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Abstract
Cloud-based services are becoming more and more common thanks to the ever-
growing cellular networks technology. There are several research works that aim at
integrating cloud computing with different industries. The automotive industry is
one of those areas that can benefit a lot from connectivity and cloud computing.
Vehicular systems and cloud computing can be integrated to provide a safer and
better driving experience. One of the areas that connected vehicles can benefit from
cloud computing is remote diagnosis. Modern vehicles are made up of thousands
of computing devices that work together. Troubleshooting and diagnosing these
complex systems is not a trivial task as there are lots of components to diagnose
and monitor. Currently, there are modern vehicles that store diagnostic data on a
local hard drive and manufacturers use that offline diagnostic data to troubleshoot
failures. Connected vehicles can leverage the increasingly fast and cheap mobile
wireless networks to log diagnostic data so that it can be accessed and used my the
manufacturers on fly.

Cloud services can help manufacturers diagnose and even maintain vehicles remotely
without recalling them to automotive workshops. They can monitor the different
components while they are working and examine how the components are operating.
This help diagnose problems that are not even detectable by the drivers.

In order to realize the concept of connected vehicles, there is a need to have a ro-
bust cloud back-end system that adapts to data traffic from these vehicles. Vehicular
data traffic is tends to fluctuate from place to place due to the mobile nature of the
vehicles. Cloud instances that run in different geographical areas should be able to
adapt to this changing nature of vehicular data traffic.

Vehicular cloud service, like the other cloud services, it faces a number of challenges
that need to be addressed such as privacy, security, scalability and a lack of stan-
dards. This thesis work aims at studying one of the core challenges: scalability.
There is a need to have an architecture which can accommodate scaling number of
users (connected vehicles, vehicle technicians) and services.

There is extensive research work on autoscaling cloud systems that are not neces-
sarily in the domain of connected vehicles. This work aims at taking advantage
of these works to the area of vehicular cloud services. This is done by first build-
ing a prototype cloud back-end service and using it as a testbed to study autoscaling.

This work proposes a cloud back-end service design and implementation that is
capable of communicating with vehicles and provide access to manufacturers. We
also looked into existing algorithmic implementations that enable vehicular cloud
back-end services to adjust their resource usage according to the encountered traffic
loads. Stress tests enabled us to preliminarily evaluate the implemented algorithm’s
usability in the case of connected vehicles.
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1
Introduction

Cloud technology brought promising advantages in solving re-usability, accessibil-
ity, integration, resource provisioning and modularity challenges in various Internet
applications. The automotive industry could also be benefited from the new era of
cloud computing technology to resolve its challenges. One of the main benefits of
cloud technology is its resource provisioning capability. The scalability capability is
the main benefit of the new emerging technology. This new feature of cloud comput-
ing adds a significant advantage to many Internet applications. With the support of
cloud technology, Internet applications can scale up and down their resource usage
as the demand of their users or client applications traffic load [1].

The concept of scaling up and down at real time demand is called auto scaling or self
adaptiveness. We believe auto scaling property benefits many Internet applications
on using their resources usage and accommodation of numerous clients. It supports
them to scale up and down dynamically on real time demand. Once applications
are deployed to a server in a cloud, the cloud service replicates the application onto
more or few server machines according to its demand of resources. However, the
cloud service could not provide infinite capacity on demand. The capacity of servers
or data centers is also not infinite. But it is supported by virtualization technologies
and it has a significant difference with the capacity of local servers. By the help
of auto scalability feature, we can achieve high utilization of resources, flexibility,
efficiency and reliability in cloud applications.

1.1 Background
Cloud-based services are becoming more and more common as network connections
grow in size and quality. As a result, there are several research works that aim at
providing cloud enabled services [2] to connected vehicles. Vehicular systems and
cloud computing can be integrated to have a better and safer driving experience.
This will result in increase in the number and type of cloud based vehicular ser-
vices. However, vehicular cloud systems face a number of challenges that need to
be addressed such as privacy, security, scalability and lack of standards. More cloud
services also means that there is a need to have a cloud back-end platform to inte-
grate and provide data access to these services. This indicates that there is a need to
have an architecture which can scale depending on the number of traffic generated
by users and services.
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1. Introduction

This thesis work aims at studying one major challenge that vehicular cloud systems
could potentially face: scalability. We propose a cloud back-end architecture that
is capable of communicating with vehicles and providing data to other cloud based
services. In order to make the architecture scalable, we look into algorithmic designs
and implement features that enable vehicular cloud back-end systems to adjust their
resource usage according to the encountered loads. The prototype use case appli-
cation of this system is a business intelligence data visualization application. This
tool is aimed at making use of vehicular data to visually illustrate and summarize
diagnostic information.

1.2 Project Scope

This thesis work is specifically targeted to play a significant role on the automotive
industry and intelligent transport systems. Despite the fact that this project focuses
specific sector, the dynamic scalability concept can be applied for various cloud sys-
tems due to its significant advantages on management of virtual resources.

The self adaptive cloud system provides various functionalities to the transport and
automotive companies. It adds safety and ease of management values to the exist-
ing systems. As discussed in previous sections, the state condition and property of
vehicles such as speed, temperature, engine and other vehicular data is stored in
the cloud system. Therefore, by conducting data analysis in the system, it enables
office users to know and diagnose the condition of vehicles.

Most importantly, this system will be used for maintenance and diagnostic of vehi-
cles remotely. After conducting a thorough data analysis of the vehicular data stored
in the cloud, it helps to take appropriate measures to fix or enhance the vehicles.

It also plays a significant role in safety control in the transportation system. It en-
ables to identify vehicles’ speed and their engine state. If a problem or unexpected
behavior is observed in vehicles, then the specific vehicle will be called for main-
tenance. In addition, it controls drivers activity and makes them to drive safely.
Example: if a driver drives with a high speed, which is not allowed in a city then
he/she can be caught.
In general, the system brings safety and easy of management and maintenance
advantages to the existing automotive and transport systems.

1.3 Project Organization

The project documentation starts with elaboration of the problem and the existing
related works to make things clear for the rest part of the document content. The
project is organized in to chapters, sections and subsections. The project is orga-
nized into the following chapters.
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1. Introduction

Introduction: This chapter introduces the reader about what the project accom-
plishes.

Background: This chapter describes basic concepts used in the project.It also clar-
ifies the values that the project adds to the current cloud systems. The gap that
the projects fills is explained in this chapter.

Related work: In this chapter, a literature review is conducted and relevant points
are identified. Previous related projects and research works are discovered. We have
also made analysis for some of the related works.

Problem Formulation: This chapter discusses the problem that is solved by this.
It clarifies the goals of the project. The motivation for the need of the project is
explained.

Requirements, Specifications and Tests: This chapter details the requirements
of the system. The software specifications that are proposed in order to meet the
requirements. It also explains the tests that are run to ensure that the system is
working properly. Finally the error handling methods and fall-backs are explained.

System Overview: This chapter describes the system prototype at high level and
its functionalities. It discusses the system components and how they are integrated
to solve the stated problem. It also discusses how the system is operated when
deployed in cloud environment.

Prototype Implementation of the Vehicular Cloud Service:This chapter give
detailed explanation and technical details of the cloud back-end system and its com-
ponents.

Autoscaling: This chapter gives an insight of the implemented autoscaling algo-
rithm, the stress test setups, and different assumptions made.

Results: We specified test cases for both the components of the system and for end
to end of the system. This chapter shows the outcomes of the different test cases of
the system and its components.

Evaluation and Discussion: This part discusses about the performance of the
system and its comparison with other existing related systems. The system is eval-
uated by its response time performance and its behavior in different traffic patterns.
So, the details of these all is discussed in this chapter.

Conclusion: Finally, in this chapter the summary of the project is presented.

Future work: This chapter highlights the possible continuation tracks of this
project.

3



1. Introduction

Annotations: This appendix gives explanations of the reference literature cited
and their relation with this project.
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2
Related Work

The increasing relevance of scalability in business applications over the Internet
increased the number of researches in the area. Most of these research works deal
with the scalability of applications in the cloud environment, development of cloud
services for vehicular data analysis, auto scalable model for cloud applications and so
on. These works describe theoretical aspects and suggest about different scalability
architectures and scalability levels for various systems. Concepts and future works of
these paper works will be used as input to achieve auto scalability in our cloud back-
end application. The cloud back-end will be used for vehicular data analysis and
decision making purposes in the automotive industry and transportation systems.
The related works for this project can be categorized as follows.

2.1 Dynamic Scaling of Applications in the Cloud

Chieu et al. [3], investigates how dynamic scaling can be achieved on the web in
a virtualized cloud environment. It describes the advantages of scalability such as
higher resource utilization, resource consolidation, lower power usage, lower cost
and storage saving to business applications in the cloud. It uses number of concur-
rent users, number of active connections, number of requests per second, average
response times per request as scaling metrics. The values of these scaling indicators
are collected in real time and a scaling decision is made. It suggests an effective
and scalable architecture for scaling web applications in the cloud. Currently, web
services are changing to cloud computing and hence resource scalability become
vital[4]. In most cases, the cloud computing enables scalability by provision of vir-
tual machines.

Cloud scalability has a great benefit for users and cloud providers in terms of effi-
ciency,cost reduction and flexibility[5]. The purpose of cloud scalability is for pro-
vision of truly demanded resources[6].
Cloud computing plays a great role in providing a computational model that enables
users to access various resources on demand [3]. The paper describes architecture
used for scalability of web applications, based on thresholds in a cloud environment.
It uses a front-end load balancer for balancing requests to a web application hosted
in the cloud. This work also suggests the use of a virtual machine instances for the
deployment of the web applications in the cloud. For automated provision of virtual
machines, it recommends threshold based scaling algorithms based on the number
of active user sessions.

