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Rui Deng
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Abstract
Serverless computing has emerged as a new compelling cloud computing model for
deploying modern applications, creating demand for benchmarking serverless plat-
forms to help practitioners make a suitable choice. Existing works related to server-
less benchmarking primarily focus on microbenchmarking to measure an individual
aspect of function performance such as CPU speed and cold start. Some studies
propose an application-centric benchmarking framework but lack an in-depth anal-
ysis of the application performance difference across cloud providers. Furthermore,
none of the related studies provides details about addressing benchmark fairness.

In contrast, this thesis presents a methodology to design a serverless application
benchmark for a fair comparison between two leading cloud providers: AWS and
Azure. The benchmark execution generates detailed traces constituting the end-to-
end execution duration which enables drill-down analysis on how the application
performs differently across cloud platforms. The main finding shows that storage
triggering can substantially impact the end-to-end latency, and the performance
difference between cloud platforms.

Keywords: Cloud Computing, Serverless Computing, Benchmarking, Distributed
Tracing
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1
Introduction

Cloud computing becomes the de-facto platform for both new and existing digital
applications, and 40% of all enterprise applications will be deployed to the cloud by
2023 according to the prediction from Gartner [16]. When organizations shift their
infrastructure from on-premise to the cloud, they typically start the cloud journey by
leveraging virtual machines (VM) (e.g., AWS EC21) or other VM-based services on
the cloud to build their application environment and deploy applications. However,
managing the scaling of VMs (especially scaling down to zero) can be challenging,
which requires high expertise and a significant amount of time to achieve a good
level of stability. Failing to properly handle scaling can cause over-provisioning
in the sudden usage surge resulting in higher cost than expected while incurring
unnecessary cost when there is little workload or even zero workloads since cloud
customers still need to pay for the running VM instance [7].

As a new compelling cloud computing model for deploying modern applications,
serverless or serverless computing has become increasingly accepted by industry dur-
ing past years. This is because it promises that all underlying resources provisioning
and scaling are fully managed by the cloud provider and thus offers advantages in
reducing costs for irregular or bursty workloads, alleviating operational concerns,
and supporting out-of-box scalability [10]. For example, a performance and cost
comparison of cloud services for deep learning applications shows that serverless
can deliver better performance and cheaper cost in bursty workload [8].

When architects and developers choose a cloud provider to build applications using
serverless, they want to compare how applications would perform on the candidate
cloud platforms. It is because application performance matters to the end-user ex-
perience that is crucial for business in today’s highly digitized world. Operational
cost is also directly connected to the application performance due to the pay-per-use
pricing model based on execution duration and resource consumption (i.e., memory)
[2, 34, 19].

1.1 Problem Description
Understanding serverless application performance across cloud providers can usually
be achieved by conducting performance evaluation or performance benchmarking

1https://aws.amazon.com/ec2/
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1. Introduction

[22] to systematically analyze the application’s performance on each target cloud
platform. Prior works mostly use microbenchmarks to measure individual aspects
that impact the serverless performance, such as CPU and memory-bound perfor-
mance, network performance, and cold start [41]. Some existing works start to
propose benchmark frameworks and tools that are more application-centric, aiming
for evaluating the overall performance of an application and the interaction between
its components [21, 45, 13]. However, there is a lack of in-depth analysis of the
detailed breakdown of overall performance for a realistic application to understand
the difference across cloud providers clearly.

Another gap in serverless benchmarking is the lack of a transparent approach to
address the fairness of a benchmark. Creating a good benchmark has been, for a
long time, considered to be challenging due to various details that can influence
the adoption of benchmark and the results [15]. The difficulty has been further in-
creased in serverless because the underlying infrastructure is abstracted away with
vendor-specific implementation, which raises concern about the fairness of bench-
mark, especially when comparing cloud platforms. Prior studies such as BeFaaS [21]
mention fairness as one of the general requirements for their benchmarks, but none
discusses how it is specifically addressed.

1.2 Purpose
The purpose of this thesis is to close these two gaps by

• establishing a methodology for building real-world serverless application bench-
mark to fairly compare cloud platforms

• generating insights about why serverless application performance differs across
cloud platforms

The method used in this thesis can provide a clear reference to other practitioners
and researchers for addressing fairness in their serverless benchmarking study. For
practitioners (developers/architects) who already decided to use serverless comput-
ing as their technical choice for the application, the insights generated in the thesis
can greatly help them select the most suitable cloud provider for their serverless
applications and improve their understanding of serverless application performance
on the cloud.

1.3 Research Questions
The following research questions need to be addressed to achieve the goal of the
thesis.

RQ1: How to design a real-world serverless benchmark application that
is fair to compare performance across heterogeneous cloud platforms?

2
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This question aims to explore a clear approach for constructing serverless application
benchmarks as the foundation for fair performance comparison. Based on the differ-
ent known aspects that can potentially influence serverless application performance,
this question is further split into the following sub-questions:

• RQ1.1: How can the architecture and configuration of serverless applications
be mapped closely across cloud providers?

• RQ1.2: How can the instrumentation be implemented to provide comparable
insights across cloud providers?

• RQ1.3: How can the workload be designed and executed to minimize the di-
vergence of load test?

RQ2: How does serverless application performance differ across different
cloud providers?

This question targets the post-experiment analysis of the serverless benchmark ap-
plication performance data across the cloud platforms to observe the difference.

RQ3: Why does serverless application performance differ across cloud
providers?

As a natural next step of RQ2, this question addresses the in-depth analysis of the
detailed performance data making up the overall performance to investigate the
connection with the observation from RQ2. This observation will give us insights
into what factors lead to the realization of the same serverless application performing
differently on different cloud providers.

1.4 Scope

There are a large number of Cloud providers offering Serverless computing. It is
impossible to evaluate all of them within the limited time of this thesis. The target
cloud platforms used in this study are thus limited to the two biggest public cloud
vendors in terms of market share [17]: Amazon Web Services (AWS)2 and Microsoft
Azure3.

For benchmark applications, it is ideal to leverage a broader range of selected Server-
less applications to increase the coverage of user cases and cloud services to generate
potentially more insights. Due to the time limit of the thesis, this study will focus
on one representative application to create a high-quality benchmark and perform
drill-down analysis for generating insights. The method used in this thesis for build-
ing, operating and analyzing the benchmark can be applied to other benchmark
applications.

2https://aws.amazon.com/
3https://azure.microsoft.com/en-us/
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1. Introduction

1.5 Contributions
This thesis intends to make two contributions. One is to provide the researcher com-
munity a detailed reference methodology for building serverless application bench-
marks focusing on fairness and fine-grained analysis. The other one is the insight
generated from the comparison of AWS and Azure which suggests that developers
and architects should be careful about choosing triggering mechanisms, especially
storage triggers, when building serverless applications since it can significantly in-
crease the end-to-end execution time.

1.6 Limitations
Since the underlying infrastructure of serverless computing is abstracted away, users
rely on cloud providers to generate the detailed performance data based on the in-
strumentation of the application using vendor-specific SDK4. However, the correct-
ness and accuracy of data is thus out of control of this thesis.

Another main limitation of this thesis is the reproducibility of results due to the
nature of ever-changing cloud services and providers’ constant optimization on per-
formance. In order to achieve long-term reproducibility, continuous improvement
on benchmark and data analysis is required over time which is beyond the scope of
this thesis.

1.7 Thesis Outline
The remainder of this thesis is structured as follows:

• Chapter 2 introduces the fundamental concepts related to this thesis includ-
ing cloud computing, serverless computing, distributed tracing, performance
benchmarking, and Serverless Benchmarker (SB).

• Chapter 3 introduces the methodology developed in this thesis for design-
ing and operating the serverless benchmark for fair performance comparison
across cloud platforms using the state-of-art benchmark framework, and Agile
methodology.

• Chapter 4 presents serverless benchmarking experiments results, summarizes
and discusses the observation, and describes the threats to validity.

• Chapter 5 presents the related work in serverless benchmarking and discusses
the difference and contribution made by this thesis.

• Chapter 6 concludes the thesis by summarizing the findings that answer the
research questions and the contribution to the community and suggests future
work.

4https://en.wikipedia.org/wiki/Software_development_kit
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2
Background

This chapter introduces the general knowledge and concepts needed to understand
this thesis, including cloud computing, serverless computing, distributed tracing,
and serverless benchmarking.

2.1 Cloud Computing
Cloud computing enables on-demand access to computing resources (e.g., networks,
servers, storage, applications, and services) over the network [30]. Depending on the
level of management effort needed from the users, cloud computing is typically cate-
gorized into three types of models: Infrastructure as a Service (IaaS), Platform as a
Service (PaaS) and Software as a Service (SaaS). From an end-user perspective, IaaS
provides fundamental infrastructure resources such as networking, storage and vir-
tual machines (VM) without managing hardware while still giving maximum control
on infrastructure to end users. Compared to IaaS, PaaS alleviates the operational
burden of managing fundamental cloud infrastructure, and offers various develop-
ers tools and services so users can focus on building customized environments and
applications. SaaS, taken to an extreme, delivers complete software products over
the internet directly to end-users without users managing any underlying infrastruc-
ture. Major cloud providers such as Amazon Web Services (AWS), Microsoft Azure,
and Google Cloud1 offer a broad range of cloud services based on all three types of
models.

