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ABSTRACT

The thesis describes shortly the Time-of-Flight technology and also the experiments,
algorithms and results for the registration of point clouds acquired by a Time-of-
Flight camera. The aim is to explore possible applications of the ToF camera for
patient positioning in the field of radiotherapy. A distance function between two
point clouds has been defined for the registration of point clouds in different frames.
Afterwards the distance of the reference frame with a linear transformed point cloud is
minimized. For this purpose the UOBYQA (unconstrained optimization by quadratic
approximation) algorithm has been used. The following results could be obtained: a
single pixel of the camera itself had a standard deviation of 0.5mm; the translation
of a spherical object could be determined with an average error of 0.5mm. The
algorithm for the registration of arbitrary surfaces with six degrees of freedom are
not completely finished and will be improved in further work. The cameras are
sensitive to temperature fluctuations, which has been tried to be avoided by using
two cameras at the same time. For this purpose the cameras have been calibrated
and their coordinate system transformed from one to the other. Finally a motion
surveillance application is presented, which creates a real time video stream with a
visualization of the distance from the actual frame to the reference frame.
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ett naturligt val för mig. Ich möchte mich bei Stephan Erbel und Doktor Kajetan
Berlinger für die Betreuung bei Brainlab bedanken. I would like to thank Brainlab
for giving the possibility of writing my master thesis. Ich möchte mich bei meiner
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Chapter 1

Introduction

Radiation therapy is one of the major treatment methods of cancer sufferers, besides
surgery and chemotherapy. In the therapy are several sessions of radiation treatments
used to destroy the tumor. At first a computer tomography (CT) scan is done to
determine the affected tissue. This is followed by the treatment with the linear
accelerator (LINAC). The radiation is emitted from different directions with the focus
in the tumor to avoid the destruction of healthy tissue. To ensure that all tumor cells
are destroyed and cannot regrow after the therapy, a larger volume than the tumor
itself needs to be irradiated. The tumor could have grown since the last CT-scan or
might not have been fairly visible at the time of the CT-scan. Further errors like the
positioning of the patient relative to the treatment machine extend the required safety
margin even more. In radiation therapy the time in-between the treatment sessions
gives the healthy tissue some time to regenerate and the repeated positioning of the
patient partially averages out the errors.

There are several techniques to minimize the positioning error. One possibility
is to fix the patient with a frame or another one is to position and monitor the
patient with help of image processing, a so called Image Guided Radiation Therapy
(IGRT). Together with a precise LINAC and treatment plan, it is sometimes possible
to reduce the number of treatment sessions to a single one. In this case a radiologist
speaks about radiation surgery instead of radiation therapy. This speeds up the
healing process, reduces the emitted radiation and may reduce the side effects of the
therapy [1].

1.1 State of the Art

One commonly used IGRT system is ExacTrac R© of Brainlab, which is part of the
widely used Novalis Tx system (figure 1.1) [2]. Reflective Markers are placed onto the
patient and tracked by a stereo infrared camera system. After the tumor is placed
roughly in the focus of the LINAC, two x-ray acquisitions are done from different sides.
These images are matched with digitally reconstructed radiograph (DRR) virtual X-

1
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Figure 1.1 Brainlab ExacTrac R© system with both X-ray tubes activated.

ray images generated from the planning CT-data, which includes the position of the
tumor. The patient is automatically moved according to the distance vector between
the LINAC focus and the tumor. Another X-ray acquisition is done to ensure a high
precision with a maximum alignment error of 0.5 mm before the radiation treatment
starts. For a tumor in a moving body part, as for instance the lung, a so-called gating
can be used to reduce the amount of irradiated healthy tissue. During the gating the
LINAC emits radiation while the tumor is in the focus. When the tumor is moving
out of focus the treatment pauses and resumes as soon as the tumor is back in focus.
To observe the movement, a camera system is needed. In the Brainlab ExacTrac R©
system 5 to 8 reflective markers are fixed to the patient’s skin. The clinical personal
needs to take care, that the markers are attached to body parts - moving with the
tumor and are visible for the camera system. A benefit would be a camera system,
which works without markers. This would speed up the patient setup and would
avoid mistakes by placing the markers on wrong positions. An IGRT system without
markers is AlignRT R© from VisionRT [3] [4]. It uses two stereo camera systems,
which reconstruct the surface of the patient to be able to place the patient in the
same position as in the last session. There is no matching of the CT-image with the
inner body parts through an X-ray scan. So this system is especially suited for a
cancer, which is close to the surface, for example breast cancer.
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Figure 1.2 Mesa SwissRanger4000 ToF camera mounted on a ladder.

1.2 Time-of-Flight Camera

An alternative sensor for an IGRT system is the Time-of Flight (ToF) camera tech-
nology (figure 1.2), which has been developed over the last years. The ToF camera
system uses a light impulse to determine a three dimensional point cloud with dis-
tance information for each pixel. This can be done in real time in a video frame rate.
The ToF camera system uses an array of light emitting diodes (LED) to send out near
infrared light impulse. The light gets reflected at the objects in the field of view and
returns partly to the ToF sensor. There are two possible ways to determine the dis-
tance to the object for each pixel. The possibilities are either by measuring the travel
time, the light needed from the LED back to the ToF sensor, or the PMD (Photonic
Mixer Device) principle with help of the phase-shift of the light. Depending on the
distance from the LED to the reflecting object and back to the sensor the light phase
has changed. By measuring the shift, the distance can be determined (Figure 1.3).
Most of the ToF systems use the phase-shift measurement to avoid the use of a high
precision clock. But depending on the modulation frequency there is a maximum un-
ambiguous distance range. E.g. for the MESA SwissRanger4000 with a modulation
frequency of 30MHz the maximum distance is 5 meter. With a modulation frequency
of 15Mhz the unambiguous distance is 10 meter [5].
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Figure 1.3 PMD measurement principle.

1.3 Application of the ToF Camera

The ToF point cloud of a radiation patient can be matched with the surface part of a
CT-image. Together with the information of the inner body parts from the CT-image,
the position of the tumor can be estimated. The body movements can be determined
in real time and the distance information makes the image segmentation easy and
robust. Target of this thesis is to determine how precise a point cloud obtained by a
ToF camera can be registered with a surface model.

1.4 Recent Work

Similar work has recently been done by Schaller [6], who observed the breathing curve
of a patient. Studies about the error rate of the raw signal were done in [7]. There are
also studies to improve the result of the ToF sensor, either by further calibration [8],
or by a superresolution method [9] or by combining the ToF sensor with a stereo
camera [10].

