisation of type II supergravities which incorporated T-duality can
be generalised further to also incorporate S-duality. Exceptional field theory is an extension of 10
and 11-dimensional supergravity that makes S+T = U -duality manifest. In 1979 Cremmer and
Julia [117] found that compactifications of 11D supergravity on tori Tn give rise to exceptional
symmetries En(n) in D = 11 − n dimensions. In particular they found that the moduli of
the effective theory parameterise the symmetric space En(n)/K(En(n)) where the En(n) is the
split real form of the complex Lie algebra e7 and K(En(n)) its maximal compact subgroup.
While the En(n) are global symmetries, the maximal compact subgroups are generalisations of
Lorentz symmetry. Table 10.1 summarises the global En(n) and local K(En(n)) symmetries for
D = 11, . . . , 3.

The work of extending or embedding string/M-theory in a way to make these exceptional
symmetries apparent eventually resulted in a formulation known as exceptional field theory,
which was formulated rather recently in 2013 in [118]. As the resulting symmetries depend on
the number of compactified dimensions according to table 10.1, the exceptional field theories are
usually constructed separately for each exceptional group. There is however current research
aiming for a unified formalism known as extended geometries [119]. In this chapter we describe
the general ExFT construction for the group E7(7) largely following [120]. See [121] and [122]
for the corresponding E6(6) and E8(8) theories respectively.

Dimension U-duality group Global symmetry Local symmetry
11 1 1 1

10 (IIA) 1 SO(1, 1,R)/Z2 1

10 (IIB) SL(2,Z) SL(2,R) SO(2)
9 SL(2,Z)× Z2 SL(2,R)×O(1, 1,R) SO(2)
8 SL(3,Z)× SL(2,Z) SL(3,R)× SL(2,R) U(2)
7 SL(5,Z) SL(5,R) USp(4)
6 O(5, 5,Z) O(5, 5,R) USp(4)× USp(4)
5 E6(6)(Z) E6(6)(R) USp(8)
4 E7(7)(Z) E7(7)(R) SU(8)
3 E8(8)(Z) E8(8)(R) Spin(16)

Table 10.1: Symmetries present after compactification of M-theory on a Tn.

10.1 E7(7) generalised diffeomorphisms

The smallest fundamental representation of the E7(7) group is the 56. The approach, being
similar to DFT, is based on an extended spacetime consisting of 4+56 dimensions. The external
four dimensions are accompanied by 56 ”internal” coordinates YM with M = 1, . . . , 56 which
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10. Exceptional Field Theory

transform in the fundamental representation. The adjoint representation of the E7(7) group
is 133 and so its Lie algebra has dimension 133 and generators tα with α = 1, . . . , 133. The
exceptional group is embedded in the symplectic group E7(7) ⊂ Sp(56), which implies the
existence of an invariant antisymmetric tensor ωMN , with M,N being fundamental indices.
This invariant tensor fulfils ωMKωNK = δN

M and is used to raise and lower fundamental indices;
AM = ωMNAN and AM = ANωMN . As for the adjoint indices, they are raised and lowered
using the symmetric Cartan-Killing form Cαβ ≡ (tα)MN (tα)NM . The (tα)MN are the gauge
group generators in the fundamental representation. The invariance of ωMN make the (tα)MN

symmetric in their fundamental indices.
The ExFT variant of the strong/weak constraints of DFT are referred to as section constraints

and are written in terms of the E7(7) generators (tα)MN as well as the invariant symplectic form
ωMN according to

(tα)MN∂M∂NA = 0 ,
(tα)MN∂MA∂NB = 0 , ωMN∂MA∂NB = 0 ,

(10.1)

for any fields or gauge parameters A,B. Note that the first line corresponds to the ExFT
equivalent of the weak constraint and the second line to strong constraints.

10.1.1 The generalised Lie derivative and E-bracket

An ExFT is uniquely determined by its bosonic gauge symmetries which consist of the gener-
alised diffeomorphisms in its coordinates (xµ, YM ). We will start by considering the internal
coordinates. As in the case of DFT, the diffeomorphisms take the form of a generalised Lie
derivative Lξ with parameter ξ. The action of a generalised Lie derivative with respect to a
vector parameter ξ on a vector A of weight λ is written as

δξA
M = LξA

M ≡ λN∂NAM − 12PMN
P
Q∂P ξ

QAN + λ∂Nξ
NAM

= ξN∂NA
M + (λ− 1

2)∂NξNAM − ∂NξMAN − 12(tα)MN (tα)PQ∂NξPAQ

− 1
2ω

MNωPQ∂Nξ
PAQ ,

(10.2)
where the first line is the general form of a general Lie derivative [123] with PMN

P
Q being

a projector from fundamental onto adjoint indices. On the second line we have written out
explicitly the projection operator for an E7(7) tensor, which is given by

P
M
N
P
Q ≡ (tα)NM (tα)QP

= 1
24δ

M
N δ

P
Q + 1

12δ
P
Nδ

M
Q + (tα)NQ(tα)MP − 1

24ωNQω
MP ,

(10.3)

and satisfies PMN
N
M = 133. The invariant tensor ωMN is constant so that ∂PωMN = 0, and

has weight λ = 0. With a gauge transformation of a tensor with n fundamental indices the Lie
derivative of eq. (10.2) is generalised by having n projectors. Since ωMN is antisymmetric in its
indices and the projector is symmetric in its top and bottom indices, we have that

Lξω
MN = 0 . (10.4)

This also implies that ω can lower indices in the ordinary covariant manner as AM ≡ ωNMAN .
Given the form of eq. (10.2), there are some choices of gauge parameters ξM which make the
Lie derivative vanish as a consequence of the section constraints of eq. (10.1). Hence they do
not generate a gauge transformation. These ’trivial’ gauge transformations must have gauge
parameters of the form

ξM = (tα)MN∂NXα , or ξM = ωMN∂NX , (10.5)
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for arbitrary fields Xα, X. There is also another type of trivial parameter more general than eq.
(10.5). This type is defined by

ξM = ωMNXN , (10.6)

with XN being a field which satisfies the same section constraints as the ∂M do in eq. (10.1),
i.e. combinations like

(tα)MNXMA∂NB = 0 , (tα)MNXMAXNB = 0 , (tα)MNXMXNA = 0 , . . .
ωMNXM∂NA = 0 , ωMNXMA∂NB = 0 , ωMNXMAXNB = 0 , . . .

(10.7)

The classical trivial parameter of eq. (10.5) is a special case of eq. (10.6) with XN = ∂NX.
In DFT or E6(6) ExFT there is no real analogue of the more general trivial parameters of eq.
(10.6). The reason for including them is that they will come in useful when checking the Jacobi
identity later.

Moving on to the gauge algebra generated by eq. (10.2), the gauge transformations close
according to

[δξ1 , δξ2 ] = δ[ξ1,ξ2]E , (10.8)

where the so-called E-bracket [·, ·]E is given by

[ξ1, ξ2]ME = 2ξN[2 ∂Nξ
M
1] + 12(tα)MN (tα)PQξP[2∂P ξ

Q
1] −

1
4ω

MPωNQ∂P (ξN2 ξ
Q
1 ) . (10.9)

The last term in this expression is of the trivial form of eq. (10.6), i.e. it can be written
ωMP∂P (ωNQξN2 ξ

Q
1 )− ωMP∂P (ωNQ)ξN2 ξ

Q
1 which indeed vanishes by eq. (10.7) according to the

section constraint in eq. (10.1). There is however reason to keep this term, as will become
apparent soon. Before checking that the E-bracket satisfies the Jacobi-identity, it is useful to
introduce some notation, namely a Dorfman type product for vectors of weight 1/2;

(V ◦W )M ≡ LVWM = V N∂NW
M −WN∂NV

M − 12(tα)MN (tα)PQ∂NV PWQ

− 1
2ω

MNωPQ∂NV
PWQ

= [V,W ]ME − 6(tα)MN∂N ((tα)PQWPV Q)
+ 1

4ω
MPωNQ(V N∂PW

Q +WN∂PV
Q) .

(10.10)

The last term on the second line in eq. (10.10) can not be written as a total derivative as
opposed to the DFT (and E6(6)) case. It is however of a trivial form like in eq. (10.7) which
vanishes due to section constraints. The same applies more clearly for the −6(tα)MN term in
eq. (10.10) above. Hence these extra terms generate trivial gauge transformations and so

LV ◦W = L[V,W ]E . (10.11)

The Dorfman product of eq. (10.10) is also antisymmetric and can be shown to fulfil a Leibniz-
like identity, so that for each property we have that

1
2(V ◦W −W ◦ V )M = [V,W ]ME , (10.12)

U ◦ (V ◦W ) = (U ◦ V ) ◦W + V ◦ (U ◦W ) . (10.13)

By the first identity [V1, V2]E = [V[1, V2]]E, and so using both these identities we have that the
Jacobi identity is not closed;[

V[1, [V2, V3]]E
]
E =

[
V[1, V2 ◦ V3]

]
E = 1

2
(
V[1 ◦ (V2 ◦ V3])− (V[2 ◦ V3) ◦ V1]

)
= 1

2
(
(V[1 ◦ V2) ◦ V3] + V[2 ◦ (V1 ◦ V3])− (V[2 ◦ V3) ◦ V1]

)
= −1

2V[1 ◦ (V2 ◦ V3]) ,
(10.14)
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where we used the antisymmetric properties of the indices in the last step. From eq. (10.10) we
also identify another expression as[
V[1, [V2, V3]]E

]
E =

[
V[1, V2 ◦ V3]

]
E = V[1 ◦ (V2 ◦ V3]) + 6(tα)MN∂N ((tα)PQ[V2, V3]PEV

Q
1 )

− 1
4ω

MPωNQ(V N
1 ∂P [V2, V3]QE + [V2, V3]NE ∂PV

Q
1 ) ,

(10.15)

and so comparing this expression with eq. (10.14) we have that

3
[
V[1, [V2, V3]]E

]
E = 6(tα)MN∂N ((tα)PQ[V2, V3]PEV

Q
1 )

− 1
4ω

MPωNQ(V N
1 ∂P [V2, V3]QE + [V2, V3]NE ∂PV

Q
1 ) .

(10.16)

Defining the Jacobiator, i.e. the failure of the E-bracket to fulfil the Jacobi-identity, as J ≡
3
[
[V[1, V2]E, V3],

]
E = −3

[
V[1, [V2, V3]]E

]
E, we have that

J = −1
2(tα)MN∂N ((tα)PQ[V2, V3]PEV

Q
1 + cycl.)

+ 1
12ω

MPωNQ(V N
1 ∂P [V2, V3]QE + [V2, V3]NE ∂PV

Q
1 + cycl.) ,

(10.17)

writing out the total antisymmetrisation.
Now, having seen the action of the generalised Lie derivative on vectors with fundamental

indices, we turn to the ones within the adjoint representation. With an adjoint vector Vα of
weight λ, the projector in eq. (10.2) is replaced with structure constants fαβγ of E7(7) so that

δξVα = ξN∂NVα + 12fαβγ(tβ)QP∂P ξQVγ + λ∂P ξ
PVα . (10.18)

10.1.2 Covariant derivatives

Since the gauge transformations introduced in the previous section depend on both external and
internal indices, constructing covariant external derivatives will therefore require an associated
gauge connection AµM . Covariantising in the usual manner we then have

∂µ → Dµ ≡ ∂µ − LAµ . (10.19)

Acting on a vector BM , we have by eq. (10.2) that

DµBM = ∂µB
M −ANµ ∂NBM + (1

2 − λ)∂NANµ BM + ∂NA
M
µ B

N

+ 12(tα)MN (tα)PQ∂NAPµBQ + 1
2ω

MNωPQ∂NA
P
µB

Q

≡ DµB
M − λ∂NANµ BM ,

(10.20)

introducing Dµ for later use. Requiring that the covariant derivative transforms covariantly, i.e.
Lξ(DµBM ) = δDµLξBM , enables us to obtain the gauge variation of AµM as

δξAµ
M = ∂µξ

M + ξN∂NAµ
M − ∂NξMAµN

+ 12(tα)MN (tα)PQ∂NξPAµQ + 1
2ω

MNωPQ∂Nξ
PAµ

Q

≡ Dµξ
M − 1

2(∂NAµN )ξM

≡ DµξM ,

(10.21)

which shows that the gauge parameter ξM is a vector of weight 1/2. As for the corresponding
field strength

Fµν
M = 2∂[µAν]

M − [Aµ, Aν ]ME
= 2∂[µAν]

M − 2A[µ
N∂NAν]

M −
(
12(tα)MP (tα)NQ − 1

2ω
MPωNQ

)
A[µ

N∂PAν]
Q ,

(10.22)
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it has gauge transformations of the general form

δξFµν
M = 2D[µδξAν]

M − ∂NA[µ
NδξAν]

M − 12(tα)MP (tα)NQ∂P (A[µ
NδξAν]

Q)

− 1
2ω

MPωQN
(
A[µ

N∂P δξAν]
Q − ∂PA[µ

NδξAν]
Q
)
.

(10.23)

The field strength is however not covariant under gauge transformations in the same manner
as AµM in eq. (10.21). The non-covariance of the field strength is a consequence of the failure
of the E-bracket to fulfil the Jacobi-identity, i.e. J 6= 0 in eq. (10.17). In order to construct a
covariant FµνM it is customary to add a term to it, namely

FµνM ≡ FµνM − 12(tα)MN∂NBµνα , (10.24)

where Bµνα is a 2-form in the adjoint representation. The hope is that the transformation
properties of this field may render FµνM covariant under gauge transformations. It turns out,
however, that this addition will not be enough. While this works for the E6(6) case [121], the
ωMPωQN terms in eq. (10.23) will not be absorbed by the transformation properties of Bµνα,
and so another term must be added to compensate for this. The result is obtained [120] as

FµνM ≡ FµνM − 12(tα)MN∂NBµνα − 1
2ω

MNBµνN , (10.25)

where the BµνN is of the form eq. (10.6), and hence constrained in the same sense as XN in eq.
(10.7). With this new form the general gauge transformation of FµνM becomes

δξFµνM = 2D[µδξAν]
M − 12(tα)MN∂N

(
(tα)PQA[µ

P δξAν]
Q + δξBµνα

)
− 1

2ω
MP

(
ωNQ(A[µ

N∂P δξAν]
Q − ∂PA[µ

NδξAν]
Q) + δξBµνP

)
.

(10.26)

Defining the δξBµνα and δξBµνP such that

∆ξBµνα ≡ (tα)PQA[µ
P δξAν]

Q + δξBµνα = (tα)PQξPFµνQ ,

∆ξBµνP ≡ ωNQ[A[µ
N∂P δξAν]

Q − ∂PA[µ
NδξAν]

Q] + δξBµνP

= −ωPQ[FµνP∂MξQ − ξQ∂MFµνQ] ,
(10.27)

we may use these expressions, eq. (10.21) and the fact that LFµνξM = LFµνξ
M to find the

covariant transformation

δξFµνM = ∂NFµνMξN − 12PMN
P
Q∂P ξ

QFµνN + 1
2∂Nξ

NFµνM . (10.28)

Hence the field strength also transforms as a vector of weight 1/2. The ∆Bs will come in useful
later. As in the case of the previous section we have that FµνM and FµνM differ by terms that
are trivial under gauge transformations, hence LFµν = LFµν . The Bianchi identity is given by

3D[µFνρ]
M = −12(tα)MN∂NHµνρα − 1

2ω
MNHµνρN , (10.29)

where the 3-form field strengths H are defined by this equation up to terms that vanish under
the action of (tα)MN∂N .

10.2 Covariant E7(7) exceptional field theory
The action of the E7(7) ExFT is proposed to be

S =
∫

dx4 dY 56e
(
R̂+ 1

48g
µνDµMMNDνMMN − 1

8MMNFµνMFµνN + e−1Ltop − V (gµν ,MMN )
)

(10.30)
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with e denoting the vielbein determinant. The form of this action is similar to the ones of gauged
N = 8 supergravities in 4D [124]. In this section we will discuss the ingoing terms of this action.
The ExFT field content is

{eµa , AµM , Bµνα, BµνM , MMN} , (10.31)

and the gauge fields fulfil the self-duality relation

FµνM = −1
2eεµνρσω

MNMNPFρσP , (10.32)

which upon dropping the internal indices is known from D = 11 supergravity reduction to 4D.
The ExFT construction will reproduce the 11D supergravity dynamics of these fields.

10.2.1 Kinetic and topological terms

The 4D vielbein eµa is a scalar-density under gauge transformations with weight λ = 1/2, and
hence the action of a covariant derivative on it leaves us with

Dµeνa = ∂µeν
a − ∂MeνaAµM − 1

2∂MAµ
Meν

a . (10.33)

The Einstein-Hilbert term in eq. (10.30) is

LEH = eR̂ = eea
µeb

νR̂µν
ab ≡ eeaµebν

(
Rµν

ab + FµνMeaρ∂Meρb
)
, (10.34)

and has the property of being Lorentz invariant. Rµνab is the curvature written in terms of the
spin connection, where the ingoing derivative takes the form of eq. (10.33). The additional term
FµνMeaρ∂Meρb in the above action is due to the non-commutivity of the covariant derivative
Dµ. This results in that the corresponding covariant Riemann tensor does not transform as a
tensor under local Lorentz transformations δξωµab = Dµξab, and the addition above has been
shown [125] to compensate for this. Under internal generalised diffeomorphisms it transforms
as a density of weight 1 with the vielbein determinant contributing with 2 and the inverted
vielbeins with −1/2 each.

Both the scalar and Yang-Mills kinetic terms include MMN , which is a symmetric 56 × 56
matrix describing the coset space E7(7)/SU(8) parametrised by the scalars of the theory. The
inverse matrix is obtained as usual with the fundamental indices being raised with the E7(7)
invariant form ωMN , i.e. MMN = ωMPωNQMPQ. The covariant derivatives in the scalar
kinetic part

Lscalar = 1
48eg

µνDµMMNDνMMN , (10.35)
is given by eq. (10.20) for which the matrix MMN transforms as a tensor of weigth λ = 0.
Further detMMN = 1 and with e having weight 2 and gµν having −1 the total weight of the
scalar action (10.35) is 1, as required by gauge invariance.

The covariant field strengths FµνM transforms by eq. (10.28) as vectors of weight 1/2, and
so the Yang-Mills term

LYM = −1
8eMMNFµνMFµνN , (10.36)

also have the required weight of 1. The field equations from this term are of second order, for
all 56 vector fields AµM . This is resolved with the first order self-duality relation in eq. (10.32)
which leaves us with 28 independent propagating fields.

Moving on to the topological terms, they exist as a countermeasure to eq. (10.36), so that it
does not yield inconsistent field equations. It is useful to build the term as a 5D boundary term
of a manifestly gauge invariant form as

Stop = − 1
24

∫
Σ5

d5x

∫
d56Y εµνρστFµνMDρFστM ≡

∫
∂Σ5

d4x

∫
d56Y Ltop . (10.37)
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10.2. Covariant E7(7) exceptional field theory

The gauge transformation of Ltop is given by

δξLtop = −1
4ε
µνρσ

[
δξAµ

MDνFρσM + FµνM
(
6(tα)MN∂N∆ξBρσα − 1

4ω
MN∆ξBρσN

)]
, (10.38)

with the ∆Bs defined as in eq. (10.27).
Combining the two Lagrangians LYM and Ltop gives parts of the self-duality equation in

eq. (10.32). Namely, varying with respect to Bµνα result in eq. (10.32) up to what vanishes
under (tα)MN , see eq. (10.29). Varying them with respect to BµνM results in eq. (10.32), but
then one also must remember that BµνM is constrained by eq. (10.7). In the same sense as
the democratic formulation of the type II supergravities, the actions LYM + Ltop needs to be
complemented with the self-duality relation of eq. (10.32).

The second order field equations of the vector fields can be obtained by using the Bianchi
identity in eq. (10.29) and taking the exterior derivative of the self-duality equation in eq.
(10.32), which results in that

Dν(eMMNFµνN ) = −2εµνρσ(tα)MN∂NHµνρσα + 1
12ε

µνρσHνρσM . (10.39)

This can be contrasted with the field equations obtained by varying the Yang-Mills and topo-
logical Lagrangian of eq. (10.36) and eq. (10.37), which turn out to be

Dν(eMMNFµνN ) = 2e(Jµ1 M + Jµ2 M )− 1
2ε
µνρσDνFρσM , (10.40)

where J1 is the gravitational current and J2 the matter current defined by

δALEH ≡ Jµ1 MδAµ
M , δLsc ≡ Jµ2 MδAµ

M , (10.41)

e.g.
Jµ2 M = e−1∂N (eDµMNPMMP )− 1

24D
µMKL∂MMKL . (10.42)

Now, combining eq. (10.39) and eq. (10.40) we will obtain a relation between the scalar and
tensor fields as

e(Jµ1 M + Jµ2 M ) = −2εµνρσ(tα)MN∂NHνρσα + 1
12ε

µνρσHνρσM . (10.43)

Using eq. (10.42) in this expression and multiplying with (tα)MN∂N , it can be split into two
equations

e(Jµ1 M − 1
24D

µMKL∂MMKL) = 1
12ε

µνρσHνρσM ,

−1
2(tα)KL(eDµMKPMLP ) = εµνσρHνσρα .

(10.44)

With this we finish our discussion on the kinetic and topological terms and we proceed to the
potential term in the next section.

10.2.2 The potential and external diffeomorphisms

The potential in the ExFT action of eq. (10.30) consists of combinations with the internal
derivative ∂M on the external gµν and scalar metricMMN such that

V (gµν ,MMN ) = − 1
48M

MN∂MMPQ∂NMPQ + 1
2M

MN∂MMPQ∂QMNP − 1
2g
µν∂Mgµν∂NMMN

− 1
4M

MNgµν∂Mgµνg
µν∂Ngµν − 1

4M
MN∂Mg

µν∂Ngµν ,
(10.45)

where each coefficient has been determined by ξM gauge invariance. This is shown more explicitly
in [121] for the E6(6) case which works analogously. However in the next we will briefly describe
how this comes about. An external derivative ∂M which acts on a E7(7) scalar s adds a density
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10. Exceptional Field Theory

weight −1/2. It will transform under gauge transformations as δξ(∂Ms) = Lξ(∂Ms) with λ =
−1/2, where the gauge variation of the single scalar is δξs = ξM∂Ms. In the same manner
the MMN have weight zero, and so ∂MMPQ has weight −1/2. In the action the potential
term is multiplied with the vierbein determinant of weight 2, and so should be combined with
other products of weight −1/2 to give the total weight of 1 in the action as required by gauge
invariance. However, unlike the partial derivative of a scalar, ∂M can contain terms that are not
covariant. Hence there is need for an explicit check of covariance for each of the terms. Starting
with the first one, we have that sinceM−1∂M have values in the Lie algebra, the projector will
work as an identity operator: PMN

P
QMQR∂SMPR = MMR∂SMNR. Hence, calculating the

variation of eq. (10.2), the result is

δξ(− 1
48M

MN∂MMPQ∂NMPQ) = e∂M∂Nξ
PMMQMRN∂QMPR , (10.46)

up to boundary terms. The second term is calculated in the same manner, for which we have

δξ(1
2M

MN∂MMPQ∂QMNP ) = −e∂M∂NξPMMQMRN∂QMPR

+ e∂M∂Nξ
P∂PMMN + e∂M∂Nξ

N∂PMMP

− 12e∂M∂NξP (tα)QN (tα)PRMRSMMT∂SMTQ

− 1
2e∂M∂Nξ

PωQNωPRMRSMMT∂SMTQ

= −e∂M∂NξPMMQMRN∂QMPR

+ e∂M∂Nξ
P∂PMMN + e∂M∂Nξ

N∂PMMP .

(10.47)

The terms on the third and fourth line vanish because of the section constraint. Namely, the
current term (jS)MQ ≡MMT∂SMTQ on the third line is Lie algebra valued so we may expand
it in terms of tα and then contract the adjoint indices according to

2(jS)MQ(tα)NQ = 2(jS)β(tβ)MQ(tα)NQ = (jS)βfβαγ(tγ)MN . (10.48)

Then the term on the third line will be contracted with ∂M∂Nξ
P which by the first section

constraint in eq. (10.1) vanishes. In a similar manner the current term on the fourth line in
eq. (10.47) is contracted with ∂M∂NξP after ωQN raises one of the current indices, which then
also vanishes by the section constraint. As for the surviving three terms, the first one clearly
cancels with the one in eq. (10.46), and the two last ones can be shown straightforwardly to
cancel against the resulting variations of the three last potential terms in eq. (10.45). This then
proves the full gauge invariance of the potential.

We end this section by a final note on external diffeomorphisms. While the various terms in
the ExFT action of eq. (10.30) are determined by the internal ξM generalised diffeomorphisms,
its relative coefficients are determined by the external generalised diffeomorphisms with param-
eter ζµ ≡ ζµ(x, Y ). The theory is manifestly gauge invariant for ζµ ≡ ζµ(x), i.e. Y -independent
parameters, the gauge transformations of the Lie algebra valued vectors with general external
parameters are given by

δζeµ
a = ζνDνeµa +Dµζνeνa ,

δζMMN = ζµDµMMN ,

δζAµ = ζνFνµM +MMNgµν∂Nζ
ν .

(10.49)

This is the general form of covariantised diffeomorphism apart from the M term addition in
δζAµ

M . As for the 2-form tensors we have

∆ζBµνα = ζρHµνρα ,
∆ζBµνM = ζρHµνρM + 2eεµνρσgστDρ(gτλ∂Mζλ) ,

(10.50)
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10.3. Embedding of M-theory and type IIB supergravity

The second term in ∆ζBµνM is non-covariant but required as to make the equations of motions
of the theory gauge invariant. By the definition of the field strength in eq. (10.25), the variations
of eq. (10.49) and eq. (10.50) results in that

δζFµν = LζFµνM + 2(D[µMMNgν]ρ − 6(tα)MNHµνρα)∂Nζρ

2MMND[µ(gν]ρ∂Nζ
ρ)− eεµνρσgστωMNDρ(gτλ∂Nξλ) ,

(10.51)

with Lζ = ζρDρ being the standard transformation under covariantised diffeomorphisms. This
expression can be rewritten using the self-duality relation of eq. (10.44) and assuming an on-shell
condition so that the current terms are positive, we have

δζFµνM = LζFµν + 2D[µ(MMNgν]ρ∂Nζ
ρ)− eεµνρσωMNMNPD[ρ(MPRg

σ]λ∂Rζλ) . (10.52)

From this we can see that when calculating the variation of the self-duality relation in eq.
(10.32), the non-covariant terms of the variation of FµνM will vanish, which leaves us with

δζ(FµνM + 1
2eεµνρσω

MNMNPFρσP ) = Lζ(FµνM + 1
2eεµνρσω

MNMNPFρσP ) . (10.53)

Hence the self-duality relation in eq. (10.32) is also duality covariant. This also confirms that
the extra terms in the second variation of eq. (10.50) are necessary for this covariance. The
exact form of eq. (10.44) relating the scalars and tensors is needed to fix the coefficients in the
ExFT action of eq. (10.30).