With cloud computing, organizations and individual developers do not need to in-
vest significant capital beforehand to deploy their applications, especially in the
experiment and early development phase. Instead, they have immediate access to
an enormous pool of computing resources and services without up-front commitment
and pay only for what has been used (pay-as-go), which can lead to increased speed
to market and innovation as well as reduced cost [1].

2.2 Serverless Computing
Filling the gap between PaaS and SaaS, serverless computing intends to abstract
away server (VMs) management entirely from developers (compared to PaaS) and

1https://cloud.google.com/
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provide out-of-box scalability (including scaling down to zero), which usually re-
quires high-level expertise and significant efforts to achieve. It minimizes the effort
needed to manage infrastructure so developers can focus on business logic and appli-
cations. Moreover, Serverless Computing only charges users when their applications
are being used to serve requests or events, which is closer to the original expectation
for cloud computing treated as a utility [7].

2.2.1 Function as a Service
The primary type of serverless computing is Function as a Service (FaaS) (e.g.,
AWS Lambda2 and Azure Functions3) which uses function as the unit of computa-
tion to execute the user code in response to triggers such as events or HTTP requests
[7]. This provides an attractive alternative to implementing the microservice-based
architecture, a trending style of building applications composed of small and self-
contained components that are independently salable with the goal of improving
development time and scalability.

Under the hood of serverless functions, cloud providers provision function instances
on-demand and at scale [14]. A function starts with handing an event such as an
HTTP request which arrives at a function routing service to be routed to an available
function instance. If no function instance is available, the resource manager that is
responsible for scheduling and managing all the function instances needs to prepare
a new function instance based on the configuration specified by the user. This
process includes creating a new function instance and initializing it with necessary
container image and code artifacts, which incurs a so-called cold start in this case.
Once the function instance is fully ready, it can finally process the invocation request
to handle the business logic in the user code. If the function instance is already
available (known as warm instance), this cold start phase can be bypassed, and the
event is directly processed.

2.2.2 Serverless Application
With FaaS services and other serverless components provided by cloud providers
[5, 37, 20], developers can build fully-fledged Serverless applications which typically
uses FaaS as the computing layer to host and execute business logic code, com-
bining with other fully managed or serverless services for data storage, messaging,
streaming, and user authentication/authorization [10]. Based on a comprehensive
study on 89 serverless applications from open-source projects, academic literature,
industrial literature, and domain-specific feedback [11], a serverless application has
the following main characteristics:

• AWS is the dominating platform for serverless applications, accounting for 80
% of all studied applications, followed by Azure (10%). It is mainly because
AWS is the first major cloud provider to offer serverless computing, and AWS
Lambda is the pioneer of FaaS.

2https://cloud.google.com/
3https://azure.microsoft.com/en-us/services/functions/
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• Serverless applications are mainly used for short-running tasks with low data
volume and bursty workload. It is due to providers limiting how long the
function can run per execution. For example, AWS Lambda can run up to
15 minutes4 per execution while the timeout limit for Azure function in Con-
sumption plan5 is only 10 minutes6.

• Serverless applications typically use cloud storage, cloud databases, and cloud
messaging.

• HTTP triggers and cloud events are the most commonly used triggers.
• Most serverless applications use few cloud functions, with 82% of them using

five or fewer functions.
• The most popular programming languages for serverless applications are Python

and NodeJS. It can be because interpreted languages (Python, Ruby, JavaScript)
have significantly less cold-start delays as compared to compiled runtimes
(Java, .NET, etc.) [39]. However, the major choice for serverless applica-
tions on Azure is C# [12]. The main reason can be that C# is the first and
most supported language by Azure [31, 35].

2.3 Distributed Tracing

While benefiting from building a decentralized highly-specialized microservices-based
distributed system, developers found themselves in a new situation where they lost
the observability of the whole application. In a monolithic application, tracking ap-
plication requests end-to-end used to be straightforward. However, now it becomes
increasingly challenging due to the complex nature of the distributed system. The
general solution to this problem is using distributed tracing, a method of profiling
and monitoring microservices-based applications to pinpoint the causes of poor per-
formance [38]. The idea of tracing is to instrument the code of a distributed service
at selected points to produce data when executed, and the data from various points
reached by request can be combined to generate an overall trace [40]. With such
end-to-end tracing, the entire life cycle of the request can be understood, and thus,
it makes it easy to pinpoint any failure and performance issue during the entire
processing of the request.

For Serverless applications, tracing is more difficult since the underlying infrastruc-
ture is abstracted away and out of the user’s control. Therefore, developers have
to rely on distributed tracing tools offered by cloud platforms to collect the tracing
data. The following subsection introduces the distributed tracing tool provided by
AWS and Azure.

4https://www.amazonaws.cn/en/new/2018/aws-lambda-enables-functions-that-can-
run-up-to-15-minutes/

5https://docs.microsoft.com/en-us/azure/azure-functions/consumption-plan
6https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
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2. Background

Figure 2.1: An AWS X-Ray timeline view of Lambda default trace

2.3.1 AWS X-Ray

The distributed tracing service provided by AWS is called X-Ray7. It is a fully
managed service with both a Web user interface for visualizing tracing data and
programming SDK for instrumentation and interacting with X-Ray Rest API. AWS
X-Ray receives data from services and organizes them as segments. Instead of send-
ing trace data directly to X-Ray, each client SDK sends JSON segment documents to
a daemon process called X-Ray daemon8 first and then uploads them in batches to
X-Ray. With a trace ID tracking a request through the execution, all segments gen-
erated by a single request can be correlated by X-Ray to form an end-to-end trace
for the request and a service graph that can visualize the services and resources
making up the application. A segment can also be broken down into sub-segments
which provide more granular timestamps and details about downstream calls. Fig-
ure 2.1 shows an AWS X-Ray timeline view of a simple Lambda execution default
end-to-end trace9.

Many AWS services provide various levels of integration with X-Ray, including in-
strumentation such as sampling, adding headers to incoming requests, and auto-
matically sending trace data to X-Ray. These built-in integrations can provide the
service’s basic trace data once enabled. However, AWS X-Ray SDK for different
programming languages is required to capture additional desirable data. The X-
Ray SDK provides a simple mechanism to add instrumentation code into Lambda
functions to implement the custom instrumentation.

7https://aws.amazon.com/xray/
8https://docs.aws.amazon.com/xray/latest/devguide/xray-daemon.html
9https://docs.aws.amazon.com/lambda/latest/dg/csharp-tracing.html
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Figure 2.2: An Azure Application Insights transaction diagnostics view of an Azure
Function

2.3.2 Azure Application Insights
Azure Application Insights10, part of Azure Monitor11, provides similar functional-
ities as AWS X-Ray for distributed tracing capability. It uses OpenTelemetry12, a
popular open-source observability framework, for instrumentation. Azure serverless
services such as Azure Function and API Management Service offers integration
support with Application Insights. Like AWS X-Ray, Application Insights starts
collecting basic trace data once enabled on these services and Application SDK is
required to perform custom instrumentation for capturing additional data needed.
Depending on which programming languages are used, the maturity and usability of
the SDK can vary. For example, Application Insights for .NET13 receives the largest
community and most frequent maintenance according to GitHub repository statis-
tics. Figure 2.2 shows an Azure Application Insights view of function execution.

2.4 Performance Benchmarking
This section introduces the basics of performance benchmarking and its application
in the serverless area (a.k.a, serverless benchmarking).

2.4.1 Benchmarking Basics
Benchmarking is an empirical and systematic approach used in computer science
to compare the performance of computer systems, tools, techniques, etc., [22]. A
benchmark often refers to a System Under Test (SUT), a collection of components

10https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-
overview

11https://docs.microsoft.com/en-us/azure/azure-monitor/overview
12https://opentelemetry.io/
13https://github.com/microsoft/ApplicationInsights-dotnet
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necessary to run the benchmark scenario, and includes the definition of complete
application architecture with the interested components [15]. A benchmark should
include the clearly defined motivation of the comparison, the representative tasks or
workloads, and the measurements (quantitative or qualitative) [44].

The main concerns for building a benchmark are described as follows [24]. Successful
benchmarking requires a balance between these characteristics and criteria:

• Relevance: how relevant and applicable the benchmark and results are to
that area and relevant parties. For the consumer of the benchmark results,
the relevance should also consider the specific context and user cases. One
main challenge for relevance is scalability since it is expected to run on a
broader system and simulate the behaviors of real applications. The general
approach to improve benchmark relevance in a specific area is to focus on
narrow applicability.

• Reproducibility: the benchmark should be able to reproduce similar results
consistently. Due to the variability of modern software systems, achieving
perfect reproducibility may not be possible. In reality, we can improve the
reproducibility by running the benchmark for a long enough time to include
representative samples of the variable behaviors. This can also mean running
multiple times to improve consistency.