The ToF sensor in general has a wide field of image analysis applications, i.e. space
docking [11], surveillance systems [12], robotics [13] or in the automotive industry [14].
Microsoft is developing a game console with help of a CMOS distance sensor from
PrimeSense [15], which does not work with pulsed light as the PMD sensor does and
is much cheaper.



Chapter 2

Time-of-Flight Technology

More details about the Time-of-Flight technology are provided in this chapter. The
principle of the ToF sensor functionality is described in section 1.2. The benefits of
a ToF camera are the distance information for each pixel and consequently the easy
and robust segmentation of different objects together with a high frame rate. As part
of this thesis, the CamCube 2.0 from PMD Technologies and the SwissRanger4000
from Mesa Imaging have been tested. Both ToF cameras are measuring the phase
shift of the infrared light with a PMD sensor. Due to a non disclosure agreement
with PMD Technologies only results from Mesa’s SwissRanger4000 are published in
this thesis.

Figure 2.1 A ToF acquired point cloud of a person with a keyboard in the
hand, staying in front of a wall.

5



2.1 SwissRanger4000 6

2.1 SwissRanger4000

The SwissRanger4000 has a resolution of 176 x 144 pixels over 43.6◦ x 35.6◦ field of
view, with a maximum of 54 fps and a maximum distance of 10 meter. To illustrate
the distance of each pixel in the obtained point cloud, colors can be used. In the
frame of figure 2.1 red to orange is in close distance to the camera, yellow in a
medium distance and green in a higher distance.

2.2 Error Sources

To receive a valuable 3D point cloud from the camera there are several conditions
to fulfill. For a high precision measurement it is important that a large amount of
light is reflected back to the sensor. Therefore, black surfaces are leading to unreliable
results, since these absorb a large amount of light. A higher integration time allows the
sensors to receive a larger amount of light but on the contrary an oversaturated pixel
sensor does not provide any valuable information at all. Dark objects might return
enough light to the sensor with a high integration time, but close white objects may
cause oversaturated pixels. Infrared light from the LED which gets reflected over a
multipath (figure 2.2) falsifies the result as well [5]. Due to the complex technology
every pixel is affected by a high noise ratio, but an averaging over several pixels
and/or frames can increase the accuracy significantly. Furthermore sunlight contains
a large amount of light of the same wavelength as used by the ToF technology and
yield in further inaccuracy, but artificial light does not provoke this problem [16].

Figure 2.2 Multipath leads to false measurements.



Chapter 3

Sphere Matching

Before real patients getting observed by a ToF camera, tests are required to determine
how exact the camera works in an ideal environment.

3.1 Experiment Setup

A single acquired pixel itself is noisy, so a better result is achievable when using several
pixels. If a geometrical model of the acquired object is fitted into a point cloud, the
error can be averaged over all used pixels and reduce the noise ratio. A sphere is
geometrical easy to describe and looks identical from every angle and is therefore a
good object to test with. Afterwards, the obtained point cloud is matched with the
geometrical sphere model to receive the center of the sphere. This is done several
times to determine the accuracy of the camera.

(a) Phantom (b) Phantom with measurement device on top

Figure 3.1 Self constructed phantom out of four table tennis balls.

7
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3.1.1 Phantoms

Four extra large table tennis balls with a diameter of 55mm are glued to an acrylic
glass plane (figure 3.1a). To measure the distance between the four spheres, the
camera system of Exactrac R© was used with help of a self constructed measuring tool
(figure 3.1b) with known geometry. The device was used to measure the distances
between the white spheres with only a small uncertainty. For the testing, three of the
spheres were used to create an orthogonal coordinate system and the position of the
fourth sphere in this coordinate system can be measured.

The table tennis balls are quite small and in one meter distance to the camera,
they return only around 80 pixels. To get a better measurement and to use a phantom
which has a similar size as a human head another phantom has been used, a large
styrofoam sphere (figure 3.2).

Figure 3.2 Styrofoam sphere to measure with a diameter of 250mm.

3.1.2 Tested Data

To be able to test the software before the ToF camera is available, an artificial point
cloud has been used (figure 3.3a). The point cloud simulates the view of the camera
from directly above the table tennis ball phantom (section 3.1.1) on a plate.

A point cloud acquired by the ToF camera looks like in figure 3.3b. Pixels, which
values were determined by a signal of low amplitude, are filtered out, as well as pixels
in a larger distance than 1.2 meters to save computation time.
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(a) Artificial sphere image with added gaussian
noise

(b) ToF point cloud of the phantom

Figure 3.3 Visualized input data for the sphere matching algorithm.

3.2 Calculation of the Sphere Center

To determine the center points of the spheres, a sequence of calculations is necessary.
The first task is to detect, which pixels of the point cloud are part of the sphere
surface. To do so, a sphere center is estimated with the local minima search (section
3.2.2). Afterwards all pixels, which are located approximately in a distance of the
given radius r to the estimated sphere center are used for the sphere fitting. To get
a first estimation for the sphere center, at first the point cloud of the tof coordinate
system is transferred to a two dimensional plane, where the (x, y) remain and the
distance information is represented by a gray value. This is just an ordinary 2D
image, which can be used in a standard image processing algorithm.

3.2.1 Hough Circle Transform

Sonka [17] suggests the Hough transform to detect circular objects in an image. The
line detecting Hough transformation (like in Gonzalez [18]) would suggest to use a
three dimensional voting matrix to detect a circular object. Two dimensions for the x
and y coordinate of the circle center and one for the circle radius r. An implementation
of the circular Hough transformation could work like this. The original image is
transformed to a binary edge image. Every edge pixels votes for the circle centers,
for all possible x, y and r values, for which it could be a circle point (figure 3.4). The
entry in the matrix with the most votes determines the variables x, y and r.

The implementation of OpenCV works a little different. To avoid the memory and
time consuming three dimensional voting matrix, it votes only for the circle center
coordinates (x, y) and determines the radius r for the most probable center (x, y) after
the voting has been completed. To vote for a circle center the algorithm determines
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Figure 3.4 Hough voting (dashed) with a fixed radius r for a circular
segment (solid line).

at first the angle of the potential circle and votes along a straight line orthogonal
to the circular arc [19]. The OpenCV implementation of the circle detection does
not yield a stable solution for the tested data, since the images of the table tennis
balls have a too low resolution to contain enough border pixels to vote along their
orthogonal line. A Hough transformation with an ordinary three dimensional voting
matrix should work fine. But instead another simple algorithm, which is described in
the next section 3.2.2 , has been implemented.