10.3 Embedding of M-theory and type IIB supergravity

Having discussed the covariant E7(7) ExFT theory, it remains to see how the D = 11 and type
IIB supergravities fit into it. The embedding of M-theory and type IIB supergravity theories
in exceptional field theory corresponds to two different solutions to the section condition. The
fact that there are only two solutions can be seen from the E7 dynkin diagram. The solution of
the section constraint relates to different splitting of coordinates under two different maximal
subgroups of E7(7).

Starting with D = 11 supergravity, the relevant maximal subgroup in question is GL(7) ⊂
E7(7), under which the E7(7) fundamental representation decomposes according to

56→ 7+3 + 2̄1+1 + 21−1 + 7̄−3 , (10.54)

where the subscripts are the GL(1) weights in the sense that GL(7) = SL(7)×GL(1). Barred
numbers correspond to conjugate representations. The corresponding internal coordinate split-
ting is then defined as

YM → ym + ymn + ymn + ym , (10.55)

for each representation, where the m,n = 1, . . . , 7 label the vector representations of GL(7)
and the double indices are antisymmetric: ymn ≡ y[mn], ymn ≡ y[mn]. As for the adjoint
representation, it decomposes according to

133→ 7̄+4 + 35+2 + 10 + 480 + 3̄5−2 + 7−4 . (10.56)

Considering (tα)mn, its weight should be 3 + 3 according to the corresponding indices in eq.
(10.55), but from eq. (10.56) we see that there is no representation with GL(1) weight +6, and
therefore we must have that

(tα)mn = 0 . (10.57)
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This also means that the section constraint in eq. (10.1) is trivially fulfilled for all derivatives
∂m. Hence, we may truncate the coordinate dependence of YM to only include the coordinates
of the 7+3, i.e. we may choose

YM → ym , ∂mn → 0 , ∂mn → 0 , ∂m → 0 . (10.58)

By doing so all fields will depend on the seven coordinates as φ(xµ, YM ) → φ(xµ, ym), for
instance Bµνm is kept but Bµνmn, Bµνmn and Bµν

m are set to zero. The AµM is split in the
same manner as eq. (10.55) and Bµνα as eq. (10.56). In D = 11 supergravity the scalar matrix
is parametrised with the group valued vielbein V asMMN = (VVT )MN , where

V = eφt(0)V7e
cmnpt

mnp
(+2)eε

mnpqrstcmnpqrst(+4)t . (10.59)

Here the t(0) is are the generators of the 10 and 480 representations in eq. (10.56), V7 is an
element of the SL(7) subgroup, the t+2 is a generator of the 35+2 and similarly the t(+4) term is
associated to the 7̄+4 representation. Keeping only the positively graded terms can be thought
of as a gauge choice.

Choosing an explicit representation of the (tα)MN in terms of SL(7) invariant tensors, split-
ting the coordinates and fields in accordance with eq. (10.55) and eq. (10.56) and truncating
the coordinates according to eq. (10.58), the field equations can be mapped into the ones of su-
pergravity. To do this some redefinitions of the 3-form and 6-form fields of D = 11 supergravity
are required, but we will not go into the specifics here, merely illustrate how the decomposition
of the fundamental representation can give the coordinate reduction needed. In [126] this is
done explicitly for the E6(6) case, resulting in the full action.

For the type IIB solution we have that the relevant maximal subgroup is GL(6) × SL(2) ⊂
E7(7). The decomposition of the fundamental and adjoint representation under this subgroup is

56→ (6, 1)+2 + (6̄, 2)+1 + (20, 1)0 + (6, 2)−1 + (6̄, 1)−2 ,

133→ (1, 2)+3 + (1̄5, 1)+2 + (15, 2)+1 + (35 + 1, 1)0 + (1̄5, 2)−1 + (15, 1)−2 + (1, 2)−3 ,
(10.60)

where the left-hand side in each parenthesis corresponds to the GL(6) representation decompo-
sition and the right-hand side to the one for SL(2). As before the subscript is the GL(1) weight,
as it acts like a scaling factor to the maximal subgroup. As before the coordinate split is

YM → ym + ymm̃ + ymnp + ymm̃ + ym . (10.61)

Here m,n, p = 1, . . . , 6 mark the fundamental representations of GL(6) and m̃ = 1, 2 the funda-
mental representation of SL(2). Coordinates and fields are again antisymmetric in their internal
indices; ymnp ≡ y[mnp]. It is clear that as before there is no (tα)mn in the decomposed adjoint
representation, and so the same argument as before allows us to keep ∂m and let ∂mm̃, ∂mnp, ∂mm̃
and ∂m go to zero as well as the associated fields.
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11
Calabi-Yau Structures in Exceptional

Generalised Geometry

There is a natural extended geometry in which supersymmetry for a generic flux background
corresponds to integrable and globally defined G-structures. In chapter 4 we studied flux back-
grounds using complex generalised geometry, where the central object is the generalised tan-
gent bundle TM ⊕ T ∗M admitting an O(6, 6) metric. We saw that the symplectic form J
and holomorphic form Ω could be generalised to a pair of O(6, 6) pure spinors Φ± defining an
SO(3, 3) ⊂ O(6, 6) structure, although their compatibility conditions J∧Ω = 0 and J3 = 3i

4 Ω∧Ω̄
implied the structure to be SU(3)× SU(3). With only NSNS fluxes, the supersymmetry varia-
tions result in the conditions dΦ± = 0, called integrability conditions. Admitting RR fluxes was
shown to partially break this integrability. This language is convenient in classifying backgrounds
and has other applications related for instance to the AdS/CFT correspondence, marginal de-
formations of conformal field theories and holography. The NSNS fluxes were incorporated, or
”geometrised”, in the O(6, 6) pure spinor formalism. In this chapter we will consider Ed(d)×R+

or exceptional generalised geometry which incorporates both NSNS and RR fluxes and provides
an extension to M-theory. A lot of the analysis will be built upon the fine paper [127].

11.1 Generalising the Calabi-Yau structure
As we know from chapter 4, a Calabi-Yau manifold admits a single covariantly constant spinor
under the action of the subgroup SU(3) of Spin(6) ' SU(4). The two corresponding invariants
are the symplectic (1, 1)-form J and holomorphic (3, 0)-form Ω, which satisfy the compatibility
conditions

J ∧ Ω = 0 , J3 = 3i
4 Ω ∧ Ω̄ . (11.1)

If the internal manifold had an integrable torsion-free SU(3)-structure, the invariant forms
satisfy dJ = dΩ = 0, which is also equal to the supersymmetry conditions without fluxes.
Individually the 2-form J is in fact invariant under Sp(6,R) ⊂ GL(6,R) and the 3-form Ω
under SL(3,C) ⊂ GL(6,R), so the structure groups embed according to

GL(6,R) ⊃ Sp(6,R) for J
∪ ∪

SL(3,C) for Ω ⊃ SU(3) for {J,Ω}
. (11.2)

When extending this result to include the B field and dilaton, we saw that complex generalised
geometry effectively describes this using the bispinors Φ±. They can also be defined as Φ+ =
e−(B+φ)e−iJ and Φ− = ie−(B+φ)Ω, and fulfil the compatibility or consistency conditions

〈Φ+, Φ̄−〉 = 〈Φ−, Φ̄−〉 , 〈Φ+, V · Φ−〉 = 〈Φ̄+, V · Φ−〉 = 0 , (11.3)

for all sections V ≡ ξ + λ ∈ Γ(TM ⊕ T ∗M) of the complex generalised tangent bundle. The
Clifford action is defined as V ·Φ± = V AΓAΦ± = ιξΦ±+ λ∧Φ±. The scalar product, or Mukai
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pairing, is defined as
〈Φ,Ψ〉 ≡

∑
p

(−1)b(p+1)/2cΦp ∧Ψ6−p , (11.4)

with Φp labelling the p-form component of Φ. The integrability conditions were shown to read

dΦ± = 0 , (11.5)

which defined a generalised Calabi-Yau metric. Using this formalism and turning on RR fluxes
we saw that the supersymmetry variations in terms of pure spinors then broke integrability.
Central to complex generalised geometry is the generalised tangent bundle TM ⊕ T ∗M , which
admits an O(6, 6) metric η. The pure spinors Φ± are separately invariant under two different
groups SU(3, 3)± but together they define a SU(3)× SU(3)-structure;

O(6, 6)×R+ ⊃ SU(3, 3)+ for Φ+

∪ ∪
SU(3, 3)− for Φ− ⊃ SU(3)× SU(3) for {Φ+,Φ−}

. (11.6)

It is now natural to ask how complex generalised geometry is in turn generalised to also include
RR fluxes, and in the next section we will describe the structures of exceptional generalised
geometry that generalise the structures in eq. (11.2) and eq. (11.6).

11.2 E7(7) ×R+-structures
In our analysis of the exceptional structures we will describe the structure group dynamics as
well as the generalised tangent bundle which admits an action of the exceptional group.

11.2.1 Generalised G-structures

In ordinary differential geometry the typical structure group of the tangent bundle TM of a
d-dimensional manifold M is GL(d,R). If there exists a G-structure it means that the structure
group reduces to a subgroup G of GL(d,R). A G-structure on a manifold is also equivalent to
it admitting globally defined tensors or spinors that are invariant under the group action of G.
In generalised geometry one considers an extended tangent bundle that admits the action of a
larger group than GL(d,R). The factor R+ encodes what is called the trombone symmetry,
which can be thought of as the supergravity equivalent of the conformal rescaling symmetry in
relativity. In complex generalised geometry we have considered the extended tangent bundle
E = TM ⊕ T ∗M that admits the action of the group O(d, d) × R+. In what is known as
exceptional generalised geometry the tangent bundle is extended further, as will be specified in
section 11.2.2, and the admitted group is E7(7) ×R+. In 4D N = 2 backgrounds there are two
generalised G-structures known as the

hypermultiplet structure Jα , G = Spin∗(12) ,
vector multiplet structure K , G = E6(2) ,

(11.7)

where Spin∗(12) is the double cover of SO∗(12) which in turn is a particular real form of the Lie
algebra so(12,C). The index α = 1, 2 is a fundamental SL(2,R) index and E6(2) is the quasi-
split form of E6. These will from now on be referred to as the H and V structure respectively.
Together they can be defined as an exceptional Calabi-Yau structure given that their common
stabiliser group1 is Spin∗(12) ∩ E6(2) = SU(6), i.e. G = SU(6) for {Jα,K}. We can now write

1Given an action of a group on some space, and say a point, then the stabiliser group of that point is the
subgroup whose action leaves the point fixed, or invariant.
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11.2. E7(7) ×R+-structures

E Gframe Ghyper Θhyper Gvector Θvector

TM GL(6) Sp(6,R) J SL(3,C) Ω
TM ⊕ T ∗M O(6, 6)×R+ SU(3, 3)+ Φ+ SU(3, 3)− Φ−

TM ⊕ T ∗M ⊕ Λ−T ∗M ⊕ . . . E7(7) ×R+ Spin∗(12) Jα E6(2) K

Table 11.1: Tangent bundles E in ordinary, complex generalised and exceptional generalised
geometry for type IIB supergravity. The group Gframe acts on the (generalised) frame bundle,
the objects Θhyper and Θvector are invariant under the action of the reduced structure groups
Ghyper and Gvector of the corresponding hyper- and vector multiplet structures. Note that the
choice of IIB (rather than IIA) is only relevant for exceptional generalised geometry.

the corresponding embeddings for the exceptional Calabi-Yau metric as

E7(7) ×R+ ⊃ Spin∗(12) for Jα
∪ ∪

E6(2) for K ⊃ SU(6) for {Jα,K}
. (11.8)

This then generalises the embeddings of eq. (11.2) and eq. (11.6) as well as the symplectic and
complex structures on Calabi-Yau manifolds. This is summarised in table 11.1 for the case of
the IIB tangent bundle and hyper- and vector multiplet structures. For IIA the tangent bundle
is slightly different and the generalising situation is opposite; the H structure generalises the
symplectic structure J and pure spinor Φ+, and the V structure generalises Ω and Φ−.

11.2.2 E7(7) ×R+ generalised geometry

The generalised geometry of Ed(d) ×R+ describes structures on its generalised tangent bundle
E, which admits an action of the Ed(d) group. The generalised tangent bundle is built from the
decomposition of the coordinate representation, which corresponds to the fundamental repre-
sentation, under different subgroups. For D = 11 supergravity one uses the decomposition of
the 56 under GL(7,R);

56→ 7 + 7̄ + 21 + 2̄1 , (11.9)
where each term corresponds to a vector, 1-form, 2-form and 5-form respectively. Hence for
D = 11 supergravity on a (d ≤ 7)-dimensional manifold the generalised tangent bundle is

EM ' TM ⊕ Λ2T ∗M ⊕ Λ5T ∗M ⊕ (T ∗M ⊗ Λ7T ∗M) , (11.10)

where Λk denotes the space of k-forms. In type II theory on a (d− 1)-dimensional manifold M
one decomposes the fundamental form under the subgroup GL(d− 1)×SL(2), which makes the
generalised tangent bundle take the form

EII ' TM ⊕ T ∗M ⊕ Λ±T ∗M ⊕ Λ5T ∗M ⊕ (T ∗M ⊗ Λ6T ∗M) , (11.11)

where Λ± labels the space of even/odd-degree forms for type IIA/IIB respectively. The type
IIA is a direct dimensional reduction of the D = 11 case, see details in Appendix B of [128],
however in this chapter we choose to focus mainly on the type IIB theory. Both generalised
tangent bundles of eq. (11.10) and eq. (11.11) are Ed(d) ×R+ vector bundles which for d = 7
transform in the fundamental 561 representation, the subscript 1 denoting the R+ weight. For
type IIB the generalised tangent bundle can be rewritten in a way which shows the SL(2,R)
symmetry as

EIIB ' TM ⊕ T ∗M ⊕ (T ∗M ⊕ Λ3T ∗M ⊕ Λ5T ∗M)⊕ Λ5T ∗M ⊕ (T ∗M ⊗ Λ6T ∗M)
' TM ⊕ (T ∗M ⊗ S)⊕ Λ3T ∗M ⊕ (Λ5T ∗M ⊗ S)⊕ (T ∗M ⊗ Λ6T ∗M) ,

(11.12)
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having expanded Λ−T ∗M in odd forms and S is an R2 bundle which transforms as a doublet of
SL(2,R). In this formalism, generalised tensors are defined to be sections of the vector bundles
associated with different Ed(d) × R+ representations. The sections V of the IIB bundle in eq.
(11.12) can be written as

V = v + λi + ρ+ σi + τ , (11.13)

where each term is a section of a bundle component; v ∈ Γ(TM), λi ∈ Γ(T ∗M⊗S), ρ ∈ Λ3T ∗M ,
σ ∈ Γ(Λ5T ∗M ⊗ S) and τ ∈ Γ(T ∗M ⊗ Λ6T ∗M). Another bundle that will be used later is the
generalised adjoint bundle created from the decomposition of the adjoint representation under
the appropriate subgroup. The frame bundle F̃ is an Ed(d) ×R+ principal bundle constructed
from frames of E. The adjoint bundle adF̃ is then a generalised frame bundle that is associated
to the adjoint representation of Ed(d) × R+. The adjoint representation decomposes under
GL(d,R) according to

133→ 1⊕ 48⊕ 7⊕ 7̄⊕ 35⊕ 3̄5 , (11.14)

to which the corresponding adjoint tangent bundle is given by

adF̃ ' R⊕ (T ∗M ⊗ TM)⊕ Λ3T ∗M ⊕ Λ6T ∗M ⊕ Λ3TM ⊕ Λ6TM . (11.15)

In type IIB we have that

adF̃ ' R⊕ (R⊕ Λ6TM ⊕ Λ6T ∗M)⊕ [(TM ⊗ T ∗M)⊕ Λ2T ∗M ⊕ Λ2TM ]⊕ (Λ+TM ⊕ Λ+T ∗M)
' R⊕ (TM ⊗ T ∗M)⊕ (S ⊗ S∗)0 ⊕ (S ⊗ Λ2TM)⊕ (S ⊗ Λ2T ∗M)⊕ Λ4TM ⊕ Λ4T ∗M

⊕ (S ⊗ Λ6TM)⊕ (S ⊗ Λ6T ∗M) ,
(11.16)

where (S⊗S∗)0 denotes the traceless part. The type IIA adjoint bundle reads as the first line of
eq. (11.16) but with Λ− → Λ+. In d = 7 this bundle transforms in the 10 +1330 representation
of E7(7) ×R+, where the singlet term is the one generating the R+ action. The sections of this
adjoint bundle can be written

R = l + r + a+ βi +Bi + γ + C + αi + ãi , (11.17)

where as usual l ∈ R+, r ∈ Γ(TM ⊗ T ∗M), etc. The adjoint action of the adjoint section
R ∈ Γ(adF̃ ) on the tangent section V ∈ Γ(E) is defined as V ′ = R · V , where each component
of V ′ = v′ + λ′i + ρ′ + σ′i + τ ′ is given by

v′ = lv + r · v + γyρ+ εijβ
iyλj + εijα

iyσj ,

λ′i = lλi + r · λi + aijλ
j − γyσi + vyBi + βiyρ− αiyτ ,

ρ′ = lρ+ r · ρ+ vyC + εijβ
iyσj + εijλ

i ∧Bj + γyτ ,

σ′i = lσi + r · σi + aijσ
j − C ∧ λi + ρ ∧Bi + βiyτ + vyãi ,

τ ′ = lτ + r · τ + εijjλ
i ∧ ãj − jρ ∧ C − εijjσi ∧Bj .

(11.18)
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In turn, the adjoint action of R on another adjoint section R′ is defined as the commutator
R′′ = [R,R′], whose components are

l′′ = 1
2(γyC − γ′yC) + 1

4εij(β
iyB′j − β′iyBj) + 3

4εij(α
iyã′j − α′iyãj) ,

r′′ = (r · r′ − r′ · r) + εij(jβiyjB′j − jβ′iyjBj)− 1
41εij(β

kyB′j − β′iyBj)
+ (jγyjC ′ − jγ′yjC)− 1

21(γyC ′ − γ′yC)
+ εij(jαiyjã′j − jα′iyjãj)− 3

4εij(α
iyã′j − α′iyãj) ,

a′′ij = (a · a′ − a′ · a)ij + εjk(βiyB′k − β′iyBk)− 1
2δ
i
jεkl(βkyB′l − β′kyBl)

+ εjk(αiyã′k − α′iyãk)− 1
2δ
i
jεkl(αkyã′l − α′kyãl) ,

β′′i = (r ·B′i − r′ ·Bi) + (a · β′ − a′ · β)i − (γyB′i − γ′yBi)− (αiyC ′ − α′iyC) ,
B′′i = (r ·B′i − r′ ·Bi) + (a ·B′ − a′ ·B)i + (βiyC ′ − β′iyC)− (γyã′i − γ′yãi) ,
γ′′ = (r · γ′ − r′ · γ) + εjiβ

i ∧ β′j + εij(αiyB′j − α′iyBj) ,
C ′′ = (r · C ′ − r′ · C)− εijBi ∧B′j + εij(βiyã′j − β′iyãj) ,
α′′i = (r · α′i − r′ · αi) + (a · α′ − a′ · α)i − (βi ∧ γ′ − β′i ∧ γ) ,
ã′′i = (r · ã′i − r′ · ãi) + (a · ã′ − a′ · ã)i + (Bi ∧ C ′ −B′i ∧ C) .

(11.19)

The generalised tangent bundle is defined together with some patching rules. For the overlap of
two local covers U(α) ∩ U(β) of M , a generalised vector or section V ∈ Γ(E) is patched by

V(α) = e
dΛi(αβ)+dΛ̃(αβ) · V(β) , (11.20)

where Λi(αβ) and Λ̃(αβ) are a local 1-form and 3-form respectively and · denotes the adjoint action
defined in eq. (11.18). The twisted and untwisted structures are then related according to

V = eB
i+C V̂ , R = eB

i+CR̂e−B
i−C , (11.21)

where the corresponding 3-form and 5-form field strengths are defined as

F i = dBi , F = dC − 1
2εijF

i ∧Bj ; Bi =
(
B2
C2

)i
, (11.22)

and the B field is written as an SL(2,R) doublet so that F 1 = dB2 ≡ H and F 2 = F3 = dC2,
i.e. the usual IIB supergravity fields. Comparing the action of eq. (11.20) with eq. (11.21), one
has that

Bi
(α) = Bi

(β) + dΛi(αβ) ,

C(α) = C(β) + dΛ̃(αβ) + 1
2εij dΛi(αβ) ∧B

j
(β) .

(11.23)

While the potentials are defined locally, their corresponding fields strengths are globally well-
defined.

The generalised Lie derivative in exceptional generalised geometry takes the form

LV V
′ = V N∂NV

′M − (∂ ×ad V )MNV
′N , (11.24)

similar to the O(d, d) generalised case. The derivative operator ∂M = (∂m, 0, . . . , 0) is embedded
in the 1-form component of the dual generalised tangent bundle E∗ via the map T ∗M → E∗.
The ×ad denotes a projection to the adjoint according to

×ad : E∗ ⊗ E → adF̃ . (11.25)
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The projection operator part in eq. (11.24) acts on a section according to

∂ ×ad V = ∂ ⊗ v + dλi + dρ+ dσi , (11.26)

and so ∂ ×ad V ∈ Γ(adF̃ ). As such, the last term in eq. (11.24) can be expanded using the
adjoint action in eq. (11.18). The generalised Lie derivative acting on a generalised vector V ′ is
then

LV V
′ = Lvv′ + (Lvλ′i − ιv′ dλi) + (Lvρ′ − ιv′ dρ+ εij dλi ∧ λ′j)

+ (Lvσ′i − ιv′ dσi + dρ ∧ λ′i − dλi ∧ ρ′)
+ (Lvτ ′ − εijjλ′i ∧ dσj + jρ′ ∧ dρ+ εijjσ

′i ∧ dλj) ,
(11.27)

the L denoting the ordinary Lie derivative. Similarly, the Lie derivative acting on a section of
the adjoint tangent bundle is given by

LVR = (Lvl + 1
2γy dρ+ 1

4εijβ
iydλj + 3

4εijα
jydσj)

+ (Lvr + jγyj dρ− 1
21γy dρ+ εijjβ

iyj dλj − 1
41εijβ

iydλj + εijjα
iyj dσj − 3

41εijα
iy dσj)

+ (Lvaij + εijβ
iydλj − 1

2δ
i
jεklβ

kydλl + εjkα
iy dσk − 1

2δ
i
jεklα

ky dσl)
+ (Lvβi − γy dλi − αiydρ)
+ (LvBi + r · dλi + aij dλj + βiydρ− γy dσi)
+ (Lvγ + εijα

iy dλj)
+ (LvC + r · dρ+ εij dλi ∧Bj + εijβ

iy dσj)
+ (Lvαi) + (Lãi + r · dσi + aij dσj − dλi ∧ C +Bi ∧ dρ) .

(11.28)

The hypermultiplet structure. In ordinary geometry the reduction of the structure group
to a subgroup G, i.e. a G-structure, provides an elegant way to describe geometries that preserve
some amount of supersymmetry. We saw this in chapter 4 with the reduction SU(3) ' SO(4) ⊂
SO(6). In the exceptional generalised case we again search for invariants of reduced structures,
but this time for subgroups of E7(7). As usual, the G-structure invariants correspond to singlets
after having decomposed E7(7) representations under a subgroup G.

Starting by considering the adjoint representation 133 of E7(7), a subgroup is for instance
SU(2)× Spin∗(12) ⊂ E7(7) under which the adjoint representation decomposes as

133→ (1,66) + (2,32) + (3,1) . (11.29)

The hypermultiplet structure is defined as the three tensors invariant under Spin∗(12) which
have the highest weight subalgebra of su(2), i.e. the last representation in eq. (11.29). The
H structure thus corresponds to the triplet denoted Jα with α = 1, 2, 3, and transforms in the
1331 representation of E7(7) ×R+, hence realising a Spin∗(12) ⊂ E7(7) ×R+-structure. They
are sections of the weighted adjoint bundle

Jα ∈ Γ(adF̃ ⊗ (detT ∗M)1/2) , (11.30)

where α = 1, 2, 3 label the Spin∗(12) invariant triplet. Further, the hypermultiplet structure
satisfies the su(2) algebra

[Jα, Jβ] = 2κεαβγJγ , (11.31)

where the commutator is the commutator of the adjoint representation defined in eq. (11.19),
and κ ∈ Γ((detT ∗M)1/2). The norm of the Jαs are calculated using the Killing form, which for
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11.2. E7(7) ×R+-structures

ed+1(d+1) is given generally as

tr(R,R′) = 1
2

[
1

8−dtr(r)tr(r
′) + tr(rr′) + tr(aa′) + γyC ′ + γ′yC

+ εij(βiyB′j + β′iyBj) + εij(αiyã′j + α′iyãj)
]

,
(11.32)

and which for the H structures reduces to

tr(JαJβ) = −κ2δαβ . (11.33)

The κ2 is the Ed+1(d+1) invariant volume form, which for compactifications of the form g10 =
e2Ag10−d + gd takes the form

κ = e−2φe(8−d)A√gd , (11.34)

including a dilaton dependence.
The space of all H structures is infinite, and has been proven to admit a hyper-Kähler metric.

Since the Jα at all points x ∈M are Spin∗(12) invariant, they can be seen to span a homogenous
space E7(7) × R+/Spin∗(12). Out of this space one can construct a fibre bundle ZH = F̃ /G

as the quotient of the generalised frame bundle F̃ and structure group G = Spin∗(12). An H
structure is then a section of this bundle, and E7(7)×R+/Spin∗(12) its fiber. The infinite space
of H structures AH are then given by the space of smooth sections AH = Γ(ZH).

