
Improving landfill monitoring programs
with the aid of geoelectrical - imaging techniques
and geographical information systems
Master’s Thesis in the Master Degree Programme, Civil Engineering

KEVIN HINE

Department of Civil and Environmental Engineering
Division of GeoEngineering
Engineering Geology Research Group
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2005
Master’s Thesis 2005:22

Planning, Programming and Control of
Dual-Arm Robot Contact Operations
MASTER’S THESIS IN THE MASTER DEGREE
PROGRAMME, SYSTEMS, CONTROL AND MECHATRONICS

Daniel Andersson

Product and production development
Division of Production Systems
Chalmers University of Technology
Gothenburg, Sweden 2011
Master Thesis 2011

Abstract

Recent industrial development of dual-arm robots has considerably leveraged interest of
researchers and robot manufacturer. The big difference for this concept compared with
normal single arm robots, is that these robots can save space and are able to do multi-
tasking. The way human plan and control bimanual operation was investigated and it
was learned that there was much that could be learned from human motion planning.
A dual-arm robot from pi4 robotics which is the same size as a human has been used.
One bimanual motion operation, where two arms are holding a beam has been analyzed
in this thesis. In order to not damage the robot, a simulation model of the robot was
made in Simulink. It is desired that no internal forces or moments is applied to the beam
and that such forces would be compensated when the beam is gripped. To ensure a safe
system, the simulation functions has been programmed in C++ so that it is possible
to try these in the simulation environment before they are used by the programming
environment of the robot.

In this thesis several difference dual-arm control methods for controlling two arms
simultaneously have been investigated. The benefit and disadvantages between the dif-
ference methods has been pointed out and finally an impedance controller with position
mode was selected to control the motion of the arms. The main advantage with this
method is that it can control the behavior of the beam and does not need to switch be-
tween different kind of controllers. The impedance control algorithm was implemented
and motions were the grippers compressed a beam was simulated. During the simula-
tions special attention has been put on reducing the internal forces of the external object
while solving the desired motion task.

An equation to calculate the internal forces of the beam was derived and the esti-
mated force was given to an impedance controller. The results show a promising response
of the controller where internal force is approaching zero without having any undershot.
It takes about half second for the internal forces to be compensated. The algorithm
works well when the robot is moving in the free space as well as during the contact phase.

Keywords: dual-arm, Robot programming, Robot assembly, Bimanual operation,
Impedance Control, Simulink

Acknowledgements

This Master’s thesis has been elaborated at Fraunhofer Institute IPK in Berlin, Ger-
many. Many people have supported me to accomplish this thesis and writing this report.
I would first like to thank my supervisor Ph. D Dragoljub T. Surdilovic at Production
Systems of Fraunhofer-Gesellschaft and my supervisor Rolf Berlin at Product and Pro-
duction development department of Chalmers university of technology. I would also
like to thank Prof. Dr.-Ing. Jörg Krüger at Fraunhofer-Gesellschaftfor supporting the
project. Moreover I would futhermore like to thank Prof. Johan Stahre at Chalmers
Product and Production development, Ph. D Johan Carlson at Fraunhofer-Chalmers
and Matthias Krinke at Pi4 for showing interested in the project and offering their help
in case of any questions. Many thanks also to Johanna Eckardt, Alexander Börjesson
and Adam Svensson for reviewing my report and to my colleagues at Fraunhofer Pham
Xuan Ba, Axel Vick, Nikolay Bogdanov as well as the previous colleagues at Fraunhofer
IPK which have been working on the project.

Daniel Andersson, Gothenburg 1/6/2011

List of Abbreviations

CP Continuous Path

DOF Degree of Freedom

FRIDA Friendly Robot for Industrial Dual-arm Assembly

IMCO Impedance Controller Module

IPK Institute for Production Systems and Design Technology

IPO Interpolation Module

MABA - MABA Men Are Better At - Machines Are Better At

MEX MATLAB Executable

MinGW Minimalist GNU for Windows

MPC Model Predictive Control

PID Proportional Integral Derivative

PTP Point to Point

RCC Remote Center of Compliance

SDA10D Slim, Dual-Arm Robot with capacity of 10kg payload per arm

TCP Tool Center Point

Contents

1 Introduction 1
1.1 Background and Purpose . 3
1.2 Project questions . 4
1.3 Objective . 4
1.4 Limitations . 5
1.5 Organisation and timeline . 5

2 Modeling 7
2.1 Bimanual movements . 8

2.1.1 Human planning . 8
2.1.2 Dual-arm planning . 10

2.2 Contact operations . 11
2.2.1 Passive compliance . 11
2.2.2 Active compliance . 11
2.2.3 Position/Force control . 12
2.2.4 Impedance Control . 12

2.3 Internal forces . 15
2.3.1 Mathematical derivation . 15

2.4 Robot Model . 17

3 Implementation 21
3.1 Robot environment . 23
3.2 Simulation . 25

3.2.1 Overview . 25
3.2.2 Visualisation . 29

4 Results 31

5 Discussion 36

6 Conclusion and Recommendations 38

i

CONTENTS

Bibliography 40

A Source code of internalforce in MATLAB I

B Source code of internalforce in C++ III

C Mathematical derivation of the internal forces formula VII

ii

1
Introduction

D
ual-arm robot is a robot with two arms which which are meant to be capable
to perform flexible operations in assembly lines of Small and Medium Enter-
prises, commonly performed by humans. The overall goal of the concept is to
keep human workers in the loop and to support them with powerful tools. It

should be emphasised that humans are the most flexible element of an assembly line,
offering many advantages over robotics. Rather than replacing a human, a robot could
be integrated and support humans with qualified tools or to work in hazardous environ-
ments. This combines the human creativity, intelligence and skills with the advantages
of technical system with better physical power, speed and accuracy. A picture of a dual-
arm robot from pi4 robotics which this thesis has focused on is given below in Figure 1.

Figure 1: Picture of pi4 robotics industrial robot pi4 workerbot [1].

1

CHAPTER 1. INTRODUCTION

The main advantages and benefits of the dual-arm robot concept over single arm
systems are: multitasking and space saving [2]. The disadvantages are higher cost as
well as that the technology is not yet well developed. The concept is therefore being
researched and today there are many companies which believes in the idea of having dual-
arm robots in the industry. Other than pi4 robotics, Motorman has released a dual-arm
robot called SDA10D assembly robot [3], KUKA/DLR has built a humanoid robot for
international space station called Justin [4] and ABB has also recently presented their
concept robot FRIDA [5]. In common they all have that they have developed robots
which will operate in human-occupied environments. Also other companies contributes
to the development of new robotic systems by doing tools to the robots, for example by
making better and innovative grippers, sensors and more intelligent surveillance systems.

Robotic components are becoming cheaper, computer power is increasing and there
will become a big need of service oriented task in a couple of years [6]. There are sev-
eral areas robotics can be improved in order to work well close to humans and to be
capable to perform all the manual tasks. For the different research areas, the desired
goals can be compared with the knowledge of a child[6]. Researchers want to achieve
object recognition good as a 2-years-old-child, for example to be able to recognise if peo-
ple are young/old or male/female. The language understanding should be as good as a
4-year-old child, which mean it should be able to understand different accents or during
influence of much noise. The manual dexterity, or the sleight of the grippers should be as
good as a 6-years-old child, for example to perform simple assembly instructions. Finally
the social understanding of a robot should be equivalent with a 9 years old child. This
mean that the robot is able to understand what other people around themselves see and
understand [6].

The field of motion planning and assembly operations will be highlighted in this
thesis. There are, however, several practical difficulties in understanding, controlling,
planning and programming the motion for dual-arm robots. A practical approach to
dual-arm motion planning is based on mimicking human operations since most of the
desired tasks are defined for humans. The bimanual operations performed by humans
are mostly based on relatively simple motions in both arms, commonly symmetric and
can work dependently or independently of each other. It was recently recognised that the
main reason for simplifying arms motion is due to the very complex planning of the two
arms in real time. Humans generate simple trajectories which are easy to synchronize
and monitor during the execution [7].

The main control problems in dual-arm robots are related to the physical contact
and interaction between arms (constrained motion) and environment in bimanual con-
tact operations. Impedance control provides a common control approach to cope with
uncertainties in robotic arms and environment, as well as to maintain interaction forces
within some desired level. Controlling and programming of dual-arm assembly tasks, re-
quire however more complex approaches. The assembly tasks involve various composite

2

1.1. BACKGROUND AND PURPOSE CHAPTER 1. INTRODUCTION

motion and transition phases, e.g. from free-space motion, via unilateral force contact
towards completely constrained closed-chain motion of coupled parts. Several researches
address the multi-arm motion planning problems focusing common object path plan-
ning, motion coordination, collision avoidance etc. Only a few investigations focused on
bi-manual compliance control and assembly process planning.

