7 ° S
5% \ 3
i)
Wl (NANCES 1
S Z
AN

KONTOR

.E Koppla upp kamera |

| Starta inspelning

Koppla upp kamera | | Starta inspelning

A LABORATORIE

L

KONFERENSRUM

Koppla upp kamera | | Starta inspelning

Tnloggad som Lars Andersson

Developing an Integrated Surveillance Interface

Master of Science Thesis

LARS ANDERSSON

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
Goteborg, Sweden, February 2011

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Developing an Integrated Surveillance Interface
Lars Andersson

© Lars Andersson, February 2011.

Examiner: Graham Kemp

Chamers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

Cover:
Screenshot of a surveillance system control panel developed in this project.

Department of Computer Science and Engineering
Goteborg, Sweden February 2011

Preface

I would like to extend my thanks and appreciation to Galder Security AB
who have allowed me to do this project at their company. Also many thanks
to my examiner Graham Kemp, my supervisor Jens Kjarsgaard and my
family and friends.

Abstract

This report goes through the design that was created and implemented to
produce the foundation for a modern, fast and reliable surveillance interface
that builds on the existing total security system OnGuard from the company
Lenel. The solution is divided into two programs, a server application which
handles the communication with the OnGuard system and other third party
programs that the program should be able to communicate with, and a client
application which the user uses to interact with the server. The server
application is developed using C# and is compiled to run under the .NET
virtual machine. The client application is developed in C4++ using the Qt
and Qt Quick framework and can be compiled to run under many different
operating systems.

This project was never intended to, nor does it, deliver any finished product
but more so investigates the possibilities of building a surveillance interface
that builds upon OnGuard and utilizes Qt Quick to produce a modern and
fast user interface.

Contents

1__Introductionl 1
1.1 Background| 1
PUTPOSE| « .« v v v v e e e e e e e e e e e e e e 1

M3 Methodl« v 2

2 Background| 4
21 OnGuardlo 4
[2.1.1 Windows Management Instrumentation| 4

[2.1.2 Microsott SQL Server| 4

2.2 Bosch VMS| 4
.................................)
231 NETI 5
................................ 6
2.4.1 Q| 6

2.4.2 Qt Quickand QML o000, 8

[2.5 Event-Driven programming| 11
G _XMI. . .. 14
REIT _XPathlo oo 15

27 INI Fileformatl 0. 15
B_Results 16
|3.1 The design of the server| 17

3.2 The design of the databasel 21

3.3 The design of theclent|

3.4 Usage example]

FEb) onl

25

26

27

List of Abbreviations

ANSI American National Standards Institute
API Application Programming Interface

CIL Common Intermediate Language

DTD Document Type Definition

GUI Graphical User Interface

HWND Handle to a Window

INI Initialization

MOC Meta-Object Compiler

QML Qt Modeling Language

RDBMS Relational Database Management System
SDK Software Development Kit

SGML Standard Generalized Markup Language
T-SQL Transact-SQL

UUID Universally Unique Identifier

VMS Video Management System

VRM Video Recording Manager

WMI Windows Management Instrumenation
XML eXtensible Markup Language

XSchema XML Schema

1 Introduction

1.1 Background

In society today we see an increasing demand for security to prevent every-
thing from fires to burglary and vandalism. A high security facility today
often consists of multiple systems that takes care of many different tasks.
These systems carry out their duties on their own but it can be hard for an
operator, who has the task of monitoring the security of the whole facility,
to get a good overview and to control parameters in the different systems.
Therefore it is often desirable to connect all the systems to a superior surveil-
lance system which lets the operator interact with all the systems through
one single graphical user interface.

Galder Security AB is a distributor of the total security system OnGuard
from the US based company Lenel. OnGuard communicates with all the
different systems in a secure facility and lets the operator interact with
these through their own graphical user interface Alarm Monitoring.

1.2 Purpose

Galder Security AB feels that the user interface, Alarm Monitoring, that
is integrated with OnGuard is lacking a lot in graphical appeal and also
in its intuitivity. With this masters project they want to investigate the
possibilities of developing their own program as a replacement to Alarm
Monitoring that builds on and utilizes the OnGuard system. But with a
modern graphical user interface and many improvements and missing func-
tions implemented.

