
Crest Factor Reduction Based On
Artificial Neural Networks
Master’s thesis in Complex Adaptive Systems

EDUARDO SESMA CASELLES

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

Master’s thesis 2017:108

Crest Factor Reduction Based On
Artificial Neural Networks

EDUARDO SESMA CASELLES

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden 2017

Crest Factor Reduction Based On Artificial Neural Networks
EDUARDO SESMA CASELLES

© EDUARDO SESMA CASELLES, 2017.

Supervisor: Amir Eghbali, Lab.gruppen AB
Examiner: Henk Wymeersch, Department of Electrical Engineering

Master’s Thesis 2017:108
Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Decibel level meter along with a symbolic representation of an Artificial
Neural Network at the centre.

Typeset in LATEX
Gothenburg, Sweden 2017

iv

Crest Factor Reduction based on Artificial Neural Networks
EDUARDO SESMA CASELLES
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Nowadays most audio amplifiers for professional use include advanced signal pro-
cessing techniques. While most of these signal processing relate to adjusting the
spectral characteristics of the sound (like equalization), many more hidden features
aim to guarantee proper function of the amplifier in conditions close to its oper-
ational limits. For example, how to handle situations like the main supply being
insufficient or the input signal amplitude is too high for the amplifier to generate a
proportional output. Notice that in both aforementioned problems, the output sig-
nal ends up being clipped with obvious consequence on the perceived audio quality.
To counteract this effect, specific signal processing is introduced: a so called "limiter"
has the purpose of re-shaping the signal in order to produce a sort of instantaneous
compression of the signal itself, aiming to minimize the perception of distortion.

A common implementation of such algorithms involve the introduction of look-
ahead buffers, i.e. the signal is delayed in order to accommodate for its processing.
The longer the delay, the better the efficacy of the algorithm to contain the audible
distortion. Needless to say, such delay is in other regards undesirable. Therefore
the research about an instantaneous algorithm, which is the topic of this thesis work.

The algorithm we have developed is based on an Artificial Neural Network (ANN)
trained by a Genetic Algorithm (GA). The ANN is trained and its behaviour shaped
according to a set of rules embedded in the GA. Different set of rules are evaluated
and the result exposed in this report.

The result is a non-deterministic system: being based on an ANN, each training
session may lead to different outcomes. Nevertheless, the methods developed yield
reliable convergence toward the desired behaviour, i.e. the reduction of the harmonic
distortion. A comparison between the new method and the existing algorithms is
also presented. It was also observed that such new methodology opens so far unex-
plored research paths about signal processing in general.

Keywords: Crest Factor Reduction, Audio Limiter, Audio Compressor, Audio Sig-
nals Processing, Artificial Neural Networks, Genetic Algorithms.

v

Acknowledgements
This thesis has been carried out at LabGruppen AB and in collaboration with
Chalmers University of Technology.

I would like to express my outmost gratitude to all my skilled and creative col-
leagues at LabGruppen who have taken part in the development of this thesis. I
would like to mention my supervisor Amir Eghbali for all of his feedback and Axel
Lindholm for developing the initial and basic idea with me. Big thanks to Marco
Monzani for providing the opportunity to be a member of all of this, share his knowl-
edge and spend such a good time together.

Secondly, I thank my examiner at Chalmers Henk Wymeersch for making this thesis
possible, Rahul Devassy for his support and Luca Caltagirone for all the valuable
advice.

It feels important for me to mention my home university UNIZAR (University of
Zaragoza, Spain) where the basis of my knowledge was set and Chalmers Univer-
sity of Technology and Sweden where I could develop myself further. Tack så mycket.

Para finalizar, quiero agradecer todo el apoyo que siempre he encontrado en mi
familia, a los cuales les debo todo. Y como no, a mi mitad. Gracias de corazón.

Eduardo Sesma Caselles, Gothenburg, December 2017

vii

Contents

List of Figures xi

List of Tables xv

1 Introduction 1
1.1 Background . 1
1.2 Related Work . 2
1.3 Purpose . 2
1.4 Scope and Limitations . 2

2 Theory 5
2.1 Limiters . 5
2.2 Crest Factor Reduction . 8
2.3 Artificial Neural Networks . 11

2.3.1 Implementation . 12
2.3.2 Purpose of ANNs . 16

2.4 Genetic Algorithms . 17
2.4.1 Implementation . 18
2.4.2 Purpose and Benefits of GAs 21

3 Methods 23
3.1 Gravity Model . 23
3.2 Activation Function . 25
3.3 Data sources . 27
3.4 Training . 28

3.4.1 Fitness Evaluation . 29
3.4.1.1 Delta Mode . 30
3.4.1.2 Tightness Method 31
3.4.1.3 Fair Penalty Accumulation 33

4 Results 35
4.1 Challenges . 35

4.1.1 Clipping . 35
4.1.2 Distortion . 36

4.2 Methods and Parameters . 36
4.2.1 Number Of Neurons . 37

4.2.1.1 Initial Decisions . 37

ix

Contents

4.2.1.2 Final Choice . 38
4.2.2 Penalty Accumulation . 38
4.2.3 Activation Function . 39
4.2.4 Tightness and Delta Modes 41
4.2.5 Penalties . 43
4.2.6 Parameters Complexity . 45

4.3 Threshold Flexibility . 46
4.4 Extra Blocks . 46

4.4.1 Noise Gate . 46
4.4.2 Gain Smooth: Attack and Release Time 48

4.5 Comparison . 48
4.5.1 Clipping . 49
4.5.2 Harmonic Distortion . 50

5 Conclusion 53

6 Future Work 55

Bibliography 57

A Prediction I

B Number Of Neurons Comparison III

C Harmonic Distortion VII

D Dynamics and RMS Saving XIII

x

List of Figures

2.1 Compressor input-output relation curves. 5
2.2 Difference between soft-knee and soft-knee limiters/compressors.[6] . . 6
2.3 Time reaction with attack and release time. 7
2.4 Envelope estimator . 7
2.5 Ideal limiter versus Attack and Release Time 8
2.6 Blocks of a basic look-ahead limiter. 9
2.7 CFR algorithm . 9
2.8 Example of a high level system block diagram of Peak Windowing

Algorithm. 10
2.9 Schematic of a biological neuron.[9] 11
2.10 Synapse . 12
2.11 Perceptron . 13
2.12 Artificial Neural Network feed-forward example 14
2.13 Over-fitting example during training 15
2.14 The nucleus of the cell contains pairs of chromosomes that store ge-

netic information in the DNA. DNA is segmented in genes.[20] 17
2.15 Analogy between the biological concept of reproduction and the al-

gorithm . 18
2.16 Chromosome example for a GA . 19
2.17 Selection methods . 20
2.18 Crossover and mutation . 21

3.1 Gravity Model . 23
3.2 Artificial Neural Network general application used for the gravity model. 25
3.3 Sigmoid function . 26
3.4 Relu and softplus function . 27
3.5 Fitness Evaluation: Penalties . 29
3.6 Delta Mode . 31
3.7 Tightness functions . 32
3.8 Tightness method representation . 32
3.9 Different release times . 33

4.1 Clipping Example . 35
4.2 Distortion Example . 36
4.3 Input-Output compression relation for a different number of neurons . 37
4.4 Crest inversion . 39
4.5 Modified ReLu and Linear functions 40

xi

List of Figures

4.6 Modified ReLu input-output relation 40
4.7 Modified SoftPlus function . 41
4.8 Modified SoftPlus input-output relation 41
4.9 Different Delta Mode applications . 42
4.10 Tightness Mode . 42
4.11 Shaping Penalty . 43
4.12 Clip Penalty . 44
4.13 Clip Shaping Penalty . 44
4.14 Block diagram of the application adding Noise Gate and Gain Smooth

blocks. 46
4.15 Example of Noise Gate for attenuation signal 47
4.16 Input-output relation for Noise Gate block 47
4.17 Attenuation with Gain Smooth block 48
4.18 ANN Limiter input-output relation. 49
4.19 PAPR and clipping percentage comparison 50

A.1 Artificial Neural Network general application used for prediction. . . I
A.2 Prediction method . II

B.1 Neural network with 4 neurons in the hidden layer and different
penalty combinations. III

B.2 Neural network with 8 neurons in the hidden layer and different
penalty combinations. IV

B.3 Neural network with 12 neurons in the hidden layer and different
penalty combinations. V

B.4 Neural network with 16 neurons in the hidden layer and different
penalty combinations. VI

C.1 Hard limiter response for a different frequencies burst signal and the
harmonic distortion generated for each tone. Attack and release time
is not applied. VII

C.2 Soft limiter response for a different frequencies burst signal and the
harmonic distortion generated for each tone. Attack and release time
is not applied. VIII

C.3 Look-ahead limiter response for a different frequencies burst signal
and the harmonic distortion generated for each tone. Attack and
release time is not applied. VIII

C.4 ANN limiter response for a different frequencies burst signal and the
harmonic distortion generated for each tone. Attack and release time
is not applied. IX

C.5 Hard limiter response for a different frequencies burst signal and the
harmonic distortion generated for each tone. Attack and release time
is applied. IX

C.6 Soft limiter response for a different frequencies burst signal and the
harmonic distortion generated for each tone. Attack and release time
is applied. X

xii

List of Figures

C.7 Look-ahead limiter response for a different frequencies burst signal
and the harmonic distortion generated for each tone. Attack and
release time is applied. X

C.8 ANN limiter response for a different frequencies burst signal and the
harmonic distortion generated for each tone. Attack and release time
is applied. XI

D.1 Time domain input and output signal for different systems without
applying attack and release time. From the first (up) to the last
(down): Hard limiter, Soft limiter, Look-ahead limiter and ANN limiterXIII

D.2 Time domain input and output signal for different systems applying
attack and release time. From the first (up) to the last (down): Hard
limiter, Soft limiter, Look-ahead limiter and ANN limiter XIV

xiii

List of Figures

xiv

List of Tables

3.1 Relevant Parameters . 28

4.1 Parameters complexity and proposal. 45
4.2 Comparison of the distortion generated by each system 51

xv

List of Tables

xvi

1
Introduction

This chapter describes the background about limiters, crest factor reduction and
signal reconstruction which help to avoid saturation and distortion in audio signals.
Furthermore, it specifies the scope and limitations of the thesis.

1.1 Background

In acoustic signal processing, we often encounter the need to limit the peak am-
plitude of the waveform to adapt the waveform itself to the dynamic range of the
processing device. A typical case is that of sound amplifiers: in such applications,
lack of more sophisticated signal limiting results in the signal being clipped, causing
audible distortion [1]. The concept of limiting is any process by which a specified
characteristic (usually amplitude) of the output of a device is prevented from ex-
ceeding a predetermined value.

Limiters have similar behaviour as compressors, but each one uses the concept of
compression for different purposes. A compressor reduces gradually the signal level
above a certain threshold. Limiters are extreme forms of compressors that prevent
signals from exceeding certain limits [2].

In the Crest Factor Reduction (CFR) algorithm, the input signal is processed so
that the output voltage is kept within predefined limits, yet the audible harmonic
distortion caused by clipping is reduced to the minimum. CFR algorithms are based
on analysing an amount of samples before their reproduction. The current systems
for CFR are well known, but it still implies a certain latency in the signal propaga-
tion.

The tool that will be used in this thesis is an Artificial Neural Network (ANN).
In simple words, ANNs are systems where some inputs are fed to the network and
propagated through the neurons (middle nodes excited in different ways depending
of the input signal) to generate an output. These systems are widely known to be
trained in order to generate adaptive behaviours. In the training phase, the network
can be guided with different methods trying to fit a target behaviour as close as
possible.

1

1. Introduction

1.2 Related Work
In general, the systems studied in prior art implement a look-ahead limitation of
the signal, therefore all of these approaches include some delay. The system that is
going to be developed in this thesis does not imply a delay line and, to best of our
knowledge, it is a new model that has never been used for this application.

There are some studies in prediction of signals [3] in general and audio reconstruc-
tion [4] . A system able to predict future samples in an audio source could interact
in the same way as the look-ahead application, but no evidence could be found in
literature that this kind of method had been actually tested. Also, the outcome of
this project will lead to a unique system that implies prediction and signal attenu-
ation in the same step. Then, a nonlinear limiter with two states will be created,
differentiating when attenuation should be applied and when not. Therefore, this
differentiation should be equivalent to prediction. Whenever prediction is applied
with the purpose to identify whether the following samples would cause clip or not.

1.3 Purpose
The aim of this thesis is to implement an innovative CFR algorithm to process
digital sound from voice and music sources. The proposed idea is to make use of
an ANN to identify a prediction model of the signal. This predictive model can
be applied to implement a CFR algorithm. The main ambition is to study if this
method could work properly for the aforementioned purpose since it has not been
possible to find similar approaches in literature.

When programming real-time devices involving sound applications, latency is criti-
cal. The instantaneous response of the whole system is compromised. If one block
adds some delay to the audio flow, the time needed to wait between the signal injec-
tion to the system and its extraction at the output increases. The proposed system
could eliminate the problem of latency in the audio signal flow generated in the
current look-ahead limiter, probably the computational load could be decreased and
it could also open new pathways leading to different implementation of a number of
audio processing applications.

1.4 Scope and Limitations
This report will outline some basic knowledge about limiters and more specifically
digital sound limitation systems. It will also report the tools used for the new ap-
proach as Neural Networks and the “Gravity model” (applied for this thesis and
explained in next chapters).

The aim is to find an intelligent/adaptive model that can be applied to input signals
so that the output will be attenuated in advance before its amplitude goes above a
predefined threshold level.

2

1. Introduction

The best model and parameter extraction of the input signals in order to feed the
ANN and the best topologies have to be found. The next step is to find a coherent
data set and generate the best training and validation sets (or at least data with
enough content for the general purposes of the real application). The proposed sys-
tem should work for any kind of sound input sources or types of music in a defined
frequency range.

