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Abstract 

The most common technique to control active prostheses is via electromyography 

(EMG), where myoelectric signals from voluntary muscle contractions are recorded and 

interpreted as different movements. One longstanding challenge in EMG prosthetic 

control is crosstalk. Crosstalk in EMG can be explained as the part of an EMG signal 

recorded over a muscle, but that has been produced by another muscle. The appearance 

of crosstalk makes decoding of the intended prosthetic movement more difficult and the 

resulting control less reliable which in turn affects the performance of the prosthesis. This 

project investigates how principal component analysis (PCA) and independent 

component analysis (ICA) affect the EMG signals acquired from implanted electrodes of 

a participant with a trans-humeral amputation. Classification with a multilayer perceptron 

showed that the application of PCA over offline featured EMG signals could increase the 

accuracy for pattern recognition from 87.7% to 99.9%. Meanwhile, the application of ICA 

increased the accuracy from 87.7% to 93.6%. One modified offline method with PCA 

which also could be adapted for online usage was tested and resulted in an accuracy of 

93.9%. These results were corroborated on a dataset of a participant with trans-radial 

amputation where an offline PCA lead to an accuracy improvement from 74.9% to 94.9% 

and the PCA algorithm adapted for online use resulted in an achieved accuracy of 

83.6%. If this improved performance could be achieved online these findings could in the 

long term improve prosthetics control and yield better life quality for people suffering from 

limb loss. 
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1 Introduction 

Upper limb amputation affects daily living to great extent. The amputation itself 

implies loss of function, which forces the people with amputation to adapt their living 

and interactions with the environment to new circumstances. Easy tasks such as 

lifting a cup of coffee or performing a handshake are no longer trivial. 

 

Prosthetics can provide great help for those people suffering from limb loss, 

nevertheless, it is not rare that amputees to different grades abandon their devices 

[1]. Common reasons behind this can be related to the discomfort of the prosthesis 

[2], limited functionality [3], [4], or limitations of the prosthetic control [5], to mention a 

few examples. Looking closer into prosthetic control there exist several factors which 

challenge the performance, where the movement predictability of the device is one. 

 

Electromyography (EMG) is the most common technique to control active 

prostheses. The technique is based on the idea of recording myoelectrical signals, 

evoked by voluntary muscle contractions, and interpretation of these signals as 

different movements. One phenomenon which can occur during recording of EMG 

signals, and which aggravates the decoding into different movements is the 

appearance of crosstalk. Crosstalk observed in EMG can be described as the part of 

an EMG signal recorded over a muscle, but that has been produced by another 

muscle [6]. Unfortunately, there do not yet exist any ideal suggestions on how to 

identify, quantify or reduce muscular crosstalk [7]. In addition, most research is 

performed on surface EMG, leaving the whole field of implantable EMG electrodes 

(see Figure 1 for an example application of implantable electrodes within prosthetics) 

yet to be explored.  

 
Figure 1 An osseointegrated human-machine gateway [8], allowing for bidirectional communication between the 

human body and the prosthesis. To control the prosthesis, the user’s movement intent (blue signal) is transported 

via the nerves to the muscles, where the bio-signal generated by the muscles is measured. An algorithm decodes 

the measured bio-signal and moves the prosthesis accordingly. 



 

 

 

 

 

2 
 

Two interesting algorithms used for reduction of crosstalk are Principal Components 

Analysis (PCA) and Independent Component Analysis (ICA). Where PCA is an 

algorithm used to compress information [9], while ICA is an algorithm used to 

separate information [10]. The two algorithms can be used one by one, or in 

combinations with each other. If used together it is not rare to use PCA as a pre-

processing step before ICA, as it reduces the dimensionality of data [11]. 

1.1 Aim and motivation behind the project 

This project aims to investigate if crosstalk in signals obtained from implantable EMG 

electrodes can be reduced to improve prosthetic control performance. The 

performance of the two algorithms PCA and ICA applied on EMG signals recorded 

from two different research participants will be evaluated. 

 

The motivation behind the project is to contribute to the research within the 

prosthetics field. Reduction of crosstalk leads to improved volition decoding and this 

in turn results in better prosthetic control. In a bigger context, this could improve the 

life quality for people with upper limb loss, today and in the future. 
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2 Theory 

To understand how upper limb EMG prosthetics work, knowledge in the 

interdisciplinary field of the human body and electronics is beneficial. This section 

provides a background on EMG, anatomy, crosstalk, and signal processing, relevant 

for the field of prosthetics.  

2.1 Electromyography and electrodes 

The human body has three different types of muscle tissue: skeletal, cardiac, and 

smooth. The skeletal muscle tissue is the one used to produce and stabilize different 

movements from voluntary contractions, such as the movement of an arm. These 

movements can be studied and recorded with the help of EMG, which measures 

electrical changes within the muscular tissue. [12] 

The electrical activity within muscular tissue appears due to activation of individual 

motor unit action potentials (MUAPs). The MUAPs propagate through specific 

neurons, called motoneurons, on-demand from the brain or spinal cord and to their 

targeting muscle fibers. The summation of several MUAPs recorded in the targeting 

muscle together builds up to an EMG signals, as pictured in Figure 2. [13] 

 

Figure 2 Decomposition of surface EMG signals into individual motor unit action potentials  [14] 

To record electrical activity within a muscle several options exist. Commonly used 

solutions are non-invasive surface EMG where electrodes are placed directly on the 

skin above the muscle of interest, or needle electrodes temporarily inserted through 

the skin [13]. In addition to surface and needle EMG, there are also solutions where 

the electrodes are permanently implanted in the body. These electrodes can be 

either extra-muscular or intra-muscular [15]. An extra-muscular electrode, here also 
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referred to as an epimysial electrode, is sewn directly onto the epimysium [15], the 

outer layer of tissue surrounding the muscle within the body [12]. Meanwhile, intra-

muscular electrodes are fully or partially implanted through the muscle [15]. At the 

Center for Bionics and Pain Research, the latter options are used, intra-, and extra-

muscular electrodes. 

2.2 Muscle and nerve supplies in the arm 

The arm can be divided into the upper arm, forearm, wrist, and hand, controlled by 

different muscles and nerve supplies. In general, muscles in the upper arm are fewer 

and bigger compared to muscles in the lower arm and hand which are several, 

smaller, and more specifically in the movements that they control. Muscles can be 

placed deep into the body or superficial, close to the skin. The muscles of the arm 

are mainly supplied by the Median, Radial, and Ulnar nerves, which all branch out 

more and more the closer to the hand they come. [12]  

When limb loss occurs, nerve and muscle sources are lost or damaged, resulting in 

loss of function. The limb itself can often be replaced with a prosthesis, but the loss 

and damage to muscles and nerves remain. Two techniques used to restore function 

and increase the number of muscle sources for prosthetics control are targeted 

muscle reinnervation (TMR) [16], and regenerative peripheral nerve interfaces 

(RPNI) [17], [18]. In TMR a free ending of a cut nerve is relocated to a new but native 

muscle target which it can reinnervate. RPNI does the same but with the difference 

that the muscle target no longer is native, instead free muscle graft is denervated and 

then wrapped around the free nerve ending. Usage of TMR and RPNI in prosthetics 

control makes it possible to increase the number of myoelectrical sources in the limb 

which in the best case can increase the number of controllable joints of a prosthesis.  