• Verifiability: other researchers and interesting parties can use the benchmark
to verify the result to prove its trustfulness. One important way to improve
verifiability is by providing as many details as possible about the benchmark
and data.

• Fairness: ensure systems can be compared on their metrics without artificial
constraints. The general approach to better fairness is to design benchmarks
based on consensus from a panel of experts rather than individual parties and
consider how the result may be used.

2.4.2 Serverless Benchmarking
There are generally two types of benchmarks in the serverless area: micro-benchmarks
and application benchmarks [41]. Depending on which type of benchmarks to be
used, serverless benchmarking can be categorized into micro-benchmarking and ap-
plication benchmarking

Micro-benchmarking typically uses a single function to evaluate individual aspects
of the serverless function, such as CPU and memory-bound performance, disk I/O
performance, and network performance. For example, a single AWS Lambda func-
tion implements a function handler that obtains the parameter from its triggering
invocation events and then uses a floating-point operation to calculate the latency for
CPU-intensive operation [41]. Another micro-benchmark example from Function-
Bench [23] uses a single function with cloud storage for downloading and uploading
objects to measure network performance.

On the other hand, application benchmarking uses applications with multiple server-
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less components and typically measures the end-to-end response time. For example,
BeFaaS uses an e-commerce benchmark that implements a webshop application com-
prising 17 functions and a Redis instance as an external service to persist state [21].
Another application benchmark example can be an Image Processing application
performing image transformation tasks using Python Pillow14 library which fetches
an input image from shared block storage and applies different effects to it before
uploading it to another shared storage [23].

2.5 Serverless Benchmarker (SB)
To standardize the serverless benchmarking tests in a reproducible, automated way,
there is a significant effort from the community to create frameworks and tools for
addressing this need [23, 21, 28, 45, 49, 46, 13]. Such benchmark frameworks and
tools are typically composed of the following core components:

• Built-in benchmarks: used for demonstrating the features of the framework
and tool, and providing examples for how to create and integrate custom
benchmarks.

• Deployment tool: standardizes the deployment of the benchmarks to target
cloud providers.

• Automation of load generation: enables users to configure the load profile for
orchestrating workload as needed.

One of such tools is Serverless Benchmarker (SB), created by the SPEC-RG CLOUD
research group [13]. It is a meta-benchmarking tool to orchestrate reproducible
serverless application benchmarking so that users can focus on implementing the
target Serverless application benchmarks and designing the workload profile with-
out worrying about the technical complexity of executing experiments.

Figure 2.3 shows a high-level architecture overview about SB comprising four major
components: 1) the deployment component facilitates the deployment automation
for benchmark apps to target cloud providers. SB leverages containerization technol-
ogy Docker15 to create reproducible deployment by abstracting away dependencies
needed for deploying the application benchmark. It can also automatically mount
application code and credentials into the right container directories which simpli-
fies the deployment process. 2) The invocation component provides interfaces and
templates to configure workload patterns for load generation. The load generation
process is also automated through the integration with the open-source load testing
tool K616 which is optimized for minimum resource consumption and good developer
experience. 3) The trace downloading component provides template and integration
for downloading tracing data from distributed tracing tools in the cloud providers
using the corresponding SDKs and APIs. 4) the trace processing components can
implement custom logic to pre-process the downloaded tracing data into curated

14https://python-pillow.org/
15https://www.docker.com/
16https://k6.io/
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Figure 2.3: High-level overview of Serverless Benchmarker (SB) architecture

tracing data before drill-down analysis.

Figure 2.4 shows a step-by-step workflow for using SB and the Command Line In-
terface (CLI). In the Initialization step, SB prepares the container and installs the
required packages. The Login step is about authenticating with the target cloud
providers. The Deployment step then deploys the benchmark application to the
cloud platform based on the specific configuration. After the benchmark applica-
tion is deployed, it can be invoked in the Invocation step with a configured workload
pattern defined using K6. After invocation is completed, tracing data from the cloud
provider can be downloaded. Finally, the raw trace data fetched from the previous
step is processed to generate final tracing data that meets the requirement. The
rest of the section describes in detail how each step works:

Step 1: Initialization comes with pre-installed packages and default configuration
for the underlying infrastructure. Depending on specific benchmarking needs, this
step can be extended to install custom packages as needed. This step only needs to
be executed once if there is no change on the dependent packages.

Step 2: Login implements the authentication with cloud platforms and the tempo-
rary credentials are mounted into the container after being downloaded. By default,
AWS and Azure login with SSO is supported out-of-box, which satisfies the need
of this thesis. The default AWS credential session duration is 12 hours, while the
default Azure CLI token session duration is 60 minutes. Therefore, the planning
of the benchmark experiment should consider the login session and run sb login
before the token expires.

Step 3: Development requires implementation of the deployment configuration for
benchmark application. The configuration can differ depending on technologies used

12
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Figure 2.4: Step-by-step workflow using Serverless Benchmarker (SB)

for benchmark applications, such as the runtime and Infrastructure as Code tools.
SB provides convenient functionalities for building Docker images, running CLI com-
mands, and loading environment variables to the container.

Step 4: Invocation provides the integration point to specify how the benchmark
application is invoked using K6 configuration.

Step 5: Traces Downloading aims for standardizing the download operation of traces
from different cloud providers. Due to instrumentation and application difference,
users may need to modify or re-implement the downloading logic instead of using
the default implementation, which is required for this thesis. For AWS, all trac-
ing data associated with an end-to-end request are unified as a single JSON file.
Downloading X-Ray traces requires using AWS X-Ray SDK to fetch this monolithic
JSON file based on trace ID. For Azure, tracing data is categorized into different
telemetry types such as request, trace, and dependencies stored separately. Azure
provides various ways to fetch the tracing data, such as Continuous Export (trans-
ferring data to other storage and then can be accessed through storage SDK) and
REST API (use query expression as input to be executed through Log Analytics17).
This thesis uses REST API via Python to download traces.

Step 5: Traces Processing pre-processes the data downloaded from the previous step
and generates the final trace breakdown data by extracting and calculating the re-
quired breakdown data needed for post-experiments analysis.

Step 6: Cleanup destroys all the resources deployed in the target cloud platform.

17https://docs.microsoft.com/en-us/azure/azure-monitor/logs/log-analytics-
overview
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3
Research Method

This chapter introduces the methodology adopted in this thesis for conducting
the application-centric serverless benchmarking across two leading cloud platforms
(AWS and Azure). The overall research process is outlined firstly, and then the
rest of the chapter presents the detailed design of the process including benchmark
design, benchmark execution and data analysis.

3.1 Process Overview

This thesis adopts the empirical research method of benchmarking [22] to assess the
performance of the serverless benchmark application on AWS and Azure. The re-
search process includes benchmark design, benchmark execution and data analysis.
In addition, an engineering research approach with controlled experiments is ap-
plied to study how to address the fairness of the benchmark. To efficiently conduct
this study, Agile methodology1 is also applied in the whole process to improve the
benchmark and thesis artifacts continuously.

Figure 3.1 shows the whole research process with the input and output of each step.
Based on the understanding of benchmarking theory and Serverless Benchmarker
(SB) described in 2.4, the first step includes the design of the benchmark application,
instrumentation and workloads, and the integration with SB, focusing on addressing
the fairness for comparison to answer RQ1 in the Section 1.3. The second step is
to operate the application benchmark built from the previous step and generate the
tracing data. Thirdly, the data is analyzed to generate insights for answering the re-
search questions RQ2 and RQ3 in Section 1.3. Last but not least, the benchmarking
process is iterative for continuously improving the design and results.

3.2 Benchmark Design

This section describes the detailed design of the benchmark, including the design of
application, instrumentation, workloads, and integration with SB.

1https://agilemanifesto.org/
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Figure 3.1: The flowchart of process overview

3.2.1 Application Design
When designing a serverless application benchmark, it is crucial to choose an appli-
cation as realistic as possible to represent real-world Serverless usage. As described
in Section 2.2.2, a serverless application typically contains 5 or fewer functions com-
bining with cloud storage/database/messaging to handle short-running tasks with
low data volume and bursty workload. Based on these characteristics, 3 of the
supported applications in SB (Thumbnail Generator, Model Training and Video
processing) are identified as candidates. Apart from representing different use cases
and domains, the major difference is that Thumbnail Generator uses two functions
while the other two applications use only 1 function. Considering the time con-
straint of this thesis, this study chooses Thumbnail Generator as the benchmark
application because it requires the most straightforward domain knowledge while
providing a slightly more complex scenario with two functions in the same chain
execution. In addition, several related studies also use Thumbnail Generator as a
target serverless application. [9, 50].

