
Adversarial Representation Learning For
Private Speech Generation

Master’s thesis in Engineering Mathematics and Computational Science

ADAM ÖSTBERG
DAVID ERICSSON

Department of Mathematical Sciences
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2020

Master’s thesis 2020:NN

Adversarial Representation Learning For
Private Speech Generation

Adam Östberg
David Ericsson

Department of Mathematical Sciences
Division of Applied Mathematics and Statistics

Chalmers University of Technology
Gothenburg, Sweden 2020

Adversarial Representation Learning For Private Speech Generation
Adam Östberg
David Ericsson

© Adam Östberg, David Ericsson, 2020.

Supervisor: Edvin Listo Zec, RISE Sweden
Examiner: Petter Mostad, Department of Applied Mathematics and Statistics

Master’s Thesis 2020:NN
Department of Mathematical Sciences
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Printed by Chalmers Reproservice
Gothenburg, Sweden 2020

iv

Adversarial Representation Learning For Private Speech Generationt
Adam Östberg
David Ericsson
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
As more data is collected in various settings across organizations, companies, and
countries, there has been an increase in the demand of user privacy. Developing
privacy preserving methods for data analytics is thus an important area of research.
In this work we present a model based on generative adversarial networks (GANs)
that learns to obfuscate specific sensitive attributes in speech data. We train a
model that learns to hide sensitive information in the data, while preserving the
meaning in the utterance. The model is trained in two steps: first to filter sensitive
information in the spectrogram domain, and then to generate new and private in-
formation independent of the filtered one. The model is based on a CNN that takes
mel-spectrograms as input. A MelGAN is used to invert the spectrograms back
to raw audio waveforms. We show that it is possible to hide sensitive information
such as gender by generating new data, trained adversarially to maintain utility and
realism.

Keywords: generative adversarial networks, adversarial representation learning, deep
learning, privacy, speech generation

v

Acknowledgements
Looking back at the spring that passed, many things did not turn out as expected.
Half the project had to be conducted from home, which was an additional challenge.
We would like to express the deepest of gratitude to our supervisor Edvin Listo Zec
for providing excellent guidance and support given the circumstances. He always
pushed us to explore our own ideas, but also steered us in the right direction when-
ever we needed it. We would also like to thank John Martinsson and Olof Mogren
for the fruitful discussions, the weekly seminars, and for letting us be a part of the
research group at RISE. Finally, we would like to thank Petter Mostad for taking
on the role as examiner on such short notice.

We are also thankful for all the good times and memories we have experienced
during the project and the past two years with our co-students and friends Oskar
Eklund, Kasper Bågmark, Simon Johansson, Emma Darebro, Tomas Forssmark,
Simon Lundin and Hampus Larsson to name a few.

Finally, we would like to thank our partners Laura Ruiz Idänmaa and Lovisa Högberg
for the constant support throughout the spring as well as putting up with us in our
small apartments.

Adam Östberg & David Ericsson, Gothenburg August 2020

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Specification . 2
1.2 Related work . 2
1.3 Outline . 3

2 Background 5
2.1 Artificial neural networks . 5

2.1.1 Building blocks of neural networks 6
2.1.2 Training a neural network . 10
2.1.3 Regularization techniques . 13

2.2 Generative adversarial networks . 14
2.2.1 Generative models . 14
2.2.2 The adversarial setup . 15
2.2.3 Conditional GAN . 15

2.3 Generative adversarial privacy . 16
2.4 Time-frequency analysis . 17

2.4.1 Short time Fourier transform 17
2.4.2 Mel spectrogram . 18

3 Methods 21
3.1 MelGAN . 21
3.2 Private conditional GAN . 22
3.3 PCMelGAN . 23
3.4 Data . 26
3.5 Experiments . 26
3.6 Evaluation metrics . 28

3.6.1 Fixed classifiers . 28
3.6.2 Fréchet Inception Distance . 29

4 Results 31

5 Discussion 35
5.1 Conclusion . 36

ix

Contents

Bibliography 37

x

List of Figures

2.1 A neural network with two layers. The input consists of three neurons,
the middle layer has two neurons and the output is a single neuron. . 5

2.2 A fully connected layer with two input neurons and two output neurons. 6
2.3 Illustration of the discrete convolution operation as a sliding window

in one dimension. The input x is convolved with kernel w, producing
the output y. The operation � denotes the elementwise multiplica-
tion and the sum is taken over the elements in the resulting vector. . 7

2.4 A collection of kernels wi stacked next to each other to form a filter. 9
2.5 Schematic diagram of a GAN where the generator is denoted by G

and the discriminator by D. The generator takes a noise vector z as
input and should output a generated sample xg. The discriminator
takes as input either a real data point x or a generated sample xg,
and should output real or fake depending on if the input is real or
generated. 15

2.6 Schematic diagram of a conditional GAN. The G and D corresponds
to the generator and the discriminator, respectively. The generator
takes a noise vector z and conditional information c as input and
should output a generated sample xg. The discriminator takes as
input either a real data point x or a generated sample xg as well
as their conditional information c, and should output real or fake
depending on if the input is real or generated. 16

2.7 In (a), the original signal and the Hanning window are plotted. In
(b), the smoothed signal is plotted. 18

2.8 Mel-scale filter bank with 10 filters. 19
2.9 In (a), the original magnitude spectrogram is shown. In (b), its cor-

responding Mel spectrogram with 80 filters is shown. 19

3.1 Schematic diagram of PCGAN. The original image x and a noise vec-
tor z1 is input into F . The filtered image x′ is input into G together
with noise vector z2 and the value s′ of the sensitive attribute. . . . 22

3.2 Schematic diagram of PCMelGAN. The audio recording a is trans-
formed into a Mel spectrogram m. The filtered Mel spectrogram is
denotedm′, andm′′ denotes the resulting Mel spectrogram from the
generator. The sampled sensitive attribute is denoted s′ and z1 and
z2 are noise vectors. The Mel spectrogram m′′ is inverted to audio
a′ with a pre-trained MelGANM. 23

xi

List of Figures

3.3 Schematic diagram of the filter model. The audio recording a is
transformed into a Mel spectrogramm. The filtered Mel spectrogram
is denoted m′ and the noise vector z1. The Mel spectrogram m′ is
inverted to audio a′ with a pre-trained MelGANM. 25

3.4 Density plot of inter gender distortion measures (L1-norm pixelwise)
of six men and six women. The distortion is computed digitwise. . . . 27

4.1 Privacy vs utility trade-off on Mel spectrogram (a) and raw audio
waveform (b). The x-axis corresponds to the percentage of times
the fixed digit classifiers predicts the correct digit. The y-axis is the
percentage of times the fixed gender classifier predict the original
gender. The blue and orange points corresponds to the Filter and
PCMelGAN, respectively. 32

4.2 Spectrograms of a person saying ’zero’. The original recording of a
female (top left), transformed ones from the baseline (top right), and
our model of a sampled male (bottom left) and a sampled female
(bottom right). 33

xii

List of Tables

3.1 Table of hyperparameters . 28

4.1 The spectrogram classifiers’ mean accuracy and standard deviation on
the test set for varying values of ε. For privacy (gender) an accuracy
close to 50% is better. For utility (digit), a higher accuracy is better. 31

4.2 The raw waveform classifiers’ mean accuracy and standard deviation
on the test set for varying values of ε. For privacy (gender) an accu-
racy close to 50% is better. For utility (digit), a higher accuracy is
better. 32

4.3 The FID scores of the two models on raw audio waveform for differ-
ent distortion constraints ε. Each score corresponds to a mean and
standard deviation of five identical experiments but initialized with
different seeds, where a lower score is better. 32

xiii

List of Tables

xiv

1
Introduction

With greater availability of computing power and large datasets, machine learning
methods are increasingly being used to gain insights and make decisions based on
data. While providing great utility, the methods may extract sensitive information
which the provider of the data did not intend to disclose. An example of this is a
digital voice assistant. The user provides it with a command by speaking, and the
speech is recorded through the microphone. A speech processing algorithm infers
the spoken contents and executes the command accordingly. However, it has been
shown that such state-of-the-art algorithms may infer other attributes as well such
as gender, emotional state and even identity [33]. This raises the question of how
we can provide representations of data to such applications, which are useful for the
intended use but still respects the privacy concerns of people.
One way of approaching this question is through a utility vs. privacy trade-off.
There is a line of recent work in the image domain [2, 8, 16, 25] with this set up
which lies in the intersection between deep learning and information theory. In this
setting one wants to learn a utility preserving representation R, from some input
data X, such that some protected sensitive attributes S, are obfuscated when the
representation is disclosed. This is typically as an optimization problem of the form

max
pθ(X)

U(X,R) s.t. D(R, S) ≤ ε (1.1)

or

min
pθ(X)

D(R, S) s.t. U(X,R) ≥ ε (1.2)

where U and D are some measure of utility and privacy, respectively, such as mutual
information. The objective is to find a stochastic mapping pθ(X) which sends X
to R, parameterized by θ, such that these criteria are fulfilled for some fixed level
of utility or privacy ε. It is implemented as a game between deep neural networks.
One network is trained to map data X to a representation R, in which the sensi-
tive attribute S is obfuscated. Another network is trained to predict the sensitive
attribute. The networks are pitted against each other in an adversarial fashion.
Huang et al. [16] use this framework to train a filter network for censoring sensitive
attributes in images. The idea is extended in [25], where in addition to censoring a
sensitive attribute, it is proposed to generate a synthetic version in its place using a
generator network. In both works, the mapping is restricted to be domain-preserving
and the data produced by this method can be used regardless of downstream task.

