
Testing and Evaluation to Improve Data Security of
Automotive Embedded Systems
Master’s thesis in Computer Systems & Networks

JOHANNES WESCHKE
FILIP HESSLUND

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2015
Master’s thesis 2011:01

Testing and Evaluation to Improve Data Security of Automotive Embedded Systems
JOHANNES WESCHKE
FILIP HESSLUND

c© JOHANNES WESCHKE , FILIP HESSLUND , 2015

Master’s thesis 2011:01
ISSN 1652-8557
Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone: +46 (0)31-772 1000

Chalmers Reproservice
Göteborg, Sweden 2015

Abstract

In the last two decades, the number of electronic control units (ECUs) in vehicles has increased
dramatically. This has resulted in an increased complexity of the vehicles electrical and electronic
systems. Electrical and electronic systems have gone from just controlling the engine to controlling
every part of the vehicle, from the infotainment system to safety-critical systems.

To allow for better collaboration between players in the automotive industry, a development partnership
called AUTOSAR has emerged. Included in AUTOSAR is a module handling diagnostics (DCM).
The module can be used to read data and change parameters in the ECUs and in the ECU software,
since the DCM can access confidential information about the vehicle and modify running software of
the ECU, for example the software controlling the engine, it is an attractive target for adversaries.
There has been no published research about the security of the DCM module of the AUTOSAR
software architecture (that we know of) and how the safety of the passengers can be affected in the
case of a security breach. This thesis tries to fill this research gap by conducting a threat analysis and
risk assessment for the DCM module inside AUTOSAR. This thesis evaluates the security of an ECU
assumed to control the engine of a vehicle and how possible consequences of an intrusion can affect
the overall safety. It also presents a number of tests used to evaluate the threats and risks found. The
tests done targets threats regarding denial of service, tampering, and information disclosure. The
thesis is concluded with proposing countermeasures for the threats and risks.

Keywords: security, automotive, testing, evaluation, AUTOSAR, ISO 14229

i

Acknowledgements

We would like to thank Tomas Olovsson, at Chalmers Univerity of Technology, and Christian Sandberg
and Mafijul Islam, from Volvo AB, for supervising this thesis, and for their invaluable help and input
during this work. We would also like to thank Erland Jonsson, at Chalmers University of Technology,
for being our examiner.

ii

Contents

Abstract i

Acknowledgements ii

Contents iii

1 Introduction 1
1.1 Related Work . 2
1.2 Research Methodology . 3
1.3 Thesis outline . 4

2 Terms and Definitions 5

3 Security model 6
3.1 The HEAVENS Security Model . 6
3.1.1 STRIDE . 6
3.2 Penetration testing . 10
3.3 Fuzzing . 11

4 AUTOSAR 12
4.1 Automotive Open System Architecture 4.1 . 12
4.2 ISO standards for vehicle diagnostic . 15

5 Threat modeling 17
5.1 Diagnostic communication . 18
5.2 ECU . 18
5.3 Tester . 19
5.4 Security requirements . 19

6 Security Tests 21
6.1 Experimental Environment . 21
6.2 Attack Trees . 23
6.2.1 Information Disclosure / System Reconnaissance . 23
6.2.2 Tampering of ECU Software . 23
6.2.3 Denial of Service . 23
6.3 Information Disclosure / System Reconnaissance Test . 23
6.3.1 System Scan . 23
6.3.2 System Probing . 27
6.3.3 Packet sniffing . 27
6.3.4 Restricted Memory Address scan . 27
6.3.5 Message handling rate . 27
6.4 Tampering of ECU Software Test . 28
6.4.1 Man In The Middle . 28
6.4.2 Brute force security access key . 28
6.4.3 Seed/Key Sniffing . 28
6.4.4 Seed Entropy . 28
6.4.5 Restricted Memory Address Write . 29
6.5 Denial of Service Test . 29

iii

6.5.1 Fuzzing based Security Tests . 29
6.5.2 Random Fuzzing . 29
6.5.3 Intelligent Fuzzing . 30
6.5.4 Flooding . 30

7 Results and test evaluations 33
7.1 Information Disclosure / System Reconnaissance . 33
7.1.1 System Scan . 33
7.1.2 System Probing . 33
7.1.3 Packet sniffing . 33
7.1.4 Restricted Memory Address scan . 33
7.1.5 Message handling rate . 34
7.2 Tampering of ECU Software . 34
7.2.1 Man In The Middle . 34
7.2.2 Brute force security access key . 34
7.2.3 Seed/Key sniffing . 34
7.2.4 Seed Entropy . 34
7.2.5 Restricted Memory Address Write . 35
7.3 Denial of Service . 35
7.3.1 Random Fuzzing . 35
7.3.2 Intelligent Fuzzing . 35
7.3.3 Flooding . 35

8 Discussion and countermeasures 37
8.1 Information Disclosure / System Reconnaissance . 37
8.1.1 System Scan . 37
8.1.2 System Probing . 37
8.1.3 Packet sniffing . 38
8.1.4 Restricted Memory Address scan . 38
8.1.5 Message handling rate . 38
8.2 Tampering of ECU Software . 38
8.2.1 Man In The Middle . 38
8.2.2 Brute force security access key test . 39
8.2.3 Seed/Key sniffing . 40
8.2.4 Seed Entropy . 40
8.2.5 Restricted Memory Address Write . 40
8.3 Denial of Service . 40
8.3.1 Fuzzing based Security Tests . 40
8.3.2 Flooding . 41
8.4 ISO 14229 . 42
8.5 Overall Discussion . 42

9 Conclusions 44
9.1 Future work . 44

References 46

iv

1 Introduction

The automotive industry has in the last two decades gone through a large development regarding the
computerization of the vehicle’s embedded systems. The systems have gone from only controlling
parameters in the engine to controlling almost all parts of the vehicle. The on-board computers,
electronic control units (ECUs), have come to include everything from the infotainment system to
controlling safety-critical systems.

The increasing number of ECUs and software components forming these new services has led to a
rising complexity of the vehicles electrical and electronic systems. To decrease this problem and allow
for better collaboration between players in the automotive industry, a development partnership called
AUTOSAR has emerged.

AUTOSAR is a software architecture that is based on modular components to form a complete system.
This allows developers to focus on and develop one component at a time.

At the bottom of the architecture is the Basic Software Layer (BSW) which acts like a base to build
service specific software on, see Figure 1.1. The BSW includes the standardized software such as
the Operating System, the Memory Manager and the Diagnostic module that are necessary for the
system to work.

Figure 1.1: The layered AUTOSAR architecture

The Diagnostic module in the BSW layer is responsible for the communication between the vehicle
software and the manufacturer. The Diagnostic module is used to manage, update and reprogram
the components that are running inside the ECU, which makes the module an attractive target for
adversaries. If unauthorized access is granted, an adversary could be able to reprogram the software
and possibly endanger the safety of the vehicle’s passengers.

This thesis aims to evaluate the security of the standardized Diagnostic module of AUTOSAR, leading
to the following research questions.

• What vulnerabilities can be found in the AUTOSAR diagnostics Basic Software
module?

• What are the possible threats and risks of these vulnerabilities?

1

Figure 1.2: Simplified Microsoft Secure Development Lifecycle. [23]

• Can the vulnerabilities be mitigated and the security be improved?

This thesis is a part of the HEAVENS project that aims to create a common strategy to identify
vulnerabilities and define methodologies to evaluate security inside vehicles electrical and electronics
system [31].

Previous parts of the project have included creating a threat model and declaring a common view of
how to address security (see Section 3.1), and this thesis follows the HEAVENS terminology [14].

This thesis investigates the security of the AUTOSAR architecture Diagnostic Module, it evaluates
how security vulnerabilities are related to threats and safety risks. Proof of concept security tests of
the found vulnerabilities are shown, and as such this thesis fits into the Verification step of Microsofts
Secure Development Lifecycle (SDL) (see Figure 1.2).

1.1 Related Work

Vehicular security has gained some focus in recent years, and much academic research has been done
on the subject. Many security protocol implementations have been suggested to secure the onboard
network of a vehicle. Both software and hardware modules have been shown to mitigate the security
vulnerabilities of the advanced electronic devices present in today’s vehicles [11]. Most of the research
done has been to reduce the threat of an external adversary, but less research has been done on
vulnerabilities exploited by an internal adversary. A typical example is where a vehicle owner who
exploits vulnerabilities to gain access to restricted features of the vehicle, such as more engine power,
without paying for the feature.

In Securing Vehicle Diagnostics in Repair Shops, Kleberger and Olovsson [19] describe suggestions
on how to secure both wired and wireless remote diagnostic inside a repair shop. They suggest that
well known security protocols for secure data transmission over LAN:s and internet (such as IPsec,
SLL, Certificates and PKI) can be used to secure remote vehicle diagnostics. They also conclude that
IPsec is the most desirable security architecture to achieve secure diagnostics and that it additionally
includes the possibility to perform secure diagnostics over the Internet. Their focus is on the commu-
nication with an ECU, whereas our thesis focuses on vulnerabilities inside the ECUs diagnostics module.

Koscher et al. [20] wrote a widely cited paper in 2010 that included multiple frightening scenarios of
the lack of security in vehicles at that time. Their work included defining a threat model, and an
experimental analysis on both stationary and moving targets.

2

Bayer et al. [4] wrote a paper providing insight on some motivations and possible attacks on automo-
tive systems, as well as a theoretical evaluation of penetration testing techniques. We feel that their
work misses a more practical approach, however, some of their ideas will be the foundation for our
testing.

Vyleta [42] presented a thesis in which they did some security fuzz-testing on a simulated ECU. The
tests were conducted on only two services available in the DCM: WriteMemory and RequestDownload.
Our thesis presents tests made on hardware using a real implementation, and includes more services.

This shows that researchers have been aware of the problem with security in the automotive industry
for quite some time, but new standards still doesn’t include security in a complete way. As pointed
out by Kleberger and Olovsson [19] some existing standards have even removed previously present
security ”best-practices”.

1.2 Research Methodology

The methodology for this thesis is described in Figure 1.3. The process starts with defining the
problem and the objectives to follow throughout the project. At this stage, we decided that the area of
investigation would be to evaluate the security of the diagnostic module in the AUTOSAR architecture.

In the second step, a threat model of the area was created which resulted in a list of threats that the
module could be vulnerable to. These results were then used as input to the third step, where a risk
assessment was performed. A number of attack trees were created based on the risk assessment, and
these attack trees inspired the tests made in the next step.