5



2. Related Work

The use of a scaling algorithm enables the cloud system provide users with resources
resources on demand and also maintains its resource utilization. Cloud computing
uses efficient virtualized resources that can be scaled up and down on depending on
the number of users. The paper also discusses cloud resources such as storage, ap-
plications, business process and data protection. Cloud computing has changed the
software industry in many aspects. It changed the way applications are purchased,
licensed and deployed. All these operations are done over the network unlike tradi-
tional user desktop applications. The model of cloud computing has been classified
into Infrastructure as a service (IaaS), Platform as a service (PaaS), and Software
as a service (SaaS). These are the models of cloud computing services which need
to be scalable to provide service for many users simultaneously.

2.2 Development of cloud services for vehicular
data

The emerging Internet of Things (IoT) and cloud computing technologies have shown
a promising opportunity in resolving the challenges in today’s transportation sys-
tems.

The work by He et al. [2] proposes a novel multi-layered vehicular data cloud
platform using IoT and cloud computing technologies. In this work, the authors
developed two vehicular cloud services: a vehicular data mining cloud service and
an intelligent parking cloud service. It also presents vehicular warranty analysis in
the IoT environment. Data mining models for vehicular data mining cloud services
such as the Naive Bayes model and a Logistic Regression model are also discussed.
Modern vehicles are getting digitalized and equipped with smart computer systems.
Today’s vehicles have the capability of sensing, networking with other devices, com-
munication with vehicles or other devices and data processing. The combination of
these capabilities with the new emerging technologies caused a rapid advance in the
automotive industry.

It is suggested that vehicular cloud development is feasible with the current tech-
nology and have a big impact on the automotive industry[2]. Software architecture
for an intelligent parking cloud service is also described in detail in the paper. It
uses transceivers and sensors for vacancy detection in a parking spot.

Paper by Akihito et al. [7] deals with how to build automotive cloud services based
on various architectures. The details of the both (Service Oriented Architecture)
and AUTOSAR (Automotive Open System Architecture) are described in the pa-
per. It recommends developers to use these architectures as a development platform
when they develop automotive software systems.

Data mining cloud services can also be used for accessing behavior and performance
of drivers to figure our problems in advance. In addition, it quickly detects danger-
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2. Related Work

ous road situations, send warning messages and assist drivers to make decisions in
advance [2]. The system also helps for vehicle warranty analysis. It explains that
cloud services play a great role in developing vehicular data cloud services.

The main contribution of the paper is the proposal of software architecture for the
vehicular data clouds in IoT environments. The architecture has the capabilities to
integrate numerous components of a vehicle and other devices that can be integrated
with a vehicle. From such works we observed that IoT and cloud based vehicular
data clouds will be a backbone for future Intelligent Transport systems. This adds
safety and enjoyment values to the transport systems. However, the integration of
IoT with the vehicular data cloud is in its infant stage, it may take sometime for
researchers to make it mature. Finally, the paper put scalability and technology
integrations, performance, reliability and quality of services, security, privacy and
global standard of service integration, communications, and architecture as future
work.

2.3 Automatic Scalability
Since the emergence of cloud technology, development and deployment of software
applications have changed entirely. As discussed in section 2.1, cloud systems rely
on virtualization technologies for allocating resources on demand. Therefore, scala-
bility plays a significant role in the success of business applications deployed in the
cloud. [8] describes a virtual cluster architecture for dynamic scaling of application
deployed in a virtualized cloud environment. The paper deals with an auto scaling
algorithm that can be used for automated provisioning and load balance of virtual
machines. It suggests an auto scaling algorithm that uses active application sessions
as a scaling parameter. It also considers the cost of energy in the scaling up or
down process. The suggested algorithm is supposed to handle sudden loads to the
system, maintain high resource utilization and reduce energy consumption. Though
the exiting cloud technologies can provide a basic scalability, it is not enough for
enterprise business applications in the cloud. It is stated as many Internet applica-
tions are benefited from dynamic scaling service provided by cloud service providers
[1]. This work mentions that the dynamic scaling functionality also provides fault
isolation in addition to scaling resources. The focus of this paper was in addressing
dynamic scalability on application tier though the storage servery may also be over-
loaded. They used virtual machines to to encapsulate instances of their applications.

Some scaling tools depend on control theory which also work with sensors. The
sensors feed data for decision making modules to scale the application instances [9].
In this paper, user defined rules are used as a policy to control the scalability of
system. It mainly focuses on scalability at application-level and it also describes
the importance of network, container and storage scaling. It describes container
scalability can be achieved by multi-tenant containers. Multi-tenant containers are
containers which have the ability to run components which belong to different users.

7



2. Related Work

Scalability, in many ways, is critical for the success of the cloud technology. Dynamic
scaling allows resizing the number of server machines or other resources needed in
the system [8]. Dynamic resizing is used to overcome under-provisioning or over-
provisioning of resources in the cloud environment. The paper compares the dy-
namic scaling algorithm with the Amazon EC2 auto-scaling technology. Unlike the
dynamic resizing, Amazon EC2 works for both horizontal and vertical scaling. The
paper mainly addresses a dynamic-scaling algorithm with a design of applications de-
ployed in clustered virtual machines. The architecture of the auto-scaling proposed
by this paper is composed of the following components: Front-end load balancer,
Virtual cluster monitor system and auto-provisioning system with an auto scaling
algorithm. These components enable the system to achieve automatic scalability.
The auto-provisioning system is used for dynamically provisioning virtual machines
based on the active sessions in a virtual cluster. By destroying idle virtual ma-
chines, it reduces the energy cost of the system. Generally, the proposed algorithm
is capable of handling sudden loads, high resource efficiency and achieves energy
consumption reduction.

8



3
Background

This chapter elaborates the basic concepts used in realization of this project, a brief
of auto-scaling algorithms and methodologies applied in the project. Technologies
used in realizing the project work are also briefly discussed. The project involves
various interrelated concepts such as Cloud services, Automotive industry and Auto-
scaling. This chapter is organized into the following sections.

3.1 Cloud Services

Cloud services provide computing services to users and applications while being
hosted on a remote server as opposed to traditional systems that run ubiquitously
on personal computers. This brings the advantage of scalability because of the
potential of using a large pool of remote resources as stated in a research paper by
Dua et al. [10].
There are three types of cloud service models in the cloud computing.

1. Infrastructure as a Service (IaaS): In this cloud model, virtualized resources
are provided over the Internet.

2. Storage as a Service (SaaS): In this model, applications are hosted on the
Internet and users get service from these applications through Internet.

3. Platform as a Service (PaaS): This model delivers software or hardware tools
needed for application development via the Internet.

Recently, more and more companies are moving to the cloud technology to operate
and scale their business applications. Cloud systems heavily use virtualization to
allocate, use and isolate remote resources. However, in this thesis work, we will set
up the cloud system prototype using light weight containers instead of the usual
virtual machines.

The paper work by Containers are means of providing isolation, way of deploy-
ment and resource management while sharing the same base kernel in Linux [11].
Docker is a widely used daemon that enables Linux containers to be managed as
self contained images. This is advantageous for our prototype because the action of
auto-scaling and management of container images will be performed by communi-
cating with Docker’s APIs. Hence, using docker and containers in the project has a
dual advantage for scaling and deployment purposes.

9



3. Background

3.2 Connected Vehicles
The realization of reliable and low latency mobile connections attract interesting
research on vehicular cloud computing. The introduction of 5G networks will bring
about major changes in advancement of vehicular cloud services and intelligent trans-
port services (ITS). The connectedness and digitization technologies are getting in-
volved in various sectors. Vehicle products from various automotive companies are
supporting embedded systems and getting connected to the Internet. Therefore, in
this project we make use of these advantages to the automotive industry and use a
cloud service to diagnose and maintain vehicles remotely.

The work by He et al. [2] proposes a novel architecture for vehicular data cloud
services along with some possible cloud-based services. Vehicular cloud systems can
be offered based on the three aforementioned cloud service models. This work solves
and suggests the scalability challenge in vehicular cloud services. The mobility na-
ture of vehicles makes the challenge hard. The cloud back-end system that supports
remote vehicles need to handle a highly dynamic change in data traffic patterns.

3.3 Scalability of Cloud Systems
Scalability enables applications to release and acquire resources on demand. Auto-
scaling simply automates this process because human intervention is impractical as
the system grows in size.

In cloud systems, scalability can be classified as horizontal and vertical.
1. Horizontal scaling: This way of scaling works by replicating server machines.

It adds more machine servers to the system according to the requirement and
demand of the users or applications.

2. Vertical scaling: It achieves scalability by increasing the capacity of a server
machine [10]. It does not add new machines rather it increases the capacity of
the machines in use in the system.

In some use cases, the trivial scalability service provided by some cloud service
providers is not adequate. Cloud service tenants want to consume the right amount
of resources based on the need of their end users or the demand of their applications.
Therefore, to achieve highly efficient use of resources, there is a need to apply dy-
namic scalability algorithms to applications and their back-end systems. The survey
paper by Lorido-Botran et al. [10] reviews several auto-scaling techniques used in
the cloud environment. According to this paper, auto-scaling algorithms are classi-
fied into five different categories. Each category of auto-scaling algorithm has got
its own level of maturity, suitable use-case, metric specification and several other
properties.

1. Threshold-based rules (Rules)
2. Control theory (CT)
3. Reinforcement learning (RL)
4. Queuing theory (QT)

10



3. Background

5. Time series analysis based (TS)
Commonly used autoscaling techniques fall into two broad categories: reactive and
proactive [10]. Reactive autoscaling has the capability to handle system loads by
triggering scaling action when a condition satisfied. In proactive autoscaling,it has
the capability of learning the trend of traffic loads overtime and forecasting about
future loads on the system. Therefore, it adjusts the system according to what it
has learnt previously.

