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Enlargement of perceived size of sound source using diffusive geometries
ZHIWEN XU
Department of Architecture and Civil Engineering
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Chalmers University of Technology

Abstract

Interaural cross correlation, which quantifies the similarity of binaural signals, is essential for
immersive and rendered auditory environment. Previous research has proven that reducing
interaural correlation leads to expansion of perceived size of a source. The Schroeder diffuser
is a prevalently used acoustic design to create pleasant acoustic environment since it was
firstly developed. It helps to eliminate many acoustic problems in many scenarios through
scattering waves in multiply directions. In this work, the Schroeder diffuser is employed to
manufacture natural sound field with reduced interaural correlation so that models of source
enlarger can be studied further.

To explore the properties of the sound field of the Schroeder diffuser, the produced sound
field is simulated and a method of representing the sound field with circular harmonic ex-
pansion is applied. The characteristics of the sound field of the Schroeder diffuser are inves-
tigated to discover their connectivity with low interaural correlation in order that any other
arbitrary sound field can be manipulated to achieve it. In light of such discovery, two models
of simple sound fields which are impulse field and plane wave field are utilized to produce
the sound field with low interaural correlation with proper modification engaged. These sim-
ple models are capable of saving computational cost as simulating the Schroeder diffuser is
pretty resource and time consuming.

Keywords: Spatial Audio, Diffusive Geometry, Schroeder Diffuser, Circular Harmonic Ex-
pansion, Binaural Analysis, Digital Signal Processing
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1 Introduction

Spatial audio technology, which creates immersive auditory environment in 3-D space, is
quite different from traditional stereo audio that only conveys left and right. However, it
is the binaural signal that finally brings virtual feeling to our auditory system, whatever
technologies are employed.

The binaural signal has to be decorrelated so that people’s brains can detect the differences
between signals played at two ears and render virtual sense. Interaural cross correlation
(IACC) has been referred widely to quantify the similarity between binaural signals. Pre-
vious research has discussed the relationship between IACC and appparent source width
(ASW) that reducing IACC leads to increase of ASW [1]. ASW describes the perceived
size of a sound image such as the width of orchestra in concert hall. It’s employed here to
represent the perceived size of the sound source.

The Schroeder diffuser is a well developed acoustic design to create pleasant acoustic envi-
ronments. It’s able to scattering incident waves into multiply directions in order that acoustic
problems caused by specular reflections can be purged from many scenarios. In this work,
the Schroeder diffuser is utilized to manufacture natural sound field that may convey low
interaural cross correlation in such manner that models of source enlarger can be studied
with it as a basis. The simulations of the Schroeder diffusers are performed to explore the
properties of its scattering sound field and find its connectivity with low IACC. Benefit from
circular harmonics expansions method, such nature field by the Schroeder diffuser can be
easily decomposed and reconstructed with circular harmonic coefficients, which further en-
ables any arbitrary sound field such as impulse field and plane wave field to be manipulated
to achieve low IACC.

1.1 Interaural cross correlation [1]

In a previous work the performance of IACC to predict ASW was test with a stero set-up.
Three experiments were performed to test if IACC predicts ASW properly: 1) loudspeaker
presentation in a listening room; 2) headphone presentation of the same listening room; 3)
headphone presentation of an anechoic listening condition. All the three experiments are
conducted under 0.25 kHz and 1 kHz with and without cross-talk.

The measurements showed that the IACC were consistent with measured data without cross-
talk, whereas the prediction with cross-talk didn’t account for the measurement. Since cross-
talk is not considered in this work. The IACC is still a great predictor of perceived size.

1.2 Simulation work [2]

Another previous work performed simulations of diffusive geometries, which is the founda-
tion of simulation part in this work. Simulations of a 2-D diffuser with (8 × 8) wells are
performed to study its scattering characteristics, and autocorrelation diffusion coefficient is
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employed to estimate how diffused a scattering field is. Detailed theoretical derivations and
implementations are presented, which will be discussed in later section 3.
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2 Theory

2.1 Schroeder diffuser

Schroeder diffuser is an optimized surface [3] proposed by Schroeder, which has ability to
scatter sound wave omnidirectionally from whichever direction the incident wave comes [4].
It’s constructed by digging a series of equal-width wells with different depths on a wall. The
depths of such wells are determined by quadratic-residue sequence [5], therefore Schroeder
diffuser is also called quadratic-residue diffuser (QRD). In a theoretical environment without
air friction, sound field only depends on the travelling routes of component sound waves
because only phase differences of such component waves would bring changes to net field.
Schroeder diffuser reconstructs the sound field exactly by changing the propagation paths of
incident waves.

2.1.1 Design of Schroeder diffuser [4]

The valid bandwidth of Schroeder diffuser depends on physical dimensions including width
and depths of wells. Based on previous studies of acoustic diffusers, the width w of wells is
defined as:

w =
λmin

2
(1)

where λmin is the wavelength of highest frequency for optimal diffusion. The lower fre-
quency limit f0 is determined by designer, which also control the depth of wells Dn:

Dn =
λ0

2N
sn (2)

where λ0 = c0/f0, N is a prime number chosen by designer, and sn is quadradic-residue
sequence. For 1D Schroeder diffuer the sequence is:

sn = n2modN (3)

while that of a 2D Schroeder diffuser is:

sn,m = (n2 +m2)modN (4)

where n and m are non-negative integers which determines the depth of nth and mth well
on the wall.
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2.1.2 Autocorrelation function

The autocorrelation function is frequently employed to investigate the spatial similarity of
energy scattered from diffuser. Diffuser which creates more diffused field would return a
higher value from autocorrelation function. The diffusion coefficient can be derived from
the function through taking an average on it, and the equation of it is :

dΨ =
(
∑n

i=1 10
Li/10)2 −

∑n
i=1(10

Li/10)2

(n− 1)
∑n

i=1(10
Li/10)2

(5)

where Ψ represents the incidence angle, Li is the sound pressure level in ith direction, and
the scattered waves radiate in n directions. dΨ will be a positive value located between 1/n
and 1, and larger value means more diffused field.