1.1 Background and Purpose

During the last decades a lot of automatisation has been done in industry, especially in
the developed countries [8]. In several areas industrial robots have been implemented
in the assembly lines in order to increase the efficiency and quality, as well as to reduce
the production cost. The question of what to automate has no simple answer. The
”Men Are Better At - Machines Are Better At” (MABA-MABA) lists have tried to find
a simple answer, however such work relies on a presumption of fixed human and ma-
chine strength [9]. Instead, the more promising tactic today is how to get human and
automation get along together. Several projects have been developed to improve the
cooperation between people and machines. As in sport, good team players make their
activities observable for their fellow team players. This could also be applied to a work-
ing team. It is important to have a good communication and understanding between
the different workers in the team whether the workers are machines or humans [10]. The
cooperation between human with automation and machines has to be thought of from
the design phase, and exist in the manufacturing, installation, operation, as well as in
the maintenance phases [8].

There is a wish among most automated industries to optimise production even further
in order to increase efficiency and to be better than their competitors. The complexity
of the robotic tasks is therefore getting more and more advanced, which has introduced
the customers need of cooperation between several arms in order to solve the objectives
[11]. In general, today this is solved by having several robots next to the line which
are being controlled by an external control unit. Several arms are capable of carrying
heavier load and can perform more complicated task than the capacity of single arm
robots [11]. The idea of switching from a single arm robot to a robot with several arms
is a natural approach considering how the biological evolution has been developed. The
main advantages and benefits of dual-arm robots over single arm systems are multitask-
ing and space saving [2]. That the environment around the arms are good defined will
also make a robot platform easier to install, move around and to calibrate. These are all
valuable benefits which could economically motivate development of dual-arm robots.
Given a standard environment of the arm, it is possible as well to design a more user
friendly development platform which will make it much easier for an operator to program
a bimuanual operation. For example, the user interface could be designed to move the
object instead of directly controlling the arms.

The main purpose of this thesis work is to contribute a better understanding of

3

1.2. PROJECT QUESTIONS CHAPTER 1. INTRODUCTION

bimanual robot contact instructions including analysis of transition phases and specific
motions. The aim is to generate a platform of bimanual task primitives and to decompose
complex tasks into dual-arm primitives and skills. The work of previous research will be
investigated for the implementation of a dual-arm simulation model. In the beginning
of the thesis only simulations of single arm operations had been tested. The thesis
will afterward be the base of further development at Fraunhofer-IPK of more advanced
dual-arm algorithms that can be designed for a dual-arm robot.

1.2 Project questions

How should an algorithm be constructed in order implement a robust and safe dual-arm
motion planning that would be practical in the industry? To answer that question, the
following sub questions have been created:

• Why would the industry be interested of a dual-arm robot?

– Are there many robotic companies that have developed dual-arm robots?

– Whats the big advantageous of dual-arm robot compared with single arm
robots?

• What can be learned from Human bimanual control of the arms?

– How does the brain coordinate both of the arms?

– What kind of motion is the brain good at and less good at?

– Does the brain plan the motion far in advance in order to avoid singularities?

• What have already been done at Fraunhofer IPK?

– How does the current simulation environment work?

– Which motions operation are of interest for further development?

• How could a dual-arm control algorithm in the best way be implemented?

– What considerations have to be made before running practical experiments?

– How can the contact phase be modeled?

– Do we need a model of the external environment?

1.3 Objective

For each skill the control algorithm should be developed based on robust interaction
control and design framework. The specific thesis goals relate:

• Analysing of the human bimanual motion operation.

4

1.4. LIMITATIONS CHAPTER 1. INTRODUCTION

• Integration of a simulation environment for basic manual contact tasks.

• Extension of a compliance control for bimanual interaction control - considering
all transition phases.

• Design and programming of algorithms for basic bimanual assembly skills and
tasks.

• Experimental evaluation of the bimanual assembly operation control.

1.4 Limitations

The analyses of human bimanual motion planning will be limited to the area that could
be beneficial when a developing dual-arm planning algorithm. The thesis will be focused
on the development of the existing platform and control systems which are currently used
for the existing platform at Fraunhofer-Gesellschaft in Berlin. One movement operation,
when two arms are holding a beam, will be looked into detail (Bi-Hold in Figure 2,
section 2.1.1). Modules from previous research will be used to design a sufficient dual-
arm system for analysing the motion operation. This so that previous results, such
as stability and safety margins could be applied to the dual-arm system. The tasks,
which will be studied of the dual-arm robot will be basic operations where maximum
one external force is present. Cost and investment aspects of dual-arm robots will not
be treated in the report.

1.5 Organisation and timeline

The thesis has been done during a time of 20 working weeks during the spring 2011. The
first objective of the thesis was to research and understand the current system architec-
ture of the existing platform. Different control techniques as well as the robot hardware
limitations have been studied. Afterwards the knowledge was used to develop a control
algorithm for the bimanual contact task. The intention is to implement and test an
algorithm on a dual-arm robotic system after this thesis by Fraunhofer-IPK.

The report is organized as the following:

• Section 2.1 gives an overview of the Bi-manual control.

• Section 2.2 deals with the contact task and explains the different control tech-
niques which can be used to approach this operation.

• Section 2.3 explain the theory of internal forces and show how these could be
calculated.

• Section 2.4 presents the geometric model of the robot which the experiments will
be performed on.

5

1.5. ORGANISATION AND TIMELINE CHAPTER 1. INTRODUCTION

• Section 3.1 describes the real-time implementations for the pi4 Workerbot.

• Section 3.2 shows how the simulation environment is structured and how it is
connected with the programming of the actual robot.

• Chapter 4 presents the results of the simulations.

• Chapter 5 discusses the implementation and results of the internal force calcula-
tion, additional development and dual-arm robotics in general.

• Chapter 6 ends with conclusions and gives some recommendations for further
work.

6

2
Modeling

The motion operation when two arms are holding a beam will be modeled and investi-
gated. In order to get a good understanding of dual-arm control and planning as well as
to find out which control method that will suit this motion operation, several different
areas has been investigated. The first section 2.1 describes the bimanual control from a
system approach and describes the different bimanual movement operations needed for
assembly.

Section 2.2 describes the theory of control methods during contact interaction and
the different control algorithms which could be used. Practically problems as well as
desired performances has been taken into consideration when comparing the algorithms.
The selection of control algorithm is very much dependent of the task and might not be
the same for any objective.

In order to get a good performance, stability and robustness during the contact tran-
sition, it is important to find a way to estimate the force generated outside the robot.
The case where the robot is holding a beam with two hand has be analysed and a way
to calculate the internal force of this beam is derived in section 2.3.

As last section in this chapter, section 2.4 shows the model of the analysed robot and
defines the coordinated frames as well as how to transform between the frames. This
part is handy for implementing the functions in chapter 3.

7

2.1. BIMANUAL MOVEMENTS CHAPTER 2. MODELING

2.1 Bimanual movements

Bimanual movements means a coordinated movement of two arms in order to solve a
desired objective. To approach the controlling of the dual-arm robot the fundamental
assembly tasks of the human arms is analysed and then defined as different operations
shown in Figure 2 [12]. These has been named Bi-Approach (Retract), Bi-Grasp (Re-
lease), Bi-Insert (Extract), Bi-Hinge, Bi-Slide, Bi-Hold, Bi-Yield and Bi-Move. The
movement operation Bi-Hold will be investigated in this report.

Figure 2: Bimanual movements operations [12].

2.1.1 Human planning

A practical approach to dual-arm planning is based on mimicking human operations.
The way the human brain is working to control and plan trajectories of the body’s two
arms is a very interesting research which has during the last decade made significant
progress [7]. The research of the knowledge of what the human actually is capable of
increases and it gives an understanding the possible objectives for dual-arm robot. An
insight how the brain is working is also being a central interest to neurophysiologists.
Functional image techniques (fmRI, PET, MEG) has permitted scientist with many dis-
coveries to understand how the brain is working [7].