3.2.2 Local Minima Search

Since an algorithm to fit a sphere with known radius r is needed anyway for the sphere
fitting ( section 3.2.3), a simple algorithm has been designed to detect the center of
the sphere, which will be used as a start value for the optimization algorithm. If
you look at a sphere, then the center of the sphere is just r mm behind the closest
spherical surface point (figure 3.5), when r is the radius. The point with the smallest
distance z to the camera is the closest point. To allow several spheres in an image, a
local neighborhood must be considered. To determine this point, it is just necessary
to erode [17] the 2D distance image with a large kernel. Every z value which is equal
to the eroded pixel with the same coordinate is a local minima for a neighborhood,
with the same size as the kernel. In general the local minima is due to the noisy
measurement not situated at the circular center (figure 3.6), which is treated by
several iterations of the sphere fitting, which is described in the following sections.

3.2.3 Sphere Fitting

Not all pixels obtained by the camera can be used for the geometrical fitting, so only
the pixels which are part of the spherical surface must be segmented. To do this, the
sphere candidate from the 2D image is transformed back to its original 3D coordinate.
All pixels which are closer than the radius plus a tolerance of 40 mm to the candidate
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Figure 3.5 The closest point of the sphere to the camera is just r mm in
front of the spherical center.

Figure 3.6 Gray pixel represent the distance, while red pixels are a local
minima.

centers (a, b, c) are used for the fitting algorithm. If the candidate is the center of a
sphere, then the surrounding pixels is the observed spherical surface.

The segmented surface pixels (xi, yi, zi) are now used to determine a new estima-
tion of the sphere center (a, b, c). The distance di(x, y, z) is the distance of each pixel
(xi, yi, zi) to the spherical center (a, b, c). The objective function f(a, b, c) is defined
by the squared sum of the differences of the radius and the pixel distance to the cen-
ter di(x, y, z). To minimize the objective function f(a, b, c) the Levenberg-Marquardt
algorithm [20] is used. The stop criterion is a small error with at most 300 iterations.
For chosen examples there was a clear global minimum for f(a, b, c) without a risk
for ending at a local minimum. More about optimization and the corresponding ob-
jective is described in the more general case of arbitrary surface matching in section
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5.2.3.

di(x, y, z) =
√

(xi − a)2 + (yi − b)2 + (zi − c)2

min f(a, b, c) =
1

n
·

n∑
i=1

(√
(xi − a)2 + (yi − b)2 + (zi − c)2 − r

)2

3.2.4 Candidate Filtering

If some local minima have the same z coordinate they might lie close together. So, if
a candidate has a distance of less than r to already found candidates, it is skipped. So
if we are looking for several spheres in one frame than there is at most one candidate
pixel for each sphere. For all remaining candidates, a set of surface pixels is created
and fitted with a sphere (see section 3.2.3). The new coordinates (a, b, c) of the
candidates are used for a second iteration. The surrounding pixels are extracted
again and the objective function minimized. This is necessary since the first candidate
coordinates are usually not in the spherical center due to the noise in the acquired
data.

The candidates with the lowest value for the objective function are selected to
be the observed spheres. Nevertheless, objects with only a few pixels tend to have
a lower error sum than the sphere. Therefore, all candidates which have less than a
thresholded amount of surface pixels are removed from the candidate set before the
selection.

3.2.5 Iterations to the Final Coordinates

The selected surface pixels, which are used for the spherical fitting, have a strong
influence on the calculated sphere position. On one hand, as many pixels as possible
should be used to minimize the error. On the other hand, pixels which are part of
the objective function but do not belong to the sphere in reality, lead to a bias to
their position. To filter out outliers, only 95 percent of the pixels which are closest
to the estimated spherical surface are used (compare figure 3.8). Several iterations of
the Levenberg-Marquardt algorithm are used to determine the sphere position and
every time the surrounding pixels are newly determinated since they might change
for a new estimated spherical center. This continues until the position of the sphere
moves less than 0.1 mm.

Finally the summary of the complete algorithm is displayed in figure 3.7. Fur-
thermore the algorithm is presented in the following abstract code with a simplified
program structure. Note that all distance and coordinate values are in mm.
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Figure 3.7 Diagram of the sphere fitting algorithm.
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Figure 3.8 Sphere (black center point) is fitted into the selected pixels
(green) with the removed percentile (red).

Algorithm 3.2.1: ExtractSphereCenter(p, r, n)

comment: Extracts n centers of spheres with radius r from the point cloud p

(image2d,mapTo3D)← convertTo2D(p)
minImage← erodeWithLargeKernel(image2D)
possibleCenter ← Emtpy
for each (x, y) ∈ image2d

do


if minImage[x, y] = image2d[x, y]

if distance3D(mapTo3d(x, y), possibleCenter) < r
possibleCenter.add(mapTo3d(x, y))

for each pC ∈ possibleCenter

do


pC.z← pC.z− r
surfacePoints← getPointsCloserThan(pC, r + 50)
pC ← fitSphere(SurfacePoints)

for each pC ∈ possibleCenter

do


surfacePoints← getPointsCloserThan(pC, r + 50)
if (surfacePoints.size < minPixel)

then remove(pC)
else pC ← fitSphere(SurfacePoints)

Keep only n possibleCenter points, with the lowest error in the fitSphere optimization
for each pC ∈ possibleCenter

do


while Sphere Center is Moving

do


surfacePoints← getPointsCloserThan(pC, r + 50)
SurfacePoints← KeepBestQuartile(pC, SurfacePoints, 0.95)
pC ← fitSphere(SurfacePoints)

return (pC)
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For the phantom with four visible spheres (figure 3.1) it is easy to identify which
sphere is A, B, C and D. The longest distance between the spheres is AD and the
shortest is CD. So it is just necessary to extract the sphere which is closest and
farthest away from the neighboring spheres at the same time to get D. A is the
remaining with the farthest distance, C with the shortest distance and B must be
the sphere is left over.

3.3 Result

All tests, which were done with spherical objects and a single camera, are published
in this section. Two phantoms were used, the four table tennis balls (figure 3.1) and
the styrofoam sphere (figure 3.2). All measurements were done with a camera with
at least one hour time to heat before the measurement to run the camera with a
constant temperature.

3.3.1 Static Observation

Tests, when neither the camera nor the phantom has moved are presented in this
section.