These are the basic concepts applied in the project work. One can argue that
auto-scaling cloud services are extensively implemented by commercial cloud ser-
vice providers like Amazon. However, there are several reasons to study scalability
and develop a prototype of a scalable system in a private cloud setup. One of the
major reasons is the sensitive nature of vehicular data. Personal information and
automotive manufactures should be careful about privacy which restricts the usage
of public cloud solutions for this type of data. In our project, we use and modify
open source tools in order to implement the cloud back-end and the prototype busi-
ness intelligence application. Unlike public cloud systems, the system only considers
vehicular cloud services, which adds a performance advantage to future production
systems.

Literature studies such as [3] and [8] investigate on resource adaptiveness and scal-
ability of cloud services. However, none of these works consider auto-scaling of a
back-end system that provides service for vehicular systems. In this work, we worked
on a vehicular cloud back-end architecture and study the specific feature of auto-
scalability. Prior works do not take into account the layer of cloud management
services, which are becoming basic building blocks of a cloud back-end system.

3.4 Containerization vs Virtualization
Both technologies are used for efficient provision of resources on a cloud environment.
They add a significant role to the cloud technology in hosting applications.
A container is a very light weight operating system that runs on a host system. There
are various container implementations such as Linux Containers, Docker, Warden
Container, and OpenVZ. These containers implementations differ in the way they
handle process, file system and namespace isolation. The various container imple-
mentations have their own pros and cons [11].

Virtual machines support in allowing multiple guest operating systems to run to-
gether on a single machine.
The two technologies are compared in terms of performance, isolation security, stor-
age and networking factors. Based on the listed comparison factors, container tech-
nology has a significant advantage over virtualization in terms of resource consump-
tion and less start-up time [11].

After carefully looking the two technologies, we decided to continue with container
technology in our project. From the various containers implementations, we used
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Docker technology due its easy resource management, network, CPU, file system
and isolation capability.

3.5 NATS Messaging System
NATS is an open source messaging system which is mostly used in cloud and dis-
tributed systems. It has a client and server components that facilitate the messaging
system of distributed applications. NATS’ light weight protocol, performance, and
support of various messaging models make it preferred over other messaging systems.

NATS supports various messaging models. Publish-Subscribe, Request-Reply and
Queuing are the commonly used messaging models. The NATS Reference manual
gives detailed information about this messaging system and its protocol[12].
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4
Problem Formulation

A uto-scaling cloud services are being studied extensively in various literatures
[10]. The problem this thesis tries to solve is not to come up with a brand

new auto-scaling technique or algorithm; rather it is to investigate the existing auto-
scaling algorithms and techniques and test one or more algorithms that are relevant
to vehicular cloud back-end systems.

4.1 Scalability for Vehicular Cloud Services
It is obvious that the vehicular ecosystem comprises millions of vehicles. The number
of modern cars also increases with time which means that we will have large number
of vehicles that will be connected to the Internet. A vehicle is a complex machine
that contains a number of computers, sensors, mechanical elements...etc. A vehicle’s
diagnostic data may become complex because of several components that need to be
monitored. Sending this diagnostic data to the cloud needs two basic enhancements
in the infrastructure: the mobile network infrastructure and the cloud back-end
system. This thesis aims at solving the latter problem by building a prototype of
the system and studying existing auto-scaling algorithms that fit the scenario.

4.2 Auto-Scaling Event Detection
There is a need to effectively detect when the cloud system should be scaled up or
down. In order to sense the need accurately, it is important to have an accurate
method of sensing and learning the current state of the system. This can include
using several metrics and setting realistic thresholds.

Flawed auto-scaling detection mechanisms can lead to these undesirable results:
over-provisioning or under-provisioning of resources. Both of these results cost the
cloud company and the tenants. Over-provisioning of resources can affect the cloud
company because large resources are allocated for a relatively small amount of load.
Under-provisioning of resources affects the quality of the cloud service by creating
congestion and latency. This thesis work tries to solve the problems of both under
and over provisioning of resources. This is achieved by adopting an efficient auto-
scaling system. An auto-scaling algorithm is the heart of the auto-scaling system as
scaling decisions are made by it.
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5
Requirements, Specifications and

Tests

This chapter briefly discusses requirements, specifications and tests of the system
in general and the respective sub systems. Sometimes here is an overlap in clearly
separating use cases, requirements, and specifications of the system and it is probable
that a statement can serve as a requirement and specification. However, we make our
best effort to distinguish and summarize them separately in the following section.

5.1 Requirements
The cloud back-end system is a collection of different subsystems that work together.
There are a set of functional and non-functional requirements that each subsystem
should satisfy. In addition to that, there are requirements that require one or more
subsystems to interact with another, creating inter dependency among subsystems.
Therefore a requirement can be belong to one or more of the following categories:
functional, non-functional, subsystem level or system level. Requirements of the
system in general followed by requirements of the subsystems are described below.

Vehicle Simulator

The vehicle simulator subsystem is the subsystem that generates and creates data
traffic to the cloud application. The simulator is required to satisfy the following
functional and non-functional requirements:

1. Vehicle simulator should generate random vehicular data in a well defined data
model.

2. Vehicle simulator should serialize and publish the generated data to a desired
topic on the NATS server.

3. Vehicle simulator should be able to run concurrent in multiple instances to
imitate data traffic from several vehicles.

4. Vehicle simulator should be able to receive CAN commands from the cloud
application.

Cloud Application

The cloud application is the subsystem that is responsible for processing, storing
and accessing vehicular data logged remotely. It also has a unit that enables back
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office users to visualize the data. The following requirements must be satisfied by
this subsystem:

1. The cloud back-end application should be able to handle multiple data traffic
from several vehicles.

2. The cloud application should be able to maintain an acceptable amount of
delay despite increase of traffic from users and vehicles.

3. The remote diagnosis tool should consist of a unit which provides visual pre-
sentation of one or more attributes of vehicular data from the database. (E.g.,
speed or engine temperature in graphic representation.)

4. The cloud back-end application should enable back-office users to retrieve ve-
hicular data.

5. The cloud back-end application should consist of a database that stores re-
motely logged vehicular data.

6. Cloud back-end application should be able to run in multiple stateless in-
stances. That is, all instances must be independent and should process the
data in exactly identical way.

NATS Server

The NATS server is the central broker which routes data back and forth between the
vehicle simulator and the cloud application. It is a key unit that is essential for data
traffic. The following requirements are expected to be satisfied by this subsystem:

1. It should route data traffic from vehicular simulator to the cloud application
and vice-versa.

2. It should distribute a single data submission from a simulator to only one of
the cloud application instances.

3. It should be able to handle maximum specified amount of concurrent data
traffic without being a bottleneck.

Container Manager

The cloud application in a multiple instances of independent units called containers.
The container manager subsystem orchestrates any tasks related with the life-cycle
of the underlying containers. The following requirements are expected to be satisfied
by the container manager.

1. Container manager should be able to access container usage metric statistics
like CPU usage, memory and number of concurrent connections.

2. The Container manager should add and remove containers via a remote com-
mand from the sensor-actuator subsystem.

HTTP Load Balancer

The HTTP load balancer plays a role in evenly distributing HTTP traffic among the
containers. HTTP traffic mainly originates from back-office users that query and
modify vehicular data. The HTTP load balancer is expected to meet the following
requirements.

1. HTTP load balancer should distribute traffic evenly among containers.
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2. HTTP load balancer should be able to update configuration about the under-
lying containers dynamically.

Sensor-Actuator

This is the core subsystem responsible to the auto-scalability of the system. This
subsystem communicates with other subsystems to gather data and sense the state
of the system. The auto-scaling algorithm computes and determines the number of
containers needed to accommodate the load. This subsystem carries out actuation
by initiating scaling actions. The following requirements describe the tasks expected
from this subsystem:

1. Sensor-actuator subsystem should be able to regularly collect the metrics for
resource usage, load from vehicular data traffic, load from HTTP traffic.

2. Sensor-actuator subsystem should implement an algorithm that calculates the
number of containers needed based on the different metrics collected from the
other sub systems.

3. Sensor-actuator subsystem should be able to pass scaling decision to the con-
tainer manager subsystem when necessary.

5.2 High Level Specifications
This section describes the high level functional specifications of the system. Func-
tional specification illustrates how the system works from the user’s perspective.
It describes how the components must behave in order to satisfy the requirements
stated in the previous section. Technical level and implementation specifications are
found in the implementation chapter of this document. The more general system
level specifications can also be decomposed into detailed subsystem level specifica-
tions. This section starts by describing the system level specifications then proceeds
with stating subsystem level specifications. It also includes flowcharts that describe
the possible workflows and with in the system.

5.2.1 System Level Specifications
The system level specifications give a general overview how the system works and
what attributes it should have in order to meet the requirements.

The vehicle cloud service, at its maximum capacity, can support up to approximately
10,000 vehicles concurrently logging vehicular data remotely over the Internet. A
single instance of ’vehicular data’ refers to a well defined JSON structure that has
fields to accommodate one time reading of current technical status of the vehicle’s
sensors time-stamped with the time of reading. Vehicles follow this model when for-
matting the data to send to the back-end cloud system. Back office users can access
and visualize this data logged by vehicles remotely. The system provides RESTful
API that gives read and write access to vehicular data.
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The system can sense the density of vehicular data traffic at any given time. It can
then use this input along with the resource usage statistics to decide the number of
back-end containers that are required to accommodate the load.

This system runs on a single machine. The cloud application subsystem, which is
responsible for processing vehicular data runs in multiple instances of containers.
The number of required containers grows as the data traffic increases. The system
shall have one common database for storing vehicular data. There will also be one
instance of NATS server that routes all data between vehicle (simulators) and the
cloud application.

5.2.2 Subsystem Level Specifications
This section decomposes the above system level specifications into more specific
subsystem specifications. This clarifies the function of each subsystem and the role
it plays in fulfilling the system requirements.