Different training methods for the ANN will be found and evaluated during this
thesis. The training methods will be based on Genetic Algorithms (GA) and differ-
ent types of fitness functions with different penalties will be explained and discussed
in future chapters.

The results will be simulated using Matlab and high level simulation will be made
for the proposed method as well some existing techniques within audio community.
Once the implementation is ready, it has to be tested and compared with previous
solutions. Such factors as no clipping in the output signal or minimum distortion
between input and output should be targeted.

This thesis will provide the information to know the methods and parameters in-
volved in the realisation of the system. However, due to the stochasticity of the re-
sults and the final subjective evaluation of the solutions (listening test), the ambition
is not to provide the absolutely best configuration for the system implementation.
Different solutions could be valid for different listeners.
Nevertheless, the system has to show the correct behaviour of the methods and the
implementation.

The study will not cover comparisons with the real ISVPL (Inter-Sample Voltage
Peak Limiting, zero-overshoot digitally implemented limiter) developed and applied
at Labgruppen AB, but it will be compared with a similar implementation based
on a look-ahead limiter. This project could lead to a big number of possible com-
binations of parameters and different implementations or topologies. Due to time
constraints, after a preliminary research, the range of possible combinations was
narrowed as much as possible to have a good enough knowledge of the problem and
the possible outcomes. For example, only one hidden layer is expected in the ANN.
In the same way, the choice of using GA instead of back-propagation algorithms to
train the network is explained in this document, but it has not been implemented
and compared. Improvements for real-time processors will be explained theoreti-
cally based on complexity, but no implementation has been created for the purpose
of testing the algorithms in those processors.

3

1. Introduction

4

2
Theory

This chapter describes the theory needed to understand the solution to the problem
formulated in the previous chapter. It is split into three sections: First section,
about limiters where the concept of limitation and CFR is explained. Second, about
ANNs since it will be the main tool used to calculate the gain control for the limiter
algorithm. At the end, GAs as the process to train the neural network in order to
obtain its correct behaviour.

2.1 Limiters
A limiter is a tool that ensures that the output signal does not exceed a specified
amplitude level. It is usually implemented based on a compressor algorithm, but in a
form that prevents the signal from exceeding a threshold. This is very important in
order to protect the system going above its limits. If a sound amplifier tries to pro-
duce more power than it can produce, the signal will be distorted. Also, amplifiers
set limitations for the output power in order to do not burn the loudspeaker.

Figure 2.1: Compressor-limiter curve showing the input-output relation of the
system. From a threshold level, compressors will compress the signal with some
ratio, while limiters (hard limiter) have infinite ratio since every input above the
threshold will derive in an output equal to the threshold. [5]

The digital model of the limiter follows the analog circuit that allows signals below

5

2. Theory

a specified input power or level to pass unaffected while attenuating the peaks of
stronger parts of the signal envelope that exceeds this limit. Current technology
in digital signal processing allows sophisticated algorithms in sound limiters with
much improved precision, no added noise and considerably reduced distortion as
compared to analog designs (due to analog components among other reasons).

Just as an introduction to understand better how a limiter works, the concept of
compression will be explained. Basically, compression reduces the dynamic range of
the input by bringing down the level of the loudest parts. Meaning the loud and
quiet parts are now closer together in volume and the natural volume variations are
less obvious.

As can be seen in Figure 2.1, there are some parameters to determine how the
compressor works. Threshold sets the amplitude level where the compressor starts
to act, which means that from that level the input is louder than desired. Every
input above the threshold will be compressed with some ratio. Ratio parameter sets
how much the input signal will be compressed. In other words, the compression
ratio is the relation between the input and the output when the input goes above
the threshold. Higher ratio means more compression. If the ratio is 1:1 there is no
compression, but if for example, the ratio is 4:1 that means for every 4 dB of sound
that goes over the threshold, the output brings 1 dB above the threshold.

xoutdB
[n] =


xindB

[n]−thresholddB

ratio + thresholddB, if xindB
[n] > thresholddB

xindB
[n], otherwise

(2.1)

Attack time is the time to act on the input when it is above the threshold, while the
release time is the time to let the signal return to the input level after it falls below
the threshold. Figure 2.2 shows the two types of transitions to the compression
state, one is called soft-knee where the transition is progressive and the hard-knee
where the change goes straight from the linear state to the compression.

Figure 2.2: Difference between soft-knee and soft-knee limiters/compressors.[6]

Simple limiters add some attack and release time reaction to the dynamics (ampli-
tude variations) of the input signal (similar process to a low pass filter), as can be
seen in Figure 2.3.

6

2. Theory

Figure 2.3: Time reaction to the dynamic change of the input signal due to the
attack and release time.

The resulting signal (xpeak or envelope) with the threshold is compared in order to
apply linear behaviour (ratio 1, 1 : 1) or compression (limitation, ratio a, a : 1 with
a > 1). One of the simpler implementations of an envelope detector is to use a
first order filter over the absolute value of the input signal x(n) (since both peaks,
positive and negative want to be compressed). The mathematical expression, taking
AT as attack coefficient and RT as release coefficient works as follows (where the
coefficients are precalculated as the percentage of the current sample that needs to
be taken in order to reach the desired one in the time specified by the attack or
release time [1]):

xpeak[n] =

(1− AT)xpeak[n− 1] + AT |x[n]|, if |x| > xpeak[n− 1]
(1−RT)xpeak[n− 1] +RT |x[n]|, otherwise

(2.2)

The attack time needs to be very fast on a limiter, so AT must be close to 1 (or 1
directly when attack time is 0). These settings can easily colour the sound of the
signal and also cause audible “pumping” if the signal goes over the limit with very
fast transitions.

Figure 2.4: Envelope estimator with short attack time and larger release. The
signal in red is the input and in blue is the envelope. Envelope follows the signal
quickly when the input increase due to the short attack time and goes down slowly
when the input decrease due to large release time.

7

2. Theory

Figure 2.5: Input-Output samples relation. Each red dot maps the relation be-
tween the value of an input sample and the value of that sample in the output when
it is attenuated by the limiter. On the left, the ideal limiter response with no attack
and release. In the middle, with 1 ms attack time and no release. On the right, the
opposite procedure with no attack and 1 ms release time.

In Figure 2.5, as can be seen on the left, the input/output relation for all the sam-
ples (each red dot) maps exactly the ideal behaviour of the limiter when there is no
attack and release time. In the middle figure with some attack time, the limiter does
not reach on time to attenuate the signal and that generates some clipping above
the threshold. That is the reason of the red dots above the threshold: when the
input signal is above it, the limiter sometimes is not able to attenuate it and, hence
the output is still above. In figure on the right with some release time, the limiter
is still applying attenuation after the signal is clipping and some samples receive
more attenuation than it is needed. Short times result in higher concentration of
samples close to the ideal case. Longer times will result in samples farther from the
ideal case. Set different values of attack and release times will generate a non-ideal
behaviour, but the result will be better in terms of saving the dynamic relation of
the signal.

In order to avoid these effects, look-ahead limiters (and CFR algorithms) apply
some delay to the input and preprocess the compression starting to attenuate the
signal before it is going to clip. This behaviour is similar to Figure 2.7.

Look-ahead limiters are very important in digital application since one is able to
catch peaks even as short as a sample. Delay gives time to the algorithm to know
exactly when the peak is going to be in the future and the algorithm is ready to
apply the required attenuation when the delayed input comes.

2.2 Crest Factor Reduction
CFR algorithms are used to reduce Peak to Average Power Ratio (PAPR) of a sig-
nal. These systems are widely used in telecommunications for OFDM systems [8],
where the small distortion in the low noise amplifiers could cause significant noise
in the different frequency bands. Therefore these peaks need to be attenuated and
at the same time try to keep the maximum RMS power in the signal for a better

8

2. Theory

Signal to Noise Ratio (SNR). In this thesis similar approach is taken, working with
lower frequency bands and trying to avoid audible distortions and over-excursion in
speakers (the loudspeaker membrane being pushed outside the acceptable excursion
range with consequent risk of permanent damage). Also, higher power demand in
the sound amplifier than it can handle could create distortions.

This system does not have to be confused with reconstruction algorithms [4]. CFR
algorithms prevent clipping while in reconstruction algorithms the input to the sys-
tem is already clipped and the system tries to predict and restore the shape above
the threshold. Usually, these systems are used for telecommunication purposes.

Figure 2.6: Blocks of a basic look-ahead limiter.

A basic model for a look-ahead limiter is shown in Figure 2.6. Input signal x(n) is
delayed and processed in parallel. This processing branch includes a peak (envelope)
detector, a gain computer and a gain smoother block. At the end, the gain g(n) is
applied to the delayed signal. Once the envelope of the input is calculated, the gain
computer block calculates the gain needed to attenuate the signal when it clips. The
formulas in logarithmic domain are as follow:

gdb(n) = max(0, thresholddb − xpeakdB
(n)) (2.3)

and instead of using a soft-knee implementation, the gain signal is filtered over the
time at the gain smoother block. This block acts similar to the peak detector being,
in most of the cases, a first or second order low pass filter. This block avoids the
discontinuities in the gain, having soft transitions in the attenuation of the signal
and trying to keep the dynamic range of the processed samples between them [2].

Figure 2.7: CFR algorithm. An input signal (black) clips over a threshold level
(blue) and it is reshaped with low distortion under the threshold avoiding saturation
(red).

9

2. Theory

Figure 2.8: Example of a high level system block diagram of Peak Windowing
Algorithm.

Another similar and also effective system is the Peak Windowing Algorithm. The
block diagram and signal path is represented in Figure 2.8 and it is descriptive
enough for the good understanding of both systems.

Here a frame (a set of input signal samples) is read and a peak search algorithm
creates the signal c(n) (Clipping Coefficients) with the samples above the threshold.

10

2. Theory

Later this signal is convolved with a window that stretches the sharp edges of c(n).
The result of the convolution is the gain that is applied for each sample [7].
The result is similar to the look-ahead limiter in the sense that thanks to the window-
ing the signal is starting to be attenuated softly before the peak. This is equivalent
to the smoother gain block in the look-ahead.

In order to analyse the outcome of this systems, Figure 2.7 shows the signals that
take part when running the algorithm. The input signal in black triggers xpeak sig-
nal with the samples above the threshold at 0.5 amplitude. The gain reduction is
computed following equation 2.3 and later is filtered/stretched in time. The result is
used to apply the attenuation over the input signal and it generates the output in red.

As can be seen clearly, the algorithm starts to attenuate the input signal before
it is clipping and the reconstruction of the signal below the threshold keeps the
dynamic range for these samples inside the new range from 0 to the threshold.

2.3 Artificial Neural Networks
ANNs are structures which try to imitate the behaviour of biological neural net-
works present in the brains of animals and humans. Usually, the capacity of the
brain is correlated with its size, so that bigger brains, and, transitively, larger neural
networks are able to execute more complex tasks

Figure 2.9: Schematic of a biological neuron.[9]

Biological neurons are a cell type of the nervous system whose main property is the
electric excitability of its membrane. It is specialised in the reception of stimulus
and transfer the nervous impulse between them.

As can be seen in Figure 2.9, there are several morphological characteristics to
sustain its functions: Nucleus; one or several short prolongations that generally
transmit impulses to the nucleus, called dendrites; and a long filament called axon

11

2. Theory

that drives the impulses from the nucleus to the next neurons. This is the output of
the neuron. After some distance, the axon splits up into several smaller terminals
which end on synapses. Input signals are received through the dendrites with an
electric potential or spike. After reaching the axon, the synapses release transmitter
substances to the next dendrites, as can be seen in Figure 2.10.

The synapses that connect the neurons can inhibit the signal or excite it. Synapses
determine the computation carried out by the neural network: if synapses are added
or removed, the network architecture and its computations will change. Synapses
can be seen as information storage and also, it keeps another properties as the timing
between signals that may play an important role. A very important feature of the
human brain is the ability to memorise and learn, which means store information
about past events and to modify the behaviour as a result of those experiences [10].

Figure 2.10: “Synapse” (from the Greek “synapsis”, means “conjunction”) [11].
Santiago Ramon y Cajal proposed that neurons are not continuous throughout the
body, yet still communicate with each other. Synapses are the means by which the
neurons pass signals [12].

Memory provides to humans and animals the ability to weigh actions from the past
in order to assess the probable outcome of a situation, while learning allows the
modification of the behaviour.

2.3.1 Implementation
The computational model is based on a set of simple neural units (artificial neurons,
called perceptrons) interconnected through neuronal layers. Each neural unit is con-
nected to the neurons in the next layer. This connection is weighted to increase or
decrease the activation level among them.

McCulloch-Pitss model of a neuron [14] describes the simple information-processing
unit fundamental for the operation of a neural network. Figure 2.11 shows the model
of a neuron and three basic elements could be identified: Synapses as the weights
for each input, accumulator as the summation of the transfer function and the ac-
tivation function.

12

2. Theory

Synapses or connecting links are characterised by a weight where the signal xi at
the input synapse i, connected to neuron j, is multiplied by the synaptic weight
wi,j. The accumulator is used to sum the input signals, weighted by the respective
synapse; this operation constitutes a linear classifier.

The activation function limits the amplitude of the output and it can be called
“squashing function” or “sigmoid function” as well. It squashes the amplitude range
of the output signal to some finite value [15].

Mathematically, the calculation that describes the output of a neuron j, from inputs
xi, ..., xn becomes:

oj = ϕ

(
n∑

i=1
wi,jxi

)
(2.4)

Usually, an extra input to the neuron is applied in terms of bias, but it is simpler
just to add this term as an extra input to the accumulator.