Galder Security AB have many features that they want to have incorporated
into the product, below are a few of them outlined.

e The system must communicate with existing integration platform brand
Lenel. Through this platform most of the communication with the dif-
ferent hardware is done.

e The system must present events such as burglar alarms, intercom calls,
portable panic alarms etc. both graphically and in text.

e The system must be able to send signals to open doors, establish calls,
set the emergency sections, control the security cameras, etc.

e The system must be able to show vector graphics in which the operator
can zoom in and out. In the images it should be possible to track the
location of the emergency sections and their status. It should also be
possible to navigate between these images.

e The system must be able to play video streams from cameras.

e Video streams should be able to be linked up automatically when alarm
events and control systems occur but also manually by the operator.
Mobile cameras are to be controlled via ”click image“ and/or via a
graphical joystick.

e The system shall be able to be put into configuration mode where the
authorized user using the login can define system parameters, such as
operator accounts, windows settings, etc. Operator Accounts should
be able to determine what the individual user can and cannot do within
the system.

Implementing all of the outlined features is outside the scope given the time
frame of this masters project, but the resulting solution from the project
should have some of the features implemented and serve as good foundation
for future work to build upon.

1.3 Method

The new surveillance interface will communicate with OnGuard to get in-
formation about and control systems that OnGuard supports. The chosen
design splits the solution into two different applications, a server applica-
tion which communicates with the OnGuard system and a client application
which communicates with the server. This way it is possible to connect mul-
tiple clients to one server and let them show and control different things in
the OnGuard system. The server is developed in C# and is compiled to run
under the .NET virtual machine and the client is developed in C++ using
the Qt and Qt Quick framework.

The server communicates with OnGuard over WMI. Communication with
third party software, Bosch VMS, is implemented using Bosch VMS SDK’s
API, a library written for C# .NET by Bosch. A communication protocol
based on XML was developed to communicate between the server and the
client and the query language XPath is used to query things in the XML
data in both the client and the server. In the client a small settings file,
following the INI file format, was designed to store some client specific data
but most of the client data is stored in the server database. The server uses

SQL to query things in the database and a subset of the format called WQL
to query things in WMI.

2 Background

2.1 OnGuard

OnGuard is a suite of programs and services developed by the company
Lenel. Together with a Microsoft SQL Server database they form a complete
overarching surveillance system which can communicate with a wide variety
of systems and put these at the operator’s fingertips through the graphical
user interface Alarm Monitoring.

OnGuard has support for communication with third party software through
Windows Management Instrumentation (WMI).

2.1.1 Windows Management Instrumentation

Windows Management Instrumentation is a set of extensions to the Windows
Driver Model that provides an interface through which applications can
communicate with each other [19].

The communication is done using a provider-consumer model where the
provider manages some object on the computer [19], in our case it manages
the OnGuard system. The consumer can then query data from the provider
using WQL, which is a subset of the American National Standards Institute
Structured Query Language (SQL) [I6]. It is also possible to subscribe to
different events asynchronously, so that the consumer always will be up to
date with new events. Most of the data and functions available in OnGuard
are exposed in this way through a WMI provider.

2.1.2 Microsoft SQL Server

Microsoft SQL Server is a relational model database server produced by
Microsoft [12]. The latest versions of it are Microsoft SQL Server 2008 and
Microsoft SQL Server 2008 R2 of which Lenel uses the former of the two.
The two primary query languages for the database are T-SQL and ANSI
SQL [17].

2.2 Bosch VMS

Bosch VMS is a system for management of digital video, audio and data in-

tended for use in a video surveillance environment. The environment usually
consists of some surveillance cameras which records its material onto certain
storage devices. Which storage devices the cameras should use is managed
by a VRM. The VRM also fetches the video data fragments when a playback
of the video data is required, since the video data can be fragmented over
many different storage devices. The Bosch VMS controls the cameras and
the VRM and can show recorded and live video data from the VRM and
the cameras. It also manages different alarms and events that occurs in the
system [I][3].