Vehicle Simulator

The vehicle simulator generates a vehicular data based on a configured pattern. The
generated data is then serialized in the JSON based data model that is specified
to represent vehicular data. The vehicle simulator can spawn multiple instances
of data generators and senders in order to initiate multiple vehicles sending data
simultaneously. The simulator uses the NATS protocol to send and receive messages
with the cloud back-end system. Each instance of the simulator subscribes to a topic
unique to itself in order to take CAN commands from remote back office users (via
the back-end cloud application). In addition each instance of the simulator publishes
vehicular data to a common NATS subject.

NATS Server

The NATS server is the center of data exchange between the vehicle simulator and
the cloud application subsystems. When the NATS server receives vehicular data
publication from an instance of the vehicular simulator, it forwards it to subscribers.
Subscribers are instances of the cloud back-end application that process the data.
Subscribers should register in the same queue group and subscribe to the same
subject. When forwarding the publication, NATS server randomly chooses one sub-
scriber among the queue group.

The NATS server also forwards CAN commands from the cloud back-end application
to vehicle simulator instance. Here publisher is an instance of the cloud back-end ap-
plication and subscribers are instances within the vehicle simulator. Every instance
within the vehicle simulator subscribes to an individual topic and the message from
cloud back-end application is targeted at exactly one instance. Since this is a one-
to-one communication no queue group is required from the subscribers side.
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The NATS server runs in an non-clustered single instance for simplicity. Thus one
instance should be able to handle the maximum number of vehicles that the system
is desired to support. It is worth to note that the performance also depends on
several factors like the hardware capabilities of the system that runs this testbed.

Remote Diagnosis Back-end Application

As described in the requirements section, The remote diagnosis back-end application
is responsible for processing and presenting vehicular data. This subsystem consists
of several components that enables it to communicate with the back office end user
and the NATS server subsystem.

Container Manager

The container manager is an application that is responsible for managing the con-
tainers throughout their life cycle. It is responsible for being the source of data for
the usage metrics statistics of each container. It should also be to have command
line interface commands or API’s for automated creation of container. The cre-
ation or destruction of containers is initiated from the sensor-actuator subsystem.
The container manager is also responsible for managing the memory, storage and
network resources of each container.

Sensor-Actuator

This subsystem is where the auto-scaling decision is made. It runs one or more auto-
scaling algorithms to carry out the decision. This subsystem polls resource usage
metrics statistics and uses this data as input for the auto scaling algorithm which,
in turn, computes estimates or even forecasts the number of containers needed to
accommodate the traffic load. It then communicates with the container manager
subsystem to initiate scaling actions when necessary. It is also responsible for up-
dating the configuration of the HTTP load balancer when the scaling action affects
the number of back-end containers.

HTTP Load Balancer

The HTTP load balancer is used to distribute HTTP traffic among the back-end
containers that run the cloud application. It serves as a point of contact for the cloud
application’s HTTP service which is accessed by back office users. The load bal-
ancer updates configuration (data about the back-end containers) on-the-fly without
service interruption.

5.2.3 Workflows
The three flowcharts in figure 5.1 depict the major workflows followed by the system.
The left flowchart shows the process of end-to-end data exchange originating from
vehicle simulator system. The second flowchart explains the interaction of the system
with the back-office user. Note that the scope of each flowchart is system wide
meaning that the processes in the chart can happen/execute in different subsystems.
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Figure 5.1: Flowcharts illustrating the different workflows followed by the system.

5.3 Tests
The system has defined features and behaviors expected after its successful deploy-
ment. To make sure that the system operates according to its specifications, we
specified three test cases.

5.3.1 Generation and Storage of Vehicular Data
This is an end to end system test that shows the integration, performance and be-
haviors of the system. In this test case, the vehicle simulator is supposed to publish
vehicular data to a topic on the NATS server as specified in a configuration file. The
cloud app container instance subscribes to the same topic as the vehicular simulator
and reads vehicular data. Then, the application parses the data and saves it to a
NoSql database.

Initially, we planned to conduct this test case by using ten thousand vehicle simu-
lator instances and ten application container instances on the back-end. This test
measures the reliability of the end to end system. In addition, it helps to see the
impact of the auto scaling feature in the system by handling thousands of concurrent
traffics.

The specific objective of this test case is to check if the vehicular data generated by
vehicular simulator is reliably stored in the database. The vehicular data is routed
via NATS server and finally parsed by the logic application.
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5.3.2 Data Presentation to Back-office Users
The system has also a feature that lets back-office users to query data from the
application and get access to data according to their request.

In this test case, back-office users send an input data that can be query or CAN
command on an user interface. The application checks the validity of the input
data. If it is a valid query then data will be retrieved and presented to the user
according to the query. If the request is a CAN command, then the application
parses it and sends it to NATS server to a specific topic. Finally, the command is
read and executed on a vehicle simulator container instance subscribed to the same
topic. Otherwise if the user request contains invalid input, the application generates
appropriate error message to users.

Hence, this test case is conducted by letting Back-end office users write a query or
command on user interface. After sending a request, if it is a valid query, then it
retrieves vehicular data from the back end system and present to the user in JSON
format. If it is a command, it is sent to vehicular simulator. Otherwise, the system
generates error to users. It tests the reliability and correctness of the data presented
to back-end office users. Back-end office users should access a real data according
to their request. If the request is not valid, appropriate error message is presented
to users.

5.3.3 Monitoring and Autoscaling of the Cloud back-end
Application

Auto scalability is a feature that makes the system to be self-adaptive as explained
in the previous chapters. So, here we have a test case to observe the impact and
reliability of the auto scaling feature in the system.

As explained in the specification, the auto scalability component starts by reading
values of metrics to be used for scaling up or down from container manager, NATS
server and HTTP load balancer. These values are feed to the auto-scaling algorithm.
When the algorithm is executed, it decides if there is a need to scale up or down
according to an initially set up scaling requirements or not. After a decision, if there
is a change, it also updates the configuration of load balancer.

If there is a need of scaling, it performs the action of adding or removing container
instances. Otherwise, it goes back and starts a new metrics reading to check if there
is a need of scaling. This is done in an iterative way in a given small gap time.

So, this test case is achieved as subsystem test when we conduct the generation and
storage of vehicular data test case. This specifically enables to measure the impact
of the auto scalability feature on the system. We look at the response time and the
capacity of handling thousands of concurrent traffics to the system.
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The response and processing time of the system should be somehow stable regardless
of a dramatic increase in traffic. Therefore, the system is supposed to operate with
an almost constant response time to users due to the auto scalability effect.

5.4 Failures and Error Handling
In order for the system to carry out its desired workflows, all of the subsystems
that involve in the workflow must function properly. However failures can happen
to one or more of the subsystems thus, affecting the expected workflows. Some
failures has far reaching system wide consequences while others affect only a certain
functionality. In some cases proper error handling prevents a subsystem level failure
not to propagate to other subsystems. Thus, it is important to point out some of
the possible failures and the possible error handling actions. However this does not
mean that this section covers all the failures that can happen to the system as the
failures have different scopes. The following sections detail failures, their effects and
the proposed handling methods.

Vehicle Simulator

Possible Failure: Generation of vehicular data in wrong data format.
Effects: Back-end cloud application subsystem will ignore the data and display an
appropriate error message.
Error handling: None

Remote Diagnosis Back-end Application

1. Possible failure: Slow consumption of published data.
Effects: NATS server subsystem detects slow consumers and discards them.
Error handling Provision of more containers if resources allow.

2. Possible failure: Latency in shared database I/O (bottleneck) Effects: slow
consumption/processing of data.
Error handling: apply caching mechanisms to cloud application subsystem
reduce to reduce frequency of disk I/O.

3. Possible failure: Badly formatted query from end users.
Effects: The bad query is ignored.
Error handling: Return appropriate error message and HTTP status code.

Container Manager

Possible failure: Failure in creating or removing containers.
Effects: Failure of auto-scaling system, over or under provisioning of resources.
Error handling:
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NATS Server

Possible failure: Intermittent or slow data routing.
Effects: Congestion, latency in transport of vehicular data.
Error handling: NATS server clustering or change in configuration.

Sensor-Actuator

1. Possible failure: Miscalculation of number of required back-end container
instances.
Effects: Over or under provisioning of resources.
Error handling: Modification of auto-scaling algorithm, change in the input
metrics.

2. Possible failure: Failure to communicate with load-balancer
Effects:over or under provisioning of resources
Error handling: temporarily limit HTTP service to a fixed number of con-
tainers resulting in no auto-scaling of the data visualization service.

3. Possible failure: Failure to communicate with container manager.
Effects: Failure of auto scaling, over or under provisioning of resources.
Error handling: Critical to auto scaling system, requires troubleshooting of
the sensor-actuator and container manager subsystems.

HTTP Load Balancer

1. Possible failure: Failure to acquire correct or recent configuration about the
back-end contaners.
Effects: Complete or partial Interruption of HTTP service.
Error handling: critical to HTTP service, requires troubleshooting of sensor-
actuator and HTTP load balancer subsystems.
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System Overview

This chapter describes components of the system and their interaction to perform
the functionalities of the system. The section starts with the explanation of system
components and later it discusses the main functionalities of the system.

As vehicular cloud services advance, scaling up and scaling out back-end resources
become increasingly challenging [2]. As it has been mentioned in the previous chap-
ters, this work addresses the challenge of scalability in a vehicular cloud back-end
system. It enables the system to handle numerous concurrent traffic connections.

6.1 System Architecture
In this work, we designed and developed a prototype a cloud back-end system that
is capable of auto scaling dynamically as per the load requirement of the users or
clients of the system. As it can be seen in the system architecture in Figure 6.1, the
system is composed of several components. The following are the main components.

