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Abstract
Abdominal aortic aneurysm(AAA) is a common problem encountered which leads to
dilation of the abdominal aorta. One novel way of treating AAA is using endovas-
cular aortic repair (EVAR) where a polymer stent graft (SG) is used to redirect
blood flow. Post operative concerns are common with EVAR like stent graft mi-
gration that are caused due to displacement forces acting on the ends of the SG.
In this thesis, the aim is to correlate experimental results with a developed compu-
tational model which is used to evaluate forces acting on the ends of an iliac limb
stent graft. Chosen liquid for the experiment was water as pressure is said to be
the main driving force and viscous effects are negligible. Displacement forces are
numerically evaluated using a finite volume approach for fluid-structure interaction
(FSI) with the open source tool OpenFOAM for different pressures (145/80, 170/90,
195/100 mm.Hg) and different stroke rates (60, 80 and 100 BPM). Further, different
blood viscosity models are studied and a comparison of forces for Newtonian and
non-Newtonian blood models are presented. Wall shear stress(WSS) and velocity
contours are presented for both blood models and complex flow phenomenon like
secondary flow structures are explained. Viscous forces are found to be negligible
and pressure is the main cause of displacement forces which is consistent with the
experiment and justifies the usage of water in the experiment. Newtonian and non-
Newtonian models yielded similar results for displacement forces as that of water
and small variations were observed in velocities and WSS.
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1
Introduction

In this thesis, 3D Fluid structure interaction(FSI) analysis is perfomed for a stent
graft. Preliminary analysis is conducted with water to evaluate forces that lead to
migration of the stent graft and it is validated with the existing experimental results
by Roos et al[16]. Further, analysis is performed with blood as the fluid medium
to study wall shear stresses and evaluate non-Newtonian effects. Even though the
non-Newtonian effects may not have a significant effect on the displacement forces,
it is interesting to see the difference in flow structures formed by assuming blood as
Newtonian and subsequently a non-Newtonian fluid.

1.1 Background
Abdominal Aortic Aneurysm (AAA) is irreversible dilation of the abdominal aorta
that occurs commonly among males over the age of 65[11] .Common surgical proce-
dures include insertion of a stent graft which is a wire mesh woven around a synthetic
and flexible graft material [13] to redirect flow of blood in the diseased artery. Two
most commonly preferred surgical methods are open aortic repair (OAR) and en-
dovascular aortic repair (EVAR). OAR involves stitching the stent graft with the
blood vessel [16] and in EVAR, a graft is inserted from iliac limbs to the affected
area such that the aneurysm isn’t affected by the pulsatile blood flow. EVAR can
lead to post operative complications like endoleaks which is blood flow into the cav-
ity surrounding the stent graft, graft migration and eventually rupture. Stent graft
migration is of utmost importance when there is distal(downstream) movement in
the proximal(upstream) portion of the stent graft.
Experimental work was performed evaluating the displacement forces that cause
stent graft migration by Roos et al[16], but water was chosen as the fluid medium.
A computational model was setup by Anderson and Pilquist[2] which is considered
as a baseline but realistic boundary conditions were not considered. Other compu-
tational studies have been performed that estimate the magnitude of forces and the
biomechanical factors that lead to migration [11, 13].

1.2 Purpose
The aim of this thesis is to computationally validate the experiments conducted by
Roos et al[16]. In the paper, they attributed the use of water instead of blood stat-
ing that the shear component of forces contribute 1 to 3 % of the total displacement
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1. Introduction

forces and hence the viscous effects would be negligible. Hence, the contribution of
viscous forces needs to be studied. Pressure is said to be the major contribution for
displacement forces and this needs to be shown during the course of the thesis. Sub-
sequently, blood is used as the fluid medium and displacement forces are calculated
to show that the results for blood and water are similar. Blood is a non-Newtonian
fluid, hence different viscosity models for blood are studied to understand its true
nature. Even though, viscosity isn’t a major contribution to the developed forces,
understanding the secondary flow structures developed due to local geometry effects
and comparing Newtonian and non-Newtonian flows might provide an insight into
flow structure and vortex formation in stent grafts.

1.3 Literature survey
The overall perspectives on the thesis can be summarized as displacement forces,
blood viscosity, flow in stent grafts and an attempt to explain the complex secondary
flow structures formed. Literature on each of these are studies separately to give
better insight.