The vector multiplet structure. There is also another type of G-structure admitted, the
vector multiplet structure or V structure. In this case one decomposes the fundamental repre-
sentation under E6(2) so that

56→ 27 + 2̄7 + 2 · 1 , (11.35)

where we find two singlets which also transform in the 561 representation of E7(7)×R+. Naming
these two singlets K and K̂, they are almost generic tensors except that they are required to
fulfil

q(K) > 0 , (11.36)

where q is the quartic invariant of E7(7), which is a certain symmetric quadratic polynomial that
is preserved. The E7(7) group can be defined as the group preserving a symplectic invariant s
and a symmetric quartic invariant q whose explicit form will not be necessary here. The second
singlet K̂ can be defined in terms of the first one K according to

s(V, K̂) = 2√
q(K,K,K,K)

q(V,K,K,K) , (11.37)

for some V ∈ Γ(E). The invariant tensors K and K̂ are often combined to form the complex
object

X ≡ K + iK̂ , (11.38)

which will be used later. The vector multiplet is defined by a section of the generalised tangent
bundle, i.e.

K ∈ Γ(E) . (11.39)

Analogous to the H structure, the V structure K|x at point x ∈ M stabilises a point in the
homogeneous space E7(7) × R+/E6(2). A V structure is then a section of the fibre bundle
ZV = F̃ /G with G = E6(2), and the infinite-dimensional space of V structures is given by
AV = Γ(ZV ) which it turns out admits a rigid special Kähler metric.
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11.3 Exceptional Calabi-Yau structures
Having introduced generalised structures that give extensions to the symplectic and complex
structures of Calabi-Yau manifolds for generic flux solutions, we now turn to the constraints
they must fulfil in order to describe a supersymmetric background.

The compatibility conditions between the invariant tensors ensure that their structure groups
have the overlap SU(6) = Spin∗(12)∩E6(2). An exceptional Calabi-Yau structure is an SU(6) ⊂
E7(7) ×R+ structure. As such, the H and V structures are required to fulfil

Jα ·X = 0 , tr(JαJβ) = −2
√
q(K)δαβ , (11.40)

where in the first condition one uses the adjoint · action on 56 × 133 → 56 as defined in eq.
(11.19). They are equivalent to requiring

J± ·X = 0 , i
2s(X, X̄) = κ2 , (11.41)

where s(X, X̄) denotes the symplectic invariant which can be written in terms of the generalised
tangent bundle section of eq. (11.13) according to

s(V, V ′) = −1
4

[
(ιvτ ′ − ιv′τ) + εij(λi ∧ σ′j − λ′i ∧ σj)− ρ ∧ ρ′

]
. (11.42)

Next, we will see how the familiar Calabi-Yau and generalised Calabi-Yau structures can be
incorporated into this formalism.

11.3.1 Embedding of type IIB Calabi-Yau structures

As familiar the Calabi-Yau admits a covariantly constant spinor η defining an SU(3) ⊂ Spin(6) '
SU(4)-structure, or equivalently it admits the 2-form J and 3-form Ω which should be compat-
ible. Choosing a frame {ea} on the metric of M we may set the invariant forms to be

J = e12 + e34 + e56 , and Ω = (e1 + ie2) ∧ (e3 + ie4) ∧ (e5 + ie6) , (11.43)

in a short notation with emn = em ∧ en. It is clear that these forms fulfil the compatibility
conditions of eq. (11.1) by construction. The almost complex structure of M is then as familiar
obtained by raising one index of the symplectic 2-form;

Imn = −Jmn = i
8(Ω̄mpqΩnpq − ΩmpqΩ̄npq) , and IqmΩqnp = iΩmnp . (11.44)

In terms of G-structures each of the two invariant forms J and Ω define Sp(6,R)- and SL(3,C)-
structures respectively. The compatibility conditions imply their common subgroup to be
Sp(6,R) ∩ SL(3,C) = SU(3).

In terms of exceptional generalised geometry, the H structure is defined as the symplectic
form J . The decomposition of the adjoint bundle is as in eq. (11.16) and the H structure triplet
Jα is defined in [127] according to

J+ = 1
2κn

iJ − 1
2 iκn

iJ# + 1
12 iκn

iJ ∧ J ∧ J + 1
12κn

iJ# ∧ J# ∧ J# ,

J− = 1
2κn̄

iJ + 1
2 iκn̄

iJ# − 1
12 iκn̄

iJ ∧ J ∧ J + 1
12κn̄

iJ# ∧ J# ∧ J# ,

J3 = 1
2κτ

i
j − 1

4κJ ∧ J + 1
4J

# ∧ J# ,

(11.45)

which we will prove to recover the familiar Calabi-Yau structures as well as their respective
compatibility conditions. Here J± ≡ J1 ± iJ2, ni = (−i, 1)i ∈ Γ(S) is an SL(2,R) doublet,
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τ = −iσ2 ∈ Γ((S ⊗ S∗)0) with σ2 being the second Pauli matrix and κ2 = vol6 = 1
6J ∧ J ∧ J is

the volume form of the Calabi-Yau.
As for the V structure it is simply given as

X = Ω , (11.46)

and the decomposition in tensors of the tangent bundle is as in eq. (11.12). We may now check
that these HV structures satisfy the constraints of eq. (11.31) and eq. (11.33). Starting with
the normalisation condition of eq. (11.33), we identify the components of R in eq. (11.17)
with the components of J+ in eq. (11.45), where we have βi = −1

2 iκn
iJ#, Bi = 1

2κn
iJ ,

αi = 1
12κn

iJ# ∧ J# ∧ J#, ãi = 1
12 iκn

iJ ∧ J ∧ J and l = r = a = γ = C = 0. Using the formula
in eq. (11.32), we have that for J+ and J− the Killing form becomes

tr(J+, J−) = 1
2

[
εij(βiyB′j + β′iyBj) + εij(αiyã′j + α′iyãj)

]
= 1

2

[
εij(−1

2 iκn
iJ#y1

2κn̄
jJ + 1

2 iκn̄
iJ#y1

2κn
jJ)

+ εij( 1
12κn

iJ# ∧ J# ∧ J#y− 1
12 iκn̄

jJ ∧ J ∧ J)

+ 1
12κn̄

iJ# ∧ J# ∧ J#y 1
12 iκn

jJ ∧ J ∧ J)
]

= κ2

2

[
i
4εij(−n

in̄j + n̄inj)J#yJ
]

+ κ2

2

[
i

(12)2 εij(−nin̄j + n̄inj)J# ∧ J# ∧ J#yJ ∧ J ∧ J
]

= κ2

2

[
i
4(2i+ 2i) · 3 + i

(12)2 (2i+ 2i) · 36
]

= −2κ2 ,

(11.47)

where we used that εijnin̄j = −2i, J#yJ = 3 and J# ∧ J# ∧ J#yJ ∧ J ∧ J = 36. This verifies
the H structure normalisation condition in eq. (11.32).

Continuing with the su(2) algebra condition in eq. (11.31), we begin with the commutator
J ′′ = [J+, J−]. The components are identified in the same manner as before and the J− have the
same components except for the change in complex conjugation i→ −i, ni → n̄i. The resulting
J ′′ = [J+, J−] will then have components

l′′ = 1
4εij(β

iyB′j − β′iyBj) + 3
4εij(α

iyã′j − α′iyãj) ∼ εij(nin̄j + n̄inj) = 0 ,
r′′ = εij(jβiyjB′j − jβ′iyjBj)− 1

41εij(β
iyB′j − β′iyBj)

+ εij(jαiyjã′j − jα′iyjãj)− 3
4εij(α

iyã′j − α′iyãj) ∼ εij(nin̄j + n̄inj) = 0 ,
a′′ij = εjk(βiyB′k − β′iyBk)− 1

2δ
i
jεkl(βkyB′l − β′kyBl)

+ εjk(αiyã′k − α′iyãk)− 1
2δ
i
jεkl(αkyã′l − α′kyãl)

= −iκ2(1
4J

#yJ + 1
(12)2J

# ∧ J# ∧ J#yJ ∧ J ∧ J)εjk(nin̄k + n̄ink) = −2iκ2τ ij ,

β′′i = 0 ,
B′′i = 0 ,
γ′′ = εijβ

i ∧ β′j + εij(αiyB′j − α′iyBj)
= 1

4κ
2J# ∧ J#εijn

in̄j + 1
2·12κ

2J# ∧ J# ∧ J#yJεij(−nin̄j + n̄inj) = −iκ2J# ∧ J# ,

C ′′ = εijB
i ∧B′j + εij(βiyã′j − β′iyãj)

= −1
4κ

2J ∧ Jεijnin̄j + 1
2·12κ

2J#yJ ∧ J ∧ Jεij(−nin̄j + n̄inj) = iκ2J ∧ J ,

α′′i = 0 ,
ã′′i = 0 .

(11.48)
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Hence by comparing with J3 in eq. (11.45), which has components aij = 1
2κτ

i
j , γ = 1

4κJ
# ∧J#

and C = −1
4κJ ∧ J , it is clear that J

′′ = −4iκJ3. This verifies the corresponding su(2) algebra
condition of eq. (11.31). The other combination that should be checked is J ′′ = [J+, J3], and
with the same identifications used before, the components of J ′′ become

l′′ = 0 ,
r′′ = 0 ,

a′′ij = 0 ,
β′′i = −(a′ · β)i + γ′yBi − αiyC ′

= 1
4 iκ

2τ ijn
jJ# + 3

8κ
2niJ# + 1

4·12κ
2niJ# ∧ J# ∧ J = κ2niJ# ,

B′′j = −(a′ ·B)i + βiyC ′ − γ′yãi

= −1
4κ

2τ ijn
jJ + 1

8 iκ
2J#yJ ∧ J − 1

4·12 iκ
2J# ∧ J#yJ ∧ J ∧ J = iκ2niJ ,

γ′′ = 0 ,
C ′′ = 0 ,
α′′i = −(a′ · α)i − βi ∧ γ′

= − 1
2·12κ

2τ ijn
jJ# ∧ J# ∧ J# + 1

8 iκ
2niJ# ∧ J# ∧ J# = 1

6 iκ
2niJ# ∧ J# ∧ J# ,

ã′′i = −(a′ · ã)i +Bi ∧ C ′

= − 1
2·12 iκ

2τ ijn
jJ ∧ J ∧ J − 1

8κ
2niJ ∧ J ∧ J = −1

6κ
2niJ ∧ J ∧ J ,

(11.49)

using τ ijnj = −ini. Comparing with J+ in eq. (11.45), we see that indeed [J+, J3] = 2iκJ+.
The equivalent applies for J−.

Proceeding to the normalisation condition in eq. (11.41) for the V structure, the symplectic
invariant in eq. (11.42) is straightforwardly calculated to

s(Ω, Ω̄) = 1
4Ω ∧ Ω̄ , (11.50)

as the V structure only has one component which we identify as Ω = ρ ∈ Γ(Λ3T ∗M) and
v = λi = σi = τ = 0 in the expression of eq. (11.13). Since vol6 = 1

6J
3 = i

8Ω∧ Ω̄ it is clear that
i
2s(Ω, Ω̄) = κ2 = vol6; thereby satisfying the normalisation condition.

Having checked the separate conditions on the H and V structure, the last thing to do is
to check the compatibility conditions of eq. (11.41). In doing so we use the adjoint action on
X = Ω, with the same identifications of Ω and J+ as before. The resulting components of the
adjoint action Ω′ = J+ · Ω are then

v′ = 0 ,
λ′i = −1

2 iκn
iJ#yΩ ,

ρ′ = 0 ,
σ′i = 1

2κn
iΩ ∧ J ,

τ ′ = 0 .

(11.51)

It is clear that J+ · Ω = −1
2 iκn

iJ#yΩ + 1
2κn

iΩ ∧ J vanish only if

J ∧ Ω = J ∧ Ω̄ = 0 , (11.52)

and as such the compatibility conditions of eq. (11.1) are recovered.
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11.3.2 Embedding of type II generalised Calabi-Yau structures

In this section we will see how the structures of exceptional generalised geometry incorporate
the O(d, d) generalised geometry case, which was first done in [129]. The H structure is given
by the pure spinors Φ± each of which define SU(3, 3)± structures, where the minus sign applies
to the type IIA case and the plus sign to IIB. Recall again that the NSNS B field is included in
the definition of the pure spinors.

The type II tangent bundle is given in eq. (11.11), to which we define sections

VII = v + ξ + ς + %+ τ , (11.53)

where v is a vector v ∈ Γ(TM), ξ a 1-form ξ ∈ Γ(T ∗M), the ς± ∈ Γ(Λ±T ∗M) is a sum of
even/odd forms, % ∈ Γ(Λ5T ∗M) is a 5-form and τ ∈ Γ(T ∗M ⊗ Λ6T ∗M) is a 1-form density.

Considering the decomposition of E7(7) under SL(2,R) × O(6, 6), we have that the adjoint
representation becomes

133→ (3,1) + (1,66) + (2,32∓) . (11.54)

In the adjoint bundle, as given on the first line in eq. (11.16) and which includes both type II
theories, i.e.

adF̃ ' R⊕ [R⊕Λ6TM ⊕Λ6T ∗M ]⊕ [(TM ⊗ T ∗M)⊕Λ2T ∗M ⊕Λ2TM ]⊕ [Λ∓TM ⊕Λ∓T ∗M ] ,
(11.55)

the three representations in eq. (11.54) correspond to the three terms in brackets. The first term
R is the singlet (1,1) which generates the R+ action. Since the general section R in eq. (11.17)
applies specifically to the type IIB adjoint bundle, we need to introduce another section of the
adjoint bundle in eq. (11.55). From the three decompositions of the adjoint representation in eq.
(11.54) corresponding to the last three bundles in eq. (11.55) we define the section µ ∈ Γ(adF̃ )
as

µ = µij + µAB + µi± , (11.56)

where µij ∈ Γ(R ⊕ Λ6TM ⊕ Λ6T ∗M), µAB ∈ Γ((TM ⊗ T ∗M) ⊕ Λ2T ∗M ⊕ Λ2TM) and
µi∓ ∈ Γ(Λ∓TM ⊕ Λ∓T ∗M). The SL(2,R) indices i = 1, 2 label the specific bundle compo-
nent according to µ1

1 = −µ2
2 ∈ R, µ1

2 ∈ Λ6T ∗M and µ2
1 ∈ Λ6TM , as well as µ1∓ = Λ∓T ∗M

and µ2∓ = Λ∓TM . The indices A,B = 1, . . . , 12 are the fundamental O(6, 6) indices.
The pure spinors Φ∓ lie in the µi∓, i.e. they are sections;

Φ∓ ∈ Γ(Λ∓T ∗M) , (11.57)

which may be seen as sections of Spin(6, 6)×R+ spinor bundles with positive and negaitve he-
licity. The R+ factor acts by rescaling. The spinors are pure in the sense that they are invariant
under a common subgroup SU(3, 3) ⊂ Spin(6, 6) and satisfy the compatibility conditions of eq.
(11.3). The generalised almost complex structures J ∓ ∈ Γ(adF̃ ) depend on the pure spinors
according to

J ∓AB = i
〈Φ∓,ΓABΦ̄∓〉
〈Φ∓, Φ̄∓〉

, (11.58)

where ΓAB with A,B = 1, . . . , 12 are the O(6, 6) gamma matrices. As such it belongs to the
µAB section above, i.e. J ± transforms in the (1,66) representation of eq. (11.54).

By defining a determinant bundle section

ui = 1
2

(
−iκ
κ−1

)
∈ Γ((detT ∗M)1/2 ⊗ (R⊕ Λ6T ∗M)) , (11.59)
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11. Calabi-Yau Structures in Exceptional Generalised Geometry

where εij raises and lowers indices according to εijuj = ui and uiūi = −i/2, the H structures
can be defined as

J+ = uiΦ∓ ,
J3 = κ(uiūj − ūiuj)− 1

2κJ
∓ .

(11.60)

The almost complex structure J is given as in eq. (11.58), and the volume is

κ2 = i
8 〈Φ

±, Φ̄±〉 . (11.61)

In order to check that these H structures work, it is necessary to check the su(2) algebra of the
H structure in eq. (11.31) and the normalisation condition in eq. (11.33). To do this we use
the adjoint action and Killing form as first given in [129] for each respective check. The adjoint
action is µ′′ = [µ, µ′] where the components are

µ′′ij = µikµ
′i
j − µ′ikµkj + 1

2εjk
[
〈µi∓, µ′k∓〉 − 〈µ′i∓, µk∓〉

]
,

µ′′AB = µACµ
′C
B − µ′ACµCB + 1

2εij 〈µ
i∓,ΓABµ′j∓〉 ,

µ′′i∓ = µijµ
′j∓ − µ′ijµj∓ + 1

4µABΓABµ′i∓ − 1
4µ
′
ABΓABµi∓ .

(11.62)

The su(2) algebra is satisfied when [J+, J−] = −4iκJ3. The J± consist purely of the sections
µi± = uiΦ∓ and so the adjoint action [J+, J−] must have components

µ′′ij = 1
2εjk

[
〈µi±, µ′k±〉 − 〈µ′i±, µk±〉

]
= 1

2εjk(u
iūk − ūiuk) 〈Φ∓, Φ̄∓〉 = 1

2(uiūj − ūiuj) 〈Φ∓, Φ̄∓〉 ,

µ′′AB = 1
2εij 〈µ

i∓,ΓABµ′j∓〉 = 1
2εiju

iūj 〈Φ±,ΓABΦ̄±〉 = − i
4 〈Φ

±,ΓABΦ̄±〉 ,
µ′′i∓ = 0 .

(11.63)
From eq. (11.60) we know that for J3 we identify µij = κ(uiūj + ūiuj) and µAB = −1

2κJ
∓A

B

and so multiplying each component with −4iκ and using the form of J ∓AB in eq. (11.58) we
have that

− 4iκJ3 = −4iκ2(uiūj + ūiuj)− i
4 〈Φ

∓,ΓABΦ̄∓〉 . (11.64)

It is clear that this exactly corresponds to the obtained expressions in eq. (11.63). For the
second condition [J+, J3] = 2iκJ+ one obtains µ′′ij = 0, µ′′AB = 0 and

µ′′i± = −µ′ijµj∓ − 1
4µ
′
ABΓABµi∓

= −κ(uiūj − ūiuj)ujΦ∓ − 1
4(−1

2)κJ ∓ABΓABuiΦ∓

= i
2κu

iΦ∓ + 3i
2 κu

iΦ∓ = 2iκJ+ ,

(11.65)

where we have used that uiui = 0 and the property
1
4J
∓
ABΓABΦ∓ = 3iΦ∓ . (11.66)

To check the normalisation in eq. (11.33), we use the Killing form

tr(µ, µ) = 1
2µ

i
jµ
j
i + 1

4µ
A
Bµ

B
A + 1

2εij 〈µ
i∓, µj∓〉 . (11.67)

It is clear that tr(J+, J+) = εiju
iuj 〈Φ∓,Φ∓〉 = 0 from uiui = 0, and for tr(J+, J−) = −2κ2 we

indeed have that

tr(J+, J−) = 1
2εij 〈u

iΦ∓, ūjΦ̄∓〉 = − i
4 〈Φ

∓, Φ̄∓〉 = −2κ2 . (11.68)

As for J3, by eq. (11.33) it should fulfil tr(J3, J3) = −κ2, which is proven by

tr(J3, J3) = 1
2κ

2(uiūj−ūiuj)(uj ūi−ūjui)+ 1
4(−1

2)κ2J ∓ABJ ∓BA = −1
4κ

2− 3
4κ

2 = −κ2 . (11.69)

184



11.3. Exceptional Calabi-Yau structures

We are now ready to proceed to the V structure, we first need to define sections of the
fundamental representation decomposed under SL(2,R)×O(6, 6) according to

56→ (2,12)⊕ (1,32) . (11.70)

We may name the elements transforming in these representations

λ = λiA + λ± , (11.71)

where λiA transforms in the (2,12) and λ± transforms in the (1,32) as a 32-dimensional Weyl
spinor with positive/negative chirality ±. Again the chirality depends on each type II theory as
follows: (λ+, µi−) for IIA and (λ−, µi+) for IIB. Now, the V structure can be defined as

X = Φ± , (11.72)

and its corresponding normalisation condition in eq. (11.41) is checked with the symplectic
invariant

s(λ, λ′) = 1
4

(
εijηABλ

iAλ′jB + 〈λ±, λ′±〉
)
, (11.73)

with ηAB being the O(6, 6) metric. The V structure in eq. (11.72) is then defined by the sections
λ± = Φ± and λiA = 0, so the normalisation condition in eq. (11.41) becomes

i
2s(Φ

±, Φ̄±) = i
8 〈Φ

±, Φ̄±〉 = κ2 , (11.74)

which is expected.
Finally, the compatibility condition J± ·X in eq. (11.41) is checked using the adjoint action

on a section of the fundamental representation λ′ = µ · λ as

λ′iA = µijλ
jA + µABλ

iB + 〈µi∓,ΓAλ±〉 ,
λ′± = 1

4µABΓABλ± + εijλ
iAΓAµj∓ .

(11.75)

With the same section identifications for J± as before, the only remaining component is

λ′iA = 〈µi∓,ΓAλ±〉 , (11.76)

and hence the compatibility condition results in that

J+ ·X = ui 〈Φ∓,ΓAΦ±〉 , J− ·X = ūi 〈Φ̄∓,ΓAΦ±〉 . (11.77)

Hence, for the H and V structures to be compatible, we have

〈Φ∓,ΓAΦ±〉 = 0 , (11.78)

which indeed recovers the compatibility equations in eq. (11.3) above and so {Φ+,Φ−} define
an SU(3)× SU(3)-structure.

11.3.3 Type IIB on MSU(2) ×R2 with RR flux

Having seen how our familiar type IIB Calabi-Yau structures and type II generalised Calabi-
Yau structures are embedded in this formalism, we now turn to our final example. While
the former example had no fluxes, and the latter NSNS flux, it is interesting to see how RR
fluxes may be incorporated on the same footing. To do so we turn to a space that can be

185



11. Calabi-Yau Structures in Exceptional Generalised Geometry

writtenM = MSU(2)×R2, whereMSU(2) is a 4D hyper-Kähler space which has SU(2)-structure.
Including a warp factor and RR 5-form flux F5 we write the metric as

ds2 = dŝ2(MSU(2)) + e−2A(dx2 + dy2)
≡ dŝ2(MSU(2)) + ζ2

1 + ζ2
2 ,

(11.79)

with dŝ2(MSU(2)) being the metric on the SU(2)-structure space. This hyper-Kähler space is
determined by three 2-forms ωα and the 1-forms ζ1 and ζ2. Given some frame {ea} on M we
may choose them to be

ω1 = e14 + e23 , ω2 = e13 − e24 , ω3 = e12 + e34 , ζ1 = e5 , ζ2 = e6 , (11.80)

with the same short notation emn ≡ em ∧ en as before. The corresponding three complex
structures are given by (Iα)mn = −(ωα)mn, and the volume form is given by

1
2ωα ∧ ωβ ∧ ζ1 ∧ ζ2 = δαβvol6 . (11.81)

The integrability conditions for this structure are given in [127] as

d(eAζi) = 0 , d(e2Aωα) = 0 , dA = −1
4 ? F5 . (11.82)

With this geometry we proceed to defining the exceptional structures. As we include the
5-form RR flux we work with twisted/untwisted structures. The untwisted H structure, which
does not include any flux, is defined as

Ĵα = −1
2κIα −

1
2κωα ∧ ζ1 ∧ ζ2 + 1

2κω
#
α ∧ ζ

#
1 ∧ ζ

#
2 , (11.83)

where now κ2 = e2Avol6. The 5-form flux consists of the 4-form RR potential C4 and 2-form
potentials Bi like eq. (11.22) which ”twists” the Ĵα to

Jα = eB
i+C4 Ĵαe

−Bi−C . (11.84)

As for the V structure, we define the untwisted V structure as

X̂ = n̄ieA(ζ1 − iζ2) + in̄ieA(ζ1 − iζ2) ∧ vol4 , (11.85)

where again ni = (−i, 1)i and 1
2ωα ∧ ωβ = ζαβvol4 is the volume of MSU(2). The present fluxes

twist the V structure to
X = eB

i+CX̂ . (11.86)

From this we are ready to check the compatibility condition

Ĵα·X̂ ∼ −n̄iIα·(ζ1−iζ2)−in̄(ωα∧ζ#
1 ∧ζ

#
2 )y((ζi−iζ2)∧vol4)−in̄iIα·((ζ1−iζ2)∧vol4) = 0 , (11.87)

which is satisfied when Iα · vol4 = 0 and ζ#
i yωα = 0.

11.4 Integrability as vanishing of moment maps
In previous sections we have dealt with the algebraic conditions of HV structures, and we are
now to turn to differential conditions on these invariant tensors. The conditions are necessary for
the supersymmetry spinors to satisfy the supersymmetry variations, in turn preserving super-
symmetry. We have seen before that in the absence of fluxes, the vanishing of intrinsic torsion
preserved supersymmetry.
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In order to define integrability conditions for the H structure one can introduce moment
maps. A moment map is a map from the symplectic manifold M to the dual of the Lie algebra
of the group acting on it, and can be viewed as a geometric generalisation of the classical
linear and angular momentum. The moment maps for the action of the group of generalised
diffeomorphisms, i.e. diffeomorphisms and form-field gauge transformations, on the infinite-
dimensional space of H structures is reasoned in [127] to be defined as

µα(V ) ≡ −1
2εαβγ

∫
M

tr(Jβ(LV Jγ)) . (11.88)

The H structure Jα is then said to be integrable, or torsion-free, if it fulfils

µα(V ) = 0 , ∀V ∈ Γ(E) , (11.89)

with µα as in eq. (11.88). The integrability condition for the V structure is simpler since
K ∈ Γ(E), so we need only consider the generalised Lie derivative along K. As such, the V
structure is integrable or torsion-free when fulfilling

LKK = 0 ⇒ LXX̄ = 0 , (11.90)

where again X = K + iK̂. This is equivalent to saying that the V structure should be invariant
under generalised diffeomorphisms generated by itself. We are now ready to describe the inte-
grability conditions for the combined HV structure, or exceptional Calabi-Yau structure, defined
by the compatible pair {Jα,K}. Firstly, both Jα and K should be integrable on their own, and
secondly they should satisfy the combined action

LXJα = 0 , (11.91)

i.e. the Jα should also be invariant under generalised diffeomorphisms generated by K, K̂.
In the next subsection we return to the examples of the previous section 11.3, and see what

their integrability conditions look like. The integrability conditions of eqs. (11.89), (11.90),
(11.91) are satisfied in each example. In order to show this, it is convenient to first start by
rewriting the moment map of eq. (11.88) in terms of {J±, J3} according to

µ+ ≡ −i
∫
M

tr(J3(LV J+)) = 0 , µ3 ≡ i
2

∫
M

tr(J−(LV J+)) = 0 . (11.92)

Extending the generalised Lie derivative to act on generalised tensors rather than just vectors
as in eq. (11.24), we have using the adjoint action in eq. (11.25) that it can be written

LVA = LvA− P ·A , P ≡ dλi + dρ+ dσi . (11.93)

Here P ∈ Γ(adF̃ ), the · is the adjoint action, v is the vector component of V ∈ Γ(E) and Lv
is the ordinary Lie derivative. Using this form of the Lie derivative, the moment map in eq.
(11.88) can be rewritten to

µα(V ) = −1
2εαβγ

∫
M

tr(Jβ(LvJγ − [P, Jγ ]))

= −1
2εαβγ

∫
M

tr(JβLvJγ)− 2
∫
M
κtr(P, Jα) ,

(11.94)

where on the second line we used the identity in eq. (11.31) and cyclicity of trace tr(A, [B,C]) =
tr(B[C,A]). Hence the moment maps of eq. (11.92) become

µ+ = −i
∫
M

tr(J3,LvJ+) + 2
∫
M
κtr(P, J+) , (11.95)

µ3 = i
2

∫
M

tr(J−,LvJ+)− 2
∫
M
κtr(P, J3) . (11.96)
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We are now ready to check the integrability conditions in each example. Later in section 11.5,
we will show that these integrability conditions are equivalent to the existence of a generalised
torsion-free connection that is compatible with the SU(6)-structure defined by Jα and K.