A sequence of 100 frames was acquired with the table tennis phantom at a distance
of 1.1 meter. The standard deviation of a single sphere was around 0.7mm in the
(x, y) coordinate and 0.8mm in the z distance. The distances between the spheres
had an absolute error of circa 2mm and a relative error of circa 0.008mm. All with
the premise, that the reference measurement underlies an absolute error of around
0.5mm.

Furthermore the standard deviation of sphere D was observed for a orthonormal
coordinate system defined by the three other spheres with B as the origin and the axes
e1 := AB

‖AB‖ , e2 := w2

‖w2‖ with w2 := CB − 〈CB, e1〉, and e3 := e1 × e2. The standard
deviation for the coordinate of D is 2.05mm in e1, 2.22mm in e2, and 1.72mm in e3

direction.
All further measurements were done with the styrofoam Phantom, whose size is

closer to the size of a human head, which would be one possible object for the final
application. The plotted positions of the calculated center for a static observation
are displayed in figure 3.9. The distribution seems reasonable, without clusters. The
(x, y, z) coordinate over several frames had a standard deviation of 0.3mm in (x, y)
and of 0.8mm in z direction.

The histogram in Figure 3.10 shows the distance of the surface pixels of one frame
to the fitted sphere surface. Pixels, which had a distance of less than sphere radius
plus 20mm to the estimated center of the sphere were used for the fitting and plotted in
the histogram. The pixels are symmetrical distributed, which is no surprise since the
sphere was fitted into this point cloud. Nevertheless the histogram looks convenient
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Figure 3.9 Position of the fitted centers of the spheres.

and shows the noise for a single pixels. The standard deviation of distance to the
spherical surface is 4.1mm.

Figure 3.10 Distance of the measured surface points to the fitted sphere
surface.

3.3.2 Shifted Sphere

After the studies of the random error for the measurement, the focus is now how exact
a change in position can be determined. The styrofoam phantom was positioned 1m
away from the camera and 80 frames were acquired. The phantom was moved 100mm
closer to the camera and another 80 of frames were acquired. After a median filtering
both positions were compared. For a median filter of size 80 the absolute error for
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the 100mm shift was 0.5mm. For a median filter with a size of 4 the error is up to
1mm (figure 3.11) and for a smaller median filter even larger.

Figure 3.11 Measurement Error for a 100mm shifted sphere.
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3.3.3 Temperature Influence

The temperature of the camera also has an influence on the measured values. The
camera and the styrofoam phantom were set in a fixed position while the position
were observed by the camera. For the first experiment (figure 3.12a) the camera was
started with room temperature and heated itself up to circa 40◦C. It took about one
hour until equilibrium was reached. During this time, the calculated z coordinate
changed 10mm before it stabilized. The coordinates x and y were only affected by a
minor change.

In the second experiment about the influence of heat, the camera started with
operating temperature (40◦C) and got cooled by a small ventilator for certain time
periods. The start and the end of the cooling phase are plotted with a red circle. With
start of the cooling phase the measured distance increases at first by two millimeter
and drops afterwards significantly by 7mm less than at the start (figure 3.12b). The
jump of two millimeters might be explainable by the temperature sensor in the cam-
era, which is used by the camera to correct the measured values. After the cooling
stops, the distance value increases slowly to the original value. The process until the
original distance value is achieved takes about 50 minutes. The influence to the x and
y coordinates is with less than 2mm rather small compared to the z distance (figure
3.12c and 3.12d).

3.4 Discussion

The absolute accuracy does not matter so much. For the application is the relative
vector of the object to the LINAC focus relevant. The accuracy of a static observation
with a standard deviation of 0.3-0.8mm and an error of 0.5mm for a 100mm shift are
quite promising and justify further studies. The error through multipath should not
be a big problem in the therapy room, since the camera will be fixed at one position
and the room inventory will change only slightly. Multipath on the patient skin
might be a problem, which could be solved by using two cameras, such that at every
relevant body part, one camera always has a clear view. Contrary, the temperature
has a too strong influence on the camera to be able to ignore it. At first the camera
can be supplied with power one hour before the therapy starts, to heat up to the
working temperature. But the camera should also return feasible positions when the
temperature in the room is changing. One solution would be with control engineering
to keep the camera body temperature constant. Another one would be the use of two
cameras, which is discussed in the next chapter, particularly in section 4.3.2.
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(a) Time to reach operating temperature. (b) Temperature effect on the z cooridnate.

(c) Temperature effect on the x cooridnate. (d) Temperature effect on the y cooridnate.

Figure 3.12 Temperature influence for static observations.



Chapter 4

Stereo Camera System

What is better than a ToF camera? Two cameras? This chapter is about how two
cameras can increase the accuracy for the patient positioning.

4.1 Experiment

The same Styrofoam sphere was used as in chapter 3 to measure the accuracy of
the camera system as well as for the calibration. The cameras were fixed on an
aluminum frame at top of a table. The angle between the cameras was about 50◦

degrees. Both cameras acquired independently positions of the sphere center with
the algorithm of chapter 3. The next sections are about how those positions can
be combined. Furthermore at the result section 4.4 are interferences between the
cameras described.

Figure 4.1 Stereo camera system on top of a paper stack recording the
styrofoam sphere.

20
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4.2 Transformation Matrix

To transform the a point x1 in the coordinate system of one camera to a point x2

in the coordinate system of another camera a transformation matrix T can be used
x2 = T · x1 (Bronstein [21]). For the three dimensional space there are six degrees of
freedom for the transformation matrix T (x, y, z, α, β, γ), three translations x, y and
z and the three rotations α, β and γ. While x, y and z are the translations along the
axes, α, β and γ are the rotations around the axes. A translation cannot be expressed
by a 3 by 3 transformation matrix. With extended coordinates x = (x, y, z, 1) the

translation can be expressed by a linear transformation T̃ . The transformation matrix
T can be split in several parts, since the matrix multiplication is associative. So we
have the following matrix

T (x, y, z, α, β, γ) = T̃ (x, y, z) ·Rx(α) ·Ry(β) ·Rz(γ)

with

T̃ (x, y, z) =


1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1



Rx(α) =


1 0 0 0
0 cosα − sinα 0
0 sinα cosα 0
0 0 0 1



Ry(β) =


cos β 0 sin β 0

0 1 0 0
− sin β 0 cos β 0

0 0 0 1



Rz(γ) =


cos γ − sin γ 0 0
sin γ cos γ 0 0

0 0 1 0
0 0 0 1


4.3 Algorithms

With help of the transformation matrix it is possible to transfer the coordinate system
of one camera to the other camera system. In the next section 4.3.1 is described how
to obtain such a transformation matrix. In the following section 4.3.2 is described
how to combine the two coordinates of the sphere in the best way.
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4.3.1 Calibration

For the calibration of the cameras, we need a transformation matrix T which allows
us to transform the position of an object in the right camera system pB to the position
the same object hast in the left camera system pA. It follows, that pA = T · pB plus
a measurement error. With three known points (p1, p2, p3) it is possible to calculate
a unique transformation matrix T . The error g of the transformation should be as
small as possible.

g =
∑

i={1,2,3}

(T · piB − piA)

To get the transformation matrix are three positions of the sphere acquired and
the error of the calibration g is minimized to get T . To minimize the error of the
calibration, the median position of 100 frames was used and the spheres were not
placed inside a plane.