1.3.1 Displacement forces and stent graft migration
Important work on flow in stent grafts, their displacement forces and stent graft
migration was performed in a series of papers by Li and Kleinstruerer[13, 12, 11]. In
[13], FSI studies were performed for a diseased aneurysm and results were compared
with a stented aneurysm. After placement of stent graft, noticeable changes were
observed in the surrounding pressure, maximum wall stress. Geometric parameter
changes also affect the developed drag force. Pressure in the surrounding regions,
maximum wall stress significantly decreased. It was also observed that increase
in exit pressure boundary conditions significantly increased drag forces. Accord-
ing to [12], stagnant blood around the stent graft will turn into an intraluminal
thrombi(ILT) that applies additional pressure on the outer-wall of the graft. This
pressure affects the drag force or displacement forces acting on the stent graft. In
[11], the drag force curve obtained behaves similarly as pressure. Increase in diam-
eter of the stent graft shows a larger drag force developed. Also, the paper states
that the contribution of viscous forces is 1% to % where pressure is said to be the
main driving component.
According to [1], increase in iliac limb angulations i.e. increase in bend of the pipe
increases sideways displacement forces and contributed to 91 % of the total displace-
ment forces. Liffman et al [14] suggested that when self expanding forces are used
in stent grafts, the downward forces may exceed the force required to dislodge the
graft. However, when the angulation increases, sideways component increases which
adds additional force to dislodge the graft and eventually lead to migration. The
paper also produced analytical solutions with and without gravity which could be
useful in cases where patient specific geometry is not utilized, such as ours. How-
ever, the three papers mentioned here do not utilize fluid structure interactions and
assume the graft material to be rigid.
To sum it up, increase in diameter, exit pressure and graft angle increases the drag
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1. Introduction

force (displacement force). Also, drag force behaves similar to the exit pressure
waveform. Also, viscous contribution is 1 to 3% of the total displacement forces.

1.3.2 Non-Newtonian flow
Flow in large arteries usually assume that blood flow is usually Newtonian but this is
not the case always. Li and Kleinstreurer utilized the Quemada non-Newtonian vis-
cosity models ( which is an extension of the Casson model discussed in 2.4). Specific
studies where Newtonian and non-Newtonian model contributions to displacement
forces are far from few. One such study where FSI with non-Newtonian fluids on
a stent graft is performed by Janela et al[8]. They observed that a non-Newtonian
model have a very small impact on graft sideways displacement comapred to the
Newtonian model. Most studies utlize a Carreau non-Newtonian model to model
blood while studying displacement force components [14, 5]. Work by Figueroa et
al and Curien et al utilize a Newtonian model and see no observable differences in
the magnitude of displacement forces[1, 6]
Extensive studies have been done where Newtonian and non-Newtonian models have
been compared [9, 10]. These studies are however for the entire aorta. We can how-
ever assume similar flow structures formed when there are no angulations in the
graft. There are observable changes in the peak velocity and flow structures de-
veloped during the entire cardiac cycle between the models. To conclude, most
studies utilize non-Newtonian models while simulating arterial flows, however for
stent grafts, studies are far from few comparing different models. More studies
specific to non-Newtonian regimes and viscosity models are in section 2.4

1.3.3 Secondary flow structures
According to [20], secondary flows are developed when there is centripetal accelera-
tion that causes a radial pressure gradient to be developed. This pressure gradient
drives the slower moving fluid near the vessel wall towards the center, while the faster
moving fluid at the core is moved outwards. These are very common in physiological
flows. According to [20], these flows are governed using Dean’s number (De) which
occurs in curved structures. Hence, larger the Dean number, larger the acceleration.
Ishikawa[7] performed a study using the Bingham non-Newtonian model and noted
that the non-Newtonian effects tend to weaken the strength of the vortex and are
more prevalent during Low Reynolds’ numbers. Malony et al stated that taper to-
wards the distal end reduces velocity magnitude and eventually the secondary flow
structures formed. Biasetti et al [3] studied the vortex structures formed using the
lambda 2 method over the cardiac cycle in a patient specific aneurysm.

1.4 Assumptions and limitations
• Blood is considered a single phase fluid in this work and the compressibility

effects are neglected. Blood in reality, is a multiphase fluid in which, the red
blood cells and leukocytes are chosen as the dispersed phase and surrounding
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1. Introduction

plasma is chosen as the carrier phase. Due to already existing complexity in
the problem statement, multiphase nature of blood is not modelled.

• Majority of flows that are physiological in nature especially in large arteries
are laminar. Onset of turbulence is unclear in these kind of flows according
to literature. Hence, the effects of turbulence on the flow structures are not
considered.

• A stent graft consists of a flexible graft material on which a wired mesh stent is
woven. The stent however is geometrically and numerically difficult to model
and hence only the graft material is modeled. The graft material is assumed
to be linear, isotropic material so the anisotropic effects of the solid material
are not considered.

• According to Li and Kleinstruerer[12], increase in sac pressure (pressure ap-
plied by stagnant blood on the stent graft wall) after EVAR might be a cause
of stent graft migration. However, sac pressure is not taken into account.

• Only half section of the graft is modelled to save computational time. This
could pose as a problem due to the fact that the developed flow structures
may not be symmetrical.

• The effect of gravity is not considered i.e. the patient is assumed to lying
horizontally

• Only one distal extension of the iliac limb is modelled.

4



2
Theory

A finite volume(FV) approach is utilized to discretize the fluid and solid governing
equations. Section 2.1 gives an overview of the governing equations for fluid medium
using the Eulerian formulation. Section 2.2 gives an overview of the solid governing
equations using the updated Lagrangian formulation. Section 2.3 explains the cou-
pling algorithm for fluid and solid equations in the solver. Section 2.4 explains the
different viscosity models, their merits and limitations. Section 2.5 lists the dimen-
sionless numbers used that help determine dynamic similarities between the model
setup and physical stent graft. Section 2.6 gives a brief overview of the experiments
by Roos et al[16]. Finally, section 2.7 shows how signal analysis is performed and
final velocity profiles are obtained to be utlized for simulation.