2.3 Crosstalk 

According to Mezzarane and Kohn, “The crosstalk phenomenon consists in recording 

the volume-conducted electromyographic activity of muscles other than that under 

study.” [19]. This is an effect commonly observed in surface EMG where the surface 

electrodes do not allow specifying the target precisely, especially if the muscle is not 

superficial [6]. Hence, it is possible that electrical activity from a volume bigger than 

that one of interest can contribute to the captured signals [6].  

Figure 3 visualizes a diagram of several factors affecting the quality of the acquired 

EMG signals from a recording. Crosstalk is one out of several factors, and should not 

be mixed up with the terms co-activation and co-contraction which often are used 

interchangeably and describe muscle pairs that work together to create and stabilize 

movements [20]. Muscle synergies is also a term that can create confusion. Muscle 

synergies is a theory where movements are explained to be controlled by specific 

groups of muscles [21]. Comparing these latter terms with crosstalk, a major 
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difference is that in crosstalk the measured “contributions” are un-desired, 

meanwhile, the electrical activity is expected and needed in co-activation and muscle 

synergies. 

 
Figure 3 Venn diagram visualizing crosstalk as one out of several factors that effects the quality of an EMG signal 

Even though the crosstalk phenomenon and its appearance are well known there are 

no unambiguous explanations why and how it appears, how to identify it, or how to 

reduce it. Talib et al. have compiled a summary of several methods that previously 

have been used to handle crosstalk, including identification, quantification, and 

reduction [7]. One method for identification of crosstalk is through simultaneous 

measurements with needle and surface EMG [22], [23]. The hypothesis is that the 

differences between the signals will include crosstalk, as the needle is expected to 

measure more local activity in comparison to the surface electrodes which will 

capture activity from a bigger volume. Another suggestion is to isolate the muscle of 

activity, meanwhile measuring the activity of surrounding muscles which are 

expected to be quiet and then compare those [24].  

Proceeding to the step about how to quantify the crosstalk, three different indices, 

amplitude- [25], power- [26], and cross-correlation-based index [27], are presented. 

The methods compare amplitudes, power of a signal, and waveforms of the signals, 

from measurements with and without crosstalk. The methods are widely discussed, 

and unfortunately, all have their disadvantages. They might be hard to apply in 

practice or have the drawback that even if the indices indicate a difference, it cannot 

be decided whether it is due to crosstalk or co-activation. 

In the final step of reduction, Talib et al. mention electrode geometry and 

interelectrode distance [28], [29], electrode configuration [25], and filtering [30], as 
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examples. One method is to use bipolar electrodes which filter away differences 

between the measuring points, a difference which could include crosstalk. Although 

bipolar electrodes have demonstrated successful results for crosstalk removal, it is 

not always a suitable option. One example is when using implanted EMG electrodes 

where there might be reasons to minimize the number of wires needed, meanwhile 

maximizing the sites of measuring. Then bipolar electrodes have the disadvantage of 

requiring more cables compared to monopolar electrodes for the same amount of 

measuring sites [31]. Here filtering might be a better solution or a good complement 

as it does not affect the number of physical electrodes needed. Examples of filtering 

methods that previously have been tested for crosstalk or similar challenges, with 

either interesting or predominant positive outcomes, are ICA and PCA [10], [31], [32].  

 
2.4 Signal Processing  

In this project, several signal processing methods for crosstalk reduction have been 

developed and tested, all based on the two algorithms PCA and ICA. PCA is an 

algorithm for compressing data while ICA is for separating data, each algorithm and 

its motivation for this specific project is described below. 

2.4.1 Principal Component Analysis 

PCA is an algorithm that can be used to decrease the number of dimensions within a 

correlated dataset [9]. The dimensionality reduction is performed through a projection 

of the data onto another coordinate system [9]. The new coordinate system is built up 

of orthogonal components maximizing the variance of the initial dataset [9]. During 

transformation, the components are ranked in decreasing order with the component 

maximizing the variance first [9]. Thus, one can safely reduce the number of 

dimensions by disregarding components, starting from the last. 

Assuming that crosstalk is a disturbance appearing as parts of muscular signals with 

low variance (at one or several recording sites), then there exists a possibility that the 

PCA algorithm would extract the crosstalk as one or several principal components. 

Removal of these “crosstalk components” makes it theoretically possible to 

reconstruct new signals free from crosstalk. Figure 4 describes the process where 

muscular activity interferes with each other and is being captured by EMG 

electrodes. PCA transforms the observed signals into new extracted sources, where 

the important signal content is conserved separated from minor disturbances, such 

as crosstalk.  
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Figure 4 PCA diagram, showing how the original sources are mixed up before being observed. Followed by PCA 

transformation to get the extracted sources. Figure created with BioRender.com. 

Two common implementations of PCA are through eigenvalue decomposition of the 

data covariance matrix, and through singular values decomposition (SVD) over the 

centered data [32]. In this project the latter has been used, mathematically explained 

by the following steps [32]: 

1. Centering of the data 

2. Compute the empirical covariance matrix  

3. Obtain eigenvalues and eigenvectors of the covariance matrix 

4. Sort the eigenvalues in descending variance order 

5. Project data onto the transformation matrix 

Defining the raw EMG signals as, 𝑍 , the reconstructed signals, 𝑍𝑝𝑐𝑎𝑟 ,  can be 

achieved through the equation: 

𝑍𝑝𝑐𝑎𝑟 = 𝑈𝑆𝑉′ + 𝜇.   

Here 𝑈, 𝑆, and 𝑉, respectively are the left singular vector, the singular values, and the 

right singular vector computed through SVD [9], over the signals 𝑍 centered by its 

mean 𝜇. To eliminate undesired principal components the matrices 𝑈, 𝑆, and 𝑉, can 

be truncated at values between one and the total number of signals in 𝑍 [9]. When 

referring to a matrix 𝑈 later in this report this is the 𝑈 being referred to. 

2.4.2 Individual Component Analysis 

ICA is a statistical signal processing technique, initially developed to solve problems 

related to the cocktail-party problem [33]. The cocktail-party problem describes 

situations where two or more sources simultaneously emit signals (voices from 

guests at a party) that mixed up arrives at the receiver (another guest). Despite the 

signals arriving mixed up, the receiver can separate the signals and understand 

which source emitted each signal. ICA is an algorithm trying to describe and solve 

this challenge mathematically.  
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Applying the cocktail-party problem on the case of EMG signals with crosstalk 

(Figure 5), the muscles could be considered the sources, the electrodes as the 

receiver, and the ICA the part of the receiver trying to separate the signals.  