4.3.2 Combining the Positions

With help of T it is now possible to transform all coordinates from the left camera to
the right camera. This should be used to increase the accuracy of the determination
of the position of an object. Camera A has acquired the position pA. Camera B
has acquired the position p̃B = T · pB for the same object. Since each measurement
contains errors, both positions are not equal. One possibility to half the error, would
be to average over both positions p = 1

2
pA + p̃B. We know that the (x, y) coordinate

is more accurate than the z coordinate of pA and p̃B from section 3.3. With this
premise pS can be calculated as the position where the lines (A, pA) and (T ·B, T ·pB)
intersect (figure 4.2) with A the position of the left camera and B the position of the
right camera. Since two lines are not intersecting in general in the three dimensional
space we take pS in the middle of the line which is the shortest distance between both
lines.

4.4 Result

A ToF camera sends a pulsed light impulse out and when it comes back, it measures
the phase of the light. Therefore other light sources might disturb the signal. Other
light sources like the second camera. A minimal disturbance is achieved if both
cameras are set to a different modulation frequency and an equal integration time.
Nevertheless, there is a small disturbance measureable if both cameras are operating
at the same time. For the experiment setup in figure 4.1 the standard deviation of the
x coordinate doubled, while the y and z coordinate remained unchanged (compare
section 3.3.1).
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Figure 4.2 Possible combination of a stereo camera system.

Standard deviation [mm]

x y z
1.3 0.7 1.0

The transformed position of an object in camera B should be equal to the position of
the object in camera A. There are always errors present in measurements, such that
the positions are not exactly the same. 100 frames of the Styrofoam phantom were
taken and the positions pA and (p̃B = T · pB) compared. The medium distance was
1.5mm and the largest distance 3mm.

The two points pA and p̃B combined yield the position pS. Figure 4.3 shows a
test about the influence of temperature on pS. Camera A and B were observing
the Styrofoam sphere. After 5 minutes camera A got cooled for 10 minutes. The x
coordinate of pS varies in a range of 2mm and is only dependend on pA and not on
pB. The y coordinate varies in range of 0.6mm and is an average out of pA and pB.
The z coordinate varies in range of 3mm and depends only on pB.

4.5 Discussion

The range of the z coordinate for the stereo camera system decreased to 3mm com-
pared to 7mm with a single camera through cooling with the stereo camera. Contrary
the x coordinate is not as accurate as with a single camera. This is explainable with
the higher standard deviation for the cameras in the x coordinate due to interference
between the cameras. The interference only in the x coordinate, is explainable since
the cameras are positioned along their x-axis. To ensure this, tests with other camera
positions could be done.

The strong dependency of the coordinates of pS in figure 4.3 might be surprising
at first glance. Actually it is exactly what was intended. At first, the z coordinate
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of pA is not used, instead the information of pB is used. Secondly, the z coordinate
of pB is not used. The plot displays the coordinates in the camera system of camera
A, or in other words pB has been transformed with T . x̃B depends on zB due to the
camera positions. That means, that the distance information z is not used in this
system, which is actually the big benefit compared to a regular RGB camera. Instead
of a noisy ToF stereo system a stereo system with regular RGB cameras could be
used. Only the detection of object without the distance information would be more
difficult but the whole system could achieve a higher accuracy. One step back, the
transformed position (T · pB) and pA of the same object have a median distance of
1.5mm. This is quite high and might be due to the calibration. Several tests could not
improve the results, neither considering more frames for determining the calibration
positions (p1, p2, p3) nor the use of more calibration points. If the calibration positions
are all inside a plane, the results are a little worse.

A smarter calibration might still yield in an increased accuracy to calculate the
position of an object. Regardless, two cameras still increase the field of view, which is
useful to recognize rotations and allows combining the information of two cameras for
objects which have a shape which causes multipathing. How to calculate the rotation
of a object between two images a registration of arbitrary point clouds is necessary,
which is the topic of the next chapter.
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(a) Temperature effect on the x cooridnate. (b) Temperature effect on the y cooridnate.

(c) Temperature effect on the z cooridnate.

Figure 4.3 Temperature influence on the stereo ToF camera system in the
coordinate system of camera A.



Chapter 5

Surface Matching

After the matching of spherical objects, it is time to handle the surface matching for
arbitrary surfaces.

5.1 Experiment

At first a reference image of a head dummy (figure 5.1a) was acquired at the distance
of one meter. Afterwards, the dummy was moved a determined distance or rotated
by 5◦, 10◦ or 15◦ degrees.

(a) Head dummy on top of a ro-
tation device.

(b) Torso dummy out of plastic. (c) Registration setup for a
human body. The ToF cam-
era is marked with a red ar-
row.

Figure 5.1 Tests for the Surface Registration.

Another shift was simulated with a plastic phantom (figure 5.1b) at a camera
distance of 1m and a angle of about 50 degrees from above. For the third setup a test
person was lying on a couch with an easy breathing (figure 5.1c). The pixels which
belong to the human surface could be easily extracted by using only pixels with high

26
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amplitude. The black couch and objects in a large distance and bad reflectivity could
be removed for the calculation. The electronically couch was moved a specific shift
and compared with the calculated result to determine the accuracy of the registration.
The calculation of the shift was done with the following algorithm.