In the fifth step a number of security tests were performed to evaluate the threats that were found in
the threat modeling, to see if the system was vulnerable to these kinds of threats. These security
tests were performed in two environments, a white-box and a grey-box environment. In the white-box
environment the tests were performed and evaluated on a self configured system where all config-
urations were known. The tests were then applied on a grey-box production system environment.
After tests were performed in both environments, the result of each test was evaluated, discussed and
suggestions of countermeasures were done.

At the final step of the process all the results were documented and further work was discussed.

This process follows the HEAVENS security model workflow (see Figure 3.2) in parts, but instead of
the last step of identifying security requirements we swerve off onto a path of testing the systems if
the threats identified can be targeted. Since the threat analysis only identifies threats conceptually
this is a good approach.

Figure 1.3: Methodology

3

1.3 Thesis outline

The rest of this thesis is structured as follows: chapter 2 contains a list of terms and definitions used,
chapter 3 introduces security concepts, chapter 4 treats basic concepts used later on in the thesis.
Chapter 5 contains the threat model of the system on which the tests were made, chapter 6 presents
the tests made. Chapter 7 presents results and an evaluation of them. Chapters 8 and 9 contains a
discussion and our conclusions.

4

2 Terms and Definitions

Here follows a list of terms and definitions used in the HEAVENS project [14].

Access Establish logical or physical commu-
nication or otherwise interact with
assets and/or TOEs.

Asset Anything of value to stakeholders,
potential targets of attacks.

Attack Series of actions performed by at-
tackers to achieve unauthorized re-
sults in relation to assets and/or
TOEs.

Attacker Any type of individual, group, or
entity aiming to mount attacks.

Attack surface Set of resources associated with an
asset and/or TOE that attackers
can exploit to mount attacks.

Attack tree An attack tree is a graphical repre-
sentation to show possible attack
vectors that can be used to mount
an attack.

Attack vector Set of actions to establish a path or
means to mount an attack.

Client The ECU or appliance requesting
services during a diagnostic session.

Harm Negative impact on stakeholders
as a result of attacks.

Impact level Estimate of the magnitude of harm
to stakeholders originating from a
threat and/or an attack.

Server The diagnostic module inside the
connected ECU under a diagnostic
session.

Stakeholders Individuals and/or organizations
that can affect, be affected by, or
perceive themselves to be affected
by attacks.

Target of Evaluation (ToE) A set of assets.

Threat Potential cause of an unwanted inci-
dent, which may result in harm to a
system or organization.

Vulnerability Weakness in an asset and/or ToE
that can potentially be exploited by
attackers to mount attacks.

Table 2.1: Terms and Definitions.

5

3 Security model

This chapter introduces the risk assessment and threat analysis processes used in the HEAVENS
security model. Sections 3.2 and 3.3 introduces different kinds of penetration testing and fuzz testing
techniques used to verify the conceptual findings from the threat analysis.

3.1 The HEAVENS Security Model

The workflow for the HEAVENS security model can be seen in Figure 3.2 and consists of four modules:
defining the target of evaluation, threat analysis, risk assessment, and identifying security requirements.

As can be seen in the figure, the first step is to identify the TOE and to find an appropriate level
of abstraction to enable the use of a threat analysis tool. The TOE description is then used in
the Threat Analysis module. Here, potential threats are mapped to assets and security attributes,
according to STRIDE (Section 3.1.1). The next step is the Risk Assessment, that uses the threat &
asset mappings, and the threat level- (TL) and impact level- (IL) parameters as input. These can be
seen in Tables 3.2 and 3.3. The Risk Assessment step outputs security levels for each of the identified
threats. HEAVENS defines security level as: ”A measure to estimate the level of risk used to specify
countermeasures for assets and/or TOEs to avoid unreasonable risk.” The last step is the Security
Requirement which take the Security Level output from the Risk Assessment module and the Threats
& Security attributes from the Threat Analysis module as input. The Security Requirement module
then produces a resulting Security Level value for each asset and threat pair that is based on the
threat and impact level. The Security Level result is defined as a value between the lowest level,
Quality Management (QM) to the highest level Critical, where QM states that no extra attention is
needed from a security point of view. The security levels can be seen in Figure 3.1, and Table 3.1.

Figure 3.1: HEAVENS security levels based on the Threat and Impact levels [21].

3.1.1 STRIDE

The threat analysis method STRIDE [37], developed by Microsoft, threats are categorized depending
on the goals and purposes of the attacks. STRIDE is used in the HEAVENS security model threat
analysis. The STRIDE model is considered to be threat-centric or attacker-centric, since every threat
is linked with a certain asset from the attackers perspective. STRIDE extends the CIA (Confidentiality,
Integrity, Availability) model by linking threats to a larger set of security attributes than the ones
present in CIA, i.e. authenticity, freshness, non-repudiation, privacy, and authorization. STRIDE is

6

named after the first letter in every threat it includes.

• Spoofing identity - attackers pretend to be someone or something else - (Authenticity,
Freshness)

• Tampering with data - attackers change data in transit or in a data store - (Integrity)

• Repudiation - attackers performs actions that cannot be traced back to them - (Non-
repudiation, Freshness)

• Information disclosure - attackers get access to data in transit or in a data store - (Confi-
dentiality, Privacy)

• Denial of service - attackers interrupt a systems legitimate operation - (Availability)

• Elevation of privilege - attackers perform actions they are not authorized to perform -
(Authorization)

Figure 3.2: HEAVENS security model workflow [21].

7

Security threat
severity class

Aspects of security threats
Safety Privacy Financial Operational

0 No injuries. No authorized ac-
cess to data.

No financial loss. No impact on op-
erational perfor-
mance.

1 Light or moderate
injuries.

Anonymous data
only.

Low-level loss. Impact not dis-
cernible to driver.

2 Severe injuries
(survival proba-
ble). Light/mod-
erate injuries for
multiple vehicles.

Identification of
vehicle or driver.
Anonymous data
for multiple
vehicles.

Moderate loss.
Low losses for
multiple vehicles.

Driver aware
of performance
degradation.
Indiscernible im-
pacts for multiple
vehicles.

3 Life threaten-
ing (survival
uncertain) or
fatal injuries.
Severe injuries for
multiple vehicles.

Driver or vehicle
tracking. Identifi-
cation of driver or
vehicle, for multi-
ple vehicles.

Heavy loss. Mod-
erate losses for
multiple vehicles.

Significant impact
on performance.
Noticeable im-
pact for multiple
vehicles.

4 Life threatening
or fatal injuries for
multiple vehicles.

Driver or vehicle
tracking for multi-
ple vehicles.

Heavy losses for
multiple vehicles.

Significant impact
for multiple vehi-
cles.

Table 3.1: Threat severity classification scheme proposed by EVITA [33], used in the HEAVENS
project.

Impact levels

Safety

No injury.
Light and moderate injuries.
Severe and life-threatening in-
juries (survival probable).
Life-threatening injuries (sur-
vival uncertain), fatal injuries.

Financial Financial losses, either direct
or indirect.

Operational Damages caused by unex-
pected incident, like loss of sec-
ondary or comfort/entertain-
ment functionality.

Privacy and legislation Damages to stakeholders
caused by loss of privacy or
violation of regulations.

Table 3.2: HEAVENS security model Impact Levels

8

Threat levels

Expertise

Layman - No particular expertise.
Proficient - General knowledge about the

security field.
Expert - Familiar with underlying

hardware, security behaviour,
and attack methods.

Multiple Experts -

Knowledge about TOE

Public - Available on-line without
non-disclosure agreements.

Restricted - Controlled within organiza-
tion with non-disclosure agree-
ments.

Sensitive - Constrained to only members
of certain teams.

Critical - Knowledge known by only a
few individuals.

Equipment

Standard - Available for unregulated pur-
chase, or for free on-line.

Specialized - More expensive equipment
that can be obtained with lit-
tle effort.

Bespoke - Not readily available to pub-
lic. Needs to be specially pro-
duced.

Multiple Bespoke -

Window of opportunity

Low - Physical access required.
Medium - Limited physical, or logical

access required.
High - Logical access without physi-

cal presence.
Critical - Logical access without physi-

cal presence or time limitation.

Table 3.3: HEAVENS security model Threat Levels

9

3.2 Penetration testing

Penetration testing is a non-malicious process in which the goal is to find vulnerabilities in a system
or a software. This is usually done by analyzing the system using some tool, for example OpenVAS
used to analyze network vulnerabilities [27]. Tools like OpenVAS will produce a report specifying
what services (and versions of them) are available on the TOE and what vulnerabilities are present
for the versions of the services available. When the system has been identified the penetration tester
can use known attacks on the systems assets and access points.

The first step of a penetration test is reconnaissance, to determine what interfaces and specifications
would be open to a potential attacker. The second step could be to mount small scale attacks on some
external interfaces. In a web server one such interface could be an open port, and in an automotive
setting it could be the CAN bus [4].

Penetration testing is divided into three main categories, Black-box, White-box and Grey-box depending
on the amount of information that the attacker has about the target [24].

White-box testing technique is a technique where the tester has full knowledge of the internal
architecture of the system and has full access to the software source code. This technique give a
detailed test of the internal logic and the code structure of the system. By testing the system with
this approach implementation errors such as poor key and cryptographic algorithms can be revealed.

Black-box is a testing technique where the tester instead has no knowledge about the source code
and how the internal system is working. Here the tester only has access to the external interfaces
that are available from the software.

Grey-box is a technique where the black- and the white-box techniques are combined. Here the
tests are performed without access to the source code but with fundamental knowledge of the system
software structure.

The different techniques have different advantages and disadvantages. The White-box technique has
the advantage of giving a full coverage of the tested areas of the software and can also find unused
code that is still present. This techniques is however expensive and need the tester to be highly skilled
of the tested software.

The advantage of the Black-box is that the tester knows less about the system and that the develop-
ment of tests are quicker. The disadvantages of this approach is however that the testing becomes
inefficient and only a limited number of scenarios are covered.

In the Grey-box technique the benefits of both the white- and the black-box approaches are combined.
Here the tester can rely on the interface definitions and the system functions rather than focus
on gaining a deeper understanding of the source code. In this technique the tester can create well
specified test scenarios that are tested from the user, attacker, point of view instead of the developers
view.

The Grey-box has the same disadvantage as the black-box, where the coverage of the test are limited
as the source code is unavailable when the designing the tests are done. Many data flow path may
also be untested due to the same reason.

10

Figure 3.3: Example attack tree.

A way to help design proper penetration tests is the use of attack trees. Attack trees were proposed
by Bruce Schneier in 1999 as a way of modeling security threats [34]. The attack tree is built with
the attacker’s goal as the root node, and every branch from the root contains ways of accomplishing
that goal (an example attack tree can be seen in Figure 3.3). In this thesis, attack trees were used to
come up with sound test cases.