It is generally accepted that the movement of each of the arm is controlled in the
motor cortex of the brain. The right half of the motor cortex area controls the left side
of the body, and vice versa [7]. The fact that each arm is actually being controlled
individually contradicts the idea of having a dual-arm control algorithm. However, it
turns out that the two sides are very strongly coupled and some theories insist that the
supplement motor area has a special role in the path planning including two arms [13].
Image techniques have registered that some neurons are active only during bimanual

8

2.1. BIMANUAL MOVEMENTS CHAPTER 2. MODELING

movements and not during unimanual movements of either arm, which verifies the cou-
pling idea [7]. Split-brain patients, who are humans missing the ability to communicate
between the left and right sides of the brain, have difficulties in coordinating the arms
[13]. Interesting is, that they are better than a healthy person to perform very different
kind of movements at the same time. When a healthy human tries to draw a circle with
one hand and a line with the other, both hands usually end up with making two ovals.
It turns out that human only is good to perform symmetric or mirrored movements with
both hands simultaneously. Limiting the motions of the two arms into a subset of only
symmetric and mirror-symmetric motions are not necessary for programming a robot.
A figure from the test with spit brain patients is given in Figure 3.

Figure 3: Test made on Split brain patients compared with healthy persons [13].
Permission to be reused by Copyright Clearance Center.

Another interesting topic relates to the motion and how the brain is avoiding sin-
gularities. It is still not very clear whether the brain plan the whole or only a part
of a motion in order to avoid singularities but it seem like the brain generate simple
trajectories which are easy to synchronize and monitor [7]. Another theory is that the
brain has a database and has learned from mistakes in early ages. The singularities
are path solutions where at least one of the actuators has a reached a solution which
is faster than the maximum speed for the actuator. The reason a simple controller
could not take care of this, is that such constraints are in fact non linear and solving
the path in respect to these increase the computational power significant. There are
however non linear methods which could take care of such problems in real time, for
example optimal control or MPC (Model Predictive Control) [14]. If the arm will move
in the same path as initially when one actuator is close to a singularity, then all the

9

2.1. BIMANUAL MOVEMENTS CHAPTER 2. MODELING

velocities of all actuators have to be reduced. The area is currently a big challenge in
the controlling of the dual-arm robots since it is often desired to find the fastest solution.

2.1.2 Dual-arm planning

Several approaches of different control policies have been made to design Bimanual con-
trollers [2]. These control policies decides how the two arms is being controlled in order
to be able to execute bimanual motions. The most basic and the first one to be described
is called the “Master/Slave” approach. This means that one arm controlled and that this
arm then is coordinating the other arm. There are also indications that human arms
have a similar behavior since most people have a dominate arm which usually execute the
motions a couple of milliseconds (15-39 ms) before the non-dominate arm [13]. However,
the “Master/Slave” approach has no interaction with the environment and is therefore
not so attractive for many tasks, such as assembly. It is important that the controller
is able to handle uncertainties. The uncertainties could also be different between the
different arms. Another approach is called the “Coordinated Motion” approach. In this
approach the arms are controlled independently. This design approach also has a prob-
lem to handle the uncertainties and also to control the behavior of external objects [15].
For example to move an object from one point to another without applying to much
force to the object.

A more promising type of approach is the “Object Motion” policy [15]. In this con-
trol policy the behavior of the manipulated object is specified, for example the desired
motion. There has been a lot of different control algorithms developed and implemented
in this field. To mention a few; object position control, object force/position control and
object Impedance control. The control implementations determine the performance of
the algorithm.

The motion of a dual-arm is complex and using an object motion strategic control
policy would instead specify the external object behavior than the movement of each arm.
The behavior of the external object is highly interesting when analysing the motions dur-
ing contact. A control method which does not manage to compensate for uncertainties
during the contact could damage the robot as well as external object significantly. The
implementation of the control policy can be done in different ways which also affects the
results [15]. In the next section the different ways of implementing the “Object Motion”
policy is beeing described.

10

2.2. CONTACT OPERATIONS CHAPTER 2. MODELING

2.2 Contact operations

Several different methods to solve the control of a dual-arm robot during a contact
operation have been evaluated. For a good performance of an implemented control
algorithm for contact operations the following criteria have to be fulfilled[2];

• Accurate trajectories

• Compensate inertial forces

• Resolve natural redundancy

• Less computational resources

Achieving very good performances for all of these points is difficult and therefore usu-
ally a trade-off between the criterion has to be made. It should directly be noted that
during other robot motion operations, the performances are dependent on other factors.
For example for movement operations in free space, very accurate trajectories are usu-
ally not needed. Most important is that the control algorithm does not jeopardize safety
and stability. The different control techniques that has been evaluated can be divided
in two big branches, the ones using passive compliance algorithms and the ones using
active compliance algorithms. These two fields are explained in the next two subsections.

2.2.1 Passive compliance

The passive compliance control algorithm are algorithms which indirectly solve the prob-
lem when there exists an error between the robot and the environment [2]. Some systems
solve this in a fixed, non adaptive way. This can for example be done by having some
flexibility in the structure or via an external device. A revolutionary mechanical device
invented in the 80’s, is the RCC, which is a device that corrects the rotation and forces
to desired values between the arms and the environment. However, since the RCC is
a mechanical device which includes translation and rotation parts it is facing problems
with accurate results due to the gravity and angular velocities. The usage of RCC is
therefore restricted to some operation ranges.

The other group of passive compliance control algorithms are the ones that have an
adaptive performance [2]. These systems can for example have adjustment of the servo
gains or additional devices which can adjust the compliance. The adjustment is however
not done automatically and need a lot of tuning.

2.2.2 Active compliance

The active compliance control algorithms are algorithms where the force or position is
being feed back to the controller [16]. This can be done in several different ways. Most of
the active compliance control algorithms can be ordered into two different groups. One is

11

2.2. CONTACT OPERATIONS CHAPTER 2. MODELING

called the “Position/Force control” or sometimes “Hybrid Control” and the other group is
called“Impedance Control”. The active compliance algorithms need more computational
resources than passive control but the calculations are not that heavy so that it would
be a problem to practically use them in real time applications [2].

2.2.3 Position/Force control

The Position/Force control assumes that the controlling of the force and the controlling
of the position are non conflicting [16]. The control of the correct force is handled
according to the environment and the control of the position is done according to the
manipulator [16]. In the case when these controls are conflicting the designer has to
decide which of these controls that has the highest importance. For some objectives this
could be a very good solution. For example if the objective requires a force of a certain
magnitude in order to successfully execute the task. However, the main problem with
Position/Force control is that the position controller requires a rather stiff manipulator
in order to have an accurate position while the force controller requires a rather elastic
manipulator in order to have an accurate force. This is not a problem as long as the
position and force requirements are in different directions, but often this is not the case.
For example to hold a sensitive object such as an egg with two arms requires both a
position & force requirement in the same direction, hence such a task would not be
suitable for the Position/Force control.

2.2.4 Impedance Control

Instead of controlling the position, velocity or force, an idea is to enforce the relation
[15]. This is the concept of impedance control where the system is being told to act like a
damped-spring-mass system. The reason of selecting this simple is that the system then
behaves in way which is easy for the operator to understand. The tuning parameters have
units that have physical meanings. If the manipulator hits a surface, then the contact
force could be predicted by the operator if he knows the parameters. The negative part
is that this control require the dynamic of the arms as well as external objects. There
are several different kind of impedance control. The general form is given in equation
2.1, but there also exist models with only the stiffness or damping parts of the model [15].

F = M4ẍ+ β4ẋ+K4x (2.1)

The variable K corresponds to the stiffness of the system. A high stiffness is desired
for the case when the accuracy is very important and a small value of K corresponds to
that small interaction forces should be compensated. The model of the system can be in
several DOF. Usually sex DOF is chosen to correspond to motions and rotations in the
x, y, z, roll , pitch and yaw. The β value is a parameter for the damping of the system.
A large damping coefficient mean that the system should dissipate much energy. The
M coefficient describes the mass of the systems and therefore a good tuning variable
to describe the transient behavior during contact. Contact essential operations such as

12

2.2. CONTACT OPERATIONS CHAPTER 2. MODELING

grinding and polishing should not be controlled by an impedance controller since these
operations need a force of a certain magnitude [2].

There are several ways to evalate the system. In general term this is done by looking
at the error, given by difference between the model and the real system. Either the
motion could be stabilized in respect of the force or the force could be stabilized in
respect to the motion. The error is normally defined as ep when position is used and
ef when the force is used. The verification model for the force is given by equation 2.2
where F in this case is the force measurement [2].

ef = Më+ βė+Ke− F (2.2)

A problem with the force based verification model is that many systems in industry
is designed as position devices. This mean that the robot are missing an accurate
joint-torque control which is needed for the verification. In the case of position based
verification there is another problem which is that it is not able to handle soft impedances.
A combination between the models could therefore be desired. The system of the position
mode with force as outer loop is given in Figure 4.