The Thumbnail Generator application is commonly used in web applications for
creating resized images to fit with the User Interface (UI) on different devices and
web pages. Figure 4.1 shows the high-level architecture of the Thumbnail Generator
and the life cycle of the application execution is described as follows:

1. A user uploads the original image via an HTTP request to the API Gateway
endpoint

2. The API Gateway triggers the serverless function Upload
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Figure 3.2: High-level design for Serverless thumbnail generation application

3. The Upload Function receives an image from API Gateway and uploads it to
the Object storage

4. Once the image is saved/created in the storage, it triggers another Serverless
function CreateThumbnail to process the image

5. The CreateThumbnail Function creates thumbnail images and saves them back
to the storage.

To architect the application for the fair comparison across cloud platforms, it is
important to use comparable components from different cloud providers. Based on
the side-by-side comparison of product offerings among AWS and Azure [18], the
mapping of components for the Thumbnail Generator is summarized in Table 3.1.
This results in the high-level architecture on AWS and Azure as shown in Figure
3.3a and 3.3b respectively.

AWS Azure
API Gateway AWS API Gateway Azure API Management
Function AWS Lambda Azure Function
Object Storage AWS S3 Azure Blob Storage

Table 3.1: Thumbnail Generator service mapping between AWS and Azure

Using comparable components alone can not guarantee the fairness of comparison
due to vendor-specific features and behaviors for cloud services. The following ma-
jor aspects are identified during the benchmark design and need to be addressed
properly with comparable configuration in order to improve fairness.

• Function invocation method for cloud storage: cloud providers such as AWS
and Azure generally implement function invocation in two ways: polling-based
and event-driven. The invocation method can be different depending on which
cloud services are integrated with function. For example, AWS Lambda uses
an event-driven method with S32 and API Gateway3 but polling with Dy-
namoDB4 and Simple Queue Service (SQS)5 [6]. The mechanism used by

2https://aws.amazon.com/s3/
3https://aws.amazon.com/api-gateway/
4https://aws.amazon.com/dynamodb/
5https://aws.amazon.com/sqs/
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(a) AWS

(b) Azure

Figure 3.3: Detailed design for serverless thumbnail generation application on
AWS and Azure

serverless functions on different cloud platforms can also be different for the
same type of cloud service. For example, contrary to AWS Lambda with S3,
the Azure Blob storage trigger used by the Azure function by default uses a
"pulling" mechanism to periodically scan the storage containers and their logs
for capturing events. This method not only can not guarantee all events can
be captured because logs may be missed and blobs are scanned in a group
of 10000 at a time but also can cause up to a 10-minute delay if the function
application is on the Consumption plan and the function has gone idle [32]. To
a have fair triggering mechanism for the second function (CreateThumbnail)
triggered by cloud storage, the Azure function needs to leverage the Event-
Grid trigger, which essentially uses EventGrid6 service to send HTTP requests
to notify the target about events that happen in the publisher (in this case,
Azure Blob storage).

• Cold start enhancement feature: since the cold start is a well-known issue
for serverless function, cloud providers started to offer solutions to resolve
it during past years. AWS provides Provisioned Concurrency7 for Lambda,

6https://azure.microsoft.com/en-us/services/event-grid/
7https://docs.aws.amazon.com/lambda/latest/dg/provisioned-concurrency.html
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which keeps functions warm to respond, while Azure offers Premium plan8

that uses pre-warmed workers to run applications with no delay after being
idle. To have a fair comparison and keep the function’s serverless nature, both
the AWS and Azure applications in the benchmark should use their default
configuration without these enhanced features.

• Function Operating System (OS): For function hosting OS, AWS Lambda sup-
ports only Amazon Linux9 which is AWS’s own Linux distribution, while Azure
supports both Windows and Linux. For a fair comparison, it is logical to con-
sider using Linux for AWS Lambda and Azure Functions in the benchmark.
However, this thesis argues that Amazon Linux 2 for AWS and Windows for
Azure are more comparable due to their similar maturity on both platforms.
Azure Functions were introduced first with support only for Windows [31] and
Windows is the default OS for Azure Functions until today. Linux support
was previewed one year later [36] with less optimization compared to Win-
dows. One issue reported earlier regarding configured user limits on Linux
[33] still occurs during the initial benchmark testing of this thesis using Linux
for Windows Azure. Furthermore, many related works such as [27, 28, 21] also
use default Windows for Azure in their benchmark.

• Memory Size: one of the major performance parameters for a serverless func-
tion is memory size which determines the amount of CPU power is allocated to
the function instance. For Azure, the maximum memory size allocated to each
instance is 1.5 GB and is not configurable for the default Consumption plan.
In contrast, AWS allows granular control on memory size between 128 MB to
10248 MB. To avoid CPU throttling applied by the provider and have a simi-
larly full vCPU core setup as Azure, AWS lambda functions in the benchmark
are configured with 1769 MB [4, 46].

• Programming language and runtime: runtime and programming language also
have a notable impact on fairness. The same runtime and programming lan-
guage should be used for both AWS and Azure implementation to have a fair
comparison. In this thesis, .NET Core 3.1 and C# are chosen due to mature
software development kit (SDK) support for instrumentation, good documen-
tation (especially in Azure), and large community on both platforms [3, 31].

• Code reusability: To minimize the impact and discrepancy caused by imple-
mentation code in the same programming language, the code should be reused
as much as possible. In this serverless application, the main code that can be
shared is the image resizing logic which is the primary business logic.

3.2.2 Instrumentation Design
Apart from the general requirements described in Section 2.4, the additional interest
for this thesis is the drill-down analysis of performance to gain insights into the
root cause of performance difference. Thus the benchmark should also support

8https://docs.microsoft.com/en-us/azure/azure-functions/functions-premium-
plan?tabs=portal

9https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/amazon-linux-ami-
basics.html
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Figure 3.4: Trace design for serverless thumbnail generator application

the detailed breakdown measurements of the end-to-end performance. This section
starts with the design for the end-to-end tracing to define the interesting timestamps
that can be used for drill-down analysis. Beyond the trace design, the detailed
instrumentation on AWS and Azure will also be presented to show how the challenge
of generating comparable traces on both platforms has been addressed.

3.2.2.1 Trace Design

Based on the architecture of the application presented in the Section 3.2.1, there are
13 interesting timestamps identified, as shown in Figure 3.4, for drill-down analysis.
The detailed description of these timestamps are presented as follows:

• t1: The time in which the HTTP request is made to the API. This is defined
as the starting time of the whole end-to-end tracing life cycle.

• t2: The time in which the Upload Function is invoked. From this point, the
life cycle of the Upload function starts.

• t3: The time in which the Upload Function custom logic starts to be executed.
This is also the time in which the first line of code of the function starts to be
executed, which matters most for the user of this function.

• t4: The time in which the Upload Function starts to interact with the storage
service for uploading the image.

• t5: The time in which WRITE operation starts for putting an image to storage.
• t6: The time in which the WRITE operation ends which means the image is

stored in the storage.
• t7: The time in which the CreateThumbnail function is invoked. From this
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point, the life cycle of the CreateThumbnail function starts.
• t8: The time in which the CreateThumbnail Function custom logic starts to

be executed. This is when the first line of code of this function’s business logic
starts to be executed, which matters most for the user of this function. At
the same time, the CreateThumbnail function also starts to interact with the
storage service for reading the image uploaded from the previous function.

• t9: The time in which the READ operation starts for reading the image from
the storage service

• t10: The time in which the READ operation ends
• t11: The time in which the CreateThumbnail Function starts to interact with

the storage service for uploading the image.
• t12: The time in which WRITE operation starts for putting the resized image

object to the storage.
• t13: The time in which the WRITE operation ends which means the resized

image is stored in the storage. This signals the end of the process from the
end user’s perspective despite the additional time needed to shut down the
function by the cloud provider.

With these timestamps, the whole life cycle of the application execution can be
broken down into the following detailed, measurable segments:

• HTTP Triggering Duration (t1t2): The duration between t1 and t12 shows the
time used for the HTTP API endpoint to trigger the Upload function.

• Upload Function Startup Overhead (t2t3): The duration between t2 and t3
shows the actual time used for the Upload function to be started, including
potential function cold start.

• Upload Function Event Parsing Overhead (t3t4): The duration between t3
and t4 refers to overhead for reading and parsing HTTP trigger events for
extracting useful information.

• Upload Function Storage Connection Overhead (t4t5): The duration between
t4 and t5 refers to overhead for connecting storage services.

• Upload Function WRITE Operation Duration (t5t6): The duration between
t5 and t6 refers to the time used for the actual image WRITE operation to
storage.

• Storage Triggering Duration (t6t7): The duration between t6 and t7 shows the
time used for storage service to trigger the CreateThumbnail function.

• CreateThumbnail Function Startup Overhead (t7t8): The duration between t7
and t8 shows the overhead for CreateThumbnail function to be started by
function service, including potential function cold start.

• CreateThumbnail Function Storage Connection Overhead (t8t9): The duration
between t8 and t9 refers to overhead for connecting storage services for reading
the image from the storage service.

• CreateThumbnail Function READ Operation Duration (t9t10): The duration
between t9 and t10 refers to the time used for the actual image READ operation
to storage.

• Image Resizing Duration (t10t11): The duration between t10 and t11 refers to
the time used for resizing image computation.
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• CreateThumbnail Function Storage Connection Overhead (t11t12): The dura-
tion between t11 and t12 refers to overhead for connecting storage services for
writing resized images to storage service.

• CreateThumbnail Function WRITE Operation Duration (t12t13): The duration
between t12 and t13 refers to the time used for the actual resized image WRITE
operation to storage.

