
Learning Dynamical Systems
using Deep Generative Models

Master’s Thesis in Computer Science and Engineering

Adrian Lundberg

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2021

Master’s thesis 2021

Learning Dynamical Systems
using Deep Generative Models

Adrian Lundberg

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden 2021

Learning Dynamical Systems using Deep Generative Models
Adrian Lundberg

© Adrian Lundberg, 2021.

Supervisor: Lars Hammarstrand, Electrical Engineering
Advisor: Shuangshuang Chen, Volvo Cars
Examiner: Lars Hammarstrand, Electrical Engineering

Master’s Thesis 2021
Department of Electrical Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2021

iv

Learning Dynamical Systems using Deep Generative Models
Adrian Lundberg
Department of Electrical Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Humans have a great ability to understand the dynamics of objects and are able to
predict how the interactions of these objects will evolve over time. A probabilistic
model that is able to learn this, has a variety of appealing applications, from object
tracking to robotic planning. While learning such dynamics directly from high-
dimensional data, like video frames, has shown to be challenging, recent advances
in deep learning might provide the tools needed to learn the temporal dependencies
present in the data.

In this thesis, we study deep generative models such as variational autoencoders,
generative adversarial networks and normalizing flow models to see how well they
are able to learn the dynamics of linear and nonlinear dynamical systems. The mod-
els are compared quantitatively as well as qualitatively by visually comparing the
models’ abilities to reconstruct and predict data. Additionally, models are evaluated
from the perspective of representation learning, where the representation a model
has learned is given an interpretation and a metric score. Our results show that
learning dynamical systems using deep generative models is a challenging task, but
that combining elements of these different models can be helpful. The results also
show that a model’s learned representation can be useful for explaining the model’s
prediction ability.

v

Acknowledgments
First of all, I would like to thank Volvo Cars for providing me the opportunity to
conduct this thesis. I’m especially thankful for the support, enthusiasm and advice
given by my advisor Shuangshuang Chen. I would also like to express my gratitude
to Lars Hammarstrand, my supervisor at Chalmers, for guidance and assistance as
well as help with formalities during the thesis.

Adrian Lundberg, Gothenburg, February 2021

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Problem Formulation . 2

1.1.1 State Space Models . 2
1.1.2 Posterior Inference . 2

1.2 Objective . 3
1.3 Limitations . 3
1.4 Thesis Outline . 4
1.5 Contributions . 4

2 Background 5
2.1 Variational Autoencoders . 5

2.1.1 Encoder and Decoder . 5
2.1.2 Variational Inference . 5

2.2 Autoregressive Models . 6
2.3 Normalizing Flow Models . 7

2.3.1 Change of Variables Formula 7
2.3.2 Learning . 7

2.4 GAN . 8

3 Method 9
3.1 Data sets . 9

3.1.1 Pendulum . 9
3.1.1.1 Ground Truth Generation 10
3.1.1.2 Observation Generation 11

3.1.2 Spring-Mass System . 12
3.1.2.1 Ground Truth Generation 12
3.1.2.2 Observation Generation 13

3.2 Models . 15
3.2.1 VAE with Locally Linear Transitions (VAELLT) 15

3.2.1.1 Recognition Model 15
3.2.1.2 Transition Model . 15
3.2.1.3 Emission Model . 16
3.2.1.4 Training and Testing 16

ix

Contents

3.2.1.4.1 Prediction. 16
3.2.2 VAELLT and Planar Normalizing Flow (VAELLT-PNF) . . . 16

3.2.2.1 Invertible Linear-time Transformations 16
3.2.2.2 Recognition Model 17
3.2.2.3 Transition and Emission Model 17

3.2.3 VAE and Autoregressive Normalizing Flow (VAE-ARNF) . . . 18
3.2.3.1 Affine Autoregressive Flows 18
3.2.3.2 Recognition Model 19
3.2.3.3 Transition Model . 19
3.2.3.4 Emission Model . 19
3.2.3.5 Training and Testing 19

3.2.3.5.1 Prediction. 20
3.2.4 VAE-GAN . 20

3.2.4.1 Recognition Model 20
3.2.4.2 Transition Model . 20
3.2.4.3 Emission Model . 20
3.2.4.4 Training and Testing 21

3.2.4.4.1 Prediction. 21

4 Evaluation 23
4.1 Generative Ability . 23

4.1.1 Reconstruction . 23
4.1.2 Prediction . 24

4.2 Learned Representations . 24
4.2.1 Quantifying Disentangled Representations 24

4.2.1.1 Disentanglement . 25
4.2.1.2 Completeness . 25
4.2.1.3 Informativeness . 25

5 Experimental Results 27
5.1 Reconstruction Ability . 27
5.2 Prediction Ability . 28
5.3 Learned Representations . 29

5.3.1 Pendulum System . 29
5.3.2 Spring-Mass System . 31

6 Conclusion and Discussion 33

Bibliography 35

x

List of Figures

2.1 Illustration of a variational autoencoder 5
2.2 Graphical model for autoregressive models 6
2.3 Illustration of a normalizing flow model 7
2.4 Illustration of a generative adversarial network 8

3.1 Illustration of the pendulum system 9
3.2 Example of generated pendulum state sequences consisting of ground

truth values for angle and angle velocity at each time step. 10
3.3 Example of generated pendulum observation sequences consisting of

both rendered image sequences and lower dimensional states per-
turbed by noise. 11

3.4 Illustration of Spring-mass system . 12
3.5 Example of generated spring-mass state sequences consisting of ground

truth values for displacement and velocity at each time step. 13
3.6 Example of generated spring-mass observation sequences consisting

of both rendered image sequences and lower dimensional states per-
turbed by noise. 14

3.7 Graphical model for the autoregressive normalizing flow model 18
3.8 Graphical model for the recognition model. 19
3.9 Graphical model for the emission model. 19

5.1 Reconstruction ability. Each respective top row is a test sequence
of the data sets and the rows below it display a model’s ability to
reconstruct this sequence. 27

5.2 Prediction ability. The first three frames of the top row is the
context frames and the subsequent are the ground truth frames which
they try to predict based on only observing these context frames. . . 28

5.3 Learned representations for the four models trained on the pendulum
data set. 29

5.4 Learned representations for the four models trained on the spring-
mass data set. 31

xi

List of Figures

xii

List of Tables

5.1 Prediction MSE of pendulum and spring-mass data set for different
models . 28

5.2 Disentanglement, completeness and informativeness score using the
pendulum data set with the lasso regressor. 30

5.3 Disentanglement, completeness and informativeness score using the
spring-mass data set with the Lasso and Forest regressor, respectively. 32

xiii

List of Tables

xiv

1
Introduction

The world is filled with physical phenomena which evolve over time, ranging from
an apple simply falling to the ground, to intricate collisions of molecules in a gas.
How ever complex these phenomena might be, our understanding and beliefs of such
systems can be formalized by setting up a model. These models are referred to as
dynamical systems and by learning them, the rules governing their evolution over
time are identified. This gives us a complete description of the system, which let us
reason about its dynamics and predict how it will behave over time.