1

1. Introduction

In this thesis we investigate if models based on a utility-privacy trade-off approach
are suitable for audio. We review and build upon existing models to see if they can
be extended to audio data. In particular, we study if the framework with generative
adversarial networks (GANs) presented in [25] can be extended to the audio do-
main. The goal is to be able to transform a speech recording such that some specific
sensitive information cannot be inferred.

1.1 Specification
The aim is to develop a model that given a speech recording, can generate a new
recording with the same utility, but which is private with respect to some sensitive
information. A recording with the same utility is one which has the same spoken
content. A recording is private with respect to a sensitive attribute, if it is impossible
to infer it. In this project, we consider the sensitive information to be the gender.
We will mainly focus on extending the model in [25] from the image domain. A
difference compared to images is that raw audio has a very high temporal resolution.
Raw audio data usually has at least 16000 samples per second, hence modelling a
mere single second of audio corresponds to an image with dimensions 128× 128. In
addition to that, there are short and long-term dependencies appearing at different
timescales [21]. Taking these aspects into account, we consider speech recordings
containing a single utterance.

1.2 Related work
Since Goodfellow et al. [11] introduced the adversarial framework, it has been ap-
plied to various types of problems, including problems regarding privacy. Huang et
al. [16] developed a generative adversarial privacy (GAP) framework. The authors
optimize a constrained minimax game between a filter network that censors the sen-
sitive data subject to a utility constraint and an adversary network that classifies the
sensitive information. Martinsson et al. [25] utilize this framework, but in addition
to filtering the sensitive data, the authors propose to replace it with new synthetic
data generated by an additional GAN. The results show that adding a synthetic
instance of a sensitive attribute helps in fooling the adversary, thus improving the
privacy.

While adversarial models have shown to be a successful approach for generating and
transforming images [35, 18], the same success has not been achieved in the audio
domain. One of the first attempts to model raw audio signals using the adversarial
setup was WaveGAN [7]. WaveGAN was able to generate intelligible words when
trained on single-word speech recordings, as well as synthesizing audio from other
domains such as bird vocalizations, drums and piano. The raw audio-based model
is compared with a corresponding model that generates spectrograms, called Spec-
Gan. However, these spectrograms are not invertible and require approximations to
reconstruct the phase information of the audio. Engel et al. [9] address this problem

2

1. Introduction

by working on a spectral representation which is invertible. The phase information
is accounted for by also modelling the instantaneous frequencies which aims to cap-
ture to what extent the phase of a signal changes between frames.

GANs have also shown promising results within the field of text-to-speech, for in-
stance GAN-TTS [3] and MelGAN [21]. The former one is a conditional GAN,
conditioned on linguistic features and pitch information to generate high fidelity
speech. The latter, MelGAN, is a fully convolutional model generating raw audio
via mel-spectrogram inversion. It is worth noting that both models use multiple dis-
criminators operating at different scales and at random patches of what the generator
produced. A model that also operates on mel-spectrograms, although in the field of
voice conversion, is MelGAN-VC [29]. This model is trained to convert signals from
a source voice to a target voice. The conversion is carried out on mel-spectrograms
and then inverted to audio using the Griffin Lim algorithm. Additionally, its design
allows conversion of non-fixed length audio signals and produces realistic and intel-
ligible results on both on intra-gender and inter-gender translations.

1.3 Outline
The remainder of the thesis is structured as follows. In Chapter 2, we present the
theory used in the thesis. It consists of three parts; first, we provide an overview of
artificial neural networks. Then, we introduce the adversarial framework. Finally,
we give a brief explanation of time-frequency analysis. Following the theory, in
Chapter 3 we give a complete description of our model, and describe the data used
as well as the experiments we have conducted. Finally we describe the evaluation
methods. The obtained results are presented in Chapter 4, followed by a discussion
and conclusion in Chapter 5.

3

1. Introduction

4

2
Background

In this chapter we introduce the necessary theory to explain the model that is
proposed in this thesis. The reader is not expected to be familiar with neural
networks, and generative adversarial networks in particular, and we therefore provide
a rather detailed exposition of the mathematical theory. We also give a brief overview
of generative adversarial privacy and time-frequency analysis.

2.1 Artificial neural networks
An artificial neural network is a composition of L ≥ 1 layers where each layer consists
of a number of nodes, often called neurons. Let k(`) ∈ N+ denote the number of
nodes in layer `, with k(0) being the size of the input data. Each layer ` ∈ {1, . . . , L}
constitutes a function L(`) : Rk(`−1) → Rk(`) on the form

L(`)(x) = f (`)(g(`)(x;θ(`))). (2.1)

The function g(`) : Rk(`−1) → Rk(`) is parameterized by θ(`) and defines how the
neurons in layer `−1 are combined to compute a new vector of neurons. The function
f (`) : Rk(`+1) → Rk(`+1) is then applied to this vector element-wise in order to get
the neurons in layer `. The network as a whole is the function Nθ : Rk(0) → Rk(L)

formed by the composition

Nθ(x) = L(L) ◦ · · · ◦ L(1)(x) (2.2)

parameterized by θ = (θ(1), . . . ,θ(L)) ∈ Θ ⊆ RD, where Θ is the set of feasible
parameters. The networks are often visualized by a graph where the vertices corre-
spond to the neurons, and the edges correspond to the combinations of the neurons
described by the g(`). An example of a network with three layers is shown in Figure
2.1.

L(1)(x)
L(2) ◦ L(1)(x)

x

Figure 2.1: A neural network with two layers. The input consists of three neurons,
the middle layer has two neurons and the output is a single neuron.

5

2. Background

The number of layers L, the number of neurons in each layer k(`), as well as the
activation and pre-activation functions f (`) and g(`) are chosen when one sets up the
structure of the network, and do not change during later stages. The parameters θ
may be adjusted in order to model a desired relationship between the input and the
output. This process of tuning the parameters is called training the network, and is
described in Section 2.1.2.1.

2.1.1 Building blocks of neural networks
In the following sections, the building blocks for artificial neural networks are de-
scribed.

2.1.1.1 Fully connected layer

The most simple layer is a fully connected layer. As the name implies, there is a
connection between every neuron in the input layer and output layer. In this case,
the function g(`) is on the form

g(`)(x) = Wx+ b, (2.3)

whereW ∈ Rk(`)×k(`−1) and b ∈ Rk(`) . The parameters are the weight matrixW and
the bias vector b, i.e. θ(`) = (W , b). Denoting the output g(`)(x) = y = (y1, . . . , yk),
equation (2.3) can be written for each output i as

yi =
k(`−1)∑
j=1

Wijxj + bi (2.4)

An example of a fully connected layer is illustrated in Figure 2.2.

W11
W

12

W 21

W22

Figure 2.2: A fully connected layer with two input neurons and two output neurons.

2.1.1.2 Convolutional layer

A layer that is designed to take advantage of the spatial structure of the input is the
convolutional layer. The idea is to utilize that nearby elements are more correlated
than distant elements, and that similar features, e.g. lines or shapes in an image,
may occur in different parts of the input [4].

As the name implies, a convolutional layer makes use of the mathematical operation
of convolution. The discrete convolution between two functions f, g : Z → R at a

6

2. Background

point k ∈ Z is defined as

(f ∗ g)[k] =
∑
n∈Z

f [n]g[k − n] =
∑
n∈Z

f [k − n]g[n]. (2.5)

The output can be interpreted as a g-weighted average of f . If we have a vector
x ∈ RN , we can see this as a function from the indices D = {1, . . . , N} to the real
numbers, with x[n] = xn. We can also see the vector as a function x : Z→ R with
x[n] = 0 for n ∈ Z \D. Hence, for any two vectors x ∈ RN , w ∈ RM , we can use
the definition in (2.5) to define a discrete convolution for vectors

x ∗w[k] =
∑
n∈Z
x[k − n]w[n] (2.6)

where the summation becomes finite due to the finite support of x and w. This sum
is hence well-defined and easily computed for any k ∈ Z. In practice, the output
of the convolution is restricted to a finite set of indices. If N > M , the index k is
restricted to k ∈ {1, . . . , N −M + 1}.