1. Vehicle simulator: We use this component to simulate a vehicle. It generates
a vehicular data to the back-end cloud system. After reading papers related
to vehicular data, we defined a data model to be used in the system. Hence,
the data generated by the vehicle simulator is expected to comply with the
defined vehicular data model. Otherwise, the system discards the data if it is
not according to the defined data model.

This application is run after both the NATS and the back-end cloud service
application are ready to receive the generated data. The NATS server and the
back-end cloud service application should be run before generating data oth-
erwise the data will be lost. The data generator doesn’t guarantee about the
arrival of the generated data. NATS is made to behave like that to decrease
the communication time and to keep it as light as possible.

2. Visualization application: This component interacts with the cloud back-end
service. It enables back-office users to view logged vehicular data in the cloud
system. Back-office users may be interested in specific type of vehicular data,
this component presents that data to them. It is simple and easily accessible
for them.
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The back-end office users will visualize and analyse the vehicular data from
the cloud system. Analysis of the vehicular data can be used for decision mak-
ing, safety and maintenance purposes. The system adds values to the existing
automotive industry and transportation system.

3. NATS Broker: Nats is a messaging system which is designed to be used for
distributed and cloud systems. It supports messaging models such as Publish
- Subscribe, Request - Reply, and Queuing. In this project, we use the Publish
- Subscribe messaging model. The vehicular simulator publishes to the NATS
server to a specific topic and generates vehicular data to that topic. The cloud
back-end application subscribes to one of the topics in the NATS server to
receive vehicular data. When the Vehicle simulator generates vehicular data,
it is routed via NATS server to the back-end application.

4. Cloud back-end system: This is the core of the system that logs the vehicu-
lar data generated by the vehicle simulator. This system serves for enormous
vehicles and back-office users. Back-office users use this component to view
vehicular data.

5. HA-proxy Load balancer: This technology is used for making a fair distribution
of the incoming data traffic to the cloud back-end container instances. It brings
efficiency and flexibility to the system. It is a standard used by many cloud
applications.

Figure 6.1: System Architecture
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6.2 Sensor and Actuator Module Architecture

In the cloud back-end system, an auto-scalability algorithm is implemented and
integrated to make it self-adaptive as per the resource requirement of the system
clients. In addition to building the prototype application, the work also involves im-
plementing auto-scaling algorithm in the Sensor and Actuator module. The major
benefits of this component are achieving low latency in data transmission between
the vehicle simulator and the cloud back-end system, making the system efficient,
flexible and reducing cost.

When the vehicle simulator and back-end users interact with the cloud system, its
response time is slightly independent of their number. The auto scalability algo-
rithm plays a significant role in reducing the transmission delay by scaling up or
scaling down the computing resources in the cloud back-end system on demand. In
the system, behavior, performance and impact of the algorithm is investigated under
different traffic load patterns.

In the operation of the system, scaling decisions are carried out by the auto scaling
algorithm. Generally, the scaling events include creating a new instance of vir-
tual machine, provisioning newly created virtual machine instances, destroying idle
instances of virtual machines and updating load balancer configuration. The prelim-
inary metrics that are used to determine the resource usage of the virtual machines
are CPU usage and the number of active connections. After the scaling event is
done, same logic is repeated again to monitor the system’s well being. This method
of auto scaling is based on on-line decision making because the algorithm may fire
up scaling events as the system encounters load changes.

In addition to on-line decision of scheduling events, we implement an algorithm that
works based on a decision that is made offline. This is good for preventive mainte-
nance of the system in scenarios where the traffic change is known in advance. This
method of scalability is time-based auto scaling. In this mode, the algorithm does
not monitor resource usage of the virtual machines that run the back-end applica-
tion. Rather, it fires up scaling events based on a specific schedule which follows a
distribution function or human input. For instance, the schedule may dictate the
algorithm to scale down the system by a factor of 2 during weekends. In offline
mode, the algorithm will calculate the number of virtual machines to add or remove
and carry out the tasks accordingly. In general, this testbed is expected to scale up
to ca. 10,000 (depending on the hardware limits of the system) maximum concur-
rent connection without affecting the message transmission delay. Stress testing is
conducted in a condition where the system is saturated.

We make use of Docker, which is an open platform that supports to build, run
and deploy cloud applications. In this work, Docker and its components plays a
significant role in the deployment of the back-end application. Instead of virtual
machines, the Docker uses Containers. Containers are light and portable software
images and their dependencies. The Sensor and Actuator module interacts with
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the Docker to collect resource usage metrics from Containers. This module also
interacts with Docker, which orchestrates the creation, provisioning and destruction
of containers.

6.3 Cloud Application
This prototype contains a cloud application that is capable of remote diagnosis of
vehicles and vehicular data presentation. The software architecture of the proto-
type diagnosis application is shown in Figure 6.2. This application demonstrates
collection of diagnostic data from vehicles and serves as a testbed to test the auto-
scaling environment. The development of this application demonstrates an example
use-case of a cloud service for connected vehicle. This prototype application’s main
functionalities are categorized based on the following use-cases.

• Handle connections from vehicles
• Serve back office users with data visualization
• Simulate multiple vehicles, generate syntactic data
• Store and access logged data
• Generate different data traffic patterns, test and measure system performance

Figure 6.2: Back-end cloud system design

As per the need and the practical events, different components of the application
may be required to run on different virtual machine instances in order to achieve
better scalability. This application prototype must also be designed in such a way
that it runs on clustered scalable environment.
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Prototype Implementation of the

Vehicular Cloud Service

This chapter describes in detail the development of the testbed. As described in the
previous chapters, this prototype is a composed of different subsystems that work
together in order to meet the requirements.

At a high level, the system the client-server architecture where the clients are the
vehicles and the back office users. Vehicles continually send their technical status.
Back office users can access and modify vehicular data via the provided APIs. The
cloud service, in general, plays a role as a server.

The following sections explain the technical details, the assumptions made and the
technologies used in this implementation of the prototype system. For better under-
standing of the system, the sections are organized based on client and server roles
of the system.

7.1 The Clients: Vehicle Simulator and the REST
Client

The clients of this system are mainly involved in production and consumption of
vehicular data.

The Vehicular subsystem generates vehicular data while the REST Client (back-
office user consumes vehicular data and produces CAN commands. The following
section describes the technical details behind the vehicular simulator and the REST
Clients.

7.1.1 Vehicule Simulator
The vehicule simulator is a vital part of this prototype. As discussed in the previous
chapters, this subsystem is responsible for generation of synthetic vehicular data.
This data is then passed to the cloud back-end system and becomes stored persistent
database.

The modifications made to the open source tool are enumerated below:
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Table 7.1: Vehicular data model

Category Attribute Data Type Description

Main Vin string Vehicle identifier, must be unique for a vehicle
time stamp date time stamp of the reading

Telematics

Speed double the current speed of the vehicle
latitude double GPS location reading
longitude double GPS location reading
heading string The direction pointed by the front of the vehicle

Engine rpm double the rotation speed of the engine shaft
temperature double reading of the temperature sensor inside the engine

1. NATS broker support: The data generator did not support logging to a
NATS server. Because NATS is the chosen messaging protocol between the
vehicle and the cloud back-end system, NATS client is incorporated into the
tool. The coming sections discuss more about the NATS messaging system.

2. Support for simulating multiple vehicle instances: The generator sup-
ports multiple instances that can be programmed in a certain way, with an
analog yof vehicles having different data sets. The draw back of this approach
was that each instance’s (vehicle’s) configuration needs to be defined in a con-
figuration file even though the instances have similar data sets and generation
patterns. This is not scalable as it is impractical to write thousands of in-
dividual configuration files. We modified the source code so that it supports
multiple instances from one configuration.

The following sections discuss about the vehicular data model and data generation.

7.1.1.1 Vehicular Data

In this project, the term vehicular data refers to set of well defined attributes that
represent readings of the different sensors available in the vehicle. In this prototype,
a minimal set of attributes are chosen for simplicity. A single reading contains the
vehicle identification (VIN) number and one or more of the attributes belonging to
sensor readings. The attributes are organized into categories for better understand-
ing.

There are data types and acceptable ranges for each attribute. For example, a speed
reading is not expected to contain Strings but floating point numbers. The structure
or order of these attributes do not matter as the data adopts a NoSQL Document
model. Table 7.1 shows the data attributes and their description.

7.1.1.2 Data Generation

The vehicular data is modeled in JSON format. We customized an open source
JSON-based data generator tool 1 to fit the requirements of the system. The gener-
ator is generic and supports different data types and data generation patterns (Data
generation patterns are one of the factors that we use to evaluate the autoscaling

1https://github.com/acesinc/json-data-generator
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[{
"timeStamp": 1470776087939,
"vin": "00004",
"telematics": {

"speed": 3.7867,
"heading": "SW",
"latitude": 57.3468,
"longitude": 11.9076

},
"engine": {

"rpm": 1157.1274,
"temperature": 45.0186

}
}]

Listing 1: A sample vehicle state update with all attributes present.

techniques).

The simulator is configured to generate synthetic sensor readings with the attributes’
respective data type and ranges of the attributes. The generated data usually con-
tains random values of the attributes within the acceptable range. The tool can also
be configured to generate vehicular data that can resemble real readings such as a
gradual increase in speed of the vehicle and the vehicle following the GPS coordi-
nates of a particular road. The frequency of data updates is also configurable. The
actual frequencies of update are stated and justified in the next chapters. Listing 1
shows a sample data generated by the simulator.

7.2 The Server: Cloud Service
The cloud service is the backbone which supports the clients described in the previ-
ous sections. The vehicles connect to this service to log their data and the back office
users connect to this service to retrieve and update vehicular data. At a high level,
the cloud system consists of a distributed cloud application, a messaging system
server, an HTTP server and an autoscaling unit. The following sections describes
the implementation details of these components.