Figure 4: Impedance Controller with outer force loop.

where

• Gf is the target admittance.

• Ge is the environment.

• Gr is the position controller.

• Gs is the plant, in this case the robot.

From the Figure 4 the error ep can be obtained according to equation 2.3 [2].

ep = Xr −X = X0 −Xf −X = X0 −X −Gf−1F (2.3)

13

2.2. CONTACT OPERATIONS CHAPTER 2. MODELING

Here Xf is the target position deviation, X0 the position of the arm and X the
actual position. The target admittance Gf is obtained as a solution of the target model
difference equation 2.1 [2]. As can be seen the inverse kinematic of the system need to be
calculated. This operation have several solutions and the best need much computational
power. However it is not essential that the best path is used. In the case of force mode,
a similar equation where the inverse of the force need to be calculated. Using position
controllers in the joints are much more accurate than force sensors and therefore the
position mode is the most practical approach for industry. It should however be noted
that biology does not have position sensors use a solution more similar to the force mode.
For humans the position is also feedback with the eyes to control the motion. In order
to verify the systems in the simulation environment, an external objects will need to be
simulated. This is described in the next section.

14

2.3. INTERNAL FORCES CHAPTER 2. MODELING

2.3 Internal forces

This section will describe how to make a function calculating the internal forces as well
as moments in a simulation of a beam that is being hold and compressed/expanded by
two robotic arms. The purpose of this function is to correct the arms in such a way that
too big forces are avoided to the object. However the arms are never allowed to lose
contact with the object. As explained in section 2.2 this can be solved in many different
ways, with external devices or by control algorithms. An impedance control algorithm
is decided to be used for problem to control the internal forces. Essential information is
therefore to measure or find out a way to calculate the internal forces which are being
created by the robots two arms. It has been assumed that there are no ways to measure
the internal forces directly, like having an extra sensor. Instead the force and momentum
will be measured by two force sensors located at the wrist of the left and right hand of
the robot.

2.3.1 Mathematical derivation

The calculation of the internal forces will later be used to feedback to the controller so
that the dual-arm robot will hold the beam with applying minimal internal forces and
momentum. The vector of the force, F and moment, M , is defined as W according to
(2.4).

[
F

M

]
= W (2.4)

Both F and M are here 3x1 matrices which mean that W has the dimensions 6x1.
It is interesting to know the forces of an arbitrary point C. Forces and moments are
mapped from the point of sensor S to the compliance point C according to (2.5).

WT =C J−TS ·WS (2.5)

Here the matrix J (Jacobian) from the sensor frame to compliance frame with the
dimensions 6x6 can be written as (2.6) [2].

CJS =

[
CRS −CRS · SC
03x3

CRS

]
(2.6)

where CRS is a rotation matrix with the dimensions 3x3 from S to C and

SC =

 0 zS − zC yC − yS

zC − zC 0 xC − xS

yS − yC xC − xS 0

 (2.7)

15

2.3. INTERNAL FORCES CHAPTER 2. MODELING

By splitting up the equation (2.5) to the left and right sides sensors it is rewritten to
equation (2.8). L stands for the point where the left robot arm holds the beam and R
stands for the right side.

WT =C J−TSL ·WSL +C J−TSR ·WSR (2.8)

WT =
[

CJ−TSL
CJ−TSR

]
·

[
WSL

WSR

]
(2.9)

By naming these two matrices to the right, C ĴW
SLR and the two to the left ŴSLR,

equation 2.9 can also be written as

WT =C ĴW
SLR · ŴSLR (2.10)

where C ĴW
SLR is a 6x12 matrix and ŴSLR is a 12x1 matrix. After analysing the

properties of these matrices, the internal forces can be assumed and calculated by the
following formula [2].

WSLRi = null(C ĴW
SLR) · null(C ĴW

SLR)T ∗ ŴSLR (2.11)

where null is the nullspace of the matrix. The calculation of equation (2.11) is given
in Appendix C. The internal forces can be transform to the left respective right side by
projecting the forces to the point L respective R.

WCL =C J−TSL ·WSLi (2.12)

WCR =C J−TSR ·WSRi (2.13)

where WSLi is the first 6 rows of WSLRi. In the same way WSRi is the last 6 rows of
WSLRi.

With the information of the internal forces it is now possible to compute the path
correction of the left respective right arm in order to minimize the internal forces. This
function is in the next chapter implemented to the simulation system and also be pre-
pared for experiments. The implementation of this function can be found in chapter
3.2.1.

16

2.4. ROBOT MODEL CHAPTER 2. MODELING

2.4 Robot Model

To make it easy to program an industrial robot the use of different coordinate frames
is very important. It makes it much easier to get an overview of the instructions and
it also allow the environment to be more flexible. Conversion between the coordinate
frames is also very important and it turn out to be a simple process. An example of
different coordinate frames are given in Figure 5, however not all of them are used in this
thesis. Here some frames are defined in relative to another frame, hence the coordinates
according to the world frame will therefore be dependent of the exact arm configuration
of the robot. Transformations between coordinate frames is an essential part of robot
controlling of industrial robots. The most difficult part is the inverse kinematic since
this can have infinitive many solutions.

Figure 5: Example of different coordinate frames.

In respect of the motion operation of two arms, the design of the arms is of interest.
This in order to be able to do the frame transformations. The left and right arm are
identical except that one is mirrored of the other. Each arm has seven DOF in order to
be flexible. A model of one of the arm is given in Figure 6 and the units in the figure is
in mm.

17

2.4. ROBOT MODEL CHAPTER 2. MODELING

Figure 6: Robot arm configuration.

For the calculation of coordinate frames, the arm has to be split up in different parts
where each part is only allowed to rotate around one axes or move along one axes. A
such split up of both arms is shown in Figure 7.

Figure 7: Robot Transformation matrixes.

18

2.4. ROBOT MODEL CHAPTER 2. MODELING

When calculating the internal forces generated in the beam, the coordinate frames
around the gripper is important. The force sensor measuring the forces might not have
the same rotation as the beam itself. The different frames are defined in Figure 8 and
the conversations between these frames are used in the simulation of the robot.

Figure 8: Gripper frames.

A transformation from the position i to the position j can be described with a
function iTj which is given by equation 2.14 [2].

iTj =

[
iRj

ipj

01x3 1

]
(2.14)

where iRj is a rotation matrix and ipj is the distance between i and j defined as
[4x,4y,4z]

T . The matrices which are only rotating around one of the axes are defined
according to equations 2.15,2.16 and 2.17 [2]. This function has the property that iTj=
iTw · wTj for any position w.

RotX(θx) =

1 0 0 0

0 cos(θx) −sin(θx) 0

0 sin(θx) cos(θx) 0

0 0 0 1

 (2.15)

RotY (θy) =

cos(θy) 0 sin(θy) 0

0 1 0 0

−sin(θy) 0 cos(θy) 0

0 0 0 1

 (2.16)

RotZ(θz) =

cos(θz) −sin(θz) 0 0

sin(θz) cos(θz) 0 0

0 0 1 0

0 0 0 1

 (2.17)

19

2.4. ROBOT MODEL CHAPTER 2. MODELING

The equations and methology described above in this section is enough for transform-
ing the different coordinate frames. The tranfortmation from the Base of the arm (B)
to the force sensor frame (S), as seen in Figure 6 is given in equation 2.18. TransZ(4z)
is a movement with the length 4z along the z-axes.

STB =
RotX(θ1) ·RotY (θ2) · TransZ(0.365) ·RotZ(θ3) ·RotY (θ4) ·RotY (−90◦)

·TransZ(0.365) ·RotZ(θ5) ·RotX(θ6) ·RotX(90◦) · TransZ(0.15)
(2.18)

20

3
Implementation

The methods used for implementing the theory from chapter 2 has been divided into
two sections. First one is about the the programming and implementation for the
pi4 workerbot robot and the other one is about the implementation for a simulation
model in Simulink. In order to not damage the robot it is essential to test the new
controlling algorithms in a simulation environment before the operations are executed
on the robot. The simulations provide a technical tool to communicate, visualise and
test ideas for the engineers. This will reduce the development cost but also save time as
well as help to comply with safety conditions and regulation. It is also an environmental
friendly sustainable solution since the computer need much less energy than the robot.
Further more it allows several developer to work on the robot at the same time and also
during maintenance periods of the robot. Previous work have successfully implemented
single arm motion according to safety norm 10218, “requirements and guidelines for the
inherent safe design of industrial robots”. The extension will be based on this system
and also comply with the safety norm.