We may now proceed to define a convolutional layer. Let x ∈ RN be the input and
let w = (w1, . . . , wK) ∈ RK be a vector of weights. A layer is called convolutional
when the function g(`) is on the form

g(`)(x) = x ∗w. (2.7)

More explicitly, we have that the output is

g(`)(x)[k] = x ∗w[k] =
K∑
n=1
x[k − n]w[n]. (2.8)

The parameters θ for such a layer is the vector w, which is called the kernel, and its
length K is called the kernel size. The kernel size is also referred to as the receptive
field. An example is illustrated in Figure 2.3.

x1 x2 x3 x4 · · · xn−3 xn−2 xn−1 xn

w1 w2 w3 w1 w2 w3

y1 y2 y3 · · · ym−2 ym−1 ym

� �

Σ Σ

Figure 2.3: Illustration of the discrete convolution operation as a sliding window
in one dimension. The input x is convolved with kernel w, producing the output y.
The operation � denotes the elementwise multiplication and the sum is taken over
the elements in the resulting vector.

7

2. Background

As can be seen, the convolution operation may be thought of sliding a window over
the input. This sliding window is represented by the kernel w. A result of this is
that, in contrast to the fully connected layer, the convolutional layer can handle
inputs of any size greater than the kernel size. Hence, a convolutional layer is not
strictly speaking a function from Rk(`−1) to Rk(`) . However, given a fixed input size
Nin, the output size Nout of a convolutional layer with kernel size K is

Nout = Nin −K
1 + 1 (2.9)

and the layer can still be seen as a function from RNin to RNout .
One can also let the sliding window move more than one step between each multiply-
and-sum-operation. This can be achieved with a simple modification of (2.5):

x ∗w[k] =
K∑
n=1
x[sk − n]w[n]. (2.10)

The number of steps s is called the stride and can be used to control the output
size. Formula (2.9) then becomes

Nout = Nin −K
s

+ 1. (2.11)

Another way to control the output is by using zero padding. In case one wants
to preserve the dimensions of the input, then one can extend the input vector by
adding zeros on both sides.

Sometimes, the input x will have multiple channels. An example with two channels
would be a stereo recording. In general a single dimensional input with D channels
would be a tensor in RN×D. In order to feed such an input into a convolutional
layer, we would like to perform the convolution operation on each channel. Since
the different channels may highlight different aspects of the input, we do not nec-
essarily want to use the same kernel w for each channel. Let xi denote the ith
channel of the input, with xi = (xi1, . . . , xiN) and let wi denote a kernel with kernel
size K. Each kernel wi is convolved with the corresponding channel xi. The results
of the convolutions are then added together to form the output, called a feature map.

The collection of kernel wi can be stacked next to each other, as in Figure 2.4. For
the multichannel case, performing the convolution operation can then be seen as
sliding the box along the data dimension. This box is referred to as a filter. Hence,
when we write x ∗w, we will mean convolving the filter box with the data box.

8

2. Background

Figure 2.4: A collection of kernels wi stacked next to each other to form a filter.

Finally, we want to be able to detect several different aspects in the input. Hence,
a convolutional layer usually consists of multiple filters.

2.1.1.3 Activation functions

The function g in equation 2.3 is an affine function and in a neural network it is
typically followed by a non-linear transformation, namely the activation function.
The activation function adds a non-linear property to the network which enables
it to model more complex relationships and patterns in the data [10]. A detailed
description of the most commonly used activation functions, as well as their pros
and cons, can be found in [28]. Most activation functions are defined elementwise,
and three very common ones are defined below.

ReLU: h(y) = max{0, y} (2.12)

Sigmoid: σ(y) = 1
1 + e−y

(2.13)

Hyperbolic tangent: tanh(y) = e2y − 1
e2y + 1 (2.14)

An activation function that differs from the ones above is the Softmax function,
which is applied to the whole vector. For a vector x = (x1, . . . , xn), the activation
of the element xj is calculated as

f(xj) = exj∑n
i=1 e

xi
. (2.15)

This activation function produces values between 0 and 1, and normalizes the vec-
tor, thus it can be interpreted as a vector of probabilities. While the other listed
activation functions are used in any layer of a neural network, the Softmax function
is mostly used in the output layer.

9

2. Background

2.1.1.4 Pooling

A convolutional layer is often followed by a pooling operation. In this operation,
the output from the convolutional layer is replaced by a summary statistics of each
neuron’s neighbouring neurons. Two commonly used pooling operations are max
pooling and the average pooling. In the former case, the neurons are replaced
by the maximum neuron value within a rectangular neighbourhood of the neuron
itself. In the latter case, the maximum is exchanged for an average. The pooling
operation serves as an efficient way to reduce the spatial dimension, and thus reduce
the number of parameters required in the subsequent layers. In addition to that, it
introduces some local invariance to small translations of the input data [10]. Hence,
if the input is translated by a small amount, most of the pooled output will not
change.

2.1.2 Training a neural network
In this section we explain what it means to train a neural network and describe
different aspects of the process. More specifically, we will work in the setting of
supervised learning. In supervised learning, it is assumed one has access to data
points (x,y) in a space X × Y which are sampled from a probability distribution
pdata on X × Y . The goal is to find a function F : X → Y such that F(x) = y.
We can consider a neural network as a function Nθ : X → Z parameterized by
θ, where Z is some latent space, and then let F = P ◦ Nθ where P is function
that maps Z to Y . The goal can then be reformulated as finding parameters θ
such that P ◦ Nθ(x) = y. In the next section we will define a function L which
measures how well the desired relationship is captured by the network, as a function
of the parameters θ. Thus, finding the optimal parameters can be formulated as an
optimization problem on the form

min
θ
L(θ). (2.16)

Training a neural network corresponds to approximately solving this optimization
problem [10] in an iterative fashion that is explained in Section 2.1.2.2.

2.1.2.1 Loss function

In order to measure how well the network has captured the desired relationship
between the input and the output, we will use a loss function `. Recall that we
have data (x,y) ∈ X × Y from a distribution pdata and a neural network. The loss
function ` : Z×Y → R returns a real number indicating the quality of the mapping.
Since we are interested in capturing the relationship for all points that follow pdata,
the function L will be defined as

L(θ;pdata) = E(x,y)∼pdata [`(Nθ(x),y)] (2.17)

and will be referred to as the expected loss. In practice, we only have access to a
dataset with a finite number of points (xi,yi)ni=1 ⊆ X ×Y . Hence the expectation in

10

2. Background

equation (2.17) cannot be computed. To get around this, we consider the empirical
distribution

pempirical(x,y) = 1
n

n∑
i=1

δ(xi,yi)(x,y) (2.18)

and define the empirical loss as

L(θ;pempirical) = 1
n

n∑
i=1

`(N (xi),yi). (2.19)

which can be computed from the dataset.

An example of a supervised learning problem is classification. The set Y = {1, . . . , K}
consists of classes, and each feature vector x belongs to exactly one class. In this
case, (x,y) ∼ pdata means that x belongs to the class y = k ∈ Y . The output space
of the network is often set to Z = [0, 1]K so that it can be interpreted as a proba-
bility distribution over Y . The loss function is usually chosen as the cross-entropy
loss, defined as

`(Nθ(x),y) = −
K∑
k=1

1{y=k} ln(Nθ(x)k). (2.20)

2.1.2.2 Optimization methods for training neural networks

With the loss function explained, we may now proceed to describe the different op-
timization techniques used for training neural networks. The most common way to
solve the optimization problem (2.16) is by using gradient descent algorithms [31].
Such algorithms use the gradient ∇θ L(θ) in order to update the value of θ. Hence,
activation functions f , pre-activation functions g, as well as the loss function must
be differentiable.

The gradient of a function describes in which direction the rate of increase is the
largest. By taking a step in the opposite direction, that is updating θ by a factor
of the negative of the gradient, the anticipation is to decrease the value of L(θ). In
other words, the update rule is

θ ← θ − α∇θ L(θ), (2.21)

where α ∈ R+ is the step size. The step size controls the distance we move in each
iteration and is selected before the start of the algorithm. A too large step size
may result in passing the optimal value, while a too small step size can lead to slow
convergence. The step size is denoted η and referred to as the learning rate. In the
context of training neural networks, there are three variants of gradient descent that
are used. The difference between these variants is how much data they use in order
to compute the gradient. When the full data set has been cycled through, an epoch
has been completed.

The first variant is called batch gradient descent. In this case, the gradient of the
loss function is computed for the entire dataset. The update rule (2.21) at epoch t

11

2. Background

then becomes
θt+1 ← θt − η∇θtL(θt;pempirical). (2.22)

A downside is that the variant can be very inefficient for large datasets; for each
iteration we have to feed every sample through the network to compute the updated
values of the parameters. Also, there may be multiple samples that are similar with
similar gradients, resulting in redundant calculations.

At the other side of the spectrum, there is the second variant called stochastic
gradient descent. This variant updates the parameters for each sample individually.
Letting (x,y) denote a sample from the empirical distribution pempirical, the loss
function for this sample is defined as

L(θ; (x,y)) = `(Nθ(x),y). (2.23)

The parameters are updated according to

θt ← θt − η∇θtL(θt; (x,y)). (2.24)

After the parameters have been updated for each sample, we let θt+1 ← θt.