11.4.1 Integrability conditions on type IIB Calabi-Yau

With the general section V ∈ Γ(E) as given in eq. (11.13), one can consider the moment maps
of each of its components since the map is linear. Given the H structure in eq. (11.45), we
identify the components of the Jα as well as P in eq. (11.93) above with the components of
the general form of the adjoint section in eq. (11.17). Thereafter we calculate the components
of the moment maps using the explicit form of the Killing form in eq. (11.32). Since J3 and
J± have components of different forms, all components of tr(J3,LvJ+) vanish. Evaluating the
second term in eq. (11.95) for the λi-component, we get the first integrability condition

µ+(λi) ∼
∫
M
εijκ

2njJ#ydλi ∼
∫
M
εijn

jJ ∧ J ∧ dλi ∼
∫
M
εijn

j dJ ∧ J ∧ λi = 0 , (11.97)

using κ2 ∼ J3 so that κ2J# ∼ J ∧ J . For the σi-component the same analysis result in that

µ+(σi) ∼
∫
M
κ2εijn

jJ# ∧ J# ∧ J#y dσi ∼
∫
M
εijn

jy dσi = 0 . (11.98)

All other components vanish. As such we turn to the µ3 map, where it is found for the ρ-
component, the second term in eq. (11.96) becomes

µ3(ρ) ∼
∫
M
κ2J# ∧ J#y dρ ∼

∫
M
J ∧ dρ ∼

∫
M

dJ ∧ ρ = 0 . (11.99)

The last non-vanishing component is the one for v, which gives a non-vanishing contribution
from the first term in eq. (11.96), that is

µ3(v) =
∫
M
κ
(
J#yLv(κJ)− Lv(κJ#)yκJ + κJ# ∧ J# ∧ J#yLv(κJ ∧ J ∧ J)

− Lv(κJ# ∧ J# ∧ J#)yκJ ∧ J ∧ J
)

∼ 1
2

∫
M

(
J ∧ J ∧ LvJ + LvJ ∧ J ∧ J

)
= 0 ,

(11.100)

where the fourth term on the second line vanishes. With this last expression one may use the
fact that LvJ = ιv dω + dιvω to integrate by parts, so that this expression vanishes if dJ = 0.
This is also required by the vanishing of most of the other moment maps above.

We now proceed to the integrability conditions of the V structure given in eq. (11.90). The
generalised Lie derivative acting on a vector as given in eq. (11.27) becomes particularly simple
with the Calabi-Yau V structure in eq. (11.46). The only non-vanishing component corresponds
to the second last term in eq. (11.27), i.e.

LXX̄ = jΩ̄ ∧ dΩ = 0 . (11.101)

As for the final integrability condition of eq. (11.91), using the expression for the generalised
Lie derivative acting on an adjoint section eq. (11.28), we find

LXJ+ ∼ iniJ#ydΩ− niJ ∧ dΩ = 0 , (11.102)
LXJ3 ∼ −1

2J
# ∧ J#y dΩ− jJ# ∧ J#yj dΩ + 1

21J
# ∧ J#ydΩ = 0 . (11.103)

As such we see that the familiar Calabi-Yau integrability conditions dJ = 0 and dΩ = 0 are
recovered, as expected.
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11.4.2 Integrability conditions of generalised type II Calabi-Yau

The generalised tangent bundle in eq. (11.11) essentially corresponds to a decomposition of
the fundamental 56 under GL(6,R) ⊂ E7(7). This embedding corresponds to the action of
diffeomorphisms on the exceptional tangent space of eq. (11.11) in the exceptional generalised
geometry [129]. The same applies to the adjoint bundle in eq. (11.55) and the decomposition of
133. There is a subgroup of the adjoint bundle consisting of the p-form elements; B ∈ Λ2T ∗M ,
B̃ ∈ Λ6T ∗M and C∓ ∈ Λ∓T ∗M . Together they form an algebra [B + B̃ + C∓, B′, B̃′ + C ′∓] =
2 〈C∓, C ′∓〉+B ∧ C ′∓ −B′ ∧ C∓. These fields are in one-to-one correspondence with the form
fields of type II supergravity. Specifically, the B is the internal NSNS B field, the B̃ is an internal
6-form field corresponding to the 10D dual of the external Bµν , and C∓ are the odd/even RR
potentials of type IIA/IIB. The fields are also encoded in the SL(2,R)×O(6, 6) decomposition
of 133 in eq. (11.54). The embedding GL(6,R) ⊂ SL(2,R) × O(6, 6) ⊂ E7(7) can be shown
to break the SL(2,R) symmetry, so that its elements are described by another SL(2,R) vector
vi = (1, 0). The fields B, B̃ and C∓ can then be identified with the elements λ in eq. (11.56) as

µij = B̃vivj , B ∈ Λ2T ∗M ,

µAB =
(

0 0
B 0

)
, B̃ ∈ Λ6T ∗M ,

µi∓ = viC∓ , C∓ ∈ Λ∓T ∗M .

(11.104)

When there are non-trivial field strengths of these form fields the potentials B, B̃ and C∓ are
defined locally. On each patch U(α) on the manifold we have

λ(α) = e
C∓(α)+B̃(α)−B(α)λ , (11.105)

so that on U(α) ∩ U(β) the patching is given by gauge transformations

λ(α) = e
dς∓(αβ)+d%(αβ)−dξ(αβ)λ(β) . (11.106)

This implies for the potential fields on the patch that

B(α) = B(β) + dξ(αβ) ,

B̃(α) = B̃(β) + d%(αβ) + 〈dς±(αβ), e
− dξ(αβ)C∓(β)〉 ,

C∓(α) = C∓(α) + dς±(αβ) + e− dξ(αβ)C∓(β) ,

(11.107)

which makes the field strengths H3 = dB2 and F = eB dC∓ gauge invariant. Given the section
VII of the type II generalised tangent bundle in eq. (11.53), the twisting e−B+B̃+C∓ implies that
P in eq. (11.94) will take the form

P = dξ + d%vivj + vi dς± . (11.108)

The moment maps are again evaluated term-wise. Starting with eq. (11.95), the only non-
vanishing component is the one for ς± since J+ = uiΦ∓. Using the Killing form in eq. (11.67),
we have that

µ+(ς±) = −2
∫
M
κtr(PJ+) = −

∫
M
κεij 〈vi dς±, ujΦ∓〉 = −

∫
M
〈dς±,Φ∓〉 =

∫
M
〈ς±, dΦ∓〉 = 0 ,

(11.109)
using that viui = κ−1 and partial integration in the second last step. We see that this is fulfilled
when dΦ∓ = 0. Next, the moment map for J3 = given by eq. (11.96) is evaluated term-wise.
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Starting with the vector component ξ of the section P in eq. (11.108), only the second term of
µ3 in eq. (11.96) remains, and again using the Killing form in eq. (11.67) it takes the form

µ3(ξ) = −2
∫
M
κtr(P, J3) = −2

∫
M
κ1

4 dξAB(−1
2)κJ ∓ = − 1

32

∫
M

dξAB 〈Φ∓,ΓBAΦ̄∓〉 = 0 .
(11.110)

Here we have used the form of J ∓ as in eq. (11.58) and κ2 as in eq. (11.61). Using the Clifford
map this expression can be written

µ3(ξ) = − 1
32

∫
M
〈Φ∓, dξ ∧ Φ̄∓〉 = 1

32

∫
M

(
〈dΦ∓, ξ ∧ Φ̄∓〉+ 〈Φ∓, ξ ∧ dΦ̄∓〉

)
= 0 , (11.111)

where in the second step we have again used partial integration. This recovers the familiar
integrability conditions dΦ∓ = 0. For the 5-form component % we have analogously that

µ3(%) = −2
∫
M
κtr(d%vivj , κ(uj ūi − ūjui)) = −

∫
M
κ2 d%(κ−2 − κ−2) = 0 , (11.112)

using that viui = κ−1. Lastly we turn to the v-component. Only the first term in eq. (11.96)
remains and becomes

µ3(v) = i
2

∫
M

tr(J−,LvJ+) = i
2

∫
M
〈ūiΦ̄∓,Lv(ujΦ∓)〉 = 1

4

∫
M
〈Φ̄∓,LvΦ∓〉 = 0 , (11.113)

using ūiui = −i/2 and partial integrating where Lv(ui) = 0. With LvΦ∓ = ιv dΦ∓ + dιvΦ∓ in
the above expression and partial integrating the second term we find that eq. (11.113) becomes

µ3(v) = −1
4

∫
M
〈Φ̄∓, ιv dΦ∓〉+ 1

4

∫
M
〈dΦ̄∓, ιvΦ∓〉 = 0 . (11.114)

From this we again recover the expected integrability conditions dΦ∓ = 0. As for the integrabil-
ity conditions on the V structure given in eq. (11.90) and compatibility condition in eq. (11.91),
we use the generalised Lie derivative in eq. (11.93) to satisfy both conditions simultaneously.
Since X = Φ± does not have a v-component, we have that eq. (11.93) becomes

LX = −P ·A = −vi dΦ± ·A = 0 , (11.115)

having identified the section ς± = Φ± in eq. (11.108). Since dΦ± = 0 and A can be any
generalised tensor, the conditions in eqs. (11.90), (11.91) are satisfied.

11.4.3 Integrability conditions on MSU(2) ×R2 in type IIB with RR flux

With a non-vanishing RR flux F5 we need to use the modified moment map and twisted gen-
eralised Lie derivative in eq. (11.93). The moment map is given by eq. (11.94) where we take
P as given in eq. (11.93). Starting with the ρ̂-component of P , the H structure is given in eq.
(11.83) where we identify the 4-form 1

2κω
#
α ∧ ζ

#
1 ∧ ζ

#
2 as γ in eq. (11.17), hence

µα(ρ̂) = −2
∫
M
κtr(R, Jα) = −

∫
M
κ2ω#

α ∧ ζ
#
1 ∧ ζ

#
2 y dρ̂

∼
∫
M
e2Aωα ∧ dρ̂

∼
∫
M

d(e2Aωα) ∧ ρ̂ = 0 ,

(11.116)

again using the Killing form in eq. (11.32) and that κ2 = 1
2e

2Aωα ∧ ωα ∧ ζ1 ∧ ζ2. From this
vanishing component of the moment map, we recover the integrability condition d(e2Aωα) = 0
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as given in eq. (11.82). As for the v̂-component the calculation of the moment map is messier as
it involves ιv̂F in P as well as the first term in the moment map of eq. (11.94). One eventually
finds that

µα(v̂) ∼
∫
M

(
e2Aωα ∧ ιv̂F5 + 2e2Aεαβγ dA ∧ ωα ∧ ιv̂ωγ ∧ ζ1 ∧ ζ2

)
= 0 , (11.117)

which is fulfilled given dA = −1
4F5. Continuing with the V structure, from eq. (11.93) we have

that
L̃X̂A = −P ·A = 0 . (11.118)

The V structure is given in eq. (11.85), and its components are identified as λ̂i = n̄ieA(ζ1− iζ2)
and σ̂i = in̄ieA(ζ1 − iζ2) ∧ vol4 where λ̂, σ̂ are components of a generalised vector eq. (11.13).
Hence, with the form of P in eq. (11.93), eq. (11.118) is fulfilled when

P̂ = n̄i d
[
eA(ζ1 − iζ2

]
+ in̄i d

[
eA(ζ1 − iζ2) ∧ vol4

]
+ n̄ieA(ζ1 − iζ2) ∧ F5 = 0 . (11.119)

The previously attained integrability condition can be rewritten as d(e4Avol4) = 0, which sim-
plifies the second term in eq. (11.119) according to

d
[
e−4A(eA(ζ1 − iζ2) ∧ e4Avol4)

]
= d

[
e−4A(eA(ζ1 − iζ2)

]
∧ vol4 . (11.120)

From this the two other integrability conditions can be recovered. With d(eAζi) = 0 we see that
the first term in eq. (11.119) vanishes and the second can be written

d(eA(ζ1 − iζ2) ∧ vol4) = d(e−4A(eA(ζ1 − iζ2) ∧ e4Avol4))
= −4e−4A dA ∧ eA(ζ1 − iζ2) ∧ e4Avol4 ,

(11.121)

so that eq. (11.119) becomes

− 4idA ∧ (ζ1 − iζ2) ∧ vol4 + (ζ1 − iζ2) ∧ F5 = 0 . (11.122)

This is solved with dA = −1
4 ? F5 since generally λ#yρvol6 = ρ∧ ?λ, and so we recover all three

integrability conditions of eq. (11.82).

11.5 Generalised intrinsic torsion
Like in the case of ordinary geometry, integrability is defined as the existence of a generalised
torsion-free connection that is compatible with the G-structure, or equivalently as the vanishing
of the generalised intrinsic torsion. A G-compatible connection is a connection that preserves
tensors that are invariant under G, i.e. that preserve the ones that define the G-structure.

A general definition of generalised intrinsic torsion was constructed in [130], which we will
formulate here. In order to define generalised intrinsic torsion, we start by defining a covariant
derivative D acting on a vector V ∈ Γ(E) according to

DM · V N = ∂NV
N + ΓMP

NV P , (11.123)

with connection ΓMP
N ∈ Γ(E∗ ⊗ adF̃ ) and ∂M = (∂m, 0, . . . , 0). The generalised covariant

derivative should preserve the E7(7) ×R+-structure and also satisfy a Leibniz condition which
states that given a function f and V ∈ Γ(E), then

D(fV ) = f(DV ) + (df)⊗ V , (11.124)
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with df being the 1-form in T ∗M ⊂ E∗. This property implies that the action of the covariant
derivative can be extended to sections of any Ed(d) × R+ vector bundle, i.e. to any other
generalised tensor field. The generalised torsion of the connection in the generalised derivative
is then defined in the same manner as for ordinary geometry, i.e.

T (D) · V ′ = LDVW − LV V ′ , (11.125)

where V ′ is some generalised tensor and LDV is the generalised Lie derivative with respect to the
covariant derivative D rather than ∂. That is, eq. (11.24) is changed to

LDV V
′ = (V ·D)V ′ − (D ×ad V ) · V ′ . (11.126)

Denoting W ⊂ E∗ ⊗ adF̃ as the space of generalised torsions, in [131] one classified which
representations of Ed(d) ×R+ groups that appeared in W . For E7(7) ×R+ the torsion lies in

W ⊂ 56−1 ⊕ 912−1 , (11.127)

again with subscript denoting the R+ weight. One can also define the generalised G-structure
in terms of a principal bundle P̃G ⊂ F̃ of the generalised frame bundle F̃ . One talks of a
connection such that G is compatible with P̃G, which can always be found but will in general
not be torsion-free. Given a G-compatible connection in D, any other G-compatible connection
can be written as D′ = D + Σ where

Σ = D′ −D , Σ ∈ Γ(E∗ ⊕ adP̃G) . (11.128)

To consider the corresponding torsion of these connections, we may define a map τ such that
τ : E∗ ⊕ adP̃G →W so that

τ(Σ) = T ′ − T ∈ Γ(W ) , (11.129)

as the difference in generalised torsions of the corresponding connections. If imτ ⊆ W is the
image of τ that corresponds to the space of torsions contained in τ , the intrinsic torsion is
defined as the space of torsions not spanned by imτ ;

Wint ≡
W

imτ . (11.130)

The map imτ does in general not fill all of W . The generalised intrinsic torsion is hence defined
as the part of a torsion that can not be removed by a change Σ of our G-compatible connection
D. As such, the presence of intrinsic torsion is an obstruction to finding a G-compatible and
torsion-free connection. In the next section this rather abstract concept will be applied to the
H and V structures in our E7(7) ×R+ generalised geometry, which will hopefully clarify these
concepts.

11.5.1 Intrinsic torsion for hyper- and vector multiplet structures

Starting off by considering the H structure, we know that it is defined as a Spin∗(12)-structure.
Decomposing the torsion representation under the SU(2)× Spin∗(12) subgroup gives

W = 56 + 912→ 2(2,12) + (1,32) + (3,32) + (1,352) + (2,220) . (11.131)

The space of Spin∗(12)-compatible connections is constructed as the product space of the fun-
damental representation decomposed under SU(2)×Spin∗(12); 56→ (2,12) + (1,32), and the
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adjoint representation that is invariant under SU(2) which by eq. (11.29) is (1,66). As such,
we have the following representations

E∗ ⊗ adP̃Spin∗(12) = ((2,12) + (1,32))× (1,66)
= (2,12) + (2,220) + (1,32) + (1,352) .

(11.132)

By comparing this equation with the allowed torsion representations in eq. (11.131), we see
that all representations of E∗⊗ adP̃Spin∗(12) also appear in W , and so the Spin∗(12)-compatible
torsions must beWSpin∗(12) ⊆ (2,12)+(1,32)+(1,352)+(2,220). This corresponds to imτ(Σ)
in eq. (11.129) above. Now taking the quotient of W and WSpin∗(12), the intrinsic torsion is
determined to

W
Spin∗(12)
int = (2,12) + (3,32) . (11.133)

To prove the connection to the moment maps, we will now show that the H structure moment
map will set constraints on the very same representations as the intrinsic torsion. With D being
Spin∗(12) compatible, then by definition we must have DJα = 0. Given the moment map in eq.
(11.94), the Lie derivative in eq. (11.93) can be re-expressed in terms of D using eq. (11.125)
and eq (11.126). The moment map then takes the form

µα = −1
2εαβγ

∫
M

tr
[
Jβ
(
(V ·D)Jγ − [(D ×ad V ), Jγ ]− [T (V ), Jγ ]

)]
= −2

∫
M
κ
[
tr(Jα(D ×ad V )) + tr(JαT (V ))

]
= −

∫
κ2T

Spin∗(12)
int (Jα · V )− 2

∫
M
κtr(JαTSpin

∗(12)
int (V )) ,

(11.134)

where the first term on the first line we partial integrate to get DJα = 0 cancelling the term
on the second line. On the third line we use the fact that the choice of compatible connection
is arbitrary, so we may choose one that leaves only the intrinsic torsion. The first term on the
third line is obtained by considering the torsion of D when doing an integration by parts. The H
structure is defined as the (3,1) component under the decomposition of SU(2)×Spin∗(12), and
so the moment map in eq. (11.134) can only vanish if the intrinsic torsion does not have a (3,1)
component. This must hold for all values of V , which transforms in the 56→ (2,12) + (1,32)
representation. By eq. (11.133) the intrinsic torsion also transforms in this representation, hence
the (3,1) component of TSpin

∗(12)
int (V ) vanishes if both (2,12) and (1,32) vanish. Then it is clear

that for a Spin∗(12)-structure the moment map vanishes only if the intrinsic torsion vanish.
Proceeding to the V structure, the same analysis is made for the decomposition under E6(2).

The torsion representations decompose as

W = 56 + 912 = 1 + 2 · 27 + 78 + 351 + c.c. , (11.135)

and the space of of E6(2)-compatible connections is constructed like the product space of the
fundamental representation decomposed under E6(2); 56 → 1 + 27 + c.c. as in eq. (11.35) and
the adjoint representation 133→ 78. Hence the space is

E∗ ⊗ adP̃E6(2) = (1 + 27 + c.c.)× 78
= 27 + 78 + 351 + 1728 + c.c. ,

(11.136)

which implies that WE6(2) ⊆ 27 + 78 + 351 + c.c.. The intrinsic torsion is then what remains of
W after quoting out WE6(2) , which is

W
E6(2)
int = 1 + 27 + c.c. . (11.137)
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As in the case for the H structure, we will now prove the equivalence between the V structure
integrability condition of eq. (11.90) and the existence of a torsion-free E6(2)-structure. Using
eq. (11.125) and eq. (11.126), we have that

LKK = LDKK − T (K) ·K = −TE6(2)
int (K) ·K , (11.138)

where DK = 0. We know that K is a singlet under E6(2) and LKK is a generalised vector that
transforms in the 56 → 1 + 27 + c.c. representation. In order for the above equation to equal
zero then the 1 + 27 + c.c. part of TE6(2)

int must vanish. Since these are the same representations
as the intrinsic torsion in eq. (11.137), we conclude that the V structure integrability condition
LKK = 0 is equivalent to requiring a torsion-free E6(2)-structure.

11.5.2 Intrinsic torsion for ECY structures and supersymmetry

In this section we will show the equivalence of integrability and N = 2 supersymmetry with the
usage of generalised intrinsic torsion.

In Ed(d) × R+ generalised geometry, a generalised metric is invariant under Hd ⊂ Ed(d) ×
R+ transformations. In complex generalised geometry we have Hd = O(d, d) × R+ which
encompasses a generalised structure group G ⊂ Hd, which in this example is G = SU(3)×SU(3).
A generalised metric can be viewed to define a Hd sub-bundle P̃ ⊂ F̃ of the frame bundle F̃ ,
where Hd is the maximal compact subgroup of G. This is a generalisation of ordinary geometry,
where a metric can be defined as a O(d) sub-bundle of the GL(d,R) frame bundle for TM .

In d = 7 a generalised metric on a spin manifold, i.e. a manifold that admits spinors, is
invariant under the double cover of the maximal compact subgroup H̃7 = SU(8). Its spinors, or
fermionic degrees of freedom, will then be SU(8) representations. In [130] it was shown that the
fermion supersymmetry variations can be written in terms of an SU(8)-compatible connection
D, so that

Dε = 0 . (11.139)

The supersymmetry parameter can be seen as a section of a spinor bundle S which transforms
in the 8 representation of SU(8). The internal gravitino variation can be seen as a section
of a bundle J which transforms in the 56 of E7(7), hence the supersymmetry variations will
transform in S ⊕ J . For a single element in 8 the stabiliser group of SO(8) is SU(7), and for
two elements the stabiliser group is SU(6). This means that two supersymmetry spinors define
a global SU(6)-structure. Generally in d = 7, D = 4 the structure group is SO(7−N ) with N
being the number of supersymmetry parameters preserved. Note that this only applies for d = 7,
other values of d have different H̃d as well as structure groups G, as specified in [130]. Since the
spinors define an SO(6)-structure, a SO(6)-compatible connection D̂ can be found if D̂ε = 0,
which is also equivalent to the intrinsic torsion of the connection vanishing. This is what we
will show in this section and, as it turns out, the intrinsic torsion will be found to transform in
the very same representations as S⊕J , thus showing an equivalence between vanishing intrinsic
torsion and preserved supersymmetry.

Starting with the latter, the representations of the supersymmetry variations S ⊕ J of de-
compose under SU(2)× SU(6) according to

S ⊕ J = 8 + 56 = (2,1) + 2(1,6) + (2,15) + (1,20) . (11.140)

These are thus the representations in which the supersymmetry variations transform. Turning
to the torsion, a decomposition under SU(2)× SU(6) gives us

W = 56 + 912 = (1,1) + 2(1,15) + (1,21) + (1,35) + (1,105) + 3(2,6)
+ (2,20) + (2,84) + (3,1) + (3,15) + c.c. .

(11.141)
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The space of SU(6)-compatible connections is formed as the product space of the fundamental
form decomposed under SU(2) × SU(6); 56 → (1,1) + (2,6) + (1,15) + c.c and the adjoint
representation that is invariant under SU(2), i.e. 133→ (1,35), so

E∗ ⊗ adP̃SU(6) = ((1,1) + (2,6) + (1,15) + c.c)× (1,35)
= (1,15) + (1,21) + (1,35) + (1,105) + (1,384) + (2,6)

+ (2,84) + (2,120) + c.c. ,
(11.142)

and hence WSU(6) = (1,15)+(1,21)+(1,35)+(1,105)+(2,6)+(2,84). The intrinsic torsion
is then given by

W
SU(6)
int ⊆ (2,1)× (S + J) + c.c.

= (1,1) + (3,1) + 2(2,6) + (1,15) + (3,15) + (2,20) + c.c. .
(11.143)

Note that the equality here holds given that there are no kernels in the map

τ : KSU(6) ≡ E∗ ⊗ adP̃SU(6) →WSU(6) , (11.144)

which is checked by constructing the explicit maps, as was done thoroughly in Appendix G of
[127].

Now, decomposing the H and V structures under SU(2)×SU(6), the same analysis as above
will result in the intrinsic torsions

W
Spin∗(12)
int = (2,6) + (3,1) + (3,15) + c.c. ,

W
E6(2)
int = (1,1) + (2,6) + (1,15) + c.c. .

(11.145)

It is clear that the sum of these torsion does not equal the one in eq. (11.143), as the (2,20)
component is missing. From this we draw the conclusion that the H and V structures being
integrable separately is not enough to ensure that there is an integrable SU(6)-structure. This
is solved by the compatibility condition LXJα = 0. From eq. (11.125) and eq. (11.126) and
using DK = DJα = 0 we get

LXJα = LXJα − [T (X), Jα] = −[TSU(6)
int (X), Jα] = 0 . (11.146)

With X being a singlet and LXJα transforming in 133 which under decomposition of SU(6)
includes the missing component (2,20), which by this condition must vanish. This proves the
one-to-one correspondence between N = 2 supersymmetry and vanishing intrinsic torsion of the
exceptional generalised G-structure.