2.3 C#

C+# is a object oriented programming language developed by Microsoft. It
is similar to C++ but introduces many new things to make the program-
ming easier on the programmer. For example foreach loops, very nice event
programming, array bounds checking, detection of attempts to use uninitial-
ized variables and more [I8]. C+# is usually compiled to run under the NET
virtual machine. When doing this it is compiled into a Common Intermedi-
ate Language (CIL) which is then assembled into bytecode which the NET
virtual machine executes.

Important when writing long running applications is to handle memory man-
agement well and at all cost avoid memory leaks. When letting the code run
as managed under .NET this is greatly simplified by the use of a garbage
collector and a managed heap [10]. Using these, deallocation of most re-
sources in C# is handled automatically. But when working with unman-
aged resources the programmer must remember to clean up accordingly.
Unmanaged resources are for example window handles (HWND), database
connections, file I/O, etc [I3]. The easiest way to handle the cleanup of
unmanaged resources is to implement Dispose and Finalize methods [13],
similar to the use of destructors in other programming languages like C++.

2.3.1 .NET

.NET is a programming framework developed by Microsoft. .NET includes
both a large library of coded solutions to common programming problems
and also a virtual machine which runs the code in a managed environment
[15]. .NET supports several programming languages which allows language
interopability and the .NET library is available to all these programming
languages that are supported.

24 CH+

C++ is a object oriented programming language developed by Bjarne Strous-
trop. It is regarded as a middle-level programming language as it has both
low-level and high-level language features [20].

C++ is most often compiled to run directly on the computer hardware, in
contrast to so called managed code which executes in a virtual machine.
With this comes more responsibilities to the programmer, since there is no
garbage collector or managed heap it is very easy to create memory leaks
and this must of course be avoided at all costs. But since we don’t have the
overhead that an automatic garbage collector brings we get a performance
boost in applications written in C+4 compared to for example C# running
in the .NET virtual machine.

2.4.1 Qt

Qt is a cross-platform application development framework which is widely
used for creating GUlI-applications. Qt uses standard C+4 with a pre-
processor, called the Meta Object Compiler (MOC), to enrich the language.
These enrichments are, to name a few, foreach loops, event handling systems
with signals and slots, run-time type information, and a dynamic property
system. In the Qt framework are also a lot of libraries for many different
solutions to different coding problems. These features in the Qt libraries
include SQL database access, XML parsing, thread management, network
support, a unified cross-platform API for file handling and more.

To implement this enrichment of the language the meta-object compiler
reads the source files and if it encounters the Q_OBJECT macro in a class
it produces the C++ source files containing the meta-object code for those
classes. In these classes it is possible to declare many different macros to
make the meta-object compiler include different things in the generated
source files. One very important thing, at least when we are working with
Qt Quick, is that we can add properties to the dynamic property system
using the Q_PROPERTY() macro and also add enumerations using the
Q_ENUMS() macro. It is also possible to add special functions called signals
and slots using the Q_SIGNAL and Q_SLOT macro. These special functions
are used for Qt’s event system and can be connected together using a special
connect function. One signal can be connected to multiple slots and one slot
can be connected to multiple signals [§]. They are also available under the
keywords “signals” and “slots” for declaring multiple signals and slots.

O W N

0 3 O

11
12
13
14
15
16
17
18
19
20
21

Listing 1|shows a simple C++ header file which uses the Q_OBJECT macro
at the top of the file, indicating to the Meta-Object Compiler that it should
process this class. The Meta-Object Compiler will process the file and pro-
duce a new file containing the final C++ code where all the MOC macros
have been exchanged for C++ code. The Q_-PROPERTY macro adds a
boolean variable called “pushed” to the dynamic property system with a
function for reading, a function for writing and a signal for notifying when
the value of the variable has changed. The signals macro makes the pushed-
Changed function available as a signal in Qt’s event handling system, and it
can be connected to as many slots or signals as desirable which will then be
called when the signal is emitted using the “emit” keyword. The slots macro
makes the connectMeToSomeEvent function available as a slot in Qt’s event
handling system, and it can be connected to as many signals as desirable
and will be called when these signals are emitted using the “emit” keyword.

class Button : public QObject
Q-OBJECT

QPROPERTY(bool pushed READ pushed WRITE setPushed
NOTIFY pushedChanged)

public:
explicit Button(QObject xparent = 0);

bool pushed() const { return m_pushed; }
void setPushed (const bool p_newPushed);

signals:
void pushedChanged (const bool p_newPushed);

slots:
bool connectMeToSomeEvent () ;

private:
bool m_pushed;

})

Listing 1: C++4 header file which utilizes some of the Qt Meta-Object
Compiler macros.