There are several types of activation functions, but in general, they are modelled by
taking value 1 if the sum of the accumulator exceeds some threshold (represented
in Figure 2.11 as θj) or 0 otherwise (step function). In that case, the bias term
determines the propensity of the neuron to fire (to be activated) in the absence of
any input [10]. However, this model does not always fit the purposes of the desired
application and it can be a better method to map the response into a finite range of
values. In this case, for example, the logistic sigmoid function, among others, could
be used. There are several studies to determine how these activation functions work
and which has better performance [17].

Figure 2.11: Perceptron. An artificial neuron, a linear classifier. All inputs are
weighted and sum, the result is evaluated in the activation function and it derives
in the activation output.[18]

The Hebbian learning rule describes the basis of learning algorithm: “ If a neuron j
receives an input from neuron i and if both neurons are strongly active at the same
time, then increase the weight wi,j (i.e. the strength of the connection between i

13

2. Theory

and j)” [13]. This derives:

∆wi,j ∼ ηoiaj (2.5)

with ∆wi,j as the adjustment of the weight from i to j, proportional to the output
oi of the previous neuron, the activation aj of the successor neuron and a constant
η, i.e. the learning rate [16].

There are several topologies for neural networks. The most common and simple
are the Feed-Forward Neural Networks (FFNN) topology. This topology has a first
layer with inputs elements, one or several hidden layers and an output layer. In
each layer (except the first one that there are only input values), each element cor-
responds with an artificial neuron, that computes the inputs from the previous layer
and propagates its output to the next layer. Figure 2.12 is an example of FFNN.
This topology only contains connections in forward direction.

Another basic topology is given for the Recurrent Neural Networks (RNN), which
contains connections in forward direction and also backwards between layers, having
feedback.

The topology used and described in this thesis is a FFNN.

Figure 2.12: Artificial Neural Network feed-forward example with 3 inputs, 1
hidden layer with 3 neurons and 2 outputs.

Putting together the concept of the artificial neuron (Figure 2.11) and neural net-
work (Figure 2.12), each connection is associated with a weight, corresponding to
the synapses.
There are also several methods for training ANN, but most of them are divided be-
tween supervised learning and unsupervised learning. Supervised learning provides
an input with a target output. This means that the weights need to converge to
some values which fit the target output when the input goes through the network.
Unsupervised methods do not provide a target output for a given input.

The most common method is back-propagation (used for supervised learning). This
algorithm uses a propagation-adaption cycle in two phases. Once the input is pro-
cessed by the network, the output signal is compared with the target output and
the error is calculated and propagated backwards layer per layer for the output of
each artificial neuron. Neurons in the hidden layer only get a fraction of the total

14

2. Theory

error, based on an approximation of the relative contribution that each neuron has
provided to the original output. This process is repeated until all neurons in every
layer receive the error signal that describes the relative contribution to the total
error.

The importance of this process remains in, when training the network, neurons
in the hidden layer organise themselves learning to recognise different characteris-
tics of the total input’s space. After training, arbitrary patterns are given to the
input. These patterns go into the network and the neurons in the hidden layers will
provide an active output if the new input contains a similar pattern to the charac-
teristic that each neuron has learnt to recognise during its training [15].

Then, the training procedure follows the next steps:
1. Initialisation of the weights with small random values
2. Generate a random permutation of the input-output pairs
3. Compute the output of the network and its error
4. Compute ∆wi,j for each connection starting from the output layer to the input,

following equation 2.5
5. Update the weights wi,j adding its ∆wi,j

6. Repeat from step 2 until the errors drop to the desired level.

Over-fitting must be avoided when training neural networks. Over-fitting means
that the behaviour of the ANN is shaped very much around the specific training
data set, and therefore cannot equally well manage with processing of other data.
What happens here is that the network is over-trained for that data set. Then it is
not able to predict the results for new data.

Figure 2.13: Over-fitting example during training. The vertical dotted grey line
represents the moment where an early stopping has to be done in the training since
from this point, the error for new data is going to increase while the network is
over-trained for the training set.

15

2. Theory

A very important step in order to train the network without over-fitting is that the
used data set has to be split between a training set and a validation set. Usually,
the training set is a big percentage of the set, while the validation is much smaller.
Usually, the proportion is 70-30 %.

Also, the data set has to be sufficiently large to provide a consistent training, but
these numbers are much more difficult to predict. It is always a better option to
have as larger as possible data sets.

During training, the algorithm needs to check the error level over the total data
set. This has to be done for both data sets. Usually, the error for both data sets
start decreasing, but the problem starts when the error for the validation set starts
to increase while the error of the training data set is still decreasing. This means
over-fitting. In that moment of the training, the network is starting to be over-
trained for the training set and it is not better for general data anymore. This can
be seen in Figure 2.13.

ANNs are computational structures where several learning methods can be applied,
but in addition, also various stochastic optimisation algorithms (like GAs, for ex-
ample) can be applied for the training.

2.3.2 Purpose of ANNs

ANNs have a very wide range of applications. They could be applied to function ap-
proximation, time series prediction, classification and pattern recognition, filtering,
robotics and control. In very general and abstract view, it can be seen as a “black
box” that learns some behaviours and from one input generates an output based on
that behaviour.

In this thesis, the purpose of using ANNs is to try to imitate the behaviour of
the audio limiter. ANNs have an incredible value reading inputs with very different
spaces and abstraction levels. As will be explained in the next chapter, some ex-
tracted features from the audio signal beyond the usual amplitude or power in time
or frequency domain will be taken as an input.
ANNs will be the tool to understand these features from the signal and it will be
trained to obtain similar results than a look-ahead limiter without the necessity of
delaying the signal, but attenuating it and anticipating future distortions with some
kind of prediction (thanks to the implicit information in the extracted features).

Instead of copying the behaviour of a limiter with a supervised learning method,
the aim is to train the network with unsupervised learning and create a new tool,
more flexible and adaptive than current implementations. Therefore, ANNs could
provide a non-linear control dynamics system that adapts to the audio instead of a
deterministic system following the same fix patterns.

16

2. Theory

2.4 Genetic Algorithms
As a subclass of evolutionary algorithms, a GA is an optimisation tool inspired by
processes similar to those that occur during biological evolution.
Evolutionary algorithms inherit some terminology from biology, but the simulations
behind are considerably simplified in comparison to the real processes involved in
the biological evolution.

Figure 2.14: The nucleus of the cell contains pairs of chromosomes that store
genetic information in the DNA. DNA is segmented in genes.[20]

Therefore, in order to understand how the algorithms work, we first revise some
concepts on biological evolution process.

Darwin’s theory of evolution provides the concept of progressive and hereditary
change in the individuals of a species. The hereditary change needs some tools to
transfer the information from the individuals of one generation to the next. Based
on the DNA molecule, this information is stored and transferred to next generations.
Each individual has its own genome present in each cell of its organism, combining
several chromosomes to organise the formation of the DNA. The cells of an individ-
ual keep the DNA in a structured manner, this structure is called chromosome.

A human cell has 23 pairs of chromosomes (46 in total), half of them come from the
father and the other half from the mother. DNA is made out of two long, twisted
strands that contain complementary genetic information and a gene is a segment of
DNA [21]. Figure 2.14 illustrates the structure of the cells and chromosomes.

Most organisms evolve by means of two primary processes: natural selection and
sexual reproduction. The first determines which members of the population survive
and reproduce, and the second ensures mixing and recombination among the genes

17

2. Theory

of their offspring. When sperm and ova fuse, matching chromosomes line up with
one another and then crossover partway along their length, thus swapping genetic
material [24]. DNA is passed down from parents to children and it confers a trait
to the offspring. This mixing allows creatures to evolve much more rapidly than
they would if each offspring simply contained a copy of the genes of a single parent,
modified occasionally by mutation. Mutation is obtained through generations due
to the adaption to new environments, trends or necessities. In nature, each species
needs to adapt to a complicated and changing environment in order to maximise the
likelihood of its survival. At the same time that the individuals evolve in different
ways, the strongest ones get more probability to be selected for reproduction, gen-
erating new individuals that, in principle, should be better to adapt and survive.

Figure 2.15: Analogy between the biological concept of reproduction and the
algorithm. Crossover is the fundamental mechanism of genetic rearrangement for
both real organisms and GAs. Chromosomes line up and then swap the portions of
their genetic code beyond a crossover point.[25]

As a summary, the most important and general facts that conceive evolution to
an initial population are natural selection, reproduction and mutation. Natural
selection means that if an organism does not have enough fitness, such as recognising
a predator and fleeing, it dies. Reproduction is done by mixing the genes of the
selected individuals and mutation is an adaptation acquired through generations.

2.4.1 Implementation
GAs were invented by Holland [24] to mimic some of the processes of natural evolu-
tion and selection. An implementation of a GA is based on the previous biological
principles. It begins with an initial population that evolves to new individuals after
some generations. These new individuals fit better some requirements that optimise
the outcome of our system, making it work better and behaving in the way we aim.

Typically, the initial population is random. These structures are evaluated and
reproductive opportunities are given with higher probability to the chromosomes

18

2. Theory

which represent a better solution to the target problem. In general terms, a GA
is a population-based model that selects and recombines operators to generate new
sample points in a search space [21].

GAs need to specify a search space and identify the heuristic function that eval-
uates the fitness of each individual. This heuristic function is also called fitness
function and the individuals with higher fitness will represent the better solution to
the problem. Having higher fitness means to get a higher probability to be selected
for reproduction. Not only a correct and efficient implementation of the algorithm
will provide a better performance during training (simulating the evolution of the
individuals generation after generation), but also it is important to consider the
best fitness function to evaluate the individuals and how the data is encoded in the
chromosomes in order to be meaningful for the system.

Each chromosome is a set of genes that represent the solution to the problem. The
binary alphabet is often used to represent the value of each gene, but it depends on
the application. For example, in this thesis, each gene will correspond with one of
the weights of the neural network. Therefore, the alphabet will be the real numbers
in a predefined range. To evolve classifier rules that solve a particular problem, the
initial population is created randomly and evaluated with the fitness function. Once
all the individuals (chromosomes) are evaluated, they are ranked according to the
fitness obtained.

Figure 2.16: Chromosome example for a GA. In this case, a binary stream could
be the representation of the real components used in the fitness function. This
abstraction is very common and opens the possibility to get much more diverse
results since the recombination of the binary stream can produce totally different
outcomes for each represented value.

As an easy example, if the purpose of the GA is to approximate a behaviour or a
trend described by a n-th order polynomial in some given system, the fitness func-
tion will try to find the coefficients that best fit the system. Therefore, this fitness
function would be a polynomial with the same order as the number of genes. The
genes of the chromosome would be the coefficients of the polynomial and the chro-
mosome with the combination of genes that best fit this behaviour will have highest
fitness [22].

19

2. Theory

This example could be more complicated if, for example, the value of the genes
have a different meaning, as can be the case of Linear Genetic Programming [10].
In this case, the function could be a combination of different operations for different
variables in a non-linear system. As can be seen in the example of Figure 2.16,
chromosomes would be a binary representation of different terms. The first n genes
could be a decimal number, the next ones an operator, etc. Some rules about how
to combine operators and variables should be implemented, but that is out of the
scope of the basic introduction of GAs for this thesis.

After the evaluation of the individuals, chromosomes for the current generation
have to be selected for reproduction. If the size of the population is N , the selection
procedure obtains two parents chromosomes, based on their fitness values in order
to generate two offspring for the new population. This process is carried out until
new N individuals are generated for the new generation.

There are different ways to simulate the natural selection, some of them are “roulette
wheel” or “tournament selection”. Roulette wheel method maps the population onto
a roulette wheel, where each individual is represented by a space that proportion-
ally corresponds to its fitness, as can be seen in Figure 2.17. By repeatedly spinning
the roulette wheel, the individuals are chosen [21]. Tournament selection method
resembles the typical contests between pairs of individuals (and it is the one used
for this thesis). As described in Figure 2.17, in this case, k individuals are randomly
chosen, two of them “fight” and the one with higher fitness has a predefined higher
probability of success. The winner repeats the process with the next one. That
makes k − 1 times in total to have the one that remains for the selection.

Figure 2.17: Selection methods. On the left, the illustration of the tournament se-
lection method. On the right, the illustration of the roulette wheel selection method.

The GA exploits the “target” regions of the solution space because successive gen-
erations of reproduction and crossover produce an increasing number of compatible

20

2. Theory

genes in those regions. The algorithm favours the fittest chromosomes as parents,
and so above-average (which fall in the target regions) will have more offspring in
the next generation [24].

Once a pair of chromosomes has been selected, the way to simulate reproduction in
the algorithm is called crossover and it is one of the more important steps in the
algorithm. This simple procedure combines the genes from two individuals, cutting
the chromosomes at a random point and assembling the first part of the first chro-
mosome with the second part with the second and viceversa, as Figure 2.18 shows.
If the length of the chromosome has to be the same for all the individuals, the same
crossover point is taken and the genes from the parents are interchanged.

There is also a predefined probability to do crossover. It tells if the individuals
will reproduce offspring to be replaced or if the parents will pass (“survive”) to the
next generation.

Figure 2.18: On the left, an illustration of reproduction carried out by crossover
method. On the right, the adaptation process carried out by mutation method. [26]

After combining the chromosomes of the parents, mutation to each gene of the off-
spring is applied with a predefined probability. If all the parents have the same
values for particular positions, then all future offspring will have the same value at
this position.

To sum up the whole algorithm, first of all, a random initial population is created.
From this point the next steps are repeated until the end:

1. Evaluate fitness of current population
2. Select chromosomes based on that fitness for reproduction
3. Perform crossover and mutation to give a new improved population

2.4.2 Purpose and Benefits of GAs
GAs encode solutions in data structures and, applying recombination, it tries to
converge to the structure that best fit the solution to the problem. GAs are often
used for optimisation purposes, but the range of applications is quite broad.