3.3 Fuzzing

Fuzzing is a technique to ensure the correctness of a function or a piece of software. The basic
approach is to input random data and see if it is validated in a satisfying way, and does not cause a
crash or end up in any unwanted state. The technique is used by both security and quality assurance
experts. Fuzzing gives developers the tools to find vulnerabilities triggered by malformed or malicious
input [38].
Fuzzing can be considered a subset of penetration testing since the technique might reveal vulnerabili-
ties that may be exploited.

11

4 AUTOSAR

This chapter introduces concepts that are important to this thesis. It starts by describing the
AUTOSAR architecture and then quickly narrows down towards the Diagnostic module and how the
communication for the diagnostic module is standardized.

4.1 Automotive Open System Architecture 4.1

The Automotive Open System Architecture (AUTOSAR) is an alliance of vehicle manufacturers and
automotive suppliers with the purpose to develop an open industry standard software architecture
for the automotive E/E systems. The standardization of automotive electronic development by
AUTOSAR aids to remove the previously used OEM specific standards and reduce the need for every
supplier to develop their own software architecture. The standardization is intended to reduce the
large development cost and remove the need of a large number of tools and communication protocols
that was needed by the suppliers earlier. The aim of AUTOSAR is to change the development of
new software application from coding based to configuration based development. This allows the
developers to focus more on the innovation process of new functions instead of the OEM specific
standard configuration coding for each new software.

AUTOSAR provides a layered architecture model to meet these goals and motivations. This architec-
ture includes three abstract layers, the Application layer, the Run-time environment layer and the
Basic Software layer. Where the Basic Software forms the infrastructural base and includes the main
functionalities to run AUTOSAR 4.1.

The Software layer is placed at the top of the architecture and includes the OEM specific Software
components (SW-Cs). An SW-C can implement a complete system or just a part of a system function,
e.g. a SW-C can include the code controlling the vehicles windscreen wipers or the parameters for
tuning the engine. The SW-C can be compared to an application running on a personal computer.

The Run-time environment (RTE) is placed underneath the Software layer and controls all the
communication between the different Software components. The communication between the SW-Cs
is always done through the RTE no matter if the components are located on the same or on separated
ECUs inside the vehicle. This gives the system the flexibility to move Software components between
different ECUs in the vehicle, and also reusing SW-Cs from other vehicles, without the need of
reprogramming the communication paths and the interface of the component.

The Basic Software layer is a standardized software layer that provides services to connect the Software
components to the functionality of the hardware module. The basic software layer is divided into three
main sub layers, the Service layer, the ECU Abstraction layer and the Microcontroller Abstraction layer.

The Service layer provides the basic services that builds the AUTOSAR architecture and includes the
vital functions, such as the Operating System, the Communication services, the Memory Management
module and the Diagnostic module.

The ECU abstraction layer forms a higher level of interfacing with the drivers in the Microcontroller
abstraction layer and include Onboard Device Abstraction, Memory Hardware Abstraction, Commu-
nication Hardware Abstraction and a Input/Output Hardware abstraction.

12

Figure 4.1: Detailed layers of the AUTOSAR architecture.

The Microcontroller Abstraction layer is the lowest level of the Basic Software and includes the ECU
specific drivers and has direct access to the ECU hardware functionality, see Figure 4.1

Due to these layers the internal implementation of the components are independent of the others
as long as they follow the AUTOSAR standardized interfaces. This gives the possibility to develop
components separately, that can work together without the exact knowledge of the others internal
implementations.

Diagnostic Module

The Diagnostic module is placed in the BSW layer, see Figure 4.2, and allows technicians to interact
with the controllers and the software components on-board the vehicle. It allows system information
gathering, system configuration and reprogramming of the ECU software and are implemented
according to the ISO 14229-1 standard, see Section 4.2.
The AUTOSAR diagnostic stack consists of two main modules, the Diagnostic Communication
Manager (DCM) and the Diagnostic Event Manager (DEM), where the DCM manages all diagnostic
communication requests and the configured services of the diagnostic module. The DEM module
records error events from the SW-Cs and is responsible for storing these in the persistent memory.

Diagnostic Communication Manager - The task of the DCM is to handle the communication
between the external diagnostic tool and the diagnostic module inside the ECU. It also implements
the necessary management to control that the communication requests are done in the correct sessions
states of the module, see Figure 4.3.

The DCM communicates using a client-server model where the external tool acts as a client that
sends requests to the ECU that acts as a server, see Figure 4.4. The client is often referred to as the
”tester”.

13

Figure 4.2: The Diagnostic module

The DCM module has three main sessions states [8], the Default Diagnostic Session state, the
Extended Diagnostic Session state and the ECU Programming Session state while communicating
with a tester.

When the vehicle is powered on, the ECU will enter the Default Diagnostic Session state where it
is idle and listens for requests. When the DCM receives a connection from a technician and the
diagnostic tool, the DCM enter the Extended Diagnostic session state where it is ready to respond to
client requests. When an ECU Programming Session is requested, the DCM transits into the third
state, where the software can be reprogrammed and updated.

Figure 4.3: DCM session states

To communicate the DCM uses the ISO 14229-1 diagnostic protocol standard (see Section 4.2), where
the use of Service Id:s (SID), Sub-Service Id:s and Data Identifiers (DID) are implemented to send
the incoming diagnostic calls to the correct software components in the Application layer. The
communication uses a request-response approach where the tester asks the DCM for information by
sending a request and then get a response including the requested information.

The diagnostic tool uses predefined SIDs that are stated by the standard [16] to start the desired
service, see Table 4.1. A diagnostic request of reading information from a DID could look like this:
1. The client sends a Service Id followed by the number of the wanted DID.
2. The ECU responds with a message containing the specified information.
See Figure 4.5.

14

Figure 4.4: Client Server Communication

Figure 4.5: Communication of a ReadDataByIdentifier request and the response

4.2 ISO standards for vehicle diagnostic

The International Standard Organisation (ISO) is a non-governmental organization that develops
and forms world wide used standards [13]. ISO has developed and is still developing standards such
as 14229-1, 15765 and 15764 that aim to standardize the technical development inside the vehicle
industry.

ISO 14229-1 Road vehicles - Unified diagnostic services (UDS)

ISO 14229-1 [16] is a standard that defines the automotive diagnostic services in road vehicles. The
standard defines a protocol stating how to communicate with the DCM inside an ECU in a vehicle.
The standard provides detailed information about the protocol when modifying, programming or

15

Service Identifier Service Name Description

0x10 DiagnosticSessionControl Used for switching between
Default-, Extended and ECU
Programming Session.

0x11 EcuReset Used to reset the ECU.

0x14 ClearDiagnosticInformation Clear the diagnostic informa-
tion stored in the ECU mem-
ory.

0x19 ReadDTCInformation Used to read the diagnostic
trouble codes.

0x22 ReadDataByIdentifier Read information stored in the
ECU using a Data identifier.

0x24 ReadScalingDataByIdentifier Used to read the scaling infor-
mation of a Data identifier.

0x27 SecurityAccess Used to access security levels.

0x2A ReadDataByPeriodicIdentifier Used when Data identifier
data want to be read perido-
cally.

0x2C DynamicallyDefineDataIdentifier Is used together with 0x22 to
read multiple Did data in one
time.

0x2E WriteDataByIdentifier To write data to a specific Did.

0x2F InputOutputControlByIdentifier Control the input output.

0x31 RoutineControl Used to start, stop or return
the value of a routine.

0x3E TesterPresent Is used to keep a none-default
session active

0x85 ControlDtcSetting Opens or close DTC record

Table 4.1: List of known service IDs.

reprogramming the ECUs firmware.

ISO 15765 Diagnostic communication over Controller Area Network (DoCAN)

ISO 15765 specifies the transport protocol and the network layer services, when communicating over
CAN, and has been defined in accordance with the diagnostic standard defined in ISO 14229[17].

16

5 Threat modeling

A threat model of the system (see Section 6.1) was set up in Microsoft Threat Modeling Tool 2014
[36]. The test environment was abstracted to be viewed as a generic process and data store modeling
the ECU and RAM. A laptop running diagnostic tests acted as the Tester entity in Figure 5.1. From
the generated report a Microsoft Excel file was created in which the different threats were ranked
based on their severity, according to the HEAVENS security model (see Section 3.1). The result can
be seen in Table 5.1, which includes the threats identified by the modeling tool. Since the tool is not
specialized for embedded systems a number of non-applicable threats have been removed from the
table, and some threats that were not identified by the tool have been added.

Risk assessment is a subjective process in which the threat and impact levels must be decided upon.
The above threat model and risk assessment is done assuming that the ECU under assessment is an
engine control ECU, but threat analysis and risk assessment needs to be done for every ECU in the
entire system. This leads to that the threats concerning information disclosure will not be as severe
as the threats concerning tampering or elevation of privilege. It also results in that the impact level
regarding safety can reach the higher levels. This would not be the case if the risk assessment was
done on some other ECU e.g. the climate control, or the ECU in control of the electrical window
elevators.

The abstraction chosen in this thesis allows for viewing the engine control unit with corresponding
diagnostic communication as three parts, the ECU, the tester, and the diagnostic communication
between the two. A common thing for every threat listed in Table 5.1 is that an adversary would
need access to some restricted information to mount an attack, especially contents in ISO 14229 [16],
but the adversary would not require any specialized equipment.

Figure 5.1: Model created in Microsoft Threat Modeling Tool 2014

17

5.1 Diagnostic communication

There are three threats linked to the diagnostic communication: information disclosure, denial of
service, and tampering.

Information disclosure From the risk assessment done, it can be seen that information disclosure
from the diagnostic communication does not pose a serious risk, even though an adversary does not
need any particular skills or non-standard equipment. It receives such a low security level because of
the low impact levels, there are no impacts to either safety, privacy, financial, nor operational categories.

Tampering The tampering threat receives a higher security level. The tampering of the diagnostics
communication might result in changed engine control parameters that can lead to involuntarily
acceleration or other consequences of that sort. Involuntary acceleration can of course lead to safety
issues, it might lead to legislative issues for the stakeholders, and it of course can lead to a high
operational impact since the driver might lose control of the vehicle.

Denial of service Denial of service of the diagnostic communication could be done by cutting
cables, which means that no expertise is necessary for an adversary realize the threat. It would most
likely not result in any impact on safety, but it could result in damage to the vehicle. Assume for
example that no error messages are shown when oil level was low for a long period of time without
any stakeholders knowledge.

5.2 ECU

Five threats are connected to the ECU asset.

Denial of service Denial of service of the ECU results in a high security level. Having the engine
control ECU unreachable might lead to the vehicle stopping in unsuitable places and could potentially
lead to minor injuries. The operational impact level however is set to high since the engine control
will no longer work. The security level reaches a high level since an adversary does not require any
specific expertise to realize this threat.