 
Figure 5 ICA diagram where 𝑆 are the sources, 𝑋 are the correlated recorded signals, 𝑆̂ the separated signals. A 

is the matrix mixing the signals and W is the matrix un-mixing them. Figure created with BioRender.com.   

If it is true that crosstalk appears from independent sources, it is theoretically 

possible to remove these and reconstruct signals free from crosstalk. An important 

difference for ICA compared to PCA is that the components from ICA are unsorted 

[33]. Hence, it is up to the user of ICA to decide whether any component is more 

“important or correct” than another. 

 

In this project, the fast ICA algorithm has been deployed on data preprocessed with 

centering and whitening. The algorithm is commonly used thanks to its fast 

convergence, easy implementation, and satisfying performance [34]. The general 

idea is to find the best approximated un-mixing matrix 𝑊, such that the measured 

signals 𝑋, can be transformed into a format 𝑆,̂ mimicking the initial sources 𝑆 [35]. 

Using equations, the measured signals 𝑋 can be formulated as, 

 

𝑋 = 𝐴𝑆, 

 

where 𝑆 are the original signals, and 𝐴 is the matrix describing how these original 

signals influence each other before being observed by the electrodes. The 

reconstructed signals can be formulated as, 

 

𝑆̂ = WX. 

 

Here 𝑊 is a matrix approximated to maximize the non-Gaussianity through iteration 

of a function 𝑔, measuring the Negentropy [33]. The steps followed are presented 

below [33]: 
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1. Divide a random initial vector 𝑤 by its norm 

2. Let 𝑤+ = 𝐸{𝑥𝑔(𝑤𝑇𝑥)} − 𝐸{𝑔′(𝑤𝑇𝑥)}𝑤 

3. Let 𝑤 =
𝑤+

||𝑤+||
 

4. Go back to step 2 until 𝑤 converge 

 

After approximation of 𝑊 the separated sources 𝑆̂, can be studied, and desired data 

reconstructed.  
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3 Method 

The method is divided into one initial theoretical part, and one following practical part. 

The theoretical part consists of a literature review, meanwhile, the practical part 

includes an experimental signal processing study of recorded EMG signals from 

prosthetic users. 

3.1 Literature Review 
 

The literature review was performed through the reading of scientific articles and 

books. The study did mainly focus on the current state of the art within the field of 

active prosthetics, crosstalk in muscles, and the muscular system of the upper arm. 

Articles and books were found through the databases Google Scholar, Scopus, and 

the Chalmers University of Technology Library. Different combinations of the 

following keywords were used: prosthetics, EMG, epimysial, intramuscular, 

implanted, electrodes, crosstalk, co-activation, co-contraction, muscle synergy, far-

field potential, anatomy, PCA, and ICA.  

The outcome of the literature review was used as an introduction to the research 

field, and as a design tool for the study of the following experimental work.  

3.2 Experimental Signal Processing 

In the experimental signal processing part of the project data acquisition and five 

different experimental set-ups were performed. Statistical analysis was used to 

interpret the results.  

3.2.1 Participants  

Two participants took part in the study, one with a trans-humeral amputation 

(Participant A) and one with a trans-radial amputation (Participant B). Before the 

experiment started both participants signed an informed consent. 

3.2.1.1 Data acquisition 

Both Participant A and Participant B have had muscular electrodes for prosthetics 

control surgically implanted in their upper or lower arm. After surgery, both 

participants have taken part in several follow-ups at the Center for Bionics and Pain 

Research. During these occasions, the performance of the EMG signals and their 

possibility to be decoded into different hand and finger movements have been 

studied and recorded.  

 

Recordings have been made through the open-source platform BioPatRec [36] and 

with an Artificial Limb Controller (ALC) [37]. Where BioPatRec is a research tool 
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focused on myoelectric pattern recognition, and the ALC is an embedded system 

developed for the control of prosthetic devices. The ALC sampled data at 500 Hz and 

with 16-bit resolution. In addition, a high-pass filter at 20 Hz and a notch filter of 50 

Hz was applied in real-time.  

 

Each follow-up consisted of two recording sessions, one for gross movements: 

 

- Open/close hand (2 movements) 

- Flex/extend hand (2 movements) 

- Pronation/supination of the forearm (2 movements) 

- Flex/extend of the elbow (2 movements – only executed by Participant A) 

 

And one recording session for single finger movements: 

 

- Flex/extend of each finger independently (10 movements) 

When recording the data, the participant was asked to sit down comfortably on a 

chair in front of a computer. The computer screen instructed the participant to 

conduct one movement at a time, with 70% of the maximum voluntary contraction. 

Each movement was repeated three times for three seconds and with three seconds 

of rest in between.  

 

3.2.2 Datasets 

 

The recordings resulted in two different datasets, Dataset A and Dataset B 

(corresponding to Patient A and Patient B), presented in Table 1. 

 
Table 1 Dataset information  

Designation Dataset A Dataset B 

Gender  Male Female 

Age of participant [years] 54 49 

Amputation Trans-humeral Trans-radial 

Time frame 09-01-2019 – 19-05-2021 22-10-2019 – 28-04-2021 

Number of sessions  9 7 

 

Dataset A has been used in Experiment 1-3, and Dataset B has been used in 

Experiment 4. Both participants had 12 monopolar muscular electrodes implanted 

each.  
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3.2.3 Experiment 1 

In Experiment 1 the movement classification accuracy of EMG signals, and the EMG 

signals processed with PCA, respectively ICA, were calculated and compared. Three 

different inputs were used for the PCA and ICA algorithm, the raw format of the EMG 

signals, min-max normalization, and Z-score normalization of the EMG signals. 

Normalization was applied to facilitate visual comparison of the signals before and 

after PCA and ICA and to detect possible differences in the performance of the 

algorithms. Figure 6 visualizes the process.  

 
Figure 6 Block diagram describing the process in Experiment 1 

Both PCA and ICA were performed on a 2D matrix format of the EMG signals, 

constituted of 12 channels times all their 18 or 16 movements followed by each other 

(including rest), resulting in the matrix dimension [12 channels x 162000 samples] or 

[12 channels x 144000 samples]. A format resulting in a maximum truncation value of 

12 for the PCA and the possibility of 12 independent components for ICA.  

In the case of PCA, all truncation values between one and 12 were used, resulting in 

12 different reconstructions of the same input data. Here the truncation reveals the 

number of principal components that are being kept. The ICA was used similarly to 

the PCA. Although, with the difference that instead of reconstructing the signals for 

different truncation values the reconstructions were now performed with one out of all 

twelve components removed, one at a time. This resulted in 12 different 

reconstructions of the ICA data. 