2.1 Mathematical Formulation of Fluid Equations
The fluid equations are solved using the Eulerian approach. Solution of the flow
field is calculated using the PISO (pressure implicit with splitting of operator) algo-
rithm, which is an iterative procedure for solving equations for velocity and pressure
whilst solving transient problems. First an initial guess of the pressure and velocity
fields are made using discretized equations of momentum and then corrected using
a discretized pressure correction equation. The only noticeable change is in the mo-
mentum conservation equation where the effect of gravity is ignored (assume that
the patient is lying still) and hence the term with body force vanishes. Final form
of the momentum equation for fluids is given as:

∂u

∂t
= −∇p+ µ · (∇2 · u) (2.1)

2.2 Mathematical Formulation of Solid Equations
Solid equations are solved using the updated Lagrangian formulation. Displacements
and motion of the structural part are obtained which is in-turn transferred to the
fluid equations. If we consider a continuum with a Volume, Vs and bound by a
Surface, Ss, the governing fluid equations are given by

d

dt

∫
Vs

ρdVs +
∮
Ss

ns.ρ(v − vss)dS = 0 (2.2)

5



2. Theory

which gives the conservation of mass and

d

dt

∫
Vs

ρvdVs +
∮
Ss

ns.ρ(v − vss)vdSs =
∮
Ss

ns.σdSs +
∫
Vs

ρfbdVs (2.3)

which gives the conservation of momentum. Final form of linear momentum updated
in a Lagrangian formulation is given by∫

Vs

ρs
∂δv

∂t
dVs −

∮
s
ns.(2µ+ λ)∇δudSs =

∮
Ss

ns.qdSs +
∫
Vs

ρsδfbdVs (2.4)

where q is given as

q = µ(∇u)T+λtr(δu)I−(µ+λ)∇δu+µ∇δu.(δu)T+1
2λ(∇δu : ∇δu)I+

∑
s

.δFs (2.5)

where q is the tensor that consists of nonlinear as well as coupling terms.The com-
plete derivation of the final form of the solid governing equations and also the dis-
cretization procedure is given by Jasak and Tukovic[19]. It is interesting to note that
a finite volume formulation is utilized to discretize the solid equations. Typically
a mixed finite volume-finite element method is utilized to solve FSI problems[2].
There are advantages and limitations using a finite volume approach to discretize
the solid equations. the advantage being there is a single node between solid and
fluid interface which doesn’t lead to sudden gradients being formed. Also, leakage
of the fluid domain into the solid domain as observed by Anderson and Pilquist [2]
isn’t noticeable in this approach. Disadvantages of this approach is the fact that
the solid domain needs to have appreciable thickness and this approach wouldn’t be
applicable to thin or shell geometries as they would have negligible thickness.

2.3 Fluid Structure Interaction
Coupling of fluid and solid governing equations is an integral process. The system
of equations for fluid and solid domains are solved separately and sequentially for
each time step. Flow field calculation is performed as mentioned in 2.1. Shear
and pressure forces are obtained after each time step once the solution of the flow
field is converged and are assembled into a traction vector. The traction is then
introduced into the structural equations in the final form as shown in 2.5 and as
seen in figure 2.1a. Structural displacements are obtained by solving the system
of discretized linear momentum conservation equations for an elastic solid in the
updated Lagrangian description as shown in 2.2. Finally, the fluid and structural
meshes are both moved in accordance with the calculated displacements and this
procedure is iterated till the displacement residual reaches the specified convergence
criteria. The steps of the solution procedure can be summarized as seen in figure

6



2. Theory

Figure 2.1: Coupling algorithm explained as (a) shows the transfer of forces from
flow field to the structral field and (b) shows flow chart after coupling takes place.

2.4 Viscosity Models

Viscosity of blood is an important hemodynamic parameter as it helps compute
wall shear stresses, which is an indicator of many diseases. Comprehensive work on
compiling different blood viscosity models is done by Yilmaz and Gundogu [21]. As
explained by [9], there is no one universally accepted non-Newtonian blood model as
strain rates vary from 1 to 1000 s−1 over a cardiac cycle. In large arteries, blood is
usually assumed to be Newtonian. However, Johnston et al and Karimi et al[9, 10]
stated that Newtonian behaviour is valid when the strain rate exceeds 100s−1 and
is a common occurrence in large arteries. So at lower shear rates, blood behaviour
is strictly non-Newtonian. Non-Newtonian behaviour can be further categorized
as shear thinning, thixotropy and viscoelasticity. Thixotropy and viscoelasticity
are transient in nature and are said to be of secondary importance as they vanish
at exceeding strain rates[15]. Hence, shear thinning is the widely accepted blood
non-Newtonian behaviour. Blood viscosity models as seen in table 2.1 are mathe-
matical formulations obtained using parameter fitting experimental data . Exper-
imental works regarding blood viscosity have been widley conducted by Cho et al
and Skalak[4, 17]. The models shown in table 2.1 are the ones available within the
solver. There are many more viscosity models for blood , however we restrict ourself
to the ones shown in the table.