One important feature in Qt which is used extensively in combination with
Qt Quick is the List Models. The List Models are classes which can be
populated with items and then connected to views in QML. A popular ap-
proach is to create a model by inheriting QAbstractListModel, adding all
the needed functionality to this class and then instantiate it and populate
it with items. Another class is then created by inheriting QSortFilterProx-
yModel, adding some functionality and instantiating it and assigning the

former model as a source model to this class. The first class that we created
is then the source model and the second is a proxy model that uses the first
as a source. The proxy model does not create any new items, it is simply
used for sorting and filtering by redirecting indexes and hiding indexes. It
is this proxy model that is connected to the view and therefore it decides
which items a user should view. This flow from QAbstracListModel through
QSortFilterProxyModel and finally to a view in Qt Quick is shown in
In this example all items with a index higher than three are filtered
out in the QSortFilterProxyModel and the remaining items are sorted in
ascending order.

Source Model Proxy Model Graphical User Interface
Item 3 Item 1 List View
Item 5 % Item 2 ’@
Item 2 Item 3 tems]
Item 1
Item 4
Item 6

Figure 1: The relationship from source model, through a proxy model and
into a view.

2.4.2 Qt Quick and QML

Qt Quick is a brand new technique for developing GUIs that has been in-
vented as a response to the demand of fluid and highly polished GUIs that
are used in todays mobile phones.

Qt Quick uses a declarative approach where the designer or programmer
designs the GUI in the QML language, which is a script-like language based
on javascript. The QML code can be interpreted to create the GUI, either
using a standalone interpreter like the QML Viewer, or utilizing the Qt Quick
framework classes in an application written in C++. With a standalone
interpreter it is easy to produce a design and also to test it and evaluate
it extensively, which speeds up the development process a lot and makes
sure that the end result will be well polished and tested. But to make
the most of your application it is often the case that you want to create
the main application in C+4 and then run the QML code on top of this
program to produce the GUI, this is what’s accomplished with the Qt Quick
framework classes. Using the Qt Quick framework classes it is also possible
to extend the QML language, expose properties and different models through
declarative contexts and make connections between the QML code and the
C++ program using signals and slots [7].

0 ~J O O W N~

Four classes stand out among the Qt Quick framework classes.

QDeclarativeEngine

QDeclarativeComponent

QDeclarativeContext

QDeclarativeltem.

These four classes are the classes that are necessary to interpret the QML
code and build up the GUIL. QDeclarativeEngine is the actual interpreter
which instantiates our QML components. QDeclarativeComponent encap-
sulates a QML component definition, the actual QML code. QDeclara-
tiveContext defines a context within the QML engine through which it is
possible to expose data to the QML components instantiated by the engine.
QDeclarativeltem is the most basic of all visual items in QML, all visual
items in Qt Declarative inherit from this class. The simplest way to set
up a QML declarative environment using these four classes is to first create
an instance of the QDeclarativeEngine. Then create a QDeclarativeCom-
ponent with the root QML item and assign it to the instantiated engine.
Next instantiate a new QQDeclarativeContext using the engine’s root context
and then create the root QDeclarativeltem using the recently instantiated
QDeclarativeComponent. Through a declarative context it is possible to
reach properties, enumerations, slots and signals that have been added to
Qt’s dynamic property system from the QML code.

QML provides mechanisms to declaratively build an object tree using QML
elements. These QML elements, together with their internal properties,
specifies how the GUI should look like and how it should behave.

import Qt 4.7

Rectangle {
id: background
width: 640; height: 480

color: ”white”

Text {
id: textLabell
anchors.centerIn: parent
text: ”"Hello World!”
}
}

Listing 2: Hello World in QML code.