A common way to represent dynamical systems is by introducing a state transition
and emission model, respectively describing how the system’s internal state evolves
and how observations are generated from that state. Among the traditional ways
to specify a dynamical system’s transition and emission model, the Kalman filter
is a popular choice because of its simplicity and applicability. Furthermore, the
extended Kalman filter is able to deal with nonlinearities in both the transition and
emission model. However, specifying the transition and emission models a priori is
not always possible, and for these tasks, working with Kalman filters is laborious
and requires a significant amount of domain knowledge.

Deep generative models, including generative adversarial networks, variational au-
toencoders, normalizing flow models and autoregressive models, have in recent years
seen remarkable advances. Whether the problem domain is images, text or speech,
generative models have enabled a scalable way of modeling the data by combining
progress in deep neural networks and stochastic optimization methods. Generative
models, in contrast to discriminative models, can learn from unlabeled data which
makes it particularly interesting since there are large amounts of unlabeled data
compared to labeled one.

This thesis will investigate how deep generative models can be used to learn dy-
namical systems. Using generative models, we aim to learn directly from unlabeled
observations of these dynamical systems without unnecessary modeling assumptions.
While this thesis will work with simulated dynamical systems, the unsupervised
learning approach translates well into dealing with the real-world counterpart where
data labels are unavailable.

1

1. Introduction

1.1 Problem Formulation
Dynamical systems are mathematical representations of physical phenomena that
evolves over time, which are used in financial and weather forecasting, medical diag-
nosis, vehicle control and much more. Measurements of these systems are typically
corrupted by noise due to various imperfections in the measurement process, and
the form of this noise and at which level it’s present are sources of uncertainty in
the model. Another source of uncertainty is the structure of the model since there
can be many unobservable variables present. Such variables are often referred to
as hidden or latent variables and the introduction of them in probabilistic models
provides us with the powerful tool to reason about dynamical systems.

1.1.1 State Space Models
The state space model (SSM) is a model that makes use of these latent variables
to describe dynamical phenomena. The model is fully described by two stochastic
processes, an unobserved state process, modeling transition from the previous state
xt−1 to the current state xt, and an observed process, modeling how the current
measurement yt is generated by the current hidden state xt. These two processes
are known as the transition and emission model, respectively, and can be represented
using the following density functions

xt ∼ p(xt|xt−1,θ,ut, Vt)
yt ∼ p(yt|xt,θ,ut,Wt)

Where ut is possible control input and θ is a vector of unknown parameters that the
state space model depends on. The process and measurement noise of the system
are represented by Vt and Wt, respectively. The core idea is that the true state is
not observed, hence the latent state. We can only infer it from the observations and
thus a natural question arises: what is the state given the observations?

1.1.2 Posterior Inference
The answer to our question is the posterior distribution p(x0:T |y1:T) and can be
expressed using the Bayes’ rule

p(x0:T ,θ|y1:T) = p(y1:T |x0:T)p(x0:T |θ)p(θ)
p(y1:T) (1.1)

However, instead of calculating this distribution at all time steps, which is com-
putationally very inefficient, we can instead consider the following three marginal
distributions:

• Filtering distributions computed using the Bayesian filter are the marginal dis-
tributions of the current state xt given the current and previous measurements
y1:t.

pθ(xt|y1:t) t = 1, . . . , T. (1.2a)

2

1. Introduction

• Prediction distributions computed using the prediction step of the Bayesian
filter are the marginal distributions of the future state xt+n, n steps ahead of
time.

pθ(xt+n|y1:t) t = 1, . . . , T.
n = 1, 2, (1.2b)

• Smoothing distributions computed using the Bayesian smoother are the marginal
distributions of the state xt given a certain interval y1:T of measurements with
T > t.

pθ(xt|y1:T) t = 1, . . . , T. (1.2c)

These marginal distributions, though more efficient to compute than the full pos-
terior, still don’t have closed form solutions when the models contain nonlinear
terms or are perturbed by non-Gaussian noise. This is the case for many real world
processes, requiring us to instead learn approximate distributions of these posteriors.

The thesis will deal with the problem of identifying suitable approximations of such
posteriors and in doing so learns the transition and emission model of the dynami-
cal system’s state space model. This learning process takes a parametric approach
where we aim to find the best fitting parameters θ of our generative model pθ.

1.2 Objective
The overall objective of this thesis is to investigate how well deep generative models
are suited for learning dynamical systems and this can be subdivided into a few
concrete research questions:

• What constitutes a suitable evaluation metric in the context of learning dy-
namical systems?

• Which are the current state-of-the-art approaches to learning dynamical sys-
tems?

• How do these different approaches and their choices/assumptions affect the
learning of a system?

1.3 Limitations
Since this thesis aims to provide a thorough overview of different approaches as well
as consider dynamical systems in general rather than trying to find the best solution
for a specific problem, there is one natural limitation to make: use of simulation
data instead of real-world measurements. Not only would this give us the ability
to with ease investigate and evaluate a wide range of dynamical systems since the
ground truth is available, but also would time be saved from not having to deal with
cleaning and pre-processing of real-world data. This shifts the focus of the thesis
such that theoretical and academic aspects of the problem will be highlighted, rather
than immediate practical applications.

3

1. Introduction

1.4 Thesis Outline
Chapter 2 introduces the families of deep generative models being considered in this
thesis.
Chapter 3 describes the creation of the data sets as well as the chosen models to
be evaluated using these data sets. The choice of these models are motivated with
some background and related work.
Chapter 4 discusses evaluation of generative models in general, and in particular
how our chosen models will be evaluated.
Chapter 5 presents the results for the different models trained using the different
data sets.
Chapter 6 draws conclusions of the results and suggests some future work.

1.5 Contributions
Our main contribution is the comparison of several deep generative models in the
context learning of dynamical systems. These models are from different types of
families and are chosen to be broadly representable of the current state-of-the-art
in those respective families. By evaluating these models with data sets of different
properties, we are able to provide the reader with insight to better understand their
strengths and weaknesses and what to consider when planning to use deep generative
models in a similar setting.

4

2
Background

2.1 Variational Autoencoders

Observation Encoder Decoder Generated

Figure 2.1: Illustration of a variational autoencoder

2.1.1 Encoder and Decoder
One of the main components in the variational autoencoder (VAE) is the encoder
qφ(z|x), also referred to in the literature as the inference model or recognition model.
The inference model can be parameterized by a neural network and in that case
the variational parameters φ include the weights and biases of this network. As
visualized by fig. 2.1, the encoder transforms the high-dimensional input x to a lower-
dimensional output z, often denoted the latent space. The other main component of
the VAE is the decoder pθ(x|z) which instead tries to reconstruct the observations
x from the latent space z.