• Total Duration (t1t13): The duration between t1 and t13 shows the end-to-end
duration of trace.

3.2.2.2 Instrumentation for AWS

Basic tracing data is generated out-of-box once X-Ray is enabled on components
such as API Gateway and Lambda. These basic tracing data from X-Ray covers 9
of the 13 timestamps (t1, t2, t5, t6, t7, t9, t10, t12, t13) defined in Section 3.2.2.1.
What is more, AWS X-Ray provides out-of-box correlation for all the traces gen-
erated in this application, especially between the two functions. This significantly
eases the instrumentation of the AWS benchmark. To get the rest of the timestamps,
AWS X-Ray .Net SDK10 is used for instrumentation in Lambda function code.

3.2.2.3 Instrumentation for Azure

Azure Application Insights also has built-in integration with primary services used
in the Azure application, such as API Management and Azure Function. The de-
fault tracing data generated by Application Insights also covers the same 9 of the 13
timestamps (t1, t2, t5, t6, t7, t9, t10, t12, t13) as AWS X-Ray. The rest of the times-
tamps can be captured by instrumenting the Azure function code with Application
Insights C# SDK11.

However, Azure Application Insights do not provide an out-of-box correlation be-
tween the two functions in the Azure application. This can be addressed by lever-
aging metadata of the Blob storage object to store the trace ID. When the image
is read in the following CreateThumbnail function, the trace ID from metadata can
be read and add it to all traces associated with the CreateThumbnail function as
a custom property. In consequence, this solution adds a small overhead to the to-
tal duration of the Azure application. However, considering such correlation may
be implemented by AWS under the hood, this thesis argues that the overhead is
necessary for Azure to achieve comparable instrumentation with AWS.

3.2.2.4 Cold Start Detection

Cold start only occurs during the first execution of a cloud function because the
container must be started before the execution while the subsequent executions reuse
the warm container for better performance [29]. Depending on cloud providers, the
container can be kept warm for a different duration. For example, AWS Lambda

10https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-dotnet.html
11https://github.com/microsoft/ApplicationInsights-dotnet
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can be terminated after being idle for 5 to 7 minutes while Azure Functions can be
kept warm for 20 to 30 minutes [43]. To compare the performance in the situation
when serverless functions are warm (a.k.a no cold start), the instrumentation should
indicate whether there are cold starts for each function. This is straightforward in
AWS since the default invocation segment12 provides an indication of cold start
out-of-box. Azure, however, doesn’t provide such data by default, and additional
configuration is needed to provide such instrumentation. The solution used in this
thesis is to leverage Azure’s scale controller logs13 which can be enabled on function
applications. This generates additional traces about the initialization process of the
Azure function application host in which the two Azure functions are deployed and
thus can be used for determining the cold start.

3.2.3 Workload Design
Since serverless applications do not start themselves, workload needs to be gener-
ated to invoke the benchmark application for analyzing its performance. To fairly
compare the performance of the benchmark applications across cloud platforms, the
workload generated in the benchmarking experiments should share the same work-
load model and size of data as input and be realistic. According to the characteriza-
tion of production FaaS workload based on data collected across Microsoft Azure’s
entire infrastructure between July 15th and July 28th in 2019 [42], most of the
serverless applications are invoked very infrequently (81% of them invoked at most
once per minute on average) while less than 20% of the applications are responsible
for 99.6% of all invocations (invoked on average at least once per minute). This can
be due to the fact that serverless is more economically efficient for applications with
a low invocation rate and bursty demand [39]. To simulate such two typical types
of invocation patterns, this thesis creates a constant workload model as a baseline
to evaluate the performance of serverless benchmark applications under infrequent
invocation scenarios and a bursty workload model for heavy load scenarios. This
section presents the detailed design for these two workload models.

3.2.3.1 Constant Workload

Constant workload contains only one phase using a constant load with low RPS (Re-
quests per second). This thesis chooses to limit the total duration of the workload to
a maximum 1 hour, which means the average request frequency is much higher than
the infrequent workload scenario indicated by Microsoft serverless characterization
data (at most once per minute on average). This simplification is motivated by 1)
time constraint. Since using one invocation per minute, for instance, would take a
long time for executing large numbers of invocations for data analysis. It also in-
creases the time for repeating the experiments. 2) AWS Lambda can be kept warm
for 5 to 7 minutes while Azure Functions can be kept warm for 20 to 30 minutes
[43]. Invocations within a warm period do not change the main behavior of the
serverless function. 3) this thesis primarily focuses on warm invocation scenarios

12https://docs.aws.amazon.com/lambda/latest/dg/services-xray.html
13https://docs.microsoft.com/en-us/azure/azure-functions/configure-monitoring?

tabs=v2#configure-scale-controller-logs
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Figure 3.5: Bursty workload model visualization

which accounts for most of the invocations for serverless applications. Significantly
infrequent scenarios such as once per 10 minutes for AWS (meaning cold start every
time) are not the focus for this thesis.

Due to cost constraints, this thesis also chooses to limit the target number of total
invocations to 300 (the actual number of invocations may not be the same as this
number with the minor difference due to the limitation of load generation tool K6).

Therefore, three constant workloads are defined as follows:
• Constant1 : Constant load with 1 request per 10 seconds running for 50 minutes
• Constant2 : Constant load with 1 request per 3 seconds running for 15 minutes
• Constant3 : Constant load with 1 request per second running for 5 minutes

3.2.3.2 Bursty Workload

Bursty workload design uses sequential phases with constant load to construct a
bursty load pattern. It is composed of non-bursty phase (NBP), bursty phase (BP)
and cooldown phase (CDP). The workload starts with non-bursty phases, alternates
non-bursty and bursty phases, and ends with the cooldown phase following the last
bursty phase. The non-bursty phase runs for 10 seconds with RPS 1, while the
bursty phase runs for 5 seconds with a bursty size variable as its RPS value. For the
cooldown phase, the RPS value is always 1, but the duration depends on how many
invocations are still needed to meet the target number of total invocations. Figure
3.5 visualizes the bursty model with the three types of phases. With the same target
number of total invocations as the constant workload model, three bursty workloads
with different bursty size are defined as follow:

• Bursty1 : burst size is 12 and the cooldown duration is 20 seconds.
• Bursty2 : burst size is 25 and the cooldown duration is 30 seconds
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• Bursty3 : burst size is 50 and the cooldown duration is 40 seconds.

Table 3.2 summarizes all three bursty workloads Bursty1-Bursty3 with detailed in-
vocation pattern for each phase.

P1 P2 P3 P4 P5 P6 P7 P8 P9 Total
Bursty1 1x10 12x5 1x10 12x5 1x10 12x5 1x10 12x5 1x20 300
Bursty2 1x10 25x5 1x10 25x5 1x10 1x30 - - - 300
Bursty3 1x10 50x5 1x40 - - - - - - 300

Table 3.2: Sequential phases (P1-Pn) of three bursty workload models. Each phase
contains invocation pattern expressed in the form of RPS x Duration

and the target total number of invocation is 300

3.2.4 SB Integration
The integration with SB requires several main customizations based on the applica-
tion and instrumentation design.

• Deployment: since both of AWS and Azure benchmark applications in this
thesis are implemented using the open-source Infrastructure as Code tool Ter-
raform14 and Microsoft .Net Core (C#), Deployment (sb prepare) step (de-
scribed in Figure 2.4 ) requires implementation such as building the function
code assets using dotnet publish and running Terraform commands to deploy
the application.

• Traces Downloading: for downloading tracing data via sb get_traces from
Azure, this thesis leverages Azure’s Log Analytics feature for Application In-
sights To efficiently fetch all relevant telemetry data associated with an end-
to-end trace. It provides a friendly UI to write and execute custom queries
for experimenting and tweaking the query to get the minimum needed data.
After the query is finalized, it can then be used as input for calling Applica-
tion Insights REST API in the trace downloading implementation to query
the data. The JSON result of the Rest API is a list of telemetry data records
that can be easily converted into Python Pandas15 dataframe for further pro-
cessing. Compared to AWS X-Ray trace downloading, this provides flexibility
to optimize data size.

• Traces Processing: implements custom logic to pre-processes the tracing data
and generate the final trace breakdown data (t1 to t13, defined in Section 3.4).
To facilitate the study of the trace in the warm function invocation case, two
additional measurements are added into the final trace breakdown: f1_cold_start
and f2_cold_start, which respectively indicate if Upload function (function 1)
and CreateThumbnail function (function2) have cold starts nor not. The value
of the two columns is either 0 or 1 (1 means cold start while 0 means no cold
start).

14https://www.terraform.io/
15https://pandas.pydata.org/
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3.3 Benchmark Execution
All benchmark experiments are executed from a local computer. This simulates
real users’ interaction with benchmark applications and has a limited impact on the
benchmarking results since the tracing is performed from the server-side starting
from API being triggered. However, to minimize the network transmission discrep-
ancy caused by cloud provider location, both AWS and Azure are deployed to the
closest region possible for a fair comparison. This thesis deploys the AWS applica-
tion in us-east-1 region and Azure application in eastus region.

