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AMÉLIE RENAULT 
Department of Civil and Environmental Engineering 
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Vibroacoustics Group 
Chalmers University of Technology 

Abstract 
The goal of this Master thesis has been to build a mathematical model of a pneumatic damped 
engine mount, which could be a cost effective alternative to hydraulically damped engine 
mount. This model will help to understand the pneumatic mount and its damping mechanism. 
An engine mount must satisfy at least two essential but conflicting criteria. 
First, the mount has to carry the static gravity load of the engine. 
The second requirement is that the compartment should be isolated from vibrations and 
acoustically comfortable: the mount has to be compliant and lightly damped for small excitation 
amplitudes and over the higher frequency range. 
The third requirement is to isolate the car from the motions due to bumpy roads, abrupt vehicle 
acceleration or deceleration, and braking and cornering. That means that the mount has to be 
stiff and highly damped 
Conventional rubber mount cannot satisfy both requirements simultaneously and a 
compromise between resonance control and isolation is inevitably needed, which is to get non-
linear stiffness and damping dependant on frequency. There are many disadvantages to the 
hydro mounts: it is big, heavy, complicated and expensive. 
Then, an air damped engine mount could be an issue to decrease the size of the damping device 
(it has only one chamber) and lower the price (it is quite simple and is based on air 
compression). But a pneumatic mount is less damped than the hydro mount and the damping 
has to be increased in order to damp heavy engines. In this report will be presented an 
overview about hydro-mechanical mount, pneumatic mounts and some tools that will be used 
to model the rubber dynamic properties, the air volume and the orifice behavior. After that, the 
model will be explained. Finally, some proposals how to increase the damping will be 
explained. 
After having understood how an hydraulic mount is working and explored some simple 
pneumatic spring, the model of the pneumatic mount has been implemented in MATLAB and 
finally, the calculated curves are compared to the measured one. The mount has physically been 
divided in three parts in order to model it more easily and the conclusion of the model-
experiment study shows that: 

• The rubber part is well modelled with a spring in parallel with a dashpot, 
• The orifice impedances seems to be quite correctly modelled since the global model 

predicts really well the resonance frequency 
• The air compliance is not modelled accurately enough. 

 
It can be also remarked that the simplified orifice impedance is working well for the chosen 
frequency range and for this application. 
 
 
 
Keywords: Engine mount, pneumatic mount, damping modelling, oriface damping, engine 
suspension.  
 





 2

Acknowledgments 
 
It was really great to do my master thesis at the acoustic department. I would like to thank Lars 
Ivarsson for being a patient and good supervisor, Wolfgang for helping me with the physical 
understanding of my subject, Börje for fixing my different computer problems and of course also 
Gunilla for all administrative things. 
Thanks to all my friends for the great time, which allowed me to spend a less boring thesis. I will 
never forget the balcony discussions and the ‘fika’ time which allow to take energy and forget the 
stress... 
To my little sister who waited such a long time for me to come back home. 



 3

I. Introduction 
 
The goal of this Master thesis is to build a mathematical model of a pneumatic damped engine 
mount, which could be a cheap alternative to hydraulically damped engine mount. This model will 
help to understand the pneumatic mount and its damping mechanism. 
An engine mount must satisfy at least two essential but conflicting criteria. 
First, the mount has to carry the static gravity load of the engine. 
The second requirement is that the compartment should be isolated from vibrations and acoustically 
comfortable: the mount has to be compliant and lightly damped for small excitation amplitudes and 
over the higher frequency range. 
The third requirement is to isolate the car from the motions due to bumpy roads, abrupt vehicle 
acceleration or deceleration, and braking and cornering. That means that the mount has to be stiff 
and highly damped 
Conventional rubber mount cannot satisfy both requirements simultaneously as the lumped 
stiffness, kr, and the viscous damping coefficient, br, in the shear mode are nearly invariant with 
excitation amplitude and frequency over the concerned excitation range of vehicle systems. Thus, a 
compromise between resonance control and isolation is inevitably needed, which is to get non-
linear stiffness and damping dependant on frequency. The hydro mount is typically optimized for 
placement, orientation, kr and br in tuning the inertia channel and decoupler, which means adapting 
the inertia channel and decoupler dimensions in order to get the required resonance frequencies. 
There are many disadvantages to the hydro mounts: 

• Since it has to carry the static load of the car weight it is big and heavy 
• In order to fulfill the requirements, the device is complicated (two chambers filled with a 

special liquid with a membrane and a channel separating them) and it is expensive. 
 
Then, an air damped engine mount could be an issue to decrease the size of the damping device (it 
has only one chamber) and lower the price (it is quite simple and is based on air compression). But 
a pneumatic mount is less damped than the hydro mount and the damping has to be increased in 
order to damp heavy engines. In this report will be presented an overview about hydro-mechanical 
mount, pneumatic mounts and some tools that will be used to model the rubber dynamic properties, 
the air volume and the orifice behavior. After that, the model will be explained. Finally, some 
proposals how to increase the damping will be explained. 
 
 



 4

 
I. INTRODUCTION......................................................................................................................................................... 3 
II. THE HYDROMOUNT FUNCTIONING AND MODELLING .............................................................................. 5 

1. SCHEMA...................................................................................................................................................................... 5 
2. PARAMETERS .............................................................................................................................................................. 5 
3. HYDROMOUNT FUNCTIONING ..................................................................................................................................... 6 
4. FREQUENCY RESPONSE CHARACTERISTIC ................................................................................................................... 6 
5. MODELLING OF AN HYDROMOUNT WITH DECOUPLER ................................................................................................. 7 

III. PNEUMATIC SPRINGS: SOME EXAMPLES.................................................................................................... 11 
1. USED PARAMETERS AND CONSTANTS........................................................................................................................ 11 
2. DESCRIPTION OF A BASIC PNEUMATIC FLEXIBLE ELEMENT........................................................................................ 12 
3. SINGLE ACTION PNEUMATIC FLEXIBLE ELEMENT WITH DAMPING CHAMBER ............................................................. 12 

IV. MODELLING OF THE RUBBER ......................................................................................................................... 15 
1. USED PARAMETERS................................................................................................................................................... 15 
2. RUBBER YOUNG’S MODULUS AND SHEAR MODULUS ................................................................................................ 15 
3. DEFINITION OF THE ELASTIC STIFFNESS .................................................................................................................... 16 
4. DEFINITION OF DAMPING .......................................................................................................................................... 17 
5. PRESENTATION OF DIFFERENT VISCOELASTIC MODELS ............................................................................................. 18 

V. A MODEL OF THE ORIFICE IMPEDANCE....................................................................................................... 19 
1. PARAMETERS USED AND IMPEDANCE DEFINITION ..................................................................................................... 19 
2. INNER IMPEDANCE .................................................................................................................................................... 20 
3. RADIATION IMPEDANCE ............................................................................................................................................ 22 

VI. ELECTRO- MECHANICAL-ACOUSTICAL ANALOGY................................................................................. 23 
VII. THE MEASUREMENTS....................................................................................................................................... 25 

1. GENERAL SET-UP ...................................................................................................................................................... 25 
2. STATIC MEASUREMENT ............................................................................................................................................. 26 
3. DYNAMIC MEASUREMENTS AND RESULTS................................................................................................................. 27 
4. PNEUMATIC ENGINE MOUNT WITH CLOSED ORIFICE .................................................................................................. 28 
5. THE PNEUMATIC ENGINE MOUNT WITH OPENED ORIFICE ........................................................................................... 29 