 

From the reconstructed PCA and ICA signals, the four features mean absolute value 

(MAV), waveform length (TWL) in the time domain, zero crossing (ZC), and slope 

changes (SLPCH) were extracted [38]. The featured data were then classified with 

Linear Discriminant Analysis (LDA), k-nearest neighbor (KNN), and a multilayer 

perceptron (MLP), in the pattern recognition function in BioPatRec. Each 

classification was performed with ten repetitions to increase the reliability of the 

results, and the achieved accuracies were then used as a metric to evaluate the 

results.  
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3.2.4 Experiment 2 

In Experiment 2 the features were now extracted before applying PCA or ICA, 

instead of afterward. Usage of all four features MAV, TWL, ZC, and SLPCH, allowed 

for up to 48 different truncation values in PCA, or 48 individual components for ICA. 

Z-score normalized data was used and features were extracted from windows of 200 

ms, without any overlap between the windows.  

In the case of PCA, two different methods were tested, see Figure 7. The first one 

included PCA applied over all four features MAV, TWL, ZC, and SLPCH. This was 

followed by classification over all four features, and all different subsets of three, two, 

and one feature, one at a time. In the second case, the PCA and classification were 

performed only over two features at a time. 

 

Figure 7 Block diagram describing the process for PCA in Experiment 2 

Proceeding with ICA, it was tested to apply ICA directly on the extracted data, and 

over the reconstructed PCA data over all four features. A visual study of the ICA 

components did not reveal any obvious components to remove, hence a threshold 

was used to remove components with a specific magnitude, either bigger or smaller 

than the maximal peak-to-peak value among all 48 components. The process is 

visualized in Figure 8. 
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Figure 8 Block diagram describing the process for ICA in Experiment 2 

3.2.5 Experiment 3 

In Experiment 3 PCA was applied on extracted features, but with the difference from 

Experiment 2 that these windows for feature extraction now did overlap. 

First, the case of the biggest possible overlap was tested, a step of one sample 

between each extraction was used, which in time corresponded to 2 ms. This 

resulted in a new dataset with the same number of samples but of featured data 

instead of the “raw data”. From this new dataset new windows of 200 ms was 

extracted and PCA was performed within each window, see the upper process in 

Figure 9. Different conditions were used and 𝑈  was either taken from the PCA 

calculation within each window or substituted with an 𝑈 calculated over the entire 

signal from the same session, or another session. The results were then compared 

with the case of no PCA: 

 

Figure 9 Block diagram describing the process in Experiment 2 

In the second case, a smaller overlap was used, only an overlap of 25 samples 

corresponding to a feature extraction each 50 ms. See the lower process in Figure 9. 

Again, features were extracted and PCA applied within a window corresponding to 

200 ms. It was tested to use extraction with all four features, and extractions only 

with the features TWL and SLPCH. This time the 𝑈 used were taken from another 
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session than that other stud , this to simulate an “online test”. Once again, the results 

were compared with the case of no PCA. 

3.2.6 Experiment 4 

In Experiment 4 selected cases with significantly improved accuracies from 

Experiment 2-3 were repeated but with Dataset B instead of the previously used 

Dataset A. This resulted in the repetition of the PCA part of Experiment 2 and the 

entire Experiment 3. 

3.2.7 Experiment 5 

In Experiment 5 the signals and different 𝑈 before and after PCA for selected cases 

with significantly improved accuracies once again were displayed and compared. 

This includes PCA over features extracted from the entire recording without overlap, 

PCA after feature extraction each 2 ms, and extraction each 50 ms. Also, 𝑈 matrices 

for the same experiments and cases were compared. An important difference from 

previous experiments is the fact that the accuracy no longer is used as a metric. 

Instead, an amplitude-based root mean square (RMS) index was used to compare 

signals before and after PCA, implemented accordingly to the following equation, 

𝑖𝑛𝑑𝑒𝑥 =
𝑅𝑀𝑆(𝑠𝑖𝑔𝑛𝑎𝑙 𝑎𝑓𝑡𝑒𝑟 𝑃𝐶𝐴)

𝑅𝑀𝑆(𝑠𝑖𝑔𝑛𝑎𝑙 𝑏𝑒𝑓𝑜𝑟𝑒 𝑃𝐶𝐴)
. 

For comparison of 𝑼 the summation of the absolute values for all samples 

corresponding to each feature MAV, TWL, ZC, and SLPCH, were compared with the 

content for all features together.  

 

3.2.8 Statistical analysis 

To compare results two different methods have been used. Series of paired-sampled 

t-tests and one-way ANOVA, both with a Bonferroni correction. Before the 

performance of t-test and ANOVA all data was confirmed to be standard normally 

distributed with help of a One-sample Kolmogorov-Smirnov test. 

The paired-sampled t-test tested against null hypothesis, that the compared data, X 

and Y, had normally distributed data with equal means and equal but unknown 

variances. Using this in a series the Y was kept constant while changing the data 

samples in variable X. One-way ANOVA was used similarly, but tested if there was a 

common mean between several groups of data, and not only between X and Y.  

The significance level was set to 5%, meaning that a rejected test result 

corresponded to a Bonferroni-corrected p < 0.05. A rejected test value indicates a 

significant difference between the compared variables.  
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4 Results 

Experiments 1-3 present results from the usage of Dataset A, and Experiment 4 

presents results from the usage of Dataset B. In Experiment 5 both Datasets A and B 

are studied. 

All figures are based on Z-score normalization (of session 9 for Dataset A and 

session 7 for Dataset B) and pattern recognition with MLP if nothing else is 

mentioned.   

4.1 Experiment 1 

In experiment 1 PCA and ICA were performed over raw data, max-min normalized 

data, and Z-score normalized EMG data of 12 signals. Pattern recognition was 

executed with ten repetitions and with three different algorithms, LDA, KNN, and 

MLP.  

4.1.1 PCA over EMG signals 

Figure 10 visualizes the results from applying PCA over max-min normalized data 

classified by MLP.  

 

Figure 10 PCA over max-min normalized raw data and pattern recognition with MLP 

According to t-test results, there was no significant difference between the case of no 

PCA and truncation values 7-11 (p ≥ 0.118). Among the truncation values 1-6, there 
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was a significant difference (p ≤ 0.0129) but none had an accuracy higher than the 

case of no PCA. No significant difference was found in either the LDA or kNN case 

as well (see Figure 24 in Appendix). This indicates that the PCA method in 

Experiment 1 did not improve the performance of the pattern recognition. 

4.1.2 ICA over EMG signals 

Figure 11 displays ICA over raw data and pattern recognition with an LDA classifier.  

 

Figure 11 ICA over raw data and pattern recognition with an LDA classifier. The star indicated that the removal of 

component 9 yielded significantly better results than the case of “no ICA”  

The star indicates that the pattern recognition performed better after removal of ICA 

component 9, compared with the case of no ICA (p = 0.0347). No other cases were 

significantly different than the case of no ICA (p ≥ 0.0509), according to performed t-

tests. Neither any of the cases for MLP or kNN indicated a significant improved 

performance (see Figure 25 in Appendix).  
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4.2 Experiment 2 
 

In Experiment 2, PCA was performed over featured data, and ICA over PCA 

transformed data. 