Finally, there is the mini-batch gradient descent which is a combination of the first
two methods. Here, the dataset S is partitioned into mini-batches B1, . . . ,Bm of
equal size n, with Bj = {(x1,j,y1,j), . . . (xn,j,yn,j)} where (xi,j,yi,j) is the ith sample
of the jth mini-batch. For each mini-batch Bj, the gradient of the loss function is
computed to perform the update of the parameters θ. In this case, the update rule
reads

θt+1 ← θt − η∇θtL(θt;Bj), (2.25)
where L(θ;Bj) denotes the loss over mini-batch, defined as

L(θ;Bj) = 1
n

n∑
i=1

`(Nθ(xi,j),yi,j). (2.26)

Similarly to stochastic gradient descent, we let θt+1 ← θt when the full data set has
been cycled through.

While the methods above are simple and work quite well, a downside is that each
component in the parameter vector θ is updated using the same learning rate η. If
the different components of θ vary a lot in magnitude, then using the same learning
may favour some components. One of the most popular optimization methods for
training neural networks, which tackles this issue, is the Adam optimizer [19]. This
optimization method uses adaptive moment estimation. For the gradient of the
loss function at epoch t, we introduce the notation lt = ∇θ L(θ; ·). We do not
specify how much data is used to compute the gradient, the method is the same
for all cases. The estimates of the first and second moments mt (mean) and vt
(uncentered variance) at epoch t are given by

mt = β1mt−1 + (1− β1)lt
vt = β2vt−1 + (1− β2)l2t

12

2. Background

where β1, β2 ∈ [0, 1) are exponential decay rates for the respective estimates. Both
m0 and v0 are initialized to 0. A result of this initialization is that in the beginning
of the training and when the decay rates are small, i.e. βi is close to 1, the moment
estimates are biased towards zero. To correct this initialization bias, bias-corrected
estimates of the moments are used instead [19]. The bias-corrected estimates are
calculated as

m̂t = mt

1− βt1
v̂t = vt

1− βt2

and the Adam update rule for the parameters θ is

θt+1 = θt − η
m̂t

v̂t + ε (2.27)

where the division is done elementwise. Here ε is a constant vector which is added
for numerical stability.

2.1.3 Regularization techniques
When training a neural network, one tries to approximately optimize a loss function
on a finite set of samples, called the training set, with the hope that this training
set is representative of the whole population. A common problem that arises when
training neural networks is overfitting on this set. Overfitting means that the net-
work adjusts its parameters to fit the training data too well and fail to perform on
data it has not seen. The network’s ability to react to new data is referred to as
generalization. To measure how well a network is able to generalize, another finite
set of samples called the validation set is used. There are several methods to address
the problem of overfitting, referred to as regularization techniques.

2.1.3.1 Dropout

Dropout is a regularization technique in which, during training, the neurons are
active based on a probability [34]. More technically, when dropout is applied to
a layer, in each training iteration its neurons are either dropped out (put to zero)
with probability 1 − p or kept with probability p. This may be seen as sampling a
thinned network which only consists of the nodes that survived the dropout. Thus,
in addition to preventing overfitting, dropout provides an efficient way of combining
and utilizing exponentially many different network structures.

2.1.3.2 Batch normalization

Batch normalization is a technique that was introduced in order to accelerate the
training of neural networks [17] and has been shown to improve generalization [24].
While training a neural network, the parameters of all preceding layers will affect
the input to the current layer. Hence, in each iteration of the training, the layer
has to adapt to the change in distribution of the input due to the changes in other

13

2. Background

parameters. For an input x = (x1, . . . , xn), the idea is to normalize each dimension
according to

x̂k = xk − E[xk]√
Var[xk]

where the expectation and variance are substituted by the sample mean and sample
variance computed over the training data set. To avoid changing what the layer
represents, an additional pair of parameters γk, βk are introduced that are allowed
to scale and shift x̂k according to

ŷk = γkx̂k + βk.

In practice, it is often combined with mini-batch training. For a given batch B, the
BN-transform is computed as

BNγ,β(xi) = γ
xi − µB
σ2
B

+ β (2.28)

where µB and σ2
B denote the mean and variance over the batch. This transform is

differentiable [17], and can thus be included in a layer without having to change the
training procedure. It is usually applied to the output of the pre-activation g. In
the convolutional case, it is applied to each spatial location of a kernel.

2.2 Generative adversarial networks
Generative adversarial networks were proposed as a new strategy to train genera-
tive models by Goodfellow in 2014 [11]. The strategy involves a generative and a
discriminative model, which are pitted against each other. In this section, we give
a brief introduction to generative models as well as explaining different variants of
generative adversarial networks.

2.2.1 Generative models
The goal of generative models is to generate data from some population, by trying to
model its distribution. Let pr be the real distribution of the data. We want to find
parameters θg such that the distance between pr and the approximated distribution
pg(·;θg) is minimal. When an optimal θg is known, we can generate new examples
by drawing samples from pg(·;θg). It can often be that the data lies in some high-
dimensional space, such as images with dimensions N × N which can be seen as
an N2-dimensional random variable. In addition, the distribution can be a very
complex one, which may be hard to generate. A way to tackle this is to generate a
simple random variable z with density pz, and then transform it using a complex
function G : z 7→ xg. What the function G should be is of course non-trivial to
find out. However, we can model it using a neural network. If G(z;θg) is a neural
network with parameters θg, then the density pz induces a density pg when it is
sent through G. Instead of adapting the parameters of pz, we can train G to map it
to a density pg which is close to pr.

14

2. Background

2.2.2 The adversarial setup
In the adversarial setup, an additional discriminative model D is used to compare
the distributions in the following way. It takes samples xg generated by G or x from
the data as input, and should classify whether the input is drawn from the true
distribution pr or from the generative model with distribution pg.

G Dz x/xgxg real/fake

Figure 2.5: Schematic diagram of a GAN where the generator is denoted by G and
the discriminator by D. The generator takes a noise vector z as input and should
output a generated sample xg. The discriminator takes as input either a real data
point x or a generated sample xg, and should output real or fake depending on if
the input is real or generated.

The two models G and D are trained simultaneously, but with opposite goals. Since
the generator is supposed to learn to generate samples from pr, it wants to fool the
discriminator that its output is a real data point. Hence, its goal is to maximize
the classification error of D. The discriminator on the other hand wants to detect
fake samples generated by G. Thus its goal is to minimize the classification error
of D. Letting D(·) denote the probability of a sample being drawn from pr, the
classification error E(D,G) can be expressed as

E(D,G) = Ex∼pr
[logD(x)] + Ez∼pz

[log(1−D(G(z)))]. (2.29)

The strategy can be interpreted as the discriminator and generator playing a mini-
max game with payoff E(D,G), where the objective is

min
G

max
D
E(D,G). (2.30)

2.2.3 Conditional GAN
It is possible to turn GANs into a conditional model by passing extra information
c to both the generator and discriminator [26]. As an example, consider generating
images of handwritten digits. In this case, the conditional information may be
the digit that should be generated. This means that the generator will learn to
generate samples x conditioned on the information c, i.e. samples from pr(x|c). The
discriminator learns to distinguish between samples from pr(x|c) and pz(G(z|c)).
In this setup, the classification error in equation (2.29) becomes

E(D,G) = Ex∼pr
[logD(x|c)] + Ez∼pz

[log(1−D(G(z|c)))]. (2.31)

The corresponding network structure is shown in Figure 2.6.

15

2. Background

G D
c

x/xg

c

z
xg real/fake

Figure 2.6: Schematic diagram of a conditional GAN. The G and D corresponds to
the generator and the discriminator, respectively. The generator takes a noise vector
z and conditional information c as input and should output a generated sample xg.
The discriminator takes as input either a real data point x or a generated sample xg
as well as their conditional information c, and should output real or fake depending
on if the input is real or generated.

2.3 Generative adversarial privacy
In this section, we describe the privacy framework called Generative adversarial pri-
vacy (GAP) [16]. In this framework, one considers a dataspace X × S, where each
data point (x, s) is a pair consisting of a public data point and a private attribute.
We assume access to a dataset X ⊆ X × S with distribution pdata where each sam-
ple is associated with an individual. The public datapoint x is information that the
individual wants to share. The private attribute s is information that the individual
does not want to disclose. It is assumed that the private attribute can be inferred
from the public data point.

A privacy mechanism is a mapping f : X × Z → X that transforms x into x′ =
f(x, z), where z is noise, such that it is harder to infer s from x′ than from x.
In order to measure the performance of the privacy mechanism, an adversary h
is introduced, which is supposed to predict the sensitive attribute from x′. How
well the adversary predicts the sensitive attribute in the transformed image can be
measured through a loss function `(f, h), with expected loss

L(f, h) = E(x,s)∼pdata [`(f, h)]. (2.32)

On one hand, the objective of f is to fool the adversary h, meaning that the expected
loss should have a high value. On the other hand, h wants to minimize the expected
loss. Hence this can be formulated as a minimax game given by

min
f

max
h
−L(f, h) (2.33)

However, in order for the privacy mechanism to actually be useful, it might be
necessary to impose a utility constraint. Otherwise one could just choose f to be
a zero-mapping. Hence, a distortion constraint is introduced, by constraining the
distance between x and x′ with some ε > 0 for some distortion measure d.

min
f

max
h
− L(f, h) (2.34)

s.t. E(x,s)∼pdata [d(x,x′)] ≤ ε (2.35)

16

2. Background

As described in section 2.1.2.1, the distribution pdata is unknown but its possible
to sample from it. To get around this, we may model the adversary and privacy
mechanism using neural networks, and hence take a data-driven approach to approx-
imate them. The privacy mechanism is modeled as a generative network G(x, z;θG),
parameterized by θG. The adversary is a modeled as a classifier D(x;θD) parame-
terized by θD. The expected loss in equation (2.32) is replaced by

L(θG,θD) = E
[
`
(
D(G(x, z;θG);θD), s)

)]
(2.36)

resulting in the minimax game

min
θG

max
θD
− L(θG,θD) (2.37)

s.t. E [d(G(x, z;θG),x,)] ≤ ε. (2.38)

2.4 Time-frequency analysis
In this section we describe the time-frequency representations of audio used in this
thesis. This representation is called a Mel spectrogram and builds upon the Fourier
transform.