Sound Pressure Level The mathematical definition of sound pressure level is [6]:

Lp = 10 log10 (
p

2× 10−5 Pa
)2 (6)

where p represents sound presusre.

2.2 Acoustic Virtual Environment [7]

Virtual environment has become a common concept in both video and audio industries. It’s
an immersive sensory feeling created by stimulating people’s watching and hearing systems.
It’s usually a holistic experience combining the technologies of both video virtual environ-
ment and acoustics virtual environment. In this section, the scope is narrowed down to
acoustic virtual environment, where studies are focused on audio reproduction technologies
for rendering methods.

The most common rendering technologies are head related methods and room related meth-
ods. Head related methods only create the sound signlas at both ears, while room related
methods creates a sound field in a room in the virtual environment so that listeners can pick
whichever positions they want to listen at.

2.2.1 Sound field Synthesis

Sound field synthesis is a newly developed room related method. The main idea of sound
field synthesis is to decompose the desired sound field with a set of elementary sound
sources, of which the superposition of emitted fields is an excellent approximation of such
desired field. The elementary sources are distributed continuously in space to supply in-
formation, thus in theory, the synthesized field depends highly on the density and layout of
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sources. Larger room usually requires more elementary sources, otherwise the deviations
between superpositions and desired field would be unacceptable. In this thesis, study is fo-
cused on 1D diffuser, and the exterior sound field is in a 2D surface. As a result, all the
results and analysis is based on 2D polar coordinate.

2.2.2 Acoustic wave equation [7]

Acoustic wave equation is the patial-differential equation that describes the relations between
acoustic properties and space and time, from which the propagation properties of acoustic
waves can be solved and studied. Characteristics of a sound field are usually represented by
three fundamental physical properties:

• p(r, t), sound pressure

• v(r, t), partical velocity

• ρ(r, t), mass density

where r = (x,y, z) is the displacement vector in 3-D Cartesian coordinate, t is the time at
observation.

Figure 1: Physical principles between three fundamental acoustic properties [7].

These three fundamental acoustic properties are related with each other with the physical
principles shown in figure 1. And three equations can be used to represent such principles:

• Equation of motion, derived from Newton’s 2nd law, describes relationship between
sound pressure p(r, t) and particle velocity v(r, t).

• Equation of continuity, equivalent to conservation of mass, connects particle velocity
v(r, t) and mass density ρ(r, t) by considering the mass flux through a volume element

• Equation of state for a gas, referring to thermodynamics properties, solves the associa-
tion between p(r, t) and ρ(r, t) with heat capacity of medium gas.
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Wave equation Combine the three equations one can conclude the general form of wave
equation as,

∇2p(r, t)− 1

c2
∂2p(r, t)

∂t2
= 0 (7)

based on which the solutions are acquired in COMSOL Multiphysics. And the mathematical
form of laplacian operator is∇2 is

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(8)

2.2.3 Polar Coordinate [6] [7]

In this thesis, the physical image of sound field is constructed in a 2-D plane, and for the
convenience of using circular harmonic expansion, the wave equation has to be transformed
into polar coordinate.

In polar coordinate the displacement r is described with two coefficients r and α, which are
the distance from the origin point and angle distance from 0, respectively.

As a result, the displacement r can be transformed into

r =

[
x
y

]
= r

[
cosα
sinα

]
(9)

and

r = |r|2 = x2 + y2 (10)

tanα =
y

x
(11)

The laplacian operator in polar coordinate is

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂α2
, (12)

which brings the form of wave equation into

1

r

∂

∂r

(
r
∂p(r, t)

∂r

)
+

1

r2
∂2p(r, t)

∂α2
− 1

c2
∂2p(r, t)

∂t2
= 0 (13)
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2.2.4 Circular harmonic expansion [7]

In previous section 2.2.2, the wave equation 7 is derived and rearranged in polar coordinate
13. The general solution of wave equation is

p(r, t) = P̃ (k, ω)ei(ωt+kT·r+ϕ) (14)

where ω is the angular frequency of wave and ϕ is initial phase. k denotes the wave vector at

position of interest. The wave vector k can be expressed by wave number k =
2π

λ
and unit

wave vector n̂

k = ∥k∥n̂ = kn̂, (15)

and the unit vector is defined as

n̂ =

(
x√

x2 + y2 ++z2
,

y√
x2 + y2 ++z2

,
z√

x2 + y2 ++z2

)
. (16)

Fourier transformation As one can find in equation 14, the solution of wave equation
is a function of both position r and time t. The properties of sound wave such as sound
pressure fluctuates with spatial position and time. As one of the most fundamental methods
regarding signal processing, Fourier transformation is capable of decomposing signals into
constituent frequencies or wave numbers, respectively to time and spatial positions. Because
any arbitrary sound field can be composed by several sinusoidal waves from some directions.

As a consequence, applying Fourier transformation to either time or positions will help to
indicate the components of such waves through investigating its spectrum. This is quite
essential when evaluating properties of signals as spectrum reports how different components
contribute to the total signal.

For both spatial position and time, there’s a Fourier transformation pair. The transformation
relationships can be expressed as

p(r, t)
Ft←→ P (r, ω)

Fk←→ P̃ (k, ω) (17)

The pair for time is

P (r, ω) = Ft{p(r, t)} =
∫ ∞

−∞
p(r, t)e−iωt dt (18)

p(r, t) = F−1
t {P (r, ω)} = 1

2π

∫ ∞

−∞
P (r, ω)eiωt dω (19)
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while for spatial positions the pair becomes

P̃ (k, ω) = Fr{P (r, ω)} =
∫ ∞

−∞
P (r, ω)e−ikT·r dr (20)

P (r, ω) = F−1
r

{
P̃ (k, ω)

}
=

1

(2π)d

∫ ∞

−∞
P (k, ω)eik

T·r dk (21)

where d is the degree of freedom.