 

4.2.1 PCA over features extracted from EMG signals 

 

Figure 12 visualizes the pattern recognition accuracy from applying PCA over 48 

different truncation values (12 signals times four features) and all four features MAV, 

TWL, ZC, and SLPCH (red dashed line). This result is compared with the case of 

pattern recognition directly over featured data, without PCA (blue continuous line).  

 

Figure 12 Red dashed line displays PCA performed with truncation values 1-48 over the four features MAV, TWL, 

ZC, and SLPCH. The blue continuous line shows the accuracy for classification of the featured data without 

applied PCA 

As seen in the figure the red line goes towards the blue line with increasing 

truncation value. This is in alignment with the paired-sampled t-test between the case 

of no PCA and each truncation value. The t-tests showed that the accuracy results 

from truncation values 1-22 (p ≤ 0.023) are significantly higher than the performance 

without any PCA applied. The achieved accuracy for no PCA was 87.7%, meanwhile, 

the best performance, 99.9%, was achieved for PCA with truncation values 2-6. This 

corresponds to a total improvement of 13.9%.  
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Figure 13 shows PCA performed over the four features and different subsets of the 

features, indicated for each subplot. Red dashed lines are PCA over all four features 

but classification only over two features, yellow dotted lines are instead PCA and 

classification over the same two features. The blue continuous lines are classification 

over indicated two features without the usage of PCA. Having two features instead of 

four decreases the number of possible truncation values from 48 to 24, hence the 

differences in length between different graphs within each plot. 

 

Figure 13 PCA performed over all four features MAV, TWL, ZC, and SLPCH, and different subsets of features. 

Red dashed lines are PCA over all four features but classification only over those indicated for each figure. Yellow 

dotted lines are PCA and classification over indicated features. Blue continuous lines are classification over 

indicated features without PCA 

Like in Figure 12, a trend of decreasing accuracy for higher truncation values is also 

visible in Figure 13 . The best accuracy was achieved for PCA over all four features, 

but classification only over ZC and SLPCH (Figure 13f)). Although, PCA and 

classification over TWL and ZC (Figure 13d)) and PCA and classification over TWL 

and SLPCH (Figure 13e)) did achieve high accuracies for lower truncation values as 

well. Exact numbers for these and more cases can be found in Figure 26 and Figure 

27 in Appendix. 

4.2.2 ICA over features extracted from EMG signals 

In Figure 14 ICA was performed over all four features MAV, TWL, ZC, and SLPCH 

(dotted yellow line), and over PCA transformed data over the same features (dashed 

red line). Removal of ICA components were performed with the help of a threshold of 
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60% of the maximum peak-to-peak value among all components. The results were 

compared with the case of neither PCA nor ICA (continuous blue line). 

 

Figure 14 ICA performed over all four features MAV, TWL, ZC, and SLPCH (yellow dotted line), and over PCA 

transformed data over the same features (dashed red line). ICA components were removed with a threshold 

either smaller (case a) or bigger (case b) than 60% of the maximal peak-to-peak value 

Figure 14a) shows how the removal of smaller components decreased the 

performance for ICA compared with no PCA or ICA. Removal of bigger components, 

on the other hand, seems to increase the performance, see Figure 14b). The red 

dashed graphs show that ICA after PCA of lower truncation values yields accuracies 

in the range 95%-100%. Although, the removal of bigger components results in more 

stable results meanwhile the results from the removal of smaller components 

fluctuate more.   
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4.3 Experiment 3 

In Experiment 3, PCA was performed on featured data within windows of 200 ms.  

Figure 15 shows the results for feature extraction each 2 ms and the cases: 

- No PCA (feature extraction from overlapped data) 

- PCA performed within a window but with 𝑈 from Experiment 2 

- PCA within a window and 𝑈 calculated for each window 

 

Figure 15 PCA over features extracted from overlapped data 

The figure reveals that the truncation value has a minor impact on the accuracy. 

Although, higher accuracies around 95.4% were achieved when adding PCA on the 

overlapped data with the 𝑈 calculated from each truncation value in experiment 2 

(Figure 12), compared with 93.4% for overlapped data without PCA. 

Figure 16 visualizes a boxplot for overlapped data with feature extraction each 2 ms 

(same case as above), and PCA with truncation value 5. The different boxplots 

display the results for: 
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a) Entire PCA within windows 

b) PCA within windows, but 𝑈 substituted with 𝑈 from Experiment 2 

c) Entire PCA within windows but over a subset of session 9A 

d) PCA within windows over a subset of session 9A, but 𝑈 substituted with an 𝑈 

calculated over the entire other subset of 9A 

e) PCA within windows but 𝑈 substituted with 𝑈 calculated over entire session 8A 

f) No PCA with overlap 

 

Figure 16 Boxplot for PCA with truncation value 5 and overlapped windows (2 ms between each feature 

extraction). a) Entire PCA within windows, b) PCA within windows, but U substituted with U from Experiment 2, c) 

Entire PCA within windows but over a subset of session 9A, d) PCA within windows over a subset of session 9A, 

but U substituted with an U calculated over the entire other subset of 9A, e) PCA within windows but U substituted 

with U calculated over entire session 8A, f) No PCA with overlap 

A one-way ANOVA revealed significant differences between the different cases 

(F(5,54) = 1160, p = 1.24E-53). Repeated 𝑈  from a subset of unseen data (d) 

performed best (97.6%), with an improvement of 4.72% over no PCA with overlap. 

Pairwise t-tests indicated this treatment as significantly better than all other cases (p 

≤ 3.49E-16). 

To simulate a set-up that could be used for online testing, PCA was applied over four 

and two features, and the feature extraction rate decreased from 2 ms to 50 ms. A 𝑈 

was calculated from session 8A and a truncation value of four was used. Figure 17 

shows the results, with the following boxes: 
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a) Entire PCA within windows (4 features) 

b) PCA within windows but 𝑈 substituted with an 𝑈 calculated over entire session 

8A (4 features) 

c) no PCA (4 features) 

d) Entire PCA within windows (TWL & SLPCH) 

e) PCA within windows but 𝑈 substituted with an 𝑈 calculated over entire session 

8A (TWL & SLPCH) 

f) no PCA (TWL & SLPCH) 

 

Figure 17 Boxplot for PCA with truncation value 4 and overlapped windows (50 ms between each feature 

extraction). a) Entire PCA within windows (4 features), b) PCA within windows but U substituted with an U 

calculated over entire session 8A (4 features), c) no PCA (4 features), d) Entire PCA within windows (TWL & 

SLPCH), e) PCA within windows but U substituted with an U calculated over entire session 8A (TWL & SLPCH), f) 

no PCA (TWL & SLPCH) 

The figure shows that PCA over four features achieved higher accuracies than PCA 

over two features. The highest accuracy was achieved for case (b) with an accuracy 

of 93.9%. An improvement of 2.40%, compared to the case of no PCA over all four 

features (c) with an accuracy of 91.7%. One-way ANOVA revealed statistically 

significant differences between the cases (F(5,54) = 239, p = 1.62E-35), and pairwise 

t-tests indicated case (b) as statistically significantly different from all other cases (p ≤ 

1.39E-04).  
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4.4 Experiment 4 

In Experiment 4 selected experiments with statistically significant improved 

accuracies for Dataset A were repeated, but now with Dataset B.  