2.1.2 Variational Inference
As the encoder formulates a parameterized distribution qφ(z|x), its associated vari-
ational parameters φ, should be picked in such a way that the distance from this
approximate posterior to the true (but intractable) posterior pθ(z|x) is as small
as possible. This distance can be measured using the Kullback-Leibler divergence
(KL [qφ(z|x)||pθ(z|x)]), and minimizing the distance by inferring the optimal varia-
tional parameters is the heart of variational inference. The learning objective asso-
ciated with this training procedure is the so called evidence lower bound (ELBO),

5

2. Background

also sometimes referred to as the variational lower bound. It’s often derived us-
ing Jensen’s equality or by the definition of KL divergence, but deriving it in the
following alternative way highlights the tightness of the actual bound:

log pθ(x) = Eqφ(z|x) [log pθ(x)]

= Eqφ(z|x)

[
log pθ(x, z)

pθ(z|x)

]

= Eqφ(z|x)

[
log pθ(x, z)qφ(z|x)

qφ(z|x)pθ(z|x)

]

= Eqφ(z|x)

[
log pθ(x, z)

qφ(z|x)

]
︸ ︷︷ ︸

ELBO

+Eqφ(z|x)

[
log qφ(z|x)

pθ(z|x)

]
︸ ︷︷ ︸

KL[qφ(z|x)||pθ(z|x)]

(2.1)

Due to the non-negativity of KL divergence, the second term in the RHS of eq. (2.1),
KL [qφ(z|x)||pθ(z|x)], will be at least 0 and thus the ELBO is a lower bound of the
evidence log pθ(x).

2.2 Autoregressive Models
Using the chain rule of probability, autoregressive models factorize the joint distri-
bution as:

p(x) =
n∏
i=1

p(xi|x1, x2, ..., xi−1) (2.2)

Like VAEs, autoregressive models are explicit density estimators, but in addition
they allow for exact inference which simplifies evaluation of this generative model.
To sample from an autoregressive model we need to sample x1, then x2|x1, and so
on until we have sampled xn|x1, x2, ..., xn−1. Due to this sequential nature, sampling
can be a quite computationally inefficient process, limiting its usefulness in real-time
applications.

x1 x2 · · · xn

Figure 2.2: Graphical model for autoregressive models

6

2. Background

2.3 Normalizing Flow Models

Observation Flow Inverse
flow

Generated

Figure 2.3: Illustration of a normalizing flow model

In the framework of normalizing flow models, we start with a simple distribution
and then apply a sequence of functions, transforming this simple distribution into a
more complex one. The functions applied to the original distribution are invertible
and thus the density of the resulting complex distribution can be calculated by
transforming back to the simple distribution and keeping track of the determinants
of the Jacobians of each transformation, according the change of variables formula.

2.3.1 Change of Variables Formula

Let z be a random variable and pZ its known probability density function. Let f be
an invertible function and f(z) = x. Then using the change of variables formula,
the density of the random variable x can be calculated as:

pX(x) = pZ(z)
∣∣∣∣∣det dz

dx

∣∣∣∣∣
= pZ(f−1(x))

∣∣∣∣∣det df
−1

dx

∣∣∣∣∣ (2.3)

2.3.2 Learning

We can construct a complicated nonlinear invertible function f by composing multi-
ple invertible functions fi, using the fact that the composition of invertible functions
is itself invertible. By applying such a sequence of K composed functions to our
simple base distribution pZ, we aim to arrive at a complex distribution pX(x) that
better resembles the input data.

x = zK = fK ◦ fK−1 ◦ · · · ◦ f1(z0) (2.4)

7

2. Background

We then arrive at the log-likelihood as:

log pX(x) = log pZK
(zK) (2.5)

= log pZ0(z0)−
K∑
i=1

log
∣∣∣∣∣det dfi

dzi−1

∣∣∣∣∣ (2.6)

In order to allow efficient computation, the function fi needs to be both easily
invertible and have a Jacobian determinant that is easy to compute.

2.4 GAN

True
observation

Discriminator Generator
Generated

Fake
observation

Real
or fake?

Figure 2.4: Illustration of a generative adversarial network

Another popular family of generative models are the generative adversarial networks
(GANs). They differ from the models we have discussed so far, such as the VAEs,
autoregressive models and normalizing flow models, since they are not trained using
maximum likelihood.

A GAN consists of two main components, a discriminator D and a generator G.
The discriminator is optimized to distinguish between real and fake data. The fake
data comes from the generator and this component is in contrast optimized to make
these generative samples as seemingly real as possible. The generator aims to mini-
mize the chance of generated samples being labeled as fake by the discriminator, that
is to minimize Ez∼pz(z) [log(1−D(G(z)))]. Simultaneously, the discriminator aims
to predict real data with high probability, that is to maximize Ex∼preal data [logD(x)].
Together, G and D are playing a minmax game described as:

min
G

max
D
L(D,G) = Ex∼preal data [logD(x)] + Ez∼pz(z) [log(1−D(G(z)))] (2.7)

8

3
Method

3.1 Data sets
This section introduces the dynamical systems which the selected models in sec-
tion 3.2 will be learning. These systems are chosen in regard to their dynamical
properties; in particular we investigate nonlinear and linear dynamical systems.

3.1.1 Pendulum

Figure 3.1: Illustration of the pendulum system

As an example of a nonlinear dynamical system we consider a pendulum system.
The system consists of a bar of length l and mass m, (with no extra mass attached
to its tip). The pendulum is actuated by a control input u each time step through
applying a torque to the pendulum. The system is illustrated in fig. 3.1 and its
nonlinear model is given by

m

3 l
2θ̈ + m

2 gl sin(θ) + u = 0 (3.1)

9

3. Method

Rearranging yields

θ̈ = −(3g
2l sin(θ) + 3u

ml2
) (3.2)

3.1.1.1 Ground Truth Generation

Using the Forward Euler method and adding transition noise w, we arrive at the
following computational scheme:

θ̇n+1 = θ̇n − (3g
2l sin(θ) + 3u

ml2
)∆t+ w0 w0 ∼ N (0, Q1) (3.3)

θn+1 = θn + θ̇n+1∆t+ w1 w1 ∼ N (0, Q2) (3.4)

An illustration of this computational scheme is found in fig. 3.2.

0 2 4 6 8 10 12 14 16 18 20

Time step t

−2

0

2

A
n

gl
e
θ

0 2 4 6 8 10 12 14 16 18 20

Time step t

−5

0

5

A
n

gl
e

ve
lo

ci
ty
θ̇

State sequences

Figure 3.2: Example of generated pendulum state sequences consisting of ground
truth values for angle and angle velocity at each time step.

10

3. Method

3.1.1.2 Observation Generation

We extract the observations as

{cos(θ) + v, sin(θ) + v} v ∼ N (0, R) (3.5)

Figure 3.3: Example of generated pendulum observation sequences consisting of
both rendered image sequences and lower dimensional states perturbed by noise.

Training is done directly on the sequences of these observations ∈ R2 or on sequences
of observations ∈ R32×32, obtained by generating images based on the ground truth
states using rendering functionality of OpenAI-Gym[3]. The two types of observation
sequences are visualized in fig. 3.3.

11

3. Method

3.1.2 Spring-Mass System

Figure 3.4: Illustration of Spring-mass system

As an example of a linear dynamical system we consider a damped spring-mass
system. The system consists of a mass m attached to a linear spring with constant
k and a damper with constant c. The displacement of the mass varies in a linear
manner over time.