In order to be able to compare the result, the implemented controller for the robot
and the simulation will be the same. The desired control algorithm for controlling the
dual-arm robot was decided to be an impedance controller with position mode (Section
2.2.4). The flexibility of the impedance controller was shown to have a big advanta-
geous over the other control methods in the contact case. This because the control of
the interaction force is not essential for successfully completing the task. The position
based impedance control with an outer force feedback loop was chosen since this model
was physical possible to implement on the robot and will be a practical solution for the
industry.

Since the system for the robot and the simulation are supposed to be similar, some
of the code will be reused for both the simulation and the execution of the robot. From

21

CHAPTER 3. IMPLEMENTATION

safety point of view this is also good since it would allow the designer to detect errors
and bugs before they are executed on the robot. This can be done by programming the
modules in C++. The C++ code could then be integrated to Simulink via a MEX-file
loaded by the S-Function in Simulink. MEX is a MATLAB command that compiles
and links source files into a shared library, executable from within Matlab and Simulink.
The resulting file has a platform-dependent extension (.mexw32 for 32 bits Windows,
.mexw64 for 64 bits Windows and .dll in older Matlab versions). For this Eclipse Helios
together with MinGW have been used.

22

3.1. ROBOT ENVIRONMENT CHAPTER 3. IMPLEMENTATION

3.1 Robot environment

In order to have a fast and robust execution of the robot, a Linux computer is mounted
onto the robot that controls the actuators. The programming environment used by the
computer is made in C++ and therefore the developed Matlab modules are not possible
to directly implement for executing the motion operations on the robot. The different
hierarchy level of the programming has been organised according to the figure 9.

Task primitive

program

Component

network layer

Program executor

layer

Hardware

abtraction layer

Hardware layer

Task primitive program

· Compose motion

operation into task

primitives

Program executor

· Run the given

instructions

synchronously

Hardware abtraction

· Communication to all

the componenets

· Port interfaceHardware

· Physical execution of

the task at the

hardware

Component network

Abstract components

· Provide generic

interface to task

primitives

· Use a model the

componenet

· Allow to validate the

consistency of the

robot program

Real components

· Implement the

generic interface

· Programming

language

· connection protocol

Figure 9: Programming hierarchy level layout.

The top layer, Task primitive, is made for being used by the customers, while the
other layers do not need to be visible for them. It is possible for the customer to make
many layers above the Task primitive. The module for calculating the internal forces has
been programmed to be in the Component Network layer. The designed internal forces
function is therefore also written in C++. This function has been developed by the
program Eclipse Helios IDE for C/C++ Developers version 3.6.2 platform [17] together
with MinGW-w64 [18] and Boost libraries [19].

One of the future possible features for dual-arm robots is an intelligent dual-arm
motion programming interface. This would allow an operator to program complex oper-
ations via a simple interface. Instead of the operator telling exact how the robots should
solve the task, it could be up to the robot to solve the task. For example if the task is
to lift a pencil, then only one arm is needed. However if the task is to lift a laptop, then

23

3.1. ROBOT ENVIRONMENT CHAPTER 3. IMPLEMENTATION

most certainly, lifting it with both hands is desired. Operations like this opens up for a
new programming language for multi arm industrial robotic. For this visual reality could
be a very helpful tool since it focus for the operator to describe the desired operation in
respect of the object.

It would be a good idea to implement the dual-arm motion algorithms at the Pro-
gram executor layer which were defined in Figure 9. For this layer, an idea could be to
define a semaphore which corresponds to whether a dual-arm operation is taking place
or not. Implementing the system in this way could prevent the programmer of the task
primitive program of making errors. By activating this semaphore, the system would
only allow dual-arm motion operations.

Parameters for the impedance controller could one time in the beginning be initial-
ized, such stiffness, damping, mass as well as compliance frame coordinates. If the robot
is working in an unknown environment, it could also be up to the robot to find some of
these parameters by moving the object around as well as using image techniques [6].

The implemented function is based on matrix mathematics which is not initially sup-
ported in the general C++ language. A Matrix library had previously been developed
at IPK which were extended with the functions in order to be able to calculate the nec-
essary matrix operations. The implementation is given in Appendix B. In the chapter 4
the different way of calculating the internal forces is compared.

24

3.2. SIMULATION CHAPTER 3. IMPLEMENTATION

3.2 Simulation

A simulation environment of the dual-arm robot and the controller have been developed
in Simulink. In this model both arms are simulated at the same time and the movement
of the arms can be observed by visualisation functions or by looking at the data. Each
part of the system in this section is described with focus on the new developed function
of the calculations for the internal forces. Single arm simulation had been simulated
before this thesis started and also safety conditions had been investigated. The Matlab
version used for the simulations have been Matlab 2010b and Matlab 2011a. The model
could also be simulated in older versions, but due to a new feature in Simulink some
blocks will then be 180 degrees rotated. It is therefore not as easy to get a good overview
of the whole system if an old Matlab version is used, however the simulation results will
be the same.

Running the simulation with two arms simultaneously is a time consuming task and
therefore a new computer with several processors was used. However to fully use the
capacity of this computer a few old modules had to be updated from 32 bits to 64 bits.
For the Matlab code this is simple and done very quickly, while for the C-functions it
is a bit more time consuming task. Due to the lack of time in this thesis all modules
except the IPO module were successfully updated and will also work in Matlab 64 bit.
As a result of this the full simulation still has to be simulated in with Matlab 32bits,
but tests without the IPO will work in the 64bit version.

3.2.1 Overview

The full systems consists of two arm connected parallel. One being set to describe the
left arm and the other as the right. The modules which are generating the desired path
for the each arm is called IPO (section 3.2.1). The desired path is sent to a SERVO
module (section 3.2.1) which task is to compare the actual position of the robot and the
desired path from the IPO. From this data the SERVO module will calculate a correction
torque Tau. On the robot arm, sensors are measuring the actual positions while in the
simulation environment, a model of the robot dynamic has to be used. This dynamic
module (section 3.2.1) has the torque as input and return as an output the angles and
angular velocity of the joints for each arm. It is important that the IPO and the Dynamic
modules is set with the same initial values in the beginning in order for the simulation
to be reliable.

The position of the two arms is being observed and the relative distance between the
arms will be used by the external object module. For the simulation an external object
as a beam has been developed (section 3.2.1). When the arms have gripped the beam
forces will be generated depending whether if it is compressing or decompressing. The
calculated forces (or measured forces in the real system) is then used by the internal
force module (section 3.2.1) using the formulas of section 2.3. The internal forces will

25

3.2. SIMULATION CHAPTER 3. IMPLEMENTATION

afterwards be feed to the IMCO module that calculates a path correction matrix that
are being feedback to the IPO module. Both arms servo modules can use the same
Supervisor module since this signal is going to be identical during the simulation. The
overview of the system is shown in Figure 10.

IPO

For right arm

Servo

For right arm

Dynamic model

of right arm

External Object

Model

IMCO

Internal

For right IPO

Internal force

calculation

IMCO

External

For rigth IPO

IPO

For left arm

Servo

For left arm

Dynamic model

of left arm

q

Tau new

q actual

Tau new

qSupervisor

Internal forces

External force

calculation

Modelled force

IMCO

Internal

For left IPO

IMCO

External

For left IPO

External

force

Sum of path

corrections

Sum of path

corrections

Path

correction

Path

correction

Path

correction

Path

correction

q actual

Figure 10: Overview graph of the dual-arm simulation model.

26

3.2. SIMULATION CHAPTER 3. IMPLEMENTATION

IPO module

The IPO Module task is to generate a path for the arm which it is assigned to, either
the left or the right arm. IPOs desired path can be set in several different ways; PTP
(Point to Point), CP (Continuous Path) and JOG (which is used lock the position of
the joint axes or to limit the movements to some dimensions). The IPO have several
different states which is used during the initialization and then the state running is ac-
tive during the movement operation. The state Auto will go over the necessary states
in the beginning and go over to monitoring when the arm have completed all the tasks
and reached its goal. One important setting is the path correction which is described in
section 3.2.1.

Most of the IPO module is programmed in C++ which mean that the same code can
be used for the execution of the real robot. The module is quite complex and its libraries
have to be compiled before the MEX is being compiled. Since this thesis is focusing on
the internal force calculations of the simulation, the MEX file will therefore be treated
as a black box. The S-block S Robotarm has two parameters which have to be set. One
is the whether it is desired to module an IPO for left or right arm and the other is the
initial values of the joints.