As have been explained in section 2.3, ANNs need coefficients to weigh each in-
put/output of the neurons. In this system, the genes are the coefficients for the
network.

21

2. Theory

As can be seen in the previous section, there are different ways to train the network:
Supervised, unsupervised or reinforcement learning. Supervised learning model as-
sumes the availability of a teacher or a solution for the problem and propagates
the error to the neurons, while, unsupervised learning model identifies the pattern
class information heuristically [23]. In this thesis, reinforcement learning is used
and the ANN learns through trial and error interactions with its environment (re-
ward/penalty assignment). Here is where GA and its fitness function definition are
important.

Also, for this system is preferred to have a short number of neurons. That makes a
better use of GA since very long chromosomes will result in very long training.

One thing that is striking about GA is the richness of how it computes the possible
solutions. Usually, what may seem like simple changes is the algorithm sometimes
result in surprising kind of totally different behaviours [21]. Therefore, GA is good
to avoid the problem of falling in a local minima when converging to a solution.
Thanks to mutation and crossover steps (and the probabilities for each process),
the solution could jump out of a local minima and stay closer to the global minima
solution [27].

The selection procedure should not be fully deterministic, then it should not al-
ways favour the fittest individuals. Such procedure would easily lead to stagnation
and an individual that happens to be better than the others, but still far from the
global optimum may come to dominate the population. In some cases, a less fit
individual may contain a sequence of genes that will generate a highly fit individual
when combined with genetic material from another individual [10].

22

3
Methods

This chapter gives a description of the model created for the CFR system based on
ANN, the different approaches, strategies and the implementation using the theory
presented in the previous chapter.

3.1 Gravity Model
The “Gravity Model” is an important part of this work. This model describes
the input signal’s samples as particles with their own velocity, acceleration and
gravity factor. This model has been created for this thesis in order to extrapolate
the meaning of the input, providing new features extracted from itself. For sound
processing applications (and signal processing in general), the concepts of amplitude
or power in time and frequency domains are always the relevant features and space
of the signal (being the space of the signal a two dimensional representation of the
amplitude or power versus time or frequency).

Figure 3.1: Gravity Model: 2 dimensional vector representation. Each sample in
the digital audio signal is seen as a particle with velocity, acceleration and distance
to the threshold (gravity). The threshold value is defined in red colour.

23

3. Methods

As an example, in this case, input samples could be compared to particles or bubbles
floating in water. These particles go to the surface with a force f that in a simplified
view could be similar to the Newton’s Law of Universal Gravitation [28]:

f = G
M

r2 (3.1)

where G is the gravitational constant and M the mass of the earth, therefore we
can neglect these values as a constants and take into account only that the force f
is inversely proportional to the square of the distance r. This principle is used in a
similar way as taking the surface as the threshold level in our limiter and r as the
distance to the threshold th. For simplicity, the distance to the threshold will be
called “gravity” or just g and it will be positive when the amplitude of the sample
is smaller than the threshold, or negative when it goes above the threshold. The
value of g is computed for each sample and used as an input for the ANN as

g[n] = th− |x[n]| (3.2)

As can be seen in Figure 3.1, g is represented as the distance to the threshold.
Another two characteristics of each sample are taken into account: velocity and
acceleration. These characteristics are extracted in relation to the previous sample.
Following the laws of kinematics, making ∆t = 1 for simplicity in discrete domain
and choosing n as the index of the current sample, v as velocity, a as acceleration
and x as amplitude, one gets:

v = ∆x
∆t ⇒ v[n] = x[n]− x[n− 1] (3.3)

a = ∆v
∆t ⇒ a[n] = v[n]− v[n− 1] (3.4)

The network, during training, will need to understand how these parameters inter-
act in order to get the best attenuation for the current sample. Figure 3.2 shows the
topology of the neural networks with its inputs and output. It has the three inputs
namely gravity, velocity and acceleration. The output, which is the attenuation
(or gain) that multiplies with the input sample. The output will be always equal
or smaller than one. The number of neurons in the hidden layer has to be found.
Different trainings with a different number of neurons will be done and there will
be different results for different configurations as will be explained in section 4.2.1.
Not always more number of neurons implies a better performance.

Thanks to the abstraction of the model, these new characteristics can provide a
wider space (from 2 dimensions: power/amplitude in time/frequency domain; to 4:
velocity, gravity, acceleration and time) than current limiters. The network will use
this benefit to map a solution for our purposes. The ANN will have more informa-
tion which will be used to try to “predict” the trajectory of the samples and the
probability to clip of the coming samples or not.

This is a research thesis where the aim is to know how this model could fit for

24

3. Methods

signal processing since, to the best of our knowledge, there is no previous informa-
tion about this kind of model. Those characteristics are expected to provide more
information than just the comparison of the samples with the threshold and map
the corresponding attenuation to apply, as is implemented in current systems. Such
systems often overshoot above the threshold and generate distortion since the lim-
iter does not have time to prevent quick transients in the signal. However, this new
approach could provide the information necessary to prevent it and generate less
distortion.

Figure 3.2: Artificial Neural Network general application used for the gravity
model.

3.2 Activation Function
The purpose of the activation function is to introduce non-linear behaviour into the
network. Non-linear means that the output cannot be obtained from a linear com-
bination of the inputs. This function has to be monotonic and differential for better
convergence.

The activation function used in this thesis for the hidden layer neurons is the sigmoid
function described as:

f(x) = 1
1 + e−x

(3.5)

25

3. Methods

The function is applied as it is for the hidden layer neurons, but for the output of the
network, it could be mapped in two different ways. Two methods have been used,
the first one uses the sigmoid function described in equation 3.5 and the output is
in the range (0,1). On the other hand, the best range is (th,1) for the attenuation,
therefore the output should be in that range. This method assumes that the network
will find the best output values and it will adjust the range itself.

The second method assumes the network will need some help to adjust this range
and it will modify this range with the next constraint:

fth(x) = f(x)(1− th) + th = 1
1 + e−x

(1− th) + th = 1 + th e−x

1 + e−x
(3.6)

Figure 3.3: Sigmoid function. The output of the function is in the range (0, 1) on
the vertical axis while the input range is (−∞,∞) in the horizontal axis. As can be
seen, it has an exponential transition from negative input values to positives, being
the output smaller than 0.5 for the negative inputs and bigger for the positive ones.

Other functions to test for the output neuron are the ReLu and the softplus functions
[17]. These functions can be seen in Figure 3.4, and they should provide a more
linear behaviour than the sigmoid version. These function can be also limited to
have an output range between the threshold and 1, as the modification in equation
3.6. Another modification could be the slope of the functions, instead of behaving
as the identity function, it can be modified to a linear function.

ReLu : f(x) =

0, for x ≤ 0
x, for 0 ≤ x

SoftPlus : f(x) = ln(1 + ex) (3.7)

26

3. Methods

Figure 3.4: ReLu and softplus function. The output of the functions is in the
range (0,∞), while the input range is (−∞,∞). As can be seen, ReLu makes
0 all the negative inputs and linear (identity) transfer function for the positives,
while softplus has an exponential transition from negative input values to positives.
Softplus function fits ReLu with a soft transition.

3.3 Data sources

The database consists of 6 songs from different types of music: hard rock, metalcore,
pop, dance, funk and dubstep. It contains instrumental and voice parts with different
dynamic profiles, quality and frequency content.
At the beginning of the training, the training and validation sets are created follow-
ing the next procedure:

1. One song from the six is selected randomly
2. From that song, a chunk of audio is selected randomly
3. The audio chunk is checked in order to know if there is at least one sample

above the threshold. If not, come back to step 1.
4. Repeat until having the desired quantity of chunks.

The length of the audio chunk and the number of chunks in each data set in pre-
defined for each training. Due to time constraints, sometimes short audio chunks
and not too big data sets are better in order to not make very large trainings. This
is important when we only need to get closer to some approach and see if it makes
sense. Once we feel we are in the right direction these numbers increase in order to
get better results with longer trainings.

It could vary from 20 to 100 audio chunks for the training set and half of it for
the validation set. The length of the chunk could vary between 0.3 and 1 second.

27

3. Methods

3.4 Training

As explained in section 2.4, GAs are applied in order to train the network. Each
chromosome corresponds to a set of weights in the ANN. The system was trained
with a different number of neurons and different parameters for the fitness function.
The results be shown in the next chapter.

Table 3.1 presents the parameters involved in the training of the ANN in order
to match the behaviour of the desired limiter. These parameters were combined
with different configurations in order to optimise the best performance of the sys-
tem.

In relation with the GA, the population size is the total number of chromosomes dur-
ing training. Generations per training are the number of generations (or a number
of evolution steps) taken between each evaluation with the validation set (in order to
check over-fitting and learning), while the number of trainings, is the total number
of evaluations. Therefore, the total numbers of generations are equal to (genera-
tions per training)×(number of trainings). The method used for the selection step
was the "tournament selection" explained in section 2.4.1. Tournament size is the
number of individuals taken from the population, these individuals "fight" between
them to be selected with a tournament parameter that gives the probability for the
individuals with higher fitness to win. In the reproduction step, there is a crossover
probability that dictates the probability to get offspring from the parents or if the
parents pass directly to the next generation. Also, mutation probability defines the
probability to mutate one of the genes of the chromosome. A recommended value
from the prior art [10] is 1/(number of genes), and this has been the value used,
inverse proportional to the number of genes in the chromosomes, which means that
at least one gene of every chromosome should mutate.

parameter min. value max.value
population size 50 120
tournament size 1 4
tournament parameter 0.7 0.9
crossover probability 0.1 0.85
mutation probability 1/nGenes 1/nGenes
shaping penalty 1 500
clip shaping penalty 1 300
clip penalty 1 700
weights range -40 40
threshold 0.5 0.9
neurons in hidden layer 2 16

Table 3.1: Relevant parameters and the range of values evaluated for the training
of the neural network. This range of values is taken from prior art and try and error
realisations.

28

3. Methods

The values related to the ANN, are the weight range that determine the range
of values that the weights of the neural network can take, and the number of
neurons in hidden layer.

Also, several threshold values were trained in order to know how flexible the net-
work was for other threshold values different than the trained one. There were two
different approaches, one was to train the network with a fix threshold value and
later test how flexible the limiter was limiting the signal for different thresholds.
The second approach was based on evaluating the individuals, when training, with
a random threshold (a different one) each time.

3.4.1 Fitness Evaluation
The three penalties, shown in Table 3.1, are part of the fitness evaluation, and if the
Gravity Model is one of the cores of the thesis, these penalties are the key-points
of the training. These penalties are the parameters that teach the network how its
behaviour has to be.

Since this training is based on non-supervised learning (there is no specific pre-
defined correct output for each input), the fitness function evaluates each individual
with some rules that add some penalties per sample when the behaviour does not
fit the desired one. As can be seen in Figure 3.5, there are three possible outcomes
when the input and the output sample are compared.

Figure 3.5: Penalties applied for the different cases that can occur when evaluating
the fitness of the individuals. Blue dots are the input samples, red dots the output
samples (the attenuated ones) and d is the distance of the dotted line. In the first
case none of the signals clip (on the left). The second case (in the middle) the input
clips, but the output does not clip and the last case (on the right) both clip.

In the first case, both samples are below the threshold. Hence, the output will be
always equal or an attenuated version of the input. It will never have more ampli-
tude since it is multiplied by the attenuation factor that is equal to or smaller than

29

3. Methods

1. In this case, the penalty applied will be (shapingPenalty × d), the distance d
times the “shaping penalty” (previously defined). The behaviour that the network
needs to learn is that if the input sample is below the threshold, the output has to
be as close as possible to the input keep the shape of the signal.

In the second case, the input clips but the output does not. This is a good be-
haviour since the system is avoiding clipping, but it also needs to try to keep the
shape of the signal. In order to re-shape the input signal below the threshold with
highest possible fidelity, (clipShapingPenalty×d) is applied to the input signal. This
penalty cannot be extremely high, if not the system will start clipping since it tries
to minimise the distance between the clipped input and the output.
The third case, both signals clip. This outcome is the least desired since the first
aim of the limiter is to never go above the threshold. Therefore, (clipPenalty ×d)
is applied, being d the distance to the threshold in this case.

As one can notice, if the system works fairly as desired, the first and the second
cases will be the ones that more often happen. This is important to consider when
choosing the values for the penalties since these penalties will be applied to a lot of
samples. In the first case, the distance can be 0 and have a perfect match, then no
penalty is applied, but the second one will be always applied.

The fitness for an individual k from the population is calculated by the inverse
of the sum of the penalties p applied to each sample k:

fitnessk = 1∑N
n=1 pk[n]

= 1∑N
n=1 dk[n]ck[n]

(3.8)

where d is the distance represented in Figure 3.5 for each case and c the penalty
applied in each case.

3.4.1.1 Delta Mode

One variation created for the two first cases is the “Delta mode”. The Delta mode
compares the difference between the distance of the current and previous input sam-
ple and the distance of the current and previous output sample.

This representation of the distances for the Delta mode can be seen in Figure 3.6
and the equation for each sample k of the new d becomes:

dk[n] = |dkin
− dkout| = | (xkin

[n]− xkin
[n− 1])− (xkout [n]− xkout [n− 1]) | (3.9)

This method allows a fairer penalty since the system aims to re-shape the same
signal below the threshold, which means both signals should have similar direction
or slope between consecutive samples. With the previous method, in the first case
the system will try to have the same samples in both signals all the way until the
threshold once the input clips, the output will try to remain close to the threshold.
This phenomena distorts the shape of the signal. However, the Delta mode tries to
keep the same transitions between samples for both signals, no matter if the input

30

3. Methods

is above the threshold and the output below.