VIII. DESCRIPTION OF THE MODEL ..................................................................................................................... 30 
1. UNKNOWNS AND ASSUMPTIONS................................................................................................................................ 30 
2. THE AIR COMPLIANCE EXPRESSION ........................................................................................................................... 31 
3. THE RUBBER MODEL USED ........................................................................................................................................ 31 
4. THE BASIC EQUATIONS USED FOR THE FLUID............................................................................................................. 32 
5. THE LIMITS OF THE MODEL........................................................................................................................................ 33 
6. NUMERICAL IMPLEMENTATION IN MATLAB ........................................................................................................... 33 
7. PARAMETER STUDY .................................................................................................................................................. 34 

IX. MODEL/MEASUREMENTS COMPARISON ..................................................................................................... 36 
1. THE RUBBER MEASUREMENT AND MODEL COMPARISON ........................................................................................... 36 
2. MEASUREMENTS AND MODEL FIT.............................................................................................................................. 36 

X. PROPOSALS HOW TO INCREASE THE DAMPING ........................................................................................ 38 
1. SEVERAL HOLES, ORIFICE AREA INCREASE................................................................................................................ 38 
2. ACOUSTIC ABSORBENT INSIDE THE VOLUME............................................................................................................. 39 

XI. CONCLUSION AND DISCUSSION...................................................................................................................... 40 
REFERENCES ............................................................................................................................................................... 41 
XII. APPENDIX A1: PARAMETER STUDY FOR –850 N PRELOAD AND 0.1 MM AMPLITUDE.................. 42 
XIII. APPENDIX A2: PARAMETER STUDY FOR –850 N PRELOAD AND 1 MM AMPLITUDE................... 46 
XIV. APPENDIX B: CALCULATED AND MEASURED CURVES COMPARISON ........................................... 50 
XV. APPENDIX C: MATLAB CODE.......................................................................................................................... 56 



 5

II. The hydromount functioning and modelling 
1. Schema 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 1: Schema of an hydromount 
 

2. Parameters 
With the help of the article [1], the useful parameters can be listed: 
 
Parameters: 
 
Ad 
Ai 
Ar 
di 
d1, d2 
F 
li 

lr 

Diaphragm area, [m2] 
Cross-sectional area of the inertia track, [m2] 
Equivalent piston area of the rubber, [m2] 
Hydraulic diameter, [m] 
Chambers diameters, [m] 
Applied force, [N] 
Effective length of the inertia track, [m] 
Thickness of the rubber up, [m] 

mE 
mr 
p 

The engine mass, [kg] 
Effective mass of the rubber in the shear mode, [g] 
Pressure, [Pa] 

qd ,qi Fluid flow rate through the decoupler and inertia track, [m3/s] 
x Displacement, [m] 
t2 Thickness of the rubber below, [m] 
V1, V2 Chambers volumes, [m3] 
  
Constants 
B 
Cd l 
Er 
Rd 
µ 
ν 
ρ 

Bulk modulus of the fluid, [Pa] 
Equivalent linear compliance, [m5/N] 
Young’s modulus of rubber, [Pa] 
Linear fluid resistance, [N/m5] 
Fluid viscosity, [Pa.s] 
Poisson ratio, [-] 
Fluid density, [kg/m3] 

 
 

Upper chamber 

Lower chamber 

Decoupler

Inertia track
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Then other parameters can be computed using the geometry characteristics and the different 
constants. 
 
Lumped fluid resistance 

4
i

i
i d

128R
π

µ
=

l  

Track inertance 

i

i
i A

I lρ
=  

Fluid mass ρV1 and ρV2 
Compliances 

r2

4
2

l

2
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rr11

Et16
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Inertances of the chambers 
2
r

2
2
r

1

A
m,

A
m  

 

3. Hydromount functioning 
In references [1] and [10], the functioning of a hydromount is described. The two chambers hydro-
mechanical mount consists of two fluid chambers filled with glycol, which communicate through an 
orifice and an inertia track or a damping channel. 
In the upper chamber, a steel casing and an elastomeric spring (primary rubber) supports the static 
load and are supposed to act uniaxially through the mount axis. The primary rubber also serves as a 
piston to pump the fluid through the rest of the mount. 
The lower chamber, also made of rubber, is designed to be very soft and is used to absorb the 
transferred fluid without considerable pressure. Damping is created by the inertia effect of the fluid 
column resonating between the two springs. 
The inertia track is a lengthy spiral channel that enables the fluid to pass from the upper chamber to 
the lower chamber. The inertia effect increases the dynamic stiffness. In fact, at high frequencies, 
the fluid doesn’t follow the excitation and the orifice channel closes; the increasing pressure in the 
main chamber increases the stiffness. 
The decoupler is a plastic plate. For small amplitude excitation, most of the fluid transport between 
chambers is via the decoupler orifice. For larger amplitude excitations, the decoupler is blocked and 
the most of the fluid flow is forced through the inertia track. 
 
The geometry of the orifice channel (length, cross section), which determines the frequency of 
maximal angle and thus the damping properties, is used to tune the mount as a purpose of control. 
Some other important parameters determining the behavior of the entire mount are the hydraulic 
area and the volumetric stiffness. 
 

4. Frequency response characteristic 
The frequency response characteristic is described by J. E. Colgate et al. in [1]. Here is a summary: 
 

• Below 5 Hz, the fluid flows between the chambers with low resistance. 
• From 5 to 14 Hz and amplitude from 0.5 to 5.0 mm, these excitations are on the range of 

engine resonance and large enough to require significant damping. The resonance frequency 
of the system is on this range. 
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• From 25 to 250 Hz and amplitude from 0.05 to 0.5 mm, these excitations can cause noise 
and vibration and require good isolation. The resistance force to the fluid flow through the 
opening is greater than the elastic resistance of the rubber spring. The fluid pressure in the 
upper chamber fluctuates with excitation frequency but fluid pressure in the lower chamber 
remains almost constant. 

5. Modelling of an hydromount with decoupler 
In this part is explained how to draw a simple model of a hydro-mechanical mount with decoupler 
and how to get the parameters. It is also shown how to simplify a model for low frequency since a 
model for low frequencies has later to be derivate. 
R. Singh et al. developed in [2] a lumped parameter model of a hydro-mechanical mount. Only 
vertical motions are taken into account here. The first step is to write the equation of motion and the 
momentum balance for each volume and mass involved in the model. The rubber is here modelled 
with Voigt model.   
 
Ft is the total excitation force )t(FF)t(F s

t +=                                                                               (4.1) 
xt is the total displacement )t(xx)t(x s

t +=                                                                                  (4.2) 
 
The indice s stands for static conditions: Fs is the static load corresponding to the engine weight and 
xs is the corresponding static displacement. F(t) and x(t) are the fluctuating components. 
kr and br are assumed to be invariant with ω and xt. 
 
The figure 2, which is a sketch of the forces acting on the mount, is related to the equations (4.3) to 
(4.10). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2:Schematic of a hydromount with a free decoupler 
 
The equation of motion of the rubber mass can be written as: 
 

Ft (t) − krx
t (t) − br Ý x t (t) − Ar p

11

t (t) − patm (t)( )= mrÝ Ý x t (t) (4.3)
 
The momentum balance applied to the fluid mass gives the three equations (4.4) to (4.6). 
 