SERVO module

The Servo module task is to compare the actual position of the robot and the desired
path from the IPO Module. As an output the Servo gives a torque that will be sent to the
actuators so that the arms will move. Inside the Servo, PID controllers are controlling
the joints to follow the desired paths. The servo is being initialized by a supervisor
whose task is to go over the different state in a similar way as the Auto option for the
IPO. The Servo is as the IPO module made in C++ in integrated via a MEX-file. It
will also be considered as a black box in this report. For an overview of the Servo see
Figure 11.

27

3.2. SIMULATION CHAPTER 3. IMPLEMENTATION

Tau_new
2

status
1

pid7

pid6

pid5

pid4

pid3

pid2

pid1

PID-Controller

servo_modul current_2_torque

q_actual
4

q_new
3

data
2

cmd
1

Figure 11: Overview of the Servo Module.

DYNAMIC module

The dynamic module is a model of the robot dynamics which is only used for the sim-
ulations. There are several non linear constraints which makes it difficult to control
everything in the IPO. For example the actuators can only handle a certain speed, fric-
tion can prevent the arms from moving a slow speed and also singularies can cause
problems when one of the robot arms is a bit away from its path. The dynamic module
includes gravity, friction, coriolis, centrifugal as well as the case when some breaks have
been locked into a certain angle. As of the experiments of the with the internal forces,
it is not necessary to have activated the dynamic model at all if the holding of beam
is instead made by the data from the IPO. When the internal forces is evaluated, the
dynamic model could also be tested to work during contact operation.

External object module

An external object modeled as a beam has been analyzed. In this beam module the
stiffness parameter K is varied while the damping coefficient d is assumed to be zero. The
input variables of the coordinates can come from two different sources in the simulation
while in the execution of the robot it will always be read by the force sensors. In the
simulation the data can be either be read from the Dynamic module or directly from

28

3.2. SIMULATION CHAPTER 3. IMPLEMENTATION

the IPO. The accuracy the dynamic model is not yet verified for the case of of contact
operations and therefore the data from the IPO will instead be used. The location of
the compliance frame C is assumed to lay in the middle between the two arms. The
gripping of the beam has been decided to be so that the z-axis of the S-frame lays in the
direction of the beam.

Internal force module

The module from section 2.3 can be calculated using a MATLAB function (Appendix
A) or using a MEX-File (Appendix B) which is the code when executing the motions for
the robot. The two ways of calculating can be switched inside the simulation module,
and they both gives similar results as expected. The rotation matrices which are given
as input is also calculated before the modules are called. The input data to the functions
are summarized below.

• The coordinates of L, R and C.

• The rotation matrices between L and C (Rot LC) respective between R and C,
(Rot RC).

• The forces measured at L and R, (W LR)

IMCO module

The IMCO (Impedance Controller) module task is to generate a path correction. The
input of this module is the applied force in respect to the sensor frame. The IMCO is as
well made in C++ and will be considered as another black box. As an input, 6 different
controllers can to be decided, for the coordinates as well as the rotation part. The pa-
rameters could be set to low/medium/high damping or low/medium/high stiffness.

A correction matrix is from this data as well as the TCP calculated and given as
an output. Only the first 3 rows of the 4 rows is being communicated since the last
row is a constant with the values [0, 0, 0, 1]. A special note should also be made for the
correction matrices. When the module has several correction matrices it is not strait
forward to add the path corrections together with each other. The position should be
superpositioned and for the rotation part it is a bit more difficult. In the case of sum,
the new rotation is given as the product of the two rotation matrices.

3.2.2 Visualisation

In order to validate the performance of the robot and understand the movement of the
arms of the simulation, several different ways of visualize the robot looking at the move-
ment have been developed. One of these is an animation module made in Simulink
virtual reality box. In this thesis this animation module has not been included, but the
developed simulation environment is compatible with also this module. This mean that

29

3.2. SIMULATION CHAPTER 3. IMPLEMENTATION

the simulation can save the paths of the arms, which afterward could be used as an
input to the animation module which generate a video of the motion. For verifications
of the developed functions, instead simple graphs of the movements of the joints and the
endpoint location of the arms have been used.

The graphs used for visualization can also be used together with data from the
experiments. In such way the simulation environment is being verified and the data can
be better analyzed. In the next chapter the results from the simulations can be observed.

30

4
Results

The experiment to be analyzed was in beginning of the report decided to be Bi-Hold
which is defined in Figure 2. This because this operation is basic and that many other
bimanual operations are dependent on this operation. Before anything can be executed
for the real robot it is very important that this motion operation is safe and that the
simulations are robust. The parameters of the control algorithm have to be tuned for
best performance without jeopardize stability. For the simulation of Bi-Hold an elastic
external object was chosen and the speed was initially set to be relative slow. Different
stiffness of the controller as well of the object will be simulated.

The movement is therefore first thoroughly analyzed by the simulations. In order
to save simulation time the movement was decided to be very small and that the beam
would be compressed. The arms are starting slightly outside the sides of the beam to a
point where the distances between the arms are shorter than the actually beam. When
the arms then are in position over the beam they grip the beam so that forces are ap-
plied from both sides to the beam. The motion will continue and compress the beam so
that the internal force algorithm will calculate and generated internal forces within the
beam. This data is afterwards send this to an IMCO module which task is to generate
a path correction for the arms. The path correction is given to the IPO module which
will correct the path. The reaction of this closed loop system is seen to react fast enough
to compensate for the internal forces. Below are figures showing the simulations of the
analyzed motion. To show how small the desired motion, a simulation without gripping
the beam is shown in Figure 12.

31

CHAPTER 4. RESULTS

Figure 12: Simulation of a small movement without gripping the beam.

As can be seen of Figure 12 the change of values of the joints are very small, almost
constant during the whole motion.

Figure 13: Simulation of a small movement with gripping the beam.

As can be seen the changes of the values of the joints in Figure 13 changes a little
bit compared with the case of not gripping the beam. However, when looking at the
endpoint location of the arm, the position is almost the same and does not move much

32

CHAPTER 4. RESULTS

at all. The system manages to to compensate for the internal force and correct the path.
How fast the system manage to control the internal forces can be set with a parameter
K which corresponds to the stiffness of modeled beam. In figure 14 the simulation has
been executed with different values of K. The force in this diagrams corresponds to
which force the controller thinks the system has, the compression of the beam is in-
verted proportional to the modeled force with the factor 1/K. In the simulations an
8cm long beam has been simulated. As can be seen from the graphs the system reduces
the internal forces in around a half second. The chosen impedance controller has been
set with low damping and it should also be noted that the IMCO is not aware of the
stiffness of the beam.

Figure 14: Internal force data from simulations with different values of K.

On the right side of Figure 14 the peak has been zoomed. Here it is being seen
that the contact generate the peak when the system is simulated with K = 500 000.
Since the force afterwards does not go down more than to 36N after the peak, it is
not a problem. However if K is would be set very stiff, then a drop of the force could
make the force go down below zero. In the case where the object is only being held and
not gripped between the arms this could lead to that the object is dropped. If the arm
would hit a surface it would mean that the arms would bounce a few times before a stable
contact been archived. The path correction calculated by the IMCO is given in figure 15.

33

CHAPTER 4. RESULTS

Figure 15: Path correction for the left arm with K = 500 000.

The internal force calculation routine in C++ was also evaluated. In Figure 16 the
error between the calculations of internal forces in Matlab respective C++ is given. As
can be seen the difference is less than 10−14N . The most accurate function is most likely
Matlab, however the difference is much smaller than the noise that would be seen in
practice.

Figure 16: Comparsion between internal forces calculated by C++ and Matlab..

Different speeds of the arms were tested, to see how the system would react when
one arm is faster than the other. In this simulation which is given in Figure 17 the right

34

CHAPTER 4. RESULTS

arm finishing its desired goal before the left arm.

Figure 17: Simulation with different speeds between the arms.

Finally also a free space motion was tested together with the algorithm. The motion
is now changed from stating called safe position of the robot. This is when the arms are
stretched out far away from each other. The desired goal is the same as before and also
the length of the beam. As can be seen there is no strange behavior due to the contact
control algorithm. In the case where an impedance control with force mode is used the
position could had been affected [2].

35

5
Discussion

The development of dual-arm robots is currently a hot topic within the robotic industry.
Many dual-arm robot concept have been presented by different companies even though
the dual-arm concept is not yet widely implemented within the industry. A bi-manual
operation for a dual-arm robot holding a beam have been investigated. For this a sim-
ulation environment of the robot was built up which is a good approach for developing
functions to new systems. It should be noted that the simulation environment needs
more information than the real robot and that the all functions have to be executed on
the real robot before they are verified. A controller called impedance controller with po-
sition mode was selected for the simulations of holding a beam and this control method
turned out to give very satisfactory results for this operation in the simulations. The
execution of this controller has not yet been done at the robot and therefore the function
is not yet verified.