Figure 3.6: Penalty applied in “Delta mode”. This penalty takes the difference
between the distance of the input samples and the output samples (difference of
the slopes). Blue dots are the input samples, red dots the output samples (the
attenuated ones).

Another important fact is that the network should attenuate only the batches of
samples where some of them clip. That means that in order to keep the shape of the
signal, some samples that are not clipping will be attenuated around the samples
that are attenuated because they are clipping, as can be seen in Figure 2.7. But
the batches where there is no clipping, there should not be attenuation. This is
regulated in the current limiters with the attack and release time.

3.4.1.2 Tightness Method

Another variation created for the shapingPenalty case is the Tightness Method. It
can be applied with the Delta Mode or without it. This method applies less penalty
for the samples closer to the threshold. Then, the system will try to adapt its
behaviour in the way that the samples close to 0 amplitude will be “tightened” to
the original signal, while the ones closer to the threshold will have more freedom to
move. This is due to the total application of the penalty for the samples close to
0 and a percentage of the penalty for the samples close to the threshold (samples
above the threshold are not taken into account for this case, that takes part within
the clipShapingPenalty). The relation with the percentage of the penalty used
(tightness) Γ, will be derived from:

Γ = 1− τ
(
x

th

)4

(3.10)

where x is the input level of the signal, th is the threshold level, and τ the tightness
factor. Therefore, the penalty applied will be in proportion with Γ (pk[n] = Γpk[n]).
This function was obtained after some brainstorming until finding one behaviour
similar to Figure 3.8. The exponent selected (power of 4) was seen as close enough

31

3. Methods

to the desired behaviour, but other exponents will not change too much the outcome
since the network will adapt to those changes.

The range of τ is (0,1) and smaller values mean higher tightness. Its effect can
be seen in Figure 3.7

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

x (input)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Γ

 Tightness function (th = 0.8)

τ = 0.2

τ = 0.5

τ = 0.7

Figure 3.7: Tightness function for a threshold level of 0.8. Since this method is
only applied for the case of the shapingPenalty, the input signal is in the range
(-th,th). When the input is close to 0, Γ is 1 and the total percentage of the penalty
will be applied. For different τ values, tightness changes. Higher τ means more
freedom closer to the threshold since a smaller percentage of the penalty will be
applied.

Figure 3.8: Tightness increases for input values closer to 0. The input signal is
represented in blue and the output in red in this ideal scenario. The output is
attenuated just below the threshold and it keeps the shape as close as possible to
the input signal. As a result, the samples closer to 0 have similar values between
the input and the output (they remain tight). The ones closer to the threshold are
more separated (as the black dotted line indicates) and need some freedom (low
tightness) in order to stay below the threshold and maintain the input shape.

32

3. Methods

Figure 3.8 shows how the ideal case fits with the Tightness Model and setting differ-
ent τ values, the behaviour of a look-ahead limiter with different release time could
be approximated. As can be seen in Figure 3.9, with longer release time the output
is less tight to the input values, even for values close to 0. When decreasing the
release time, input and output start to be tight for small amplitude value. When
release time is almost 0, input and output are almost the same all the amplitudes
until the threshold where some low level of freedom is granted.

In this way, the value of τ maps inversely to the release time of the system. For small
values of τ tightness is higher and the release time is shorter. Also the opposite, for
a bigger τ value, longer release time.

Figure 3.9: Input-output samples relation. From left to right, the same limiter
with release time 0.1, 1 and 10 ms. As can be seen, when the release time increases
the responses is much disperse and farther from the ideal case due to the reasons
explained in Figure 2.5.

3.4.1.3 Fair Penalty Accumulation

There are two different methods for the evaluation of the individuals. The simple
one is to accumulate for each sample its penalty, but after some training, it was
thought if that was fair enough for the system. There are three different penalties
or scenarios when evaluating one individual. If for some random data sets there are
much more occurrences of one scenario than the others, the system will be trained
for that scenario, but probably not for the others.

In order to avoid this, a variation was implemented: there will be three counters, one
for each scenario in order to count the occurrences of each one. Each penalty con-
tribution is accumulated individually for each scenario and weighted by the number
of occurrences. Hence, once normalised/averaged individually each scenario, each
one will contribute in the same way to the total penalty.

33

3. Methods

All of this methods and variations will be tested and combined between them in
order to know how to reach the desired behaviour of the system. The results will
be shown in the next chapter.

An attempt to use prediction based methods resulted in inordinate complexity, and
hence, it was not pursued further. The description of the prediction based approach
and the results thus obtained can be found in A.

34

4
Results

This chapter gives a description of the results obtained for the training methods ex-
plained in the previous chapter. It is important to note that these system models are
not deterministic and the results could vary depending on many factors. Therefore,
due to the stochasticity, the same training input can converge to different neural
networks. This is a problem in affirming which is the best neural network or which
combination of parameters to use. These results will guide to what can be derived
from different combinations of parameters and methods.

4.1 Challenges
This section explains potential problems that the system shall be able to prevent.
The most important are distortion and clipping. Some of the first implementations
resulted in these problems. It is important to analyse how such issues occur.

4.1.1 Clipping
The obvious challenge for a limiter is to limit the input signal. The output has to
be generated below the threshold level. As can be seen in Figure 4.1, one example
of the attenuation generated by the system is not enough to avoid clipping.

3.312 3.3125 3.313 3.3135 3.314 3.3145 3.315 3.3155

Samples ×105

0.5

0.6

0.7

0.8

0.9

1

A
m

p
lit

u
d
e

Input vs Output & attenuation

input

output

attenuation

th

Figure 4.1: Example of a system that does not generate enough attenuation. On
the left, input and output signal and the attenuation level for each sample. On the
right, the input-output relation.

35

4. Results

4.1.2 Distortion

Distortion could be caused out of different reasons. One reason could be discontinu-
ities in the signal as in Figure 4.2. In this case, the attenuation is applied instantly
when the signal is above the threshold and the same attenuation is applied to the
samples above it. The input-output relation can be seen in Figure 4.2. The be-
haviour of the systems is linear with ratio 1:1 until the threshold and then it jumps
to the attenuated state applying the same gain reduction factor (in this case, it
scales the input signal above the threshold multiplying by the threshold level).

The output is attenuated below the threshold, but the transition is not linear and
it jumps so fast to a higher attenuation level when the input signals go above the
threshold. This causes audible distortions because of the discontinuities. If the
magnitude of the input to the sigmoid activation function is too high (positive or
negative) the outcome will be mostly two states: negative saturation or positive
saturation. Only a few values will be out of the saturation states. In this case, the
output attenuation range is between 1 and the threshold and it jumps very fast from
the linear behaviour to the maximum attenuation (without smooth transitions).

3.31 3.311 3.312 3.313 3.314 3.315 3.316

Samples ×105

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
m

p
lit

u
d
e

Input vs Output

Figure 4.2: Distortion caused because of the non-smooth transition between the
non-attenuated part and the attenuated one. On the left, the black line is the
threshold, the blue line is the input and in red the output. On the right, if the
weight range is too big, it is easier for the ANN to saturate in the output.

Other reasons could be nonlinear behaviours creating artefacts in the output signal,
new shapes or inverting some parts as seen later in Figure 4.4.

4.2 Methods and Parameters

This section explains why some parameters and methods are chosen and what is the
behaviour of the system found due to those changes.

36

4. Results

4.2.1 Number Of Neurons

4.2.1.1 Initial Decisions

The number of neurons in the hidden layer used for the model is an important
parameter to determine. If the number of neurons increases, the complexity of the
system increases linearly and the complexity of the training exponentially. Also,
increasing the number neurons in the hidden layer requires longer chromosomes,
and for longer chromosomes, the population size should be bigger. Then, we aim to
find the minimum number of neurons that make the system to work properly for the
desired task. Due to time constraints of the thesis we avoided using longer training.

Figure 4.3: Input-Output compression relation for the different number of neurons.
The vertical axis represents the output amplitude obtained from the input amplitude
of one sample because of the attenuation applied in the limiter. The figure shows
the behaviour of 4 different systems trained with different number of neurons, but
with the same combination of methods and parameters.

In order to know how many neurons are enough for the model, some initial com-
parison of different penalties combinations and the simplest methods were obtained.
As can be seen in Appendix B, different combinations were tested. One can see
that 4 different networks (with 4, 8, 12 and 16 neurons in the hidden layer) trained

37

4. Results

with the same combination of penalties results in similar behaviour for all of them.
There are no figures in the appendix for networks with 2,3,5 and 6 neurons, but the
simulations were done and the conclusion was the same.

The conclusion was that if the number of neurons is bigger than 4, there is no
significant difference between the different outcomes. Therefore, in order to avoid
long training times, 4 neurons was chosen as the best number. Also, as can be seen
in Figure 4.3 (as an example), the case with 4 neurons seem to have less distortion
in the output and also it is always below the threshold. The case with 4 neurons is
similar to the case in Figure 2.5, like the case of a limiter with short release time.
With 8 neurons is similar but without release time, it could be the case of the ideal
limiter with a soft-knee. The case with 12 neurons clips and with 16 neurons also
distorts. Distortion is obtained when the input-output relation goes up and down.
In this case, the relation is 1:1 up until the threshold, it goes above and then the
attenuation is too high for high amplitude inputs and the output goes down. This
behaviour causes non-smooth attenuation transitions as in Figure 4.2, where the
transition between the not attenuated and the attenuated part is nonlinear.

To sum up, as an initial conclusion, a large number of neurons in the hidden layer
do not necessarily imply increased performance. But, once the best combination of
methods and parameters is found, it should be trained and tested one more time
with a different number of neurons in order to verify the best performance of the
solution.

4.2.1.2 Final Choice

After studying the rest of the methods and parameters, it has been found that the
behaviour of the system increasing the number of neurons is similar to the initial
guess. Therefore, the hypothesis of using 4 neurons in the hidden layer is still valid
after testing several numbers of neurons with the best combinations of parameters
and methods found.

4.2.2 Penalty Accumulation

During training, it was found that in order to have a better control over the penalties
the Fair Penalty Accumulation Method (see section 3.4.1.3) is better. If not, the
training depends on the data set and the number times that each case occurs. Also,
convergence is worse since what is working for one audio data set is not working
for another because the system is more trained for one case than other. Hence, the
system could be better keeping the shape but does not limit at all, or another case
when it is focused on the signal limitation but not on keeping the shape. Without
the Fair Penalty Accumulation method, it becomes very hard to adjust the penalties
relations.

38

4. Results

4.2.3 Activation Function

The activation function used is the sigmoid function for the hidden layers as ex-
plained in section 3.2 and Figure 3.3. But for the output neuron, the modified
version of the different functions (applying the same procedure as for the sigmoid
function in equation 3.6) was tested in order to avoid extra attenuation. This modifi-
cation helps the network limiting the output of the ANN. The input to the activation
function at output neuron of the ANN could saturate easily positive or negatively.
If it does negatively and there is no limitation, the network will kill the signal for
that samples since the attenuation (negative gain) is equal to 0. Therefore, is much
easier to converge to the desired results with this modification.

When training the system without this modification, some crest inversion effects
were found often. Figure 4.4 shows this phenomena. The attenuation is too high
for the peaks in comparison with the rest of the envelope and the crest is inverted.

1.455 1.4555 1.456 1.4565 1.457 1.4575

samples ×105

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

a
m

p
lit

u
d

e

Input vs Output & Attenuation

input

output

attenuation

th

Figure 4.4: When the system output can generate an attenuation level (negative
gain) below the threshold, sometimes it can converge to cases where the crests of
the signal get inverted. This can be avoided if the range of the output system is
between 1 and the threshold.

Other activation function like the “modified linear” (similar to identity, but adding
some slope and modified with some limits, see Figure 4.5) and an expanded version
in the horizontal axis of the sigmoid was tried out, but they did not provide a better
approach for the model. However, the “modified ReLu” (increasing the slope of the
normal ReLu function and limiting its maximum and minimum output, as with the
other functions) worked better than the sigmoid when applying attenuation for the
clipping input, as can be seen in Figure 4.6. The behaviour is more linear in this
case for this activation function, while for the sigmoid the attenuation fluctuates.

39

4. Results

-10 -5 0 5 10

input

0

0.5

1

o
u

tp
u

t
Modified ReLu function

-10 -5 0 5 10

input

0

0.5

1

o
u
tp

u
t

Modified linear function

Figure 4.5: Modified ReLu and Linear Function. In these examples, the limits go
till 5, but different limits (resulting in different slopes) were tried out.

Figure 4.6: On the left, the result from an ANN with a sigmoid function in the
output neuron. On the right, the same result with a ReLu function. The transition
between the linear behaviour and when applying attenuation is smoother for the
sigmoid. But the attenuation is more linearly applied to the ReLu function than
the sigmoid.

The SoftPlus function (see equation 3.7) was tested and some modification to the
function were made in order to get different behaviours in the transitions between
the linear state (when the output signal is equal to the input signal) and the at-
tenuated state (the parts when the samples of the output signal are an attenuated
version of the input).

As can be seen in Figure 4.7, the three cases of the “Modified SoftPlus” are varia-
tions of where the soft transition is made (also adding the same modification as the
previous functions, regarding limitation and slope). In the SoftPlus Single function,
the soft transition is like the normal SoftPlus function at amplitude 0. But the tran-
sition to the limitation is “hard”. The case of the SoftPlus Inverse is the opposite
of the single, where the soft transition is applied to the limitation and the hard one
at amplitude 0. The SoftPlus Double has both transitions soft.