F 

patm 

p11 

p22 

p21 

p12 

qd qi 

2
b r  

2
k r  2

br  
2

k r  

mr
x 

x2 

x1 
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For the fluid in the upper chamber ( ) )t(xmA)t(p)t(p t
1r

tt
11211
&&=−                                                    (4.4) 

 
For the fluid in the lower chamber ( ) )t(xmA)t(p)t(p t

2r
tt

22112 &&=−                                                   (4.5) 
 
 
For the inertia track volume and the decoupler volume: 
 

( )tqRqI)t(qR)t(p)t(p t
i

t
i

t
d

tt
iid2112

+==− &  (4.6)
 
The equation of continuity applied to the compliant volume chambers gives, for the chamber 1: 
 

( ) )t(pC)t(x)t(xA 1111
tt

r 1
&& =−  

 
)t(pC)t(q)t(q)t(xA t

12
ttt

r 12id1
&& =−−  

(4.7) 
 
 

(4.8)
 
Then for the chamber 2: 
 

)t(pC)t(xA t
22

t
r 222

&& =  
 

)t(pC)t(xA)t(q)t(q t
21

t
r

tt
212id
&& =−+  

(4.9) 

(4.10)
 

,C,C,C,C 22211211  are the compliances. The two first are the upper chamber compliances and the 
two last are the lower chamber compliances.  
 
The static equilibrium gives: 
 

)pp(AxkF atms,11rsrs −+= , s22211211sr p)CCCC(xA +++=                                                 (4.11,12) 
and s222112s,1r p)CCC(xA ++= , s22s,2r pCxA =                                                                     (4.13,14) 
 
In considering the hydro-mechanical mount with a fixed decoupler (inactive decoupler), which 
means qd(t)=0 and eliminating the pressure variables, one gets the following time-varying equations 

(4.15) to (4.18)with 
r

i
i A

)t(q)t(x =& , and for the time varying part of the variables. 

( )

( ) ( )

( )

( ) ( ) ii2i
21

2
r

i1
12

2
r

i
2
ri

222
22

2
r

2i
21

2
r

11i1
12

2
r

1
11

2
r

rrr1
11

2
r

xm)t(x)t(x
C
A)t(x)t(x

C
A)t(xAR

)t(xm)t(x
C
A)t(x)t(x

C
A

)t(xm)t(x)t(x
C
A)t(x)t(x

C
A

)t(xm)t(xk)t(xb)t(x)t(x
C
A)t(F

&&&

&&

&&

&&&

=−−−+−

=−−

=−−−

=−−−−

 

 
(4.15) 

 

(4.16) 

(4.17) 

 
 
(4.18) 
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Then, the analogous mechanical system can be drawn as seen in figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: analogous mechanical system with free decoupler 
 
 

The parameters are defined as: 
22

2
r

22
21

2
r

21
12

2
r

12
11

2
r

11 C
Ak;

C
Ak;

C
Ak;

C
Ak ==== and i

2
rii

2
ri RAb;IAm == . 

The different k correspond to the chamber stiffness, the mass mr to the rubber mass, m1 and m2 to 
fluid mass in the chamber 1 and 2 respectively. bi corresponds to the inertia track resistance. 
 
Then, in [2] again, the equations are simplified for low frequency. In fact, the impedances of the 
lumped fluid masses are negligible at low frequencies and a two-degree-of-freedom model can be 
derived. Then, there will only be two compliances C1 and C2, which can be calculated as the sum 
C11+C12 and C21+C22 respectively. Moreover, )t(p)t(p)t(p 11211 =≈  and )t(p)t(p)t(p 22221 =≈ . 
 

)t(xm)t(pA)t(xb)t(xk)t(F r1rrr &&& =−−−  
 

)t(qR)t(qI)t(qR)t(p)t(p iiiidd21 +==− &  
 

)t(pC)t(q)t(q)t(xA 11id1r && =−−  
 

)t(pC)t(q)t(q 22id &=+  

(4.19) 

(4.20) 

(4.21) 

(4.22)

In eliminating the variables p1(t) and p2(t) and with 
r

i
i A

)t(q)t(x =&  one gets: 

( ) )t(xm)t(xk)t(xb)t(x)t(x
C
A)t(F rrri

1

2
r &&& =−−−−  

 

( ) )t(xm)t(x
C
A)t(x)t(x

C
A)t(xAR iii

2

2
r

i
1

2
r

i
2
ri &&& =−−+−  

 
(4.23) 

(4.24) 

 
Then, a simplified model for hydromount with fixed decoupler (which correspond to low 
frequency), can be drawn as in figure 4. 
 

 

m2 

mi 
br 

mr 

bi 

k11 

k12 

k21 

k22 

m1 

xt(t) 

x1
t(t) 

xi
t(t) 

x2
t(t) 

kr 

Ft(t) 
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Figure 4: analogous mechanical system with fixed decoupler 

 
This was however a linear model and it is possible to use it because high and low frequencies can 
be separated and then get two linear models in order to cover the entire frequency range. But it is 
sometime required to derivate a non-linear model. A. Geisenberg et al., in [12], explain how to get a 
non-linear model in enhancing the parameters of the linear model discussed above. The parameters 
identification via experiment is also well described in this paper. 
 

mi kr br 

mr 

bi 

k1 

k2 

xt(t) 

xi
t(t) 

Ft(t) 
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III. Pneumatic springs: some examples 
 
In this chapter will be described two simple pneumatic springs: a basic cylinder piston element and 
a single action pneumatic element with damping chamber. In both cases the stiffness will be 
derived. 
 

1. Used parameters and constants 
Parameters 
 
A 
d 
F 
h 
l 
m 
T0 
w 
Q 
V 
W 
ν 

Piston cross-sectional area, [m2] 
Diameter of the capillary, [m] 
External applied force, [N] 
Height (smaller dimension), [m] 
Length of the capillary, [m] 
Mass of preload, [kg] 
Initial temperature, [K] 
Width (larger dimension), [m] 
Volume flow rate, [m3/s] 
Instantaneous internal volume between piston and cylinder, [m3] 
Weight flow rate (W=Q.g), [N/s] 
Flow velocity, [m/s] 

 
Constants 
g 
patm 
R 
γ 
µ 
ρ 

Gravity acceleration, [m/s2] 
Atmospheric pressure, Patm=101300 Pa for the air 
Universal gas constant, R=286.4 N-m/(kg K) for the air 
Ratio of specific heats, γ=1.3 for the air 
Dynamic viscosity of the gas, [Pa.s] 
Gas density, [kg/m3] 

 
Computed parameters: 
Reynolds number 

Round capillary:
µ
ρνdRe =  

Rectangular capillary:
µ
ρ

=
µ
ρ

=
w
Qh

wh
QRe  

Capillary resistance 
Round capillary:

lµ
π

=
128

dC
2

c  

Rectangular capillary:
lµ

=
12
whC

2

c  

Initial pressure 
A

mgpp atmi +=  

 
 
 



 12

2. Description of a basic pneumatic flexible element 
The book [7] describes among other systems of vibration isolation, pneumatic flexible element, 
which are using compressed air as flexible element. The more simple is a linear cylinder-piston 
system. The piston is moving into the cylinder, which can be of any cross-sectional shape. The 
figure 5 shows a schema of the device. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: basic pneumatic flexible element 
 
Assuming an adiabatic compression yield: γγ = xxii VpVp                                                               (5.2) 
px and Vx are the absolute pressure and volume after the piston moved by x. 
The pressure and the volume can be expressed as below: 
 

AxVV,
A
Fp ix −==  (5.2,3)

 
In assuming that the piston surface area is constant, the stiffness of the pneumatic flexible element 
is finally: 

1

i

i

2
i

0

x
V
A1

1
V
Ap

dx
dFk

+γ





























−

γ
==  

(5.4)

If Ax<<Vi: 
i

2
i

0 V
Apk γ

≅                                                                                                                    (5.5) 

And for pneumatic isolators, usually atm
0

0 p
A

mg
A
Fp >>==  

The stiffness is then approximately proportional to the weight of the supported object; the 
pneumatic flexible element has a natural “constant natural frequency” characteristic. 
The equation (5.4) will be used as a model of the air volume stiffness of the pneumatic mount. 
 