In Listing we see a simple Hello World example coded in QML. On
the first line we have an “import” statement that imports the Qt module
which contains all of the standard QML elements, without this statement
the Rectangle and Text element wouldn’t be available. After this we see
an object tree with two QML elements, a Rectangle element as the root
element and a Text element as its child. Both of these QML elements have
some default properties that can be set. First in both of the elements we set
the property named id, this is an unique identifier which makes it possible
to reference between different elements in the code. The width and height
in the Rectangle element are simply the width and height that the rectangle
should occupy and the color property is the color that it should have. There
are some predefined color strings but the colors can also be specified using
color codes. In the Text element we set the anchors.centerIn property to be
the center of its parent, effectively putting the Text element in the center of
the parent Rectangle element. Last we set the text that the Text element
should display with the text property.

Microsoft Visual Studio 2008

Rosslare Card Reader

Galdergodisar

Item 1

Item 2

Item 3

Item 5

Item 6

Item 7

|
|
|
|
[Item 4
|
|
|

Figure 2: An inventory management program that was developed during
the evaluation of Qt Quick (list view).

All declarative QML code is built up in the same way with a single item as
the root and all the other components branching from this single root item.
Other features that are available in the QML code are states to structure up
property changes, transitions to animate the property changes, signal and

10

slot functions and support for writing functions using javascript.

NAMN
Microsoft Visual Studio 2008

ANTAL
1

INKOPSPRIS
3541 :-

Figure 3: An inventory management program that was developed during
the evaluation of Qt Quick (list item expanded).

To give the reader a better understanding of how a GUI developed using
the Qt Quick framework can look like, two screenshots from an inventory
management program that was developed during the testing of Qt Quick
and QML are shown in [Figure 2| and [Figure 3| In the first picture we see a
simple list showing the items in the inventory with buttons below it to add
items to the inventory, remove items from the inventory and a button to
the left which is used to access the database settings and exit the program.
When an item in the list is clicked on, the list item is expanded with a
smooth animation and the item in its expanded form is what can be seen in
the second image. Here some information is shown about the specific item
and there are two buttons, one to edit the information and one to close down
the view and return to the view in the first image.

2.5 Event-Driven programming

Event-Driven programming is a programming paradigm in where the pro-
grams flow is determined by different events. In its most basic form a pro-
gram written using event-driven programming uses an event loop which is

11

0~ O O W

[I R N I I R N R N R e e e e R e
0 O UL WN O O©OWO Utk WN—OO

29
30
31
32
33
34
35
36

37
38

clearly divided into two sections, event selection and event handling.

public class EventProducer

{

public delegate void MyEventHandlerFunc() ;
public event MyEventHandler MyEvent;

public void Trigger ()

{

OnMyEvent () ;

}

protected void OnMyEvent ()

{
if (MyEvent != null)

MyEvent () ;
}

}
}

public class EventConsumer

{

public void MyEventHandler ()

{
// Handle event

}
}

public class TestApplication

{

static void Main(string[] args)

{

EventProducer eventProducer = new EventProducer();
EventConsumer eventConsumer = new EventConsumer () ;

eventConsumer . MyEvent += new EventProducer.
MyEventHandler (eventConsumer . MyEventHandler) ;

eventConsumer. Trigger () ;

Listing 3: Example of event-driven programming in C#.

Event selection is where the thread checks if any event has occured and
event handling is when it calls the functions that should handle the different
events that have occured. Many events can be connected to one handler and
many handlers can be connected to a single event. Both C# and C++ with
Qt have support for event driven programming.