Casson model is the most widely utilized blood model, but tends to predict higher
viscosity near Newtonian conditions. It takes into account Hematocrit(H) which is

7



2. Theory

Viscosity Model Effective Viscosity
Casson µ(γ̇) = √µc +

√
τc

γ̇
;µc = 0.00414,τc = 0.0038

Carreau µ(γ̇) = µ∞ + (µo − µ∞)[1 + (λγ̇)2]n−1
2

µo = 0.056Pa− s,µ∞ = 0.0035Pa− s, λ = 3.313005, n = 0.3568

Cross µγ̇ = µ∞ + (µo−µ∞)
1+(λγ̇)a ;

µo = 0.0364Pa− s, µ∞ = 0.0035Pa− s, λ = 0.38, a = 1.45
Herschel Bulkley µγ̇ = k(γ̇) + τy

γ̇

Power Law µγ̇ = k(γ̇)(n− 1); k = 0.017, n = 0.708

Table 2.1: Viscosity relations for different non-Newtonian models

the concentration of red blood cells (RBC’s). Carreau model fits the experimental
set of data provided by [4] and since it’s a bounded model, computational cost
significantly reduces [3]. As observed from the table, when shear rates tend to zero
Casson, Cross and Herschel-Bulkley tend to infinity, hence they aren’t bounded.
Cross model is an extension of Carreau model which can also be used to simulate
blood. This model has been used by [10], but over-predicted the non-Newtonian
effectiveness. Power law model works well for mid shear ranges and has a linear
behaviour. It over predicts the non-Newtonian behaviour at higher shear rates.

2.5 Similarilty Parameters
While modelling physiological flows, a geometrical similar definition is a natural
starting point. However, dynamic similarity needs to achieved as well which means
that the modelled system must reach the real flow dynamics. This is achieved
through similarity parameters.

2.5.1 Reynolds Number
The Reynolds number(Re) for an internal pipe of diameter(d) is given by

Re = ρUd

µ

Physically, the Reynolds number can be described as the ratio of inertial forces to
the viscous forces. It can also be represented as the ratio between Momentum flux
and wall shear stress. However, it must be noted that µ is the Newtonian viscosity
and for non-Newtonian fluids Re varies as a function of shear stress and strain rates.
Re helps in determining regions where the intertial effects are more dominant than
the viscous effects and vice-versa. This is particularly useful in our current setup.

2.5.2 Womersley number
The Womersley number(α)is used for unsteady flows especially pulsatile flows that
are common in the human body. α can be represented mathematically by
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2. Theory

α = d

2

√
2π
νT

The physical significance can be explained as ratio between diameter and the laminar
boundary layer growth over time period T.

2.5.3 Dean Number
In curved planar geometries, secondary flow structure formation is a common phe-
nomenon. This can be evaluated using Dean Number De. It is givenby the formula

De = 4
√
D

r
Re

Physically it can be represented as balance between inertial force, viscous forces and
centripetal forces. Hence, radius of curvature (r) and Reynolds number (Re) affect
De. De plays a major role in determining local curvature effects.

2.6 Experimental Setup
An experimental setup to resemble aortic perfusion is constructed where, water at
room temperature is forced in a circuit consisting of a roller pump and silicone tubing
. Roller pump is used to simulate a heart beat and peripheral resistance is achieved
with water/air-filled container in combination with pinch valves. By adjusting the
pinch valves and water level in the containers, the fluid pressure could be altered
with high accuracy. To minimize disturbances in the pulse curve, an additional
water/air container is used to dampen the velocities. Obtained beats at the inlet is
converted to velocity and used as a boundary condition.
An iliac limb stent graft (135 X 16 mm) was inserted into the circuit and fixed at
its proximal and distal ends to a strain gauge load cells as shown in 2.2. Values are
measured for different angulations and stroke frequencies of the stent graft. One
major assumption is that the fluid chosen is water as the density of water and blood
like fluids are of similar magnitudes and viscosity of the fluid does not play a major
role in determining the outcome of the forces developed. Also, the measurement of
pressure is delayed at the outlet by a small duration. This time lag is not considered
in the outlet boundary condition and the measurement is considered instantaneous
in the computational model.
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2. Theory

Figure 2.2: Experimental Setup (Figure reproduced with permission from Håkan
Roos[16]
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2. Theory

2.7 Physiological Input
The experimental data received is in the form of beats per minute as shown in
figure 2.3. This data is converted to velocity by assuming an ideal stroke volume
(mL/beat). Experimental flow rate for different stroke frequencies can be found
in Roos et al[16]. Final velocity is achieved and signal analysis is carried out by
ensemble averaging the obtained velocities. Hence the final achieved pressure and
velocity are averaged over 9 seconds of time to give 1 second of pulse. Final velocity
is calculated using the formula

〈
U

〉
= lim

N→∞

1
N

N∑
n=1

Un

Note that the averaging time may vary depending on the trial in the experiment,
hence an averaged value of 5 experimental trials are taken as the final value.