40

4. Results

-10 -5 0 5 10

input

0

0.2

0.4

0.6

0.8

1
o
u
tp

u
t

Modified SoftPlus Single function

-10 -5 0 5 10

input

0

0.2

0.4

0.6

0.8

1

o
u
tp

u
t

Modified SoftPlus Double function

-10 -5 0 5 10

input

0

0.2

0.4

0.6

0.8

1

o
u
tp

u
t

Modified SoftPlus Inverse function

Figure 4.7: Modified SoftPlus Function. In this example, the limits go till 5, but
different limits (resulting in different slopes) were tried out. There are the Single
SoftPlus where only the corner at 0 has a soft transition (the original version from
the theory, but limited on the top), the SoftPlus Double where both corners have soft
transitions, and the SoftPlus Inverse variation where only the corner at amplitude
1 has a soft transition.

Figure 4.8: On the left, the result from an ANN with a SoftPlus Single function
in the output neuron. In the middle, the same result with a SoftPlus Double func-
tion. On the right, with a SoftPlus Inverse function. As can be seen, the different
transitions from the linear behaviour to the attenuation vary in relation with the
transitions explained for each function in Figure 4.7.

Choosing different activation functions results in different behaviours in the atten-
uation state. Figure 4.8 shows the different behaviours and the relation between
the transitions in the activation function and the transition between states for a
limited audio signal. If the transition in the activation function is “soft”, at am-
plitude 0 some fluctuation can be seen in the attenuation state in the input-output
relation. This fluctuation could generate crest inversion, but it can help the network
to converge without abrupt changes in the attenuation state. On the other hand, if
the activation function has a soft transition in the limitation (at amplitude 1), the
transition between the linear state and the attenuation state is soft.

4.2.4 Tightness and Delta Modes
Delta Mode adds a meaningful information when training. It says if the comparison
between input and output shape has to be measured from the amplitude values of

41

4. Results

each signal or the slope between the current sample and the previous.

This method can be applied in two different scenarios: in both of them the out-
put sample does not clip, but the input one can clip or not. As can be seen in
Figure 4.9, when the Delta Mode is applied only for the case when the input clips,
the shape in the output signal is not kept in relation to the input one. In the other
case, applying always the delta mode for both cases, the shape is kept. This train-
ing was made with the same values and parameters and just modifying where for
which cases the Delta Mode has to be applied. When Delta Mode is not applied,
the distance between the input and the output sample is used as an error.

3.295 3.296 3.297 3.298 3.299 3.3 3.301

Samples ×105

0.5

0.6

0.7

0.8

0.9

1

A
m

p
lit

u
d
e

Input vs Output & attenuation

input

output

attenuation

th

3.295 3.296 3.297 3.298 3.299 3.3 3.301

Samples ×105

0.5

0.6

0.7

0.8

0.9

1

A
m

p
lit

u
d
e

Input vs Output & attenuation

input

output

attenuation

th

Figure 4.9: Delta mode. As explained in section 3.4.1, on the left Delta Mode
applied only to the case when the input clips and the output do not clip (clipShap-
ingPenalty case). On the right, Delta Mode applied for both cases: the previous
case and also when input and output do not clip (shapingPenalty and clipShaping-
Penalty cases). Blue signal is the input, red the output and threshold are the black
lines. The green signal is the attenuation applied to each sample. On the right, the
output keeps the shape of the input but attenuated, while on the left the shape is
only kept when the input signal clips.

Figure 4.10: Tightness Mode. On the left, a result without tightness method and
on the right, applying it with a tightness factor τ = 0.7. τ = 0 means disabling
tightness method and τ = 1 high freedom.

42

4. Results

As explained in section 3.4.1.2, the tightness method provides more flexibility in the
transition from the linear state to the attenuation state. This method tries to avoid
the distortion cause for the discontinuity between these states (already explained
with Figure 4.2 before).

As can be seen in Figure 4.10, when applying the tightness method the transi-
tion is much smoother. Because the constraint of the penalty to keep the exact
shape of the signal below the threshold is weaker when gets close to the threshold.

4.2.5 Penalties
The values of the penalties for the fitness evaluation have varied several times since
each method applies different rules when applying the penalties. In general, the
important fact is the relation between the penalties more than the value of each one
separately.

The shapingPenalty tries to tighten the output signal to the input signal’s shape.
The result of increasing this penalty is shown in Figure 4.11. The transition between
the linear state and the attenuation state is centred around 0.5 and 0.6 in the first
case. When increasing, the transition occurs above 0.6 and the values of the output
remain closer to the values in the input for a larger range. This forces the transition
to be closer to the threshold.

Figure 4.11: ShapingPenalty. With the same parameters and penalties, when the
value of the shapingPenalty is increased, the behaviour change from the figure on
the left to the figure on the right. Increasing the shapingPenalty means that, when
the input is not clipping, the system tries harder to have in the output the same
values as the input.

Figure 4.12 shows the result of increasing the clipPenalty and how the system reacts
to this change. As can be seen, when the constraint imposed by the penalty is higher,
the system that was focused on keeping the shape of the signal, starts applying
attenuation above the threshold.

43

4. Results

Figure 4.12: ClipPenalty. With the same parameters and penalties, when the
value of the clipPenalty is increased, the behaviour changes from the figure on the
left to the figure on the right. Increasing the clipPenalty means that, when the input
is clipping, the systems tries harder to do not clip in the output. It is very easy for
the system to jump from a behaviour that just tries to fit the shape of the input
signal or start limiting the signal as a priority. This penalty could be very sensitive.

For the case of the clipShapingPenalty, as can be seen in Figure 4.13, exists a nonlin-
ear behaviour that can cause distortion in the signal for discontinuities. Increasing
the clipShapingPenalty, the system converges to a solution where the clipping sam-
ples (in the input) are attenuated but trying to keep the shape as close as possible.
The result is a more linear behaviour in that range.

Figure 4.13: ClipShapingPenalty. With the same parameters and penalties, when
the value of the clipShapingPenalty is increased, the behaviour change from the
figure on the left to the figure on the right. Increasing the clipShapingPenalty means
that, when the input is clipping and the output is not, the systems tries harder to
have in the output the same shape as the input. On the left, the behaviour creates
some distortion and crest inversion (as explained in Figure 4.4), On the right, the
attenuation is more linear for different input amplitudes.

44

4. Results

It is important to note that the relevant fact is the relation between the penalties
and not the values of each penalty individually.

4.2.6 Parameters Complexity
There is a huge number of possible combinations of parameters and methods, there-
fore there is a high complexity in order to find best general behaviour of the system.

parameter Complexity Proposal
Neurons in hidden layer Tested integers from 2 to 16 4
Tournament size Tested integer from 1 to 4 3
Tournament parameter Tested real numbers from

0.7 to 0.9
0.8

Crossover probability Tested real numbers from
0.1 to 0.85

0.6

Weights range Tested integers from -40 to
40

5

Delta Mode It can be not used, or com-
bined with the clipShaping
and Shaping Penalties

Use it for both cases.

Tightness Tested real numbers from 0
to 1

∼ 0.3

Fair Penalty Accum. It can be use or not Use it.
Output Limitation It can be use or not Use it.
Shaping penalty Tested from 1 to 200. It

depends of the desired be-
haviour.

∼ 200 (Using Delta
Mode, Fair Penalty
Accumulation and
Output Limitation)

Clip Shaping penalty Tested from 1 to 300. It
depends of the desired be-
haviour.

∼ 10 (Using Delta
Mode, Fair Penalty
Accumulation and
Output Limitation)

Shaping penalty Tested from 1 to 700. It
depends of the desired be-
haviour.

∼ 15 (Using Delta
Mode, Fair Penalty
Accumulation and
Output Limitation)

Activation function 6 different functions: Sig-
moid, Linear, ReLu, Sof-
Plus Single, SoftPlus Dou-
ble and SoftPlus Inverse. It
can have different slopes,
tested from 1 (identity) to
5

SoftPlus Inverse with
slope 1(identity)

Table 4.1: Parameters complexity and proposal.

Table 4.1 shows all the parameters and methods used. It also shows a proposal for

45

4. Results

which method or parameter to use when training the system. These parameters help
the network to converge to the desired behaviour, but it is a stochastic model that
will vary depending on several factors as the database or the random initialization
of the chromosomes.

This method is the tool to find the desired system, but not the solution. Differ-
ent users could desire different responses from the system and therefore, one will
not be better than the other. This is the reason why a proposal is given, but not
the best match for a parameter or method.

4.3 Threshold Flexibility
Since the system is trained for one threshold, its best response is when we run it for
that threshold. On the other hand, it has been found that there is some flexibility
where the system still can work good, but the best solution for a real implementa-
tion would be to have different already trained systems with different thresholds.

Taking into account this flexibility, for example, one system could be trained for
a threshold at 0.7 and run with thresholds from 0.6 to 0.7. But this is something
that needs more research and it is out of the scope of the thesis.

4.4 Extra Blocks
Some extra blocks could be added to the chain after the ANN. Two different blocks
were implemented trying to improve the result obtained from the ANN.

Figure 4.14: Block diagram of the application adding Noise Gate and Gain Smooth
blocks.

4.4.1 Noise Gate
This blocks remove small attenuation values that could attenuate some part of the
signal that is not going to clip. A noise threshold level has to be set. Figure 4.15
shows an example with a noise threshold equal to 0.96. All the attenuation above the
threshold, between 0.96 and 1 will be not considered (this threshold works opposite
as the limiter, it removes the part above the threshold). It can be seen that the
signal attenuated using the noise gate block (green signal) attenuates the parts that
are clipping in the input, but not the ones that are below the threshold. The signal
using the attenuation from the ANN (in red) attenuates both parts.

46

4. Results

1.75 1.8 1.85 1.9

Samples ×105

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A
m

p
lit

u
d

e
Input vs Output & attenuation

input

output2

output1

attFactor1

attFactor2

th

1.81 1.82 1.83 1.84 1.85 1.86 1.87 1.88 1.89

Samples ×105

0.7

0.75

0.8

0.85

0.9

0.95

1

A
m

p
lit

u
d
e

Input vs Output & attenuation

input

output2

output1

attFactor1

attFactor2

th

Figure 4.15: Example of Noise Gate for attenuation signal On the left is the
signal and on the right a zoom of the same signal for a more detailed view. Purple
shows the attenuation obtained from the ANN, light blue after noise gate (removing
attenuation between 0.96 and 1), the red signal is the attenuated directly from the
ANN and the green one with the attenuation filtered with the noise gate.

On the other hand, one cannot abuse of this block using a very low threshold (con-
sidering a lot of noise to remove). This will lead to nonlinearities when attenuating
signals above the limiter’s threshold, as can be seen in Figure 4.16. It can be seen
in different states in the new output (in green), breaking a breach in the original (in
red). This will cause discontinuities in the output signal as was explained in Figure
4.2.

Figure 4.16: Input-output relation after Noise Gate block. Red is the output
without using the noise gate, and green using it.

47

4. Results

4.4.2 Gain Smooth: Attack and Release Time

As it was explained in section 2.1, the same block for gain smoothing than normal
limiter is applied for the same purpose. Figure 4.17 shows an example of how the
attenuation signal is filtered and the transitions in the signal become slower. The
outcome is a signal with a shape closer to the input and fewer nonlinearities due to
fast changes in the attenuation.

1.122 1.124 1.126 1.128 1.13

Samples ×105

0.5

0.6

0.7

0.8

0.9

1

A
m

p
lit

u
d

e

Input vs Output & attenuation

input

output

th

attenuation

1.121 1.122 1.123 1.124 1.125 1.126 1.127 1.128 1.129 1.13

Samples ×105

0.5

0.6

0.7

0.8

0.9

1

A
m

p
lit

u
d

e

Input vs Output & attenuation

input

output

attenuation

smoothAtt

th

Figure 4.17: Attenuation with Gain Smooth block. On the left, a signal attenu-
ated without applying smoothing to the attenuation signal. On the right, applying
smoothing. Green is the attenuation from the ANN and purple after the Gain
Smooth block.

4.5 Comparison

In this section, different audio limiter implementations are tested and compared:

• Hard knee limiter: All the samples below the threshold are the same, above
are equal to the threshold. Explained in Figure 2.1 when ratio is ∞ : 1.

• Soft knee limiter: Same as the hard knee limiter but with a soft transition to
the attenuated state. Explained in Figure 2.2.

• Look-ahead Limiter: Limiter with some delay in order to anticipate the at-
tenuation, hence keeping a better shape of the signal. Explained in Figure
2.6.

• ANN Limiter: One realisation of the system described in this thesis. The
response of the limiter can be seen in Figure 4.18.

48

4. Results

Figure 4.18: ANN Limiter input-output relation. This response is measured with-
out any attack or release time over the input. It is the raw ANN limiter relation.
As can be seen, there are some nonlinearities in the behaviour, acting in different
ways for samples with the same amplitude.

As has been explained before, there could be very different responses and this was
chosen because it does not create too much distortion in comparison with another
result. On the other hand, it clips sometimes but only slightly above the threshold.
The nonlinear behaviour was taken into account when choosing it in order to measure
the responses of the nonlinearities in the outcome.

4.5.1 Clipping
For this comparison music signals with different PAPR and normalized in the range
(-1,1) were used. For each signal the percentage of clipping was derived following
the next equations:

PAPRdB = 20 log10

(
max1≤i≤n|xi|

xRMS

)
= 20 log10

max1≤i≤n|xi|)√
1
N

∑N
1 x

2
i

 (4.1)

clipping percentage =
∑N

i=1 1{xi > th}
N

(4.2)

Figure 4.19 shows the relations between the different systems. As can be seen,
without attack and release time the current systems work as ideal and there are
no samples above the threshold. While for the ANN some of them go above. The
significant fact is that for signals with less PAPR and a high percentage of clipping,
the ANN works better (signals with lower PAPR tend to clip more often since the
distance between the peaks and the average of the signal is smaller. Therefore, it is
likely to reach the peak and go above the threshold). This behaviour is not common
for linear systems where the output of the limiter follows the same trend as the
input, clipping more for smaller PAPR signals.