The system is illustrated in fig. 3.4 and its differential equation for the damped
spring-mass system is given by

mẍ+ cẋ+ kx− u = 0 (3.6)

Rearranging yields

ẍ = −cẋ− kx+ u

m
(3.7)

3.1.2.1 Ground Truth Generation

Using the Forward Euler method and adding transition noise w, we arrive at the
following computational scheme:

ẋn+1 = ẋn + −cẋ
n − kx+ u

m
∆t+ w0 w0 ∼ N (0, Q1) (3.8)

xn+1 = xn + ẋn+1∆t+ w1 w1 ∼ N (0, Q2) (3.9)

12

3. Method

The generated ground truth sequences are illustrated in fig. 3.5.

0 2 4 6 8 10 12 14 16 18 20

Time step t

−0.5

0.0

0.5

D
is

p
la

ce
m

en
t
x

0 2 4 6 8 10 12 14 16 18 20

Time step t

−1.0

−0.5

0.0

0.5

1.0

V
el

o
ci

ty
ẋ

State sequences

Figure 3.5: Example of generated spring-mass state sequences consisting of ground
truth values for displacement and velocity at each time step.

3.1.2.2 Observation Generation

We extract the observations either as

{x+ v} v ∼ N (0, R), (3.10)

or with the help of OpenAI-Gym as in the pendulum case. The observation se-
quences for the spring-mass system are illustrated in fig. 3.6.

13

3. Method

Figure 3.6: Example of generated spring-mass observation sequences consisting of
both rendered image sequences and lower dimensional states perturbed by noise.

14

3. Method

3.2 Models
In order to evaluate the dynamical systems described in section 3.1 we have chosen
some models broadly representative of the current state of the art in deep genera-
tive modeling. These models belong to different families of generative models and
include elements of variational autoencoders, generative adversarial networks, and
normalizing flow models with and without autoregressive properties.

Every model uses some sort of encoder-decoder structure, thus being able to trans-
form our high-dimensional observations into a lower dimensional latent representa-
tion, and then back again to observation space. The decoding of our latent space
back to the high-dimensional observation space is a process referred to as recon-
struction. Besides reconstruction, the models are also capable of generating future
frames, based on observing some initial frames, i.e. performing prediction.

3.2.1 VAE with Locally Linear Transitions (VAELLT)
Using state space models in the context of variational autoencoders is an approach
originally proposed by [30] and subsequently used by [14] and [9] with promising
results. The idea is to introduce matrices to describe the transition and emission
model using linear transformations.

In this model we further investigate Deep Variational Bayes Filters [14]. They
provide a standard variational autoencoder architecture but put special emphasis
on the transition dynamics in the latent space.

3.2.1.1 Recognition Model

A key element in this model is to let the transition model become the driving force
for shaping the latent space. This is achieved by preventing the recognition model
from directly drawing the latent state zt, and instead let it infer an intermediate
variable wt later used to describe the transition dynamics of the latent space.

q(wt|zt,xt+1,ut) = N (wt;µ, σ)

Their recognition model is realized as a neural network, taking zt, xt+1 and ut as
input and outputs the distribution parameters µ and σ of wt. Here ut is a possible
control input. However, in this thesis, we consider the case without any control
inputs, i.e. ut = 0.

3.2.1.2 Transition Model

We introduce matrices At,Bt, and Ct to express the transition in the latent space
as:

zt+1 = Atzt + Btut + Ctwt t = 1, . . . , T.

where wt is sampled from the recognition model, or from the prior in absence of
input data.

15

3. Method

The parameters of these matrices are estimated with the help of a third neural
network αt = fψ(zt,ut) and a set of tunable base matrices {A(i),B(i),C(i)}:

At =
M∑
i=1

α
(i)
t A(i), Bt =

M∑
i=1

α
(i)
t B(i), Ct =

M∑
i=1

α
(i)
t C(i).

where the weight vector αt is shared between the matrices.

3.2.1.3 Emission Model

The emission model constructs observations xt from latent state variables zt and is
implemented using a neural network.

p(xt|zt) = N (xt;µ(zt), σ)

3.2.1.4 Training and Testing

The training task consists of learning the parameters of the matrices in the transition
model, as well as the weights of the neural network in the emission model. This
training is done using variational inference and the ELBO is defined as:

Eqφ [log pθ(x1:T |z1:T)]−KL [log qφ(w1:T |x1:T ,u1:T)||p(w1:T)]

3.2.1.4.1 Prediction. When performing prediction, i.e. sampling without ob-
servation input, w1:T is sampled from the prior p(w1:T) instead of the recognition
model qφ, whereas the matrices of the transition model are readily available in this
mode. The prior employed is an isotropic Gaussian, i.e. p(w1:T) ∼ N (µ, σ2I).

3.2.2 VAELLT and Planar Normalizing Flow (VAELLT-PNF)
A key challenge with variational autoencoders is choosing an approximate posterior
distribution that is simple and tractable, yet sufficiently expressive to resemble the
true posterior distribution. The derivation of the ELBO in eq. (2.1) tells us that
the bound is tight when qφ(z|x) = pθ(z|x), that is, when our approximate poste-
rior distribution matches the true. That these two matches is unlikely to happen
in practice since most existing work employ simple approximate posteriors, such as
Gaussian or Category distributions.

A way to address the issue was proposed in Variational Inference with Normal-
izing Flows [26] which with the help of normalizing flows aims to achieve a more
flexible approximate posterior distribution. One of the normalizing flows proposed
in this paper was the planar flow, which in this model will be used in conjunction
with the VAELLT model described section 3.2.1.

3.2.2.1 Invertible Linear-time Transformations

The planar flows belong to a family of transformations of the form

f(z) = z + uh(w>z + b) (3.11)

16

3. Method

For these types of transformations, the logdet-Jacobian term can be calculated
quickly:

ψ(z) = h′(w>z + b)w∣∣∣∣∣det ∂f
∂z

∣∣∣∣∣ =
∣∣∣det(I + uψ(z)>)

∣∣∣ =
∣∣∣1 + u>ψ(z)

∣∣∣
From eq. (2.5) we conclude that the density qK(z) obtained by successively trans-
forming a random variable z0 with distribution q0 through K transformations fk
is:

log qK(zK) = log q0(z)−
K∑
k=1

∣∣∣1 + u>k ψ(zk−1)
∣∣∣

zK = fK ◦ · · · ◦ f2 ◦ f1(z0)

3.2.2.2 Recognition Model

If we now parameterize the approximate posterior distribution with a flow length
K, qφ(z|x) := qK(zk), the evidence lower bound of eq. (2.1) can be written as an
expectation over the initial distribution q0(z):

ELBO = Eqφ(z|x)

[
log pθ(x, z)

qφ(z|x)

]
= Eqφ(z|x) [log qφ(z|x)− log pθ(x, z)]
= Eq0(z0) [log qK(zK)− log pθ(x, zK)]
= Eq0(z0) [log qK(zK)− log pθ(x|zK)− log pθ(zK)]

= Eq0(z0)

[
log q0(z0)−

K∑
k=1

∣∣∣1 + u>k ψ(zk−1)
∣∣∣− log pθ(x|zK)− log pθ(zK)

]
(3.12)

We make use of the same principles as in the VAELLT model in section 3.2.1 with
the difference that at each time step we apply the normalizing flow to wt ∼ qφ, the
output of the recognition model, and modify the evidence lower bound to the one
derived in eq. (3.12).