0 2 4 6 8 10

Time(sec)

-50

0

50

100

150

200

B
P

M

Figure 2.3: Physiological BPM data measured from the experiment for 60 BPM,
145/80 mm.Hg
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3
Methodology

This chapter explains the computational setup to obtain numerical values of forces
ad displacement. Section 3.1 shows the geometry and mesh that are utilized for
the simulation. Section 3.2 lists the material properties for the fluid(blood) and
solid(e-PTFE). Finally, section 3.3 shows the boundary conditions used to solve the
set of governing equations.

3.1 Geometry and Mesh
The geometry can be chosen as a flexible pipe, but the entrance and exit region
are chosen as rigid as seen in figure 3.1. The entrance length (Le) is chosen as L/2
[2], however an accurate value of Le is tough to determine in our case as the Le
of non-Newtonian fluids can vary from 3D to 9D [9], where D is the characteristic
length of the domain.

Figure 3.1: Geometrical setup of the case

13



3. Methodology

Figure 3.2 explores the meshes used during simulation and 3.2a shows the blocking
structure. Figure 3.2b highlights meshing in the flexible region, where the dark blue
region highlights the structural mesh and lighter inner region highlights the fluid
region. A separate fluid and solid mesh is generated and merged together using the
meshing platform ICEM CFD. 108, 360 hexagonal elements are used.

Figure 3.2: Fihure showing (a)Front view of the mesh and (b) Mesh of the whole
geometry and highlighting mesh in the flexible region

3.2 Material Properties
The stent graft used is a Gore Excluder iliac limb stent graft(135 x 16 mm) which
has e-PTFE flexible graft material and Nitinol stent material. Since, we are not
taking into account the stent, the material properties of the graft are as follows.
Non-linear effects of the graft material are not considered and a linear elastic model
is considered for solid

Graft properties
• Thickness of the graft= 2.mm
• Young’s Modulus(E)= 1. Mpa
• Poisson’s ratio = 0.27

Fluid properties

• Density (ρ)= 1060 kg
m3 for blood and 1000 kg

m3 for water

14



3. Methodology

• Blood viscosity Newtonian is taken as µ = 0.0035Pa− S
• Blood viscosity non-Newtonian is given by the Bird-Carreau viscosity model

as µ = µ0 − µ∞[1 + (λγ)2]n−1
2 where µ0 = 0.056Pa − s, µ∞ = 0.0345Pa − s,

n = 0.3568, λ = 3.313s

3.3 Boundary Conditions
Inlet velocity profile as shown in ref is used and outlet pressure as shown in 3.3 is
used. It is important to note that the curves generated in figure 3.3b are only for 60
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Figure 3.3: Profiles showing (a) Inlet velocity and (b) Outlet pressure boundary
conditions

BPM. Similar profiles are genrated for different stroke frequencies and simulations
are conducted for all.
Table 3.1 shows the common boundary conditions used to solve the setup of

system of governing equations. A zero displacement boundary condition is used for
the solid domain which means only after the first time step will there be a motion
and coupling as discussed in section 2.3. Velocity and pressure profiles change for
each stroke frequency and perfusion pressure.

Boundary Type of condition
Inlet Input as seen in figure 3.3a
Outlet Output as seen in figure 3.3b
Rigid wall No-slip
Fixed wall Moving wall velocity
Symmetry Symmetry plane

Table 3.1: Tabular column showing boundary conditions used in the simulation
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4
Results

This chapter explains results obtained after performing numerical simulations based
on setup discusseds in Chaper 3. Section 4.1 gives a brief perspective on choice of
viscosity model suitable for this problem statement.Section 4.2 provides an insight
on correlation of numerical results with the experiment and reasons why they maybe
different and also forces obtained by Newtonian and non-Newtonian blood models.
Section 4.3 and 4.3.5 provide insights on flow structures developed, their complex
nature and behaviour of wall shear stress across the geometry and the its impact.

4.1 Viscosity Models
Determining which non-Newtonian model to utilize for blood is a difficult choice
owing its complex nature. Here, we try to understand how blood behaves in a
channel flow of width D and length 30D. The section chosen is long enough for
the flow to be fully developed. This is a preliminary study in trying to understand
which viscosity model for blood to use from the existing ones implemented in the
solver. Blood behaves like a Newtonian fluid at shear rates greater than 100 s−1 [10,
21]. Keeping that in mind, Carreau, Cross and Casson viscosity models show that
behaviour in figure 4.1. However, the Carreau model shows a better correspondence
to previously tested blood viscosity by [17]. It shows a good correspondence in the
non-Newtonian regime compared to Casson which is important from the perspective
of current work being carried out. Power-Law follows a linear behaviour as expected.
Herschel-Bulkley shows good correspondence in the non-Newtonian regime however,
it tends to a Newtonian behaviour at a higher strain rate than desirable. Hence,
out of the existing viscosity models implemented in the solver, the Carreau model is
utilized to simulate non-Newtonian blood flow. Also, the bounded nature of Carreau
models help in faster computation times compared to non-linear blood viscosity
models.[3] which was also discussed in section 2.4
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4. Results