5.2 Optimization Algorithm

To determine the distance and rotation between two surface point clouds f1 and f2

a transformation matrix T (x̄) must be calculated, such that the distance between
surface f1 and the transformed surface (T (x̄) · f2) is minimized. To do this, it is
necessary to define a objective function g(x̄), which describes the distance between
the point clouds and to use an optimizer, which finds the best translation and rotation
values x̄ for the transformation matrix T (x̄) to minimize g(x̄). In section 5.2.1 the
distance function d(p, f) for a point p to a point cloud f is defined. In section 5.2.2
these distances are summarized to define the distance d(f1, f2) between two point
clouds f1 and f2 yield finally to an objective function g(x̄). At last, in section 5.2.3
an algorithm is presented to calculate a transformation matrix T (x̄) such that the
objective function and therefore the distance between f1 and (T (x̄) ·f2) is minimized.

5.2.1 Point to Point Cloud Distance

There are several ways to define the distance d(p, f) between a point p and point
cloud f . The easiest distance function would be d(p, f) = ‖p− f(i)‖, such that f(i)
is the closest point of the point cloud f to the point p (figure 5.2a). The only problem
is, that the space between the pixels of the point cloud is empty, although the surface
of the real object is there. Since the acquired pixels are approximately arranged on a
grid, all the pixels p would snap to the reference grid f (figure 5.2b) and no subpixel
accuracy could be achieved.

To fill the space between the pixels for the modeled distance a linear approximation
can be used. For each pixel p, the three closest pixels f(i), f(j) and f(k) are computed
and the distance d(p, f) is defined by the distance of p to the triangular subspace
t(i, j, k) determined by f(i), f(j) and f(k) (figure 5.2c). In some cases it is possible
that some grid pixels are missing. This might be the case, because of a surface with
bad reflectivity or because the point is hidden by another object in front, for instance
the nose can cover a part of the cheek. In this case the three closest neighbors
would not interpolate the correct surface t(i, j, k) and yield in an error (figure 5.2d).
Nevertheless this simple distance function is used for the algorithm due to limited
time and the possibility to manually avoid these bad cases in test situations. For the
final application a triangulation should be computed and the distance between p and
the closest triangular subspace should be used. Lee and Schachter [22] describe how
to compute a feasible Delaunay triangulation.
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(a) Point to Point distance (b) The Points would snap into the reference grid

(c) Point to Triangle constructed through the 3
closest points

(d) A bad case for the Point to Triangle distance.

Figure 5.2 Distance of a point (red) to a point cloud (blue).

5.2.2 Objective Function

The distance d(f1, f2) of the first point cloud f1 to the second point cloud f2 can
be defined by the quadratic sum of the distances d(pi, f) of the points of one cloud
pi ∈ f1 to the other cloud f2.

d(f1, f2) =
1

|f1|
∑
pi∈f1

d2(pi, f2)

Since the objective is to calculate the translation and rotation between f1 and f2 we
compute the transformation matrix T (x̄) with x̄ = (x, y, z, α, β, γ) (more about trans-
formation matrices in section 4.2) which minimizes the distance between (T (x̄) · f1)
and f2.

min
x̄∈R6

g(x̄) =
1

|f1|
∑
pi∈f1

d2
(
T (x̄) · pi, f2

)
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Only one side of the object is reflecting information to the camera, so there are
no pixels on the backside of the object and a limited amount of pixels on the side. To
allow an object rotation, the objective function needs to skip pixels which are only in
the field of view of one frame f1 or f2. The smiley in figure 5.3(a-b) visualizes that
it is not useful to match all pixels on the margin. For a correct matching it is more
important to match eye to eye and mouth to mouth. To allow this constraint, all
pixels of f1, which are farther away than 7mm of f2 are not cumulated to the distance

sum, instead they increase the sum by a quadratic penalty factor
(
|f1|
|f ′

1|

)2

(compare

figure 5.3c). The objective function becomes

min
x̄∈R6

g(x̄) =
1

|f1|

(
|f1|
|f ′1|

)2 ∑
pi∈f ′

1

d2
(
T (x̄) · pi, f2

)
with

pi ∈ f ′1 if d(pi, f2) < 7mm

and the distance function d(pi, f2) from section 5.2.1, which is the distance of pi to
the triangular area constructed by the three closest points of f2 to pi.

(a) Smiley (b) Rotated smiley (c) f1 to f ′
1 proportion

Figure 5.3

5.2.3 Approximation Algorithm

To keep the running time feasible, the optimizer should minimize g(x̄) with as few
calculations of g(x̄) as possible. One good algorithm for this task is the UOBYQA
(unconstrained optimization by quadratic approximation) algorithm by Powell [23].
It is also popular, since it is robust for noisy data. That is another benefit for the
noisy data from a ToF camera.

UOBYQA optimizes the values x̄ ∈ Rn for a given objective function g(x̄). The
algorithm starts with a given starting value x̄0 and calculates the corresponding ob-
jective value g(x̄0). For each dimension of x̄ the algorithm changes one entry of x̄ by
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+ρstart and −ρstart. For the changed values of x̄, it calculates the new g(x̄). That are
2n calculations of g(x̄) for a dimension of n = Dim(x). With these values, UOBYQA
uses a quadratic approach to estimate a new vector x̄i and continues to alter the
entries by ±ρ. This continues until g(x̄) cannot be decreased any more by a step size
of ρ and reduces therefore the step size ρ. The search is done until a before specified
ρend is reached, where ρend must be less than ρstart.

Back to the matching of the two surface point clouds f1 and f2. We look for the
translation and rotation values x̄ such that the transformation matrix T (x̄) minimizes
the distance of f1 and T (x̄) · f2 for the objective function g(x̄). This calculation is
implemented by the UOBYQA algorithm even though an approximation algorithm
might result only in a local minimum. It is not possible to try every single possible
value of x̄ to minimize g(x̄).

UOBYQA does not differ between the units of [mm] and [◦] for the different
variables, but it allows a scaling. The scaling has been chosen for rotation and
translation: sα = sβ = sγ = π · 1

180
and sx = sy = sz = 4 [mm] such that 1◦ has the

same weight as 4mm. The parameter ρstart is according Powell supposed to be one
tenth of the expected maximal change. A ρstart of 1.0 is suitable for changes of the
starting value x0 for rotations up to 20◦ and movements up to 40mm.

5.2.4 Starting Value

A bad starting value x̄0 could lead to end up in a local minima at the end of the
optimization. The difference (∆x,∆y,∆z) between the centroids of the point clouds
f1 and f2 is a good approximation for the translation (x0, y0, z0) ∈ x̄0. The imple-
mentation of the starting value accelerated the calculation by 10% but changed the
result for T (x̄) only insignificantly.