3.2.2.3 Transition and Emission Model

We make use of the same transition and emission model as in VAE-LLT model
described in section 3.2.1.

17

3. Method

3.2.3 VAE and Autoregressive Normalizing Flow (VAE-ARNF)

· · · · · ·zt−1 zt zT

· · · · · ·εt−1 εt εT

· · · xt−1 xt · · · xT

Figure 3.7: Graphical model for the autoregressive normalizing flow model

This model uses the implementation from Improving sequential latent variable models
with autoregressive flows [19]. Their approach consists of a standard convolutional
encoder-decoder architecture, but normalizing flows are incorporated to improve
dynamics modeling. The flows considered are called affine autoregressive flows and
are applied across time steps within the sequences.

3.2.3.1 Affine Autoregressive Flows

While [19] makes use of these flows in a new context, the affine autoregressive
normalizing flows and their properties have been highlighted in the literature previ-
ously [15, 21]. As shown by [15], sampling from an autoregressive Gaussian model
is a transformation constituting a normalizing flow. Using the reparameteriza-
tion trick of [16, 27], we see that the sampling procedure of a Gaussian variable
xt ∼ pθ(xt|x1:t−1) is a transformation from a noise vector ε ∼ N (0, I) to a corre-
sponding vector xt:

xt = µt(x1:t−1) + σt(x1:t−1)� εt (3.13)

As long as σt > 0, this transformation is a bijection and can be inverted:

εt = xt − µt(x1:t−1)
σt(x1:t−1) (3.14)

Using the change of variables formula described in section 2.3.1, we express log-
likelihood of the model as:

log pθ(x1:T) = log pθ(ε1:T)− log | det ∂x1:T

∂ε1:T
| (3.15)

18

3. Method

The Jacobian of the autoregressive transformation is triangular and thus the deter-
minant is simply the product of the diagonal terms:

log | det ∂x1:T

∂ε1:T
| =

T∑
t=1

∑
i

log σt(x1:t−1) (3.16)

3.2.3.2 Recognition Model

The recognition model is a convolutional encoder based on the DC-GAN structure
[23]. The encoded data is then sent to a LSTM-layer [11] followed by fully connected
layers to output the mean and log-variance of the approximate posterior distribution.

xt

zt−1

conv conv conv conv conv LSTM qφ(zt|x≤tz<t)

Figure 3.8: Graphical model for the recognition model.

3.2.3.3 Transition Model

In this model, the temporal dependencies in the observation sequence are learned
using recurrent LSTM layers. These LSTM layers are found both in the approximate
posterior and in the prior, which are both learned during training.

3.2.3.4 Emission Model

The emission model is a convolutional decoder and has the inverse architectural
structure of the recognition model, as visualized by fig. 3.9. To generate frames, zt
is sampled from the approximate posterior distribution (or prior if predicting) and
passed as input to a sequence of 4 transposed convolutional layers, which outputs
the shift and scale parameters µθ(x<t) and σθ(x<t). These parameters can then be
used to synthesize frames using eq. (3.13).

zt t_conv t_conv t_conv t_conv pθ(xt|x<t, z≤t)

Figure 3.9: Graphical model for the emission model.

3.2.3.5 Training and Testing

The model is trained using variational inference where the evidence lower bound is
defined as:

L =
T∑
t=1

Eq(z1:T |x1:T)

[
log pθ(εt|ε<t, z<t)− log q(zt|x<t, z<t)

pθ(zt|x<t, z<t)
− log

∣∣∣∣∣det ∂xt
∂εt

∣∣∣∣∣
]

19

3. Method

where εt is calculated using the inverse transform in eq. (3.14) and log
∣∣∣det ∂xt

∂εt

∣∣∣ is
calculated according to eq. (3.16).

3.2.3.5.1 Prediction. In absence of input data, the latent prior is used instead
of the approximate posterior distribution. Since the prior consists of a LSTM net-
work, where the transition dynamics has been learned, consistency between training
and testing performance is ensured. At each time step, we feed the latent variable of
the previous time step, zt−1, to the prior to generate zt. The latent variable zt is in
turn given as input to the convolutional decoder network to generate the predicted
x̂t.

3.2.4 VAE-GAN
Stochastic Adversarial Video Prediction [18] introduces a method for combining vari-
ational autoencoders and generative adversarial networks for prediction of videos.
While their encoder is a standard convolutional network, the GAN-architecture
mixes ideas from various prior work. The generative network of their model is
greatly influenced by the convolutional dynamic neural advection (CDNA) intro-
duced in [8], and the discriminator is a feed-forward convolutional network based on
SNGAN [20].

3.2.4.1 Recognition Model

The recognition model qφ(zt|xt:t+1) consists of a feed-forward convolutional network
that at every time step encodes image pairs xt:t+1, to a latent variable zt. This deep
encoder is parameterized as a conditionally Gaussian distribution N

(
µzt , σ

2
zt

)
.

3.2.4.2 Transition Model

Temporal correlations of the latent variables are learned with the help of recurrent
LSTM layers. This LSTM network is architecturally a part of the generator network,
and thus the transition modeling remains consistent whether the latent variables are
sampled from the recognition model qφ(zt|xt:t+1) or the prior p(zt), which is a fixed
unit Gaussian N (0, 1).

3.2.4.3 Emission Model

The emission model consists of a convolutional decoder that takes as input the latent
space vector and a previous observation image of the sequence, and outputs the
convolutional kernels used to transform the input frame to the predicted consequent
one. This generator specifies a distribution p(xt|x0:t−1, z0:t−1), and parameterized
by a fixed-variance Laplacian distribution.

20

3. Method

3.2.4.4 Training and Testing

The learning objective is derived as a combination of losses based on the four main
components: the encoder E, the generator G, and the two discriminators D and
DVAE, which are respectively used depending on if the sequence to be discrimi-
nated was generated using the prior p(zt) or the approximate posterior distribution
qφ(zt|xt:t+1). These losses are then minimized according to a min-max game:

G∗, E∗ = arg min
G,E

max
D,DVAE

LVAE(G,E) + LGAN(G,D) + LVAE
GAN(G,E,DVAE)

where

LVAE = Ex0:T ,zt∼E(xt:t+1)|T =1
t=0

[
T∑

t=1
‖xt −G(x0, z0:t−1)‖1

]
+ Ex0:T

[
T∑

t=1
KL [E(xt−1:t)||p(zt−1)]

]
LGAN = Ex1:T [log D(x0:T−1)] + Ex1:T ,zt∼p(zt)|T −1

t=0
[log(1−D(G(x0, z0:T−1)))]

LVAE
GAN = Ex1:T

[
log DVAE(x0:T−1)

]
+ Ex1:T ,zt∼q(zt|xt:t+1)|T −1

t=0

[
log(1−DVAE(G(x0, z0:T−1)))

]

3.2.4.4.1 Prediction. During testing, a sequence of frames is predicted by re-
peated one-step-ahead predictions by feeding predicted frames back to the generator
together with latent variables sampled from the prior. For every such prediction,
the generator is free to choose if it should use the transformed version of the previ-
ous frame (using the predicted convolutional kernels), copy pixels from the previous
frame, or construct the image from scratch.