Figure 4.1: Viscosity Profiles for a 2D pipe far upstream

4.2 Forces and Displacement

4.2.1 Water
Water is chosen as the fluid medium initially. This is done to check the efficacy of
the developed computational model and also to validate the obtained results with
Roos et al [16]. Inlet velocity is shown as specified in the figure 4.9a and outlet
pressure as per 4.9b.
Computationally obtained results are shown in plots 4.2, 4.3 and 4.4. We observe
that the displacement forces increase with rise in stroke frequency and perfusion
pressure which is consistent with literature. Experimentally obtained values accord-
ing to Roos et al[16] are shown in table 4.1. The gradient of variation between the
experiments and numerically obtained forces are similar except for 195/100 mm.Hg.
For 195/100 mm.Hg, the forces seem to be of a similar magnitude compared to the
experiments.
Since the computational model is quasi-symmetrical in nature, the total displace-
ment force acting is calculated using

F =
√

(Fproximal)2 + (Fdistal)2

[16] and for a peak pressure of 195/100 mm.Hg and 100 BPM, it is 2.4621.N and
similar to computational result obtained by [11] and experiments by [16].
The exact reason for variation from the experiment is difficult to point out but it
could be attributed to the assumptions both in the experimental and well as the nu-
merical model. The transience in the plot could be attributed to the discretization
scheme used for gradient terms.
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(a) (b)

Figure 4.2: Displacement forces (a)Upstream and (b)Downstream for water at
145/80 mmHg and different stroke frequencies

(a) (b)

Figure 4.3: Displacement forces (a)Upstream and (b)Downstream for water at
170/90 mm.Hg and different stroke frequencies

4.2.2 Blood
Blood is subsequently chosen as the fluid medium for the same boundary condi-
tions as section 4.2.1. Simulations are performed choosing a constant Newtonian
blood viscosity and a non-Newtonian Bird-Carreau viscosity model. The results are
compared for each stroke frequency and exit pressure waveform. As observed from
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(a) (b)

Figure 4.4: Displacement forces for water at 195/100 mm.Hg and different stroke
frequencies

Stroke
Frequency

Pressure
(mmHg)

Experimental
Forces(N)

FSI
forces water(N)

FSI
forces Newtonian
blood (N)

FSI forces
non-Newtonian
blood (N)

Proximal
(N)

Distal
(N)

Proximal
(N)

Distal
(N)

Proximal
(N)

Distal
(N)

Proximal
(N)

Distal
(N)

60BPM
145/80 0.85±0.07 0.92 ±0.03 1.274 1.273 1.264 1.263 1.264 1.263
170/90 1.28 ±0.04 1.36 ±0.01 1.510 1.508 1.482 1.482 1.481 1.481
195/100 1.69±0.03 1.78±0.02 1.710 1.710 1.691 1.693 1.689 1.692

80BPM
145/80 0.85 ±0.02 0.86 ±0.03 1.337 1.333 1.332 1.329 1.331 1.326
170/90 1.28±0.05 1.32±0.05 1.563 1.559 1.559 1.555 1.558 1.552
195/100 1.70 ±0.07 1.76±0.06 1.776 1.772 1.767 1.764 1.766 1.760

100BPM
145/80 1.01±0.12 1.02±0.08 1.358 1.356 1.339 1.337 1.337 1.333
170/90 1.35±0.07 1.39±0.03 1.576 1.573 1.558 1.555 1.556 1.551
195/100 1.71±0.05 1.77±0.03 1.770 1.767 1.746 1.743 1.743 1.739

Table 4.1: Table comparing experimentally and numerically obtained displacement
forces for different pressure waveforms and stroke frequencies

figures 4.5,4.6 and 4.7, the behaviour is similar to that of water. With increase
in stroke frequencies and perfusion pressure, the magnitude of displacement forces
increase. It is interesting to note that the magnitude of displacement forces are the
same for water and blood as seen in table 4.1. This could be attributed to the fact
that the viscous forces play a very minor role in contribution to the displacement
forces[11, 16].
It is also observed that Newtonian and non-Newtonian displacement forces are of
similar magnitude. But, forces aren’t an accurate comparison of Newtonian and
non-Newtonian comparison. As seen in figure 4.8, the contribution of viscosity to
the final displacement force is negligible where pressure plays the major role and
also the comparison of forces between Newtonian and non-Newtonian show an in-
significant variation of viscous forces.
An interesting observation comparing results from section 4.2.1 and the current sec-
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Figure 4.5: Displacement forces for Newtonian and non-Newtonian blood models
(a) Upstream and (b)Downstream at 145/80 mm.Hg and different stroke frequencies
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Figure 4.6: Displacement forces for Newtonian and non-Newtonian blood models
(a)Upstream and (b)Downstream at 170/90 mm.Hg and different stroke frequencies

tion is that the two fluids are slightly out of phase. These could be attributed to
the varying Womersley number. However, further analysis on this needs to be done
to check response of Newtonian and non-Newtonian models with different phases in
the cardiac cycle similar to work done by [10].
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Figure 4.7: Displacement forces for Newtonian and non-Newtonian blood models
(a)Upstream and (b)Downstream at 195/100 mm.Hg and different stroke frequencies
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Figure 4.8: For a 145/80 mmHg and 60BPM case (a) Comparison of pressure and
viscous force and (b) Comparison between Newtonian and non-Newtonian blood
viscosity models, are shown