Figure 18 visualizes PCA over the four features MAV, TWL, ZC, and SLPCH and all 

their possible truncation values (dashed red line), compared with the case of no PCA 

(continuous blue line). 

 

Figure 18 Red dashed line displays PCA performed with truncation values 1-48 over the four features MAV, TWL, 

ZC and SLPCH for Dataset B. Blue continuous line shows the accuracy for classification of the featured data 

without applied PCA 

A series of paired-sampled t-tests indicated that truncation values 1-27 were 

significantly better than the case of no PCA (p ≤ 0.00317). The highest accuracy of 

94.9% was achieved for truncation value 12, an improvement of 26.7% compared 

with 74.9% for the case of no PCA.  

The test with overlapped data and extraction each 2 ms was also repeated. The 

results can be seen in Figure 19 with the following boxes: 
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a) Entire PCA within windows 

b) PCA within windows, but 𝑈 substituted with 𝑈 from Figure 18 

c) Entire PCA within windows but over a subset of session 9A 

d) PCA within windows over a subset of session 7B, but 𝑈 substituted with an 𝑈 

calculated over the entire other subset of 7B 

e) PCA within windows but 𝑈 substituted with 𝑈 calculated over entire 6B 

f) No PCA with overlap 

 

Figure 19 Boxplot for PCA with truncation value 5 and overlapped windows (2 ms between each feature 

extraction) for Dataset B. a) Entire PCA within windows, b) PCA within windows, but U substituted with U from 

Figure 18, c) Entire PCA within windows but over a subset of session 7B, d) PCA within windows over a subset of 

session 9A, but U substituted with an U calculated over the entire other subset of 7B, e) PCA within windows but 

U substituted with U calculated over entire session 6B, f) No PCA with overlap 

In similarity to the same test performed with Dataset A (Figure 16) the cases with 

PCA over all four features did perform better than the case of no PCA with overlap 

(f). One-way ANOVA revealed significant differences between he different cases 

(F(5,54) = 2510, p = 1.34E-62). Once again, the highest accuracy was achieved for 𝑈 

from a subset of unseen data, 91.4% compared with 82.1% in the case of no PCA 

with overlap. A pairwise t-test indicated this case (d) as statistically significant 

different from all the other  roups  p ≤ 2.0  -18). 

Proceeding with the last test where feature extraction was performed each 50 ms, 

the results can be seen in Figure 20 with the following boxes: 
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a) Entire PCA within windows (4 features) 

b) PCA within windows but 𝑈 substituted with an 𝑈 calculated over entire session 

6B (4 features) 

c) no PCA (4 features) 

d) Entire PCA within windows (TWL & SLPCH) 

e) PCA within windows but 𝑈 substituted with an 𝑈 calculated over entire session 

6B (TWL & SLPCH) 

f) no PCA (TWL & SLPCH) 

 

Figure 20 Boxplot for PCA with truncation value 4 and overlapped windows (50 ms between each feature 

extraction) for Dataset B. a) Entire PCA within windows (4 features), b) PCA within windows but U substituted with 

an U calculated over entire session 6B (4 features), c) no PCA (4 features), d) Entire PCA within windows (TWL & 

SLPCH), e) PCA within windows but U substituted with an U calculated over entire session 6B (TWL & SLPCH), f) 

no PCA (TWL & SLPCH) 

Once more the results follow the same distribution as for Dataset A (compare with 

Figure 17). The best results, 83.6%, were achieved for case (b), PCA over all four 

features and with 𝑈 calculated over entire session 6B. An increase of 4.76% 

compared to the case of no PCA over all four features (c) and 79.8%. One-way 

ANOVA indicated statistically significant differences between the cases (F(5,54) = 

179, p = 2.40E-32), and pairwise t-tests comparing (b) to all the other cases did 

confirm a significantly improvement (p ≤ 3.01E-05).  
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4.5 Experiment 5 

In Experiment 5 the EMG signals before and after application of PCA were visually 

compared. An RMS amplitude-based index was used as a metric to support the 

visual comparison. 

Figure 21 shows the results for Dataset A and the signal from one implanted 

electrode for the cases: 

(i) PCA reconstruction with no overlap 

(ii) PCA with unseen 𝑈 from a subset of data and feature extraction each 2 

ms 

(iii) PCA with 𝑈 calculated over entire session 8A and feature extraction 

each 50 ms  

The yellow line in the top graph shows the Z-score normalized data, the blue lines 

the extracted data for each feature, and the red lines the PCA reconstructions for 

each feature. 

 

Figure 21 Signals before and after PCA for Dataset A. The top graph shows the Z-score normalized data 

meanwhile the graphs below show the featured data MAV, TWL, ZC, and SLPCH. Case (i) display PCA 

reconstruction with no overlap, (ii) displays PCA with unseen U from a subset of data with extraction each 2 ms, 

and (iii) PCA with U calculated over entire session 8A and feature extraction each 50 ms  

Visually no clear differences between the cases (i), (ii), and (iii), are identified, 

although case (i) has a slightly different appearance for ZC and SLPCH compared 

with (ii) and (iii). The RMS metric used supported the visual observation and pointed 

out ZC for case (i) as the signal with biggest amplitude decrease when comparing the 

signal before and after PCA, a decrease with 2.90%. All cases had slightly decreased 
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RMS ratios, except from MAV and TWL for case (ii) and (iii) which had amplitudes of 

the same magnitude before and after application of PCA. (Table 2 in Appendix 

presents the RMS ratio for all cases.)  

 

The corresponding cases but for Dataset B and one of its signals, are presented in 

Figure 22. 

 

 
Figure 22 Signals before and after PCA for Dataset B. The top graph shows the Z-score normalized data 

meanwhile the graphs below show the featured data MAV, TWL, ZC, and SLPCH. Case (i) display PCA 

reconstruction with no overlap, (ii) displays PCA with unseen U from a subset of data with extraction each 2 ms, 

and (iii) PCA with U calculated over entire session 6B and feature extraction each 50 ms 

In similarity to Dataset A, there are no clear differences between the cases (i), (ii), 

and (iii). Neither comparison between the two different datasets highlights any 

outstanding differences. The RMS index did also in this case indicate ZC for case (i) 

as the signal with biggest amplitude decrease when comparing the signal before and 

after PCA, a decrease with 2.40%. (Table 3 in Appendix shows the RMS results for 

all different cases in Dataset B.) 