As a final note we remark that while this analysis is made for a Minskowski vacuum, the same
formalism and analysis has also been applied to the AdS case, see for instance [132][133]. This
differs from our Minkowski case in that the momentum maps are non-vanishing. This formalism
has also been used in the context of AdS/CFT duality in [134], where deformations of the CFT
are compared with deformations of the H and V structures. In the next chapter we will see
how to make use of the notion of intrinsic torsion of the generalised G-structure in the context
of exceptional field theory, and see how it can be used in formulating a consistent truncation
ansatz.
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12
Half-Maximal Supersymmetry in 4D from

Exceptional Field Theory

In this final chapter we will connect results from the previous chapter to E7(7) ExFT and see
how the language of exceptional generalised G-structures can be used to construct vacua in
exceptional field theory. In particular, in [135] this is done by interpreting the G-structure in
terms of the ExFT analogue of differential forms, and describing the intrinsic torsion in terms
of generalised tensors of the E7(7) representations. The vacua will then be defined in terms of
compatibility and integrability conditions. These can then be used when constructing consistent
truncations of exceptional field theory to 4D, or any other D ≥ 4 background.

A lot like in the case of DFT, a consistent truncation in ExFT is also a type of generalised
Scherk-Schwarz truncation made from twist matrices which requires globally well-defined gen-
eralised frame fields. This implies that all supersymmetries are preserved in the truncation.
In attempting to construct more realistic models in the formalism of exceptional field theory
it is of interest to construct models which do not preserve all supersymmetries. Half-maximal
backgrounds were first constructed from SL(5) ExFT in [136], and used to construct consistent
truncations to half-maximal gauged supergravities in 7D. In [135] these results were extended
to half-maximal supersymmetry in D ≥ 4 dimensions. In this chapter we discuss results of the
D = 4 case.

12.1 Half-maximal G-structures in terms of generalised differ-
ential forms

When compactifying on an internal manifold, a half-maximal theory will admit a half-maximal
amount of spinors on it. In d = 7 with the group of the exceptional tangent bundle being
E7(7), we recall that the spinors transform under SU(8). The G-structure is the stabiliser group
of SU(8), which from the previous section 11.5.2 we recall as SU(8 − N ), with N being the
amount of supersymmetry spinors preserved. In the half-maximal case N = 4 we thus have
that the corresponding G-structure is Ghalf = SU(4). In turn, the half-maximal commutant of
SU(4) ⊂ SU(8) is SU(4) × U(1), which happen to correspond to the R-symmetry group for
half-maximal supergravities in four dimensions.

A lot like in the previous chapter one will need constraints on the Ghalf-structures in order
for the compactification on M to result in a 4D Minkowski or AdS vacuum. Again, there is no
attempt to circumvent the no-go theorems required to construct a de Sitter vacuum.

As familiar by now, the G-structures can be defined in terms of a number of nowhere vanishing
tensors which are stabilised by the group G. Such generalised tensors can be thought of as
generalised differential forms which in turn can be connected to the sections of exceptional
vector bundles appearing in the tensor hierarchy of exceptional field theory. This is what is used
in [135] in order to describe the G-structures. The exceptional vector bundles Ri have fibres Ri
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corresponding to the representations of E7(7), where

R1 = 56 , R2 = 133 , R3 = 912 , (12.1)

are the representations that are used. With the three exceptional vector bundles R1,R2 and R3
which have fibres R1, R2 and R3 respectively, a type of wedge product ∧̃ is defined according to

R1∧̃R1 −→ R2 ,

R1∧̃R2 −→ R3 ,

R1∧̃sR1 −→ 1 ,

R1∧̃R1 −→ R2 ,

R1∧̃R2 −→ R3 ,

R1∧̃sR1 −→ 1 ,

(12.2)

where 1 is the singlet representation. For elements A1, A2 ∈ R1 and B ∈ R2, the wedge product
in eq. (12.2) acts like

(A1∧̃A2)α = A1
MA2

N (tα)MN ,

(A1∧̃sA1) = A1
MAN1 ωMN ,

(A∧̃B)Mα = (P912)Mα
NβA

NBβ ,

(12.3)

where againM,N = 1, . . . , 56 are the fundamental indices of E7(7) and α = 1, . . . , 133 are indices
of the adjoint representation. The tα are the E7(7) generators and ωMN the symplectic invariant.
The projector P912 onto the R3 representation is given by

(P912)Mα
Nβ = 1

7

(
−12(tβ)MP (tα)NP + 4(tβ)NP (tα)PM + δMN δ

α
β

)
, (12.4)

using the same conventions as in chapter 10. Having introduced some notation, we turn to the
description of the Ghalf-structure. In d = 7 we have

Ghalf = SU(4) ' SO(6) . (12.5)

This is embedded in the SO(6, 6) group which in turn lies in E7(7) ×R+, i.e.

Ghalf = SO(6) ⊂ SO(6, 6) ⊂ E7(7) ×R+ . (12.6)

It will prove useful to start by describing the SO(6, 6)-structures before reducing the structure
group to SO(6). A manifold with SO(6, 6)-structure admits the following:

• a scalar field κ of weight 1/2 ,

• a section J of the R2 bundle .

The maximal commutant of SO(6, 6) ⊂ E7(7) is SL(2), i.e. SL(2) is the largest subgroup whose
generators commute in E7(7) with generators of SO(6, 6); [Ai, Bj ] = 0 if Ai ∈ SO(6, 6) ⊂ E7(7)
and Bj ∈ SL(2) ⊂ E7(7). In constructing the section J the SL(2) commutant needs to be taken
into account, namely since SL(2) has three generators one will need to construct an SL(2) triplet
of sections on the R2 bundle. From eq. (12.1) we see that R2 is the adjoint representation of
E7(7), and so the R2 bundle corresponds to the adjoint bundle. The SL(2) triple sections on the
bundle will single out the SO(6, 6) dependence; specifically the sections are fields Jijα ≡ J(ij)

α

where i, j = 1, 2 are the fundamental SL(2) indices and α the adjoint indices of E7(7). This
leaves the degrees of freedom in the SO(6, 6)-structure. Decomposing the adjoint representation
of E7(7) decompose under E7(7) → SO(6, 6)× SL(2) according to

133 −→ (66,1)⊕ (32,2)⊕ (1,3) , (12.7)
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the sections Jij correspond to the (1,3) representation. These SO(6, 6)-structure defining fields
should satisfy the compatibility conditions

(Jij ⊗ Jkl)1539 = 0 ,
[Jij ,Jkl] = −2κ2(εi(kJl)j + εj(kJl)i) ,

tr(JijJkl) = JijαJklα = 12κ4εi(kεl)j ,

(12.8)

where εij ≡ ε[ij] is the SL(2)-invariant tensor which is also used when raising and lowering SL(2)
indices and fulfils εikεkj = δij . As probably has been noted by now, these Jij structures are very
similar to the H structure in the previous chapter. They respectively define SO(6, 6)- and
SO∗(12)-structure groups, both of which are different real forms of SO(12) and hence related by
analytic continuation. The Jij does not extend or generalise the H structure; would one extend
N = 2 to N = 4 the SO(6, 6)-structure does not embed the SO∗(12)-structure.

Proceeding to break the structure group down to SO(6) ⊂ SO(6, 6) ⊂ E7(7) ×R+, we first
have that the fundamental representation 56 is decomposed under SO(6, 6)× SL(2) according
to

56→ (12,2) + (32′,1) . (12.9)

Decomposing the SO(6, 6)→ SO(6)× SO(6)R where SO(6) is our wanted structure group and
SO(6)R its R-symmetry group, the (12,2) becomes a singlet under SO(6). That is, decomposing
under SO(6)× SO(6)R × SL(2) ⊂ SO(6, 6)× SL(2) ⊂ E7(7) we have that

(12,2)→ (6,1,2)⊕ (1,6,2) . (12.10)

The vector transforming in the singlet (1,6,2) under SO(6) is named Kui where u = 1, . . . , 6
are SO(6)R fundamental indices and i = 1, 2 are the SL(2) indices. Hence there are twelve such
vectors, which can be seen to fulfil the compatibility conditions with the Juis according to

Jui∧̃Kjk = 0 ,
Jui∧̃Jvj = δuvKij + εijJuv .

(12.11)

The first condition is a consequence of that under SO(6, 6)×SL(2), the Jij transform in the (1,3)
whereas the Kui transform in the (12,2). The second equations encodes for the decomposition
in eq. (12.10). The Jij are then seen to break the E7(7) to SO(6, 6), which in turn is broken
to the SO(6) by the Kuis. Combining the conditions in eq. (12.8) with those of eq. (12.11) we
have that

Jij = 1
6K

u
j∧̃Jui ,

Kuv = 1
2K

u
j∧̃Jui ,

Kui∧̃SKvj = −6κ2δuvεij ,

(12.12)

i.e. so that the Jij and Kuv are actually completely determined by the Kuis. Further the Jij
and Kuv act on the Jui as SL(2) and SO(6)R transformations respectively, so that

Jij · Kuk = 2κ2εk(i|Ku|j) ,
Kuv · Kwi = −κ2δw[uKv]i ,

(12.13)

where the adjoint action is defined as

(Jij · Kuk)M = Jijα(tα)MNJukN . (12.14)
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12. Half-Maximal Supersymmetry in 4D from Exceptional Field Theory

12.2 Intrinsic torsion of the SO(6)-structure
Instrinsic torsion is the obstruction of having a Ghalf-compatible connection, which in turn
implies a measure of supersymmetry breaking by the internal manifold. In our case, a Ghalf-
compatible connection is defined as a connection of the covariant derivative D such that

DJ = DĴ = DK = Dκ = 0 . (12.15)

The corresponding torsion of this connection is given by the ExFT analogue of the ordinary
definition, namely

(LDξ − Lξ)VM = TMNP ξ
NV P , (12.16)

with Lξ being the generalised Lie derivative as defined in eq. (10.2) acting on the generalised
vector field VM , LDξ is the Lie derivative with all ingoing derivatives replaced with covariant
derivative D and T is the torsion. The space of torsions W lies in W ⊂ R∗1 ⊗ P ≡ 56⊗ 133.

12.2.1 Intrinsic torsion of the SO(6, 6)-structure
Turning to the intrinsic torsion of the SO(6)-structure, we are to first find the instrinsic torsion
of the SO(6, 6)-structure. With the same analysis as in the previous chapter, we decompose the
torsion of E7(7) under SO(6, 6)× SL(2) where it has been found that

W = 56⊕ 912 = (32′,1)⊕ (352′,1)⊕ 2(12,2)⊕ (220,2)⊕ (32′,3) . (12.17)

The space of SO(6, 6) connections is given by

KSO(6,6) =
(
(12,2)⊕ (32′,1)

)
⊕ (66,1)

= (32′,1)⊕ (352′,1)⊕ (1728′,1)⊕ (12,2)⊕ (220,2)⊕ (560,2) .
(12.18)

Out of these, only the last four representations transform in the same representations as the
torsion, as we see by comparison to eq. (12.17). Hence, the image of the torsion map imτSO(6,6) :
KSO(6,6) →W is

imτSO(6,6) = (32′,1)⊕ (352′,1)⊕ (12,2)⊕ (220,2) . (12.19)

The subset of W that is independent of the choice of Ghalf is defined as the intrinsic torsion and
hence given by

W int
SO(6,6) = W

imτSO(6,6)
= (12,2)⊕ (32′,3) . (12.20)

Given two connections D created from two different Ghalf-structures, their difference D−D′ lies
in the space of compatible connections KGhalf ≡ R∗1⊗ad(Ghalf) and is tensor valued. Eq. (12.16)
then defines the torsion of this tensor. The next task is to find an expression of the intrinsic
torsion in terms of our different structures. From eq. (12.16) we see that the intrinsic torsion
is a generalised tensor that has one derivative in it which by definition is independent of the
Ghalf-structure.

To find an expression of the SO(6, 6) intrinsic torsion one considers derivatives of the (Jij , κ)
structure. It is natural to combine

(dJij)M = −12(tα)MN∂NJ αij − 1
2ω

MNWijN , (12.21)

where theWijN s are three compensator fields. These were introduced in chapter 10, where given
any tensor that is a section of the R2 bundle, a covariant derivative can be constructed as in
eq. (12.21) where the compensator field W must fulfil

(tα)MNWN∂N = ωMNWM∂N = (tα)MNWMWN = 0 . (12.22)
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12.2. Intrinsic torsion of the SO(6)-structure

It is generally not clear how to construct an explicit compensator field associated to a completely
general tensor fulfilling eq. (12.21). However, since we have information about the triplet Jij
from its compatibility requirements in eq. (12.8), an appropriate compensator field is found in
[135] to be

WijM = − 1
2κ2Jk(i

α∂MJ kj)α , (12.23)
which makes eq. (12.21) take the form

(dJij)M = −12(tα)MN∂NJ αij + 1
4κ2ω

MNJk(i
α∂MJ kj)α . (12.24)

12.2.2 Reduction to the intrinsic torsion of the SO(6)-structure
Turning to the intrinsic torsion of the SO(6)-structure, decomposing E7(7) → SO(6)×SO(6)R×
SL(2) will give the space of torsion

W = 56⊕ 912
= (15,6,2)⊕ (6,15,2)⊕ (10,1,2)⊕ (1̄0,1,2)⊕ (1,10,2)⊕ (1, 1̄0,2)
⊕ 2(6,1,2)⊕ 2(1,6,2)⊕ . . . ,

(12.25)

where the dots are representations that only contain spinorial representations of SO(6) and will
not be needed here as they will vanish in a half-maximal background. The space of SO(6)
connections is given by

KSO(6) = ((6,1,2)⊕ (1,6,2)⊕ . . .)⊗ (15,1,1)
= (64,1,2)⊕ (15,6,2)⊕ (10,1,2)⊕ (1̄0,1,2)⊕ (6,1,2)⊕ . . . ,

(12.26)

so that the image of the torsion map becomes

imτSO(6) = (15,6,2)⊕ (10,1,2)⊕ (1̄0,1,2)⊕ (6,1,2)⊕ . . . . (12.27)

Hence, the intrinsic torsion is given by

W int
SO(6) = (6,15,2)⊕ (10,1,2)⊕ (1̄0,1,2)⊕ (6,1,2)⊕ (1,6,2)⊕ . . . . (12.28)

In constructing an explicit expression for the intrinsic torsion, one considers derivatives of the
SO(6)-structure combined with different tensors. For instance we can use the expression for
dJij in eq. (12.24). Similarly as for dJij , one can define a derivative of the Kuv generators of
SO(6)R such that

dKuvM = −12(tα)MN∂NKuvα − 1
2ω

MNωMNK[u
iK∂NKv]i

L , (12.29)

which can be understood in the same way as for Kuv with the second term being a compensator
field. Further, it is convenient to label the occurring tensors transforming in the SO(6) ×
SO(6)R × SL(2) representations according to

TM1 ∈ (6,1,2) , T2ui ∈ (1,6,2) ,
R1uv

M ∈ (6,15,2) , R2uvwi ∈ (1,10,2)⊕ (1, 1̄0,2) ,
(12.30)

which implies that
T1

MKuM = R1uv
MKuM = 0 . (12.31)

In order to find the possible tensorial combinations of SO(6)-structure derivatives, one begins
by combining the compatibility conditions in eq. (12.8) and eq. (12.11) with the derivatives in
eq. (12.24) and eq. (12.29) which yield

LKuiKvj + LKvjKui = δuv dJij + εij dKuv . (12.32)
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12. Half-Maximal Supersymmetry in 4D from Exceptional Field Theory

We also know that the Jij can be expressed in terms of Kui, and so LKuiJjk would not be inde-
pendent of the terms in eq. (12.32). Hence, these are then the only independent combinations
of SO(6) derivatives. In terms of the representations of eq. (12.30), they are given by

dJij = −1
2Jij · T1 − κKu(iT2

u
j) + . . . ,

dKuv = 2κ2R1uv − κR2uvwKwk − κT2[u
kKv]k + . . . ,

LKuiKvj − LKvjKui = −2κR2uvw(iKwj) + κJij ·R1uv + κT2[u
kKv]k − κT2u(iK|v|j

− 2κεijT2(u
kKv)k − 1

2κδuvεijT2wkJ
wk + 1

2κδuvεijκ
2T1 + . . . .

(12.33)

However, since κ2 also transforms in (6,1,2), these extra representations can be set to vanish
by assuming that LKuiκ2 = 0. So together with the conditions in eq. (12.33), these equations
define the intrinsic torsion.

12.2.3 Half-maximal flux vacua

Having identified the intrinsic torsion of the SO(6)-structure, we know from the previous chapter
that the vanishing of the intrinsic torsion is required by a Minkowski vacuum preserving a half-
maximal amount of supersymmetries, i.e.

dJij = dKuv = LKuiKui = LKuiκ
2 = 0 . (12.34)

The Minkowski4 vacuum is then defined by an integrable SO(6)-structure. A half-maximal
AdS4 vacuum can be obtained in a similar manner by identifying in which representations the
supersymmetry variations transform. It turns out that in an AdS4 vacuum, only the (1,10,2)
component will vanish, so by eq. (12.33) we must have that the defining equations are given by

dJij = LKuiκ
2 = 0 , (12.35)

and
dKuv = −κR2uvwiKwi , LKuiKvj = −κR2uvwiKwj , (12.36)

with κR2uvwi = − 1
3!εuvwxyzδijκR

xyz
2

j being a constant. Since the intrinsic torsion does not
vanish completely, the above structure can be called weakly integrable.

12.3 Application in consistent truncations
When studying half-maximal consistent truncations it has proven useful to reformulate the E7(7)
ExFT in terms of the SO(6)-structure instead of the generalised metric. In doing so the ExFT
will have manifest N = 4 before truncation. The scalar potential is of particular interest, and it
may be found by comparing its general form with the established 4D half-maximal supergravity,
to find that

V = −1
4

(
3
4T

ui
2 T2u

jδij − 1
16κ2T

M
1 TN1 Jijα(tα)MNδ

ij + 1
3R2uvwiR

uvw
2 jδ

ij

− 1
12κ2R1uv

MRuv1
N (tα)MNJ αij δij − 1

9R2uvwiR2xyzjε
uvwxyzεij

)
+ . . . .

(12.37)

Again the ellipsis refers to the spinorial terms that vanish in the truncation.
The truncation ansatz is given by expanding all ExFT fields in terms of a background SO(6)-

structure, which is defined by sections of three bundles;

nij ∈ Γ(RY1 ) , ΘAj ∈ Γ(RY2 ) , Υ ∈ Γ(SY ) , (12.38)
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12.3. Application in consistent truncations

where as usual i, j are SL(2) indices and A = 1, . . . , 6−N are SO(6−N) indices. The N will
encode the number of vector multiplets in the theory. The R and S are bundles defined over
the internal space on which the truncation happens, hence they depend only on the YM internal
coordinates. The sections in eq. (12.38) have compatibility on their own, given by

(nij ⊗ nkl)|1539 = 0 ,
[nij , nkl] = −2Υ2(εi(knl)j + εj(knl)i) ,

tr(nijnkl) = 12Υ4εi(kεl)j ,

ΘAi ∧ njk = 0 ,
ΘAi ∧ΘBj = ηABnij + εijΘAB ,

(12.39)

which ensures that the background has SO(6 − N)-structure. The truncation ansatz is then
given as the expansion of the SO(6)-structure in terms of the background SO(6 −N) fields as
follows:

Jij(x, Y ) = ai
k(x)aj l(x)nkl(Y ) ,

Kui(x, Y ) = bu
A(x)aij(x)mAj(Y ) ,

κ(x, Y ) = Υ(Y ) ,
gµν(x, Y ) = ḡµν(x)Υ(Y ) .

(12.40)

As usual the coefficients ḡµν(x), aik(x) and buA(x) will become scalar fields in the 4D effective
theory. The expansion of κ(x, Y ) does not have a scalar coefficient as it would simply be a
rescaling of Υ(Y ) and be independent of YM . The compatibility conditions of Jij in eq. (12.8)
and Kui in eq. (12.11) impose the conditions

ai
kaj

lεkl = εij , bu
Abv

BηAB = δuv , (12.41)

on the ingoing scalar fields. From these scalar fields one can construct combinations that are
invariant under R-symmetry, namely

Hij = ai
kaj

lδkl , PAB− = bu
AbuB = 1

2(ηAB −HAB) , (12.42)

which will be useful later. The Hij and HAB parametrise the coset spaces SL(2)/U(1) and
SO(6, N)/(SO(6)× SO(N)) respectively, which makes the scalar manifold parametrise

Mscalar = SO(6, N)
SO(6)× SO(N) ×

SL(2)
U(1) . (12.43)

This is equivalent to the scalar manifold of half-maximal gauge supergravity with N vector
multiplets. Further, in order to have a consistent truncation there are three conditions that
need to be imposed on the intrinsic torsion of the SO(6 − N)-structure. First, it should not
include any spinor representation of SO(6 − N), and secondly we should be able to expand
the intrinsic torsion in terms of a finite number of fields that define the SO(6 − N)-structure
background. The second condition implies that the vector representation of SO(6−N) should
vanish. With these conditions the SO(6 − N) intrinsic torsion can be written on the general
form

dnij = −ωA(if
A
j) ,

dΘMN = −fABCiΘCi − f[A
iΘb]i ,

LΘAΥ2 = 0 ,

LΘAiΘBj = −fABC(iΘC
j) + 1

2

(
fB(i|ΘA|j) − fA(i|ΘB|j) − fηABΘC(if

C
j)
)

− εij
(
fA(

iΘB)i + 1
4ηABfCiΘ

Ci − 1
2f[A

iΘB]i
)
,

(12.44)
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for some fields fABCi and fAi. The third requirement is that these fields are constant. The
f become the embedding tensors in the effective 4D gauged half-maximal supergravity, and
have the most general form possible. As in the DFT case, the gaugings f also have to satisfy
some quadratic constraints. In this case they will follow from the closure of the generalised
Lie derivative, which in turn is fulfilled as long as the section constraint is fulfilled by our
SO(6−N)-structures. This implies that the quadratic constraints are satisfied automatically.

From the conditions of eq. (12.44) one can calculate the components of the intrinsic torsion
to find that

T1 = Υ−2PAB+ fA
iΘBi ,

T2ui = Υ−1ai
jbu

AfAj ,

Ruv
M = Υ−2bu

Abv
BP+

CDfABD
iΘCi ,

Ruvwi = Υ−1bu
Abv

Bbw
Cai

jfABCj ,

(12.45)

where the other (spinorial) components vanish. Using this in the potential of eq. (12.37), as
well as the formula[
PAD− PBE− (1

3P
CF
− + PCF+ )− 1

12H
ADHBEHCF + 1

4H
ADηBEηCF − 1

6η
ADηBEηCF

]
AABCADEF = 0 ,

(12.46)
fulfilled by any antisymmetric tensor AABC ≡ A[ABC], the potential reduces to

V = −1
4Υ4

[
fABCifDEF jHij

(
1
12H

ADHBEHCF − 1
4H

ADηBEηCF + 1
6η

ADηBEηCF
)

− 1
9fABCifDEF jε

ijHABCDEF + 3
4fA

ifB
jHijHAB

]
,

(12.47)

where we have defined

HABCDEF ≡ euvwxyzbuAbvBbwCbxDbyEbzF . (12.48)

The scalar potential in eq. (12.37) agrees with the scalar potential in half-maximal gauged
supergravity in 4D with N vector multiplets [116]. The only Y dependence is found in the
conformal factors Υ, which guarantees a consistent truncation [135].

Connecting this with our previously found SO(6)-structures, we have found a consistent
truncation to any half-maximal Minkowski4 or AdS4 vacuum of type II or D = 11 supergravity
which only have the gravitional supermultiplet. The tensors Jij and Kui define an SO(6)-
structure, which is integrable in the Minkowski case and weakly integrable in the AdS case, can
be used in the truncation ansatz eq. (12.39) as

nij(Y ) = Jij(Y ) , Θui = Kui(Y ) , Υ(Y ) = κ(Y ) . (12.49)

The components of the intrinsic torsion are then given by

dnij = LθuiΥ2 = 0 ,
dΘuv = −κR2uvwiΘwi ,

LΘuiKwj = −κR2uvwiΘw
j ,

(12.50)

in the AdS case, and with vanishing right-hand side for Minkowski. By comparing with eq.
(12.44) we see that this indeed fulfils the conditions to be a consistent truncations. In this case
the obtained 4D half-maximal supergravity obtained has embedding tensor fuvwi = κR2uvwi.
With this we end our discussion on consistent truncations in ExFT. This is an ongoing field of
research. The tools regarding half-maximal G-structures has recently been used to construct
supersymmetric warped AdS7 vacua of massive IIA and AdS6 vacua of IIB supergravity which
include vector mutiplets [137][138]. Further, there have also been recent development in the
discussion of orbifold and orientifold planes in the context of ExFT [139].
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13
Conclusions and Outlook

The principal aim of this thesis was to study flux backgrounds. It is clear that the area of flux
compactifications in string theory is a vast and varied field that has been very fruitful.

In this thesis we have covered a large scope, introducing basic notions of supersymmetry,
Kaluza-Klein compactification and algebraic topology concepts, to explore various aspects of
flux compactifications and duality-covariant extensions of supergravity. We have seen that com-
pactifications of the two type II theories on Calabi-Yau manifolds result in effective actions with
moduli fields, and how their solutions are related via mirror symmetry. Orientifold solutions
project discrete symmetries, which mod out parts of the type II fields, and result in effective
theories with a lower amount of preserved supersymmetry. Including a non-vanishing expecta-
tion values of the type II fields, i.e. flux, in the compactification, some moduli can be stabilised.
In most cases the fluxes are not enough to stabilise all moduli, although there are examples
of type IIA with all moduli fixed, for example on the orientifold T 6/(Z2 ⊗ Z2). Further, the
inclusion of fluxes breaks supersymmetry partially or completely in a stable way which in turn
generates warp factors that are used in finding large hierarchies of scales. Quantum corrections
can be introduced to fix remaining moduli, however their incorporation is not always under
theoretical control and is still a current area of research. Non-geometric compactifications are
available but their geometrical interpretation is not always understood, and they are by this
reason often neglected. Though vast progress has been made, it remains to be seen whether a de
Sitter vacuum can be constructed using quantum corrections and if the underlying difficulties
largely come from computational hardness or an underlying reason.

When considering moduli stabilisation by fluxes, their back-reaction on the geometry of the
internal manifold is usually neglected, since all non-trivial flux backgrounds are manifolds with
torsion. This is however neatly formulated in complex generalised geometry, which is a differ-
ential geometric description of the allowed internal manifolds where the back-reaction to the
fluxes is taken to account by unifying complex and symplectic geometry. This provides a simple
but powerful geometrical formulation of supersymmetric string backgrounds. In this formula-
tion bosonic degrees of freedom are ”geometrised” in the way that they are packaged into a
generalised metric which is equivalent to a G-structure on the generalised tangent bundle. A
geometrical interpretation of generic flux backgrounds in both type II and D = 11 supergravity
with Minkowski spacetime was constructed using the language of E7(7)×R+ generalised geome-
try. Integrability of the G-structure is then defined as the existence of a generalised torsion-free
connection that is compatible with the G-structure, which is equivalent to the vanishing of the
generalised intrinsic torsion. The integrability was then shown to be in one-to-one correspon-
dence with the Killing spinor equations, due to the fact that G is the stabiliser group of N
Killing spinors. This defines what is called exceptional Calabi-Yau spaces, incorporating the
usual compatibility conditions found in both ordinary and complex generalised geometry.