21

3. Method

22

4
Evaluation

The evaluation of generative models is a challenging task due to the different learn-
ing objectives involved. Even in the case of this thesis – where the training of every
model is based on variational inference and its associated ELBO learning objective
– direct comparison of the learning objective loss is still problematic due to the var-
ious additional elements the models include (such as Normalizing Flow and GAN
components). While standard quantitative metrics such as PSNR and SSIM [29]
do exist, it has been noted [22] that these metrics are not always in correspondence
with qualitative scores given by humans. More importantly, such metrics are mea-
surements of individual frame quality, and do not try to quantify the quality of
transition from frame to frame, i.e. how well the dynamics have been learned. One
way to reason about the learned dynamics is by looking at the model’s generative
ability and the learned representation, both of which we will use to evaluate our
models.

4.1 Generative Ability

The generative ability of our models are visually examined through their ability to
reconstruct and predict. The reconstruction step is a single time step operation and
thus requires no understanding of the temporal dependencies of the sequence, but
can be regarded as a prerequisite for prediction and is therefore included.

4.1.1 Reconstruction

Reconstruction is the process of reconstructing a given input image but exactly how
this done varies for different deep generative models. For instance, in the case of
variational autoencoders, the input image is mapped to the distribution parameters
of the latent space using the encoder network, and then reconstructed using the
decoder network. For the normalizing flow models, the input image is mapped to
parameters of the transformations used to transform the simple distribution to the
more complex one that aims to resemble the input data. For GANs, the input image
is never given directly to the generative part of the model, the generator, and thus
we don’t have access to any direct reconstructions. However, in our case, where all
models include an encoder-decoder structure, the reconstruction process is straight
forward and easily compared between the models.

23

4. Evaluation

4.1.2 Prediction
In order to perform prediction we need a number of frames that the models observe to
understand the context to base the predictions on. Borrowing the notation of [1], we
refer to those frames as context frames. In other words, predictions are conditioned
on a set of c context frames x0, . . . ,xc−1 with the goal to generate new frames xc:T
through sampling from p(xc:T |x0:c−1). For our models, an additional latent variable
zt is sampled from a prior and is used at this step, hence p(xc:T |x0:c−1, zt).

4.2 Learned Representations

It’s natural to wonder what the learned latent variables zt in our models represent.
Is it possible to give an interpretation of this latent space, something that we can
relate to the actual ground truth state? For instance, in the context of pendulum
dynamics, do the respective learned latent variables zi represent the angle θ and
angular velocity θ̇ of the dynamical system? If it does, such a representation could
be described as disentangled. While there is no exact definition of disentangled
representations we use the one provided by [2]: “a representation where a change
in one dimension corresponds to a change in one factor of variation, while being
relatively invariant to changes in other factors”. The variables of our ground truth
state are here referred to as factors of variation because they determine the varieties
in the observed data.

4.2.1 Quantifying Disentangled Representations
Using the notation common in the field of representation learning, we now denote
the learned latent space as the code, and its variables ci, whereas the generative
factors (the ground truth variables) are referred to as zi. We wish that our learned
latent space represents the generative factors and a natural, ideal such representa-
tion would be a one-to-one mapping between the codes ci and the generative factors
zi. If the learned code is of higher dimension than that of the generative factors, it is
expected that these extra code variables are irrelevant and not predictive about the
generative factors. Thus, with the help of regressors we can quantify how well the
learned representation is predictive of the factors that gave rise to the observations
used for learning that representation.

Such a quantification of learned representations is put into a framework in A frame-
work for the quantitative evaluation of disentangled representations [7] through the
following steps:

1. Train model M on a synthetic data set with generative factors z
2. Retrieve code c for each sample x in the data set (c = M(x))
3. Train regressor f to predict z given c (ẑ = f(c))
4. Quantify f ’s deviation from the ideal mapping and the prediction error.

24

4. Evaluation

The framework explicitly defines and quantify three criteria of disentangled repre-
sentations that are implicit in prior works [5, 2, 17, 4, 10], namely disentanglement,
completeness and informativeness.

4.2.1.1 Disentanglement

Disentanglement measures the degree to which a representation factorizes or disen-
tangles the underlying factors of variation, with each code variable ci capturing at
most one generative factor zi.

Di = (1−HK(Pi)), Disentanglement score

HK(Pi) = −
K−1∑
k=0

Pik logK Pik, Entropy of Pi

Pij = Rij/
K−1∑
k=0

Rik, Probability of ci being important for predicting zj

If a code variable ci is important for predicting a single generative factor, the score
will be 1. If a code variable ci is equally important for predicting all generative
factors, the score will be 0.

4.2.1.2 Completeness

In contrast, completeness measures the degree to which each underlying factor zi is
captured by a single code variable ci.

Cj = (1−HD(P̃ .j)) Completeness score (4.1)

HD(P̃ .j) = −
D−1∑
d=0

P̃dj logD(P̃dj) Entropy of P̃ .j (4.2)

If just a single code variable ci contributes to the prediction of zj, the score will be
1. If all code variables equally contribute to the prediction of zj, the score will be 0.

4.2.1.3 Informativeness

Informativeness measures the amount of information that a representation captures
about the underlying factors of variation. The informativeness of a code variable ci
about a generative factor zj is given by the prediction error E of the regression.

E(zj, ẑj), Informativeness score
ẑj = fj(c), Predicted generative factor by regressor fj

25

4. Evaluation

26

5
Experimental Results

In this chapter, the models described in section 3.2 are evaluated using the data
sets described in section 3.1. Reconstruction and prediction ability as well as the
learned representations are evaluated both quantitatively and qualitatively using
the metrics described in chapter 4.

5.1 Reconstruction Ability
Reconstruction is the process of reconstructing an input image given the latent
space encoded from that image. This ability is compared in fig. 5.1 and we can see
that the models are able to reconstruct the images well for both the pendulum and
spring-mass data set.

Figure 5.1: Reconstruction ability. Each respective top row is a test sequence
of the data sets and the rows below it display a model’s ability to reconstruct this
sequence.

27

5. Experimental Results

5.2 Prediction Ability

Figure 5.2: Prediction ability. The first three frames of the top row is the
context frames and the subsequent are the ground truth frames which they try to
predict based on only observing these context frames.

Figure 5.2 visualizes the prediction ability using 3 context frames (described in
section 4.1.2). We can observe that only VAE-GAN is able to predict a reasonable
position of the pendulum based on the initial observed context frames. In the spring-
mass case however, VAE-ARNF seems to be able to make reasonable predictions as
well, which is also supported by its lower prediction MSE in table 5.1 compared to
other models.