 

In Figure 23 the same cases are studied once again, but instead of showing the 

reconstructed signals, the graphs now visualize the 𝑈 used in the PCA. The figure 

includes 𝑈 both from Dataset A and Dataset B.  
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Figure 23 U matrices for different transformations. Top row for Dataset A and lower row for Dataset B. Case (i) 

display U from PCA with no overlap, (ii) displays U from a subset of data with extraction each 2 ms, and (iii) U for 

extraction each 50 ms 

Studying the different datasets and their cases it can be concluded that all cases 

have similar characteristics. Row indices 1-12 and 25-48 corresponds to MAV, ZC, 

and SLPCH, and have values of similar magnitudes and with small changes. Row 

indices 13-24 on the other hand, describing the TWL feature appear somewhat 

chaotic in comparison. Studying the absolute values of 𝑈, at least 89.2% of the signal 

content were constituted of the TWL features and less than 0.700% of MAV, for each 

individual case. (Table 4 in Appendix show the ratios of signal content for each 

feature.)  
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5 Discussion 

This project aimed to investigate and evaluate if PCA and ICA applied on EMG 

signals recorded from implanted electrodes could improve prosthetic control 

performance. In this section, it is discussed what the results point to, limitations within 

the performed project, and what practical actions could or should take place in the 

future. 

5.1 Interpretations of the results 

Several different experiments were designed and performed, and it was shown that 

movement predictability accuracy could be improved for both PCA and ICA under 

certain circumstances. Most interesting were the findings that increased accuracy 

could be achieved after PCA over four features extracted each 50 ms, compared to 

the same cases but without applied PCA. These results were especially interesting 

as they were a consequence of the experimental approach most promising for online 

usage. This is due to its application of PCA within small windows of 200 ms, and its 

decrease in feature extraction rate compared to the other experimental approaches. 

As feature extraction slows down the signal processing it can be expected that a too 

high feature extraction rate (such as 2 ms) will decrease the speed of the prosthetic 

control, affecting the user experience and functionality of the prosthesis. 

Other interesting findings were the ones achieving the highest accuracies. Those 

came from the PCA approach in Experiment 2 where PCA was applied over all 

samples from the four features MAV, TWL, ZC, and SLPCH at once. Unfortunately, 

the method is non-feasible for online usage as PCA was applied over the entire 

session, corresponding to 18 s times the number of performed movement (16 or 18), 

which is a huge time window in context of prosthetic control. Despite, the approach 

being unrealistic for online usage it demonstrated that PCA could improve the 

accuracy which motivated the work yielding the results achieved for decreased 

feature extraction rate.  

The achieved results support the hypothesis that PCA is a promising tool for the 

reduction of crosstalk, which also agrees with previously conducted research [31]. 

Although, the achieved results are hard to directly compare with earlier performed 

research. This as the main metric for this project has been accuracy, while most 

studies reviewed have used other types of indices. Nevertheless, the RMS metric 

used in Experiment 5 indicated small decreases in amplitude when comparing the 

signal before and after crosstalk removal. This is in accordance with other results 

where removal of crosstalk has been shown to decrease the total signal content [25], 

[39], [40]. The decreases identified in this project were ≤ 2. 0 , quite small results in 

comparison with other research where crosstalk could make up to 30% of the total 

signal content. Possible reasons for the big differences are that the other studies 
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reviewed used other muscles, and surface EMG where the crosstalk is expected to 

be bigger in comparison to the usage of implantable electrodes.   

Going back to Experiment 1 and Experiment 2 one major learning is that the 

performance of ICA and PCA increased significantly when applied over featured data 

instead of the raw data. These improvements include PCA and ICA over both four 

and two features. Unfortunately, the same trend for two features could not be seen 

when extracting features for each 50 ms (compare Figure 13 with Figure 17 and 

Figure 20). The fewer features needed the less time to perform feature extraction 

which in turn accelerates the signal processing speed.  

Overall, the results achieved in this project were more promising for PCA than ICA. 

This can be connected to the fact that the PCA algorithm itself ranked the most 

important components, making it easy to exclude the components of least 

importance. Meanwhile, an own created condition had to be set for the removal of the 

ICA components. A challenging problem as there were only small differences in the 

component’s appearance.  ence, the onl  condition tested was for different 

thresholds where components of certain sizes were removed. It is not unreasonable 

to believe that a better method for component removal could be developed. Although, 

improved accuracy was achieved when using ICA which supports the hypothesis and 

previous research that ICA can be used to discriminate crosstalk [10]. 

Another interesting observation was the fact that the truncation values for PCA had a 

big impact on the achieved accuracies in Experiment 1 and Experiment 2. 

Experiment 3 on the other hand, gave no reason to believe that the truncation was of 

big importance. Rather seemed like the big improvement was due to feature 

extraction from overlapped data. An explanation for this could be that when 

overlapped data was used, there was also an overlap between the data in the 

training and test sets due to the current code implementation. Hence, the MLP was 

trained on a subset of data which later was used when computing the accuracies. 

Hence the results from this project and their meaning should be interpreted carefully 

as they are not yet tested online. Nevertheless, the positive results indicate that it is 

an interesting approach that could be worth trying online. To enable online testing the 

code developed must be adapted for the continuous gathering of data and 

implemented on the ALC, used for prosthetic control.  

A bit surprising was the outcome that no major differences between the signals from 

different electrodes, after PCA or ICA, were identified. Hence, the visualization of 

only one signal for each dataset in Experiment 5. Before the execution of the 

experiments, it was expected to see visual differences between the signals from 

different electrodes. This is due to different surgical techniques and muscle sources, 

which implies different conditions for the appearance and recording of myoelectric 

activity [41]. Another outcome worth mentioning is the similarities between the 𝑈’s 

visualized in Experiment 5, both within and between each dataset. Although, an 
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outstanding appearance for the TWL features, this was nothing visually observable 

when viewing the signals after the application of PCA.   

5.2 Limitations within the project 

One of the major limitations within this project is the fact that no index has been used 

which can confirm whether the accuracy changes, before and after PCA and ICA, are 

due to the removal of crosstalk or the removal of other undesired data. Therefore, it 

was decided to mainly measure the performance of the algorithms through the 

accuracy of pattern recognition. This as the literature review did not reveal any index 

as entirely trustable or suitable for this specific project. Improved pattern recognition, 

on the other hand, will probably always be a positive result no matter what type of 

information has been removed. Hence, no results from either the accuracy or RMS 

metric entirely confirm that removal of crosstalk is the actual cause of improved 

pattern recognition in this project. If not derived from the removal of crosstalk the 

improvements could maybe be derived from the removal of other types of 

disturbances in the recorded signals, such as noise or artifacts. Or, only by the fact 

that the PCA algorithm compresses information. This compression maybe focuses 

the EMG signals to their most important characteristics which makes the decoding 

into different movements easier. 