The controller worked good in the transition between free space and contact with an
external object. Uncertainties in the positions were also no problem and internal forces
in a beam could also be compensated within 0.5 seconds after contact. The controller
also does not make any undershoot of the force which mean that the contact is stable
between the manipulator and the external environment. This mean that the arms are
not bouncing on the surface after contact. Simulations were only simulated when the
beam tried to hold the object still and not when the object is moving. The selected
control method is not necessary the best control algorithm for all the assembly options.
Each operations have to be investigated and it should also be noted that there is no
problem to use different control algorithm for different assembly operations.

The gripping of the object could be done in several different way. It is very impor-
tant that this is being observed since it will change the behavior of the control system
and mistakes could damage both the external object as well as the robot. Where and

36

CHAPTER 5. DISCUSSION

how to grip external the object is also a parameter which could be optimized. Since
the arms have 7 DOF each, there also exist a subspace of position solutions which the
arm could have when gripping the object. The best way to grip the object is dependent
on the operation that should be solved as well as upcoming instructions. It should be
emphasized that the robot can solve many of the instructions in many different ways
and that it is not critical if a non optimal path sometimes is used.

37

6
Conclusion and Recommendations

The benefits of a dual-arm robot compared with a human operator or single arm robot
were multitasking and space saving. The tasks that the dual-arm will perform will most
likely be very similar to motions that the human is capable of. The fundamental biman-
ual motions for assembly was analysed to understand the tasks of the dual-arm robots.

The purpose of this thesis was to research dual-arm motion planning and to develop
a control algorithm for a dual-arm robot during a contact interactions. One of the basic
dual-arm motion, Bi-Hold was successfully implemented and tested in the simulation
environment with satisfactory result. The impedance controller managed to control the
arms in such a way that the internal forces of the beam was decreasing and approaching
zero after about 0.5 seconds after impact without making any force undershoot.

A module for implementing the same function for the robot was developed and was
also simulated to work satisfactory but it has not been verified by real experiments on
the robot. The algorithm works well when the arms are moving in the free space as
well as during the contact phase. However, only one of the bimanual motions have been
investigated. This thesis have created a wide base for further research and the author of
this thesis recommend the following further investigation.

• Practically verify the internal force calculations also on the Pi4 workerbot.

• Implementing the other Bi-manual motion operations that have been defined in
Figure 2.

• Develop a safe dual-arm motion operations interface within the program compo-
nent layer.

• Implement a model of the grippers into the simulation environment and prove
ensure that an external object is not dropped.

38

Bibliography

[1] Pi4 robotics, Arbeitsroboter: ”pi4 workerbot” (May 2011).
URL http://www.pi4.de/ds571.html

[2] Y. E. M. Vukobratovic, D. Surdilovic, D. Katic, Dynamics and Robust Control of
Robot-environment Interaction, 1st Edition, World Scientific, 2009.

[3] Yaskawa, Motoman sda10d assembly robot (May 2011).
URL http://www.motoman.com/products/robots/models/sda10d.php

[4] KUKA/DLR, Humanoid-robot-justin-learning-to-fix-satellites (Jun. 2011).
URL http://spectrum.ieee.org/automaton/robotics/industrial-

robots/humanoid-robot-justin-learning-to-fix-satellites

[5] ABB, Frida concept robot (May 2011).
URL http://www.abb.com/cawp/abbzh254/8657f5e05ede6ac5c1257861002c8ed2.

aspx

[6] R. Brooks, Remaking manufacturing with robotics (2011).
URL http://fora.tv/2009/05/30/Rodney_Brooks_Remaking_Manufacturing_

With_Robotics

[7] S. C. de Oliveira, The neuronal basis of bimanual coordination: recent neurophysi-
ological evidence and functional models, Acta Psychol (Amst) 110 (2002) 139.

[8] S. G. Tzafestas, Automation, humans, nature, and development, in: S. G. Tzafestas
(Ed.), Human and Nature Minding Automation, Vol. 41 of Intelligent Systems,
Control and Automation: Science and Engineering, Springer Netherlands, 2010,
pp. 1–21.

[9] H. E. Price, The allocation of functions in systems, Human Factors 27 (1) (1985)
33–45.

[10] J. Lee, N. Moray, Trust, control stategies and allocation of function in human-
machine systems, Ergonomics 35 (10) (1992) 1243–1270.

39

http://www.pi4.de/ds571.html
http://www.motoman.com/products/robots/models/sda10d.php
http://spectrum.ieee.org/automaton/robotics/industrial-robots/humanoid-robot-justin-learning-to-fix-satellites
http://spectrum.ieee.org/automaton/robotics/industrial-robots/humanoid-robot-justin-learning-to-fix-satellites
http://www.abb.com/cawp/abbzh254/8657f5e05ede6ac5c1257861002c8ed2.aspx
http://www.abb.com/cawp/abbzh254/8657f5e05ede6ac5c1257861002c8ed2.aspx
http://fora.tv/2009/05/30/Rodney_Brooks_Remaking_Manufacturing_With_Robotics
http://fora.tv/2009/05/30/Rodney_Brooks_Remaking_Manufacturing_With_Robotics

BIBLIOGRAPHY

[11] R. Bonitz, T. Hsia, Internal force-based impedance control for cooperating manipu-
lators, Robotics and Automation, IEEE Transactions on Robotics and Automation
12 (1) (1996) 78 –89.

[12] Fraunhofer, Institut für produktionsanlagen und konstruktionstechnik (May 2011).

[13] S. C. d. O. O. Donchin, E. Vaadia, Who tells one hand what the other is doing: the
neurophysiology of bimanual movements, Neuron 23 (1999) 15–18.

[14] T. Glad, L. Ljung, Control Theory: Multivariable and Nonlinear Methods, CRC,
2000.

[15] S. Schneider, J. Cannon, R.H., Object impedance control for cooperative manipu-
lation: theory and experimental results, Robotics and Automation, IEEE Transac-
tions on Robotics and Automation 8 (3) (1992) 383 –394.

[16] J. De Schutter, H. Bruyninckx, W.-H. Zhu, M. Spong, Force control: A bird’s eye
view, in: B. Siciliano, K. Valavanis (Eds.), Control Problems in Robotics and Au-
tomation, Vol. 230 of Lecture Notes in Control and Information Sciences, Springer
Berlin / Heidelberg, 1998, pp. 1–17.

[17] Apache-Software-foundation, Eclipse helios (May 2011).
URL http://www.eclipse.org/downloads/packages/eclipse-ide-cc-

developers/heliossr2

[18] Sourceforge.net, Mingw-w64 (May 2011).
URL http://sourceforge.net/projects/mingw-w64/

[19] Sourceforge.net, Boost (May 2011).
URL http://sourceforge.net/projects/boost/files/boost/1.46.1/

40

http://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers/heliossr2
http://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers/heliossr2
http://sourceforge.net/projects/mingw-w64/
http://sourceforge.net/projects/boost/files/boost/1.46.1/

A
Source code of internalforce in

MATLAB

1 function [W_CI] = internalforces(L, Rot_LC, R, Rot_RC, C, W_LR)
2 % Calculations module of the internal forces
3 % Author: Daniel Andersson
4 % Last Modification: 7th May 2011
5

6 %% Calculations of vectors
7

8 ∆ = C − L;
9 x = ∆(1); y = ∆(2); z = ∆ (3);

10 LCx = [0 −z y; z 0 −x; −y x 0];
11

12 ∆ = C − R;
13 x = ∆(1); y = ∆(2); z = ∆ (3);
14 RCx = [0 −z y; z 0 −x; −y x 0];
15

16 %% Calculations of jacobians
17

18 Jac_LC = [Rot_LC, −Rot_LC ∗ LCx ; zeros(3,3), Rot_LC];
19 Jac_RC = [Rot_RC, −Rot_RC ∗ RCx ; zeros(3,3), Rot_RC];
20 Jac_LRC = [inv(Jac_LC) inv(Jac_RC)];
21