The mechanism of Fourier transformation adopts the orthogonality of components that the
inner product of two orthogonal vectors equals to 0.

Monofrequency plan wave As discussed above, any complex sound field can be regarded
as a superposition of many plance waves. Based on the general solutino of wave equation,
consider a monofrequency plane wave with frequency ω0 propagating in a fixed direction φ0.
In polar coordinate such wave can be described as

p(r, t, ω0, φ0) = P̃ (ω0, φ0)e
i(ω0t+kT

0 ·r) (22)

where the initial phase ϕ is eliminated for convenience. Refer to the coordinate relationship
above 9, and at meantime unit wave vector

n̂0 =

[
cosφ0

sinφ0

]
, (23)

the inner product between wave vector and position is calculated as

k0
T · r = k0n̂0

T · r =
ω0

c
∥n̂0∥ · ∥r∥ cos(α− φ0) (24)

label γ = α− φ0, then the plane wave described in equation 22 becomes

p(r, α, t, ω0, φ0) = P̃ (ω0, φ0)e
i(ω0t+

ω0
c
r cos γ). (25)

Since it’s in polar coordinate, the pressure has a angular periodicity that

p(r, α, t, ω0, φ0) = p(r, α+ 2π, t, ω0, φ0) (26)

Bessel functions and orthogonal expansion To simplify the calculation of function p(r,-
α, t, ω0, φ0), a common method is separating the function into the products of several single
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variable functions, or they can be called as orthogonal functions because their inner prod-
uct equals to 0 over a specific interval and are similar to the concept of orthogonal vectors.
These functions are exactly the orthogonal vectors in mathematical manners, while orthogo-
nal vectors in linear algebra can be visualized more easily as they’re perpendicular with each
other.

In this case the Bessel functions are employed to split the exponential term in equation 25 so
that the function is expanded with orthogonal functions. Bessel functinons are the solutions
of Bessel’s differential equation:

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − a2)y = 0 (27)

and it’s easy to find that Bessel’s differential equation is a second-order normal linear dif-
ferential equation, which means that there must be two linear solutions. Here the first kind
Bessel functions are referred to with its definition using integral representation:

inJn(kr) =
1

2π

∫ 2π

0

ei(kr cos γ−nγ) dγ, n ∈ Z (28)

the exponential term eikr cos γ is included in the integral, so Bessel’s functions can be regarded
as the Fourier series coefficients of it, and it can be calculated inversely with the manner of
Fourier transformation. Since n is integers, integral has to be turned into summation:

eikr cos γ =
+∞∑

n=−∞

ineinγJn(kr) (29)

=
+∞∑

n=−∞

inein(α−φ0)Jn(kr) (30)

finally equation 25 turns out to be

p(r, α, t, ω0, φ0) = P̃ (ω0, φ0)
+∞∑

n=−∞

ineiω0teinαJn(
w0

c
r)e−inφ0 (31)

Broadband plane waves Broadband wave can be regarded as a superposition of many
monofrequency plane wave with different amplitude. Here the propagation direction of wave
is still φ0 but the frequency ω0 is no longer a single value, but a variable which contains all
the constituent frequencies. The total pressure of such broadband wave can be calculated
through integrating monofrequency plane wave over frequency, which can be described as

9



pbb(r, α, t, φ0) =
1

2π

∫ +∞

−∞
p(r, α, t, ω0, φ0) dω0 (32)

insert the equation of monofrequency plane wave 25

pbb(r, α, t, φ0) =
1

2π

∫ +∞

−∞
P̃ (ω0, φ0)e

i(ω0t+
ω0
c
r cos γ) dω0 (33)

=
1

2π

∫ +∞

−∞
P̃ (ω0, φ0)e

i
ω0
c
r cos(α−φ0)eiω0t dω0 (34)

= F−1
t

{
P̃ (ω0, φ0)e

i
ω0
c
r cos(α−φ0)

}
(35)

apply Fourier transformation on both side of the equation

Pbb(r, α, ω, φ0) = P̃ (ω, φ0)e
iω
c
r cos(α−φ0) (36)

refer to equation 30 and then the final series expansion is

Pbb(r, α, ω, φ0) =
+∞∑

n=−∞

P̃ (ω, φ0)i
nein(α−φ0)Jn(

ω

c
r) (37)

General sound field In previous sections the expansions of monofrequency and broadband
sound waves have already been discussed in mathematical manners. However, the theoretical
description is still not universal enough as the realistic sound field is usually impossible to
be constructed by monodirectional wave. With the experience of expanding the scope from
monofrequecy wave to broadband waves, the monodirectional wave can be similarly broaden
to general sound field through generalizig the propagating directions of sound waves to all
angular range φ0 ∈ [0, 2π].

Implement the integral over propagating direction φ0
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Pg(r, α, ω) =
1

2π

∫ 2π

0

Pbb(r, α, ω, φ0) dφ0 (38)

=
1

2π

∫ 2π

0

+∞∑
n=−∞

P̃ (ω, φ0)i
nein(α−φ0)Jn(

ω

c
r) dφ0 (39)

=
+∞∑

n=−∞

1

2π

∫ 2π

0

P̃ (ω, φ0)e
−inφ0 dφ0 i

neinαJn(
ω

c
r) (40)

=
+∞∑

n=−∞

P̆n(ω)i
neinαJn(

ω

c
r) (41)

where P̆n(ω) is the Fourier coefficients of complex amplitude P̃ (ω, φ0) with pair

P̆n(ω) =
1

2π

∫ 2π

0

P̃ (ω, φ0)e
−inφ0 dφ0 (42)

P̃ (ω, φ0) =
+∞∑

l=−∞

P̆l(ω)e
ilφ0 (43)

Finally, the general sound field Pg(r, α, ω) has is characterised by a Fourier series