This thesis also leverages the SB SDK to create Python scripts to automate the
experiment execution based on SB workflow. Listing 3.1 shows the experiment
plan script using Constant3 workload. It starts to specify the location of the SB
benchmark configuration files (thumbnail_benchmark.py) for both AWS and Azure
apps so SB knows how the application should be deployed and invoked. Then the
workload model is specified using K6 options16. Lastly, the function run_test defines
detailed steps for executing the SB workflow described in Section 2.5.

1

2 " " " Constant workload
3 Runs an experiment f o r the thumbnail_generator app with constant

workload that keeps 1 i n t e r a c t i o n per second f o r 5 minutes
4 " " "
5

6 import l ogg ing
7 from path l i b import Path
8 from sb . sb import Sb
9

10 apps_dir = Path ( ' . ' )
11 apps = [
12 'AWS/thumbnail_benchmark . py ' ,
13 ' Azure/thumbnail_benchmark . py '
14 ]
15 app_paths = [ ( apps_dir / a ) . r e s o l v e ( ) f o r a in apps ]
16

17 sb_c l i s = [ Sb(p , l o g_ l ev e l= 'DEBUG ' , debug=True ) f o r p in app_paths ]
18

19 opt ions = {
20 " s c e n a r i o s " : {
21 " constant " : {
22 " executor " : " constant−a r r i v a l −r a t e " ,
23 " r a t e " : 1 ,
24 " timeUnit " : " 1 s " ,
25 " durat ion " : " 5m" ,
26 " preAllocatedVUs " : 20 ,
27 "maxVUs" : 50
28 }
29 }
30 }
31

32

16https://k6.io/docs/using-k6/options/
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33 de f run_test ( sb ) :
34

35 t ry :
36 sb . prepare ( )
37 sb . c o n f i g . s e t ( ' l a b e l ' , ' experiment_non_bursty_3 . py ' )
38 sb . invoke ( ' custom ' , workload_options=opt ions )
39 sb . wait (5 ∗ 60)
40 sb . get_traces ( )
41 sb . ana lyze_traces ( )
42 except :
43 l o gg ing . e r r o r ( ' Error during execut ion o f benchmark . Cleaning up

. . . ' )
44 f i n a l l y :
45 sb . c leanup ( )
46

47 f o r sb in sb_c l i s :
48 run_test ( sb )

Listing 3.1: An experiment plan in Python shows the automation of SB execution
workflow

3.4 Data Analysis
To visualize the data in different ways for analysis, additional Python scripts are
created for generating the plots such as CDF (Cumulative distribution function)17

plot and Violin plot18. In CDF, the y axis shows the cumulative probability or
percentile of the data distribution, and the main advantage of the CDF is giving
readers a direct understanding of the information such as minimum, maximum,
median, and percentiles. Violin plot is another method of plotting the numeric
data, combining box plot and kernel density plot. The main advantage of the Violin
plot is that it shows the entire distribution of the data apart from the median,
interquartile range, minimum, maximum. The width of the Violin plot shows how
frequently that value occurs in the data set. This thesis uses CDF to visualize the
total duration of benchmark application invocation and shows breakdown segments
of the total duration (described in the Section 3.2.2.1) with a Violin plot. To easily
compare plots for different workloads, the X and Y axis for the CDF and Violin
plots are adjusted to use the same scale based on the actual results.

17https://en.wikipedia.org/wiki/Cumulative_distribution_function
18https://en.wikipedia.org/wiki/Violin_plot
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4
Results and Discussion

The benchmarking experiments results are grouped based on the two workload mod-
els (Constant and bursty workload) described in Section 3.2.3. Results for each
workload model are divided into two groups: all invocations and warm invocations.
The former includes all invocations and studies the overall performance results.
The latter includes only warm invocations to focus on the application performance
in the warm invocation scenario which represents the majority of invocations. The
observation results are based on drill-down analysis of the CDF plot and statistics
summary of total duration as well as the Volin plot of all segments making up the
total duration described in Section 3.2.2.1 (except for t3t4 due to its minor impact
on performance and irrelevance to serverless). The results and findings are presented
at the end of each workload result.

4.1 Constant Workload
This section presents the results of the experiment for all three constant workloads
Constant1-Constant3 described in Section 3.2.3.1.

4.1.1 All Invocations
Figure 4.1 presents the CDF of total duration for all invocations based on three con-
stant workloads while detailed statistics summary for total duration in milliseconds
(ms) are shown in Table 4.1, 4.2, 4.3.

• All results indicate that end-to-end total duration is generally shorter in Azure
than AWS except for some outliers.

• With increasing RPS, AWS shows lower variability for 99th percentile and big-
ger improvement for the maximum duration while Azure shows both bigger
variability in 99th percentile and bigger increase for maximum duration.

To help understand what specifically contributes to these distinct performance dif-
ference and variability, Figure 4.2 presents the Violin plot of the main segments
making up the total duration for all invocations. As clearly shown in all Violin
plots:

• AWS yields significantly longer latency when triggering the second function
via storage (S3) events (t6t7) while Azure, in contrast, shows a much lower
median and standard deviation despite some outlier in Constant2.

• With increasing RPS, AWS keeps relatively stable for most segments and even
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(a) Constant1 workload

(b) Constant2 workload (c) Constant3 workload

Figure 4.1: CDF plot of total duration based on three constant workloads with
all invocations

bigger improvement on maximum for t6t7 while Azure shows significant vari-
ability for t2t3 (startup overhead of the first function) and increase in maximum
for t1t2, t2t3 and t7t8

4.1.2 Warm Invocations
Figure 4.3 presents the CDF of total duration for all warm invocations based on
three constant workloads. Compared to all invocations results, the observation is
similar except that AWS and Azure show decreased high-percentile latency (99th
percentile and maximum) or tail latency. As data shown in Table 4.1, 4.2, 4.3, AWS
has significantly lower 99th percentile and maximum values for Constant2 and Con-
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All Invocations Warm Invocations

AWS Azure Difference AWS Azure Difference
Median 1581 1230 351 1580 1228 352
95th percentile 2204 1419 785 2191 1413 778
99th percentile 2504 1668 836 2477 1639 838
Maximum 5451 2591 2860 5451 2090 3361

Table 4.1: Statistics summary of total duration in milliseconds for Constant1
workload

All Invocations Warm Invocations

AWS Azure Difference AWS Azure Difference
Median 1556 661 895 1554 660 894
95th percentile 2188 1205 983 2166 1205 961
99th percentile 2487 1321 1166 2330 1315 1015
Maximum 4760 2858 1902 2492 2858 -366

Table 4.2: Statistics summary of total duration in milliseconds for Constant2
workload

All Invocations Warm Invocations

AWS Azure Difference AWS Azure Difference
Median 1422 639 783 1417 638 779
95th percentile 2058 1220 838 2007 1012 995
99th percentile 2476 1632 844 2291 1304 987
Maximum 4278 5115 -837 2464 1329 1135

Table 4.3: Statistics summary of total duration in milliseconds for Constant3
workload

stant3 while maximum for Constant3 in Azure decreases from 5115 ms to 1329 ms.

For detailed breakdown, the violin plots in Figure 4.4 show that outliers for most of
the segments decrease compared to all invocations results. Compared to all invoca-
tions results, the observation is similar except that t2t3 becomes the clear driver for
the variability for Azure when increasing RPS.

4.1.3 Discussion
As results analysis shown in previous two sections 4.1.1 and 4.1.2, Azure outperforms
AWS in overall performance regardless of considering all invocations or only warm
invocations. This observation is surprising, and in contrast to many prior findings
in relevant research such as [28, 46, 9] whose results show that AWS, as a pioneer
in FaaS, is better performing cloud provider in serverless than Azure in constant
workload.
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(a) Constant1 workload (b) Constant2 workload

(c) Constant3 workload (d) Trace design reference

Figure 4.2: Violin plot of total duration breakdown based on three constant work-
loads with all invocations

Another observation is that the storage triggering overhead (t6t7) is the most sig-
nificant contributor to the overall performance (total duration) for benchmark appli-
cations on both platforms as well as the difference between them. This contrasts the
fact that traditional performance characteristics such as CPU/memory and network
are primarily studied in academic literature while platform overhead, mainly cold
starts, gains most attention in grey literature and industry [41]. This result shows
that storage triggering overhead can substantially impact the overall performance
if used in a serverless application, which explains why prior findings have different
insights due to the lack of storage triggering in their benchmarks.

Furthermore, Azure shows higher variability than AWS in the face of increasing
RPS. The variability of Azure performance is mainly caused by function startup
overhead (t2t3).
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(a) Constant1 workload

(b) Constant2 workload (c) Constant3 workload

Figure 4.3: CDF plot of total duration based on three constant workloads with
only warm invocations

4.2 Bursty Workload
This section presents the results of the experiment for all three bursty workloads
BWL1-BWL3 described in Section 3.2.3.2.