2.4.1 Short time Fourier transform
The Discrete Fourier Transform (DFT) s = DFT (x) = (s0, . . . , sN−1) for a signal
x = (x0, . . . , xN−1) of length N is defined as

sk =
N−1∑
n=0

xne
−i2πkn
N−1 . (2.39)

The DFT decomposes the signal into its frequency components averaged over the
whole signal. This is useful when the signal is stationary, that is the frequency con-
tent does not vary with time. However, this is not a valid assumption for many real
world signals, such as speech. To get around this, the signal can be split into differ-
ent segments. If the segments are small enough, then the assumption of stationarity
can be seen to be approximately valid, and hence applying the DFT to each such
segment is reasonable. This procedure gives a time-frequency representation of the
signal and is called the Short Time Fourier Transform (STFT).

The first step to compute the STFT of a signal x is to split into K frames x(i), i =
1, . . . , K of lengthM . The frames may overlap, i.e. x(i)

m = x(j)
n for some i 6= j,m 6= n.

Each frame x(i) is then multiplied by a window functionw to smooth out the borders
of the signal. This is done in order to avoid spectral leakage, which may occur due
to the possible discontinuity stemming from the split [13]. The smoothed signal is
x̃(i) = w � x(i) where � denotes elementwise multiplication. One window function
that is often used is the Hanning window w = (w0, . . . , wN−1), defined as

wn = 0.5
[
1− cos

(2πn
N − 1

)]
. (2.40)

17

2. Background

An example of a signal multiplied with a Hanning window is shown in Figure 2.7a.

(a) (b)

Figure 2.7: In (a), the original signal and the Hanning window are plotted. In (b),
the smoothed signal is plotted.

After this, s(i) = DFT (x̃(i)) is computed for each frame. Computing the magnitude
of each element s(i)

k , letting s̃(i)
k = |s(i)

k |2 and considering the s̃(i) as column vectors,
we can place them next to each other to form a matrix S = [s̃(1) . . . s̃(K)] ∈ RM×K

called a spectrogram. This real-valued matrix S can be interpreted as an image, as
visualised in Figure 2.9.

2.4.2 Mel spectrogram
The Mel spectrogram is an extension of the spectrogram in the section above, mod-
ified to correlate better with human perception of sound. The human ear is better
at distinguishing between lower frequencies. For example, the perceptual difference
between 100 Hz and 200 Hz is greater than the difference between 4000 Hz and 4100
Hz, even though the frequency difference is the same. The Mel scale is a nonlinear
frequency scale that was invented to deal with this by being linear in terms of hu-
man perception. The relationship between a frequency f and its Mel-frequency m
is described by equation (2.41).

m = 2595 log10

(
1 + f

700

)
. (2.41)

In order to transform the original spectrogram to a Mel spectrogram it is passed
through a Mel-scale filter bank. A Mel-scale filter bank consists of triangular filters
with centers uniformly spaced in Mel-scale. Given a frequency range [fmin, fmax], the
corresponding Mel-frequency range [mmin,mmax] is computed using formula (2.41).
Given that we want F filters, we uniformly partition the Mel-frequency range into
nodes mmin = m0 < . . . < mF+1 = mmax. Each filter b̃(i) : R→ [0, 1] is a triangular
hat function with center mi and support [mi−1,mi+1]. The corresponding filter b(i)

in the normal frequency scale is shown in Figure 2.8, found by inverting the Mel-
frequency range back.

18

2. Background

Figure 2.8: Mel-scale filter bank with 10 filters.

To pass a spectrogram S ∈ RM×K through this filter bank, we construct a matrix
B ∈ RF×M where each row i is a discretization of the filter b(i); if Bi,· denotes
the ith row, then Bi,· = [b(i)(m0) · · · b(i)(mF+1)]. Multiplying the spectrogram S
with the matrix B and taking the logarithm then produces the Mel spectrogram
Smel ∈ RF×K . An example of a spectrogram and its Mel spectrogram with 80 filters
is shown in Figure 2.9.

(a) (b)

Figure 2.9: In (a), the original magnitude spectrogram is shown. In (b), its corre-
sponding Mel spectrogram with 80 filters is shown.

19

2. Background

20

3
Methods

We now proceed to describe the models and data used in this project, as well as
the experiments we have conducted and the metrics we have used to evaluate the
results.

3.1 MelGAN
MelGAN is a fully convolutional model designed to invert Mel spectrograms to
raw waveform [21]. The MelGAN generator G consists of a stack of transposed
convolutional layers. The model uses three different discriminators D1,D2 and D3,
each operating at different resolutions. All discriminators operate on raw audio,
the first one at the same resolution as the input, while the second and third on
signals downsampled by a factor of two and four, respectively. The discriminators
are trained using a hinge loss version [23] of GAN objective. The generator is
trained using the original GAN objective, but also using a feature matching loss
[22]. Instead of having a distortion loss such as in GAP, the output of the layers
in the discriminators are seen as feature spaces in which the similarity between real
and fake date can be measured. For each layer i, let D(i)

k (·) denote the output from
the kth discriminator. The feature matching loss is computed as

LFM (G,Dk) = Ex,m∼pdata

[
T∑
i=1

1
Ni

∥∥∥D(i)
k (x)−D(i)

k (G(m))
∥∥∥

1

]
(3.1)

where Ni is the number of output units in layer i, x is the raw audio signal and m
is its corresponding Mel spectrogram. Intuitively, this loss can be seen as a learned
similarity metric. The training objective for the discriminators and the generator
are then

min
Dk

(
Ex
[

min (0, 1−Dk(x))
]

+ Em,z
[

min (0, 1 +Dk(G(m, z)))
])
,∀k = 1, 2, 3

(3.2)

min
G

(
Em,z

[3∑
k=1
−Dk(G(m, z))

]
+ γ

3∑
k=1
LFM (G,Dk)

)
(3.3)

where γ is a hyperparameter controlling the balance between feature matching and
fooling the discriminator. For further details as well as the official implementation
of the model, we refer to the original article [21].

21

3. Methods

3.2 Private conditional GAN
Private conditional GAN (PCGAN) [25] is a model that builds upon the Generative
Adversarial Privacy framework described in section 2.3. PCGAN consists of two
GAP modules, a filter F , and a generator G, that are composed to form the model.
In other words, the privacy mechanism is the composition G ◦ F(x). They examine
the method on image data, to see if the addition of a generator is better than just
using the filter as in the original paper [16]. The purpose of the filter is to censor
the sensitive attribute s in the image. The objective of the generator is to take the
filtered image x′ and generate a new synthetic instance s′ of the sensitive attribute
in it, independent of the original value s. An overview of the model is shown in
Figure 3.2, where z1 and z2 are noise, DF and DG are discriminators for the filter
and generator, respectively.

F x′ G

DF

x′′ DG
z1

z2

s′
x

x

Figure 3.1: Schematic diagram of PCGAN. The original image x and a noise
vector z1 is input into F . The filtered image x′ is input into G together with noise
vector z2 and the value s′ of the sensitive attribute.

As introduced in section 2.3, the filter module’s training objective is the minimax
game given by

min
θF

max
θDF

E
[
`F
(
DF(F(x, z1;θF);θDF), s)

]
s.t. E

[
d (F (x, z1;θF) ,x)

]
≤ ε1

The generator’s objective is similar to the one in GAP, but uses a semisupervised
objective instead. The loss is split into a supervised part, corresponding to classifica-
tion of the sensitive attribute in real inputs, and an unsupervised part, corresponding
to classification of the sensitive attribute in generated inputs. Hence, the objective
is given by the minimax game

min
θG

max
θDG

E
[
`G (DG (G (F (x, z1;θF) , s′, z2;θG)) , fake)

]
+ E

[
`G
(
DG(x;θDG), s

)]
s.t. E

[
d (G (F (x, z1;θF) , s′, z2;θG) ,x)

]
≤ ε2

The authors implement F and G using the UNet architecture [30]. The adversaries
DF and DG are implemented as ResNet[14] networks, where the last fully connected
layers were replaced with a two and three class output layer, respectively. The loss
functions `G and `F are implemented as categorical cross entropy and the distortion
measure d is the L2-norm.