Elevation of privilege A threat concerning elevation of privilege has been identified and ranked
high on the security level scale. If an adversary were to gain elevated privileges on the engine control
ECU we would see impacts similar to that of the tampering with the diagnostics communication were
the adversary could potentially modify engine control parameters resulting in unwanted behaviour of
the vehicle and potential harm to persons in and around it.

Information disclosure The information disclosure threat on the ECU asset does not pose any
particular risk, it receives a low security level rating. It would most likely not result in any injuries or
have any operational impact.

18

Tampering Tampering with the engine control ECU would require expert knowledge, and includes
reprogramming it. If successful, the results would be similar to the tampering of diagnostic communi-
cation, with severe injuries and high operational impact. It could also potentially lead to legislative
repercussions for the stakeholders and therefore also have financial impact.

Spoofing Spoofing the ECU into thinking the adversary is a legitimate tester could potentially
allow the adversary to change engine control parameters. This would have similar impact to tam-
pering with the ECU, or gaining elevated privileges, resulting in severe injuries and operational impact.

5.3 Tester

Only one threat was identified against the tester asset. Spoofing the tester into thinking the adversary
is the engine control ECU would most likely not result in any injuries or have an operational impact,
but could potentially have legislative and financial impact since measurements from the engine could
be faked.

5.4 Security requirements

Assets with special security requirements can be identified from Table 5.1. In this specific case each
asset in the system has need of special security requirements, since each asset has at least one threat
resulting in a higher than Quality Management (QM) security level [21].
Since this is just a conceptual evaluation, it should be tested in practice as well to see if the threats
and risks have been assessed correctly. To do this, a number of tests have been designed, and executed
(see Chapter 6).

19

T
h

re
at

le
v
el

Im
p

a
ct

le
v
el

A
ss

e
t

T
h

re
a
t

S
e
c
u

ri
ty

L
e
v
e
l

E
x
p

e
rt

is
e

W
in

d
o
w

o
f

o
p

p
o
r-

tu
n

it
y

K
n

o
w

le
d

g
e

a
b

o
u

t
T

O
E

E
q
u

ip
m

e
n
t

S
a
fe

ty
P

ri
v
a
c
y

&
L

e
g
is

la
-

ti
o
n

F
in

a
n

c
ia

l
O

p
e
ra

ti
o
n

a
l

D
ia

g
n

o
st

ic
C

o
m

m
u

n
i-

ca
ti

o
n

In
fo

rm
a
ti

o
n

D
is

cl
o
su

re
Q

M
L

ay
m

an
M

ed
iu

m
R

es
tr

ic
te

d
S

ta
n

d
a
rd

N
o

in
ju

ri
es

N
o

im
p

a
ct

N
o

im
p

a
ct

N
o

im
p

a
ct

D
ia

g
n

o
st

ic
C

o
m

m
u

n
i-

ca
ti

o
n

T
a
m

p
er

in
g

M
ed

iu
m

L
ay

m
an

L
ow

R
es

tr
ic

te
d

S
ta

n
d

a
rd

S
ev

er
e

an
d

li
fe

-
th

re
a
te

n
in

g
in

-
ju

ri
es

(s
u

rv
iv

a
l

p
ro

b
a
b

le
)

M
ed

iu
m

L
ow

H
ig

h

D
ia

g
n

o
st

ic
C

o
m

m
u

n
i-

ca
ti

o
n

D
en

ia
l

o
f

S
er

v
ic

e
H

ig
h

L
ay

m
an

M
ed

iu
m

R
es

tr
ic

te
d

S
ta

n
d

a
rd

N
o

in
ju

ri
es

M
ed

iu
m

L
ow

H
ig

h

E
C

U
D

en
ia

l
o
f

S
er

v
ic

e
H

ig
h

L
ay

m
an

M
ed

iu
m

R
es

tr
ic

te
d

S
ta

n
d

a
rd

L
ig

h
t

an
d

m
o
d
-

er
at

e
in

ju
ri

es
L

ow
L

ow
H

ig
h

E
C

U
E

le
va

ti
on

of
P

ri
v
il

eg
e

H
ig

h
P

ro
fi

ci
en

t
M

ed
iu

m
R

es
tr

ic
te

d
S

ta
n

d
a
rd

S
ev

er
e

an
d

li
fe

-
th

re
a
te

n
in

g
in

-
ju

ri
es

(s
u

rv
iv

a
l

p
ro

b
a
b

le
)

M
ed

iu
m

M
ed

iu
m

H
ig

h

E
C

U
In

fo
rm

a
ti

o
n

D
is

cl
o
su

re
L

ow
L

ay
m

an
M

ed
iu

m
R

es
tr

ic
te

d
S

ta
n

d
a
rd

N
o

in
ju

ri
es

L
ow

N
o

im
p

a
ct

N
o

im
p

a
ct

E
C

U
T

a
m

p
er

in
g

M
ed

iu
m

E
x
p

er
t

M
ed

iu
m

R
es

tr
ic

te
d

S
ta

n
d

a
rd

S
ev

er
e

an
d

li
fe

-
th

re
a
te

n
in

g
in

-
ju

ri
es

(s
u

rv
iv

a
l

p
ro

b
a
b

le
)

M
ed

iu
m

M
ed

iu
m

H
ig

h

E
C

U
S

p
o
o
fi

n
g

N
/
A

P
ro

fi
ci

en
t

M
ed

iu
m

R
es

tr
ic

te
d

S
ta

n
d

a
rd

S
ev

er
e

an
d

li
fe

-
th

re
a
te

n
in

g
in

-
ju

ri
es

(s
u

rv
iv

a
l

p
ro

b
a
b

le
)

M
ed

iu
m

M
ed

iu
m

H
ig

h

T
es

te
r

S
p

o
o
fi

n
g

H
ig

h
P

ro
fi

ci
en

t
M

ed
iu

m
R

es
tr

ic
te

d
S

ta
n

d
a
rd

N
o

in
ju

ri
es

M
ed

iu
m

M
ed

iu
m

N
o

im
p

a
ct

T
ab

le
5
.1

:
T

h
re

at
s

id
en

ti
fi

ed
b
y

th
e

th
re

at
m

o
d

el
in

g
to

ol
a
n

d
ri

sk
s

as
se

ss
ed

.

20

6 Security Tests

This section describes the tests that were done in this thesis work to evaluate if a system is vulnerable to
different security threats and to see what information an attacker performing similar attacks could gain.

The test are describe here and the test results are described in Section 7. The outcome of the test are
further described in Section 8.

The security evaluation tests were conducted on two systems. The first system was an evaluation
board running AUTOSAR 4.1.1 where we configured and implemented the running services that
constitute the complete DCM system. This gave us the advantage of possessing all information about
the system. The second test system was a part of an existing production system. This system gave us
the ability to evaluate the security of a real system that is used in vehicles today.

The tests to evaluate the security vulnerabilities of the DCM module in the different systems are
performed using two approaches. On the evaluation board the tests were conducted in a white-box
environment (see Section 3.2). The production system could be seen as a grey-box system (Section
3.2) due to that it complied to the ISO 14229-1 standard [16], which means that some information
about how it would respond was already known.

The security tests are divided according to three root goals of an adversary extracted from the threat
modeling, see Section 5. The Information Disclosure / System Reconniassance, the Tampering of ECU
software and Denial of Service goal. How the tests are related to the adversary goals are described
and graphically shown in the following section, see Section 6.2 regarding attack trees.

6.1 Experimental Environment

The tests were created and written as Python scripts, that were run on a standard PC connected
to the test systems CAN bus interfaces. The CAN bus traffic was monitored by a second PC using
BUSMASTER v2.6.0 [5]. The PCs were connected to the CAN bus using a CAN-Case [6] and a
PEAK-CAN [29] ”CAN bus to USB” converter (see Figure 6.1).
The two test environments are described below.

Evaluation board environment

This environment consisted of a VK-EVB-M3 evaluation board developed by ArcCore [3] running
ArcCores open source implementation of AUTOSAR 4.1 (see Section 4.1), ArcticCore v7.0.0 [2]. The
DCM implementation was done according to ISO 14229-1 [16]. The boards AUTOSAR implementation
was configured using ArcticStudio [1], and winIDEA Open [44] was used for the programing and the
debugging of the hardware.

Production system environment

The production system consisted of a fully running system that was mounted in a lab environment
for live testing of new software. The system consisted of an ECU that was connected to a diagnostic
client that could run diagnostic test sessions towards the DCM module. To generate an environment
that represented the environment of an adversary as realistically as possible, access to the diagnostic
client was not allowed during the security testing.

21

Figure 6.1: Laptop connected to the evaluation board from ArcCore, using a PEAK CAN to USB
adapter.

22

6.2 Attack Trees

In this section, attack trees based on the results from the threat modeling of the system are introduced,
see Chapter 5. The attack trees gives a graphical representation of possible sequences of events that
can be implemented by an adversary to achieve the root goal of an attack [35]. At the root of the
trees the main goals of the adversary are placed, then the trees branches shows possible attack vectors
to achieve it. At the bottom of the tree the leafs represent possible footholds for the adversary. These
footholds are presented as security tests and has been performed throughout this thesis work. The
tests are described in the following sections, see Sections 6.3, 6.4, 6.5.

6.2.1 Information Disclosure / System Reconnaissance

This attack tree represent the goal of an adversary trying to retrieve initial information of the system.
Getting a view of the configured system is a top priority for an adversary to make qualified attacks
and discover vulnerabilities present in the system. This attack tree contains three adverse actions
that an adversary can attempt to gain information about the DCM module, see Figure 6.4. Each
of the actions can be used separately to disclose partial information, or can be combined to get an
almost complete view of the system. The leaves contains four security tests to address the information
disclosure threat. The tests are further described in Sections 6.3.1, 6.3.2, 6.3.3.

6.2.2 Tampering of ECU Software

The attack tree of this threat includes two main attack vectors that the adversary can use to tamper
with the ECU software, see Figure 6.3. The first vector is the left branch where the software upload
of new content is performed, and the second vector is the right branch where an adversary is able
to modify the memory of the ECU. At the bottom of the tree the adverse action to be able to
compromise the software are placed. The adversary’s action leafs are implemented as security tests,
and are described in Sections 6.4.1, 6.4.2, 6.4.3, 6.4.4, 6.4.5.