Pg(r, α, ω) =
+∞∑

n=−∞

Ṕn(r, ω)e
inα (44)

with its Fourier coefficients written as

Ṕn(r, ω) = P̆n(ω)i
nJn(

ω

c
r) (45)

2.3 Interaural cross correlation [8]

The interaural cross correlation function is useful when evaluating the perceived size of
source. It can be calculated with pressure signal in time domain with definition as

ρt1,t2(τ) =

∫ t2
t1

pl(t)pr(t+ τ) dt√∫ t2
t1

p2l (t) dt
∫ t2
t1

p2r(t) dt
(46)

and interaural cross correlation (IACC is defined as the maximum value of the absolute value
of this function over τ :
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IACCt1,t2 = max|ρt1,t2(τ)|, τ ∈ (−1, 1)ms (47)
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3 Method

In this section, the methods for simulation and algorithm implementation are discussed in a
detail way. As mentioned before, the Schroeder diffusers are firstly simulated with computer-
aid software, and circular harmonics are then applied to reconstruct the scattering sound field
with abstract sound waves, and finally the sound field are manufactured totally artificially to
explore more possibilities of designing diffusers. Since such diffusers are not really man-
ufactured, simulations are regarded as predictions of functionality of them. However, the
following procedures which are realized with algorithms are more general and have more
potential to be applied in real products.

3.1 Schroeder diffuser simulation

3.1.1 Simulation method [9]

Simulation work are very common in either academical research or industrial R&D. It’s very
reliable regarding predicting the functionality of theoretical model or industrial products.
With built-in functions and theoretical models, simulation software are able to calculate a
variety of properties of research objects such as motions status, heat transfer, vibrations and
so on. There are many commercial software on the market now to fulfill diverse demands
from different research area, but almost all of them employ finite element method (FEM) to
solve the systems of interest.

FEM is a well-developed numerical technique to study successive systems. A systematic
description of FEM can be found in a book [9]. It’s an approximation of real scenarios as
the impossibility to construct a completely accurate replacement of them and such approxi-
mation is applied through interpolation. A general procedure of FEM is listed below,

• Discretization Discertize the domain into smaller elements. The size and shape of
elements are controller by the problem itself.

• Interpolation Use interpolation function to approximate solutions within elements with
values at know nodes.

• Element Equation Formulation Formulate equations of elements based on physical
principles which control the behaviours of the systems.

• Equation System Assembly List the element equations together to form a equation
system so that the entire domain is represented.

• Boundary Condition Application Apply boundary condition to describe the internal
or external constrain onto the domain.

• Solution Solve the equation system with various numerical methods.
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In commercial software, such procedures are integrated together for more fluent workflow.
What researcher needs to do are building demanded objects, dividing objects with proper
size of meshes, choosing physical principles and setting correct parameters.

In this thesis, COMSOL Multiphysics is used for simulations works. Since the physics
image is constructed in a 2-D polar plane, the space dimension in model builder is chosen to
be 2-D as a matter of course. ’Pressure Acoustics, Frequency Domain’ is chosen as physics
interface as it’s suitable for linear acoustics simulations. Study type is set as ’Frequency
Domain’ to acquire results with spectral characteristics.

The sound field produced by diffuser is composed of incident wave and scattered wave. To
study the effect of scattered wave, incident wave has to be deduced from total field. In
geometries setup, diffuser is placed at the origin position of coordinate because the scattered
wave can be regarded to be stimulated by diffuser as a source. This brings much convenience
to analyses in polar coordinate. The diffuser is simulated to be placed in an air domain with
enough large size that stable sound field can be constructed and prevent the influence of
near field effect. At the outer boundary of air domain, a perfect matched boundary is set to
absorbed all the energy radiated as it’s impossible to simulate an infinitely extending field.
When it comes to solving of field, exterior field calculation is activated.

According to the principles discussed in section 2.1.1, diffusers are designed and simulated
with settings described above. The solutions exported from simulations are pressure response
in frequency domain, in which the information of scattering such as traveling distance and
influence of diffuser on input signal is stored. Consider the scattering process of diffuser as a
linear time invariant (LTI) system, these frequency responses (FR) of pressure exported are
exactly transfer function of the systems.

3.1.2 Simulation example from previous work [2]

As mentioned in section 1, a (8×8) diffuser was simulated and autocorrelation diffusion co-
efficients of were calculated in a previousr work. The geometry and sampling grid are shown
in figure 2. The diffuser is compared with a flat hard wall in figure 3 with autocorrelation
diffusion coefficient, which represents how diffused the scattering field is. The axes in the
figures are corresponding coordinates in figure 2, which means the 1st and 3rd plots in figure
3 are the autocorrelations observing from side view (parallel to +y direction) and the 2nd and
4th plots are looking from from view (-x direction). Each circle in the plots represents an
incident direction, and the distance between circle’s position and origin point is the value of
autocorrelation diffusion coefficient. So the circle farther away from origin point means the
scattered wave field with incident wave from such direction is more diffused.
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(a) Diffuser geometry (b) Sampling grid

Figure 2: Diffuser geometry and sampling grid in related work [2]

Figure 3: Autocorrelation diffusion coefficient [2]

The simulation of this related work is replicated and the autocorrelation diffusion coefficients
are plotted in figure 4 and 5. During the replication, the half-sphere of grid only contains
100 points which are evenly distributed. The accuracy of autocorrelation diffusion coefficient
might not be as good as that in figure 3, but the overall shape of distribution is reasonable.

Figure 4: Autocorrelation diffusion coefficient in 1096Hz
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Figure 5: Autocorrelation diffusion coefficient in 4062Hz

3.2 Circular harmonics expansion algorithm

Circular harmonic expansion is similar to Fourier series expansion, and both of them are
expansions of periodic functions. Fourier series are expansions of real line functions. With
proper chosen Fourier coefficients, any periodic real line functions can be expressed with the
sum of Fourier series. Analogously, circular harmonics are expansions of periodic functions
defined on circles, which are more appropriate to be defined in polar coordinate with two
variables, radial and angular displacement. And the expansion equation is derived using
Fourier expansion theory. Even further, periodic functions defined on a surface of sphere can
also be expanded with series, which are called spherical harmonics.