22

3. Methods

3.3 PCMelGAN
Now, we turn to the presentation of our set up which combines MelGAN and PC-
GAN. We consider raw waveform speech recordings x paired with a sensitive at-
tribute s. The sensitive attribute is assumed to be binary, i.e. s ∈ {0, 1}. Instead of
directly modelling the raw audio, we transform the recording to a Mel spectrogram
according to the procedure presented in section 2.4.2 and work on spectrograms
instead. Spectrograms have been shown to contain relevant features about audio
data and been used extensively for classification tasks [1]. However, since we want
to generate audio a downside is that such spectrograms are not invertible, as they
only contain the magnitude and not the phase. The most well-known algorithm that
approximate inversions of spectrograms is the Griffin-Lim algorithm [12]. A more
modern approach is the MelGAN described in section 3.1 which has been shown to
produce realistic inversions. We argue that those inversions are realistic enough to
justify working with spectrograms instead of raw audio. Thus, we decide to use a
privacy mechanism that operates on spectrograms.

The whole pipeline is shown in Figure 3.2. The speech recording a is transformed
to a Mel spectrogram m. The Mel spectrogram is then censored by the PCGAN
privacy mechanism consisting of a filter F and a generator G. The censored Mel
spectrogram m′′ is inverted to audio a′ by a pre-trained MelGAN network.

F m′ G

DF

m′′

DG

s′

m

m

z1 z2

ST FTa M a′

Figure 3.2: Schematic diagram of PCMelGAN. The audio recording a is trans-
formed into a Mel spectrogramm. The filtered Mel spectrogram is denotedm′, and
m′′ denotes the resulting Mel spectrogram from the generator. The sampled sensi-
tive attribute is denoted s′ and z1 and z2 are noise vectors. The Mel spectrogram
m′′ is inverted to audio a′ with a pre-trained MelGANM.

Similarly to Martinsson et al. [25] we implement F and G using the UNet architec-
ture. The adversaries DF and DG are, however, implemented as AlexNets[20] and
not ResNets. The last fully connected layer are modified to output two and three
classes. The choice of network architecture is motivated by the fact that AlexNet
has achieved high accuracy on gender classification in spectrograms [1]. Addition-
ally, initial experiments using ResNet did not yield promising results. The training
procedure of the full model is shown in Algorithm 1. The loss functions `F and `G
are categorical cross entropy and the distortion measure d is the L1-norm. The con-
strained optimization problem is reformulated as an unconstrained one by relaxing
it using the quadratic penalty method [27]. The distortion constraint is denoted by

23

3. Methods

ε and the penalty parameter by λ. The parameters are updated using the Adam
update rule (2.27) denoted by Adam(θ; η, β1, β2).

Algorithm 1: PCMelGAN
Input: D, η, λ, ε

1 repeat
2 Draw n samples uniformly at random from the dataset
3 (x1, s1), . . . , (xn, sn) ∼ pempirical
4 Compute Mel spectrogram and normalize
5 m1, . . . ,mn = ST FT (x1), . . .ST FT (xn)
6 Draw n samples from the noise distribution
7 z

(1)
1 , . . . ,z(1)

n ∼ N (0, 1)
8 z

(2)
1 , . . . ,z(2)

n ∼ N (0, 1)
9 Draw n samples from the synthetic distribution

10 s′1, . . . , s
′
m ∼ U{0, 1}

11 Compute the censored and synthetic data
12 m′1, . . . ,m

′
n = F(m1, z

(1)
1 ;θF), . . . ,F(mn, z

(1)
n ;θF)

13 m′′1, . . . ,m
′′
n = G(m′1, s′1, z

(2)
1 ;θG), . . . ,G(m′n, s′n, z(2)

n ;θG)
14 Compute filter and generator loss

LF(θF ;pempirical) = − 1
n

n∑
i=1

`(DF(m′i;θDF), si) + λmax
(

1
n

n∑
i=1

d(m′i,mi)− ε, 0
)2

LG(θG;pempirical) = 1
n

n∑
i=1

`(DG(m′′i ;θDG), si) + λmax
(

1
n

n∑
i=1

d(m′′i ,mi)− ε, 0
)2

15

16 Update filter and generator parameters
17 θF ←− Adam(θF ; ηF , β1, β2)
18 θG ←− Adam(θG; ηG, β1, β2)
19 Compute discriminator losses

LDF (θDF ;pempirical) = 1
n

n∑
i=1

`(DF(m′i;θDF), si)

LDG(θDG ;pempirical) = 1
n

n∑
i=1

`(DG(m′′i ;θDG), fake) + 1
n

n∑
i=1

`(DG(mi;θDG), si)20

21 Update discriminator parameters
22 θD ←− Adam(θD; ηD, β1, β2)
23 until termination criterion is met;

24

3. Methods

Similarly to [25], we use a PCMelGAN where the generator module is excluded. In
their case they were extending such a model and hence it served as a baseline. When
it comes to audio, neither model has been investigated before and therefore allows
us to compare the two against each other. The pipeline of this model is illustrated
in Figure 3.3. The training procedure is similar to the one of PCMelGAN and is
presented in Algorithm 2.

F m′m

z

ST FTa M a′

Figure 3.3: Schematic diagram of the filter model. The audio recording a is
transformed into a Mel spectrogram m. The filtered Mel spectrogram is denoted
m′ and the noise vector z1. The Mel spectrogram m′ is inverted to audio a′ with
a pre-trained MelGANM.

Algorithm 2: Filter
Input: ηF , ηD, λ, ε

1 repeat
2 Draw n samples uniformly at random from the dataset
3 (x1, s1), . . . , (xn, sn) ∼ pempirical
4 Compute Mel spectrogram and normalize
5 m1, . . . ,mn = ST FT (x1), . . .ST FT (xn)
6 Draw n samples from the noise distribution
7 z1, . . . ,zn ∼ N (0, 1)
8 Compute the transformed data
9 m′1, . . . ,m

′
n = F(x1, z1;θF), . . . ,F(xn, zn;θF)

10 Compute filter loss

LF(θF ;pempirical) = − 1
n

n∑
i=1

`(D(m′i;θD), si)+λmax
(

1
n

n∑
i=1

d(m′i,mi)− ε, 0
)2

11 Update filter parameters
12 θF ←− Adam(θF ; ηF , β1, β2)
13 Compute discriminator losses

LD(θD;pempirical) = 1
n

n∑
i=1

`(D(m′i;θD), s)

14 Update discriminator parameters
15 θD ←− Adam(θD; ηD, β1, β2)
16 until termination criterion is met;

25

3. Methods

3.4 Data

The dataset used to evaluate our model was the AudioMNIST dataset [1], which
consists of 30000 audio recordings of spoken digits (0 − 9) in English. The dataset
comprises of 60 different speakers with 50 repetitions for each digit. They were
recorded with a sampling frequency of 48kHz. The meta data contains information
about the speaker’s age, gender, origin and accent. The dataset consists of 12 women
and 48 men. In order to work with a balanced dataset with respect to gender, we
randomly sample 12 men and limit the data used to speech recordings from the 12
women and the 12 randomly sampled men. This limited data is split into a training
set and a test set, consisting of 10000 and 2000 samples, respectively. To achieve
a similar balance in the splits, ten men and ten women are randomly sampled,
and their recordings are chosen to be the training set. The test set consists of the
recordings from the remaining two men and two women.

3.5 Experiments
There are two preprocessing procedures that are used. The first one is concerned
with making the audio samples of the same length. The architecture used in the
generator requires all inputs to be of the same size, and the original MelGAN works
on segments of length 8192. Since the recordings in the data set are one second or
less, we downsample them to 8 kHz and use zero padding to get a segment length
of 8192. The zero padding is done by adding zeros on both sides until the desired
length is attained. The second one is concerned with stabilizing the training of the
GANs. It is common that the input to such networks is normalized to [−1, 1]. In our
case, the spectrograms are preprocessed similarly to [7], where each spectrogram is
normalized to zero mean and unit variance, followed by clipping the spectra to three
standard deviations and rescaling it to [−1, 1]. It should be noted that MelGAN
does not work on spectrograms in this range. Since the last activation function
of the generators are tanh which produces values in [−1, 1], the transformed spec-
trograms are denormalized using the same mean and standard deviation as in the
preprocessing step above.

Next, we describe the hyperparameters for the models. Due to time constraints, it
has not been possible to do an exhaustive search of the hyperparameter space. We
therefore choose these according to what has worked well with different networks
throughout course of the project. Hence, we have the quadratic penalty coefficient
λ = 102, the learning rate for discriminators η = 4× 10−4, the learning rate for the
filter and generator η = 10−4.

Recall that the aim is to censor the gender in a recording. Hence, the sensitive
attribute s is gender with male ↔ 1 and female ↔ 0. Since the digit attribute
contains all the information about the spoken words and can be inferred both by
humans and classification models, it is chosen as utility attribute. To investigate the
privacy vs utility trade-off, we consider different values of the hyperparameter ε. To

26

3. Methods

allow for transformations from male spectrograms to female spectrograms and vice
versa, one must take into consideration how large this distortion tends to be. To this
end, we sample six males and females, and compute the distortion measure pairwise
between the corresponding spectrograms for each digit. Approximate density plots
of these distortions, digitwise, are illustrated in Figure 3.4.