6.2.3 Denial of Service

The Denial of Service threat resulted in a attack tree including two branches. The first branch
includes the possibility for an adversary to flood the DCM module, and the other branch covers the
possibility to send invalidly formed messages that could potentially result in that the module end
up in an unresponsive state. In the first branch an adversary starts by getting information about
the request handling rate of the DCM module, see Section 6.3.5. The information is then used to
perform a flooding attack, see Section 6.5.4. At the bottom of the second branch the adverse actions
is performed through two fuzzing tests, see Section 6.5.2, 6.5.3.

6.3 Information Disclosure / System Reconnaissance Test

This section describes the test derived from the bottom of the Information Disclosure / System
Reconnaissance attack tree adversary actions. It describe how the test was performed in this thesis to
achieve the root goal at the top of the tree.

6.3.1 System Scan

The scan test is built in three steps, the service identifier-, the sub-service/data identifier- and the
input size step. The test takes advantage of the response codes that are specified in ISO 14229-1.

23

Figure 6.2: Attack tree of Information Disclosure and System Reconnaissance threat

24

Figure 6.3: Attack tree for Compromising the ECU Software

25

Figure 6.4: Attack tree of the Denial of Service threat

26

In the first step the test sends messages with all possible service ID numbers, the test is then able to
verify if the service is present in the system or not depending on the response.
In the second step the test uses information from step one to scan the running services for possible data
identifiers. The scan sends messages with all possible data identifiers to the services and categorizes
the data identifiers in three categories:

• Present

• Present but not available in current security/session level

• Not present

In the final step of the test, different lengths of input is sent to each found data identifier and the
request depending on the service to find the expected length. The scan outputs a list of present
services, their associated DIDs and the input length. The list can be seen as a mapping of the DCM
structure and can be used as input to the Intelligent Fuzzing test.

6.3.2 System Probing

The DCM module in each of the ECU:s has an identification number that acts as an address for
communicating. The ISO 15765-1 states that the address of a module is a number between 0 and 2047.
This test aims to find the identification number of the DCM module, that is used to communicate, by
probing the system [26]. The test is conducted by sending a DCM requested message towards all the
possible identification numbers in the system. If the test detects a proper DCM response message the
test logs the identification number and alerts the tester that a possible DCM module has been detected.

6.3.3 Packet sniffing

This test is used to find information about the system architecture and how the system is commu-
nicating. It aims to find the identification numbers of the running modules and components of the
system. This test is a compliment to the previous test 6.3.2 to find the identification number that the
DCM module listens to during communication and how other non-DCM modules are addressed.

The test is conducted by connecting a node to the network that listens to the communication traffic
for DCM requests/responses and record the ID number used.
Since the communication in vehicles today is unencrypted the test can also be used to find sensitive
information such as seed/key pairs that are used to unlock security levels.

6.3.4 Restricted Memory Address scan

This test aims to find out information about memory sections that are restricted for reading without
security access. If an area is restricted it can potentially contain the security access key, and could
maybe be read if the binary file of the ECU could be extracted.

6.3.5 Message handling rate

This test aims to gather information about the DCMs ability to handle messages that are received
at an unusual rate. The test sends 100 valid requests to the DCM at different rates. The rate is
changed using different delays between sending each request. By counting the responses received the
test calculates the number of requests the DCM has dropped or has been unable to handle. The test
changes the delays from a zero millisecond delay up until it reaches a delay where all request receives

27

a response. The test runs the test cycle three times to verify the result.

6.4 Tampering of ECU Software Test

This section describes the test performed to gain the access to tamper with the software inside the
ECU. The test are derived from the entry point leafs at the bottom of each attack vector in the tree,
see Figure 6.3.

6.4.1 Man In The Middle

The Man in the Middle test [22] is a well known spoofing attack in the computer security field. In the
attack an adversary places itself between two or more nodes and pretends to be the other part of
the communication. This test is based on the same approach, where an undetectable malicious node
is connected to the communication network that can control the traffic between the DCM and the
legitimate client. The test aims to evaluate the possibility of client spoofing and alteration of request
messages on the way between the test client and the server.

The test was conducted by placing a PC between the TOE node and the test client. The computer
forwards all traffic to and from the node until certain conditions are met. When the condition is met
the computer can block all traffic from the client and start communicating with the node acting as
the legitimate client and gain elevated privileges.

6.4.2 Brute force security access key

This test aims to test the size of the key use to unlock the security access. The security access protocol
allows 5 failed key tries before invoking a time penalty of 10 seconds. To reduce the brute force time
the test abuses the ECU hard reset service to bypass the penalty time. A hard reset takes about
1 second, therefore it reduces the time it takes by a factor of 10. The test can only be used if it
can be determined that the key is fixed and will not change during the time it takes to complete the test.

6.4.3 Seed/Key Sniffing

This test aims to listen to legitimate traffic in the CAN network. Specifically looking for diagnostic
messages requesting security access using seeds and keys. The test builds a database of seeds and
the corresponding keys that can later be used to be granted elevated privileges. After building the
database it starts sending frames to the DCM requesting seeds until it receives one it has seen before,
and can then send the corresponding key and be granted elevated privileges.

6.4.4 Seed Entropy

This test is aimed to test the entropy of the seed algorithm in the SecurityAccess service of the
DCM. The test is sending a request seed message to the SecurityAccess that is responding with a
legitimate seed response. The seed is stored and the tests send a new request seed message. The test
can run until a seed collision is detected, and can then analyze the seeds to find a pattern in their
generation.

28

6.4.5 Restricted Memory Address Write

This test is implemented to check the possibility of writing data to restricted parts of the ECUs
memory. The test is performed by first finding an unrestricted memory area that allows writing, and
then by using the WriteMemoryByAddress service it tries to write over the boundaries to restricted
areas. Due to that the restricted memory areas still allow reading, the test can read the memory area
it tried to write to and validate if the write was successful or not.

The test is performed in two parts. First the write request has a validly formed message where the
NoB field in the header corresponds to the size of the payload of the request. In the second part, the
test sets the value of the NoB to be inside the memory area that allows writing, but includes a longer
payload.

6.5 Denial of Service Test

In this section the tests performed to achieve the root goal of a Denial of Service attack are described.

6.5.1 Fuzzing based Security Tests

The tests in this section are based on fuzzing [38], where packets with random or partially ran-
dom data are sent to the DCM. This approach can be applied to all modules inside the ECU and
is a good way to retrieve information about implementation flaws and system behaviour. Fuzzing
can also be of use to get a view of the system and the services implemented inside the diagnostic module.

The tests are constructed in a way that makes it possible to retrieve information from an unknown
system and to identify possible vulnerabilities and attack surfaces.

6.5.2 Random Fuzzing

This test is constructed to check the request input validation of the DCM module, where incorrectly
formed request should be disregarded and dropped. The test retrieves information if it is possible to
set the system in a non responsive state by sending special formed requests.

The test is performed in two parts. In the first part the test is performed using a fixed payload, where
all bytes has the value of 0xFF (the value is insignificant and could be any value between 0x00 and
0xFF). In the second part, the bytes in the payload have a random value.

The test is done in three steps, where each step tests different variant of incorrectly formed requests.

In the first step the test checks the validation of DCM request of unexpected length, such as very
long or very short sized requests. The standard request message has the length of 4-8 bytes, the
test uses different lengths varying between 0 and 255 bytes long. The first step sends a valid sized
DCM message where the numberOfBytes (NoB) field correctly corresponds to the length of the payload.

Step 1 message example:

[NoB, Payload]

(NoB == Payload size)

29

In the second step the test check the validation of request messages that has longer or shorter payload
then stated in the NoB field. In this step the test sets that the message length is between 0 and 255
bytes long and create a payload length different from that.

Step 2 message example:

[NoB, Payload]

(NoB != Payload size)

The third step of the test sets the NoB to a fixed size value and change the payload length between 0
and 1000 bytes long.

Step 3 message example:

[0x07, 0xFF,...,0xFF]

(NoB = 7, Payload size = range(0,1000))

The steps are repeated in the second part but using random values for the payload.

All the steps follow the flowchart, see Figure 6.5, where the test starts by creating a reference answer
by sending a valid message and storing the response. Next, a message is created according to the test
parameters of each test setup and sent to the DCM, the test then waits for a response for 5 seconds
before timing out. If a timeout occurs the test logs the crash and alerts the penetration tester. If a
response is received the test sends the reference message and compares the corresponding response to
the reference answer. If the responses differ the test logs the result and restart. Each test consists of
500 000 different messages.

6.5.3 Intelligent Fuzzing

This test sends arbitrarily long messages to known services running in the DCM. The test checks
how the running services handle invalid diagnostic messages. The test is applied when the running
services are known or as an additional step to the System Scan test (see Section 6.3.1) where the
services and input sizes are revealed.

The test works in the same way as the Random Fuzzing test but with a more specified target for the
messages that are being sent.

Example:
If the DCM is running the services in Table 6.1 the test creates fuzzing messages according to the
same steps in the Random Fuzzing test but with the focus on the Service Id numbers of the specific
services.

The test is a more intelligent fuzzing test where the scope is focused to known services and input
sizes. The test controls the input validation of the services running on the system.

6.5.4 Flooding

This test aims to test the DCM modules ability to handle abnormal amounts of messages and see if it
is vulnerable to flooding attacks [18]. The test is conducted by sending a large amount of messages

30

Figure 6.5: Flowchart for steps one through six.

31

Service Input size

DiagnosticSessionControl 1 byte

EcuReset 1 byte

ReadDataByIdentifier 2 bytes

ReadMemoryByAddress >3 bytes

SecurityAccess 4 byte

WriteDataByIdentifier 2 bytes

WriteMemoryByAddress >3 bytes

Table 6.1: Example services and their input size.

from one test client while sending valid service requests from a second client. The test then analyzes
if the second client receives any responses on the sent requests.

32

7 Results and test evaluations

This section includes a presentation of the results from the tests described in Section 6. What the
test results can be used for as an adversary and possible countermeasures will be discussed in Section
8. The results are evaluated for the two different test environments described in Section 6.

7.1 Information Disclosure / System Reconnaissance

7.1.1 System Scan

The scanning experiments were successful and found all enabled services and available DIDs as well
as their respective data lengths. On the evaluation board the results could be confirmed since it was
a white-box system. This gives confidence that the results from the production system also included
every service present.

In the production system environment the scan resulted in an complete view of the DCM module
configuration running. The scan was able to report all running services including the implemented
subfunctions and corresponding data identifiers. The scan discovered the specified input length of all
reachable services. The scan reported that some subfuctions and data identifiers were placed behind
a higher security level and were therefore not reachable at the default security level.

7.1.2 System Probing

The probing of the system was successful and was able to find the correct identification number of
the DCM module in both of the test systems. The test also recorded the identification number of the
response messages successfully in the systems.