12

In we see a simple example of event-driven programming in C#.
The example is divided into three different classes. The TestApplication
class which contains the entry point for the program, the EventProducer
class which generates the events in our example and the EventConsumer
class which handles the events that arise in the EventProducer. In the
EventProducer we first have a delegate which describes how a function which
should be able to subscribe to the event should look like. After this we
have the actual event declared. The Trigger function is just a function
that is called from the main function to be able to generate an event. The
OnMyEvent function is called from inside the class when we want to generate
an event, the function checks if there are any event handlers subscribing to
the event and if there are it calls them. In the EventConsumer class there is
only one function and that is the event handler. It is structured in the same
way as the MyEventHandlerFunc delegate in the EventProducer, the same
return value and the same number of parameters with the same types. In the
TestApplication class we have only the main function of the program, here
we create one instance of the EventProducer and one of the EventConsumer,
we connect them together and then we emit an event by calling the Trigger
function. By using the “+=" operator it is possible to add multiple functions
that should act as event handlers to the event and we make sure that the
function is able to handle the event by creating an instance of our earlier
declared delegate and passing the function as a parameter to this.

shows the same example that we saw in C# but now with Qt’s
signals and slots system. We have two classes and one main function. As
in the C# example we have the EventProducer which produces the events
and the EventConsumer which handles the events. We see that all the
classes have the Q_OBJECT macro so that the Meta-Object Compiler will
process them and produce the C++ code that makes the signals and slots
work. In the EventProducer class we first have a signal declared. This signal
effectively is our event. Then we have a trigger function so that we can make
the class emit this event. Important to note here is the emit keyword which
is not native C++ syntax but also a macro that the Meta-Object Compiler
processes and produces C++ code for. The macro is simply used to emit
an existing signal. In the EventConsumer we only have a slot which can
be connected to signals. In the main function we simply create instances
of the EventProducer and the EventConsumer, connect the signal in the
EventProducer with the slot in the EventConsumer and call the trigger
function to get an example of a triggered event.

Of course these are very simple examples of event-driven programming in the
two different settings and the trigger function is only there for demonstra-
tion purposes. Usually you have something external triggering the different
events.

13

1 class EventProducer

2

3 Q-OBJECT

4

5 signals:

6 void myEvent () ;

7

8 public:

9 void trigger ()
10 {
11 emit myEvent () ;
12 }
13 }
14
15 class EventConsumer
16
17 QOBJECT

18

19 public slots:
20 public void myEventHandler ()
21 {
22 // Handle event
23 }
24 }
25
26 int main(int argc, char xargv|[])
27 {
28 EventProducer eventProducer;
29 EventConsumer eventConsumer ;
30
31 QObject :: connect(&eventProducer , SIGNAL(myEvent()), &

eventConsumer , SLOT(myEventHandler)) ;

32
33 eventProducer. trigger () ;

Listing 4: Example of event-driven programming in C++ with Qt.

2.6 XML

XML, which stands for eXtensible Markup Language, is a set of rules for
encoding documents in machine-readable form. It is a subset of the Standard
Generalized Markup Language (SGML). With XML it is possible to produce
documents which can be processed quick and easily by a machine and still
be human readable [4].

14

2.6.1 XPath

The XML Path Language is a query language which primary purpose is
to address parts of an XML document. Beside this it also provides basic
functions for manipulation of strings, numbers and booleans [6] [2].

2.7 INI File format

The INI file format is a standard for configuration files. It is simply a text
file with some basic structure, built in such a way so that it should be easy
for a human to open the file, find and edit things. The INI file format
is commonly associated with Microsoft Windows but has been deprecated
there in favor of the registry and XML.

15

3 Results

The result of the masters project is a surveillance interface with a backend
that communicates with the total security system OnGuard from the US
based security company Lenel. The backend is a server application running
on the same machine as the OnGuard service and program suite. The fron-
tend is the client application written in C++4 using the Qt framework. The
Qt Quick framework was chosen after extensive testing and it delivers what
it promises, great looking programs that are responsive and quick to develop.
The clients can be compiled to run on any of todays popular operating sys-
tems, Linux, Windows or Mac OS. The server application is designed to be
able to handle multiple clients connecting and communicating with it.

Figure 4] shows a general overview of the project solution. In the server
computer we have the OnGuard system communicating with hardware that
it supports. Also present in the server computer is the server application
developed in the masters project which communicates with the OnGuard
system over WMI. The server application communicates directly with other
hardware that OnGuard doesn’t support, as of the end of this project this
is only Bosch VMS. The clients connect to the server over TCP/IP using an
XML based communication protocol and it is then possible to interact with
all the hardware through the clients.