4.3 Flow structures
This section gives an insight into the flow structures developed inside the stent graft.
These flow structures are usually complex in nature but we will attempt to explain
them in order to compare the different viscosity models. It must be kept in mind
that smallest scales of turbulence are not considered and a symmetry condition is
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4. Results

(a) Inlet velocity waveform (b) Exit pressure waveform

Figure 4.9: Inlet and Outlet waveforms for 60BPM, 145/80 mm.Hg

assumed. As discussed in 1.4, the flow structures developed may not be symmet-
rical hence, the velocity contours obtained may not give an accurate description of
flows in such geometries. As the entrance and the exit region of the fluid region are
considered rigid ,sudden onset of coupling (between fluid and solid) may generate
transience, hence the results are calculated after one complete cardiac cycle.
Inlet velocity is given by 4.9a and outlet pressure is given by 4.9b. Flow is evaluated
at four intervals which are thought to be of importance. At time(t)=0.1 seconds
where peak velocity is obtained. At t = 0.4 seconds where peak deceleration is
observed. At t = 0.6 seconds where the deceleration is complete and the diastolic
period starts and at t = 0.85 seconds where viscous effects might be observed.

4.3.1 Peak velocity (t)=0.1 s

At t = 0.1 seconds, the inertial effect dominates and as seen from 4.14, no signifi-
cant difference between the velocity magnitudes for Newtonian and non-Newtonian
model. As explained in 3.1, entrance length (Le) needs to be varied as the calcula-
tion of the same depends on Re and this changes depending on the model. Hence,
the flow entering the flexible region need not fully developed as observed in plot
4.10a at the entrance and the exit as seen in plot 4.11a. However, the magnitude
of velocities between the two models vary slightly. Far downstream effects on the
rigid section maybe attributed to effects from the previous cycle and hence can be
neglected at this instant of time. Velocity contours upstream are seen in figures
4.12a, 4.12e for Newtonian and non-Newtonian respectively. We observe upstream
that the non-Newtonian plug region is larger. This could indicate a more developed
flow compared to Newtonian model. We however find a more uniform distribution
downstream with small variations as seen in 4.13a and 4.13e
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(c) Upstream velocity at 0.6 sec
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(d) Upstream velocity at 0.85 sec

Figure 4.10: Velocity profiles of Newtonian and non-Newtonian blood at the en-
trance for 60 BPM 145/80 mm.Hg

4.3.2 Peak deceleration at (t)=0.4 s

At t = 0.4 seconds, peak deceleration occurs which means that Re decreases rapidly.
We notice a distinct flow separation that occurs in the mid portion of the stent
graft but the onset of which begins at the entrance seen on figure 4.15. This flow
separation occurs because of complex secondary flow structures that are developed
due to curvature effects. At the onset of curvature, lateral centripetal acceleration
occurs which causes a pressure gradient in the radial direction. This ensures that the
faster moving fluid is swept outwards and the slower moving fluid is pushed towards
the vessel wall. As seen in plot 4.10b, at the entrance non-Newtonian profile varies
significantly compared to the Newtonian profile. This is an indication of larger
separation region, whereas at the exit, as the curvature effect completely reduces,
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Figure 4.11: Velocity profiles of Newtonian and non-Newtonian blood at the exit
for 60 BPM 145/80 mm.Hg

the profiles are similar as evidenced in figure 4.11b.Velocity gradients remain similar
at this stage with small variations the mid region as seen in figures 4.12b and 4.12f
in the upstream region.

4.3.3 End of deceleration at (t)=0.6 s
At t = 0.6 seconds, the diastolic cycle begins. This is where the Re tends to zero
and viscous effects take precedence. Secondary flow structures are enhanced and
recirculation occurs as seen in figure4.16.However, velocities close to the outer wall
try to attain a similar velocity as the inner wall as evidenced in figures 4.12c, 4.12g.
The non-Newtonian velocity magnitude as expected significantly reduces as there
is better viscosity prediction near the wall. Vortex formation is heavily dependent
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.12: Velocity contours of (a)-(d)Newtonian and (e)-(h)non-Newtonian
blood at time(t)=0.1, 0.4, 0.6 and 0.85 seconds the entrance for 60 BPM 145/80
mm.Hg

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.13: Velocity contours of (a)-(d)Newtonian and (e)-(h)non-Newtonian
blood at time(t)=0.1, 0.4, 0.6 and 0.85 seconds the exit for 60 BPM 145/80 mm.Hg

on adverse pressure gradient created and friction at the wall and this tends to be
lower in non-Newtonian models [7]. Positive to negative variation in the velocities
as seen in plots 4.10c and 4.11c are because of the flow separation region. Velocity
magnitude is greater at the inner wall, but a far greater outer velocity magnitude is
seen in plot 4.10c for Newtonian model.