(∆x,∆y,∆z) =
1

|f1|
∑

(pi)∈f1

pi −
1

|f2|
∑

(pi)∈f2

pi with pi ∈ R3

The second moment can be used to get a second vector (∆x̂,∆ŷ,∆ẑ). Together
with the centroid shift there are two vectors to estimate the rotations (α0, β0, γ0).

(∆x̂,∆ŷ,∆ẑ) =
1

|f1|

√ ∑
(pi)∈f1

p2
i −

1

|f2|

√ ∑
(pi)∈f2

p2
i

5.3 Result

The results for rotations of the Styrofoam head are presented in table 5.1. The head
was rotated around the y-axis. The nose moved from the middle to the right. With
the help of a coordinate transformation, the origin was set to the center of the head to
be able to compare the rotation values. The translation (x, y, z) is summarized with
the Euclidian distance of the coordinates (d =

√
∆x2 + ∆y2 + ∆z2). Tests, acquired
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case translation [mm] expected (β) α β γ difference (β)

1 1.2 5.0 -0.2 3.8 0.2 -1.2
2 1.3 -5.0 -0.4 -3.7 0.0 -1.3
3 2.5 10.0 0.7 7.5 0.0 -2.5

Table 5.1 Rotations for the Stryofoam phantom in degrees [◦] with measured
translation [mm]

case expected measured difference

1 100.0 97.9 -2.1
2 50.0 37.2 -12.8
3 5.0 4.9 -0.1
4 5.0 4.7 -0.3
5 10.0 8.1 -1.9

Table 5.2 Translation for a plastic (case 1 & 2) and Stryofoam phantom
(case 3-5) in [mm]

at 0.5m instead of 1.0m distance between camera and phantom improved the result
only slightly.

Rotations were less than 0.5◦ for tests with pure translations. The difference
for translation expermients with and without enabled rotations were less than 2mm.
Since the rotation did not work that well, it was disabled. That way, rotation could
not be the reason to be the error source in the later measurement and the degrees
of freedom were reduced to three. The results for translation tests of the Styrofoam
head and the plastic body are presented in table 5.2. The phantom was moved a
certain distance with help of a scaled paper. The difference between the real and the
measured distance are given for the Euclidian distance.

For the next test, the test setup was like in figure 5.1 with a patient lying on the
couch while the ToF camera is acquiring images. The couch was moved electronically
a specific distance and compared with the measured result. There are some tests
which worked fine, and two tests with an error of more than 10 mm. In the table
below the results of seven tests with the Euclidian distance are displayed.

Figure 5.4 shows (x, y, z) of the translation vector for a breathing patient as in
the test setup figure 5.1. The (x, y) translation for registration is mostly lower than
0.5mm. Due to breathing the z translation moves up and down in a range of 4mm,
which might got boosted by the noise ratio, which is strongest in the z coordinate
(section 3.3.1).
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case expected measured difference

1 11.5 14.2 2.7
2 27.6 16.8 -10.8
3 27.0 21.9 -5.1
4 4.0 2.4 -1.6
5 11.0 10.7 -0.3
6 12.0 10.7 -1.3
7 64.3 51.7 -12.6

Table 5.3 Translation for a human body in [mm]

Figure 5.4 Registration of a silent lying and breathing human.

5.4 Discussion

The experiments for the registration of human body parts are partly very good and
partly too bad for later applications. The calculated rotation angle with an error
of 20% is not acceptable. The translation achieved some good results, especially for
shifts in a short distance. But there are also some outliers, which must be investigated
and excluded in later tests. Due to time limitation this could not be achieved in this
thesis. Still, here are some ideas presented which can improve the result and some
reasoning to justify parts of the algorithm.

The plots of f(x̄) let assume, that UOBYQA finds the global minimum or at
least a local minimum close to the global minimum. Since it is difficult to visualize
a 6 dimensional space, in figure 5.5 are only the variables x and β, where x is the
translation along the x-axis and β is the rotation around the y-axis displayed for
a registration of an β=10◦ rotated head. The found optimum is at the coordinate
(x, β) = (0, 0). (x, β) are the most correlated variables and plots for other pairs of
variables show a more clear valley for g(x̄) than the (x, β) plot.
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(a) Calculated points. (b) Contour plot

Figure 5.5 g(x̄) with modified values for x and β.

The point clouds of a body registration are visible in figure 5.6. f1 is cyan,
(T (x̄) · f1) is blue and f2 is red, such that g(x̄) is minimized. The registration looks
reasonable, since f1 was shifted towards the right arm. Neverthenless, the calucated
shift was only 21.9mm instead of 27mm (case 3 in table 5.3).

Figure 5.6 Point clouds for a shift towards the right arm.
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There are several promising improvement undone which can significantly improve
the final result. Like the start value for rotation (α0, β0, γ0) (section 5.2.4), which
is not implemented so far. Furthermore the penalty factor of the objective function,
which leaves pixels unmatched if they have distance of more than 7mm (section 5.2.2).
It filters successfully outliers out, but it did not succeed in leaving border pixels
unmatched, as it would be necessary for a rotation (compare the smiley figure 5.3(a-
b)). Also a better result could be obtained by removing some of the matched pixels
before they are used for the matching. The pixels at the object border are noisy and
maybe not visible at all at the other frame. So a better match is possible without
them. In figure 5.7, only the pixels in the red frame could be used to match with
another point cloud, instead of all pixels.

Figure 5.7 Removal of margin pixels for a better matching.



Chapter 6

Patient Surveillance

One application which is easy to realize with the help of a ToF camera is the ob-
servation of a patient. Just before the treatment starts, a reference image is taken.
Afterwards, the live stream visualizes movements of the patient to the clinical per-
sonal. The clinical personal is now able to stop the treatment in case the patient
moved out of the LINAC focus.

To do so, the camera is mounted above the patient. The distance values for
each pixel are subtracted from the reference image and displayed in green and red
(figure 6.1). Green in this case means, that the pixel is closer to the camera than
in the reference image. Pixels, which are farther away, are red. To segment the
patient, only pixels are taken, which have either in the reference or in the live image
an amplitude value higher than a threshold of 3000. The background is black and has
therefore a low amplitude. Furthermore this filters out a big part of the noisy pixels.
Additionally a improved version of the surface registration (chapter 5) can display
the movements in digits.
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(a) Amplitude Image (b) Ground noise due surfaces
with bad reflection

(c) Breathing

(d) 10mm body shift towards
the head

(e) 20mm body shift towards the
head

(f) Additionally lifted arm

Figure 6.1 Pictures from an observation video.