Figure 3.4: Density plot of inter gender distortion measures (L1-norm pixelwise)
of six men and six women. The distortion is computed digitwise.

The plots indicates that the distortions lies in the interval [0.01, 0.2]. An initial
training session with ε = 0.2 resulted in larger distortions than desired. Hence,
we choose to conduct our experiments with smaller distortion constraints, choosing
ε ∈ {0.005, 0.01, 0.05, 0.1}.

We are now ready to describe the experimental setup. Before conducting the ex-
periments, we train a MelGAN network on our dataset according to the official
implementation1. Then, we train PCMelGAN and the filter model according to
Algorithm 1 and Algorithm 2, respectively. This procedure is repeated fives times
for each choice of ε to obtain more robust results. The hyperparameters are sum-
marized in Table (3.1).

1https://github.com/descriptinc/melgan-neurips

27

3. Methods

Table 3.1: Table of hyperparameters

Name Description Value
λ quadratic penalty 102

ηF learning rate for filter 10−4

ηFD learning rate for filter discriminator 4× 10−4

ηG learning rate for generator 10−4

ηGD learning rate for filter discriminator 4× 10−4

ε distortion constraint {0.005, 0.01, 0.05, 0.1}
β1, β2 exponential decay rates 0.5, 0.9

Each experiment is carried out on a NVIDIA V100 GPU. The training is restricted
to 1000 epochs which takes about 10 hours.

3.6 Evaluation metrics
The absence of an objective measure in GANs makes it difficult to directly evaluate
the performance of a given model. However, combining quantitative measures and
qualitative assessment can serve as an adequate and robust substitute [6]. In our
work, there are two performance aspects of the model that are of interest. Firstly,
how well the sensitive attribute has been censored, and secondly, if the utility has
been preserved. To evaluate the models quantitatively we use three different metrics.
Firstly, two different fixed classifiers pre-trained to predict the ground truth labels
gender and digit, in order to measure the model’s ability to censor and preserve
utility, respectively. The third metric is called Fréchet Inception Distance (FID) and
is used to quantify the audio quality. In addition to this, we will do a qualitative
assessment of the generated audio in terms of auditory inspection.

3.6.1 Fixed classifiers
In order to quantitatively evaluate how well the sensitive attribute has been censored
as well as if the utility has been preserved, we employ fixed classifiers. We define
the utility to be that one can determine the number uttered in the recording. By
fixed classifiers we mean pre-trained classification networks, trained to predict the
gender and the digit in a spectrogram as well as raw audio. The classifiers which
works on Mel spectrograms are implemented as AlexNets, where the final layer is
modified to have two output classes in the gender classifier and ten output classes
in the digit classifier. The classifiers on raw audio waveform are implemented as
AudioNets [1]. All networks were pre-trained, by training on 80 % of the training
set, and using the remaining 20 % for validation. The training is done using an early
stopping criterion, i.e. stopping the training when the validation loss has not been
updated for 100 epochs. The classifiers on Mel spectrograms achieved their best
accuracy at epoch 29, attaining an accuracy of 100 % for gender and 98 % for digit
on the validation set. The classifiers on raw audio were trained for 36 and 26 epochs,
achieving an accuracy of 99 % for gender and 94 % for digit on the validation set.

28

3. Methods

The fixed classifiers are used in the following way; the level of privacy is measured as
how rarely the classifier predicts the original gender. The level of utility is measured
as how often the classifier predicts the original digit.

3.6.2 Fréchet Inception Distance
The Fréchet Inception Distance (FID) was introduced by Heusel et al. [15] as a
measure to quantify the quality of generated images. It is one of the most widely
adopted evaluation metrics for GANs and has shown to correlate well with human
evaluation [5, 32]. The idea of FID is to embed a set of real samples x and a set of
generated samples g into a feature space. These embeddings are found by extracting
the output from a specific layer in a CNN trained for classification. This network is
typically an Inception Net, however, any convolutional architecture suffices [5]. The
embedded vectors are assumed to be multivariate Gaussian distributed and their
corresponding mean µ and covariance Σ are estimated. The FID score of the real
samples x and the generated samples g is defined as

FID(x, g) = ||µx − µg||22 + Tr(Σx + Σg − 2(ΣxΣg)
1
2) (3.4)

A lower FID score indicates that the two different sets of samples have more similar
statistics and consequently that the generated samples have a higher quality. We
implemented the FID-embedding network in the audio domain as an AudioNet. The
network was trained to predict digits in the training set introduced in section 3.4 and
achieved 94% on the validation set after 26 epochs. The features used to compute
the FID-score was chosen to be the output from the final convolutional layer.

29

3. Methods

30

4
Results

In this chapter we present the results obtained from the experiments described in
section 3.5. Recall that we trained a filter model and a PCMelGAN five times each,
for four different values of the distortion constraint ε. The presentation of the re-
sults is laid out as follows: Firstly, we present the privacy vs utility trade-off when
evaluated using the fixed classifiers. Secondly, we examine the quality, in terms
of FID-score, of the audio obtained by inverting the transformed spectrograms us-
ing MelGAN. Finally, we provide a link to a collection of transformed audio samples.

We begin by presenting the privacy vs utility trade-off. Recall that privacy is mea-
sured by the accuracy of the fixed classifier predicting the original gender si, where
an accuracy close to 50% corresponds to more privacy. Utility is measured by the
accuracy of the fixed classifier predicting the digit ui, where a higher accuracy cor-
responds to greater utility. In Table 4.1, the accuracy of the fixed classifiers on Mel
spectrograms transformed by the Filter and PCMelGAN are shown. Each entry in
the table corresponds to the mean and the standard deviation over five runs using
different random seeds for a fixed value of ε. Table 4.2 shows the corresponding
accuracies after transforming the spectograms back to raw waveform using the pre-
trained MelGAN.

Table 4.1: The spectrogram classifiers’ mean accuracy and standard deviation on
the test set for varying values of ε. For privacy (gender) an accuracy close to 50%
is better. For utility (digit), a higher accuracy is better.

Dist. Privacy Utility
ε Filter PCMelGAN Filter PCMelGAN

0.005 49.9± 2.2 48.7± 2.4 84.1± 2.8 81.1± 3.7
0.01 55.0± 4.7 50.9± 1.4 79.9± 4.3 78.8± 7.8
0.05 61.3± 10.2 51.0± 0.7 80.9± 8.2 54.7± 23.8
0.1 48.9± 1.0 49.8± 0.5 29.1± 7.5 15.1± 5.4

31

4. Results

Table 4.2: The raw waveform classifiers’ mean accuracy and standard deviation on
the test set for varying values of ε. For privacy (gender) an accuracy close to 50%
is better. For utility (digit), a higher accuracy is better.

Dist. Privacy Utility
ε Filter PCMelgan Filter PCMelgan

0.005 52.2± 3.6 49.1± 1.6 36.8± 4.0 49.4± 9.8
0.01 53.2± 3.2 51.3± 1.6 34.3± 8.5 49.2± 8.6
0.05 61.5± 8.1 51.2± 0.7 28.0± 15.8 31.3± 10.3
0.1 51.0± 1.3 49.6± 0.4 11.4± 1.7 15.8± 2.3

To illustrate the trade-off between privacy and utility, the mean accuracies in Table
4.1 and 4.2 are plotted against each other in Figure 4.1. Each point corresponds
to the mean accuracy of each fixed classifier for a specific epsilon. The lower right
corner corresponds to a higher utility and a greater privacy.

(a) (b)

Figure 4.1: Privacy vs utility trade-off on Mel spectrogram (a) and raw audio
waveform (b). The x-axis corresponds to the percentage of times the fixed digit
classifiers predicts the correct digit. The y-axis is the percentage of times the fixed
gender classifier predict the original gender. The blue and orange points corresponds
to the Filter and PCMelGAN, respectively.

Table 4.3: The FID scores of the two models on raw audio waveform for different
distortion constraints ε. Each score corresponds to a mean and standard deviation
of five identical experiments but initialized with different seeds, where a lower score
is better.

Dist. FID Audio
ε Filter PCMelgan

0.005 20.17± 4.04 10.12± 3.15
0.01 27.27± 4.50 10.02± 2.27
0.05 29.59± 5.77 20.22± 4.87
0.1 41.50± 3.49 22.32± 5.20

32

4. Results

In Table 4.3, FID scores are shown for our model working in the audio domain.

Finally, we provide samples from the AudioMNIST test set that were transformed by
our model 1. The shared folder contains original sound clips and their corresponding
transformed versions. Figure 4.2 illustrates a Mel spectrogram transformation using
PCMelGAN for a recording of a woman saying "zero".

Figure 4.2: Spectrograms of a person saying ’zero’. The original recording of a
female (top left), transformed ones from the baseline (top right), and our model of
a sampled male (bottom left) and a sampled female (bottom right).