7.1.3 Packet sniffing

Sniffing the CAN traffic allowed for the identification of the DCMs arbitration ID. Sniffing was done
on both a production system and an evaluation board.

In the production system the test resulted in a clear view of what nodes were communicating on the
CAN bus. Identifying the arbitration ID of the DCM was only a matter of recognizing a frame as a
diagnostics message. In this case a TesterPresent message was found, and the DCMs arbitration ID
could be identified by manually looking at the CAN traffic using the BusMaster logging software.

The evaluation board did not communicate externally, and therefore there were no packets to sniff.

7.1.4 Restricted Memory Address scan

This test could not be performed on the evaluation board due to that the ReadMemoryByAddress

service was not configured on the evaluation board.

In the production environment the test showed that it was possible to scan the memory that is
reachable of the DCM module. It showed that it was possible to read all data in RAM but not
possible to write without having the right security access level.

33

7.1.5 Message handling rate

This test gave information about the rate at which the DCM module was able to handle requests. On
the evaluation board the DCM module was able to respond and act on requests every 20 milliseconds
and on the production system the DCM was able to handle requests every 10 milliseconds. The test
also discovered that if messages were sent to the evaluation board with no delay in between, the
system crashed after a small amount of time and did not recover without a complete reset. The
production system was not negatively affected by the huge number of messages.

7.2 Tampering of ECU Software

7.2.1 Man In The Middle

The Man In The Middle test showed that it was possible to connect a malicious node inside the
system and record the message received from the legitimate client and manipulate the payload before
redirecting it to the DCM module without detection. The results was equal in both the evaluation
environment and the production environment.

7.2.2 Brute force security access key

The test showed that the security access key could not be discovered by a brute force test within a
reasonable time if the key length is 4 bytes or longer. The test could only try two keys every second
due to communication delays. And the brute force technique is only applicable if the access key stays
the same during the entire test. In the production system the test could not be applied due to that
the security key algorithm was implemented in such a way that a new key was used after each reset.

7.2.3 Seed/Key sniffing

The sniffing test was done on an ECU ready for production. The test was able to pick up seven
seed/key pairs while sniffing the traffic of the system. It was also able to retrieve information about
the seed sized used in the system, in this system a seed size of 4 bytes was used. They were stored
in a database before the test started to request seeds. Within just 5 minutes a match was found,
allowing other scripts to write to any address in RAM.

There was no security access implementation ready on the evaluation board which made it impossible
to run the test on that specific system.

7.2.4 Seed Entropy

This test was only available to be performed in the production system environment. The SecurityAccess
service in the evaluation board was not configured to use a seed/key algorithm and we did not have
the knowledge to implement the service.

The result in the production system showed that it was possible to find a seed collision and to retrieve
all possible seeds in 15 minutes. The test also resulted that it was possible to manually analyse the
list of seeds and find the seed generation algorithm.

34

7.2.5 Restricted Memory Address Write

This test showed that both evaluation environment and the production environment were able to
validate the messages and therefore nullify the possibility to write to the restricted parts of the
memory using the WriteMemoryByAddress service.

7.3 Denial of Service

7.3.1 Random Fuzzing

The Random fuzzing test is a tool to allow a security evaluator to test the robustness of the TOE. In
the tests made the results differed depending on what system being tested.

Testing the evaluation board resulted in two major discoveries. The first was that when the system
received more than 30 000 messages the entire system crashed and stopped responding to requests,
not only the DCM. The second discovery was that when the system received a valid service message
requesting a reading of a DID longer than 16 bytes, the DCM stopped working. In neither of the
cases the system recovered to a running state.

The test was conducted on the production system by sending over 3 million requests. The results
showed that the system was able to validate and discard the invalid requests out of all of the requests
sent. The test showed that the system is not vulnerable to random messages that exceed boundaries
and that it performs input validation.

The Random Fuzzing test showed that the configurations of both test environments give a high
protection against invalid request that is sent to the systems. The test also showed how important
message validation is, as could be seen in the first test when the evaluation system completely stopped
working when a specific request was sent.

7.3.2 Intelligent Fuzzing

This test was preformed on both of the systems after running the System Scan test, where the services
running on each of the systems was revealed. This information was then used as input for this test.
In the evaluation board environment we also had knowledge about what services the DCM module
was running, and could therefore verify the result.

When running the test on the evaluation board a limit had to be put in place so that the system would
not crash from receiving more than 30 000 messages, the limit found in the Random Fuzzing test. The
test showed that the system could single out the invalid messages and exclude the processing of these re-
quests. The test showed the same results as we could see in Random Fuzzing test, that the DCM module
stopped working when valid message was sent to service that requested a response longer than 16 bytes.

In the production system the intelligent fuzzing gave the same result as in Random Fuzzing test, the
system was able to discard invalid or unexpected requests.

7.3.3 Flooding

The DCM was successfully flooded when sending messages at higher rates than it could handle
(identified in the Message handling rate test). Legitimate traffic to the DCM was unable to get
responses from the DCM since it was busy handling the bogus traffic sent to flood it. Additionally,

35

the evaluation board crashed when receiving messages at a high rate and was unable to recover to a
working state.

36

8 Discussion and countermeasures

This section includes discussions and suggestions of countermeasures for each of the performed tests.
The countermeasures discussed are meant to help securing a system running in a production system
environment. At the end of the chapter a general discussion is presented that covers the overall
security of the DCM module. It also includes a general way to counter the vulnerabilities of the
system.

8.1 Information Disclosure / System Reconnaissance

8.1.1 System Scan

This test collects information about the target of evaluation and gets a view of the systems config-
uration. The test can be compared to a server scan in the web domain where the goal is to find
information of the running services and the server configurations. When a clear picture of the DCM
module has been collected an adversary can start to look for vulnerabilities in a structured way.
Many of the tests performed in this report build upon knowledge collected through this test. The
test can also be a tool for developers to verify that the target system is configured according to the
specifications. It can also help security evaluation of the system by revealing if any old services that
was used under development has been left in.

The System Scan test uses the ISO 14229-1 standard and that the DCM responds with specific error
responses depending on how the services, sub-services and input lengths are configured.

The scan can be hard to counter, as explained in the previous section the communication can be
encrypted and require authentication, but this can be computationally heavy and can be hard to
implement on all traffic and still cope with the real time demands of the system tasks. To cope with
this information leakage the developer can use this test and learn what the adversary might find out
and prevent possible threats through that. This information leakage can be mitigated by having
the DCM not responding unless the tester/client has been authenticated in some way. The system
would then ignore to reply with the negative return codes found in ISO 14229-1 unless the client
has been validated. The system could comply with the standard when the client has authenticated itself.

The test can easily be modified to scan other parts of the AUTOSAR system and not only the DCM
module that was scanned in this thesis. In this way an even larger picture of the internal system can
be revealed.

8.1.2 System Probing

System probing is the first test used to gain information of a system when the adversary has minimal
knowledge about the software architecture. By probing the system the adversary can not only find
information about the ID of the DCM module, but could also be able to find other interesting ID
numbers. This test could also be used to find components that should not be present when the system
is deployed in production.

The difference between this test and the System Scan is that this test finds arbitration ID numbers
(belonging to for example SW-Cs and specific ECUs), and the System Scan finds services available in
the DCM.

37

This test does however require some working knowledge about automotive systems, otherwise it would
be more like a fuzzing test only sending random messages.

8.1.3 Packet sniffing

The test gives a clear view of what an adversary can see and what information can be discovered from
only listening to the communication. To an adversary with knowledge of the automotive systems the
test can supply information about what nodes are connected and how they are communicating on the
network. The test can very quickly discover the node IDs used.

Packet sniffing can also be very useful for an adversary due to the fact that the system communication
is in plain text and that the test can log secret seed/key communication. If the seed and the key can
be reused, the adversary can use the information to mount an impersonation attack.

To mitigate the possibility of packet sniffing a solution would be to encrypt all communication sent
on the network.

8.1.4 Restricted Memory Address scan

The memory address space of the DCM is laid out according to the locality principle, meaning that the
memory used by the DCM is continuous in the RAM. With this test it is possible to find information
of accessible, writable, memory areas. If the test reveals that some memory addresses can be accessed
without extra security privileges, the adversary can try to exploit this in different ways. An adversary
can use an accessible memory address to start a writing session and attempt to write over the
allowed memory space and continue writing into restricted areas. The adversary could also exploit the
possibility that the open memory area could contain sensitive data that is used by services in the DCM.

This test can also be a tool for developers to test that the memory accessibility works as it is expected
before deploying the system.

8.1.5 Message handling rate

The message handling rate test gets information about at what rate requests can be managed. The
test reveals information that can be used in further security tests, such as the flooding test or a
system stability test. The results from the two test environments show that the evaluation board was
configured to handle messages at a rate of one request every 20 milliseconds. The tested production
system was configured to handle a request every 10 milliseconds. The test also showed that the
evaluation board crashed and did not recover when messages were sent without any delay and that
the production system was able to handle it without crashing. The production system might have an
upper limit unreachable by the test setup used in this project.

8.2 Tampering of ECU Software

8.2.1 Man In The Middle

This test reveals one of the most severe threats based on the result. Due to the problem of unau-
thenticated plain text communication inside the vehicle an adversary could place itself on the bus
between a legitimate client and the targeted DCM module. The adversary can in this way decide what
information should be sent to and from the DCM. The adversary can thereby change or block requests
and responses that are being sent to and from the DCM. Due to the nature of the CAN bus, the

38

SecurityAccess service unlocks privileges for the entire bus and not only for the client that performs
a valid authentication session, the adversary can take over the bus when the privileges are unlocked.
This makes it possible for an adversary to connect to the CAN bus network, not only as a man in
the middle, and wait for the security authentication is performed before taking over the communication.

After the authentication is complete an adversary can record the data transferred during a repro-
gramming session and replay the programming session in another vehicle and yield the same result.
For example to unlock higher performance of the engine and only paying for one vehicle.

For an adversary with previous knowledge about ECU programming and the expertise to program
their own software component, the system can be severely vulnerable to both security and safety
threats. An adversary able to add new software components could for example add a trojan that
triggers under specific conditions, such as a speed over 100 km/h and create a total block of the brake
systems.

This threat can be countered by always using an authentication scheme of the client that ensures that
the client is authorized to perform the changes of the software. It can also be countered by using
encrypted communication while performing a reprogramming session.

8.2.2 Brute force security access key test

This test can be used to check that the system behaves in an expected way when an adversary tries to
guess security access passwords. The test should not be applicable in real production systems where
the security key should depend on a seed key response and not be hardcoded as in the evaluation
board setup used in this project.