3. Single action pneumatic flexible element with damping chamber 
Another more complicated passive pneumatic vibration isolator is a self-damped pneumatic spring 
(which itself has no significant damping) in which the main cylinder is connected with a damping 
chamber through a capillary. This device is described in [7] by I. Rivin. It is shown in figure 6. 
 

x 

F 

m 

p,V 
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Figure 6: Single action pneumatic flexible element with damping chamber 
 
The flow through a capillary, for a passage whose length is much greater than its cross sectional 

dimension, e.g. the diameter, is: ( )2
2

2
1

0

c
1t pp

RT2
gCW −=                                                                   (5.6) 

which can be linearized as: ( )21
0

ci
1t pp

RT
gCpW −=                                                                          (5.7) 

since for small oscillations and laminar flow: i21 p2pp ≈+  
The Reynolds number is able to give an idea about the fluid behavior. The flow can be assumed 
linear if the Reynolds number Re< 2000 (which corresponds to a low fluid flow velocity and/or a 
high viscosity) or, in taking a prudent safety margin, Re<500. 
 
Since the weight low rate from the damping chamber 2 can be expressed as: 
 

dt
dp

RT
gVW 3

0

3
1t γ

−=  (5.8) 

 
Wt1 can be recalculated in putting the expression of p3 from the equation (5.7) into (5.8), which 
gives: 
 









+

γ
−=

dt
dp

dt
dW

Cgp
RT

RT
gVW 11t

ci

0

0

3
1t  (5.9) 

 

The weight flow rate into the chamber 1 is: 







+

γ
−=

dt
dVp

dt
dpV

RT
gW 1t

1
11t

0
1t                             (5.10) 

Since one can approximates: AxVV,Ppp i1i1 −=∆+=  and that one can assume: Ax<<Vi and 
∆p1<<pi: 
 









−

γ
=

dt
dxAp

dt
dpV

RT
gW i

1i

0
1t  (5.11) 

1

2

m 
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The dynamic stiffness is finally found after calculations and for sinusoidal excitation: 
 

0

0
0 jNN1

jN1
k

Dx
Dpk

ω
ω

++

ω
ω

+
==  (5.12) 

with 
i

3

V
VN =  and 02

c

i

ic
0 k

A
C

V
pC

=
γ

=ω  
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IV. Modelling of the rubber 
 
It is important to know how to model the main part of the pneumatic mount, which is the rubber 
piston. Papers about the behavior of such elastic material are summarized and the equations used to 
model it are given. 
 

1. Used parameters 
Below is a list of the used parameters: 
 
a 
cs 
d 
E 
E* 
F 
G 
k 
t 
x 
ε 
σ 
ω 
θ 

Indentor radius, [m] 
Young’s modulus, [Pa] 
Indent penetration depth, [m] 
Young’s modulus, [Pa] 
Viscoelastic parameter, [Pa] 
Applied force, [N] 
Shear modulus 
Stiffness, [N/m] 
Time, [s] 
Displacement, [m] 
Strain, [-] 
Stress, [Pa] 
Angular frequency, [rad/s] 
Conical indentor, semi-angle, [°] 

 

2. Rubber Young’s modulus and shear modulus 
In [16] are described two parameters used to quantify some of the rubber properties: 

• The shear modulus G describes the resistance to a simple shearing stress 
• The Young’s modulus of elasticity E is the ratio of a simple tensile stress to the 

corresponding fractional tensile elongation. 
The relation between those two values is: )1(G2E ν+= . ν is the Poisson’s ratio, which is defined 
by the ratio of lateral contraction to longitudinal tension. 
Under small deformation rubbers are linearly elastics solids. Because of high moduli of bulk 
compression compared with the shear moduli, they may be regarded as relatively incompressible. 
The elastic behaviour under small strains can thus be described by a single elastic constant G since 
E=3G in this case. 
 
It is common to characterize the modulus, stiffness or hardness of rubber by measuring their elastic 
indentation by rigid indentor of prescribed size and shape, pressed into the surface, under specific 
loading conditions. The indentation hardness is inversely related to the penetration and is dependent 
on the modulus of elasticity and the viscoelastic properties of the material. There are various 
different non-linear scales used to derive rubber hardness from such measurements. One is the 
Shore hardness A: the units of hardness range from 0 for the full protrusion of the indentor to 100 
for nil protrusion. Another one is the IRHD (International Rubber Hardness Degrees). 
The formula relating the force F and the shear modulus G for the different indentors are given in the 
book [16]: 

For a spherical indentor of radius a: 2/32/1 dGa
3

16F =  

For a flat-ended cylindrical indentor of radius a: Gad8F =  
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For a conical indentor with semi-angle θ: ( )θ
π

= tanGd8F 2  

 
 
 
 
 
 
 
 
 
 
 

Figure 7: Indentation by a flat ended indentor 
 

Some values of Young modulus E related to specific hardness, and for different hardness scales are 
shown in table 1. 
 

Hardness (degrees) E (Shore) [MPa] E (IRHD) [Mpa] 
10 0.4 0.3 
20 0.7 0.6 
30 1.2 1.0 
40 1.7 1.5 
50 2.5 2.3 
60 3.8 3.6 
70 6 5.5 
80 10 9.5 
90 23 20 
Table 1: Relation between indentation hardness and elastic Young modulus 

3. Definition of the elastic stiffness 
In [3] Shi-Jian Zhu et al. give in a first part a definition of the elastic stiffness that can be used in 
engineering and especially for rubber. 
The stiffness of elastic body is defined as partial differential of the acting force on the elastic body 
to its corresponding displacement: 
 

x
Fk

∂
∂

=  (6.1) 

 
If the displacement depends only on the acting force and its time history, the stiffness is then a 
function of the displacement and its derivative: 
 

,...)x,x,x(k
x
Fk &&&=

∂
∂

=  (6.2) 

 
In engineering, different forms of stiffness are needed: the static stiffness, the dynamic stiffness and 
the shock stiffness. They correspond respectively to static load, dynamic load and shock load. For 
rubber, the values of those three kinds of stiffness are really different. The standard three-
parameters solid model describes qualitatively the stiffness with respect to very limited range of 
frequency characteristics in a broader range of mechanism.  

2a 

d 

F 
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In order to describe the stiffness frequency characteristic in a broader range of frequency, more 
retardation mechanism that work at different frequencies should be considered in this model. 
 
In vibration engineering, the stiffness can be defined by the displacement response to a sine force 
excitation, for instance tjFe)t(F ω=  (with an amplitude F and a frequency ω), on an elastic body. 
The steady displacement response can be written as tj*tj eXXe)t(X ωϕ+ω == . The complex stiffness 

can then be derived as )X,(k
X
Fk *

*
* ω== . The static stiffness, dynamic stiffness and shock 

stiffness can all be obtained from the complex stiffness. The above definition is based on the 
assumption that the initial displacement, velocity and acceleration are all zero before loading. 
If the relation between the force and the deformation is approximately linear, the application of a 
sinusoidal deformation will result in a sinusoidal force of the same frequency but displaced in terms 
of phase by an amount termed the loss angle. It is convenient to consider the elastic (in phase 
response) and the viscous (out-of-phase response) in terms of two modules. The overall response 
can be expressed as a complex number G*=G’+jG”. The dynamic stiffness is given by k=G*, and 
the phase or loss angle δ by tanδ=G”/G’. 
The stiffness of natural rubber is increasing lightly with frequency. This is called “dynamic 
stiffening”. 
 