22 % Generalized Jacobian
23 Gen_Jac_LRC = Jac_LRC ∗ inv(Jac_LRC∗Jac_LRC);
24

25 %% Calculations of Wrench at T
26 W_T = Jac_LRC ∗ W_LR;
27

28 %% We need to calculate the nullspace
29 Nullspace_Jac_LRC = null(Jac_LRC); %

I

APPENDIX A. SOURCE CODE OF INTERNALFORCE IN MATLAB

30 lambda = Nullspace_Jac_LRC ∗ W_LR;
31

32 %% Time to internal forces
33 W_LRexternal = Gen_Jac_LRC∗W_T;
34 W_LRinternal = Nullspace_Jac_LRC∗lambda;
35

36 W_LRtotal = W_LRexternal + W_LRinternal;
37

38 %% Calculation of Wrenches
39

40 W_CL = inv(Jac_LC) ∗W_LRinternal(1:6);
41 W_CR = inv(Jac_RC) ∗W_LRinternal(7:12);
42

43 W_CI = [W_CL;W_CR];
44

45 end

II

B
Source code of internalforce in

C++

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
2 /∗ Author : Daniel Andersson ∗/
3 /∗ Date : 17.04.2011 ∗/
4 /∗ ∗/
5 /∗ Description: ∗/
6 /∗ This is does the same as the ∗/
7 /∗ internalforces.m but instead in C. ∗/
8 /∗ ∗/
9 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

10

11

12 // Project includes
13 #include <stdio.h>
14 #include <stdlib.h>
15 #include <string.h>
16 #include <math.h>
17 #include "internal_force_calculation.h"
18

19 // MATLAB Includes
20 #ifdef MATLAB_MEX_FILE
21 #define M_PI 3.14159265356
22 #include "mex.h"
23 #include <simstruc.h>
24 #endif
25

26 //Sufficient libmaths includes
27 #include <stdio.h>
28 #include <stdlib.h>
29 #include <iostream>

III

APPENDIX B. SOURCE CODE OF INTERNALFORCE IN C++

30 #include <stdio.h>
31 #include <stdarg.h>
32 #include "matrix.h"
33 #include "vector.h"
34 #include "svd.h"
35 #include "qr.h"
36 #include "algebraicoperations.h"
37 #include "mathexceptions.h"
38

39 using namespace LibMath;
40

41 INTERNALFORCE::INTERNALFORCE()
42 { // Constructor
43

44 // Initialize:
45 for (int i = 0; i < 12; i++) {
46 W_SLRi[i] = 0;
47 }
48

49 }
50

51 void INTERNALFORCE::calculate(double∗ L, double∗ Rot_LC_, double∗ R,
52 double∗ Rot_RC_, double∗ C, double∗ W_SLR_)
53 {
54

55 // Variable transformation
56 Matrix W_SLR = Matrix(12, 1);
57 double ∗data_WSLR = W_SLR.getData();
58 for (int i = 0; i < 12; i++) {
59 data_WSLR[i] = W_SLR_[i];
60 }
61 Matrix Rot_LC = Matrix(3, 3);
62 Matrix Rot_RC = Matrix(3, 3);
63 double ∗data_Rot_LC = Rot_LC.getData();
64 double ∗data_Rot_RC = Rot_RC.getData();
65 for (int i = 0; i < 9; i++) {
66 data_Rot_LC[i] = Rot_LC_[i];
67 data_Rot_RC[i] = Rot_RC_[i];
68 }
69

70 // Help variable declaration
71 double x = 0;
72 double y = 0;
73 double z = 0;
74 Matrix Zeros3x3 = Zeros(3,3);
75

76 // Calculations of vectors
77 x = C[0]−L[0];
78 y = C[1]−L[1];
79 z = C[2]−L[2];
80

81 double data_test3x3LCX[] = {0,−z,y, z, 0,−x, −y, x,0};
82 Matrix LCx = Matrix(3, 3, data_test3x3LCX);

IV

APPENDIX B. SOURCE CODE OF INTERNALFORCE IN C++

83

84 x = C[0]−R[0];
85 y = C[1]−R[1];
86 z = C[2]−R[2];
87 double data_test3x3RCx[] = {0,−z,y,z,0,−x, −y, x,0};
88 Matrix RCx = Matrix(3, 3, data_test3x3RCx);
89

90 // Calculations of jacobians
91 // [Rot_LC, −Rot_LC∗LCx ; zeros(3,3), Rot_LC];
92 Matrix a1 = matMatMult(Rot_LC,LCx);
93 Matrix a2 = scalarMatMult(−1,a1);
94 Matrix Jac_LC = extend_Matrix(Rot_LC, a2,Zeros3x3,Rot_LC);
95

96 //[Rot_RC, −Rot_RC RCx ; zeros(3,3), Rot_RC];
97 Matrix b1 = matMatMult(Rot_RC,RCx);
98 Matrix b2 = scalarMatMult(−1,b1);
99 Matrix Jac_RC = extend_Matrix(Rot_RC, b2,Zeros3x3,Rot_RC);

100

101 //[inv() inv(transpose(Jac_RC))];
102 Matrix g1 = matMatMult(Rot_RC,RCx);
103 Matrix g2 = scalarMatMult(−1,g1);
104 Matrix Jac_RC_Tinv = extend_Matrix(Rot_RC, Zeros3x3, g2, Rot_RC);
105

106 //[inv() inv(transpose(Jac_LC))];
107 Matrix h1 = matMatMult(Rot_LC,LCx);
108 Matrix h2 = scalarMatMult(−1,h1);
109 Matrix Jac_LC_Tinv = extend_Matrix(Rot_RC, Zeros3x3, h2, Rot_RC);
110

111 // Jac_LRC = [inv(Jac_LC) inv(Jac_RC)];
112 Matrix Jac_LRC = extend_Matrix_vertical(Jac_LC_Tinv,Jac_RC_Tinv);
113 Matrix Jac_LRC_H= extend_Matrix_horizontal(Jac_LC_Tinv,Jac_RC_Tinv);
114

115 // We need to calculate the nullspace
116 //Nullspace_Jac_LRC = null(Jac_LRC);
117 Matrix Nullspace_Jac_LRC = NullSpace(Jac_LRC_H);
118

119 // First step is to calculate lambda.
120 Matrix lambda1 = transpose(Nullspace_Jac_LRC);
121

122 Matrix lambda = matMatMult(lambda1, W_SLR);
123

124 // Now we are readdy to calculate the internal forces.
125 Matrix W_SLR_i = matMatMult(Nullspace_Jac_LRC , lambda);
126

127 // Lets project the internal forces to L resp C.
128 Matrix W_SL_i = cut_out_Matrix(W_SLR_i, 0, 5, 0, 0);
129 Matrix W_SR_i = cut_out_Matrix(W_SLR_i, 6, 11, 0, 0);
130 Matrix W_CL_i = matMatMult(Jac_LC_Tinv,W_SL_i);
131 Matrix W_CR_i = matMatMult(Jac_RC_Tinv,W_SR_i);
132

133 // We are done, lets now write the result to a normal variable
134 Matrix W_CL_iW_CR_i = extend_Matrix_vertical(W_CL_i,W_CR_i);
135

V

APPENDIX B. SOURCE CODE OF INTERNALFORCE IN C++

136 double∗ data = W_CL_iW_CR_i.getData();
137 for (int i = 0; i < 12; i++) {
138 W_SLRi[i] = data[i];
139 }
140

141 return;
142 }
143

144

145 double∗ INTERNALFORCE::get_internal_force(void)
146 {
147 return this−>W_SLRi;
148 }

VI

C
Mathematical derivation of the

internal forces formula

With the matrices given in (2.10), the following equation for the forces can be written
to C.1. Here the idea is that the first and second parts are orthogonal.

ŴSLR =C JW#

SLR ·WT + null(JSLR) · λ. (C.1)

where null is the nullspace, J
#

is the pseudoinverse

J
#

= JT (J · JT)−1 (C.2)

and

λ = null(JSLR)T ∗ ŴSLR (C.3)

From this the internal forces is calculated.

WSLRi = null(JSLR) · λ (C.4)

With (C.3) in (C.4), the follow formula is obtained;

WSLRi = null(JSLR) · null(JSLR)T ∗ ŴSLR (C.5)

VII

	Introduction
	Background and Purpose
	Project questions
	Objective
	Limitations
	Organisation and timeline

	Modeling
	Bimanual movements
	Human planning
	Dual-arm planning

	Contact operations
	Passive compliance
	Active compliance
	Position/Force control
	Impedance Control

	Internal forces
	Mathematical derivation

	Robot Model

	Implementation
	Robot environment
	Simulation
	Overview
	Visualisation

	Results
	Discussion
	Conclusion and Recommendations
	Bibliography
	Source code of internalforce in MATLAB
	Source code of internalforce in C++
	Mathematical derivation of the internal forces formula