A possible scenario could be:
The standard states that a seed/key approach should be used to gain elevated privileges, it also states
that a penalty time should be applied if a number of failed keys has been attempted [16]. The standard
does not state how this should be implemented. This could potentially result in a insecure seed/key
implementation that still is valid according to the standard. If the seed/key algorithm e.g. uses a hard-
coded seed and key pair or a small sized key the implementation could potentially be insecure but valid.

Examples of insecure configurations, but valid according to the ISO standard, could be:

• Key length of less than 4 bytes. The ISO 14229-1 does not state a required length to be
used for the security key. This open the possibility for a valid configuration using a very short
key length. The test concluded that a key length over 4 bytes is desirable, resulting in a brute
force time of over 50 years.

• Key hardcoded and less than 4 bytes. The standard states the Seed/key handshake as
optional. This open the configuration to be implemented using a fixed key that is used to unlock
the security access every time needed, resulting in a valid but insecure implementation.

• Number of failed key attempts before penalty back off time is too high, over 10
tries. The standard does only state that there need to be a back off time penalty after a
number of failed attempts, but not the number of attempts. This open the configuration to be
implemented using a insecure large number of attempts before a penalty is applied, resulting in
a very reduced time to brute force the key.

39

8.2.3 Seed/Key sniffing

This test is a sub-test to the packet sniffing test, but this test only targets the vital part of the security
access session data needed to unlock the security levels. The test looks for and stores the information
as soon as a login session is started by any legitimate client. This information can then be shared in
an adversary community and might lead to a large database of seed/key pairs allowing adversaries to
access the security levels or to reverse engineer the algorithm for computing the key.

8.2.4 Seed Entropy

Since the security access is built as a seed/key challenge response protocol, seed entropy is important.
The security access key responses are limited to 5 tries before applying a penalty time of 10 seconds
making a bruteforce attack on the key hard for an adversary. The seed request does not have a
penalty rule similar to that of the key sending, but instead allows the adversary to request seeds at a
speed only limited by the message handling rate of the DCM. The advantage for an adversary is that
it can request seeds until one matches another previously recorded seed, and the key can be reused.
This makes the the entropy of the seed very important. This test can be a good way to test the seed
entropy of the system before deploying it.

As we could see from the result in Section 7.2.4 a seed collision was found within a few minutes and
by recording the seeds it could quickly be determined that there was no randomness in the seed
generation, making the entropy of the seed to small to be secure. In tested system we found that a
seed size of 4 bytes was used. Implemented using a complete random seed algorithm this could be a
secure entropy size but as it was configured the entropy became just a fraction of the possible entropy
space.

A recommendation for mitigating this vulnerability would be to require that the seed is generated
in a cryptographically secure way, and not through a counter or something of that sort. The stated
security implementations and restrictions for the key should also apply on the seed since they are
dependent on each other.

8.2.5 Restricted Memory Address Write

This test concluded that in both of the test environments the systems were able to detect and protect
against writing to the restricted areas.

This is a required security test to perform before any release of new DCM software. If the test were
to succeed, an adversary would be able to overwrite crucial memory areas that could lead to system
failure. An adversary could possibly be able to upload a secondary boot loader including flash routines
to reprogram the full ECU software.

8.3 Denial of Service

8.3.1 Fuzzing based Security Tests

The fuzzing based tests only control the handling of malformed and invalid request messages and not
the rate at which the DCM handles requests.

40

Random Fuzzing

This test is constructed to reveal weaknesses in the systems input validation. The test is useful
for validating the system before applying it in production. For an adversary the test can reveal
untested input validation and invalidly formed requests that can result in safety and security risks of
the vehicle. The test can be used to complement the intelligent fuzzing test due to that it creates
malformed requests that neither the developer nor the adversary would have thought of to test. Due
to the randomization and the lack of structure when creating requests the test can lead to very long
execution times before giving any results, if there are any. The test does not ensure that even known
vulnerabilities will be found and should be complemented with a more intelligent fuzzing method.

Due to that the test uses the valid communication path with the DCM the test can only be mitigated
by a well tested message validation, as the one implemented in both of the tested systems. To ensure
that the system has a correct boundary control and that the input validation works as expected a
test like this should be applied in all steps of production, when each node DCM is configured and
also when a fully deployed system running multiple nodes is configured.

Intelligent Fuzzing

This test has the same capability as the dumb fuzzing test but with the advantage of being able
to aim the fuzzing towards known services in the system. Since there often are multiple devel-
opers involved when implementing a system this can be a good way for each of the developers
to test their service implementations individually before deploying it to be a part of the full sys-
tem. For an adversary trying to perform this test the knowledge of how the system is configured
and what services are running is important. This information can be collected by the System Scan test.

To protect the system against an adversary able to run this test the same advice as in the Random
Fuzzing test should be applied here.

8.3.2 Flooding

This test shows that it can be possible to deny communication with the DCM by sending a large
number of requests. The test showed how vulnerable the systems are against blocking legitimate
clients or other nodes from communicating with DCM modules. It also showed that it was possible to
block requests under selected times, such as software update sessions. This can potentially lead to
both safety and security problems.

If a reprogramming session were to take place and a flooding was being performed at the same time,
the reprogramming frames would be blocked out. The scenario of a lost reprogramming session is not
addressed in ISO 14229-1, and since the DCM is configured to suppress positive responses a technician
can believe that a software component has been updated even if the reprogramming was not actually
performed. If the reprogramming was a security patch, the system would still be vulnerable and
could be exploited by an adversary. If flooding can be performed while the vehicle is in motion and
the flooding can result in that a crucial ECUReset request to the DCM was dropped, the safety of
passengers or people close to the vehicle can be affected. According to our contacts in the industry,
there are cases where such ECUReset messages are sent while the vehicle is in motion to force an
ECU into a safe state. If this message was denied the ECU in question could be stuck in a non-safe state.

The flooding problem is hard to mitigate due to the CAN communication structure. The message
structure does not include source information that can be used to exclude a node that sends an unusual
amount of requests. In the case where a communication protocol has source information included, as

41

in the 29 bit extended mode of CAN [32], the attack can be mitigated by using an excluding policy. If
the adversary could be able to change the source identification in the messages the attack would still
be possible and an authentication policy would be preferred instead. To protect against flooding when
communication without identification is used, that is the most common communication protocol in
vehicles and also in our setup, the separation of critical nodes can be used, where the critical nodes are
placed in separate sub-networks. This would make sure that the more easily accessible ECUs for an
attacker, i.e. infotainment and the like, would not be able to deny communication in the more critical
network where for example engine control would reside. The use of a low speed communication bus
where nodes are not able to send messages faster than the DCM module can handle can be one way
of mitigating the problem. A token based communication protocol can be used where all the involved
communicating nodes have their allotted time slot where they are able to send message on the bus.

8.4 ISO 14229

ISO 14229-1 defines how the information flow of the DCM services should be done. The flow to
perform a service execution is divided into three parts, the standardized steps, optional/recommended
steps and the vehicle manufacturer steps. The standardized steps are the only mandatory steps
needed to comply with the standard. Following the standardized steps, the programming of an ECU
will be performed through an insecure session without any authentication or integrity.

If the Optional/recommended step were instead included in the standardized flow, the services would
be implemented more securely.

8.5 Overall Discussion

The tests presented in this report shows that it was possible to find security weaknesses of an
AUTOSAR DCM module. It also shows that even if the security rules of ISO 14229-1 are implemented
in the system it can still be vulnerable to attacks.

Our tests can be expanded to include more tests that explore more and other attack surfaces of the
DCM module. The number of security tests in this report was limited due to the time limit of the
project and the ability to configure the evaluation system to include more services. We decided to
include these tests due to that they all together are in the scope of the possible threats presented in
the threat model.

The tests done in this report was limited to the scope of just embracing the DCM module but could
be adapted to test a more complete set and other modules of the AUTOSAR implementation.

When doing a threat model of a system it is important to have both security experts and experts in
the area in which the system operates present. Otherwise the threat model and risk assessment may
be skewed to be either to lenient or to strict. Having developers with an education in security should
also be preferred since they have knowledge of the most frequent pitfalls.

Today most developers in the automotive industry are encouraged to follow the MISRA-C standard
[7], which has a goal to ”promote best practice in developing safety related electronic systems in road
vehicles and other embedded systems”. Another set of coding guidelines targeting security instead
of safety is the CERT secure coding guidelines. It’s a community driven effort to provide rules and
recommendations to ”eliminate insecure coding practices and undefined behaviours that can lead to

42

exploitable vulnerabilities”.

As presented by Vembar and Holle [40] 43% of the security recommendations in CERT are not covered
in MISRA, 37% of the guidelines are covered, and 1% of the guidelines in CERT are contradicted by
MISRA. The rest of the CERT guidelines are only partially covered by MISRA.

Developers of automotive embedded systems must have guidelines not only for safety, but for security
as well, since vulnerabilities in security will affect safety.

Quantitative security such as threat modeling and risk assessment are very subjective processes. Two
teams assessing the risks of one system may very well come up with different assessments. A research
paper by Verendel [41] concludes that there’s a lack of validation of quantitative methods regarding
security. It does not, however, rule out quantitative processes as inherently lacking, but states that
more empirical validation of such processes would be beneficial.

43

9 Conclusions

This report has shown that it is possible to gain unauthorized access to vital parts of the vehicle’s
embedded system by using common attacks and vulnerabilities found in the computer security domain.
We have shown that some implementations of the AUTOSAR diagnostic basic software module may
be susceptible to denial of service attacks even by adversaries that are new to the automotive setting,
even when the implementations were following the ISO standard. We also discuss the potential risk
that the security vulnerabilities can lead to and how they can endanger safety of the vehicle’s passengers.

A number of the vulnerabilities found in the diagnostic communication manager in this thesis can also
be found in the OWASP Top 10 web security risks from 2013 [28]. OWASP (Open Web Application
Security Project) is an international organization aiming to enable other organizations develop and
maintain web applications that can be trusted, through rigorous security.

The threats from OWASPs Top 10 list that has been identified in our tests are:

• Broken Authentication and Session Management

• Sensitive Data Exposure

The broken authentication management vulnerability was identified in the Seed/Key sniffing test (see
Section 7.2.3). OWASP describes this vulnerability as: ”Credentials can be guessed or overwritten
through weak account management functions”. In this case the Seed/Key algorithm could be guessed
quite easily, which is a direct mapping from the OWASP vulnerability description.

A sensitive data exposure vulnerability was found through the packet sniffing test (see Section
7.1.3). This vulnerability is described as: ”Is any of this data transmitted in clear text, internally or
externally?”. In the setting for this thesis all data is transmitted in clear text, this vulnerability is
clearly present in the system.

We present different possible attack scenarios and show how the tested systems responded to the
different scenarios. We also give examples on how the security vulnerabilities can be mitigated.