Another thought to have in mind is that this project does not aim to compare different 

classifiers, such as KNN, LDA, MLP, nor different normalizations of the raw data. The 

purpose of the classifier choice was to enable the comparison of the data before and 

after signal processing. In similarity, normalization was used to enable visual 

interpretation of the data. Although, the choices made may have influenced the 

results, which should be kept in mind.   

The participants chosen for this study have different types of amputations, surgical 

techniques for electrode implantation, and different muscles conserved within the 

arm. Although, this is not a full representation of the variations within the group of 

active prosthesis users. In addition, the experiments so far have only been conducted 

for a certain set of movements recorded in a laboratory environment. The laboratory 

environment contributes with better conditions than those given in daily living. 

Therefore, the results from this project and what it can bring for the future should be 

interpreted carefully and not applied to the general prosthesis user and in their 

everyday living. 

5.3 Future work 

As there is a need for improved prosthetics techniques, the findings in this project 

have several aspects which could be interesting to explore in future work. One of the 

most interesting findings is to confirm whether the approach of feature extracting 
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each 50 ms can improve the accuracy during online testing. This as a positive online 

test can implicate the possibility for implementation in real-life situations. 

It would also be interesting to compare different 𝑈’s. Considering their similarities 

shown in Experiment 5 it is not entirely out of the scope, that it would be possible to 

manually create an artificial 𝑈 optimized for PCA over four features. 

Another point of view interesting to explore is the potential of these experiments in 

usage adapted for daily living and training for prosthetic control. This as the quality of 

the signals captured by the implanted electrodes can vary over time. It can be 

expected to have more stable signals a certain time after surgery, compared with the 

period following directly after surgery. If there exists an 𝑈 such as pattern recognition 

that can be performed with positive results, despite having clear signals, this could 

perhaps reduce the time needed for prosthetics training. Or, decrease the time 

between surgery and when prosthetics training can begin. 

There are also certain things related to the PCA algorithm directly worth investigating 

deeper. The first example is the truncation values. In this project, several truncation 

values have been tested, despite the knowledge that literature exists stating 

recommended truncation values to use [9], [42]. These recommendations are based 

on the amount of variance to keep through the transformation, common ratios to 

conserve are 90% or 99% of the variance. An interesting approach might be to 

explore how the truncation values yield the best results in this report corresponding 

to the “recommended” truncation  alues. Although, it could be assumed that quite 

high variance has been conserved in Experiment 2-4 (corresponding to the 

recommendations), based on the visualization of the signals before and after PCA in 

Experiment 5, as no major differences were observed. The second experiment which 

could be interesting is to not only create an artificial 𝑈, but also to create an artificial 

𝑈𝑆 to compare potential differences.  

To summarize the project has shown that both PCA and ICA have the potential to 

improve prosthetic control. Although, the findings of improved accuracy after applying 

PCA within windows over extracted features are the most interesting. It is 

recommended to investigate that approach deeper with the motivation that it 

potentially could improve the performance of EMG prosthetics, and with that also 

increase the life quality for those people that today or in the future are or will be 

suffering from limb loss.  

   



 

 

 

 

 

34 
 

6 Conclusion 

To summarize, there exists a need for improved prosthesis performance to avoid 

prosthetic abandonment in the future. The new technique shows promising results 

but there are still several factors needed to be improved, such as the control. 

Crosstalk and other undesired content in measured EMG signals aggravate decoding 

of the muscles' pattern, resulting in non-optimal pattern recognition.  

In this project, signal processing through PCA and ICA showed improved results 

when applied over featured data, both for Participant A and Participant B. The best 

results were achieved when PCA was applied over the four features MAV, TWL, ZC, 

and SLPCH, for an entire session of 18 s, and pattern recognition was calculated 

over windows of 200 ms. The accuracy for Participant A increased from 87.7% to 

99.9%, and for Participant B from 74.9% to 94.9%. In the test aiming to simulate a 

scenario more realistic to real-time usage, the features were extracted each 50 ms 

and PCA applied within windows of 200 ms. Participant A achieved an accuracy of 

93.9% and Participant B an accuracy of 83.6%. 

The results do not reveal whether these improvements are consequences of the 

removal of crosstalk specifically. Although, these are improvements significant 

enough to make it interesting to explore how the same method would perform online, 

and not only over offline data. Regardless of what the signal processing removes, 

these results could in the long-term yield better life quality for people suffering from 

limb loss, if the approach also yields improved results online. 
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Appendix 

Figure 24 displays classification with LDA, KNN, and MLP of PCA over raw, max-min 

normalized, and Z-score normalized data. 

 

 
Figure 24 PCA over different data formats and classified by different algorithms (Experiment 1) 
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Figure 25 display classification with LDA, KNN and MLP of ICA over raw, max-min 

normalized, and Z-score normalized data. 

 

 
Figure 25 ICA over different data formats and classified by different algorithms (Experiment 1) 

Figure 26 shows accuracies for PCA performed over four features, and accuracies 

calculated over the different subsets of the features. 

 

 
Figure 26 Accuracies calculated over different subsets of features from PCA transformed data (Experiment 2) 
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Figure 27 displays PCA performed, and accuracy calculated over two features at a 

time.  

 

 
Figure 27 PCA and accuracies calculated over two features (Experiment 2) 

Table 2 presents the RMS ratios before and after PCA for the cases of Dataset A 

presented in Experiment 4. 

 
Table 2 Root mean square amplitude-based ratio for signal after PCA divided with the signal before PCA (%) 

(Experiment 4) 

Dataset A MAV [%] TWL [%] ZC [%] SLPCH [%] 

(i) 98.9 99.1 97.1 99.4 

(ii) 100 100 99.0 99.9 

(iii) 100 100 99.1 99.9 

 

Table 3 presents the RMS ratios before and after PCA for the cases of Dataset B 

presented in Experiment 4. 

 
Table 3 Root mean square amplitude-based ratio for signal after PCA divided with the signal before PCA (%) 

(Experiment 4) 

Dataset B MAV [%] TWL [%] ZC [%] SLPCH [%] 

(i) 99.0 99.1 97.6 99.9 

(ii) 99.8 99.7 99.3 99.9 

(iii) 101 100 99.4 99.9 

 

Table 4 presents the ratios of signal content for each feature within 𝑈, for both 

Dataset A and Dataset B. 
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Table 4 The ratios of 𝑈 content from each feature, dataset and case (%) (Experiment 5) 

Dataset Feature (i) [%] (ii) [%] (iii) [%] 

A MAV 0.700 0.680 0.670 

TWL 92.8 92.3 89.2 

ZC 2.88 3.26 3.13 

SLPCH 3.55 3.80 6.99 

B MAV 0.610 0.600 0.640 

TWL 9.29 92.4 90.1 

ZC 2.80 0.311 3.96 

SLPCH 3.71 3.88 5.33 

 

 

 

 

 

 