In the final chapter we studied half-maximal supersymmetric backgrounds in ExFT in 4D
using the formalism of exceptional generalised G-structures. These backgrounds admitted glob-
ally defined nowhere vanishing tensors that are viewed as the ExFT analogue of differential
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forms, where the intrinsic torsion of Ghalf-structures could be written in terms of derivatives of
these tensors. Using them, integrability or weak integrability conditions could be written down,
implying a 4D half-maximal warped Minkowski or AdS vacuum.

The exceptional Calabi-Yau backgrounds, as well as their corresponding AdS solutions de-
scribed by exceptional Sasaki-Einstein structures, both preserve N = 2 supersymmetry. AdS
backgrounds with N = 1 have been described in exceptional generalised geometry [140]. Maxi-
mally symmetric backgrounds are described by parallelisations in both exceptional generalised
geometry and ExFT. We have seen descriptions of half-maximal backgrounds in ExFT, though
the corresponding picture in exceptional generalised geometry remains to be seen. A natural
extension for future work is then to find a description of supergravity flux backgrounds in terms
of both exceptional generalised geometry and ExFT preserving any amount of supersymmetry.
The ultimate goal should be a classification of all supersymmetric backgrounds. Such a clas-
sification should also provide information on new examples of consistent truncations. Further,
when structures preserving different amounts of supersymmetry are identified, the next task
should be to classify them and find a coherent structure which describes them.

Further, these areas are also relevant in holography, field theory and pure mathematics as it
covers various fields of algebraic geometry and topology as well as group theory. A fun thought
regarding the recent developments in describing orientifold planes in ExFT, circumventing no-go
theorems, is that it would be interesting to see if a de Sitter vacuum in ExFT could be con-
structed. It remains to be seen what the U-duality covariant approach of ExFT and exceptional
generalised geometry might reveal, so that maybe one could better understand the geometrical
nature of dualities in string theory. As such, generalised geometry and ExFT in this context are
well-worth further studies.
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A
Notation and Conventions

We gather some conventions used in this text even though they should be stated when used.
Some clash of notation between chapters is unavoidable but their mening should be clear from
statement and context.

◦ c = ~ = 1 and when factors of α′ are not explicitly stated we take 2πα′ = 1.

◦ The following index notation is used:

· µ, ν, . . . = 0, . . . , 3 are external spacetime indices,
· m,n . . . = 4, . . . , 9 are real internal space indices,
· M,N, . . . = 0, . . . , 9 label all spacetime coordinates,
· i, j, . . . = 1, 2, 3, ı̄, ̄, . . . = 1, 2, 3 are holomorphic internal indices, though in chapter
9 i, j label all doubled coordinates, and in chapter 11 i, j, . . . = 1, 2 are fundamental
SL(2,R) indices.

◦ The wedge products and contractions are as defined in Appendix B, i.e.

· (A ∧A′)p1...pn+n′ ≡ (n+n′)!
n!n′! A

[p1...pnA′pn+1...pn′] ,

· (A ∧A′)p1...pn+n′ ≡
(n+n′)!
n!n′! A[p1...pnA

′
pn+1...pn′]

,

· (AyA′)p1...pn−n′ ≡ 1
n′!A

q1...qn′pn′+1...pn−n′A′q1...qn′ , n′ < n,

· (AyA′)p1...pn′−n ≡
1
n!A

q1...qnA′q1...qnp1...pn′−n
, n < n′,

· (jAyjA′)ij ≡ 1
(n−1)!A

ip1...pn−1A′jp1...pn−1 ,

· (jA,A′)p,p1...pd ≡ d!
(n−1)!(d+1−n)!Ap[p1...pn−1A

′
pn...pd].

◦ A ? denotes the Hodge operator, whose dimensionality is given by context if not explicitly
named ?10, ?6, etc.

◦ The superscript (10) of the 10D flux field strength F (10) is not to be confused with the
superscripts denoting specific SU(3) representations, i.e. F (2), F (4), F (6) or F (8), as used
in chapter 4 and Appendix C.

◦ In a decomposition of 10D gamma matrices ΓM = (Γµ,Γm) = (γµ ⊗ 1, γ5 ⊗ γm) we have
γ11 = γ5γ7 where γ5 ≡ i

4!εµνρλγ
µνρλ and γ7 ≡ − i

6!εmnpqrsγ
mnpqrs.

◦ A slash is defined by /Fn ≡ 1
n!FP1...PNΓP1...PN where ΓP1...PN ≡ Γ[P1 . . .ΓPN ].
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B
Mathematical Preliminaries

In this appendix we collect some definitions and results in order to be self-contained. More
rigorous definitions and explanations are for example found in [141][142].

B.1 Differential forms

In the generalisation from differentials to differential forms, as well as the associated vector
calculus, three new operators will come to use: the wedge product, the exterior derivative, and
the Hodge dual.

Definition: wedge product. The wedge product is an antisymmetrised tensor product. It
is defined as to give differential elements the proper sign. For instance in 3D we have

dx ∧ dy = −dy ∧ dx .

This automatically gives the right orientation of a surface. A volume element becomes

V = dx ∧ dy ∧ dz ,

which changes sign if any pair of the basis elements are switched. This is an example of a
differential form, more precisely a volume form, which is a 3-form. There are other types of
forms, such as a line integrand:

Axdx+Aydy +Azdz ,

and a surface integrand:

Azdx ∧ dy +Aydz ∧ dx+Axdy ∧ dz .

Line elements are 1-forms and surface elements are 2-forms and 0-forms are functions. In more
than 3D there is a generalisation to p-forms, where p ranges from zero to the dimension D of
the space. The wedge product is associative and obeys the usual distributive laws. The wedge
product of a p-form with a q-form is a (p+ q)-form.

Definition: exterior derivative. The exterior derivative d is an operator which when applied
to a p-form gives an (p+ 1)-form. Consider a 1-form A = Aidxi, we define

dA = dAi ∧ dxi

= (∂jAidxj) ∧ dxi

= ∂jAidxj ∧ dxi

= 1
2(∂jAi − ∂iAj)dxj ∧ dxi , (B.1)
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since the product dxj ∧ dxi is antisymmetric. Now suppose we are in 3D and we consider a
2-form expressed as

S = Azdx ∧ dy +Aydz ∧ dx+Axdy ∧ dz .

Applying the exterior derivative gives us

dS = dAz ∧ dx ∧ dy + dAy ∧ dz ∧ dx+ dAx ∧ dy ∧ dz
= ∂zAzdz ∧ dx ∧ dy + ∂yAydy ∧ dz ∧ dx+ ∂xAxdx ∧ dy ∧ dz
= (∂yAy + ∂yAy + ∂xAx)dx ∧ dy ∧ dz , (B.2)

so we see that the exterior derivative can produce the divergences for the corresponding form
fields. For a general p-form field Ap = 1

p!Aµ1...µp dxµ1 ∧ . . . ∧ dxµp , the exterior derivative is
defined as

dAp = d ∧Ap = 1
p!∂νAµ1...µpdxν ∧ dxµ1 ∧ . . . ∧ dxµp

= 1
p!∂[νAµ1...µp]dxν ∧ dxµ1 ∧ . . . ∧ dxµp ,

resulting in a (p+ 1)-form. An important property that follows from this definition is that the
exterior derivative is nilpotent, i.e. d2 = 0. This can be shown by applying d2 to a 0-form;

ddA0 = d
(
∂A0
∂xµ

dxµ
)

= ∂2A0
∂xµ∂xν

dxµ ∧ dxν ,

= 0 ,

which vanishes as the wedge product is antisymmetric and the double derivative is symmetric
in its indices. A p-form is called closed if it satisfies

dAp = 0 , (B.3)

and exact if
Ap = dAp−1 , (B.4)

given that the (p− 1)-form Ap−1 is globally well-defined. A p-form may be written as eq. (B.4)
locally but not globally, so a closed p-form need not be exact, but an exact p-form is always
closed. A p-form Ap is said to be co-exact if Ap = d†Ap+1.

Definition: Hodge dual. Taking the curl of the forms in eq. (B.1) and eq. (B.2) corresponds
to turning the 2-form into a 1-form and the 3-form into a 0-form respectively. To accomplish this
one introduces the Hodge dual, or star, operator; ?. In our examples with Cartesian coordinates
we have that

?(dx ∧ dy) = dz ,
?(dy ∧ dz) = dx ,
?(dz ∧ dx) = dy ,

?(dx ∧ dy ∧ dz) = 1 .
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In Cartesian coordinates the Hodge dual is its own inverse, so that ?? = 1. The Hodge operator
acting on a p-form is defined as

? (dxµ1 ∧ . . . ∧ dxµp) = εµ1...µpµp+1...µn

(n− p)!√g gµp+1νp+1 . . . gµnνn dνp+1 ∧ . . . ∧ dxνn , (B.5)

where ε is the Levi-Civita symbol, transforming as a tensor density, and ε/√g is a tensor. Thus
the Hodge operator acting on a p-form gives a (n − p)-form, with n being the dimension in
question. For a general p-form, a double Hodge dual satisfies

? ?Ap = (−1)p(n−p)+1Ap , (B.6)

for a Lorentzian signature and ? ? Ap = (−1)p(n−p)Ap for a Euclidean. The inner product for
real p-forms is also defined using the Hodge-? operator, as∫

Ap ∧ ?Ap = 1
p!

∫
Aµ1...µpA

µ1...µp ? 1 , (B.7)

where ?1 = dn
√
−G is the n-dimensional measure.

B.2 Some homology and cohomology

Denoting the space of closed p-forms on a compact manifold M as C(p)(M), and the space of
exact p-forms as Z(p)(M), then the pth de Rham cohomology group H(p)(M) is defined as the
quotient space

H(p)(M) = C(p)(M)/Z(p)(M) . (B.8)

A quotient space Y = X/ ∼ is a set of equivalence classes of elements of X where ∼ is the
equivalence relation on X. For example let X = R1 and x ∈ X be a coordinate on the R1 real
line. Let x ∼ x+ 2π be the equivalence relation. Then the quotient space will be the sum of all
possible lines of length 2π defined to start at some point x ∈ R1. In the same way, H(p)(M) is
the space of closed forms in which two forms which differ by an exact form will be considered
equivalent.

The dimension of our de Rham cohomology group H(p)(M) is called the Betti number b.
They are topological invariants and characterise a manifold. Informally, the Betti number is the
maximum number of cuts that can be made without dividing a surface into two separate pieces,
and the kth Betti number bk refers to the number of k-dimensional holes on a manifold. For
example, b0 is the number of connected components, b1 is the number of 1D holes, or ”circular
holes”, b2 is the number of 2D cavities, or voids. The sphere (S2) is one connected component,
so b0 = 1, it does not have any ”circular holes” so b1 = 0, it has however one cavity enclosed
within the surface, so b2 = 1. For a T 2 torus it has one connected surface component, two
circular holes; one external and one internal, and one cavity: the space embedded inside the
torus. Thus the torus has Betti numbers (b0, b1, b2) = (1, 2, 1). Another topological invariant is
the Euler characteristic χ, which can be expressed as an alternating sum of Betti numbers;

χ(M) =
d∑
i=0

(−1)ibi(M) . (B.9)

The Betti numbers of a manifold does not only give the dimension of the cohomology groups,
but also the homology groups, which are defined in a similar way. Instead of using the exterior
derivative d in its definition, the analogous boundary operator δ is introduced. The δ acts on
submanifolds of M , e.g. if N is a submanifold of M then δN is its boundary. The δ is also
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nilpotent as the boundary of a boundary is an empty set, so δ2 = 0. Linear combinations of
p-dimensional submanifolds are known as p-chains. A chain that has no boundary is called
closed, and a closed chain zp is known as a cycle, thus fulfilling

δzp = 0 . (B.10)

A chain that is a boundary is called exact. Thus the simplical homology group is defined in the
analogous way as the quotient space H(p)(M) of equivalence classes of p-cycles;

H(p)(M) = C(p)(M)/Z(p)(M) , (B.11)

where C(p)(M) is the space of closed chains, and Z(p)(M) the space of exact chains. Thus two
p-cycles are equivalent if their only difference is a boundary. As for the Betti numbers, the
formal definition is that the kth Betti number bk is the rank of the kth homology group of a
manifold.

B.3 Harmonic forms and Hodge decomposition

The Laplace operator acting on p-forms in n-dimensional space is written

∆p = d† d + d d† = (d + d†)2 , (B.12)

although a metric is needed to specify it. For example d† = (−1)np+n+1 ? d? for a metric with
Euclidean signature, i.e. (0, n) or as d† = (−1)np+n ? d? for a Lorentzian signature (1, n − 1).
Minkowski space for example is Lorentzian with the signature (1, 3). Generally the action of ∆
on some p-form A is given by

∆Aµ1...µp = −∇ν∇νAµ1...µp − pRν[µ1A
ν
µ2...µp] − 1

2p(p− 1)Rνρ[µ1µ2A
νρ
µ3...µp] , (B.13)

where R is the Riemann tensor.
A p-form A is said to be harmonic if and only if

∆pA = 0 . (B.14)

Harmonic p-forms are in a one to one correspondence with the elements of the cohomology group
Hp(M), which can be seen by taking the scalar product

〈A,∆A〉 = 〈A|∆|A〉 = 〈A|(d† d + d d†)|A〉 = 〈dA|dA〉+ 〈d†A| d†A〉 ≥ 0 , (B.15)

since 〈A|d† d|A〉 = 〈dA| dA〉. For 〈A,∆A〉 = 0 then we must have dA = 0 and d†A = 0. A
p-form that satisfies d†A = 0 is said to be co-closed. In terms of the space of p-forms, Ωp, the
operators map according to

d : Ωp → Ωp+1 ,

d† : Ωp → Ωp−1 ,

∆ : Ωp → Ωp .

The Hodge theorem states that any p-form Xp can be decomposed uniquely into a harmonic,
a (globally) exact, and a co-exact piece;

Xp = Ap + dBp−1 + d†Cp+1 , (B.16)
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where ∆Ap = 0. This is known as Hodge decomposition. When Xp is closed, then we must have
Cp+1 = 0, since

dXp = dAp + d2Bp−1 + d d†Cp+1 = d d†Cp+1 = 0 ,

where dAp = 0 since Ap is harmonic, d2Bp−1 = 0 since d2 = 0, thus forcing Cp+1 = 0. If
Xp is closed then it must also have the same cohomology class as Ap, having the same form.
Each cohomology class therefore has precisely one harmonic form, which one can take to be a
representative of the corresponding cohomology class. Thus the space of harmonic p-forms is
isomorphic to the pth cohomology;

Ωp
harm ' H

(p)(M) . (B.17)

B.4 Manifolds
A manifold is a topological space which locally looks like Rm, but not necessarily so globally.
In this section we will list some of the appearing types of manifolds in this document.

Definition: complex manifold. The complex manifold of dimension n is a topological space
M with a holomorphic map. A complex function f = f1 + if2 is said to be holomorphic if it
satisfies the Cauchy-Riemann relations for each complex coordinate za ≡ xa + iya, a = 1, . . . , n;

∂f1
∂xa

= ∂f2
∂ya

,
∂f2
∂xa

= −∂f1
∂ya

. (B.18)

We let za be local complex coordinates with complex-conjugates z̄ā. A complex manifold admits
a tensor Jab which has one covariant and one contravariant index (a respectively b). With our
complex coordinates, the tensor components take the values

Ja
b = iδa

b , Jā
b̄ = −iδāb̄ , Ja

b̄ = Jā
b = 0 . (B.19)

These tensors are invariant under a holomorphic change of variables, so they describe a globally
well-defined tensor J .

When given a real manifold with D = 2n dimensions and wishing to determine whether the
manifold is really complex, the first requirement is the existence of an almost complex structure,
which is a tensor that satisfies

Jm
nJn

p = −δmp , (B.20)

which is preserved under a smooth change of coordinates. The second condition is of course that
the almost complex structure is really a complex structure. This property is determined by the
vanishing of the Nijenhuis tensor :

Np
mn = Jm

q∂[qJn]
p − Jnq∂[qJm]

p = 0 . (B.21)

When eq. (B.21) is satisfied, it is possible to have complex coordinates on the manifold an so
that J takes values as in eq. (B.19) with holomorphic mappings.

On a complex manifold a (p, q)-form can be defined with the complex coordinates, so that it
has p holomorphic indices, and q antiholomorphic ones;

Ap,q = 1
p!q!Aa1...apb̄1...b̄q

dza1 ∧ . . . ∧ dzap ∧ dz̄b̄1 ∧ . . . ∧ dz̄b̄q . (B.22)

In this formulation, the exterior derivative can be decomposed into an holomorphic and anti-
holomorphic part, so that

d = ∂ + ∂̄ ≡ dza ∂

∂za
+ dz̄ā ∂

∂z̄ā
. (B.23)
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The new holomorphic and antiholomorphic derivatives are called Dolbeault operators, and map
(p, q)-forms to (p+1, q)-forms and (p, q+1)-forms respectively. They are nilpotent: ∂2 = ∂̄2 = 0,
and they anticommute: {∂, ∂̄} = 0.

Definition: Hermitian manifold. A Hermitian manifold is a special case of the complex
Riemannian manifold. In terms of the complex coordinates introduced earlier on the complex
manifold, the Riemannian metric can be written as

ds2 = gab dza dzb + gab̄ dza dzb̄ + gāb dzā dzb + gāb̄ dzā dzb̄ . (B.24)

Since ds2 is real, then gāb̄ must be the complex conjugate of gab, and gab̄ the complex conjugate
of gāb. Now, a Hermitian manifold has metric condition

gab = gāb̄ = 0 . (B.25)

These conditions are globally well-defined as they are invariant under holomorphic changes of
variables.

The Dolbeault operators defined earlier form the Dolbeault cohomology group Hp,q
∂ (M) on

a Hermitian manifold M , in the same way we have seen for the de Rahm cohomology group. It
consists of equivalence classes of ∂̄-closed (p, q)-forms, where two such forms are equivalent only
if they differ with an exact ∂̄-exact (p, q)-form. The dimension of H(p,q)

∂̄
(M) is called the Hodge

number h(p,q) (to be compared with the Betti number).

Definition: Kähler manifold. The Kähler manifold is defined as a Hermitian manifold on
which the so-called Kähler form J ;

J = igab̄ dza ∧ dz̄b̄ , (B.26)

is closed:
dJ = 0 . (B.27)

The Kähler form actually comes from the complex structure we saw defined on the complex
manifold, which on a Hermitian metric can be turned into a (1, 1)-form, the Kähler form, defined
as in eq. (B.26). The metric on Kähler manifolds satisfies ∂agbc̄ = ∂bgac̄ and ∂agb̄c = ∂bgāc, so
locally it applies that

gab̄ = ∂

∂za
∂

∂z̄b̄
K(z, z̄) , (B.28)

where K known as the Kähler potential is a real-valued function. This allows the Kähler form
of eq. (B.26) to be rewritten as

J = i∂∂̄K . (B.29)

In the overlap of different coordinate charts, Kähler potentials may be related with additions of
arbitrary holomorphic and antiholomorphic functions f(z) and f̄(z̄);

K̃(z, z̄) = K(z, z̄) + f(z) + f̄(z̄) . (B.30)

However they will still lead to the same metric. On Kähler manifolds the different cohomology
groups, based on d, ∂ and ∂̄, are identical:

H
(p,q)
∂̄

(M) = H
(p,q)
∂ (M) = H(p,q)(M) . (B.31)
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This can be seen as the various Laplacians become identical. As a consequence, the Hodge and
Betti numbers are related via

bk =
k∑
p=0

h(p,k−p) . (B.32)

If A is some (p, q)-form on a Kähler manifold of dimension n, then the complex conjugate form
A∗ is a (q, p)-form. Therefore we have that

h(p,q) = h(q,p) , (B.33)

on a Kähler. In a similar sense, ?A is a (n− p, n− q)-form, so we have that

h(n−p,n−q) = h(p,q) . (B.34)

Definition: first Chern class. The Ricci tensor on a hermitan manifold has, in local complex
coordinates, only mixed components that are non-vanishing. One can therefore define a (1, 1)-
form known as the Ricci form, as

R = iRab̄ dza ∧ dz̄b̄ . (B.35)

On a Hermitian manifold the exterior derivative of the Ricci form is proportional to the torsion.
Since dJ = 0 on a Kähler manifold, the torsion vanishes, so the Ricci form must also be closed
dR = 0. Because of this, the Ricci form is a representative belonging to the cohomology class
H1,1(M). This class is known as the first Chern class

c1 = 1
2π [R] . (B.36)

Definition: symplectic manifold. A symplectic manifold (M,ω) is a manifold M equipped
with a non-degenerate closed 2-form ω, known as a symplectic form. In local coordinates xm on
M we have that

ω = ωmn(x) dxm ∧ dxn , dω = 0 . (B.37)

The condition of being non-degenerate means that the symplectic form is invertible, i.e. one can
define an inverse ωmn such that

ωmnωnp = δmp . (B.38)

Since any invertible antisymmetric matrix has an even number of rows and columns, symplectic
manifolds must therefore be of real and even dimension. This is equivalent to requiring that the
nth wedge product is nowhere vanishing;

ωn = ω ∧ ω ∧ . . . ∧ ω 6= 0 , (B.39)

or that the determinant of the symplectic matrix is non-zero; detωmn 6= 0. An example of a
symplectic manifold is R2n. Since we may write R2n = Rn × Rn, with coordinates xi and yi
on each product space respectively, the 2-form is given by ω = dxi ∧ dyi. This 2-form is clearly
globally defined on R2n, closed, and non-degenerate. As a matrix it can be written

ω ≡ 1
2ωmn dxm ∧ dxn =

(
0 1n

−1n 0

)
. (B.40)
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Definition: Calabi-Yau manifold. A Calabi-Yau n-fold is a compact Kähler manifold with
vanishing first Chern class. A Calabi-Yau manifold admits a Kähler metric with SU(n) holon-
omy. In turn, a manifold with SU(n) holonomy admits a covariantly constant spinor field,
which results in the manifold being Ricci flat. This is only valid for compact manifolds. For
non-compact ones, additional boundary conditions at infinity need to be imposed. The converse
is also true. A compact Ricci flat Kähler manifold of real dimension 2n has its holonomy group
contained in SU(n). This can be seen by considering the tangent vector V = V k∂k ∈ TpM ,
which we parallel transport along an infinitesimal parallelogram of area δamn with edges that
are parallel to the vectors ∂m and ∂n. This transforms the tangent vector like

V k → V k + δamnRmn
k
lV

l . (B.41)

The matrices δkl + δamnRmn
k
l are infinitesimally close to being identity and are elements of the

holonomy group. For a Kähler metric the matrices δamnRmnkl are in the Lie algebra of U(n).
Close to the identity we have that U(n) ' SU(n)× U(1) with the U(1) being generated by the
trace

δamnRmn
k
k = −4δµν̄Rµν̄ . (B.42)

Hence we see that for a Ricci flat manifold the U(1) part vanishes leaving us with SU(n).

Hodge numbers of the Calabi-Yau n-fold. As we have seen earlier the Betti number
bp is the dimension of the pth de Rahm cohomology H(p)(M) of the manifold M , and are
topologically associated with the manifold. When the manifold has a metric the Betti numbers
count the number of linearly independent harmonic p-forms on the manifold.

For Kähler manifolds the Betti numbers can be decomposed in terms of Hodge numbers as
bk =

∑k
p=0 h

(p,k−p). The Hodge numbers in turn count the number of harmonic (p, q)-forms on
the manifold. A Calabi-Yau is characterised by the values of its Hodge numbers. Note that they
are not defined by it, as different (inequivalent) Calabi-Yaus can have the same Hodge numbers.
The Hodge numbers of a Calabi-Yau n-fold satisfy

h(p,0) = h(n−p,0) , (B.43)

which follows from the fact that the spaces Hp(M) are isomorphic to Hn−p(M). This can be
proved by contracting a closed (p, 0)-form with the complex conjugate of the holomorphic (n, 0)-
form and using the metric to make a closed (0, n− p)-form. As established earlier in eq. (B.33)
and eq. (B.34), the Hodge numbers of a Kähler manifold also fulfil

h(p,q) = h(q,p) , (B.44)
h(p,q) = h(n−q,n−p) . (B.45)

A compact connected complex Kähler manifold has h0,0 = 1, which corresponds to the manifold
having constant functions. A simply connected manifold is a connected manifold and every path
between two points can be continuously transformed into any other such path while preserving
the two endpoints in question. For example defining a loop on a space and then contracting
into a point the point should still be on the space in question. A space is simply connected if
it is connected and has vanishing fundamental group, i.e. the first homotopy group, which holds
information about the basic shape, or holes, of a topological space. Because of this the manifold
will also have vanishing first homology group, as a direct consequence of its definition, and thus
resulting in

h(1,0) = h(0,1) = 0 . (B.46)
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Considering a Calabi-Yau 3-fold, which is an important case, the only Hodge numbers left to
specify are h(1,1) and h(2,1). Because of the symmetry of eqs. (B.43)-(B.45), the Hodge numbers
are often displayed in a Hodge diamond, which for the case of n = 3 is given by

h(3,3)

h(3,2) h(2,3)

h(3,1) h(2,2) h(1,3)

h(3,0) h(2,1) h(1,2) h(0,3) =

h(2,0) h(1,1) h(1,3)

h(1,0) h(0,1)

h(0,0)

1

0 0

0 h(1,1) 0

1 h(2,1) h(2,1) 1

0 h(1,1) 0

0 0

1

where h(1,2) = h(2,1) according to eq. (B.44) and h(2,2) = h(1,1) since h(2,2) = h(3−2,3−2) = h(1,1)

according to eq. (B.45). The Euler characteristic for a Calabi-Yau 3-fold is thus given by

χ =
6∑
p=0

(−1)pbp = 2(h(1,1) − h(2,1)) , (B.47)

where the Betti numbers have been calculated using bk =
∑k
p=0 h

(p,k−p).

B.5 Fibre bundles

By introducing a chart on a manifold, a local Euclidean structure is created, enabling us to use
conventional calculus of multiple variables. A fibre bundle looks a lot like a topological space
consisting locally of a direct product of two topological spaces. For clarity we start off by having
a look at the tangent bundle, which is a specific type of fibre bundle.