Table 5.1: Prediction MSE of pendulum and spring-mass data set for different
models

Pendulum Spring-mass
VAELLT 111.852 39.4738
VAELLT-PNF 44.8339 45.1883
VAE-ARNF 299.382 26.1941
VAE-GAN 6.69549 1.44907

28

5. Experimental Results

5.3 Learned Representations
Extending the state. As done in similar prior work [30, 14], the models for the
pendulum data set were trained using a latent space of three variables. In order to
highlight and provide interpretations to the learned representation c ∈ R3, we extend
the ground truth state dimensionality from R2 to R3 by calculating the cosine and
sine of the angle θ. In other words, our ground truth state used in this comparison
is {z0 = sin(θ), z1 = cos(θ), z2 = θ̇}. Using this extended state, we calculate the
learned representation metrics described in section 4.2. The models for the spring-
mass data set were trained using a latent space ∈ R2, and the comparison in that
case is done using the expected {z0 = x, z1 = ẋ}.

5.3.1 Pendulum System

c0
c 1

c 2

VAELLT

c0
c 1

c 2

VAELLT-PNF

c0
c 1

c 2

VAE-ARNF

c0
c 1

c 2
VAE-GAN

Figure 5.3: Learned representations for the four models trained on the pendulum
data set.

Figure 5.3 displays the learned latent space for the four models trained using the
pendulum data set. We can observe that the latent space in the VAE-GAN model
has been completely ignored and remains unstructured. This has previously been

29

5. Experimental Results

Table 5.2: Disentanglement, completeness and informativeness score using the
pendulum data set with the lasso regressor.

c0 c1 c2 Disentanglement score
VAELLT 0.237 0.110 0.144 0.141

VAELLT-PNF 0.096 0.566 0.124 0.256
VAE-ARNF 0.073 0.125 0.091 0.084
VAE-GAN 1.000 1.000 NaN NaN

z0 z1 z2 Completeness score
VAELLT 0.028 0.118 0.046 0.064

VAELLT-PNF 0.376 0.179 0.114 0.223
VAE-ARNF 0.071 0.096 0.039 0.069
VAE-GAN NaN NaN 0.868 NaN

z0 z1 z2 Informativeness score
VAELLT 0.426 0.410 0.999 0.611

VAELLT-PNF 0.534 0.606 0.995 0.712
VAE-ARNF 0.243 0.209 0.993 0.482
VAE-GAN 1.000 1.000 1.000 1.000

reported in the literature as consequence of a strong decoder [28, 25], which the
VAE-GAN model arguably has. If the decoder is sufficiently powerful, it will be
able to reconstruct the data without relying on the latent space, and thus the latent
space z remains ignored. When this happens, the KL divergence term of the ELBO
learning objective simply enforces the posterior approximation distribution qφ(z|x)
to become the prior p(z), which is what we can observe has occurred for the VAE-
GAN model in the figure.

Figure 5.3 also illustrates how the other models have learned some sort of inter-
pretable representations. In this case we can see that the learned representation
relates c0 and c1 in a circular manner, and a rough interpretation could be that they
represent the sine and cosine of the ground truth angle θ.

Table 5.2 details the representation learning scores and we can from this table quan-
titatively conclude that the VAE-GAN model has failed to learn a disentangled rep-
resentation since both disentanglement and completeness score is NaN. Furthermore,
its informativeness score tells us that trying to predict the ground truth variables
from the learned code resulted in a 100% prediction error. It’s difficult to draw any
general conclusions about the models’ disentanglement and completeness scores, but
the informativeness scores paint a clearer picture: the learned representations are
much worse at predicting the ground truth angular velocity z2 compared to the sine
and cosine angle z0 and z1.

30

5. Experimental Results

5.3.2 Spring-Mass System

c0

c 1

VAELLT

c0

c 1

VAELLT-PNF

c0

c 1

VAE-ARNF

c0

c 1
VAE-GAN

Figure 5.4: Learned representations for the four models trained on the spring-mass
data set.

In fig. 5.4 we can note that once again the latent space of the VAE-GAN model
is ignored, which is also reflected in the representation learning scores of table 5.3.
We can see that VAELLT learns a representation where one latent code reaches its
absolute maximum as the other latent code reaches its absolute minimum, in simi-
lar fashion to how a spring-mass system’s ground truth velocity reaches its absolute
maximum as the displacement reaches its equilibrium position. While it’s natural
assume that the ground truth has been “correctly” learned based on this observation,
the prediction ability in fig. 5.2 clearly shows that VAELLT lacks an understand-
ing of the velocity through the irregular changes of displacement between time steps.

The missing notion of velocity is also apparent in table 5.1 where the prediction
error of z2 for the VAELLT model remains high. In contrast, the learned latent
space of VAE-ARNF is harder to interpret, but is able to provide a (comparably)
low prediction error in both latent space (informativeness score of table 5.3) and in
observation space (table 5.1).

31

5. Experimental Results

Table 5.3: Disentanglement, completeness and informativeness score using the
spring-mass data set with the Lasso and Forest regressor, respectively.

Lasso c0 c1 Dis.
VAELLT 0.017 0.000 0.020

VAELLT-PNF 0.001 0.000 0.001
VAE-ARNF 0.297 0.000 0.310
VAE-GAN NaN NaN NaN

Forest c0 c1 Dis.
VAELLT 0.024 0.002 0.007

VAELLT-PNF 0.020 0.002 0.007
VAE-ARNF 0.040 0.001 0.005
VAE-GAN 0.000 0.000 0.000

Lasso z0 z1 Com.
VAELLT 0.291 0.386 0.338

VAELLT-PNF 0.145 0.178 0.161
VAE-ARNF 0.436 0.036 0.236
VAE-GAN NaN NaN NaN

Forest z0 z1 Com.
VAELLT 0.171 0.318 0.245

VAELLT-PNF 0.116 0.245 0.181
VAE-ARNF 0.399 0.562 0.480
VAE-GAN 0.000 0.000 0.000

Lasso z0 z1 Inf.
VAELLT 0.516 0.569 0.542

VAELLT-PNF 0.578 0.547 0.563
VAE-ARNF 0.344 0.449 0.397
VAE-GAN 1.000 1.000 1.000

Forest z0 z1 Inf.
VAELLT 0.022 0.320 0.171

VAELLT-PNF 0.144 0.303 0.224
VAE-ARNF 0.024 0.160 0.092
VAE-GAN 0.801 0.767 0.784

32

6
Conclusion and Discussion

Given the poor results in the prediction task for many of the models we can con-
clude that learning dynamical systems directly in this unsupervised fashion remains
a challenging task. For the models VAELLT, VAELLT-PNF and VAE-ARNF, inves-
tigation of the learned latent spaces gave some insight to the models’ understanding
of the dynamical systems. For instance, VAE-ARNF’s better comprehension of the
ground truth velocity in the spring-mass system, allowed for better prediction com-
pared to other models. However, the VAE-GAN was able to produce very good
predictions and this accomplishment cannot be ascribed the model’s learned latent
state, since it remained completely ignored. Exactly what lies behind VAE-GAN’s
excellent performance is hard to say, but for models where the latent space is used
and shaped during training, it’s reasonable to conclude that learning a notion of
velocity (and time derivatives in general) is crucial to make accurate predictions.