The circular harmonics are formulated as [7]

CH(m) = eimθ (48)

where m is the order index.

In following figure 6 and 7, circular harmonics of lowest 4 orders are visualized for both
real part and imaginary part. In order to plot all values with same radial displacement range,
absolute values of circular harmonics are taken, but the real sign of them are labelled with
different colors. Red curves represent positive values and blue are for negative.
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Figure 6: Imaginary part of circular harmonics

Figure 7: Real part of circular harmonics

Figure 8: Circular harmonics coefficient of a point source
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Figure 9: Circular harmonics coefficient of a dipole

As shown in figure 7, circular harmonics of 0th order is a circle, and it’s the same as the
wavefront from a point source. Thus the circular harmonics coefficients of point source
should only contain the 0th order component. Figure 8 is the circular harmonic coefficients
of a point source and one can conclude that it’s compatible with expectation. Figure 9 is
the circular harmonic coefficients of a dipole horizontally placed at origin point, where only
circular harmonics of odd order contribute to total sound field. Dipole with two point sources
vibrating out of phase doesn’t stimulate symmetric constituent to their central line.

To achieve the circular harmonics expansion of a circular defined function, expansion coef-
ficients have to be calculated with a certain method. According to equation 43, coefficients
P̆n(ω) of circular harmonics can be calculated with complex amplitude P̃ (ω, φ0) along a
circle, which can be exported from simulation results. Theoretically, pressure distribution
among the whole domain can be manipulated with circular harmonics and their coefficients.
The reconstructed field won’t be totally equivalent to that got from simulations because it’s
a approximation using several points along a circular grids. But the accuracy is acceptable
with proper chosen density of points. The algorithm to perform such calculations will be
developed with MATLAB.
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3.3 Artificial Field Manufacturing

During previous two sections, methods of performing simulations and expanding wavefront
with circular harmonics are described and discussed in detail. But both of them ask for get-
ting real data of sound pressure from simulations. In this section, two artificial manufacturing
methods are introduced to realize the analogous functionality without any original pressure
data. But the pressure data from simulations will be utilized as reference targets. Such two
methods also employ the idea of circular harmonics expansions, because the manufactured
field is calculated with coefficients that are acquired from new methods.

The first method is to create an arbitrary impulse response and apply adjustments on it to
make it fulfilled. Since the circular harmonics coefficients for any specific order can be
seen as a frequency response, the primary focus is thus to modify the arbitrary impulse
response in such manner that the spectrum of it gets closer to that of the Schroeder diffusers.
After which the impulse response becomes an artificial transfer function to be employed by
listening signals. Besides, some random deviations such as Guassian noise will be added
to explore more possibility to enhance its functionality further. Because almost any virtual
listening experience comes from decorrelation between two ears, and extra deviations are
possible to bring more decorrelation to binaural signals.

The second method is generating an plane wave with circular harmonics either. The circular
harmonic coefficients of plane wave can be directly calculated with Bessel functions.
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4 Results

In this thesis, methods to enlarge the perceptive size of sound source with diffusive geome-
tries are explored. Several diffusers are designed and analysed to find dependence of their
functionality on their designing characteristics. Each diffuser is seen as a LTI system that its
scattering influence on sound field will be exported as transfer function in the form of fre-
quency response of pressure. Proper audio samples are introduced to test the functionality of
the diffusers, where headphone is required to play such audio signals as the virtual listening
experience comes from the decorrelation of two ears. Moreover, algorithm to calculate cir-
cular harmonics coefficients and reconstruct sound field from coefficients is developed. This
enables researcher to manipulate sound field with desired circular harmonic coefficients.
And more importantly, diffusers are further simplified into abstract sources such as point
sources which can build similar fields to that of diffusers with proper adjustments on their
vibration characteristics.

4.1 Schroeder diffuser simulation

According to equation 3, the quadratic-residue sequence, which influences the depths of
wells, are determined by a self-chosen prime number N by designer. The dimensions of
diffusers such as width and depths of wells are defined by calid working frequency band of
the diffusers.

Here in this thesis, prime number N is set to be 15. So the sequence is calculated:

sn = 0, 1, 4, 9, 3, 12, 10, 10, 12, 3, ... (49)

The higher limit for optimal diffusion is fmax = 5kHz, which results in the width of wells
to be

w =
λmin

2
=

1

2
· c

fmax

=
343m/s

2× 5000Hz
= 3.43 cm (50)

and the lower limit of frequency band is chosen as f0 = 100Hz and determines the depths
of wells together with sequence sn with following relationship

Dn =
λ0

2N
sn =

1

2× 13
× 343m/s

100Hz
sn = 13.2 cm · sn (51)

With all the parameters above, Schroeder diffusers can be designed with different number of
wells n. Since the diffusers are placed in 2-D polar coordinate with a 1-D sequence, they are
denoted as (n× 1) diffusers in following descriptions.

Firstly, a (8 × 1) diffuser with 8 wells is designed to see how Schroeder diffuser works on
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incident waves and influences the net sound field. A diagram of this diffuser is shown in
figure 10, with necessary parameters labelled on.

Figure 10: (7× 1) Schroeder diffuser with N = 13

To simulate the listening experience when people are enclosed by the scattering sound field,
a listener is located at 3.9m away from the diffuser and 60◦ from normal direction, with
location (3.9m, 30◦) in polar coordinate. Two sampling points are placed in the simulations
domain to simulate two ears and the distance between them is set as 18 cm. The diagram of
listening position is shown in fugure 11.