Definition: tangent bundle. A tangent bundle TM over an m-dimensional manifold M is
a collection of all the tangent spaces of M ;

TM ≡
⋃
p∈M

TpM . (B.48)

The manifold M over which TM is defined is referred to as the base space. TpM is the tangent
space at a point p. If {Ui} is an open covering of M , and xµ = ϕi(p) is the coordinate on Ui,
then an element of

TUi ≡
⋃
p∈Ui

TpM

is specified by a point p ∈ M and a vector V = V µ(p) ∂
∂xµ

∣∣
p
∈ TpM . Ui is homeomorphic

to an open subset ϕi(Ui) of Rm and each TpM is homeomorphic to Rm, so TUi is identified
with Rm ×Rm. By homeomorphic we mean possessing intrinsic topological equivalence. Two
objects are homeomorphic if they can be deformed into each other by a continuous, invertible
mapping. The TUi itself is a smooth manifold whose dimension is 2m. There is a projection
π : TUi → Ui, so that for any point u ∈ TUi, π(u) is a a point p ∈ Ui at which the vector V is
defined. The projection π can also be defined globally since π(u) = p does not depend on any
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special coordinate. Thus π : TM → M can be defined globally without any reference to local
charts.

The section is an inverse map to the projection. The section s of TM is a smooth map that
maps s : M → TM and fulfil πs = 1m. It may also be defined locally on a chart Ui such
that si : Ui → TUi. Given two charts Ui and Uj such that Ui ∩ Uj 6= ∅, let yµ = ψ(p) be the
coordinate on Uj . Now a vector V ∈ TpM , p ∈ Ui ∩ Uj has two coordinate presentations;

V = V µ ∂

∂xµ

∣∣∣∣
p

= Ṽ µ ∂

∂yµ

∣∣∣∣
p

,

so that Ṽ ν = (∂yν/∂xµ)pV µ. In order to have a functioning coordinate system with {xµ}
and {yν} the matrix (Gνµ) ≡ (∂yν/∂xµ)p should be non-singular; (Gνµ) ∈ GL(m,R). So
that whenever we change fibre coordinates they are being rotated by an element of the group
GL(m,R), which is known as the structure group of TM .

Definition: cotangent bundle. The cotangent bundle

T ∗M ≡
⋃
p∈M

T ∗pM , (B.49)

is defined very similarly to the tangent bundle. In this case the coordinates on a chart, or patch,
Ui are given by xµ. The basis of T ∗pM is then taken as {dx1, . . . ,dxm}, which is dual {∂/∂xµ}.
If yµ are coordinates on Uj with Ui ∩ Uj 6= ∅, then the coordinates are related via

dyµ = dxν
(
∂yµ

∂xν

)
p
. (B.50)

A 1-form ω can then be written as

ω = ωµ = ω̃µ dyµ , (B.51)

so that
ω̃µ = Gµ

ν(p)ων ≡
(
∂xν

∂xµ

)
p
ων . (B.52)

Gµ
ν(p) then corresponds to the transition functions tij(p). Just like the sections of tangent

bundles are vector fields, the sections of the cotangent bundle are co-vector fields, i.e. 1-forms
on M . The set of sections on T ∗M therefore corresponds to the set of all 1-form fields on M ,
i.e. Γ(T ∗M) = X(1)(X).

Definition: fibre bundle. A (differential) fibre bundle is defined by the elements (E, π,M,F,G),
where

E is a differentiable manifold known as the total space.
M is a differentiable manifold known as the base space.
F is a differentiable manifold known as the fibre.
π is a surjection known as the projection, whose inverse image π−1(p) ≡ Fp is called

the fibre at p.
G is a Lie group known as the structure group, which acts on F from the left.

There is a set of open coverings {Ui} ofM with a diffeomorphism φi : Ui×F → π−1(Ui) such that
πφi(p, f) = p. Here the map φi is called the local trivialism. A diffeomorphism is a differentiable
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map between manifolds whose inverse is also differentiable. With φi(p, f) ≡ φi,p(f) then the map
φi,p : F → Fp is a diffeomorphism. In Ui ∩Uj 6= ∅ one requires that tij(p) ≡ φ−1

i,pφj,p : F → F is
an element of G. Then the smooth map tij : Ui ∩ Uj → G relates φi and φj by

φi(p, tij(p)f) = φj(p, f) .

The maps {tij} are known as transition functions. It applies that tii(p), p ∈ Ui is the identity
map, tij(p) = tji(p)−1, p ∈ Ui ∩ Uj , and tij(p)tjk(p) = tik(p), p ∈ Ui ∩ Uj ∩ Uk. A fibre bundle
whose transition functions all can be taken to be identity maps is called a trivial bundle. A
trivial bundle is just a direct product M × F .

The section s is defined as a smooth map from the base space to the manifold s : E → M
and satisfies πs = 1m. It is clear that s(p) = s|p is an element of the inverse image Fp = π−1(p).

Definition: vector bundle. A vector bundle E π−→ M is a fibre bundle whose fiber is a
vector space. Given a m-dimensional manifold M and fibre F = Rk it is customary to call the
fibre dimension dimE = k even though the total space is m + k-dimensional. In this case the
structure transition functions (similar to coordinate transformations between patches Ui) are
elements of the structure group G = GL(k,R) as it preserves the vector operations of addition
and multiplication. Hence it maps a vector space isomorphically onto another vector space of
the same dimension. With F = Rk being a real vector space the vector bundle is real, and if
rather F = Ck, the structure group is G = GL(k,C) and one obtains complex vector bundles.

Definition: principal bundle. A principal bundle P π−→ M is a fibre bundle whose fibre F
is identical to its structure group G. It is therefore commonly called a G-bundle over M and
denoted P (M,G).

As usual the transition functions belongs to the structure group G, which then acts on the
fibre F = G, i.e. on G itself, from the right. On a principal bundle there is also a left action
of G on P , which is a map P × G → P according to (u, g) → ug for some u ∈ P and g ∈ G.
It commutes with the projection according to π(ug) = π(u). Given an open covering Ui of M ,
a point p ∈ Ui, and local trivialisation φi : Ui × G → π−1(Ui) such that φ−1(u) = (p, gi) with
π(u) = p and gi ∈ G. The right action of G on π−1(Ui) is then defined as

φ−1(ug) = (p, gig) , ug = φi(p, gig) . (B.53)

Hence, the right action of g translates a point on the fibre to a new point on the same fiber. In
a patch overlap we have that

ug = φj(p, gjg) = φj(p, tji(p)gig) = φi(p, gig) , (B.54)

and so the left action of G commutes with its right action. For two different elements u1, u2 ∈
π−1(p) there is a unique element g ∈ G such that u2 = u1g, which makes the right action
transitive, and allows for a whole fibre to be constructed from an element of π−1(p) and the
right action of G via π−1(p) = {ug|g ∈ G}. Further, the right action on G is said to be free if it
fulfils ug = g for any u = φi(p, gi) since g then has to be the identity element e of G.

Given a section s1(p) over Ui there is a preferred local trivialisation φi : Ui × G → π−1(Ui)
defined as follows. With u ∈ π−1(p) and p ∈ Ui there exists a unique element gu ∈ G such that
u = si(p)gu. If one defines the local trivialisation φi as φ−1

i (u) = (p, gu), the section si(p) is
given by

si(p) = φi(p, e) , (B.55)
for which φi is called the canonical local trivialisation. If p ∈ Ui ∩ Uj , the two corresponding
sections si(p) and sj(p) are related by the transition function tij(p) according to

si(p) = φi(p, e) = φj(p, tji(p)e) = φj(p, tji(p)) = φj(p, e)tji(p) = sj(p)tji(p) . (B.56)
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B.6 Holonomy groups
The holonomy group of a manifold of dimension n describes the way various objects, such as
tensors or spinors, transform under parallel transport around a closed curve. The most general
transformation of a vector for example, is rotation, which is an element of the group SO(n). For
spinors on the other hand, their corresponding transformation is an element of the group Spin(n).
A spinor ε being being parallel transported in a loop undergoes some sort of transformation

ε→ Uε ,

where U is an element of Spin(n) in the spinor representation appropriate to ε. Now say that
the spinor takes two consecutive closed but different paths and returns to the same point, then
it will have transformed as

ε→ U1U2ε .

Thus the U matrices build a holonomy group, usually denoted H(M). As stated earlier, the
generic holonomy group of a manifold that admits a spinor is Spin(n). However, depending on
the type of manifold, the holonomy group can be reduced to be only a subgroup of Spin(n).
Such manifolds is said to be of special holonomy. Some cases of interest in this thesis are

H(M) ⊆ U(n/2)⇔M is Kähler ,
H(M) ⊆ SU(n/2)⇔M is Calabi-Yau ,
H(M) ⊆ Sp(n/4)⇔M is hyper-Kähler ,

H(M) ⊆ Sp(n/4) · Sp(1)⇔M is quaternionic Kähler .

where the dimension n has to be even.

B.7 G-structures on manifolds
In this section we will reuse much of the definitions of section B.5 but in a slightly different way
in order to describe G-structures and provide an alternative view of previous definitions. Let M
be a manifold of real dimension d and TM its tangent bundle. An arbitrary vector v at some
point p ∈ M can be written in a local basis as v = va(α)e

(α)
a . This vector is defined on a chart

Uα over M , and defining an other vector from the chart Uβ, the coordinates of the two vectors
are related by the local coordinate change

va(α) = Mαβ
a
bv
b
(β) , (B.57)

where the transformation Mαβ ∈ GL(d,R). Since this is the case for an arbitrary point p ∈M ,
the transformation matrices Mαβ can be seen as maps from the manifold to GL(d,R);

p→Mαβ(p) , Mαβ : M → GL(d,R) . (B.58)

The transformation matrices Mαβ are transition functions and contain information about non-
trivial topologies in the tangent bundle. They are required to fulfil MαβMβγ = Mαγ and
MαβMβα = 1, which corresponds to the closure and existence of identity axioms of a group. As
familiar the group of transition functions GL(d,R) is the structure group of the tangent bundle.

A frame bundle on M is a principal bundle whose fibers at some point p ∈M are an ordered
basis (frame) of the tangent space TpM . That is F = ∪p∈MFp with Fp ≡ {(p, {ea})|p ∈ M}.
Identifying the fibre with the group GL(d,R), it acts freely and transitively on each fibre on the
right to result in another frame on the fibre. Hence, the right action of GL(d,R) can be seen
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as a way of changing frames while keeping the point p ∈ M fixed, limiting the transformation
to the fibre only. If the frame {e(α)

a } is globally defined over the entire manifold M , it is said to
be parallelisable, which is a property of all Lie groups.

A manifold admits a G-structure if it is possible to reduce the structure group GL(d,R)
of TM to a subgroup G ⊂ GL(d,R). In this case the transition functions takes values in the
subgroupG and so theG-structure is a principal sub-bundle of the frame bundle P ⊂ F . Equally,
a manifoldM has a G-structure if and only if there exists globally defined tensors or spinors that
are invariant under the group G. The equivalence between globally defined invariant tensors
and G-structures also extends to other types of vector bundles. For instance, spin bundles and
spin structure groups admits globally defined invariant spinors.
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C
Supersymmetry Equations in Terms of SU(3)

Representations

In the calculations of the section 4.4.1 and in section 4.4.2 it can be convenient to use SU(3)
representations and holomorphic indices in the supersymmetry conditions of eq. (4.97)–(4.99).
To start off, it is convenient to write out explicitly the expression for the Clifford products
encountered so far;

(/FA�
�eiJ)0 = F0 − i

2F
abJab − 1

8F
abcdJabJcd + i

48F
abcdefJabJcdJef ,

(/FA��̄Ω)m = −1
2F

abΩ̄abm + 1
6F

abc
mΩ̄abc ,

(��̄Ω/FA)m = −1
2F

abΩ̄abm − 1
6F

abc
mΩ̄abc ,

(/FAm�
�eiJ)n = 2FmpPnp + iJabF

ab
mpP̄n

p − 1
4JabJcdF

abcd
mpPn

p ,

(/FAe)mn = i
2F0Jmn + 1

2Fmn + iF a[mJn]a + 1
4F

abJabJmn − 1
2F

abJamJbn

− i
4Fmn

abJab − 1
2F

abc
[mJn]Jbc − i

16F
abcdJabJcdJmn + i

4F
abcdJabJcmJdn

+ 1
16F

abcd
mnJabJcd ,

(C.1)

where FA = F0 +F2 +F4 +F6. The Clifford products for the NSNS 3-form flux H3 are given by

( /H /Ω)0 = −1
6H

abcΩabc ,

( /H���e−iJ)m = iJabHn
abP̄m

n ,
(C.2)

and is common for both type IIA and IIB. In terms of SU(3) representations the NSNS flux is
defined in the same way as the type IIB 3-form RR flux F3, namely

H3 = −3
2 Im(H(1)

3 Ω̄) +H
(3)
3 ∧ J +H

(6)
3 . (C.3)

Here the components are explicitly given by

H
(1)
3 = − i

36H
ijkΩijk ,

H
(3)
3i = 1

4HimnJ
mn ,

H
(6)
3ij = Hkl(iΩj)kl .

(C.4)

The rest of the RR fluxes decomposes in SU(3) representations according to

F2 = 1
3F

(1)
2 + Re(F (3)

2 xΩ̄) + F
(8)
2 ,

F4 = 1
6F

(1)
4 J ∧ J + Re(F (3)

4 ∧ Ω̄) + F
(8)
4 ,

F6 = 1
6F

(1)
6 J ∧ J ∧ J ,

(C.5)
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where each component is given by

F
(1)
2 = 1

2FmnJ
mn = FīJ

ī ,

F
(3)
2k = 1

8F
ijkΩijk ,

F
(1)
4 = 1

8F
ijΩijk ,

F
(3)
4k = 1

24Fk
ijlΩijl ,

F
(1)
6 = 1

48F
mnpqrsJmnJpqJrs . (C.6)

The occurring Clifford products for IIB are

(/FB /Ω)0 = −1
6F

abcΩabc ,

(/FB�
��e−iJ)m = 2FnP̄mn + iJabF

ab
nP̄m

n − 1
4JabJcdF

abcd
nP̄m

n ,

(����e−iJ /FB)m = 2FnPmn + iJabF
ab
nPm

n − 1
4JabJcdF

abcd
nPm

n ,

(/FBmΩ)n = −1
2F

ab
mΩnab − 1

6F
abc

mnΩabc ,

(/FBΩ)mn = 1
2F

aΩamn − 1
2F

ab
[mΩn]ab − 1

12F
abc

mnΩabc ,

(C.7)

where the F3 flux decomposes analogous to H3 in eqs. (C.3), (C.4) and the 5-form flux is
decomposed as

F5 = F
(3)
5 ∧ J ∧ J , F

(3)
(5)i = 1

16F
mnpq
i JmnJpq . (C.8)

Using the above identities, the matrices S,Q,R can be written in terms of SU(3) representations.
In the IIA case the coefficients of the supersymmetry conditions in eq. (4.97)–(4.99) obtained
in [19] become

Aı̄ = α∂ı̄A ,

S = − i
4e
φ
(
β∗F0 − iα∗F (1)

2 − β∗F (1)
4 + iα∗F

(1)
6

)
,

Sı̄ = 1
2e
φ
(
α∗F

(3̄)
2 + β∗F

(3̄)
4

)
ı̄
,

Qı̄ = −i∂ı̄α− i
2

(
α(W5 −W4) + iβH

(3)
3

)
,

Qij = −1
8

(
Ωijk(αW4 + iβH

(3)
3 )k + i

2(αW3 + iβH
(6)
3 )iklΩjkl

)
,

Qı̄j = 1
4

(
(αW1 − 3iβH(1))gīj + iαW2ı̄j

)
,

Ri = Rij = 0 ,

Rı̄ = i
2e
φ
(
α∗F

(3̄)
2 − β∗F (3̄)

4

)
ı̄
,

Rı̄j = −1
8e
φ
(
gı̄jS̄ − 8

3gı̄j(βF
(1)
4 − α∗F (1)

6 )− 2α∗F (8)
ı̄j − 2iβF (8)

ı̄jk̄l
Jk̄l

)
,

T = 3
4

(
iαW1 − βH(1)

(3)

)
,

Tı̄ = α∂ı̄(2A− φ− lnα) + 1
2

(
α(W4 +W5)− iβH(3)

3

)
ı̄
,

(C.9)

where g is the 6D internal SU(3)-structure metric, and all fluxes come from the FA1 variant.
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For IIB we get

Aı̄ = α∂ı̄A ,

S = 3
2 iβe

φF
(1)
3 ,

Si = 1
4e
φ
(
α∗F

(3)
1 + 2iβ∗F (3)

3 − 2α∗F (3)
5

)
,

Sı̄ = 1
4e
φ
(
αF

(3̄)
1 − 2iβF (3̄)

3 − 2αF (3̄)
5

)
,

Qı̄ = −i∂ı̄α− i
2

(
α(W5 −W4)− iβH(3)

3

)
,

Qij = −1
8

(
Ωijk(αW4 − iβH(3̄)

3 )k + i
2(αW3 − iβH(6)

3 )iklΩjkl

)
,

Qı̄j = 1
4

(
(αW1 + 3iβH(1))gīj + iαW2ı̄j

)
,

Ri = − i
4e
φ
(
αF

(3)
1 − 2iβF (3)

3 − 2αF (3)
5

)
i
,

Rı̄ = Rı̄j = 0 ,

Rij = − i
16e

φ
(
αF (3̄)kΩijk − βF

(6)
3ij + 2αF (3̄)k

5 Ωijk

)
,

T = 3
4

(
iαW1 + βH

(1)
3

)
,

Tı̄ = α∂ı̄(2A− φ− lnα) + 1
2

(
α(W4 +W5) + iβH

(3)
3

)
ı̄
,

(C.10)

where the fluxes are of the FB1 version.
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D
Compactification of Type IIB Theory on a

Calabi-Yau

In this chapter we make explicit the compactification of type IIB supegravity on a Calabi-Yau
3-fold. Section D.1 illustrates the classical Kaluza-Klein compactification as described in section
5.1.2. In section D.2 we allow non-trivial integer fluxes trough cycles on the Calabi-Yau, whose
effects are discussed in section 5.3.

D.1 Compactification on the Calabi-Yau 3-fold
We start by considering the Einstein-Hilbert term, whose metric which upon imposing the
Kaluza-Klein ansatz can be written

S
(10)
EH =

∫
d10x

√
−g(10)R(10) ,

∫
d10x

√
−g(10) =

∫
d4x
√
−g4
√
g6 . (D.1)

The 10D Ricci scalar can be expanded according to

R(10) = gMNRMN = gMNRMPN
P

= R+ gµνRµiν
i + gī(Riµ̄µ +Rik̄

k +Rik̄̄
k̄) + gijRiµj

µ

+ gij(Rikjk +Rik̄j
k̄) + c.c. ,

(D.2)

where here R can be shown to only be of 4D spacetime components, hence it is the true 4D
Ricci scalar. Expanding the metric in terms of harmonic forms as given in eq. (5.50), i.e.

gij = z̄c(b̄c)ij ,
gij = −zc(bc)ı̄̄gīıgj̄ ,

(D.3)

where (b̄c)ij = i
||Ω||2 (χc)īk̄Ω̄k̄

j and the metric has been expanded as gīı → gīı − iva(ωa)ı̄̄ and
gīı → gīı−iva(ωa)j̄gīgjı̄. Using these new metric deformations we are to evaluate the expression
of the Ricci scalar in eq. (D.2). To do so we calculate the non-vanishing Christoffel symbols to
second order in the moduli fields, with the results

Γjµi = − i
2(ωa)ji∂µv

a + 1
2(ωa)̄j(ωa)īva∂µvb − 1

2(bc)kj(b̄c)ikzc∂µz̄d +O(moduli3) ,

Γ̄µi = 1
2(b̄c)̄i∂µz̄

c + i
2(ωa)jj̄(b̄c)ijva∂µz̄c + i

2(ωa)ik̄(b̄c)
̄k̄z̄c∂µv

a +O(moduli3) ,
Γµij = −1

2(b̄c)ij∂µz̄c +O(moduli3) ,
Γµī = i

2(ωa)ij∂µva +O(moduli3) ,

(D.4)

and the indices are raised and lowered with gī. Using these, the second term in eq. (D.2) is
determined to

gµνRµiν
i = 1

4(ωa)ji (ωb)
i
j∂µv

a∂µvb − 1
4(bc)ji (b̄d)

i
j∂µz

c∂µz̄d + 1
2(ωa)ji (ωb)

i
jv
a∇µ∂µvb

− i
2(ωa)īgī − 1

2(bc)ji (b̄d)
i
jz
c∇µ∂µz̄b +O(moduli3) .

(D.5)
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This expression can be simplified by partial integrating the terms which includes the covariant
derivative ∇. Introducing the short notation (ωaωb) ≡ (ωa)ji (ωb)ij , (bcb̄d) ≡ (bc)ji (b̄d)ij and
(ωag) ≡ (ωa)īgī, the third term in eq. (D.5) in the integral of eq. (D.1) becomes∫

d10x
√
−g(10)(1

2(ωaωb)va∇µ∂µvb) = −1
2

∫
d10x(ωaωb)∇µ(

√
−g(10)va)∂µvb

= −1
2

∫
d10x

√
−g(10)(ωaωb)∂µva∂µvb +O(moduli3) ,

(D.6)
where in the last step we used that

∇µ
√
−g(10) = ∇µ(

√
−g4
√
g6) =

√
−g4∂µ

√
g6 =

√
−g4(1

2
√
g6g

mn∂µgmn)

=
√
−g(10)(gij∂µgij + gı̄̄∂µgı̄̄ + 2gī∂µgī) .

(D.7)
Proceeding to the fourth term in eq. (D.5), a partial integration gives us∫

d10x
√
−g(10)(− i

2(ωag)∇µ∂µva) = i
2

∫
d10x(ωag)1

2

√
−g(10)(2gīı∂µgı̄̄) +O(moduli3)

= i
2

∫
d10x

√
−g(10)(ωag)(gīı + iva(ωa)j̄gīgjı̄)∂µ(gīı − iva(ωa)īı)

= 1
2

∫
d10x

√
−g(10)(ωag)(ωbg)∂µva∂νvb +O(moduli3) .

(D.8)
The fifth term of eq. (D.5) is very similar to the third term, and so using the results in eq. (D.6)
we have that∫

d10x
√
−g(10)(−1

2(bcb̄d)zc∇µ∂µz̄d) = 1
2

∫
d10x

√
−g(10)(bcb̄d)∂µzc∂µz̄d +O(moduli3) . (D.9)

Gathering these results, the second term in the Ricci scalar expression of eq. (D.5) takes the
form

gµνRµiν
i = 1

2

(
(ωag)(ωbg)− 1

2(ωaωb)
)
∂µv

a∂µvb + 1
4(bcb̄d)∂µzc∂µz̄d +O(moduli3) . (D.10)

The remaining terms of eq. (D.2) are evaluated in the same manner, with the results being

gīRiµ̄
µ = 1

2

(
(ωag)(ωbg)− 1

2(ωaωb)
)
∂µv

a∂µvb − 1
4(bcb̄d)∂µzc∂µz̄d +O(moduli3) ,

gīRik̄
k = −1

4 (ωbg)− (ωaωb)) ∂µva∂µvb +O(moduli3) ,

gīRik̄̄
k̄ = −1

4(ωagωbg)∂µva∂µvb − 1
4(bcb̄d)∂µzc∂µz̄d +O(moduli3) ,

gijRiµj
µ = 1

2(bcb̄d)∂µzc∂µz̄d +O(moduli3) .

(D.11)

The very last parenthesis in eq. (D.2) takes on a simple form since

gij(Rikjk +Rik̄j
k̄) = gijRimj

m = gijRij . (D.12)

Since a Calabi-Yau is Ricci flat, i.e. Rij = 0 in the internal indices, there will only be space-
time dependent components. These components are found in the Γ2 terms which are of order
O(moduli2), hence the combination with gij will result in third order moduli terms and will
therefore not contribute. As such, the final expression for the Einstein-Hilbert term in eq. (D.1)
can be written

S
(10)
EH =

∫
d10x

√
−g(10)

(
R+ ((ωag)(ωbg)− 1

2(ωaωb))∂µva∂µvb + 1
2(bcb̄d)∂µzc∂µz̄d

)
. (D.13)
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Further, if one defines

Vab ≡
∫
CY3

√
g6((ωag)(ωbg)− 1

2ωaωb) , Zcd̄ ≡
1
2

∫
CY3

√
g6(bcb̄d) , (D.14)

and uses that vol6 =
∫

d6x
√
g6 the action of eq. (D.13) can be written

S
(10)
EH =

∫
d4x
√
−g4(vol6R+ Vij∂µv

a∂µvb + Zcd̄∂µz
c∂µz̄

d) . (D.15)

The triple intersection number of eq. (5.39) becomes

κab ≡
∫
CY3

ωa ∧ ωb ∧ J

≡
∫
CY3

ωa ∧ ωb ∧ vcωc = κabcv
c

=
∫
CY3

√
g6(−(ωag)(ωbg) + (ωaωb)) .

(D.16)

We now move on to consider the rest of the fields in the 10D type IIB supergravity action,
where we expand the ingoing fields in terms of the harmonic forms admitted by a Calabi-Yau.
The 10D action in string frame is written

S(10)
s =

∫
e−2φ(10) (−1

2R
(10) ? 1+ 2 dφ(10) ∧ ?dφ(10) − 1

4H
(10)
3 ∧ ?H(10)

3

)
− 1

2

∫ (
dC(10)

0 ∧ ?C(10)
0 + F

(10)
3 ∧ ?F (10)

3 + 1
2F

(10)
5 ∧ ?F (10)

5 − 1
2C

(10)
4 ∧H(10)

3 ∧ dC(10)
2

)
,

(D.17)
where F (10)

3 = dC(10)
2 −C(10)

0 H
(10)
3 and F (10)

5 = dC(10)
4 −H(10)

3 ∧C(10)
2 . As stated in eqs. (5.51),

(5.63) and (5.64), the field expansions of type IIB are given by

B
(10)
2 = B2 + ba ∧ ωa ,

C
(10)
2 = C2 + ca + ωa ,

C
(10)
4 = Da

2 ∧ ωa + ρa ∧ ω̃a + V C ∧ αC − UC ∧ βC ,

(D.18)

where again ωa ∈ H(1,1)(CY3), ω̃a ∈ H(2,2)(CY3), and αC , βC ∈ H(3)(CY3) where C = 0, 1, . . . , h(2,1).
The Da

2 are spacetime dependent 2-forms, the V C , UC are 1-forms, and ba, ca, ρa are scalars. As
for the field strengths the expansions read

H
(10)
3 = H3 + dba ∧ ωa ,

dC(10)
2 = dC2 + dca ∧ ωa ,

dC(10)
4 = dDa

2 ∧ ωa + dρa ∧ ω̃a + FC ∧ αC −Gc ∧ βC ,

(D.19)

where we define
FC ≡ dV C , GC ≡ dUC . (D.20)

Using these, the field strengths take the form

F
(10)
3 = dC2 + dca ∧ ωa − C0(H3 + dba ∧ ωa) ,

F
(10)
5 = (Da

2 − dba ∧ C2 − caH3) ∧ ωa + FC ∧ αC
−GC ∧ βC + dρa ∧ ω̃a − ca dbb ∧ ωa ∧ ωb .