4. Definition of damping 
According to [4], damping is the phenomenon by which mechanical energy is dissipated in dynamic 
systems. Then, in [4] is also discussed different type of damping and how to model them. Since in 
our pneumatic damper, there is material damping in the rubber, an overview of the information 
found about material damping is given in the following. 
 
Internal damping of materials originates from the energy dissipation associated with microstructure 
defects, such as: 

• Grain boundaries and impurities 
• Thermoelastic effects caused by local temperature gradients resulting from non-

uniform stresses 
• Eddy- current effects in ferromagnetic materials, dislocation motion in metals  
• Chain motion in polymers. 

 
The equations for the different models described in the next paragraph are: 

For the Kelvin-Voigt model (see table 2): 
t

EE *

∂
ε∂

+ε=σ  

For the Maxwell model (see table 2): 
t

E
dt
dc *

s ∂
ε∂

=
σ

+σ  

For the standard linear solid model (see table 2): 
t

EE
dt
dc *

s ∂
ε∂

+ε=
σ

+σ  

(6.5) 

(6.6) 

(6.7)

 
More specifically for rubber: 
 
Energy dissipation through hysteresis is represented by the area between the loading and unloading 
curves in load deformation cycle, and occurs with all rubbers. It depends on the type of polymer, of 
the filler and the other compounding ingredients. The degree of damping is commonly expressed in 
terms of the loss angle. 
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5. Presentation of different viscoelastic models 
Different model of viscoelasticity are compared in [3]: Maxwell model, Voigt model and the 
standard solid model. The described models are based on elastic springs obeying Hook’s law and 
viscous dashpot obeying Newton viscosity law. 
Schematic representations of those models are given in table 2. 
 

Maxwell model Voigt model Standard solid model 
 

 

 
 

 

t
E

dt
dc *

s ∂
ε∂

=
σ

+σ  
t

EE *

∂
ε∂

+ε=σ  
t

EE
dt
dc *

s ∂
ε∂

+ε=
σ

+σ  

 
Table 2: different mechanical models of rubber 

 
In ref [3], it is discussed that for actual viscoelastic body, the range of frequency affecting the 
stiffness is wide. Hence, it is impossible to be only one retardation mechanism in the range. There 
should be a series of retardation mechanisms with different characteristic frequencies and the 
associated weight factors must be different. The standard three-parameters solid model can be 
generalized to the general Maxwell model consisting of a series of Maxwell bodies connected in 
parallel. Every Maxwell body represents a retardation mechanism with certain characteristic 
frequency. The spring connected with too ends directly as a stiffness appearing as a static stiffness. 
The number of elements is determined based on the frequency section interested. It is clearly shown 
than the more elements are used, the more accurate fitting is reached. Then, the Voigt model can be 
used because it is quite easy to do so, but in order to improve the global model, a general Maxwell 
model with many elements would be better. 
 

cs 

E* 

x 

F 

E E* 

x 

F 
F 

x 

cs

E* 
E 
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V. A model of the orifice impedance 
 

1. Parameters used and impedance definition 
 
A 
l 
p 
r 
R 
U 
v 
 
X 
Z 
λ 
ω 
Ψ 

Orifice cross section area, [m2] 
Length of the orifice, [m] 
Pressure, [Pa] 
Radius of the orifice, [m/s] 
Real part of the impedance, [Ns/m5] 
Volume flow, [m3/s] 
Particle velocity in the orifice (the velocity due to the difference of pressure on 
two sides of orifice), [m/s] 
Imaginary part of the impedance, [Ns/m5] 
Impedance, [Ns/m5] 
Viscosity wavelength, [m] 
Angular frequency, [rad/s] 
Negative pressure gradient parallel to the axis of the tube 

ξ , ξ& , 
ξ&&  

Displacement, velocity, [m,m/s] 
acceleration, in the x direction [m/s2] 

c 
µ 
ρ 

Sound speed, c=343 m/s in the air 
Coefficient of viscosity, µ=17.98 10-6 Pa.s for the air 
Density, ρ=1.2255 kg/m3 for the air 

 
The different wave numbers: 

µ
ωρ

−=
jk  

µ
ωρ

=β=
2

k 2  

c
k3

ω
=  

 

 
The acoustical impedance at a given surface is defined as the complex ratio of effectiveness sound 

pressure average over the surface to effective volume velocity through it: 
U
pZA = . The unit is 

Newton-second/m5, or mks acoustic ohms. Since the impedance is complex, an other expression is: 
ZA=RA+jXA. 
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2. Inner impedance 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8:element of fluid in the hole Figure 9: Lamellar motion of fluid 
 
In a moderately large tube, B. Crandall explains in [15] that the viscosity waves are diffused 
radially from the fluid, where the velocity is the greatest, to the walls of the tube, where the velocity 
is nil. One property of those waves is that there are almost extinguished after traversing a distance 

of one wavelength, 
ρω

µ
π=

β
π

=λ
222 . Then, the effect of viscosity for sound waves wider than 

double this wavelength is confined to a layer near to the wall of thickness approximately one 
wavelength (see figure 9). In the center of the tube, the dragging effect is absent, which means that 
the axial velocity doesn’t vary much with the distance from the center: it can be seen as a cylinder 
core of air, oscillating in the center of the tube, as seen in figure 9. The reaction from the layer 
between the air cylinder and the wall affects the motion of this air cylinder. Then, added inertia and 
resistance are involved. To derive the impedance, the equation of motion has to be written and first 
the forces acting in a peace of air (see figure 8) are: 
 

• The axial driving forces acting on a circular membrane (D) is dxΨ  per unit area. ψ is the 
negative pressure gradient parallel to the axis of the tube. For a volume 2πr dr dx it is 
written rdr2dx π⋅Ψ . 

 
• The opposed reactance due to inertia (R): jωρ2πr dr dx. 

 

• The opposing friction force on the inner surface of the ring (F) is: 
r

rdx2
∂
ξ∂

µ⋅π−
&

. The net 

force on the annulus due to friction is then: dr
r

rdx2
r 








∂
ξ∂

µ⋅π−
∂
∂ &

. 

 
The equation of motion can be written: 
 

ψ=ξ















∂
∂

∂
∂µ

−ωρ &
r

r
rr

j  (7.1) 

 
 

3λ 

R 

D 

F 

dr 

D

F 

dx 

R
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Since only ξ&  is dependent on r, the equation (7.1) may be rewritten as: 

µ
ψ

−=ξ







+

∂
∂

+
∂
∂ &2

2

2

k
rr

1
r

 (7.2) 

 
The solution of this differential equation, in taking into account that the velocity must vanish at the 
boundary r=r0, is: 









−

µ
ψ

−=ξ
)kr(J
)kr(J1

k
)r(

00

0
2

&  (7.3) 

 
Integrating the last equation over the section gives the mean velocity: 









−

µ
ψ

−=ξ
)kr(Jkr

)kr(J21
k

)r(
000

01
2

&  (7.4) 

 
Then the impedance can be calculated. lΨ  is the total pressure acting on the circular membrane 

and 2rπξ&  is the velocity in the section. The impedance, defined as 
2i

r
Z

πξ

ψ
=
&

l  is then: 

( )
( )krJ
krJ

kr
21

1j
r

Z

0

1
2i

−
ωρ

π
=

l  
(7.5) 

 
In order to evaluate the impedance for values of kr  in the range 10kr1 << , the relation 

( )
( ) j

jJ
jJ

0

1 −=
−α

−α
, with 

µ
ωρ−

=−α
jrj  and for α>10, can be applied. The impedance can be then 

reduced to the more simple expression: 
 

( ) 2i r
j1

r
2jZ

π






 +

µβ
+ωρ=

l  (7.6) 

 
Since in our case, for 30 Hz, 6.3kr =α= , the equation (7.6) can be used to build the model 
parameters. 
 