7.2.1 Messaging System
Messaging system plays a big role in applications that involve communication among
distributed components. Cloud and Internet of Things applications usually contain
messaging systems at their heart. The NATS messaging system is part of this cloud
application. The messaging system plays a big role in communication of the vehicle
simulator with the cloud service.
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7. Prototype Implementation of the Vehicular Cloud Service

As stated in Chapter 3, NATS protocol implements the publish-subscribe and mes-
sage queuing models of communication. In this project, we leveraged these models
for bidirectional communication between vehicles and the back-end system.

All instances of the cloud application subscribe to the same subject and register
a queue name. As the vehicles publish data to that particular subject, the NATS
server randomly chooses one member of the group and forwards the message. This
way, the NATS server acts as a load balancer on the vehicle back-end line of com-
munication.

Every vehicle instance is represented by a thread that generates a unique synthetic
data.

7.2.2 Back-end Cloud Setup
The cloud service that supports the connected vehicles consists of an array of Docker
containers running a Spring application. The concept of containerization is discussed
in Chapter 3. Docker containers are light weight instances that provide isolated en-
vironment to run application. In this setup, each container runs only one service
which is the vehicular cloud prototype application. It is also worth noting that the
application is a spring java application and the container includes all the dependen-
cies and libraries needed to run the application in isolation. This makes containers
light weight and faster to provision compared to virtual machines. Fast provision-
ing is an important property for autoscaling systems which brings usage of docker
containers to an advantage.

Imposing Limits on Resource Usage

There is a need to effectively limit and monitor the system resources accessible by
each container in order to manage multiple containers running on a single host.
Otherwise all containers assume to have remaining free system resources for them
and this creates a congestion when the load is high. The Docker engine has different
mechanisms to allocate a limited amount of system resources for each container.

In this implementation, we imposed limits on CPU quotas and memory usages for
each container. This is because these two are the resources that are relatively scarce
in our test machine compared to other metrics, for example, disk usage and network
bandwidth. These metrics are used in monitoring how the containers are loaded and
thus, are crucial inputs for the autoscaling algorithm.

The limits on CPU is imposed as Docker engine’s cpu-quota feature [13]. The
Linux kernel uses Completely Fair Scheduler (CFS) to allocate CPU time quotas
to all processes. CFS implements CPU bandwidth control for process groups or
hierarchies. This is achieved by changing the values of the cpu.cfs_period_us and
cpu.cfs_quota attributes. The CPU quota attribute represents the available run-
time within a scheduling period while the CPU period attribute indicates the length
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7. Prototype Implementation of the Vehicular Cloud Service

of a single scheduling period [14].

We specified a CPU-quota of 33ms while leaving the CPU period to the default
100ms. We imposed these limits after repeated trials to tune the resource allocated
to the containers. Each container running the back-end application is allowed to
run for a maximum of one third of the scheduling period. We decided to specify
this quota limit by using stress tests and overloading the system to its limits and
fine tuning the CPU quotas such that the application containers do not take all the
server’s resources.

7.2.3 Back-end Application
The back-end cloud application is responsible for providing service for the vehicles
and back office users. This prototype application is developed on Java’s Spring Boot
Framework. The Model-View-Controller architecture was followed when implement-
ing the application.
The application is designed to be identical or session independent. This means that
a client (vehicle or back office user) can connect to any of the running instances of
the cloud back-end application and it gets the same service regardless of previous
states or sessions.
The application roughly comprises of the following parts:

1. NATS Client: The NATS client for Java is used to enable NATS connections
for Java applications. In this application the NATS Client is responsible for
exchanging data with the NATS Server subsystem, which handles all connec-
tions with the client application.

2. HTTP Service: The prototype application incorporates an embedded Tomcat
HTTP server. The HTTP service gives access to vehicular data access and
modification via the designated REST APIs endpoints.

3. Data Service: No vehicular data is stored inside the Docker container running
the application as it creates inconsistency and containers running the cloud
application can be added or removed via auto scaling actions causing data
inconsistency. Thus, it was important to setup a database server which is ac-
cessible from every container instance. MongoDB, a document-based NoSQL
database management system. NoSQL is chosen because the data from the
vehicles may not always be structured and contain all the attributes needed.
It is also more important to have speed than data accuracy when logging di-
agnostic data for vehicles.

This Chapter described the technical implementation details, assumptions and de-
sign choices made during the development of this prototype.
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8
Autoscaling

It is becoming increasingly common for cloud companies that to make solutions elas-
tic [1] and scalable. This is because of constant changes in the amount of resources
demanded from these systems. Manual tuning can be practical in small application
contexts but it is not practical in systems that have large number of users over a
geographically distributed area. This elasticity or auto scalability feature enables
customers to only use resources that they need and to pay for what they have used.
More importantly, autoscaling adjusts resources demand according to incoming traf-
fic and it brings efficiency, flexibility and cost reduction. So, both customers and
cloud service provider get benefit from it.

In this project, the autoscaling algorithm is used for increasing and decreasing the
number of docker containers running the cloud back-end application. The applica-
tion is deployed in a private cloud setup with limited resources. Making this service
self adaptive or autoscaling, promotes flexibility and efficiency for use in building
private clouds setups that connect to numerous vehicles.

The implemented algorithm is a slightly modified version of the autoscaling algo-
rithm by Chieu et al. [3]. The algorithm uses threshold rule-based theory for
initiating scaling actions. The algorithm is modified to fit into this use case’s scal-
ing indicators and thresholds.

The implemented algorithm uses reactive autoscaling technique, which means that
action is taken after a change is sensed in thee scaling metrics. However, we tuned
the thresholds and scaling metrics generous margins so that the data traffic will not
affect the system before the algorithm acts. The upper threshold of 80% and lower
threshold of 20% are taken as points to initiate scaling up and scaling down actions
respectively.
The algorithm periodically polls the traffic load on the system and the resource
usage of the system and matches them. Algorithm 1 shows the main work flow of
polling and scaling actions along with the different metrics used, it is described in
the remaining sections of this chapter.

8.1 Stress Test Setup
As discussed in Chapter 6, the prototype system is mainly composed of a vehicle
simulator (client) that generates vehicular data, message broker (NATS server) and
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a back-end application that receives and processes and stores data.

In this context, the vehicular simulator and back office users are considered as clients.
However, the traffic load from back office users is too small compared to the one
from vehicles. Thus, only the NATS traffic from vehicular simulators is considered
as scaling metrics for this algorithm.
As discussed in Chapter 7, limits are imposed on containers running the back-end
cloud application. Taking the physical machine’s system specifications and our goal
of incorporating thousands of messages per second, we set the memory usage limit
of 1.5 GB and CPU quota of 33ms CPU time for each container that runs the cloud
back-end application. This enabled us to know the capacity of each container in the
specified limited resources.

The script that runs the autoscaling algorithm polls these scaling indicators from
the monitoring built in APIs of the message broker and the container manager. The
imposed limits on system resources clearly tell us how much resource the containers
can user at maximum allowable limit. Therefore it is possible to take a ratio of the
current usage to the maximum amount of usage and calculate the scaling factors.
These ratios are used as inputs to the autoscaling algorithm.

The stress test involved generating synthetic traffic from machines that run the
vehicular simulator and record how the cloud back-end system reacts to different
amounts and patterns of vehicular data traffic.

In the NATS subsystem, the client (vehicle simulator) is considered as publisher and
the cloud application container a subscriber. Different instances of the application
form a queue group and the NATS server distributes published message to one of
the subscribes in the group.
The vehicle simulator is configured to publish one message per second per vehicle.
This assumption is taken considering worst case scenario in case frequent data log-
ging is required from the vehicles. This rate of message generation fails when ever
the system is overloaded. So, when the system understands that rate is not as per
the initial setup, it scales up system. After scale up, the rate of message generation
goes back as per the initial setup and the system stays in its safe state.

8.2 Scaling Indicator Metrics
Autoscaling algorithms use different scaling metrics to as indicators of the system’s
state. The autoscaling algorithm implemented in this project uses container CPU
usage and number of messages per second as scaling metrics. Different error mes-
sages from the message broker and overall CPU usage were also used to determine
he limits of the system. The algorithm takes the values of these metrics to initiate
the events of scaling up or down. The values of these two metrics vary in accordance
with the data traffic load on the system.
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Container memory usage is not used as scaling indicator for this particular imple-
mentation because the memory usage of the spring applications barely varies with
varying traffic load. This could be due to the Java Virtual Machine’s and Spring
framework’s internal architecture. The physical machine used for this setup also
has ample memory to accommodate a number of application containers running the
cloud back-end application. However, we ran the containers with an imposed mem-
ory limitation for the containers to make sure that they are isolated systems with
limited resources.

8.3 Algorithm Operation

Autoscaling algorithms make decision for allocation of system resources for virtual
machines or containers.The algorithm implemented for this project is threshold rule
based which is capable of handling unexpected load in the system. The algorithm
starts with running two application containers. The reason why it starts with min-
imum two containers is for redundancy and fault tolerance purposes. Then, the
algorithm checks the resource usage of each container and triggers the scaling action.