Figure 11: Simulation setup (7× 1) Schroeder diffuser with N = 13 and listener positions
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The half circle here is an air domain as the diffuser is assumed to be placed in air. The
horizonal bottom boundary is set to be a bard boundary. A Perfect-matched-boundary (PMB)
is placed at the upper arc boundary of air domain because COMSOL Multiphysics needs a
finite size domain for calculation. The simulation is performed with a plane wave incident
on the diffuser from direction with angular displacement 135◦. The simulation is performed
from 100Hz to 5000Hz with an increment of 10Hz.

The simulated scattering sound fields for both 500Hz and 4000Hz are shown below 12. It’s
easy to find the wavefront patterns of 500Hz are more omni-directional than that of 4000Hz
as waves with longer wavelength are less likely to be influenced by tiny structures.

(a) 500Hz (b) 4000Hz

Figure 12: Simulated scattering sound field of (7× 1) diffuser

(a) 500Hz (b) 4000Hz

Figure 13: Radiation Patterns of (7× 1) diffuser along arc with radius of 10m
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Figure 13 shows the radiation patterns of the diffuser for both 500Hz and 4000Hz plotted
in sound pressure level (SPL) along an arc with radius r0 = 10m. The reference direction
(the 0◦ in polar graph) is 90◦ in simulation coordinate, thus the patterns are exactly for
wavefront radiating between 0◦ and 180◦. And they are calculated in exterior field to prevent
the influence of near field. From such patterns one can find the fluctuations for 500Hz wave
is more regular, while that for 4000Hz is more violent. Such radiated waves bring more
possibility to realize special listening experience as it comes from decorrelation between two
ears. To create similar radiation characteristics for waves with longer wavelength, diffusers
with larger size is necessary.

The complex pressure response at two listening points labelled in figure 11 are evaluated and
are used as transfer functions of the entire scattering system. Two audio signal samples are
employed here to test the functionality of this diffuser. The pressure responses at two ears are
applied with inverse Fourier transformation so that the audio signals can be processed by the
system through convolution. Two audio samples are ’As long ago as 1860 48k.wav’ and
’Drums short 48k.wav’ with sampling frequency of 48 kHz. Since the highest frequency of
interest is 5000Hz, audio samples are resampled into Nyquist frequency of 10 kHz. The first
audio sample is human voice of a man, which covers a broad frequency range and mostly in
middle frequency. The second is a drum cut with dominant low frequency sound.

Processing results are quite different for the above 2 audio samples. The resampled audio are
regarded as the original source to be processed and compared with new audio signals. The
first sample acquires slightly perceptible feeling of being enlarged, as the perceived position
of source moves slightly from center of head to both sides of two ears. The second sample
doesn’t show evident difference under the influence of this diffuser. As states before the
second sample is mainly composed of low frequency drum, and considering relative slight
effects of such diffuser working on long wavelength than on short wavelength, it’s reasonable
that human voice reflects more changes than drum.

A natural way to make the effects of diffusers more significant on low frequency sound is
to deign a larger diffuser. Meanwhile, larger diffusers are expected to make the virtual size
feeling even larger for first sample as the processed signals can be regarded as sound radiated
from the diffusers. In order to study the effect of diffuser size on perceived size, many other
diffusers with more wells are simulated.

Diffusers with n = 13, 20, 26, 52, 104 of wells are designed with the same parameters and
simulated with the same procedure as that of n = 7. The diagram of such diffusers are shown
in figure 14. Under the scattering effects of so many diffusers, the first audio sample experi-
ence a gradually increased feeling of source size when the diffusers have more wells. Since
the processed signals are binaural, they sounds like two loudspeakers placed by both ears and
the angle formed by source and listener becomes larger whem diffuser size increases. Even
further, the signals processed by diffusers with n = 52 and 104 even create slight feelings of
reverberation. The second sample doesn’t shown great differences until n reaches 52, but it
proves that sound sources playing low frequency sound can also be enlarged as long as the
dimensions of diffusers are larger enough to influence the travelling of low frequency waves.
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Figure 14: Diffusers with n = 13, 20, 26, 52, 104

4.1.1 Autocorrelation

Equation 5 shows the argument of autocorrelation function is incident angle. With pressure
value achieved from simulations, the autocorrelation of all diffusers above are also calculated
to see how diffused their scattering fields are. The intervals between incident waves are 3◦,
so there are 61 incident directions in total.

(a) (b) (c)

Figure 15: Autocorrelation of all simulated diffusers and point source under 1200Hz,
2600Hz and 4000Hz.
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The autocorrelation under 1200Hz, 2600Hz and 4000Hz are plotted in figure 15. The point
source has autocorrlation 1 as it radiates omnidirectionally. In general the diffuser becomes
less diffused when n and frequency increase. But n = 104 is an exception as it’s more
diffusive than other smaller diffusers in most cases. It’s difficult to explain because it might
come from singular scattering by the diffuser.

4.1.2 Inter-aural cross correlation

As discussed in section 2.3, the parameter IACC refers to the maximum value of inter-aural
cross correlation function. Based on the first audio sample, the inter-aural cross correlation
function and IACC values of all the simulated diffusers above are in figure 16. The maxi-
mum value of inter-aural cross correlation function is seated at τ = 0ms as shown in 16a,
which means there’s no delay between the two channels of binaural signals. In 16b, IACC
decreases relative to n and is compatible with the listening results that perceived size of
source increases.

(a) (b)

Figure 16: IACC function and IACC value under different n based on 1st audio sample

Figure 16 is the IACC of full length of first audio signal with full band. To analyze the
frequency dependence of IACC and see how greatly differently frequency components are
affected by diffuser size, the IACC under 1/3 octave bands with central frequency from
125Hz and 4000Hz are plotted under different n as presented in figure 17. 1/3 octave band
filters of order 12 are applied to signals to extract signals with specific frequency components
so that IACC of 1/3 octave bands can be calculated with such extracted signals.