From [12], the inner impedance of a small orifice whose length and diameter are comparable in size 
can be written as: 

( )
( )

A
v

5.0

)j2(rkJ
)j2(rkJ

)j2(rk
21

1j
r

Z

21
20

21
21

21
2

2i

ρ
+

−
−

−
−

ωρ
π

=
l  

(7.7) 

 

This is actually the same expression than the previous one but including a non linear term 
A
v

5.0
ρ

 

taking into account that the impedance is increasing with the air particle velocity, v, in the hole. In 
fact, in [12], the real part of the impedance is plotted for different speed flow in the orifice and it is 
pointed out that the nonlinearity that can be seen is a velocity effect rather than amplitude or 
acceleration effect. 
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3. Radiation impedance 
The radiation mechanical impedance of a plane piston on infinite baffle, ZMr, is defined by Beranek 
in Ref [5]. The acoustical impedance ZAr is then: 
 

22
MrAr )r(ZZ π= ; 








+−

π
ρ

=
rk

)rk2(Hj
rk

)rk2(J1
r
cZ

3

31

3

31
2Ar  (7.8) 

 
In the formula above, k3=ω/c is the wave number. J1 is the Bessel function of first order and H1 is 
the Struve function of order one. Since there is no readily available Struve function in MATLAB, 
one has to approximate the Struve function with the firsts terms of the power series expansion: 









−+−

π
= ...

7531
z

531
z

31
z2)z(H 222

6

22

4

2

2

1  

Another approximation could also be, from 14: 

201 z
)zcos(13612

z
)zsin(516)z(J2)z(H −









π
−+






 −

π
+−

π
≈  

 
But the difference occurs at high frequency and the frequency range we are working on is from 0 to 
30 Hz; then the final result is not changed and either of these expressions could be used. 
In the figure 10 below is drawn the real and imaginary part of the mechanical impedance of a piston 
in infinite baffle in logarithmic scale as in Ref [5]. 

 
Figure 10:Real and imaginary part of the normalized mechanical impedance of the air load on one side of a plane 

piston mounted in an infinite flat baffle 
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VI. Electro- mechanical-acoustical analogy 
 
It could be useful to make an electro-mechanical-acoustical analogy, which means applying the 
electrical-circuit theory to the solution of mechanical and acoustical problems. In [5] an electrical 
analogy for mechanical and acoustic mass, compliance and resistance are largely discussed. In fact, 
they are the basic element that should be combined in order to get more complicated devices. 
That is why, with the help of [5] the impedance-type analogy for acoustical mass, acoustical 
compliance and acoustical resistance will be shown here in the table 4 below.  

To transform a physical low into acoustical terms, one uses the formula: 
S

)t(f)t(p =  where p is the 

pressure, f the force and S the section area. 
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VII. The measurements 
 
Here is explained how the measurements have been done and the interpretation of them in order to 
build the model. 
 

1. General set-up 
The dynamics measurements are done on a servo-hydraulic machinery (MTS-1000 Hz). This 
machinery is behaving rigid up to high frequencies (1000 Hz at least) in order to avoid bending 
waves in the set-up. The machinery can do measurements up to 1000 Hz. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Measurement set-up: the servo-hydraulic machinery 
 
The displacement is given and measured at the upper side of the piston of the mount. The resulting 
force at the steal plate is measured. With those data, the stiffness can be calculated in two ways: 
 

• Calculate the peak-to-peak value of the force and displacement signal, which gives the 
absolute value of the dynamic stiffness. The phase is calculated out of the actual 
hysteriesis curve area. 

 
• The second method is to use the fast Fourier transform. The amplitude of the 

fundamental wave is calculated. The phase shift is the difference of the load phase and 
the displacement phase.  

 
To validate the model, different measurements are done. Three preloads are chosen: -850 N, -1000 
N and -1200 N (it covers different type of vehicle in which the damper could be mount in) and two 
excitation amplitude: 1 mm and 0.1 mm  (it covers different driving conditions and different roads 
types). The chosen frequency range is from 0 to 30 Hz. 
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The dynamic stiffness measurements are first done on the mount described on chapter IV. 
Then, the dynamic stiffness measurements are also done for a closed orifice and for an orifice of 20 
mm of diameter in order to test the total mount highest and lower stiffness limits. 
In all the following plots, the frequency is in Hertz, the absolute value of the stiffness in N/m, and 
the angle in degrees. 
 

2. Static measurement 
The static measurements are done in a spindle machinery. The speed given is then very well 
controlled. Since this machinery is not completely stiff, a sensor is measuring the force due to this 
lack of stiffness and the results are then more accurate by updating with the sensor data. 
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Figure 12: Force-displacement curve 
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3. Dynamic measurements and results 
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Figure 13: Measured dynamic stiffness and phase angle for 0.1 mm amplitude excitation 
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Figure 14: Measured dynamic stiffness and phase angle for 1 mm amplitude excitation 

 
Out of those measurements (figure 13 and 14), one can see that the amplitude of excitation plays a 
big role. 
In plotting the curves of the absolute value and the phase angle of the complex stiffness for different 
preload on the same graph, one can also see a preload influence. The preload has an influence on 
the working chamber volume. In fact, if the preload increases, the chamber volume decreases, 
which result in a lower compressibility of the air enclosed volume and to higher stiffness. But the 
shift of the absolute value to lower values when the preload increases is also due to the rubber 
dependence on preload, which is not modelled. 
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4. Pneumatic engine mount with closed orifice 
Before closing the orifice, a deflection is imposed to the mount. A deflection of 5.5 mm 

corresponds to –850 N preload, a deflection of 6.5 mm corresponds to –1000 N preload, and finally, 
a deflection of 7.5 mm corresponds to –1200 preload. Then, after closing the orifice, the pressure 
inside the mount is the atmospheric pressure. Thereafter, the dynamic measurements can be done. 
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Figure 15: Measured dynamic stiffness and phase angle for 1 mm amplitude excitation; closed orifice configuration 
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Figure 16: Measured dynamic stiffness and phase angle for 0.1 mm amplitude excitation; closed orifice configuration 

 
Out of those results (figures 15 and 16), one gets the dynamic stiffness contribution of the air 
chamber and the rubber. This measurement gives the upper limit of the dynamic stiffness of the 
mount. 
What can also be remarked, is that the stiffness for –1200 N preload is larger than for the other two 
preloads. In fact, the air volume effect is here seen and at –1200 N the working chamber volume is 
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much smaller than for the other preloads and the change of pressure over the change of volume is 
much higher. That is why the stiffness is larger for –1200 N preload. 

5.  The pneumatic engine mount with opened orifice 
The orifice is opened in order to be 20 mm diameter. Then the dynamic stiffness measurements are 
done again.  
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Figure 17: Measured dynamic stiffness and phase angle for 1 mm amplitude excitation; opened orifice configuration 
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Figure 18: Measured dynamic stiffness and phase angle for 0.1 mm amplitude excitation; opened orifice configuration 

 
Out of those results (curves 17 and 18), one gets the rubber dynamic properties in the proper 
geometry: the elastic stiffness and phase angle. In fact, the air is not playing any role in this 
configuration since the air volume is seen as infinite since the orifice is big: the air stiffness is much 
lower than the rubber stiffness. In this case, the total mount stiffness for –850 N preload is the 
highest because the slope of the force deflection curve, which gives the static stiffness of the mount, 
is decreasing then increasing slightly (see figure 10). 
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VIII. Description of the model 
 
In this part will be derived the equation of the total dynamic complex stiffness of the pneumatic 
engine mount, which will be used to implement the model of the pneumatic engine mount with 
MATLAB. 