4.2.1 All Invocations
Figure 4.5 presents the CDF of total duration for the three bursty workloads while
detailed statistics summary for total duration in milliseconds (ms) are shown in Ta-
ble 4.4, 4.5, 4.6. Similar as the constant workload scenario, Azure still outperforms
AWS for overall performance in general except for some extreme outliers in BWL2
and BWL3. However, both AWS and Azure show significant performance degrada-
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(a) Constant1 workload (b) Constant2 workload

(c) Constant3 workload (d) Trace design reference

Figure 4.4: Violin plot of total duration breakdown based on three constant
workloads with only warm invocations

tion, which is different from the constant workload case. Take 99th percentile for
example, the highest values in constant workload is 2504 ms (NBWWL1 for AWS),
which is even lower than the lowest value in bursty workloads (2873 ms). This is
the same when RPS increases and both platforms show significant increase in total
duration. However, Azure increases much faster in 99th and maximum for total
duration, which causes Azure to lose advantage over AWS in BWL2 and BWL3.
Take 99th percentile for example, AWS increases from 3220 ms to 4128 ms while
Azure increases from 2873 ms to 4191 ms. The difference between them decreases
from 862 ms to -63 which means AWS starts to outperform Azure.

For the detailed breakdown of total duration, Figure 4.6 presents the Volin plot for
the three bursty workloads with all invocations. Similar to the constant workload,
storage triggering overhead t6t7 is still the biggest contributor to total duration and
the difference between AWS and Azure. However, function startup overhead (t2t3
and t7t8) shows an increased impact on the overall performance. Azure performance
for t2t3 drops sharply in bursty workload, and the same applies to AWS in t7t8. With
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(a) BWL1 workload

(b) BWL2 workload (c) BWL3 workload

Figure 4.5: CDF plot of total duration based on three bursty workloads with all
invocations

increasing RPS, storage operations (t8t9, t9t10, t12t13) and resizing computation
(t10t11) for AWS and Azure also increase with higher median and tail latency.

4.2.2 Warm Invocations
Considering only warm invocations, both AWS and Azure, as shown in Figure 4.7,
decrease significantly in total duration compared to all invocations cases, which is
the same as the constant workload scenario. However, with increasing RPS, the
difference between AWS and Azure decreases accordingly. Take 99th percentile for
example, the difference decreases from 834 to -90 which means AWS starts to out-
perform Azure.
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All Invocations Warm Invocations

AWS Azure Difference AWS Azure Difference
Median 1518 723 795 1487 700 787
95th percentile 2768 1360 1408 2108 1305 803
99th percentile 3220 2873 347 2266 1432 834
Maximum 4299 3437 862 2979 1582 1397

Table 4.4: Statistics summary of total duration in milliseconds for BWL1 work-
load

All Invocations Warm Invocations

AWS Azure Difference AWS Azure Difference
Median 1556 761 795 1470 739 731
95th percentile 3214 1429 1785 2261 1356 805
99th percentile 4393 3986 407 2654 2185 469
Maximum 4773 6396 -1623 3112 4019 -907

Table 4.5: Statistics summary of total duration in milliseconds for BWL2 work-
load

All Invocations Warm Invocations

AWS Azure Difference AWS Azure Difference
Median 2143 1337 806 1678 1326 352
95th percentile 3803 2480 1323 2388 2342 46
99th percentile 4128 4191 -63 2566 2656 -90
Maximum 4998 10179 -5181 2793 3122 -329

Table 4.6: Statistics summary of total duration in milliseconds for BWL3 work-
load

For detailed breakdown segments of total duration shown in Figure 4.8 with Volin
plot, Azure performance for t2t3, t8t9, t9t10, and t12t13 decreases with increasing
RPS while AWS keeps stable performance for most of the segments.

4.2.3 Discussion
As the analysis of the results shown in the previous two sections 4.2.1 and 4.2.2,
Azure still outperforms AWS in general for overall performance regardless of con-
sidering all invocations or only warm invocations. The storage triggering overhead
(t6t7) is still the biggest contributor to the overall performance (total duration) for
benchmark applications on both platforms and the difference between them.

However, AWS and Azure show degraded performance in bursty workload compared
to constant workload. This also applies when RPS increases. However, Azure perfor-
mance decreases significantly faster than AWS, which causes the difference between
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(a) Bursty1 workload (b) Bursty2 workload

(c) Bursty3 workload (d) Trace design reference

Figure 4.6: Violin plot of total duration breakdown based on three bursty work-
loads with all invocations

them to decrease, and AWS even outperforms Azure for tail latency in higher RPS
(Bursty2 and Bursty3). This observation aligns with the finding from STeLLAR
[46], which indicates Azure displays higher sensitivity to the burst size than AWS.
Kuhlenkamp et al.[25] in their elasticity benchmarking of FaaS also find out that
AWS can maintain stable performance in high bursty workload while Azure can not.

4.3 Threats to Validity
This section discusses the threats to construct, internal, and external validity that
need to be considered in the context of this study.

4.3.1 Construct Validity
Construct validity refers to the extent to which the methodology and measurements
adopted are relevant to the research questions. In the context of this thesis, main
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(a) BWL1 workload

(b) Bursty2 workload (c) Bursty3 workload

Figure 4.7: CDF plot of total duration based on three bursty workloads with
only warm invocations

construct validity is about whether serverless application performance can be fairly
compared.

In the benchmark design at Section 3.2, the major configurations that impact the
performance are studied and addressed with clear solutions and motivation for im-
proving the fairness. For example, the choice of runtime may affect the fairness
of the comparison due to provider-specific features and support maturity for the
runtime. In this thesis, .NET Core 3.1 with C# may give Azure an advantage in re-
duced code start for the second function invocation because of its default in-process
mechanism. However, the result from experiments shows that its impact on the
overall performance and comparison is limited since cold start latency accounts for
a small part of end-to-end duration in the case of storage triggers being used.
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(a) Bursty1 workload (b) Bursty2 workload

(c) Bursty3 workload (d) Trace design reference

Figure 4.8: Violin plot of total duration breakdown based on three bursty work-
loads with only warm invocations

4.3.2 Internal Validity
Internal validity refers to the extent to which the cause-and-effect relation is trust-
worthy and can not be explained by other factors or variables. This threat is gen-
erally the primary concern in Cloud benchmarking or performance testing and es-
pecially challenging for serverless benchmarking since underlying infrastructure is
abstracted away and can almost be treated as a black box for end users [26].

The primary threat to validity is the unknown factors that may impact the perfor-
mance. In this thesis, primary academic literature related to serverless benchmark
is reviewed together with grey literature such as blogs and documentation to un-
derstand as many known factors/parameters as possible and address them for AWS
and Azure. However, minimizing such threat to validity needs community effort to
address it continuously with collective findings [44].

Another threat to internal validity is that cloud providers change their services
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and infrastructure over time. That results in the insights we gained about the
cause of performance difference between AWS and Azure may change over a certain
period. This requires that the benchmark execution in the thesis must be executed
at the same time against the cloud providers. To mitigate this, these experiments
are performed repetitively during the study to update the datasets and review the
analysis. The benchmark should be maintained and updated constantly with follow-
up experiments and data analysis in future work.

4.3.3 External Validity
External validity refers to the extent to which the results from the study can be gen-
eralized, and the conclusion can hold throughout the study domain [48]. The two
major threats to external validity in the context of this study are how the insights
generated from comparing serverless application performance in AWS and Azure
can be applied to other Cloud platforms and serverless applications.

This study is limited to AWS and Azure due to the time limit. However, the two
cloud providers are the two biggest in the market for general cloud computing. In
terms of serverless adoption, they represent even 90% of serverless applications in an
extensive study on the status of serverless [10]. However, the results and conclusion
need to be validated for other cloud providers, which is feasible with manageable
effort using the methodology presented in this thesis.

Another limitation is that this thesis uses a single serverless application as the bench-
mark. This limits the coverage of serverless components and architecture patterns
and thus generates a limited amount of insights. Additional benchmarks, includ-
ing other triggering mechanisms (e.g., queue trigger), storage type (e.g., serverless
database), serverless orchestration, are needed to be studied since their interaction
with other services may also impact the overall performance as well as the difference
between cloud providers.

In general, using a broad range of diverse serverless applications to perform bench-
marking across more cloud providers can significantly improve the generalizability
of the insights developed from the benchmarking.
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Related Work

This chapter presents the related work in serverless benchmarking mainly from the
academic community. These works present well-structured benchmarking design
and refined insights for serverless computing which provide references and domain
knowledge for this thesis. The first section reviews the earlier works in general
serverless benchmarking focusing on microbenchmarking while the second section
focuses on the main works in application-centric benchmark published in recent
years, which are most related to this thesis. The difference and contribution made
by this thesis are also discussed together with each group of related studies.