The difficulty for generative models to learn notions of time derivatives has been
hinted by prior work; both [18] and [30] use two images per time step as input to
their variational autoencoders. By stacking two images together in this way, the
latent space will now encode any information of the transition between the two ad-
jacent frames, e.g. the velocity of the pendulum is directly observed rather than
having to be figured out, which our results have shown to be quite difficult.

There are however several things regarding the usage of normalizing flows which
could be interesting to investigate in future work. For instance, the autoregressive
normalizing flows of VAE-ARNF belong to the family of affine flows, but in the
recent years there has been work in non-affine flows [12, 13, 6], which might add
additional flexibility needed to learn the pendulum system better. While it’s disap-
pointing that the added planar flow of VAELLT-PNF didn’t improve the learning of
the dynamical systems, it’s quite expected since the transition model remained the
same. An interesting idea for future work would be to draw inspiration from [24]
and instead employ these normalizing flows in latent space such that correlation of
latent variables is encouraged more explicitly.

33

6. Conclusion and Discussion

34

Bibliography

[1] Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan, Roy H. Campbell,
and Sergey Levine. Stochastic variational video prediction, 2018.

[2] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review
and new perspectives. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(8):1798–1828, Aug 2013.

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym, 2016. cite
arxiv:1606.01540.

[4] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter
Abbeel. Infogan: Interpretable representation learning by information maximiz-
ing generative adversarial nets. In Advances in neural information processing
systems, pages 2172–2180, 2016.

[5] Guillaume Desjardins, A Courville, and Yoshua Bengio. Disentangling factors
of variation via generative entangling. arxiv. Machine Learning, 2012.

[6] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural
spline flows. In Advances in Neural Information Processing Systems, pages
7509–7520, 2019.

[7] Cian Eastwood and Christopher KI Williams. A framework for the quantita-
tive evaluation of disentangled representations. In International Conference on
Learning Representations, 2018.

[8] Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for
physical interaction through video prediction. In Advances in neural informa-
tion processing systems, pages 64–72, 2016.

[9] Marco Fraccaro, Simon Kamronn, Ulrich Paquet, and Ole Winther. A disen-
tangled recognition and nonlinear dynamics model for unsupervised learning,
2017.

[10] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot,
Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae:
Learning basic visual concepts with a constrained variational framework. Iclr,
2(5):6, 2017.

[11] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

35

Bibliography

[12] Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville.
Neural autoregressive flows. arXiv preprint arXiv:1804.00779, 2018.

[13] Priyank Jaini, Kira A Selby, and Yaoliang Yu. Sum-of-squares polynomial flow.
arXiv preprint arXiv:1905.02325, 2019.

[14] Maximilian Karl, Maximilian Soelch, Justin Bayer, and Patrick van der Smagt.
Deep variational bayes filters: Unsupervised learning of state space models from
raw data, 2016.

[15] Diederik P. Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever,
and Max Welling. Improving variational inference with inverse autoregressive
flow, 2016.

[16] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[17] Tejas D Kulkarni, William F Whitney, Pushmeet Kohli, and Josh Tenenbaum.
Deep convolutional inverse graphics network. In Advances in neural information
processing systems, pages 2539–2547, 2015.

[18] Alex X. Lee, Richard Zhang, Frederik Ebert, Pieter Abbeel, Chelsea Finn, and
Sergey Levine. Stochastic adversarial video prediction, 2018.

[19] Joseph Marino, Lei Chen, Jiawei He, and Stephan Mandt. Improving sequential
latent variable models with autoregressive flows. In Cheng Zhang, Francisco
Ruiz, Thang Bui, Adji Bousso Dieng, and Dawen Liang, editors, Proceedings of
The 2nd Symposium on Advances in Approximate Bayesian Inference, volume
118 of Proceedings of Machine Learning Research, pages 1–16. PMLR, 08 Dec
2020.

[20] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida.
Spectral normalization for generative adversarial networks. arXiv preprint
arXiv:1802.05957, 2018.

[21] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive
flow for density estimation, 2017.

[22] Nikolay Ponomarenko, Lina Jin, Oleg Ieremeiev, Vladimir Lukin, Karen
Egiazarian, Jaakko Astola, Benoit Vozel, Kacem Chehdi, Marco Carli, Federica
Battisti, et al. Image database tid2013: Peculiarities, results and perspectives.
Signal Processing: Image Communication, 30:57–77, 2015.

[23] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representa-
tion learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434, 2015.

[24] Hooshmand Shokri Razaghi and Liam Paninski. Filtering normalizing flows. In
Bayesian Deep Learning Workshop at NeurIPS, 2019.

[25] Sahand Rezaei-Shoshtari, David Meger, and Inna Sharf. Learning the la-
tent space of robot dynamics for cutting interaction inference. arXiv preprint
arXiv:2007.11167, 2020.

36

Bibliography

[26] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing
flows. In Francis Bach and David Blei, editors, Proceedings of the 32nd Interna-
tional Conference on Machine Learning, volume 37 of Proceedings of Machine
Learning Research, pages 1530–1538, Lille, France, 07–09 Jul 2015. PMLR.

[27] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic
backpropagation and approximate inference in deep generative models, 2014.

[28] Adam Roberts, Jesse Engel, Colin Raffel, Curtis Hawthorne, and Douglas Eck.
A hierarchical latent vector model for learning long-term structure in music,
2019.

[29] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image
quality assessment: from error visibility to structural similarity. IEEE transac-
tions on image processing, 13(4):600–612, 2004.

[30] Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller.
Embed to control: A locally linear latent dynamics model for control from raw
images. In Advances in neural information processing systems, pages 2746–2754,
2015.

37

	List of Figures
	List of Tables
	Introduction
	Problem Formulation
	State Space Models
	Posterior Inference

	Objective
	Limitations
	Thesis Outline
	Contributions

	Background
	Variational Autoencoders
	Encoder and Decoder
	Variational Inference

	Autoregressive Models
	Normalizing Flow Models
	Change of Variables Formula
	Learning

	GAN

	Method
	Data sets
	Pendulum
	Ground Truth Generation
	Observation Generation

	Spring-Mass System
	Ground Truth Generation
	Observation Generation

	Models
	VAE with Locally Linear Transitions (VAELLT)
	Recognition Model
	Transition Model
	Emission Model
	Training and Testing
	Prediction.

	VAELLT and Planar Normalizing Flow (VAELLT-PNF)
	Invertible Linear-time Transformations
	Recognition Model
	Transition and Emission Model

	VAE and Autoregressive Normalizing Flow (VAE-ARNF)
	Affine Autoregressive Flows
	Recognition Model
	Transition Model
	Emission Model
	Training and Testing
	Prediction.

	VAE-GAN
	Recognition Model
	Transition Model
	Emission Model
	Training and Testing
	Prediction.

	Evaluation
	Generative Ability
	Reconstruction
	Prediction

	Learned Representations
	Quantifying Disentangled Representations
	Disentanglement
	Completeness
	Informativeness

	Experimental Results
	Reconstruction Ability
	Prediction Ability
	Learned Representations
	Pendulum System
	Spring-Mass System

	Conclusion and Discussion
	Bibliography