From the figure one can conclude that only diffuser with n = 52, 104 brings magnificent
decrease in IACC for frequency from 315Hz to 1000Hz. Diffusers with n = 26, 52 begin to
bring apparent changes when frequency is larger than 1000Hz. The diffusers with n = 26, 52
brings extreme larger deduction of IACC when frequency goes beyond 1587Hz. In general,
the functionality of larger diffuser as an enlarger is more evident.
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Figure 17: IACC in 1/3 octave band based on 1st audio sample

4.2 Circular harmonic expansion

In this section the circular harmonic expansion of sound field is discussed. Previously, to
achieve the pressure at specific positions in the sound field, simulation domain has to cover
all the positions of interest, which will bring much computational pressure. With circu-
lar harmonic expansion, any points in far field can be calculated with one set of circular
harmonics coefficients theoretically, which is the reconstruction of sound field. And this
enables researcher to choose any positions in sound field they want as listening locations.

The calculation of circular harmonic coefficients asks for a set of sampling points along an
circular arc with equal intervals, and the accuracy of reconstructed field depends on the den-
sity of points in the arc. So in practice, the reconstructed field usually covers only reasonable
area around the arc.

In this thesis, sampling points are placed along a circle with radius of 4m and 10◦ angular
intervals, which means there will be 36 points in total. And the largest order of circular
harmonics is 17. Figure 18 is a diagram of sampling points in simulation setup. Since
the simulations are performed in physics domain above the hard boundary, only half of the
points can be picked here. The other points are obtained through mirroring the points above
boundary to beneath.
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Figure 18: Sampling points along an arc for circular harmonic coefficient calculations

According to equation 43, the circular harmonic coefficients are calculated and plotted in
figure 19 with ’shading’ off in MATLAB. x-axis is the order of circular harmonics, while y-
axis is the frequency distribution of coefficients. Large value in plot means more contribution
of circular harmonics to total field. When the diffuser size grows up, the scattering field
achieves larger constituents at high order circular harmonics, and low frequency components
increase too. This trend is consistent with previous results that larger diffusers are able to
influence the low frequency components in sould field to more extent.
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Figure 19: Sampling points along an arc for circular harmonic coefficient calculations

A effective way to prove the reliability of circular harmonic expansion is to compare the
original sound field with the reconstructed one. In figure 20 - 25, the simulated sound pres-
sure distribution over azimuth angle and frequency are compared with reconstructed field
from circular harmonic expansion for all the 8 simulated diffusers. The azimuth angle dis-
tributions in reconstruction are different from that in simulations. Considering convenience
for future selection of listening signals, azimuth angle interval is chosen to let the distance
between adjacent points equal to ear distance, which is 18 cm here. In far-field scenarios, the
length of arc approximately equals to direct distance between two points.
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Figure 20: Comparison between simulated and reconstructed field for n = 7

Figure 21: Comparison between simulated and reconstructed field for n = 13
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Figure 22: Comparison between simulated and reconstructed field for n = 20

Figure 23: Comparison between simulated and reconstructed field for n = 26
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Figure 24: Comparison between simulated and reconstructed field for n = 52

Figure 25: Comparison between simulated and reconstructed field for n = 104

31



The reconstructed field from circular harmonic expansions are almost the same as that of
simulated fields under all simulated cases. Only some tiny difference can be detected with
cautious observation. But it’s totally acceptable as discussed before in theory section that
circular harmonics expansion is an approximation of target function. From the figures one
can also conclude that the fluctuations of low frequency waves become more and more vio-
lent when the diffusers becomes larger, where more decorrelation between two ears happens
within low frequency range. Moreover, diffuser with more wells scatters more energy than
that with less wells, which can be evidently seen from figures above that the sound pressure
levels increase as n increase under same incident conditions.

The inter-aural cross correlation of reproduced listening signals are plotted below in figure
26. Compared with figure 17, The IACC calculated in 1/3 octave band from reconstructed
listening signals in figure 26b shows obvious deviations for the diffusers with n = 52, 104
with frequency larger than 1000Hz.

(a) (b)

Figure 26: IACC function and IACC value under different n based on reconstructed 1st audio
sample

These deviations come from the accuracy of circular harmonics expansions. To acquire more
accurate value with lower deviations, the sampling points in simulations should be more
dense to achieve more accurate circular harmonic coefficients. In figure 27, the IACC in 1/3
octave band with new sampling grid of 2.5◦ is plotted. The new interval is almost the same
as ear distance at 3.9m, which is 18 cm/3.9m = 2.64◦. With more accurate sampling for
circular harmonics expansion, the calculated IACC from reconstructed field now becomes
close to the simulated results.

32



Figure 27: IACC value in 1/3 octave band under different n based on reconstructed 1st audio
sample with sampling grid of 2.5◦

4.3 Artificial field

Grounded on the results from previous section, the diffuser with n = 26 is employed here
as a reference target as it’s the diffuser supplying best performance with acceptable accu-
racy under circular harmonics expansions using grid with 10◦ intervals. Two methods of
manufacturing sound field artificially are discussed to reduce calculation consumption of
simulations. The first method is manufacturing from impulse response, which can be stimu-
lated by a point source. The second method is ’plane wave’. Since the radiated waves from a
point source at very far-field can be regarded as plane waves, this method can be interpreted
as a derivative method from point source.

4.3.1 Impulse response

This method might be deemed as an inverse operation of circular harmonic expansion. The
circular harmonic coefficients are described over frequency and order number as one can see
in figure 19. The coefficients under a single order would become a function over frequency,
thus it’s intuitive to consider it as a frequency response, which is equivalent to an impulse
response in time domain. This method starts from creating an ideal impulse response in time
domain, whose spectrum is a flat line in frequency domain. The created impulse signal is
modified so that its spectrum becomes as analogous to that of circular harmonics coefficients
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as possible. The created impulse is stimulated at the time when waves travel from origin to
listening location. Here the traveling time is (3.9m)/(343m/s) = 11.4ms.