5.1 Serverless Benchmarking
Prior serverless benchmarking works both in academic and grey literature mainly
evaluate the performance of Function as a Service (FaaS) (i.e., AWS Lambda, Azure
function, Google Cloud Functions) which is the major computing component of a
serverless application. According to the comprehensive literature review performed
by Scheuner and Leitner [41], most studies use FaaS micro-benchmarks composed
by single-function meanwhile, CPU performance and platform overhead (i.e., cold
start) are the most studied characteristics. Wang et al. [47] conducted one of the first
comprehensive serverless measurement studies on the three leading cloud providers
(AWS, Azure, and Google) by integrating all necessary instrumentation into a single
function called measurement function to collect metrics such as invocation time and
runtime information. Their results show that AWS Lambda has the lowest cold
start latency (the time to provision a new function instance). A recent serverless
benchmarking study, FaaSdom [28], evaluates metrics such as call latency (round-
trip), cold start, and throughput of FaaS platforms from AWS, Azure, Google, and
IBM. It reveals that AWS Lambda is the best-performing cloud provider with the
lowest call latency, average cold start latency, and most stable response.

Real-world serverless applications can consist of multiple functions integrating with
other types of serverless components (storage, queue, API, event bus, messaging
service, workflow orchestrator, etc.). To provide relevant reference and guidance to
serverless practitioners, this thesis uses a realistic real-world serverless application
as a benchmark to study the overall application performance and the detailed break-
down segments making up it. The results of this thesis reveal that AWS can perform
significantly worse than Azure with other components involved in the application
despite the performance advantage from individual AWS Lambda functions.
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5.2 Serverless Application Benchmarking
Existing application-oriented benchmarking works propose comprehensive bench-
marking frameworks along with various applications as benchmarks to measure dif-
ferent aspects of application performance. They also present experiments results
with these benchmarks to demonstrate the frameworks.

PanOpticon [45] looks into the performance impact from function chaining and the
choice of triggers. To demonstrate the support of various chaining mechanisms in
AWS and Google Cloud, applications with chain length 2 are deployed to AWS and
Google, respectively, to measure the latency of each chain mechanism. However, the
results only compare a different triggering mechanism within the cloud provider.
To demonstrate the effectiveness of comparing platforms, a sample serverless chat
server application, covering HTTP trigger, database access, pub/sub messaging, and
storage trigger, is used for benchmarking against AWS and Google Cloud. Neverthe-
less, it only compares execution time and memory usage at the individual function
level for the application with average latency. In contrast, this thesis compares the
end-to-end execution time with detailed breakdown segments, and the results are
based on an analysis of total distribution.

ServerlessBench [49] identifies a set of critical metrics in serverless computing, such
as communication latency, startup latency, and stateless execution. It evaluates
AWS Lambda, two open-source serverless platforms (Open Whisk and Fn), and
one private cloud (Ant Financial) against these metrics using micro-benchmark and
application benchmark. However, ServelessBench focuses on mainly analyzing the
underlying implication of serverless computing while this thesis focuses more on per-
formance differences between cloud platforms.

STeLLAR [46] supports detailed measurements for per-component performance,
such as data communication delays for chained functions. It reveals that stor-
age accesses (retrieval of function images during the function instance startup and
inter-function data communication that happens via a storage service) and bursty
workload are among the two largest contributors to tail latency. Although aligned
with the impact of storage access and bursty workload, this thesis also finds that the
storage triggering has an even more significant impact on both the overall applica-
tion performance and the difference across cloud platforms. In addition, STeLLAR
analyzes data transfer delays against only AWS and Google due to the missing sup-
port for Go runtime at the time of its writing. In contrast, this thesis focuses on
AWS and Azure, which are the two largest cloud providers, and the finding related
to storage thus represents broader serverless usage.

BeFaaS [21] provides a built-in e-commerce application benchmark and supports
drill-down analysis with fine-grinded measurements. The evaluation of the BeFaaS
framework using the e-commerce benchmark investigates computing, networking
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transmission, and database query latency (involving two functions and database
operations). The results show that network transmission is the most time-consuming
factor. However, other common characteristics such as triggering and cold starts
are not evaluated.Furthermore, BeFaaS is the only study that mentions fairness as
a benchmark framework requirement. Still, it does not discuss how the fairness
of performance comparison is addressed in its benchmark. In contrast, this thesis
addresses fairness throughout the benchmark design. The benchmark used in this
thesis provides detailed traces about the two most common triggers (HTTP and
Storage), cold starts overhead, storage access as well as computing.
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6
Conclusion

This thesis designed and implemented an application benchmark targeting AWS
and Azure with a continuous focus on fairness (to answer RQ1). The benchmark
has been integrated with the state-of-art serverless benchmarking tool, Serverless
Benchmarker (SB), for standardizing and automating the benchmarking tests. The
resulting benchmark has been operated with two representative workload patterns
(constant and bursty) and generated detailed measurements making up the end-to-
end duration of the benchmark application invocations. The drill-down analysis has
been performed to develop insights for answering RQ2 and RQ3.

RQ1: How to design a real-world serverless benchmark application that
is fair to compare performance across heterogeneous cloud platforms?

Fairness is a highly subjective matter which can always lead to divergent opin-
ions. The challenge is also compounded with the provider-specific implementation
on Cloud platforms. Therefore, building a good benchmark with a trustful fairness
level is not a one-time activity. As described in Section 3.1, this thesis stresses
that building a "fair" benchmark is a continuous process and journey and proposes a
methodology with an Agile approach to address this challenge continuously. Further-
more, the motivation of different design choices and configurations in the benchmark
must be transparent and informative to create trust with the community.

More specifically, this thesis breaks down the fairness challenge into following the
three sub-questions and manages to address them with clear solutions.

RQ1.1 How can the architecture and configuration of serverless applications be mapped
closely across cloud providers?

Benchmark application architecture should adopt comparable serverless components
and configurations with caution about default settings. For example, by default,
the Azure blob storage trigger uses a "pulling" mechanism causing high latency and
should be replaced with an Event trigger to match AWS. Azure does not allow
granular configuration on function memory size and allocates up to 1.5 GB for each
instance if choosing a Consumption plan. To match this, AWS Lambda needs to be
configured with 1769 MB memory, equivalent to one full vCPU.

In addition, benchmark application architecture should also consider realistic usage
and maturity. For example, by default, Azure uses Windows as the underlying op-
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erating system to switch to Linux. Choosing Linux for the Azure function appears
fairer since AWS Lambda only uses Linux. However, Linux support for the Azure
function has less maturity and adoption than Windows, while AWS creates its own
optimized Linux distribution (Amazon Linux 2) for Lambda. Therefore, using Win-
dows for the Azure function is a more fair choice.

RQ1.2: How can the instrumentation be implemented to provide comparable infor-
mation across cloud providers?

Instrumentation design needs to identify interesting timestamps that can be col-
lected across cloud providers to serve the goal of benchmarking. This requires un-
derstanding distributed tracing tools provided by cloud providers to know what data
can be collected for each platform and what instrumentation can be performed. For
example, AWS provides the underlying function cold start time through the default
Initialization segment while this information is unavailable in Azure. To have a
comparable measurement for function startup overhead, this thesis uses the time
between function triggering time (out-of-box from distributed tracing tools from
both cloud providers) and the execution time of the first line code in function code
through instrumentation.

RQ1.3: How can the workload be designed and executed to minimize the divergence
of load test?

The workloads need to be realistic and represent real-world serverless usage. Based
on the finding of production usage statistics from one of the major cloud providers,
this thesis designs two workload models: constant and bursty. Each has three vari-
ations with different RPS patterns.

The workloads can be defined and specified using a load testing tool (e.g., K6, sup-
ported by Serverless Benchmarker used in this thesis) and shared across benchmark
applications. Such load testing tools generate reproducible load traffic that meets
the specification.

RQ2: How does Serverless application performance differ across different
Cloud providers?

Serverless applications generally perform better in Azure than AWS. However, AWS
is better at handling increasing load and bursty workload while Azure shows higher
variability in this case.

RQ3: Why does serverless application performance differ across Cloud
providers?

Storage triggering overhead accounts for the largest part of the end-to-end duration
for both AWS and Azure. It is also the biggest contributor to the performance differ-
ence between AWS and Azure since AWS has significantly longer latency than Azure.
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However, Azure shows variable performance for function startup overhead and stor-
age access in the face of RPS increasing and bursty workload while AWS keeps
relatively stable performance for this segment, which explains the variability of the
performance difference.

6.1 Future Work
The future work can focus on continuing mitigating the threats to validity described
in Section 4.3.

More improvements on fairness can be investigated for mitigating construct validity.
For example, due to the maturity of support on distributed tracing in Azure at the
time of writing, this thesis uses .Net Core 3.1 with C# as a runtime to write the
functions, and this gives Azure a slight advantage in reducing the number of cold
starts for the second function. This can be improved by using Python or NodeJS
in the future, which has comparable runtime behaviors on both platforms as well as
representing a larger audience in serverless communities [11].

For mitigating internal validity, the benchmark application and results should be
continuously updated over time in the future to keep up with provider changes.

For mitigating external validity, future work can first extend the support for more
major cloud providers such as Google Cloud and Alibaba Cloud1 in order to verify
if the insights can be generalized across a broad range of major cloud providers. To
address the single benchmark limitation of this study, more benchmark applications
covering both more use cases and architecture patterns can be created using the
methodology in the thesis to generate potential new insights.

1https://us.alibabacloud.com/en
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