1. Unknowns and assumptions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19: mount schema 
 
Ap 
Cair 
dr 
F 
l 
Pout 
Pv 
q 
r 
S 
V 
xe 
Zi 
Zr 

Piston area, [m2] 
Air compliance, [m5/N] 
Rubber viscous damping, [N/(m.s)] 
Excitation force, [N] 
Thickness of the plate (length of the orifice), [m] 
Pressure at the output of the hole, [Pa] 
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The different parts of the model to take into account are: 
 

• The rubber, which is modelled with Voigt model. 
 

• The hole, which is modelled has having an inner impedance and an output impedance. 
Those impedances are both defined in chapter VI. 

 
• The air volume, which is modelled has having a stiffness of a pneumatic spring as in chapter 

IV. 
 
The unknowns of the model are: Pv, Pout, q. 
 
It is assumed that: 
 

• The density of the gas in the chamber is constant in space and time 
 

• The equations are transformed into Laplace domain to get the transfer complex stiffness 
 

2. The air compliance expression 
The air compliance κair is computed as a closed volume compliance, which is the same as in the 
paragraph 2 of chapter IV. 
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3. The rubber model used 
The rubber is modelled with Voigt model. For this model the rubber is taken has having a linear 
stiffness κr and a viscous damping dr. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 20: Voigt model of rubber element 
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The differential equation is then: fxxd rr =κ+& , and in frequency domain: FX)dj( rr =κ+ω  

The loss angle of the rubber is defined as: 
r

rd)tan(
κ

ω
=δ  and finally: 

( ))tan(j1rrtot δ⋅+κ=κ  (10.2)
 

4. The basic equations used for the fluid  
 
The equations concerning the air are: 
 
The force equilibrium of the air: )t(Sp)t(F v=  
 

The continuity equation in term of air compliance: 
air

v C
V)t(p ∆

= , 
air

2
p

air

A
C

κ
=  

The volume conservation: tiep AxxAV ∆−=∆  
 
The equation concerning the hole: 
 
The driving flow through the hole: )t(qZ)t(p)t(p tioutv =−  
 
The definition of the radiation impedance of the hole: )t(qZ)t(p tsout =  

(10.3) 

(10.4) 

(10.5) 

(10.6) 
 
(10.7)

 
κair is the air compliance as defined in equation (10.1). Zi and Zs are defined in chapter VII.  
Then: 
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Since the air and the rubber spring are playing in parallel, the total complex stiffness is: 
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Then, the term κair+orifice can be written as: 
airpsip
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2
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++ω

+ω
. If Zs is neglected and Zi 

expressed as in equation (7.6), on gets the equation (7.8) 
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Finally: 
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The air volume is modelled as a spring with a stiffness κair-model= airp CSA and the orifice is 

modelled as a mass lSmorifice ρ=  in parallel with a dashpot ( )j1
r

2dorifice +
µβ

= . The air volume and 

orifice are acting in serie. The analogous mechanical system is in figure 21. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21: pneumatic mount model analogous mechanical system 
 
The mass morifice corresponds to the mass of air in the orifice dorifice corresponds to the losses in the 
hole due to shear forces. 

5. The limits of the model 
The upper limit is given by the rubber stiffness together with the air stiffness for closed volume and 
the lower limit is given by the rubber stiffness only, as pointed out with the measurements. 
 

6. Numerical implementation in MATLAB 

In the inner impedance non linear term 
A
v

5.0
ρ

 (equation (7.7)), the particle velocity v has to be 

first calculated as exv ω=  as a rough approximation (this formula is true for compressible fluid). 
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This expression will be updated as: 
)ZZ(C1

ASxjv
siair

te

++
ω

= . The last formula comes from equation 

(10.6). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 22: Program functionment chart 
 
The volume and the pneumatic diameter are calculated with finite element method for the different 
preload. The preload influence is taken into account through the initial volume and the pneumatic 
diameter.  
 

7. Parameter study 
A parameter study in which the absolute value and the phase angle of the stiffness have been plotted 
in the same graph for a variation of ± 10 % of each parameter has been done (see appendix B). 
The parameters are: the length of the hole, the diameter of the hole, the pneumatic diameter, the 
chamber volume, the steal plate diameter, the rubber stiffness and phase angle. 
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The conclusions of it are that: 
 

• The diameter of the orifice gives the resonance frequency and can be adapted to tune the 
mount. 

• The air chamber volume should be decreased in order to increase the damping. It also 
determines the behavior at the highest frequencies. 

• The pneumatic diameter and the diameter of the steel plate below should be increased in 
order to increase the damping. As the volume, it also determines the dynamic stiffness at the 
highest frequencies. 

• The rubber elastic stiffness should be as low as possible to get the highest damping. 
 
This confirms the theory used and that the model is working in a proper way. 
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IX. Model/measurements comparison 
 

1. The rubber measurement and model comparison 
 
From the Voigt model, the rubber absolute stiffness and phase angle are taken as constant values, 
which could be chosen as the average of the measured absolute stiffness and phase angle with 
opened orifice configuration. In that case, the curves are good only after about 10 Hz. In fact, it is 
hard to model the dynamic properties of the rubber at low frequencies. But those values can also be 
taken from the measurements with opened hole, and then as frequency dependent. In this case, the 
curves are fitting with the measured one in the entire frequency range. 
In the figure 23 are the comparison between the calculated curves with the rubber properties taken 
as constant and the calculated curves with measured rubber properties. 
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Figure 23: Comparison between different rubber properties calculation 

 

2. Measurements and model fit 
 
In looking at the parameter study, the relevant parameters that could be tuned are: 

• The pneumatic diameter 
• The volume 
• The rubber elastic stiffness 
• The rubber phase angle. 

 
In fact, the diameter of the orifice is only shifting the resonance frequency of the system, which the 
model gives correctly and there is no reason that the steal plate diameter should be wrong. Anyway, 
since the influence of this parameter is the same as the pneumatic diameter, if there is any 
uncertainty, it would be contained in the pneumatic diameter factor. In the appendix C are plotted 
the stiffness and phase angle of the mount: in the same figure, the calculated (calc) and measured 
(meas) curves can be seen.  
Regarding the curves comparison without factor, it can be seen that the stiffness for 1 Hz are not 
matching. This should be the case because at low frequencies, the air movement is so low that the 
behavior of the mount is similar to the static case and only the elastic stiffness of the rubber is seen. 
But this could by explained by the fact that for the calculates curves, the rubber stiffness is taken 
from the opened orifice measurements, which gives a slightly different rubber elastic stiffness than 
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in the normal dynamic measurements: the rubber properties are changing with the time and are 
sensible to fatigue. Then, if the calculated curves are shifted to the same start stiffness value as the 
measured one, the calculated absolute value of the stiffness is getting higher than the measured one 
for higher frequencies. The phenomenon is the same for the phase angle. It can be concluded that 
the calculated air stiffness is too high, which is confirmed by the fact that the volume has to be 
multiplied by a factor almost two in order to get a good fit between the measured and calculated 
curves (the total mount stiffness is depending on the volume only via the air volume stiffness. There 
are only some clues to explain this: 
 

• The volume is really small and some unknown phenomena could happen. 
 