Figure 28: Frequency response of simulated circular harmonics coefficients and artificially
manufactured impulse response of 0th order

Figure 28 presents an instance for the above mentioned operations using 0th order circular
harmonic coefficients. The original flat line of an impulse response is modified by several
filters to fit the simulated response of coefficients. The filters are design by MATLAB and
refer to ’butterworth’ and ’FIR’ filters. Furthermore, the simulated response contains many
fluctuations which are difficult to be obtained through filtering, thus some complex Gaussian
noise is added to the created response to make it fit target curve better, as shown in following
figure 29. The comparison between simulated impulse response of circular harmonic coeffi-
cients and artificially generated impulse with filtering and noise are shown in figure 30. The
created impulse response is in proper shape and has similar oscillating characteristics with
simulated impulse. The amplitude difference comes from accumulative deviations over full
band, which is reasonable as impossibility to reproduce a totally identical frequency response
with filtering and noise.
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Figure 29: Frequency response of simulated circular harmonics coefficients and artificially
manufactured impulse response of 0th order with Gaussian nosie

Figure 30: Impulse response of simulated circular harmonic coefficients and artificially cre-
ated
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Afterward, same procedures of generation are applied to higher orders of circular harmonics
to create more complete coefficients set. From figure 19 one can find the dominant con-
stituent of circular harmonics are that in low order and circular harmonics in such order
contributes to full band of interest. As a result, the coefficients from 0th to 5th are generated
and visualized in figure 31.

Figure 31: Artificially created circular harmonic coefficients from impulse responses

With newly created coefficients, an artificial sound field can also be generated and the pres-
sure response at same listening positions as before are easily calculated. The audio samples
are processed again and compared with simulated ones. The artificially created field still
works as an enlarger. Since the high order components are skipped here in this method,
losses in high frequency components can be obviously detected, which makes the scattered
signals not as bright as that of n = 26.

4.3.2 Plane wave

A second method of plan wave generation is discussed in this section. It’s quite similar to
impulse response method, except the sound field is currently a plane wave field.

Circular harmonic coefficients of plane wave can be calculated directly with Bessel function
according to equation 37 as MATLAB has a built-in function for Bessel function. However,
the listening position in this case has to be small because the arguments of first kind Bessel
functions should be small to make the function applicable.

The incident direction of plane wave is set as −π/2, which means propagating perpendicu-
larly from bottom to top. The listening position now is (1m, 30◦) in polar coordinate, so the
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distance from source to listener’s head center becomes 0.5m. The travelling time for waves
to reach the listener is (0.5m)/(343m/s) = 1.46ms.

Figure 32: Circular harmonic coefficients of artificially created plan wave

Figure 33: Frequency response of 0th circular harmonic coefficients of artificial plan wave.
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Figure 34: Impulse response of 0th circular harmonic coefficients of artificial plan wave.

The circular harmonics coefficients of this plane wave is plotted in figure 32. The corre-
sponding frequency response and impulse response of 0th order coefficients is in figure 33
and 34. With circular harmonic coefficient, the signals at listener’s positions are available.
From figure 34 one can see a first impulse at the beginning and another impulse at the end.
The first one is the wavefront traveling from the source beneath, while the second is called
spatial aliasing caused by high frequency waves. It’s inevitable with discrete layout of sec-
ondary sources. Subsequently, the created plane waves are also added with extra Gaussian
noise to bring more decorrelation between two ears and its coefficients are shown in figure
35. The audio samples at listening positions are tested and the generated plane wave is func-
tional as an enlarger. But listener feels apparent offset of source location as the wavefront
arrives at two ears at different time slots. But it’s inevitable as the decorrelation of binaural
signals is needed. However, this shortcoming can be reduced to some extent through adding
random noise to signals.
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Figure 35: Circular harmonic coefficients of artificially created plan wave with Gaussian
Noise
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5 Discussion

In this thesis, several Schroeder diffusers of different width with same N are simulated and
see how they influence the perceived size of sound source. The circular harmonics expansion
reveals the increase of high order contribution when diffuser becomes larger. The next step to
further apply such properties would be developing a tool which can impose fine adjustments
on the source that can gradually tune the perceived size of it.

The binaural signal here only considers the situation of being played in headphones, which is
easier to estimate the perceived size with IACC. However, things would be more complicated
if the signals were played through loudspeaker pairs, where other factors would influence the
prediction of IACC such as cross-talk between left loudspeaker and right ear and vice versa.
To realize the functionality of source enlarger with more kinds of hardware set-ups, research
with more complete theoretical system and more rigorous verification are necessary.

Circular harmonics expansion is an universal method to decompose a sound field of inter-
est and explore its constituent. In this thesis, sound field formed by the Schroeder diffuser
is studied to enlarge the perceived size of the sound source, where circular harmonics con-
tribute greatly to the implementation of later operations. For any other sound field with
different characteristics, circular harmonics would also be a powerful tool. One concern is
the accuracy of reconstructed sound field, where the sampling grid should be chosen properly
so that the calculated circular harmonics coefficients can supply precise results over required
frequency range with acceptable deviations.
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6 Conclusion

Employing Schroeder diffuser as source size enlarger is effective and reliable. The func-
tionality of it are proved with both simulations and artificial methods, creating appreciable
virtual listening experience of an enlarged sound sources. Simulation is a reliable method to
predict the scattering sound field, but brings heavy computational burden. Artificial methods
which are founded on circular harmonic expansion are more economical routes to realise
similar effects.

Circular harmonic expansion refers to theory of sound field synthesis, where the reconstruc-
tion of sound field count on secondary source array, which might cause unexpected effects
such as spatial aliasing due to discrete source layout. Manufacturing artificial field from
impulse response shows more solidity on size enlargement, but asks for much work on de-
signing filters. Plane wave method is easier to implement, while the listeners has to bear the
slightly offset of source locations.
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