4.3.4 End of diastole at (t)=0.85 s
At t = 0.85 seconds, the diastolic almost ends. This is where the Re is constant .
An accurate prediction of the flow structures in this region is difficult as the flow
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(a) (b)

Figure 4.14: Velocity contours for (a)Newtonian and (b)non-Newtonian 60 BPM
145/80 mm.Hg at 0.1 seconds

becomes very chaotic. However, as seen in figure4.17, a vortex structure is formed at
the entrance region due to reduction in De. This could be the low velocity counter
rotating vortex called as Dean vortices. Flow separation still occurs at the mid
section owing to the curvature effects but the magnitude of velocity decreases that
leads to recirculation effects at the exit. The magnitude of non-Newtonian lower is
higher compared to Newtonian velocity. Flow separation region decreases further as
evidenced in plots 4.10d and 4.11d. Velocity gradients differ significantly between
Newtonian and non-Newtonian seen in figures 4.12d, 4.12h and 4.13d, 4.13h.

4.3.5 Wall shear stress (WSS)
WSS is not expected to vary drastically and is expected to have a small magnitude
as the viscous contributions are small. By definition, WSS is the gradient of the
tangential component of velocity magnitude. Since the axial component dominates
the flow in this particular case, the WSS magnitude is small. We see in 4.18 that
there is no difference in WSS at 0.1 seconds as the tangential component is negligible.
At t=0.45 s, we see a slight variation of WSS in figure 4.19. Further variation at the
entrance and significantly at the exit can be witnessed in figure4.20. We observe a
smoother variation for WSS in 4.21the non-Newtonian profile as there is a better
prediction of viscosity near the wall , hence the tangential component increases.
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(a) (b)

Figure 4.15: Velocity contours for (a)Newtonian and (b)non-Newtonian 60 BPM
145/80 mm.Hg at 0.4
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(a) (b)

Figure 4.16: Velocity contours for (a)Newtonian and (b)non-Newtonian 60 BPM
145/80 mm.Hg at 0.6
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(a) (b)

Figure 4.17: Velocity contours for (a)Newtonian and (b)non-Newtonian 60 BPM
145/80 mm.Hg at 0.85

(a) (b)

Figure 4.18: WSS for (a)Newtonian and (b)non-Newtonian 60 BPM 145/80
mm.Hg at 0.1s
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(a) (b)

Figure 4.19: WSS for (a)Newtonian and (b)non-Newtonian 60 BPM 145/80
mm.Hg at 0.4s
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(a) (b)

Figure 4.20: WSS for (a)Newtonian and (b)non-Newtonian 60 BPM 145/80
mm.Hg at 0.6s

(a) (b)

Figure 4.21: WSS for (a)Newtonian and (b)non-Newtonian 60 BPM 145/80
mm.Hg at 0.85s
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5
Conclusion and Future Work

5.1 Observations and Conclusions
One of the main objectives of the masters thesis was to compare the experimental
results obtained by Roos et al[16] with the developed computational model using
water as the fluid medium. We observe that forces obtained in the computational
model did not match the experiment except for a pressure of 195/100 mmHg. The
gradient of difference between the forces obtained are however similar. The side-
ways displacement force at the mid portion of the stent graft obtained for 195/100
mm.Hg is similar to the value obtained by Roos et al and Li Kleinstreuer.[16, 11].
Subsequently, after using blood as the fluid medium, no changes were observed in
the displacement forces. Temporal variation of drag forces are similar to the exit
pressure waveform used for both blood and water.
Another scope was to indicate the importance of pressure and viscous forces. As
seen from 4.2.2, pressure is the main cause for displacement forces and the viscous
force contribution is insignificant. This could be a compelling argument for using
water in the experiments by Roos et al[16].
Evaluating non-Newtonian behaviour and comparing the same with Newtonian
blood model is another scope of the project. There were no observable changes be-
tween Newtonian and non-Newtonian magnitudes of displacement forces. Viscous
force differences were also negligible between the two which further shows viscosity
plays a minimal role in the outcome evaluating forces.
Complex secondary flow structures are formed during deceleration phase of the car-
diac cycle. Flow separation is attributed to local curvature effects and increasing
Dean number(De) which causes a radial pressure gradient. At the diastolic phase,
the non-Newtonian effects are further visible with reduced velocity magnitudes com-
pared to Newtonian model. Vortices are weakened in the non-Newtonian model due
to difference between friction at the wall and pressure gradient [7]. Negligible dif-
ferences in WSS as observed between Newtonian and non-Newtonian model.

5.2 Future Work
Geometrically: A parametric study similar to [18] could be carried out where di-
ameter changes and different angulations are studied to see the geometric effects on
temporal variation of displacement forces.
Structurally: Graft material is assumed to be linear isotropic when in reality the
material. It would be interesting to study the non-linear and orthotropic nature of
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the material.
Fluid: This is the area which is wide open for future work. Accurate turbulence
models can be used to study the evolution of flow structures developed. A 3-D
model could be used to study vortex structures in detail.
Other: A 1-D simulink model to map dynamic variations of pressure and velocity.
This is to develop an accurate computational model similar to the experimental
conditions.
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