(D.21)
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As discussed in chapter 5.1.2, the self-duality condition F (10)
5 = ?F

(10)
5 of the 5-form flux implies

for the 4-form potential C(10)
4 in eq. (D.19) that only half the degrees of freedom are physical

and that the occurring fields in F (10)
5 consists of Poincaré dual pairs. Specifically Da

2 are 2-form
duals to the ρa scalars, and V C and UC are magnetic/electric duals. Since we know that the
self-duality condition can not be obtained from the action in eq. (D.17), it must be imposed in
the expansion of eq. (D.21) for the equations of motion to be correct. Imposing the self-duality
constraint using F (10)

5 in eq. (D.21) results in the two conditions

dρa − κabc dbbcc = 4vol6gab ? (Da
2 − dba ∧ C2 − caH3) ,

GC = ReMCDF
D + ImMCD ? F

D ,
(D.22)

each of which illustrates the duality of Da
2/ρa and V C/UC respectively. Keeping all the fields for

now, we turn to the integration over the CY3 space, after which the conditions of eq. (D.22) will
emerge again from adding Lagrange multipliers. Using the above field expansion we integrate
the terms in eq. (D.17) over the Calabi-Yau one at a time. For the dφ(10)-terms we get that

∫
CY3

dφ(10) ∧ ? dφ(10) = vol6 dφ ∧ ? dφ , (D.23)

whereas for the NSNS field strength H(10)
3 we have

∫
CY3

H
(10)
3 ∧ ?H(10)

3 = vol6(H3 ∧ ?H3 + 4gab dba ∧ ?dbb) . (D.24)

The integral of the axion-term becomes

∫
CY3

dC(10)
0 ∧ ? dC(10)

0 = vol6 dC0 ∧ ? dC0 , (D.25)

and the terms including the 3-form and 5-form RR field strengths are

∫
CY3

F
(10)
3 ∧?F (10)

3 = vol6
[
(dC2 − C0H3) ∧ ?(dC2 − C0H3) + 2gab(dca − C0 dba) ∧ ?(dcb − C0 dbb)

]
,

(D.26)
respectively

∫
CY3

F
(10)
5 ∧ ?F (10)

5 = 2vol6gab(dDa
2 − dba ∧ C2 − ca dB2) ∧ ?(dDb

2 − dbb ∧ C2 − cb dB2)

+ 1
8vol6

gab(dρa − κacdcc dbd) ∧ ?(dρa − κaefce dbf )

− 1
2((ImM)−1)CD(GC −MCEF

E) ∧ ?(GD −MCFF
F ) .

(D.27)

The integral of the final term in eq. (D.17) is evaluated to

∫
CY3

C
(10)
4 ∧H(10)

3 ∧ dC(10)
2 = κabcD

a
2 ∧ dbb ∧ dcc + ρa(dB2 ∧ dca + dba ∧ dC2) . (D.28)

Gathering everything, including the expression for the Einstein-Hilbert term in eq. (D.15), the

230



D.1. Compactification on the Calabi-Yau 3-fold

resulting 4D type IIB action is given by

S(4)
s =

∫
e−2φ(10)[− 1

2vol6R ? 1− 1
2Vab dva ∧ ? dvb − 1

2Zcd̄ dzc ∧ ?z̄c + 2 dφ ∧ ? dφ

− 1
4vol6H3 ∧ ?H3 − vol6gab dba ∧ ? dbb

]
+
∫ [
− 1

2 dC0 ∧ ?C0 − 1
2vol6(dC2 − C0H3) ∧ ?(dC2 − C0H3)

− vol6gab(ca − C0 dba) ∧ ?(cb − C0 dbb)
− vol6gab(dDa

2 − dba ∧ C2 − ca dB2) ∧ ?(dDb
2 − dbb ∧ C2 − cb dB2)

− 1
16vol6 g

ab(dρa − κacdcc dbd) ∧ ?(dρb − κbefce dbf )

+ 1
4((ImM)−1)CD(GC −MCEF

E) ∧ ?(GD −MDFF
F )
]

− 1
2

∫ [
κabcD

a
2 ∧ dbb ∧ dcc + ρa(dB2 ∧ dca + dba ∧ dC2)

]
.

(D.29)

Now, in order to obtain the traditionally written action, it is customary to add a total derivative
term to the above action, specifically

S
(4)
s, addition = 1

2(FC ∧GC + dDa
2 ∧ ρa) . (D.30)

The self-duality equations in eq. (D.22) are then recovered by varying S4D
s + S4D

s, addition with
respect to GC and dDa

2 . Using these and re-expressing GC and dDa
2 in terms of V C and ρa,

then the action takes the form

S(4)
s =

∫
e−2φ(10)[− 1

2vol6R ? 1− 1
2Vab dva ∧ ? dvb − 1

2Zcd̄ dzc ∧ ?z̄c + 2 dφ ∧ ? dφ

− 1
4vol6H3 ∧ ?H3 − vol6gab dba ∧ ? dbb

]
+
∫ [
− 1

2 dC0 ∧ ?C0 − 1
2vol6(dC2 − C0H3) ∧ ?(dC2 − C0H3)

− vol6gab(ca − C0 dba) ∧ ?(cb − C0 dbb)
− 1

2vol6 g
ab(dρa − 1

2κacdc
c dbd) ∧ ?(dρb − 1

2κbefc
e dbf )

+ 1
2(ReMCDF

C ∧ ?FD + ImMCDF
C ∧ ?FD)

− 2 dρa ∧ (dba ∧ C2 + ca dB2)− 1
2 dB2 ∧ (κabccacb dbc)

]
.

(D.31)

To obtain the corresponding action in Einstein frame, we perform a Weyl rescaling which ef-
fectively removes the dilaton factor in front of the Einstein-Hilbert term as well as the volume
factor. Complexifying the Kähler moduli as ta ≡ ba + iva, the resulting action in the Einstein
frame becomes

S
(4)
E =

∫ [
− 1

2R ? 1− 1
2gab dta ∧ ? dtb − 1

2gcd̄ dzc ∧ ? dz̄d̄ − dφ ∧ ?dφ− 1
4e
−4φH3 ∧ ?H3

− 1
2vol6

(
e2φ dC0 ∧ ? dC0 + e−2φ(dC2 − C0H3) ∧ ?(dC2 − C0H3)

)
− 1

8vol6 e
2φgab(dρa − κacdcc dbd) ∧ ?(dρb − κbefce dbf )

+ 1
2(ReMCDF

C ∧ ?FD + ImMCDF
C ∧ ?FD)

+ (dρa − κabccb dbc) ∧ (dba ∧ C2 + ca dB2) + 1
2κabcc

acb dB2 ∧ dbc

− 2vol6e2φgab(dca − C0 dba) ∧ ?(dcb − C0 dbb)
]
.

(D.32)
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A final thing to do in order to obtain the standard N = 2 action is to dualise the 2-form fields
B2 and C2 into corresponding scalars b0 respectively c0. This dualisation is done by adding
total derivative terms to the above action which contain these fields as well as their dual scalars.
Starting with C2, one adds the term

Sadd
C2 =

∫
dC2 ∧ dc0 . (D.33)

Gathering all C2-dependent terms in the action of eq. (D.32) as well as the addition of eq.
(D.33), we have that

SC2 =
∫ [
− 1

2vol6e
−2φ(dC2 − C0H3) ∧ ?(dC2 − C0H3)− dρa ∧ dC2b

a + dc0 ∧ dC2
]
. (D.34)

The dualisation is made by varying the above action and thereafter re-expressing C2 in terms
of c0, so that SC2 → Sc0 where

Sc0 =
∫ [
− 1

2vol6 e
2φ(dc0 − ba dρa) ∧ ?(dc0 − bb dρb) + C0 dB2 ∧ (dc0 − ba dρa)

]
. (D.35)

The same procedure should be made for B2. The term to add is analogous to C2, namely

Sadd
B2 =

∫
dB2 ∧ db0 , (D.36)

so that all terms containing B2 with the above action are

SB2 =
∫ [
− 1

4e
−4φH3 ∧ ?H3 + (dρa − κabccb dbc) ∧ (ca dB2)

+ 1
2κabcc

acb dB2 ∧ dbc + C0 dB2 ∧ (dc0 − ba dρa)
]
,

(D.37)

the last term coming from the C2 dualisation. Varying the above action and thereafter re-
expressing SB2 → Sb0 so that

Sb0 =
∫
−e4φ(C0 dc0 + db0 + (ca − C0b

a) dρa − 1
2κabcc

acb dbc)

∧ ?(C0 dc0 + db0 + (ca − C0b
a) dρa − 1

2κabcc
acb dbc) .

(D.38)

With these expressions, the 4D action for type IIB supergravity compactified on a Calabi-Yau
3-fold in Einstein frame, can finally be written down as

S
(4)
E =

∫ [
− 1

2R ? 1− 1
2gcd̄ dzc ∧ ? dz̄d̄ − 1

2gab dta ∧ ?dtb − dφ ∧ ? dφ

− 1
2vol6e

2φ dC0 ∧ ? dC0 − 1
8vol6 e

2φgab(dρa − κacdcc dbd) ∧ ?(dρa − 1
2κbefc

e dbf )

− 2vol6e2φgab(dca − C0 dba) ∧ ?(dcb − C0 dbb)
− 1

2vol6 e
2φ(dc0 − ba dρa) ∧ ?(dc0 − bb dρb)

− e4φ(C0 dc0 + db0 + (ca − C0b
a) dρa − 1

2κabcc
acb dbc)

∧ ?(C0 dc0 + db0 + (ca − C0b
a) dρa − 1

2κefgc
ecf dbg)

+ 1
2(ReMCDF

C ∧ ?FD + ImMCDF
C ∧ ?FD)

]
.

(D.39)
In summary, there are 4×(h(1,1)+1) ingoing scalars {φ,C0, v

a, b0, ba, c0, ca, ρa} which are grouped
up to form h(1,1)+1 hypermultiplets. As for the fields, the graviton gµν and V 0 are grouped up as
the gravity multiplet and the complex structure moduli zc and vectors V c are grouped together
to form h(2,1) vector multiplets. The vector multiplets span a 2h(2,1)-dimensional special Kähler
manifold and the hypermultiplets span a 4× (h(1,1) + 1)-dimensional quaternionic manifold.
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D.2 Turning on fluxes

We are now to turn on magnetic and electric flux as given in eq. (5.114) and perform the same
analysis as in the previous section to illustrate the effect of the fluxes. Starting with purely
NSNS fluxes on the Calabi-Yau, the H3 takes the form

H
(10)
3 = dB2 + dba ∧ ωa +mCαC − eCβC , (D.40)

where m, e again corresponds to h(2,1) +1 units of quantised flux each. The original string frame
action in eq. (D.17) will again serve as a starting point. This will also change the 3-form and
5-form field strengths in eq. (D.21) so that

F
(10)
3 = dC2 + dca ∧ ωa − C0(H3 + dba ∧ ωa +mCαC − eCβC) ,

F
(10)
5 = (Da

2 − dba ∧ C2 − caH3) ∧ ωa + F̃C ∧ αC − G̃C ∧ βC + dρa ∧ ω̃a − ca dbb ∧ ωa ∧ ωb ,
(D.41)

where we have defined

F̃C ≡ FC −mCC2 , G̃C ≡ GC − eCC2 , (D.42)

with FC , GC defined as in eq. (D.20). We are now in a position to investigate how this flux
addition in H(10)

3 affects the terms in the action of eq. (D.17). The kinetic term for H(10)
3 will

for instance become∫
CY3

H
(10)
3 ∧ ?H(10)

3 = vol6 dB2 ∧ ? dB2 + 4vol4gab dba ∧ ? dbb

− (eC +N cs
CDm

D)((ImM)−1)CE(eE +MEFm
F ) .

(D.43)

The kinetic terms for the 3-form and 5-form field strengths become∫
CY3

F
(10)
3 ∧ ?F (10)

3 = vol6(dC2 − C0H3) ∧ ?(dC2 − C0H3)

+ 2vol6gab(dca − C0 dba) ∧ ?(dcb − C0 dbb)
− C2

0 (eC +N cs
CDm

D)((ImM)−1)CE(eE +MEFm
F ) ,

(D.44)

respectively∫
CY3

F
(10)
5 ∧ ?F (10)

5 = vol6gab(dDa
2 − dba ∧ C2 − ca dB2) ∧ ?(dDb

2 − dbb ∧ C2 − cb dB2)

+ 1
8vol6 g

ab(dρa − κacdcc dbd) ∧ ?(dρb − κbefce dbf )

− 1
2((ImM)−1)CD(G̃C −MCEF̃

E) ∧ ?(G̃D −MDF F̃
F ) .

(D.45)

The last term in eq. (D.17) also contain a H(10)
3 , which now becomes∫

CY3
C

(10)
4 ∧H(10)

3 ∧ dC(10)
2 = κabcD

a
2 ∧ dbb ∧ dcc + ρa(dB2 ∧ dca + dba ∧ dC2)

+ C2 ∧ (FCeC −GCmC) .
(D.46)

Conclusively these changes re-inserted in the action in eq. (D.17) amounts to that it effectively
adds a potential term S

(10)
s → S

(10)
s + V NSNS, which is given by

V NSNS = 1
2(e4φC2

0 + 1
2vol6 e

2φ)(eC +MCDm
D)((ImM)−1)CE(eE +MEFm

F ) . (D.47)
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The next step is again to add a total derivative term like in eq. (D.30). Adding the first term
in eq. (D.30) and varying with respect to GA will result in the self-duality condition

G̃C = ReMCDF̃
D + ImMCD ? F̃

D . (D.48)

However, the second term in eq. (D.30) will not alter any condition. As such, it is possible to
eliminate GC in favor of FC via

1
2F

C∧GC−1
2C2(FCeC−GCmC)→ 1

2ReMCDF̃
C∧?F̃D+ImMCDF̃

C∧?F̃D−1
2(FCeC+F̃CeC)∧C2 .

(D.49)
By the last term it is clear from eq. (D.42) defining F̃C that there is now a mass-term for C2.
The dualisation of C2 is however generally done for a massless field, hence one may neglect the
magnetic flux and set m = 0. As such, there will only be electric flux and F̃C = FC . The terms
in the action containing C2 terms are given by

SC2 =
∫
−1

2vol6e
−2φ(dC2−C0H3)∧?(dC2−C0H3)−dρa∧dC2b

a+eCFC∧C2+dc0∧dC2 , (D.50)

and by comparison with eq. (D.34) we have that dc0 − ba dρa → dc0 − ba dρa − eCV C . The
dualised action then takes the form

Sc0 =
∫
− 1

2vol6 e
2φ(dc0 − ba dρa) ∧ ?(dc0 − bb dρb)− C0 dB2 ∧ (dc0 − ba dρa − eCV C) . (D.51)

The analogous procedure for SB2 results in the dualised action

Sb0 = −
∫
e4φ(C0 dc0 + db0 + (ca − C0b

a) dρa − 1
2κabcc

acb dbc − C0eCV
C)

∧ ?(C0 dc0 + db0 + (cb − C0b
b) dρa − 1

2κdefc
dce dbf − C0eDV

D) .
(D.52)

If we now consider turning on RR fluxes for the odd degree form field strengths of type IIB,
we recall again that a Calabi-Yau does not admit harmonic 1-forms or 5-forms. Hence it is only
possible to turn on fluxes for the 3-form RR field strength dC(10)

2 . This will change F (10)
3 so that

now
F

(10)
3 = dC2 + dca ∧ ωa − C0(H3 + dba ∧ ωa) +mCαC − eCβC , (D.53)

and the 5-form to

F
(10)
5 = (Da

2 −dba∧C2− caH3)∧ωa+ F̃C ∧αC − G̃C ∧βC + dρa∧ ω̃a− ca dbb∧ωa∧ωb , (D.54)

where now
F̃C ≡ FC +mCC2 , G̃C ≡ GC + eCC2 . (D.55)

The affected kinetic terms in the action will then become∫
CY3

F
(10)
3 ∧ ?F (10)

3 = vol6(dC2 − C0H3) ∧ ?(dC2 − C0H3)

+ 2vol6gab(dca − C0 dba) ∧ ?(dca − C0 dba)
− (eC +MCDm

D)((ImM)−1)CE(eE +MEFm
F ) ,

(D.56)

∫
CY3

F
(10)
5 ∧ ?F (10)

5 = 2vol6gab(dDa
2 − dba ∧ C2 − ca dB2) ∧ ?(dDb

2 − dbb ∧ C2 − cb dB2)

+ 1
8vol6 g

ab(dρa − κacdcc dbd) ∧ ?(dρa − κbefce dbf )

− 1
2((ImM)−1)CD(G̃C −MCEF̃

E) ∧ ?(G̃D −MDF F̃
F ) ,

(D.57)
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∫
CY3

C
(10)
4 ∧H(10)

3 ∧ dC(10)
2 = κabcD

a
2 ∧ dbb ∧ dcc + ρa(dB2 ∧ dca + dba ∧ C2)

+ (FCeC −GCmC) ∧B2 .

(D.58)

Effectively this will result in the addition of a potential in the action, namely

V RR = −1
2e

4φ(eC −MCDm
D)((ImM)−1)CE(eE +MEFm

F ) . (D.59)
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E
Double Field Theory Calculations

Double field theory was introduced in chapter 9 and here we give details to some calculations
discussed in the main text.

E.1 Closure of generalised diffeomorphisms
In this section we prove the form of the commutation relation of the generalised Lie derivative
in eq. (9.42). Our starting point is eq. (9.45), repeated here for convenience as

[L̂ξ1 , L̂ξ2 ]VM = L̂ξ3VM , (E.1)

where the commutant acts on some generalised vector VM and ξ3 ≡ ξ3(ξ1, ξ2). The right-hand
side of this equation is given by the definition in eq. (9.42) as

L̂ξ3VM = ξN3 ∂NV
M + (∂Mξ3N − ∂NξM3 )V N . (E.2)

The left-hand side of eq. (E.1) is evaluated using the same formula, so that[
L̂ξ1 , L̂ξ2

]
VM = L̂ξ1L̂ξ2VM − L̂ξ2L̂ξ1VM

= L̂ξ1(ξN2 ∂NVM + (∂Mξ2N − ∂NξM2 )VM )− (1↔ 2)
= (ξP1 ∂P ξN2 + (∂Nξ1P − ∂P ξN1 )ξP2 )∂NVM

+ ξN2

(
ξP2 ∂P (∂NVM )) + (∂NξP1 − ∂P ξ1N )∂PVM + (∂Mξ1P − ∂P ξM1 )∂NV P

)
+ V P

(
ξN1 ∂N (∂Mξ2P ) + (∂Mξ1N − ∂NξM1 )(∂Nξ2P ) + (∂P ξN1 − ∂Nξ1P )(∂Mξ2N )

)
+ (∂Mξ2P )(ξN1 ∂NV P + (∂P ξ1N − ∂NξP1 )V N )

− V P
(
ξN1 ∂N∂P ξ

M
2 + (∂P ξN1 − ∂Nξ1P )(∂NξM2 ) + (∂Mξ1N − ∂NξM1 )(∂P ξM2 )

)
− (∂P ξM2 )

(
ξN1 ∂NV

P + (∂P ξ1N − ∂NξP1 )V N
)
− (1↔ 2)

= (ξP1 ∂P ξN2 − ξP2 ∂P ξN1 )∂NVM

+ V P
(
ξN1 ∂N∂

Mξ2p + ∂P ξ
N
1 ∂

Mξ2N − ∂Nξ1P∂
Mξ2N − ξN1 ∂N∂P ξM2

+ ∂Nξ
M
1 ∂P ξ

N
2 .ξ

N
2 ∂N∂

Mξ1P − ∂P ξN2 ∂Mξ1N + ∂Nξ2P∂
Mξ1N

+ ∂Nξ2P∂
Mξ1N + ξN2 ∂N∂P ξ

M
1 − ∂NξM2 ∂P ξ

N
1

− ∂NξM1 ∂Nξ2P + ∂Nξ
M
2 ∂Nξ1P

)
= (ξP1 ∂P ξN2 − ξP2 ∂P ξN1 )∂NVM

+ ∂M (ξ1N∂
Nξ2P − ξ2N∂

Nξ1P − 1
2ξ1N∂P ξ

N
2 + 1

2ξ2N∂P ξ1N )V P

− ∂P (ξ1N∂
NξM2 − ξ2N∂

NξM1 − 1
2ξ1N∂

MξN2 + 1
2ξ2N∂

Mξ1N )V P

− (∂NξM1 ∂Nξ2P − ∂NξM2 ∂Nξ1P )V P .
(E.3)
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Now, adding and subtracting the terms 1
2(ξN1 ∂P ξ2N − ξN2 ∂P ξ1N )∂PVM to the above expression,

we have that[
L̂ξ1 , L̂ξ2

]
VM =

(
ξN1 ∂Nξ

P
2 − ξN2 ∂NξP1 − 1

2ξ
N
1 ∂

P ξ2N + 1
2ξ
N
2 ∂

P ξ1N
)
∂NV

M

+ ∂M (ξ1N∂
Nξ2P − ξ2N∂

Nξ1P − 1
2ξ1N∂P ξ

N
2 + 1

2ξ2N∂P ξ1N )V P

− ∂P (ξ1N∂
NξM2 − ξ2N∂

NξM1 − 1
2ξ1N∂

MξN2 + 1
2ξ2N∂

Mξ1N )V P

−
(
∂Nξ

M
1 ∂Nξ2P − ∂NξM2 ∂Nξ1P

)
V P + 1

2ξ
N
1 ∂

P ξ2N∂PV
M − 1

2ξ
N
2 ∂

P ξ1N∂PV
M .

(E.4)
Hence, by the definition of the C-bracket it is clear that the parameter ξ3 should be

ξM3 = [ξ1, ξ2]MC . (E.5)

There is also terms in eq. (E.4) that does not fit the C-braket, namely the above calculation
shows that [

L̂ξ1 , L̂ξ2
]
VM = L̂[]CV

M + FM , (E.6)

where

FM = 1
2ξ
N
1 ∂

P ξ2N∂PV
M − 1

2ξ
N
2 ∂

P ξ1N∂PV
M − (∂NξM1 ∂Nξ2P − ∂NξM2 ∂Nξ1P )V P . (E.7)

In order for this algebra to close, i.e. in order fulfil eq. (E.1), we must have FM = 0 which
implies the strong constraint of double field theory.

E.2 Covariant fluxes
In this section we derive the expressions of the geometrical and non-geometrical flux components
of FABC as they were stated in chapter 9.2.3. In DFT the covariant flux is defined as the scalar
product

FABC = [EAL, ELB]CECL = 3ΩABC , (E.8)

with
ΩABC ≡ EAM∂MEBNECN . (E.9)

The flux calculation uses the non-gauge fixed vielbein of eq. (9.91), i.e.

EA
M = ηABE

B
Nη

NM =
(
eai + eajβ

jkBki eajβ
ij

ea
jBji ea

i

)
, (E.10)

The H-flux calculation is as in chapter 9.2.3, and using the above vielbein the single component
Ωabc becomes

Ωabc = Ea
M∂MEb

NEcN

= Ea
m∂mEb

nEcn + Eam∂̃
mEb

nEcn + Ea
m∂m∂mEbnEc

n + Eam∂̃
mEbnEc

n

= ea
m∂m(ebn)ecjBjn + ea

k∂̃m(ebn)ecjBjn + ea
m∂m(ebjBjn)ecn + ea

kBkm∂̃
m(ebjBjn)ecn

= ea
m∂m(ebn)ecjBjn + ea

k∂̃m(ebn)ecjBjn + ea
m∂m(ebj)Bjnecn + ea

meb
j∂m(Bjn)ecn

+ ea
kBkm∂̃

m(ebj)Bjnecn + ea
kBkmeb

j ∂̃m(Bjn)ecn

= ea
ieb

jec
k[∂i(Bjk) +Bim∂̃

m(Bjk)] .
(E.11)

Antisymmetrising this expression we obtain the Habc-flux in flat indices;

Fabc = 3eaiebjeck(∂[iBjk] −Bl[i∂̃lBjk]) = Habc . (E.12)
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Continuing with the fabc flux, it is given by

Fabc = Ωa
bc + Ωc

a
b + Ωbc

a = fabc . (E.13)

As ΩABC is antisymmetric we have that Ωbc
a = −Ωb

a
c, so we need only calculate Ωa

bc and Ωa
b
c.

Starting with the former, we have that

Ωa
bc = eaM∂MEb

NEcN

= Eam∂mEb
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n

= eaieb
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k
(
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(
∂̃iBjk + βimDmBjk

)
.

(E.14)

For the other component Ωa
b
c we get that

Ωa
b
c = Ea

M∂ME
bNEcN
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(E.15)

From this the fabc flux is then obtained as

fabc = Ωa
bc + Ωc

a
b − Ωb

a
c

= eaieb
jec

k
(
∂̃iBjk + βimDmBjk

)
+ ec

iDie
a
jeb

j + ec
ieajβ

jkDiBkneb
n

− ebiDie
a
jec

j − ebieajβjkDiBknec
n

= 2e[c
iDie

a
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j + eaieb
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k
(
∂̃iBjk + βimHmjk

)
.

(E.16)

Quickly proceeding to the Q-flux, again it is defined as

Qa
bc = Ωa

bc + Ωbc
a + Ωc

a
b . (E.17)
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However, since ΩABC is antisymmetric in its indices, Ωc
a
b = −Ωbc

a, and we need only evaluate
two components. Starting with Ωa

bc, we get
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The other component becomes
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where D̃i ≡ ∂̃i + βij∂j . With this, the Q flux is given by
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(E.20)

Lastly, we turn to the R-fluxes defined by

Rabc = 3Ω[abc] . (E.21)

The single component is calculated to
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(E.22)
Hence, we have

Rabc = 3eaiebjeck
(
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