By creating attack trees for the three threats identified (see Section 6.2) we have designed a number
of tests that should be done during the development phase of the diagnostic system. The threats
could all be mitigated through the use of encrypted communication and an authentication scheme for
the communication channels. As presented by Kleberger and Olovsson, an IPSec implementation
could counter these security threats if ethernet is used together with the IP stack to communicate
between the nodes inside the future vehicles.

Van Herrewege et al. presents an authentication scheme specifically for CAN they call CANAuth
[39]. The authentication scheme is backwards compatible and can be run on any CAN bus without
modifying existing nodes. However, it does not enable encryption of the communication, and is not
protected against denial of service attacks.

9.1 Future work

This report shows that it is possible to endanger the safety of a vehicle if it is possible to gain access
to its internal communication network. With this knowledge, future work can be done on investigate
the possibility of employing the same security tests from a remote system gaining access via any

44

wireless interface, such as Bluetooth, RFID or WLAN.
We have focused on tests on the internal communcation, but one could imagine tests done more on
hardware, for example analysing a binary file extracted from JTAG.
It could also be an interesting project to implement some security mechanisms that counter the
threats and vulnerabilities found in this thesis. For example a project could be to implement some
cryptographic authentication scheme similar to IPSec for the CAN bus.

45

References

[1] ArcCore. Arctic Studio. Feb. 2015. url: http://www.arccore.com/products/arctic-

studio/.
[2] ArcCore. ArcticCore v.7.0.0. May 2015. url: http://www.arccore.com/products/arctic-

core/arctic-core-for-autosar-4-x/.
[3] ArcCore. VK-EVB-M3 Evaluation board. May 2015. url: http://www.arccore.com/products/

vk-evb/vk-evb-m3/.
[4] S. Bayer et al. Automotive Security Testing - The Digital Crash Test.
[5] BUSMASTER homepage. Feb. 2015. url: http://rbei-etas.github.io/busmaster/.
[6] CAN-Case homepage. Feb. 2015. url: http://vector.com/vi_cancase_xl_log_en.html.
[7] M. Consortium. MISRA homepage. May 2015. url: http://www.misra-c.com/.
[8] C. K. Deepika, G. Bjyu, and V. S. Vishnu. Implementation of DCM module for AUTOSAR

Version 4.0 (2013).
[9] Hackers Reveal Nasty New Car Attacks–With Me Behind The Wheel. July 2013. url: http:

//www.forbes.com/sites/andygreenberg/2013/07/24/hackers-reveal-nasty-new-car-

attacks-with-me-behind-the-wheel-video/.
[10] F. Holik et al. “Effective penetration testing with Metasploit framework and methodologies”.

Nov. 2014.
[11] M. S. Idrees et al. “Secure automotive on-board protocols: a case of over-the-air firmware

updates”. Communication Technologies for Vehicles. Springer, 2011, pp. 224–238.
[12] IHS Global Insight, Inc. Resistance is Futile - Electronics are on the rise: Electronic Control

units and ommunication protocols (2009).
[13] International Organization for Standardization homepage. Feb. 2015. url: http://www.iso.org.
[14] M. Islam. HEAVENS Project Terminologies. Jan. 2015.
[15] ISO 11898-1. 2003.
[16] ISO 14229-1. 2013.
[17] ISO 15765-2. 2011.
[18] M. Jensen, N. Gruschka, and N. Luttenberger. The Impact of Flooding Attacks on Network-based

Services (2008).
[19] P. Kleberger and T. Olovsson. Securing Vehicle Diagnostics in Repair Shops (2014).
[20] K. Koscher et al. “Experimental security analysis of a modern automobile”. In Proceedings of

IEEE Symposium on Security and Privacy in. 2010.
[21] A. Lautenbach and M. Islam. HEAVENS Deliverable D2 - Security models, ver. 1.0. Dec. 2014.
[22] B. M. Luettmann and A. C. Bender. Man-in-the-middle attacks on auto-updating software

(2007).
[23] Microsoft. “Simplified implementation of the Microsoft SDL”. Nov. 2010.
[24] E. K. Mohd and F. Khan. A Comparative Study of White Box, Black Box and Grey Box Testing

Techniques (2012).
[25] S. Myagmar, A. J. Lee, and W. Yurcik. “Threat modeling as a basis for security requirements”.

Symposium on requirements engineering for information security (SREIS). Vol. 2005. 2005,
pp. 1–8.

[26] Nmap. url: http://nmap.org.
[27] OpenVAS homepage. Feb. 2015. url: http://openvas.com/about.html.
[28] OWASP. OWASP Top Ten Project 2013. May 2015. url: https://www.owasp.org/index.

php/Top10#OWASP_Top_10_for_2013.
[29] PEAK-CAN homepage. Feb. 2015. url: http://www.peak-system.com/.
[30] E. Project. E-safety Vehicle Intrusion Protected Applications (EVITA). url: http://www.evita-

project.org/.

46

http://www.arccore.com/products/arctic-studio/
http://www.arccore.com/products/arctic-studio/
http://www.arccore.com/products/arctic-core/arctic-core-for-autosar-4-x/
http://www.arccore.com/products/arctic-core/arctic-core-for-autosar-4-x/
http://www.arccore.com/products/vk-evb/vk-evb-m3/
http://www.arccore.com/products/vk-evb/vk-evb-m3/
http://rbei-etas.github.io/busmaster/
http://vector.com/vi_cancase_xl_log_en.html
http://www.misra-c.com/
http://www.forbes.com/sites/andygreenberg/2013/07/24/hackers-reveal-nasty-new-car-attacks-with-me-behind-the-wheel-video/
http://www.forbes.com/sites/andygreenberg/2013/07/24/hackers-reveal-nasty-new-car-attacks-with-me-behind-the-wheel-video/
http://www.forbes.com/sites/andygreenberg/2013/07/24/hackers-reveal-nasty-new-car-attacks-with-me-behind-the-wheel-video/
http://www.iso.org
http://nmap.org
http://openvas.com/about.html
https://www.owasp.org/index.php/Top10#OWASP_Top_10_for_2013
https://www.owasp.org/index.php/Top10#OWASP_Top_10_for_2013
http://www.peak-system.com/
http://www.evita-project.org/
http://www.evita-project.org/

[31] H. Project. HEAling Vulnerabilities to ENhance Software Security and Safety. url: http:

//www.sp.se/en/index/research/dependable_systems/heavens/Sidor/default.aspx.
[32] H.-C. Reuss. Extended Frame Format - A New Option of the CAN protocol. May 1993.
[33] A. Ruddle et al. EVITA Deliverable D2.3: Security requirements for automotive on-board

networks based on dark-side scenarios. Dec. 2009.
[34] B. Schneier. Attack trees. Dr. Dobb’s Journal 24 (12 Dec. 2009), 21–29.
[35] B. Schneier and J. Wiley. Secrets and Lies: Digital Security in a Network World (2000).
[36] A. Shostack. Threat Modeling: Designing for Security. John Wiley & Sons, Inc., 2014, pp. 209–

213. isbn: 978-1-118-80999-0.
[37] F. Swiderski and W. Snyder. Threat modeling. Microsoft Press, 2004.
[38] A. Takanen. Fuzzing for the Masses. Network Security 2008.8 (Aug. 2008), 4–6.
[39] A. Van Herrewege, D. Singelee, and I. Verbauwhede. “CANAuth-a simple, backward com-

patible broadcast authentication protocol for CAN bus”. ECRYPT Workshop on Lightweight
Cryptography 2011. 2011.

[40] P. Vembar and J. Holle. Secure Coding and MISRA C in ECU Development. ESCAR, Hamburg.
Nov. 2014.

[41] V. Verendel. “Quantified security is a weak hypothesis: a critical survey of results and assump-
tions”. Proceedings of the 2009 workshop on New security paradigms workshop. ACM. 2009,
pp. 37–50.

[42] P. Vyleta. “Automated penetration testing in automotive industry”. MA thesis. Czech Technical
University in Prague, 2014.

[43] G. Weidman. Penetration testing: a hands-on introduction to hacking. English. San Francisco,
CA: No Starch Press, 2014. isbn: 9781593275648; 1593275641. url: www.summon.com.

[44] winIDEA open homepage. Feb. 2015. url: http://www.isystem.com/download/winideaopen.
[45] M. Wolf, A. Weimerskirch, and C. Paar. “Security in automotive bus systems”. in: Proceedings

of the Workshop on Embedded Security in Cars (escar)’04. 2004.

47

http://www.sp.se/en/index/research/dependable_systems/heavens/Sidor/default.aspx
http://www.sp.se/en/index/research/dependable_systems/heavens/Sidor/default.aspx
www.summon.com
http://www.isystem.com/download/winideaopen

	Abstract
	Acknowledgements
	Contents
	Introduction
	Related Work
	Research Methodology
	Thesis outline

	Terms and Definitions
	Security model
	The HEAVENS Security Model
	STRIDE

	Penetration testing
	Fuzzing

	AUTOSAR
	Automotive Open System Architecture 4.1
	ISO standards for vehicle diagnostic

	Threat modeling
	Diagnostic communication
	ECU
	Tester
	Security requirements

	Security Tests
	Experimental Environment
	Attack Trees
	Information Disclosure / System Reconnaissance
	Tampering of ECU Software
	Denial of Service

	Information Disclosure / System Reconnaissance Test
	System Scan
	System Probing
	Packet sniffing
	Restricted Memory Address scan
	Message handling rate

	Tampering of ECU Software Test
	Man In The Middle
	Brute force security access key
	Seed/Key Sniffing
	Seed Entropy
	Restricted Memory Address Write

	Denial of Service Test
	Fuzzing based Security Tests
	Random Fuzzing
	Intelligent Fuzzing
	Flooding

	Results and test evaluations
	Information Disclosure / System Reconnaissance
	System Scan
	System Probing
	Packet sniffing
	Restricted Memory Address scan
	Message handling rate

	Tampering of ECU Software
	Man In The Middle
	Brute force security access key
	Seed/Key sniffing
	Seed Entropy
	Restricted Memory Address Write

	Denial of Service
	Random Fuzzing
	Intelligent Fuzzing
	Flooding

	Discussion and countermeasures
	Information Disclosure / System Reconnaissance
	System Scan
	System Probing
	Packet sniffing
	Restricted Memory Address scan
	Message handling rate

	Tampering of ECU Software
	Man In The Middle
	Brute force security access key test
	Seed/Key sniffing
	Seed Entropy
	Restricted Memory Address Write

	Denial of Service
	Fuzzing based Security Tests
	Flooding

	ISO 14229
	Overall Discussion

	Conclusions
	Future work

	References