On the other hand, applying 0.1 ms attack time and 35 ms of release, the ANN

49

4. Results

limiter works better than the hard limiter, but worse than the soft limiter. The
look-ahead limiter due to its look-ahead can predict always when the signal is going
to clip and the output never clips.

8 9 10 11 12 13 14 15

PAPR (dB)

10-3

10-2

10-1

100

lo
g
(%

 c
lip

p
in

g
)

Clipping Probaility (with Attack and Release)

input

hard

soft

look

ANN

7 8 9 10 11 12 13

PAPR (dB)

10-4

10-3

10-2

10-1

lo
g
(%

 c
lip

p
in

g
)

Clipping Probaility

input

hard

soft

look

ANN

Figure 4.19: PAPR and clipping percentage comparison. On the left, the realisa-
tions with attack and release time measured for the different systems. On the right,
without attack and release. Attack time = 0.1 ms and Release time = 35

4.5.2 Harmonic Distortion

The Spurious-Free Dynamic Range (SFDR) is the ratio of the fundamental signal to
the strongest spurious signal in the output. This measurement could tell how much
distortion the system adds to the signal with limiting it.

Different tones were generated in order to test the different response of the sys-
tems for different frequencies. Some of the simulations are shown in Appendix C.
The result is summarised in Table 4.2. The SFDR level shown is the average for
different frequencies in the audible spectrum.

Analysing the effect of the attack and release is another important factor since
systems with attack and release time have softer transition in the attenuation sig-
nal. This makes the system generate less harmonic distortion when attenuating,
but at the same time the system is not fast enough to recover and it modifies the
dynamic range of the signal too much. In this case, the Root Mean Square Error
(RMSE) of the signal increases. Then, another simulation with attack and release
time was carried out, some graphs are shown in Appendix D and the results are also
summarised in Table 4.2.

50

4. Results

SFDR (dB)
(no attack and release)

SFDR (dB)
(attack and release)

Hard Limiter 50,8 93
Soft Limiter 49,6 95
LookAhead Limiter 92 97
ANN Limiter 57,6 96

RMSE
(no attack and release)

RMSE
(attack and release)

Hard Limiter 0.052 0.076
Soft Limiter 0.074 0.120
LookAhead Limiter 0.082 0.084
ANN Limiter 0.058 0.088

Table 4.2: Comparison of the distortion generated by each system. Above the
results for the harmonic distortion and below the RMSE. These results were obtained
simulating thousands of signal and averaging the error. Some examples of this
simulation are shown in Appendixes C and D.

When the SFDR is bigger, the distortion is smaller. In such case, the difference be-
tween the power of the original signal and the power of the harmonics generated by
the system is higher. This means, with attack and release the systems work better
generating less distortion than not using it. Actually, with attack and release, the
distortion can be neglected. For the look-ahead limiter is the same in both cases
since the look-ahead allows to predict the signal and keep the original shape. If the
other three systems are compared, ANN generates the lowest harmonic distortion.
Hard limiter and soft limiter have similar higher distortions levels.

Regarding the dynamic range and Root Mean Square (RMS) power, the release
time could affect considerably the effect of the attenuation. Longer release time
could keep the attenuation level for so long after it is not needed. This effect can
be seen in Table 4.2. RMSE tells the deviation of the differences between the input
x and the output y. This number was obtained following the next equation:

RMSE =
√∑(xi − yi)2

N
with i = 0...N (4.3)

The hard limiter without attack and release tells the smallest possible error since
it makes equal to the threshold all the samples above it. The soft limiter makes
the same with the soft transition, therefore it has more error. More error means
less RMS (average) power in the output signal since it is more attenuated. The
look-ahead limiter has the highest error since it is attenuating more time due to the
prediction ability. It starts attenuating before it reaches the threshold. In this case,
the delay is 35 samples look-ahead. The ANN limiter without attack and release
has the closest value to the smallest possible error.

Adding the attack and release times make the results for the four systems more

51

4. Results

similar. Due to the time reaction, the systems starts to attenuate more than nec-
essary and the error increases. The important fact is how much they change in
relation to the first cases without attack and release. It can be seen that the look
ahead only increases in 0.002, while the hard limiter 0.024, soft limiter 0.046 and
the ANN limiter 0.030 % . This means that hard, soft and ANN limiter especially
are more sensitive to the release time reaction and will apply more attenuation after
needed.

Putting together both results, the harmonic distortion and the error, the ANN
limiter works better than hard and soft limiters regarding distortion and also it has
less error than the soft limiter. It also has less RMSE than the look-ahead limiter
what means more RMS output power. The results with attack and release are very
similar. It is important to note that the look-ahead system adds 35 samples latency
to the system due to the look-ahead, which is by itself an undesirable effect that the
ANN limiter does not cause.

52

5
Conclusion

After the results presented above, a summary is due and some conclusions can be
drawn.

The thesis work culminates in an implementation of an original non-deterministic
signal limiting algorithm, which is benchmarked against other widespread determin-
istic methods. The originality resides mostly in the choice of a neural network-based
method, which by itself opens new possible research paths.

A number of variations of the same algorithm can be conceived, and a number
of different application of the same kind of algorithms, besides "limiters" for the
purpose defined in the introduction, can be considered.

No method is the absolute best in all regards. Different algorithms have shown
strengths and weaknesses: this is about latency, distortion, clipping performance,
i.e. parameters affecting the listener’s perception, but also about implementation
complexity and computational cost.

So, how to chose the best one out of many options? As usual when it is about
audio signal processing, complying with pre-determined requirements is not neces-
sarily enough: psychoacoustics has a key role, how the listener perceives the sound
quality is still the most important overall benchmark parameter. Therefore, the
optimal algorithm is picked after a listening test, which inevitably adds a degree of
subjectivity to the final evaluation.

No matter what, the opinion I share with the experienced developers of audio sys-
tems I had the opportunity to work with, is that the method herein exposed operates
in a satisfactory manner, and introduces enough advantages to be considered inter-
esting for future product design.

53

5. Conclusion

54

6
Future Work

There has been a limitation in time and resources, longer trainings and more pa-
rameters and methods combinations could be done in order to get more accurate
results and understanding of the system.

Some procedures could be carried out in order to see how the ANN works for the
system. For example, it could be interesting to see where are the active neurons
for each sample and which is the complexity of the of the activation patterns for
different signals.

Some extra algorithms for the GA like dynamic probability mutation. This proba-
bility could vary based on the diversity of the individuals and stimulate having new
individuals. The new individuals could lead to better results and less probability to
get stuck in a local minima.

Another training methods and approach could be tested for the ANN, like back-
propagation or Recursive Neural Networks.

This result includes only one system implementation per threshold. This means
that it is required different systems obtained for different trainings if the user wants
to modify the threshold of the ANN limiter. Some research in this area could im-
prove the system and make more flexible for different thresholds.

A deeper study of the non-linear behaviour of the system and what it adds. And
also, how to take more advantage of the new dimension space that the ANN can
handle, instead of only time and frequency in the current systems. For example,
the extra Noise Gate block proposed in this thesis could be the first step to make a
differentiation between two different states, the linear and the attenuated.

The next step for the result obtained could be to test it in a real-time system,
as a Digital Signal Processor.

55

6. Future Work

56

Bibliography

[1] Udo Zolzer. (2002) DAFX: Digital Audio Effects. John Wiley and Sons, Ltd.
[2] Sophocles J. Orfanidis. (1995) Introduction to Signal Processing. Prentice Hall.
[3] J.P. Mackenzie. (1995) Chaotic Predictive Modelling of Sound. ICMC Proceed-

ings.
[4] Abdelhakim Dahimene, Mohamed Noureddine and Aarab Azrar. (2007) A Sim-

ple Algorithm for the Restoration of Clipped Speech Signal. Informatica 32
(2008) 183–188 .

[5] Limiter ratios figure. Creative Commons Licence. https://en.wikipedia.
org/wiki/Dynamic_range_compression#/media/File:Compression_ratio.
svg

[6] Soft-knee figure. Creative Commons Licence. https://commons.wikimedia.
org/wiki/File:Compression_knee.svg

[7] Hiten N. Mistry (2003) Implementation of a Peak Windowing Algorithm for
Crest Factor Reduction in WCDMA. Simon Fraser University Master Thesis.

[8] Vinay Reddy N., Arthy Suganthi Kani J., Ajay Kumar D., (2015) Peak Can-
cellation Crest Factor Reduction Technique for OFDM signals. IMPACT: In-
ternational Journal of Research in Engineering Technology

[9] Neuron figure. Creative Commons Licence. https://askabiologist.asu.
edu/neuron-anatomy

[10] Mattias Wahde (2008) Biologically inspired optimization methods.An introduc-
tion

[11] Synapse figure. Creative Commons Licence. https://commons.wikimedia.
org/wiki/File:SynapseSchematic_lines.svg

[12] Dhawale A, Bhalla US. (2008) The network and the synapse: 100 years after
Cajal. HFSP Journal.

[13] D. O. Hebb. (1949) The Organization of Behavior.Wiley.
[14] W. McCulloch andW. Pitts (1943) Alogical calculus of the ideas immanent in

nervous activity. Bulletin of Mathematical Biophysics, 7:115–133.
[15] Simon Haykin (2001) Neural Networks, A Comprehensive Foundation. Prentice

Hall.
[16] David Kriesel (2005) A Brief Introduction to Neural Networks.
[17] P. Sibi, S. Allwyn Jones, P. Siddarth (2013) Analysis of Different Activa-

tion Functions Using Back Propagation Neural Networks. SASTRA University,
Kumbakonam, India. Journal of Theoretical and Applied Information Technol-
ogy

[18] Perceptron figure. Creative Commons Licence. https://commons.wikimedia.
org/wiki/File:Rosenblattperceptron.png

57

https://en.wikipedia.org/wiki/Dynamic_range_compression#/media/File:Compression_ratio.svg
https://en.wikipedia.org/wiki/Dynamic_range_compression#/media/File:Compression_ratio.svg
https://en.wikipedia.org/wiki/Dynamic_range_compression#/media/File:Compression_ratio.svg
https://commons.wikimedia.org/wiki/File:Compression_knee.svg
https://commons.wikimedia.org/wiki/File:Compression_knee.svg
https://askabiologist.asu.edu/neuron-anatomy
https://askabiologist.asu.edu/neuron-anatomy
https://commons.wikimedia.org/wiki/File:SynapseSchematic_lines.svg
https://commons.wikimedia.org/wiki/File:SynapseSchematic_lines.svg
https://commons.wikimedia.org/wiki/File:Rosenblattperceptron.png
https://commons.wikimedia.org/wiki/File:Rosenblattperceptron.png

Bibliography

[19] ANN figure. Creative Commons Licence. https://commons.wikimedia.org/
wiki/File:Neural_Network.gif

[20] DNA figure. Creative Commons Licence. https://upload.wikimedia.org/
wikipedia/commons/e/e1/Chromosome-DNA-gene.png

[21] Darrell Whitley. (1994) A Genetic Algorithm Tutorial. Statistics and Comput-
ing (1994) 4, 65-85

[22] Michael Vose (1999). The Simple Genetic Algorithm: Foundations and Theory.
Cambridge, MA: MIT Press.

[23] R. Sathya, Annamma Abraham (2013) Comparison of Supervised and Unsuper-
vised Learning Algorithms for Pattern Classification. (IJARAI) International
Journal of Advanced Research in Artificial Intelligence, Vol. 2, No. 2.

[24] John H. Holland (2005) Genetic Algorithms. Computer programs that "evolve"
in ways that resemble natural selection can solve complex problems even their
creators do not fully understand.

[25] GA reproduction figure 1. Creative Commons Licence. https://en.
wikipedia.org/wiki/Meiosis#/media/File:Meiosis_Overview_new.svg

[26] GA reproduction figure 2. Creative Commons Licence. https:
//commons.wikimedia.org/wiki/File:Computational.science.Genetic.
algorithm.Crossover.Cut.and.Splice.svg

[27] D Nagesh Kumar (2010) Optimization Methods: Optimization using Calculus-
Stationary Points. IISc Bangalore. Lecture Notes

[28] Paul M. Parker (2002) Newton’s Law of Universal Gravitation. Dept. of Physics,
Mich. State Univ

[29] J.P.Mackenzie (1995) Chaotic Predictive Modelling of Sound. School of Elec-
tronic and Manufacturing Systems Engineering. University of Westminster.

[30] Eugen Diaconescu (2008) The use of NARX Neural Networks to predict Chaotic
Time Series. Communications and Computer Science Faculty. University of
Pitesti.

58

https://commons.wikimedia.org/wiki/File:Neural_Network.gif
https://commons.wikimedia.org/wiki/File:Neural_Network.gif
https://upload.wikimedia.org/wikipedia/commons/e/e1/Chromosome-DNA-gene.png
https://upload.wikimedia.org/wikipedia/commons/e/e1/Chromosome-DNA-gene.png
https://en.wikipedia.org/wiki/Meiosis#/media/File:Meiosis_Overview_new.svg
https://en.wikipedia.org/wiki/Meiosis#/media/File:Meiosis_Overview_new.svg
https://commons.wikimedia.org/wiki/File:Computational.science.Genetic.algorithm.Crossover.Cut.and.Splice.svg
https://commons.wikimedia.org/wiki/File:Computational.science.Genetic.algorithm.Crossover.Cut.and.Splice.svg
https://commons.wikimedia.org/wiki/File:Computational.science.Genetic.algorithm.Crossover.Cut.and.Splice.svg

A
Prediction

During the research and implementation of the model some of the results were not
enough to limit the samples on time for quick transients, therefore an extra ap-
proach was considered. Some advance was done in non-linear limitation, but since
the system does not have look-ahead, an extra network could try to predict future
samples.