• The air stiffness is calculated for a squared box geometry: the geometry of the rubber part of 
the mount is not taken into account and could play a role 

 
• There could be some measurements uncertainty. 
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X. Proposals how to increase the damping 
1. Several holes, orifice area increase 

With the model, it could be shown that having several small holes (smaller than the one taken so 
far), increases slightly the damping. In the same graph are plotted the absolute value and the phase 
angle of the complex stiffness for different areas: 
 

• The first area is the normal orifice area corresponding to a circular orifice of 2 mm diameter 
 

• The second area correspond to two circular orifices of 2 mm diameter 
 

• The third area correspond to two orifices of 1 mm diameter 
 

• The forth area correspond to four orifices of 2/1  mm diameter 
 
The first, third and fourth case corresponds to a same total area. 
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Figure 22: Computed dynamic stiffness and phase angle for 0.1 mm amplitude excitation; different orifice 

configurations 
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Figure 23: Computed dynamic stiffness and phase angle for 1 mm amplitude excitation; different orifice configurations 
 
Then it can be seen that increasing the total area is shifting the resonance frequency as pointed in 
the parameter study, but for a same area distributed on several holes, the damping is almost not 
increasing and since it would anyway be too complicated to make it industrially, no measurements 
has been done to verify those results. 
 

2. Acoustic absorbent inside the volume 
L. Beranek in Ref [5] is discussing the influence of absorptive lining in loudspeaker closed box. A 
conclusion is that the absorber makes the speed of sound decreasing in the box because the 
compression becomes isothermal. Then, the ratio of specific heats decreases from 1.4 to 1, which 
means that the air compliance is increasing. 
Since it is difficult to get the absorber acoustical properties, it hasn’t been tried to include them in 
the model. 
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XI. Conclusion and discussion 
 
After having understood how an hydraulic mount is working and explored some simple pneumatic 
spring, the model of the pneumatic mount has been implemented in MATLAB and finally, the 
calculated curves are compared to the measured one. The mount has physically been divided in 
three parts in order to model it more easily and the conclusion of the model-experiment study shows 
that: 

• The rubber part is well modelled with a spring in parallel with a dashpot, 
• The orifice impedances seems to be quite correctly modelled since the global model predicts 

really well the resonance frequency; in fact, the channel geometry and behavior determine 
the frequency of maximum phase angle and the damping properties. 

• The air compliance is not modelled accurately enough since the calculated phase angle is 
always too high compared to the measured one. 

 
It can be also remarked that the simplified orifice impedance is working well for the chosen 
frequency range and for this application. 
 
Then, the next step to do in order to improve the model would be to find a better air stiffness 
approximation: the total mount stiffness at the highest frequencies would be better modelled. For 
that, the air stiffness model should include the mount geometry. Finally, a non-linear model for 
large amplitudes with small air cavity volume could be useful to get a modelisation in time domain. 
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XII. APPENDIX A1: Parameter study for –850 N preload and 0.1 mm 
amplitude 
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Length of the orifice variation 
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Diameter of the orifice variation 
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Angle of rubber damping variation 
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Rubber elastic stiffness variation 
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Diameter of the plate below variation 
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Pneumatic diameter variation 
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XIII. APPENDIX A2: Parameter study for –850 N preload and 1 mm 
amplitude 
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Length of the orifice variation 
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Angle of rubber damping variation 
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Rubber elastic stiffness variation 
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Diameter of the plate below variation 
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XIV. APPENDIX B: Calculated and measured curves 
comparison 

 
-850 N preload, 0.1 mm amplitude 
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-850 N preload, 1 mm amplitude 
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-1000 N preload, 0.1 mm amplitude 
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-1000 N preload, 1 mm amplitude 
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-1200 N preload, 0.1 mm amplitude 
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-1200 N preload, 1mm amplitude 
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XV. APPENDIX C: MATLAB code 
 
 
clear 
 
%GEOMETRY 
 
pd=0.08605; %pneumatic diameter m; -850 N 
% pd=0.08622; %pneumatic diameter m; -1000 N 
% pd=0.08619*0.93; %pneumatic diameter m; -1200 N 
 
Ap=pi*(pd/2)^2; %piston area m^2 
 
dt=0.002; %diameter of the hole m 
 
r=dt/2; %radius of the hole m 
 
At=pi*r^2; %cross section area of the hole m^2 
 
dp=0.1017; %diameter of the plate below m 
 
S=pi*(dp/2)^2 %area of the plate below m^2 
 
lt=0.002; %lenght of the hole m 
 
V0=38.4878*10^(-6); %initial volume m^3; -850 N 
% V0=33.100*10^(-6); %initial volume m^3; -1000 N 
% V0=25.627*10^(-6)*1.8; %initial volume m^3; -1200 N 
 
%CONSTANTS 
 
p0=101300 %atmospherique pressure Pa 
 
rho=1.2255;%kg/m^3 
 
gamma=1; %ratio of specific heats 
 
kinvisc=17.98*10^(-6);%fluid dynamic viscosity (Pa.s) 
 
c=343;%speed of sound in air m/s 
 
%PARAMETERS 
 
xe=0.001;%amplitude of the displacement 
 
% xe=0.0001;%amplitude of the displacement 
 
%AIR COMPLIANCE CALCULUS 
 
aircomp=V0./(((1-Ap*xe/V0).^(gamma+1)).*(gamma*p0)); 
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%VECTORS 
 
omega=linspace(1,30,30)*2*pi; 
 
s=j*omega; 
 
ki=(omega.*rho./(2*kinvisc)).^(0.5); 
 
k=omega./c; 
 
wave=k.*r; 
 
omegameas=linspace(1,30,30)*2*pi; 
 
bessel_1=2./pi.*(((2.*wave).^3./3)-(2.*wave).^5./(3.^2.*5)+(2.*wave).^7./(3.^2.*5.^2.*7)-
(2*wave).^9/(3.^2.*5.^2.*7^2*9)); %H1 serie 
 
bessel_2=2./pi-besselj(0,2.*wave)+(16./pi-5).*(sin(2.*wave)./(2.*wave))+(12-36./pi).*(1-
cos(2.*wave))./((2.*wave).^2); 
 
Zsunnorm=(rho.*c.*(pi.*r.^2)).*((1-besselj(1,2.*wave)./(wave))+j.*bessel_1./wave); % plane 
piston in infinite baffle   
 
Zs=Zsunnorm./((pi*r^2)^2); 
 
Ziwf=(lt./(pi.*r.^2))*s.*rho.*(1./(1-(2./(ki.*r.*(-2*j).^(0.5))).*besselj(1,ki.*r*(-
2*j).^(0.5))./besselj(0,ki.*r.*(-2*j).^(0.5)))); %internal impedance of a small operture 
 
for m=30:-1:1 
 
err=1; 
 
qiold(m)=xe*Ap*omega(m); 
 
load measurefermeouvert 
 
kr(m)=Kmeasferme2(m)*10^3*1.13*(1+j.*tan(pi*anglemeasferme2(m)*1.1/180)); 
 
        while err>0.000001  
 
Zi(m)=Ziwf(m)+0.5*rho*abs(qiold(m))/At^2; 
 
qi(m)=(xe*s(m)*Ap)/(1+((aircomp)*s(m)*(Zi(m)+Zs(m)))); 
 
K(m)=(S*Ap/(aircomp))/(1+1/(s(m)*(Zi(m)+Zs(m))*(aircomp)))+kr(m); 
 
 
err=abs(qi(m)-qiold(m)); 
 
qiold(m)=qi(m);   
 
        end 
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end 
 
load measured_values_850_mine 
 
figure(1) 
 
plot(omega/(2*pi),abs(K),... 
 
    omegameas/(2*pi),Kmeas2*10^3) 
 
xlabel('frequency') 
 
ylabel('abs k') 
 
axis([0 30 1.3e5 3e5]) 
 
figure(2) 
 
plot(omega/(2*pi),angle(K)*180/pi,... 
 
omegameas/(2*pi),anglemeas2) 
 
xlabel('frequency') 
 
ylabel('angle k') 
 
legend('calc','meas') 
 
axis([0 30 0 20]) 
 