1https://www.dropbox.com/sh/oangx84ibhzodhs/AAAfG-PBW4Ne8KwdipAmKFy1a?dl=0

33

https://www.dropbox.com/sh/oangx84ibhzodhs/AAAfG-PBW4Ne8KwdipAmKFy1a?dl=0

4. Results

34

5
Discussion

In this chapter we discuss the results of this thesis, and consider possible improve-
ments of the model and the experiments.

Concerning the results in the spectrogram domain, it can be seen in Table 4.1
that the Filter and the PCMelGAN achieve strong privacy for all values of ε. The
difference between the two models is very small, indicating that the extension in
PCMelGAN does not necessarily improve upon the privacy. We assumed initially
that the privacy would suffer from having a stricter distortion constraint ε, but this
was not observed in the experiments. However, more experiments need to be car-
ried out to detect when privacy starts to deteriorate with lower ε. With regards
to utility, the results are good for small values of ε, but for the largest value the
utility decreases significantly. We believe the decrease in utility may come from the
fact that a larger distortion constraint allows the model to make greater changes to
spectrogram, possibly removing the information about the digit.

Continuing with the transformed audio, we see in Table 4.2 that both models are
able to provide strong privacy in the audio domain. However, in this case it is to
a greater loss of utility. For the two smaller values of epsilon, this loss of utility
is greater for the Filter, indicating that the addition of a synthetic instance of the
sensitive attribute improves the utility. Since Mel spectrograms are not invertible, it
is reasonable that some information about the spoken content is not reconstructed,
which may explain the loss of utility. While this raises the question if the spectro-
gram domain is reasonable to work in, it should be noted that generating coherent
raw audio with GANs has had limited success so far. Although it would have been
more ideal to work with raw audio, we argue that working on spectrograms is a good
first step.

In Table 4.3 we notice that PCMelGAN obtains substantially better FID scores than
the Filter in the audio domain. We also observed this from listening to the generated
sounds. Our hypothesis is that adding the synthetic sample of the sensitive attribute
results in a more realistic speech signal. This could perhaps be explained by the
fact that the goal of the filter network is to hide the sensitive attribute, possibly
removing it from the signal, and the only restriction on how realistic it sounds is
the distortion constraint.

The choice of distortion measure may have a great impact on the transformation
learnt by the network. We chose to use the L1-norm, as it gave the most promising

35

5. Discussion

results in comparison with mean square loss and L2-norm loss during our test runs.
However, it is not clear if measuring the distortion between spectrograms using any
of these norms actually capture the distortion in the intelligibility of the speech.
This is an aspect we believe needs to be further researched.

Another aspect that also requires further investigation is how well the models gener-
alise to more complex speech signals as well as more diverse datasets. AudioMNIST
is rather restricted in the sense that it only contains ten different utterances, which
are not expressed in the same signal, and there are only 24 different speakers. It
would be of interest to evaluate the model on a larger dataset with full sentences.
Since the utility cannot be measured by a simple classifier such as in the case of
AudioMNIST, one could instead use a transcription model and measure the utility
via the word error rate.

Finally, there may be potential improvements in the evaluation of the realism and
utility of the generated speech signals. Ideally, we would have liked to conduct lis-
tening tests with a large group of people to create a Mean Opinion Score (MOS), but
this was out of scope for the project. Using FID as alternative measure was deemed
to be a good middleground. If time had allowed, it would have been interesting to
compare it with the Fréchet DeepSpeech distance [3].

5.1 Conclusion
In this work we have proposed an adversarially trained model that learns to make
speech data private. We do this by first filtering a sensitive attribute, and then gener-
ating a new, independent sensitive attribute. We formulate this as an unconstrained
optimization problem with a distortion budget. This is done in the spectrogram do-
main, and we use a pretrained MelGAN to invert the generated mel-spectrogram
back to a raw waveform. We performed experiments on the AudioMNIST dataset
where we try to make the gender private. The quantitative results as well as auditory
inspection of the transformed samples show that we succeed with this, but to a loss
of utility in the resulting recording. Further experiments should be conducted on
more complex datasets with longer sentences and more speakers to evaluate possible
applicability to real world data.

36

Bibliography

[1] Sören Becker, Marcel Ackermann, Sebastian Lapuschkin, Klaus-Robert Müller,
and Wojciech Samek. Interpreting and explaining deep neural networks for
classification of audio signals. CoRR, abs/1807.03418, 2018.

[2] Martin Bertran, Natalia Martinez, Afroditi Papadaki, Qiang Qiu, Miguel,
Galen Reeves Rodrigues, and Guillermo Sapiro. Adversarially learned rep-
resentations for information obfuscation and inference. In Kamalika Chaudhuri
and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Con-
ference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pages 614–623, Long Beach, California, USA, June 2019. PMLR.

[3] Mikolaj Binkowski, Jeff Donahue, Sander Dieleman, Aidan Clark, Erich Elsen,
Norman Casagrande, Luis C. Cobo, and Karen Simonyan. High fidelity speech
synthesis with adversarial networks, 2019.

[4] Christopher M. Bishop. Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.

[5] Ali Borji. Pros and cons of gan evaluation measures, 2018.
[6] J. Brownlee. Generative Adversarial Networks with Python: Deep Learning

Generative Models for Image Synthesis and Image Translation. Machine Learn-
ing Mastery, 2019.

[7] Chris Donahue, Julian McAuley, and Miller Puckette. Adversarial audio syn-
thesis. 2018.

[8] Harrison Edwards and Amos J. Storkey. Censoring representations with an
adversary. 4th International Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings,
2016.

[9] Jesse Engel, Kumar Krishna Agrawal, Shuo Chen, Ishaan Gulrajani, Chris
Donahue, and Adam Roberts. Gansynth: Adversarial neural audio synthesis,
2019.

[10] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[11] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-
sarial networks, 2014.

[12] D. Griffin and Jae Lim. Signal estimation from modified short-time fourier
transform. IEEE Transactions on Acoustics, Speech, and Signal Processing,
32(2):236–243, 1984.

[13] Fredric J. Harris. On the use of windows for harmonic analysis with the discrete
fourier transform, 1978.

37

http://www.deeplearningbook.org

Bibliography

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition, 2015.

[15] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and
Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a
local nash equilibrium, 2017.

[16] Chong Huang, Peter Kairouz, Xiao Chen, Lalitha Sankar, and Ram Rajagopal.
Generative adversarial privacy. 2018.

[17] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift, 2015.

[18] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image
translation with conditional adversarial networks, 2016.

[19] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion, 2014.

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bot-
tou, and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 25, pages 1097–1105. Curran Associates, Inc., 2012.

[21] Kundan Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen
Teoh, Jose Sotelo, Alexandre de Brebisson, Yoshua Bengio, and Aaron
Courville. Melgan: Generative adversarial networks for conditional waveform
synthesis, 2019.

[22] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, and Ole Winther. Autoen-
coding beyond pixels using a learned similarity metric. CoRR, abs/1512.09300,
2015.

[23] Jae Hyun Lim and Jong Chul Ye. Geometric gan, 2017.
[24] Ping Luo, Xinjiang Wang, Wenqi Shao, and Zhanglin Peng. Towards under-

standing regularization in batch normalization, 2018.
[25] John Martinsson, Edvin Listo Zec, Daniel Gillblad, and Olof Mogren. Adver-

sarial representation learning for synthetic replacement of sensitive data. The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (un-
der review), June 2020.

[26] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets,
2014.

[27] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, New
York, NY, USA, second edition, 2006.

[28] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen Mar-
shall. Activation functions: Comparison of trends in practice and research for
deep learning, 2018.

[29] Marco Pasini. Melgan-vc: Voice conversion and audio style transfer on arbi-
trarily long samples using spectrograms, 2019.

[30] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. CoRR, abs/1505.04597, 2015.

[31] Sebastian Ruder. An overview of gradient descent optimization algorithms,
2016.

[32] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Rad-
ford, and Xi Chen. Improved techniques for training gans, 2016.

38

Bibliography

[33] Brij Mohan Lal Srivastava, Aurélien Bellet, Marc Tommasi, and Emmanuel
Vincent. Privacy-preserving adversarial representation learning in asr: Reality
or illusion? Interspeech 2019, Sep 2019.

[34] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: A simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, 15(56):1929–1958, 2014.

[35] Yan Wu, Jeff Donahue, David Balduzzi, Karen Simonyan, and Timothy Lilli-
crap. Logan: Latent optimisation for generative adversarial networks, 2019.

39

Bibliography

40

	List of Figures
	List of Tables
	Introduction
	Specification
	Related work
	Outline

	Background
	Artificial neural networks
	Building blocks of neural networks
	Training a neural network
	Regularization techniques

	Generative adversarial networks
	Generative models
	The adversarial setup
	Conditional GAN

	Generative adversarial privacy
	Time-frequency analysis
	Short time Fourier transform
	Mel spectrogram

	Methods
	MelGAN
	Private conditional GAN
	PCMelGAN
	Data
	Experiments
	Evaluation metrics
	Fixed classifiers
	Fréchet Inception Distance

	Results
	Discussion
	Conclusion

	Bibliography