Here is the modified autoscaling algorithm used in the project.
input : Smm = maximum messages per second per container

Scm = maximum container CPU Usage
Ninstance = number of running containers
Nmax = Maximum number of containers
Ac = container_cpu_usage
Am = number_of_messages_per_second
Tupper: The upper threshold of use of resources
Tlow: The low threshold of use of resources

output: Scaling Action
while True do

for i ∈ Ninstance do
if max((Aic/Scm), (Aim/Smm)) > Tupper then

Increment NExceed

if min((Aic/Scm), (Aim/Smm)) < Tlower then
Increment NBelow

end
if NExceed ≥NInstance/2 then

ScaleUp ()
if Nbelow ≥Ninstance/2 then

ScaleDown ()
end

Algorithm 1: Autoscaling algorithm
The pseudo code snippet in Algorithm 1 describes the details of the autoscaling al-
gorithm used in the system. The steps taken during scaling events are described in
Algorithm 2 and Algorithm 3. The maximum and minimum thresholds of messages

34



8. Autoscaling

input : Ninstance = number of running containers
output: Scaling up action
Scaling methods
Function ScaleUp(i ∈ Ninstance):

if Ninstance ≥Nmax then
Return "physical limitation" ;

end
else

Start (i) ;
Update load balancer(i) ;
Increment Ninstance ;

end
Algorithm 2: Scaling up action

input : Ninstance = number of running containers
output: Scaling down action
Function ScaleDown(i ∈ Ninstance):

if Ninstance ≤ 2 then
Return “min container limit” ;

end
else

Stop (i) ;
Update load balancer(i) ;
Decrement Ninstance ;

end
Algorithm 3: Scaling down action
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per second per container and CPU usage should be set before the algorithm runs.
These initial values are set after various repeated tests in the system. The system
has a set of ready-to-run containers from which the algorithm can pick and run when
scaling up is triggered.

The algorithm regularly polls the values of scaling indicators, CPU usage and mes-
sages per second, of every running container. Then it calculates the ratio of the
collected CPU usage and messages per second values of each container with max-
imum messages per second and maximum CPU quota respectively. If any of the
ratio values of both metrics is greater than the maximum threshold set in initially,
then the scale up action is triggered.

The maximum number of messages per second (Smm)for a container running on
these constraints is about 2500 messages per second. The maximum CPU usage
at this maximum working capacity (Scm is about 32%. These are the denomina-
tors to calculate the ratio values for the scaling indicator metrics, as described in
the snippet in Algorithm 1. The next chapter has more details about these numbers.

When any of the ratio values of both metrics is less than the minimum threshold,
then scaling down action is triggered in the system. Otherwise, the system is consid-
ered to be in a stable state and it does not need scaling. When the scaling up action
is triggered in the system, the algorithm adds a new container to the system. The
newly added container joins and shares the traffic load of the running containers.
When the algorithm triggers a scale down action, one of the running containers is
stopped. The load of the system is shared among the remaining running containers.

When the algorithm triggers a scaling action, it always updates and restarts the
HTTP load balancer. In scaling up action, a new running container is added to the
list of running containers in the load balancer. If scaling down action is triggered, a
container is removed from the load balancer’s list and the load balancer is restarted.
When the system does not require scaling, the load balancer stays intact. It operates
with the containers which are already running in the system.
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9
Results

9.1 Single Container Response
As described in the previous sections, containerization is used to create multiple in-
stances of the cloud back-end application. The system needs two or more container
instances to provide the expected service. There is a need to know the capacity of
a single container since it enables to estimate required number of containers for a
given size of vehicular traffic.

A single container is tested against various sizes of vehicular traffic. As plotted in
Figure 9.1, a single container handles a maximum of two thousand five hundred
concurrent vehicular traffic. As shown in graph one, for that maximum vehicular
traffic, the CPU usage of a single container is thirty five percent. The reason behind
this maximum CPU usage is, each container has limited CPU quota. This enables
to estimate the resource usage of every running container in the system.

9.2 Response to Different Traffic Patterns
Tests under this section enable to know the behavior of the system under various
traffic patterns. The system is tested under three kinds of traffic patterns.

9.2.1 Sudden Traffic Pattern
The first test case is sudden traffic pattern which suddenly increases or decreases the
vehicular traffic in the system. The aim of this test case is to know the number of
needed containers in the system in sudden change of the vehicular traffic (message
per second). The required number of containers for a given size of vehicular traffic
is shown in Figure 9.2 The number of required containers in the system varies with
the size of the traffic. A single container has the capability to serve for around two
thousand five hundred size of vehicular traffic.

9.2.2 Random Traffic Pattern
In this test case, the aim is to generate a random load of vehicular traffic to the
system and observe the behavior of the system. It helps to know the system’s
requirement of containers under such traffic pattern. Figure 9.3 shows the number
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Figure 9.1: Single Container CPU usage with increasing load
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Figure 9.2: Sudden Traffic Message per Second vs Number of Containers
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Figure 9.3: Random Traffic Pattern Message per Second vs Number of Containers

of containers versus random message per second. The message per second represents
vehicular data traffic generated by vehicle simulator.

9.2.3 Steadily Increasing Traffic Pattern
This test case aims to observe the behavior of the system in steady increasing ve-
hicular traffic pattern. The vehicular traffic increases in a constant rate and the
required number of containers in the system also increases as expected. Figure 9.4
shows the number of containers required by the system versus message per second
generated by the client (vehicle simulator).

9.3 Overall System Utilization
This test case enables to estimate the total capacity of the system in terms of number
of running containers. As the size of vehicular traffic increases, the number of
required running containers in the system also increase. explicitly, the test indicates
the number of containers that the system can handle. Figure 9.5 indicates the CPU
usage of the system versus the number of message per second generated by the
vehicle simulator. The CPU usage of the system is dependent on the number of
running containers in the system.
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Figure 9.5: Overall System’s CPU Utilization
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10
Evaluation of Results and

Discussion

The previous chapter described the results we got after running different stress tests
on the vehicular cloud back-end system. In this chapter, we give explanations and
discussions behind the result figures.

10.1 Single Container Stress Test

The single container response versus CPU usage plot in Figure 9.1 shows a steady
increase usage with increasing number of messages per second. This test is carried
out by subjecting one container to an increasing number of messages per second.
The autoscaling algorithm need not to be run in this case because the test aims at
finding out the limits of a single container. This test is specifically important in
setting the higher and lower thresholds of the autoscaling algorithm. As discussed
in Chapter 8, these thresholds are the basis for defining whether the container is
over or under-utilized.

The steady increase in Container CPU usage is related to the increase in proces-
sor demand to process the increasing number of NATS messages from the vehicle
simulator. After reaching 2500 messages per second, the increase in container CPU
usage appears to stall. This is because the container is limited to use only a limited
amount of CPU and memory resources of the main system. As discussed in Chapter
7, CPU and memory throttling plays important role in maintaining fairer distribu-
tion of resources among the Docker containers. The stall in CPU usage at right end
of the graph is explains the CPU throttling applied to the container. This way, one
can make sure that one busy container is eating up system resources and affecting
the stability of the other running processes in the system. From this experiment, we
learned that a single container can handle up to 2500 messages per second without
being saturated. Above this number, the NATS broker and client could not guar-
antee delivery of all messages and packet drops will occur. To be on the safe side,
the autoscaling algorithm takes 80% of this maximum value as an upper threshold
to make scale-up decisions.
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10.2 Response to Traffic Patterns

Response to traffic patterns is one important property of for cloud systems with
irregular changes in traffic patterns. Due to the mobile nature of vehicles, the data
traffic from them can affected distributed cloud back-end systems located nearest to
the traffic. Thus, such system need to respond to sudden and randomized changes
in load. In this work we carried out tests for three different variations in traffic
pattern: steady increase, random and sudden spike. These traffic patterns cover
different scenarios that could happen in a production system. For instance, a steady
increase in traffic could show general increase in traffic in the morning when peo-
ple commute to work. Similarly, Sudden traffic surge could happen if a traffic jam
happens in a particular area. Random traffic could explain normal traffic flow with
occasional increase in traffic.

As illustrated in Figure 9.2, the cloud back-end system is subjected to sudden
changes in load from a lower traffic load 1,000 messages per second) to the peak
value of 10,000 messages per second within the test time interval of five minutes.
The autoscaling algorithm picked up the change soon and the scaling up operation
is finished within this interval. The algorithm also responds well in sudden drop in
traffic. However, sudden fluctuations in less than five minutes are harder to detect.
This is because the CPU usage, one of the scaling indicator, takes time to be stable
enough to exhibit the accurate state of the system. The cloud application consumes
additional CPU power upon start up and shut down and CPU readings taken at
this time may mistakenly assume that the system is overloaded. That is why the
test interval is set at five minutes, giving the application more time to stabilize.

The test that involved steady increase of traffic showed more or less expected results.
Steady increase in traffic is the most stable traffic pattern. This pattern varies scal-
ing indicator in a more steady and accurate manner, which results in a less varying
input to the autoscaling algorithm. The result in Figure 9.4 shows the autoscaling
system responding well to the steadily increasing number of messages per second.

Random variation of traffic pattern closely explains real life scenario of a cloud
system supporting connected vehicles. This pattern sits in the middle of steadily
increasing traffic and suddenly increasing traffic. As plotted in Figure 9.3, the
traffic load swings between high, low and medium from time to time. The number
of containers changed accordingly, showing that the autoscaling algorithm reacts to
randomly varying traffic patterns.

10.3 Overall System Utilization

The testbed for the cloud back-end system runs on a one physical machine as ex-
plained in Chapter 7. This resource limitation can adversely affect the quality of the
tests unless resource usage of individual subsystems is monitored closely. Therefore,
some measures are taken to make sure there is actually controlled usage of resources
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and a space to scale up to our specified goal.

These measures taken to control resource usage lie on design choices and introduction
of constraints. The choice of a light weight message broker that works on minimum
resources. NATS broker’s light weight property helps for the system not to be
congested by message routing affecting application containers to scale up. We also
decided to containerize the database and NATS broker applications as an additional
measure towards fairer distribution of resources. This is important because it is
possible to isolate and control containers as opposed to native processes. We also
closely monitored the overall CPU and memory utilization of the system while the
scaling actions take place and when the system is subjected to the maximum desired
load. Figure 9.5 illustrates the CPU usage of the system as the system is scaling
up. It shows that even at full load the overall system is not congested and this, in
turn, depicts that the system is performing its tasks properly.

10.4 Comparison with Other Autoscaling Systems
As described in previous sections, there are existing autoscaling systems, although
most do not target supporting connected vehicles in particular. Most commercial
cloud solutions are proprietary and difficult to know the exact autoscaling mecha-
nism they used. These factors make direct comparison of results difficult. However,
some of the approaches we follow can be compared.