Chapter 7

Conclusion

The ToF camera is able to register translations of large spherical objects with a
medium error less than 1mm. Together with a frame rate which enable real time
applications with a resolution of several thousand pixels the camera is very promising
for new patient monitoring systems in the field of radio therapy. The visualization of
the patient movements worked fine. Such an application, which makes an emergency
stop as soon as a patient makes an unexpected movement, is realizable. A gating
system is also possible, a system which pauses the treatment as soon as the breathing
moves the tumor out of focus. Only the influence of temperature fluctuations must
be controlled by a camera case with constant temperature. For certain positioning of
the patient, the registration of the camera for some steady inner body parts is yet not
precise enough. An X-ray scan matched with a CT-image is more precise. It has an
error less than 1mm. On the contrary, a sub millimeter precision is useless for moving
body parts. So a ToF camera with a high frame rate is more suitable for treatments
with a tumor in a moving body part. It is not possible to state the accuracy of the
registration of arbitrary surfaces in figures yet. There are some good results, but also
too many outliers. At Brainlab, further research will be done in order to improve the
registration algorithm. Furthermore, the developers of the cameras are creating new
models, which are getting cheaper and more precise in order to improve the results.
In general, the ToF camera is a very promising technology which could be used in a
large variety of application and open new application fields for image analysis.
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[7] M. Frank, M. Plaue, H. Rapp, U. Köthe, B. Jähnea, and F. A. Hamprecht,
“Theoretical and Experimental Error Analysis of Continuous-Wave Time-Of-
Flight Range Cameras,” Optical Engineering 48 (2009).

[8] H. I. T. Kahlmann F. Remondino, “Calibration for increased accuracy of the
range imaging camera swissranger,” In International Archives of Photogramme-
try, Remote Sensing and Spatial Information Sciences, ISPRS Commission V
Symposium, volume XXXVI, pp. 136–141 (2006).

[9] S. Schuon, C. Theobalt, J. Davis, and S. Thrun, “LidarBoost: Depth superreso-
lution for ToF 3D shape scanning,” In , pp. 343–350 (IEEE, 2009).

[10] C. Beder, B. Bartczak, and R. Koch, “A Combined Approach for Estimating
Patchlets from PMD Depth Images and Stereo Intensity Images,” In DAGM-
Symposium, pp. 11–20 (2007).

[11] P. Khongsab, “Signal Processing and Performance Evaluation of a PMD Camera
for Space Docking,” Master thesis (Lule̊a tekniska universitet, 2009).

38

http://oncology.brainlab.com/
http://oncology.brainlab.com/
http://www.visionrt.com/
http://www.visionrt.com/
http://www.mesa-imaging.ch/
http://www.mesa-imaging.ch/


BIBLIOGRAPHY 39

[12] F. Tombari, L. Stefano, S. Mattoccia, and A. Zanetti, “Graffiti Detection Using
a Time-Of-Flight Camera,” In ACIVS ’08: Proceedings of the 10th International
Conference on Advanced Concepts for Intelligent Vision Systems, pp. 645–654
(Springer-Verlag, Berlin, Heidelberg, 2008).

[13] S. May, B. Werner, H. Surmann, and K. Pervölz, “3D time-of-flight cameras for
mobile robotics,” In IROS, pp. 790–795 (IEEE, 2006).

[14] S. Hsu, S. Acharya, A. Rafii, and R. New, “Performance of a Time-of-Flight
Range Camera for Intelligent Vehicle Safety Applications,”, 2006.

[15] PrimeSense, “PrimeSense Supplies 3-D-Sensing Technology to Project Natal for
Xbox 360,” http://www.primesense.com/ (March 31, 2010; Accessed April 27,
2010).

[16] H. Rapp, “Experimental and Theoretical Investigation of Correlating TOF-
Camera Systems,” Diploma Thesis (University of Heidelberg, 2007).

[17] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and Machine
Vision, 2 ed. (Chapman & Hall, 1998).

[18] R. C. Gonzalez and R. E. Woods, Digital image processing (Prentice Hall, Upper
Saddle River, N.J., 2008).

[19] G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision with the
OpenCV Library (O’Reilly, Cambridge, MA, 2008).

[20] K. Levenberg, “A method for the solution of certain nonlinear problems in least
squares,” In The Quarterly of Applied Mathematics 2, pp. 164–168 (1944).

[21] I. Bronstein, K. Semendjajew, G. Musiol, and H. Mühlig, Taschenbuch der Math-
ematik, 5. auflage ed. (Verlag Harry Deutsch, Thun und Frankfurt am Main,
2001).

[22] D. T. Lee and B. J. Schachter, “Two algorithms for constructing a Delaunay
triangulation,” International Journal of Parallel Programming 9, 219–242 (1980).

[23] M. Powell, “UOBYQA: unconstrained optimization by quadratic approxima-
tion,” Mathematical Programming 92, 555–582 (2000).

http://www.primesense.com/
http://www.primesense.com/

	Title
	Abstract
	Table of Contents
	1 Introduction
	1.1 State of the Art
	1.2 Time-of-Flight Camera
	1.3 Application of the ToF Camera
	1.4 Recent Work

	2 Time-of-Flight Technology
	2.1 SwissRanger4000
	2.2 Error Sources

	3 Sphere Matching
	3.1 Experiment Setup
	3.1.1 Phantoms
	3.1.2 Tested Data

	3.2 Calculation of the Sphere Center
	3.2.1 Hough Circle Transform
	3.2.2 Local Minima Search
	3.2.3 Sphere Fitting
	3.2.4 Candidate Filtering
	3.2.5 Iterations to the Final Coordinates

	3.3 Result
	3.3.1 Static Observation
	3.3.2 Shifted Sphere
	3.3.3 Temperature Influence

	3.4 Discussion

	4 Stereo Camera System
	4.1 Experiment
	4.2 Transformation Matrix
	4.3 Algorithms
	4.3.1 Calibration
	4.3.2 Combining the Positions

	4.4 Result
	4.5 Discussion

	5 Surface Matching
	5.1 Experiment
	5.2 Optimization Algorithm
	5.2.1 Point to Point Cloud Distance
	5.2.2 Objective Function
	5.2.3 Approximation Algorithm
	5.2.4 Starting Value

	5.3 Result
	5.4 Discussion

	6 Patient Surveillance
	7 Conclusion
	Bibliography