A simple Recurrent Neural Network was trained in parallel in order to predict next
samples, this network is shown in Figure A.1. It was trained with different combina-
tions of neurons, activation functions (linear, tangential, logistic...)[17] and different
types of data.

Figure A.1: Artificial Neural Network general application used for prediction.

There is some prior art based on chaotic series prediction and non-linear dynamics
[29] [30], and the results for a simple signal like simple tones could be more or less
acceptable, but for complex sounds did not work at all. However, in this thesis, it
has been tried to predict some samples ahead and the outcome resulted in the con-
clusion that this approach was out of the scope of the thesis. It is needed a totally
different approach if the prior art is followed and just applying the aforementioned
topology did not fulfil the requirements.

Some results are shown in Figure A.2. With one sample look-ahead prediction

I

A. Prediction

the values are stable but a high percentage of the samples seems to be delayed and
therefore the amplitude of the signal that has to trigger the threshold in order to
know when it is going to clip is wrong. If one has a look of the examples for 2 or 5
samples look-ahead the prediction becomes more and more unstable.

One of the constraints in this system to make it works as the number of previous
samples needed as an input to the network. As the number of the inputs increases
the number of computations and training time increases exponentially, this makes
the system less efficient when implementing it in a real product. Because of this
reason, after some considerable amount of time, this approach was not considered
anymore.

3000 3020 3040 3060 3080 3100 3120 3140 3160 3180

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

1880 1900 1920 1940 1960 1980 2000 2020

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2100 2150 2200 2250 2300 2350 2400

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure A.2: Results of prediction for 1 sample look-ahead (up), 2 samples look-
ahead(middle) and 5 samples look-ahead (down). The input signal is in blue and
the prediction in red.

II

B
Number Of Neurons Comparison

In and out compression/limitation relation for different combinations of penalties
and number of neurons in the hidden layer (blue is input, red output and black is
the threshold):

Figure B.1: Neural network with 4 neurons in the hidden layer and different
penalty combinations.

III

B. Number Of Neurons Comparison

Figure B.2: Neural network with 8 neurons in the hidden layer and different
penalty combinations.
IV

B. Number Of Neurons Comparison

Figure B.3: Neural network with 12 neurons in the hidden layer and different
penalty combinations.

V

B. Number Of Neurons Comparison

Figure B.4: Neural network with 16 neurons in the hidden layer and different
penalty combinations.
VI

C
Harmonic Distortion

Spurious-Free Dynamic Range simulations:

Time and frequency domain input and output signal for different systems without
applying attack and release time:

0 0.5 1 1.5 2

time (s)

-1

0

1

a
m

p
lit

u
d
e

input freq = 100 Hz

in

outHard

th

0 0.5 1 1.5 2

frequency (Hz) ×104

-100

-50

0

d
B

SFDR = 49.2646 dB

in

outHard

0 0.5 1 1.5 2

time (s)

-1

0

1

a
m

p
lit

u
d
e

input freq = 3000 Hz

in

outHard

th

0 0.5 1 1.5 2

frequency (Hz) ×104

-100

-50

0

d
B

SFDR = 52.0832 dB

in

outHard

0 0.5 1 1.5 2

time (s)

-1

0

1

a
m

p
lit

u
d
e

input freq = 15000 Hz

in

outHard

th

0 0.5 1 1.5 2

frequency (Hz) ×104

-100

-50

0

d
B

SFDR = 51.2035 dB

in

outHard

Figure C.1: Hard limiter response for a different frequencies burst signal and the
harmonic distortion generated for each tone. Attack and release time is not applied.

VII

C. Harmonic Distortion

0 0.5 1 1.5 2

time (s)

-1

0

1

a
m

p
lit

u
d

e

input freq = 100 Hz

in

outSoft

th

0 0.5 1 1.5 2

frequency (Hz) ×104

-100

-50

0

d
B

SFDR = 47.1188 dB

in

outSoft

0 0.5 1 1.5 2

time (s)

-1

0

1

a
m

p
lit

u
d

e

input freq = 3000 Hz

in

outSoft

th

0 0.5 1 1.5 2

frequency (Hz) ×104

-100

-50

0

d
B

SFDR = 49.8024 dB

in

outSoft

0 0.5 1 1.5 2

time (s)

-1

0

1

a
m

p
lit

u
d

e

input freq = 15000 Hz

in

outSoft

th

0 0.5 1 1.5 2

frequency (Hz) ×104

-100

-50

0

d
B

SFDR = 48.849 dB

in

outSoft

Figure C.2: Soft limiter response for a different frequencies burst signal and the
harmonic distortion generated for each tone. Attack and release time is not applied.

0 0.5 1 1.5 2

time (s)

-1

0

1

a
m

p
lit

u
d
e

input freq = 100 Hz

in

outLook

th

0 0.5 1 1.5 2

frequency (Hz) ×104

-100

-50

0

d
B

SFDR = 58.2214 dB

in

outLook

0 0.5 1 1.5 2

time (s)

-1

0

1

a
m

p
lit

u
d
e

input freq = 3000 Hz

in

outLook

th

0 0.5 1 1.5 2

frequency (Hz) ×104

-100

-50

0

d
B

SFDR = 106.4501 dB

in

outLook

0 0.5 1 1.5 2

time (s)

-1

0

1

a
m

p
lit

u
d
e

input freq = 15000 Hz

in

outLook

th

0 0.5 1 1.5 2

frequency (Hz) ×104

-100

-50

0

d
B

SFDR = 97.3275 dB

in

outLook

Figure C.3: Look-ahead limiter response for a different frequencies burst signal
and the harmonic distortion generated for each tone. Attack and release time is not
applied.

VIII

C. Harmonic Distortion

0 0.5 1 1.5 2

time (s)

-1

0

1

a
m

p
lit

u
d

e

input freq = 100 Hz

in

outANN

th

0 0.5 1 1.5 2

frequency (Hz) ×104

-100

-50

0

d
B

SFDR = 48.7999 dB

in

outANN

0 0.5 1 1.5 2

time (s)

-1

0

1

a
m

p
lit

u
d

e

input freq = 3000 Hz

in

outANN

th

0 0.5 1 1.5 2

frequency (Hz) ×104

-100

-50

0

d
B

SFDR = 57.9172 dB

in

outANN

0 0.5 1 1.5 2

time (s)

-1

0

1

a
m

p
lit

u
d

e

input freq = 15000 Hz

in

outANN

th

0 0.5 1 1.5 2

frequency (Hz) ×104

-100

-50

0

d
B

SFDR = 65.1723 dB

in

outANN

Figure C.4: ANN limiter response for a different frequencies burst signal and the
harmonic distortion generated for each tone. Attack and release time is not applied.

Applying attack and release time:

0 0.5 1 1.5 2

time (s)

-1

0

1

a
m

p
lit

u
d
e

input freq = 100 Hz

in

outHard

th

0 0.5 1 1.5 2

frequency (Hz) ×104

-100

-50

0

d
B

SFDR = 60.9718 dB

in

outHard

0 0.5 1 1.5 2

time (s)

-1

0

1

a
m

p
lit

u
d
e

input freq = 3000 Hz

in

outHard

th

0 0.5 1 1.5 2

frequency (Hz) ×104

-100

-50

0

d
B

SFDR = 108.3881 dB

in

outHard

0 0.5 1 1.5 2

time (s)

-1

0

1

a
m

p
lit

u
d
e

input freq = 15000 Hz

in

outHard

th

0 0.5 1 1.5 2

frequency (Hz) ×104

-100

-50

0

d
B

SFDR = 106.5349 dB

in

outHard

Figure C.5: Hard limiter response for a different frequencies burst signal and the
harmonic distortion generated for each tone. Attack and release time is applied.

IX

C. Harmonic Distortion

0 0.5 1 1.5 2

time (s)

-1

0

1

a
m

p
lit

u
d
e

input freq = 100 Hz

in

outSoft

th

0 0.5 1 1.5 2

frequency (Hz) ×104

-100

-50

0

d
B

SFDR = 65.458 dB

in

outSoft

0 0.5 1 1.5 2

time (s)

-1

0

1

a
m

p
lit

u
d
e

input freq = 3000 Hz

in

outSoft

th

0 0.5 1 1.5 2

frequency (Hz) ×104

-100

-50

0

d
B

SFDR = 107.1145 dB

in

outSoft

0 0.5 1 1.5 2

time (s)

-1

0

1

a
m

p
lit

u
d
e

input freq = 15000 Hz

in

outSoft

th

0 0.5 1 1.5 2

frequency (Hz) ×104

-100

-50

0

d
B

SFDR = 106.3882 dB

in

outSoft

Figure C.6: Soft limiter response for a different frequencies burst signal and the
harmonic distortion generated for each tone. Attack and release time is applied.

0 0.5 1 1.5 2

time (s)

-1

0

1

a
m

p
lit

u
d

e

input freq = 100 Hz

in

outLook

th

0 0.5 1 1.5 2

frequency (Hz) ×104

-100

-50

0

d
B

SFDR = 71.4236 dB

in

outLook

0 0.5 1 1.5 2

time (s)

-1

0

1

a
m

p
lit

u
d

e

input freq = 3000 Hz

in

outLook

th

0 0.5 1 1.5 2

frequency (Hz) ×104

-100

-50

0

d
B

SFDR = 106.4227 dB

in

outLook

0 0.5 1 1.5 2

time (s)

-1

0

1

a
m

p
lit

u
d

e

input freq = 15000 Hz

in

outLook

th

0 0.5 1 1.5 2

frequency (Hz) ×104

-100

-50

0

d
B

SFDR = 106.7807 dB

in

outLook

Figure C.7: Look-ahead limiter response for a different frequencies burst signal
and the harmonic distortion generated for each tone. Attack and release time is
applied.

X

C. Harmonic Distortion

0 0.5 1 1.5 2

time (s)

-1

0

1

a
m

p
lit

u
d

e

input freq = 100 Hz

in

outANN

th

0 0.5 1 1.5 2

frequency (Hz) ×104

-100

-50

0

d
B

SFDR = 68.4431 dB

in

outANN

0 0.5 1 1.5 2

time (s)

-1

0

1

a
m

p
lit

u
d

e

input freq = 3000 Hz

in

outANN

th

0 0.5 1 1.5 2

frequency (Hz) ×104

-100

-50

0

d
B

SFDR = 106.0103 dB

in

outANN

0 0.5 1 1.5 2

time (s)

-1

0

1

a
m

p
lit

u
d

e

input freq = 15000 Hz

in

outANN

th

0 0.5 1 1.5 2

frequency (Hz) ×104

-100

-50

0

d
B

SFDR = 95.2678 dB

in

outANN

Figure C.8: ANN limiter response for a different frequencies burst signal and the
harmonic distortion generated for each tone. Attack and release time is applied.

XI

C. Harmonic Distortion

XII

D
Dynamics and RMS Saving

Simulation carried in order to show how the release time change the dynamics of
the signal.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

time (s)

-1

-0.5

0

0.5

1

a
m

p
lit

u
d
e

RMSE = 0.055132

input

outHard

th

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

time (s)

-1

-0.5

0

0.5

1

a
m

p
lit

u
d
e

RMSE = 0.077987

input

outSoft

th

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

time (s)

-1

-0.5

0

0.5

1

a
m

p
lit

u
d
e

RMSE = 0.08134

input

outLook

th

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

time (s)

-1

-0.5

0

0.5

1

a
m

p
lit

u
d
e

RMSE = 0.061863

input

outANN

th

Figure D.1: Time domain input and output signal for different systems without
applying attack and release time. From the first (up) to the last (down): Hard
limiter, Soft limiter, Look-ahead limiter and ANN limiter

Time domain input and output signal for different systems applying attack and

XIII

D. Dynamics and RMS Saving

release time:

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

time (s)

-1

-0.5

0

0.5

1

a
m

p
lit

u
d
e

RMSE = 0.07793

input

outHard

th

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

time (s)

-1

-0.5

0

0.5

1

a
m

p
lit

u
d
e

RMSE = 0.10003

input

outSoft

th

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

time (s)

-1

-0.5

0

0.5

1

a
m

p
lit

u
d
e

RMSE = 0.08265

input

outLook

th

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

time (s)

-1

-0.5

0

0.5

1

a
m

p
lit

u
d
e

RMSE = 0.086557

input

outANN

th

Figure D.2: Time domain input and output signal for different systems applying
attack and release time. From the first (up) to the last (down): Hard limiter, Soft
limiter, Look-ahead limiter and ANN limiter

XIV

	List of Figures
	List of Tables
	Introduction
	Background
	Related Work
	Purpose
	Scope and Limitations

	Theory
	Limiters
	Crest Factor Reduction
	Artificial Neural Networks
	Implementation
	Purpose of ANNs

	Genetic Algorithms
	Implementation
	Purpose and Benefits of GAs

	Methods
	Gravity Model
	Activation Function
	Data sources
	Training
	Fitness Evaluation
	Delta Mode
	Tightness Method
	Fair Penalty Accumulation

	Results
	Challenges
	Clipping
	Distortion

	Methods and Parameters
	Number Of Neurons
	Initial Decisions
	Final Choice

	Penalty Accumulation
	Activation Function
	Tightness and Delta Modes
	Penalties
	Parameters Complexity

	Threshold Flexibility
	Extra Blocks
	Noise Gate
	Gain Smooth: Attack and Release Time

	Comparison
	Clipping
	Harmonic Distortion

	Conclusion
	Future Work
	Bibliography
	Prediction
	Number Of Neurons Comparison
	Harmonic Distortion
	Dynamics and RMS Saving