As stated in research paper by Xiao et al., [1], most existing autoscaling systems
use virtualization technology for managing virtual machines and other resources in
the system. When a scaling up action is triggered in such systems, a virtual ma-
chine instance is added and provisioned to the system and for scaling down action a
virtual machine instance is removed from the system. In this project, we used con-
tainerization instead of full blown virtualization. When the cloud system scales up,
a container instance is added to the system and in scaling down action, a containers
is removed from the system. In these two type of creating instances, they have a
clear difference in provision time and performance. Containers boot in few seconds
compared to virtual machines. In containers, it is possible to set access controls
where as in virtual machines it depends on the hypervisor used. In terms of storage,
containers take lower storage than virtual machines. Most importantly, containers
have greater performance than virtual machines. The prototype implemented in
this project uses the advantages of containerization technology.

Different autoscaling systems use different scaling metrics depending on the type of
the system[10]. Most autoscaling systems use more than one scaling parameters. In
most cases, CPU usage is considered as one of the scaling metrics. So, in terms of
the scaling metrics, the implemented prototype uses the same as other systems.

Generally, due to the use of containers and proper choice of the scaling parameters,
we believe that the implemented prototype is a good starting ground for study of
autoscaling vehicular cloud services.
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11
Conclusion

This project work enabled close study of two concepts of autoscaling cloud systems
and connected vehicles. The concept of applying existing autoscaling algorithm in
order to orchestrate a cloud back-end system supporting vehicles is demonstrated.

The implemented prototype cloud system served two purposes. First, it showed that
the idea of remote diagnosis of vehicles is viable under the advancement of cheaper
and faster mobile networks. Second, it showed that autoscaling systems are impor-
tant in a system of such nature.

Collection and storage of diagnostic vehicular data helps the vehicle owner and man-
ufacturer greatly. This prototype implementation showed that the design of such
autoscaling systems requires careful selection of appropriate messaging protocols
and technologies are important in realizing the system. The major design choices
that are critical to the prototype system involve: the virtualization technology, the
messaging protocol and the cloud application implementation. The prototype sys-
tem met its goal of demonstrating the possibility of building cloud service to collect
data and diagnose a vehicle remotely.

The chosen implemented autoscaling mechanism is a threshold rule based one. The
practicality and ease of implementation are the major attributes that made us choose
to go with this mechanism. The prototype system achieved its expected outcome
of preventing message transmission loss due to congestion of system resources. This
happened without over provisioning more resources than necessary. The autoscal-
ing algorithm is crucial in matching the provision of resources with the amount of
load the system faces. The traffic pattern tests also showed that the algorithm re-
sponds well to varied traffic patterns with some exceptions in detecting very frequent
variations. Especially, the steadily increasing traffic pattern showed the complete
expected behaviour.

Cloud computing is a building block of the future of connected vehicles. In turn
auto-scaling system is a fundamental concept in cloud computing and this project
aimed at building and testing a prototype that includes these concepts together.
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12
Future Work

This thesis work’s main focus resides in a relatively new area of connected vehicles.
There is lot of room for more research in this area. This chapter highlights some of
the most relevant areas that can be studied to expand and compliment this thesis
work.

The cloud application demonstrated the possibility of using vehicular data for the
purpose of remote monitoring and diagnosis. However, this project’s scope is limited
to storing the data and making it accessible via REST API. A front-end visualiza-
tion tool that uses the API to render and summarize vehicular data can make this
prototype more strong and demonstrate the use case stronger.

Another important area of future extension is adding a two way communication be-
tween the vehicle and the cloud back-end system. This helps in performing remote
maintenance works in addition to monitoring and diagnosis. The NATS protocol,
which is the currently used as messaging protocol, enables publication-subscription
model in two ways. So this feature can easily be introduced in the system and add
on the usability of the system.

The autoscaling mechanism that is implemented in this system is threshold-rule
based. It is interesting to study other autoscaling techniques that are based on other
theories for this use-case. The study and implementation of proactive autoscaling
algorithms such as Reinforcement Learning approach could introduce more efficient
autoscaling of this vehicular cloud back-end system.

This cloud environment testbed is setup with limited hardware resources. We be-
lieve that deploying this system in a real environment could introduce better results
and open new questions. For instance, if the mobile network is used between ve-
hicular simulator and the cloud back-end system, it would create a chance to assess
other parameters like network delay and cost. Also, if the different subsystems are
deployed in separate physical machines or commercial cloud instances, it would cre-
ate more opportunity to separately look into the resource usages of the back-end
application, message broker and the autoscaling subsystems.
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A
Annotations

[1]
The paper presents the importance of scalability on resource usage to different Inter-
net applications. It explains the practical use of virtualization technology in cloud
computing. It also discusses about fault isolation in cloud computing. It evaluates
the auto scaling algorithm by varying size of traffic in a system. It also uses color
set algorithm for load distribution among the existing instances of an application.
It used large scale simulations for testing auto scaling algorithms. A possible system
architecture for scalable application is proposed in the paper.

[2]
The paper describes about advancement of cloud technology and Internet of things
and its advantage to automotive system. It also presents multi-layered vehicular
data cloud by using Internet of Things and cloud technology. It discusses about
Intelligent parking cloud service to show how the advancement in cloud and IoT
technologies can improve the transportation system. It also describes about the us-
age of cloud service for vehicular data mining. At last, it put performance, security,
privacy and reliability as challenges of vehicular data clouds. It clearly shows the
importance of cloud service for the automotive industry.

[3]
This paper introduces the importance of scalability for business applications on the
web. It also describes about various virtualization techniques such as VMware, Xen,
KVM, force.com and Microsoft virtualization. Advantages of virtualization on web
application are also discussed. The main advantages described in the paper are
higher utilization rates, resource consolidation, low energy usage and space saving.
Various metrics that enable scalability of web applications are discussed. The paper
considers metrics such as number of concurrent users, number of active connections,
number of requests per second, and the average response time per request as scaling
parameters. We found it useful as it clarifies the concept of scaling and how virtu-
alization technology supports the cloud technology.

[4]
The paper describes effective scaling of resources in the cloud. It also describes about
dynamic scaling algorithms. It compares the algorithms based their performance,
availability and cost. The paper concludes as dynamic provisioning has higher per-
formance, availability and cost compared to static provisioning. As explained in the
paper, proactive auto scaling algorithms respond better in sharp increase of traffic
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load than reactive algorithms.

[5]
The paper explains the importance of scalability in cloud computing. Due to flexibil-
ity, cost reduction and other characteristics of cloud computing many organizations
are moving to cloud computing. It discusses scalability at different levels such as
server scalability, network scalability and platform scalability.

[6]
This paper deals with how resource are allocated in cloud computing. It describes
auto scaling algorithms such as schedule and threshold based algorithms which are
used in resource allocation. Most auto scaling the algorithms focus on resource
utilization. It is also important to consider performance and budget. The paper
explains the virtual machine’s size,cost,budget, performance and deadline. It also
describes dynamic allocation and de allocation of virtual machines and scheduling
of tasks with cost consideration.
[7]
This paper presents the improvements that can be made on the next generation
of service-oriented architecture (SOA) of automotive cloud service system (ACSS).
Due to the rapid development of cloud computing, the automotive industry is also
changing to cloud service based systems. It illustrates the feasibility ACSS based
on SOA by proposing a system architecture. The proposed system is a reliable SOA
based ACSS.

[8]
This paper describes how auto-scalability improves the way cloud applications are
built and deployed. It describes as cloud services are based on virtualization tech-
nologies for dynamic resource allocation. Specifically, it discusses about the auto-
scaling algorithm for automatic provisioning of resources by using active number of
sessions as metrics. The algorithm also considers energy efficiency. It also states as
the algorithm is capable of handling sudden load in the system and achieves resource
efficiency. In this paper, the reason why auto-scaling algorithms are needed in the
cloud service is clearly stated.

[9]
The paper states that major advantage brought due to cloud is scalability.It presents
the advantage of using cloud technology and its scaling capability. It also discusses
about the main initiatives for scalable applications in the cloud technology. The
main challenges that should be addressed in the scalable cloud services are also dis-
cussed in the paper. In addition, scalability at server level, database level, network
level and containers is discussed. The paper deeply describes the need of scalability
at different levels of the system.

[10]
The paper reviews five auto scaling algorithms used in the cloud technology and
their use-case scenarios. It starts with description of cloud models that are cur-
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rently used on the Internet. It also deals the behavior of elastic or scalable cloud
applications. Finally, it experiments the performance of auto scaling algorithms by
applying multiple metrics such as CPU load, memory, I/O, waiting time, number
of active sessions, and so on. The paper shows the behavior of the different auto-
scaling algorithms by considering various metrics. Hence, this review paper supports
us in selection of the algorithms and the metrics to measure the performance of the
algorithms.

[11]
This paper compares and contrasts the performance and use-cases of virtualization
and containerization in a platform as a service (PaaS) cloud model. It investi-
gates the various types of container implementations. It also deals about how the
container implementations handle the file-system, process and other features. The
factors affecting the container implementation choices and their missing features
are also discussed in the paper. Finally, it concludes as containers have significant
advantage over virtual machines in the PaaS cloud model. This is due to the perfor-
mance and low latency time behavior of containers. The paper only discusses about
the two technologies in a PaaS cloud model. It does not cover the application of vir-
tualization and containerization in Software as a service (SaaS) and Infrastructure
as a service (IaaS) cloud models.

[15]
Many auto scaling techniques are discussed and compared in the paper. It com-
pares them in terms of cost and performance. It specifically compares proactive and
reactive auto scaling techniques. It confirms that dynamic threshold has a better
performance over other threshold based auto scaling techniques.
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