The protocol between the server and the client is, as mentioned earlier,
a protocol based on XML that was developed during this master thesis.
Galder Security AB hasn’t decided if they want this protocol to be open to
the public or not, seeing that an open protocol could create some security
risks. Therefore it is sadly not discussed especially thoroughly in this thesis.
In both the server and the client, XPath is used to parse the incoming XML
packages. In the server this is done using the XmlDocument class that
is available in the .NET framework and in the client it is done using the
QXmlQuery class available in the Qt framework. All the XPath queries and
the structure of the XML documents have been written manually without
the use of techniques like DTD or XSchema. As of the writing of this
report there are 60 different elements that are used to build up the XML
documents that are passed back and forth between the client and the server.
A design where everything is built up using XML elements, without any
XML attributes is used. In the authors opinion this improves the human
readability of the XML document.

The total solution implements the following functionality partly and the

design aims to support the addition of the other functions, mentioned in the
introduction, in the future.

16

External hardware not
supported by OnGuard

-—een em - em - e - e - e e e e e e e e/ — -y —_— —_ —_— —_ —_ = = = =

Server Computer ' Client Computer

OnGuard ISI-server Client 1

|
|
|
WMI I
T
|
|

External
hardware
supported

by OnGuard

Client 3

Client Computer

Figure 4: An overview of the project solution.

e The system must communicate with existing integration platform brand
Lenel. Through this platform most of the communication with the dif-
ferent hardware is done.

e The system must present events such as burglar alarms, intercom calls,
portable panic alarms etc. both graphically and in text.

e The system must be able to send signals to open doors, establish calls,
set the emergency sections, control the security cameras, etc.

e The system shall be able to be put into configuration mode where the
authorized user using the login can define system parameters, such as
operator accounts, windows settings, etc. Operator Accounts should
be able to determine what the individual user can and cannot do within
the system.

3.1 The design of the server

Since the server should be designed to run on the same computer as the
OnGuard system it felt natural to design the server closely knit to the things
that the OnGuard system is closely knit to. Lenel uses Microsoft developed

17

products like WMI and Microsoft SQL Server and they are also a Microsoft
Gold Certified Partner [I1], hence the server should be developed using
Microsoft developed products and techniques to make the interfacing against
WMI and Microsoft SQL Server easy. Also when looking at the market of
devices that we in the future probably want to communicate with using
the server, we see a majority of developers using the .NET platform and
developing interfacing libraries in C# or Visual Basic. Therefore the server
was designed for and implemented with the C# language, utilizing many of
the prebuilt functions in the .NET library and running in the .NET virtual
machine. Also since the server will be an application that should run for
a very long time without restarting, it is very nice that it is running in a
virtual machine with garbage collection.

One big feature of the C# language is the event system where it is easy
to connect several event handlers to one event and vice versa. This is used
extensively in the design of the server to produce a nice design where it is
easy to add new things without disrupting the flow in the application in any
way. For example if we want to do something more with an incoming data
package from the client it is easy to add another event handler which listens
to the “New input data ready event” which is shown in Figure

Client connection

= Runs its own thread raquest
Reatior Client 1
= Runs in the thread pool Connetlion Listener
when needed Reafler lient 2

Reader Client 3

Cutput Handler

Mew output
New package package
ready evant ready event

Reader Chent n

Client Sommunicator

ew input
Wi -Simk = Inpul Handler data ready
Mew event

j Evant in
OnGuard Make changes
andlor fetch data

Data Communicator

\ Writer Client n

Other systems
Basch ¥MS alc,

Writer Clignt 1

Writer Client 2

Writer Client 3

Laarvisl
Database

Provider

Figure 5: The general design of the server.

18

The chosen design of the server is shown in we see here that we
have four permanent threads running and then a lot of code running in the
.NET thread pool. The .NET thread pool is what handles asynchronous
operations in .NET, “The .NET Framework uses thread pool threads for
many purposes, including asynchronous I/O completion, timer callbacks,
registered wait operations, asynchronous method calls using delegates, and
System.Net socket connections.” [14].

The design approach in is leaning towards the “one thread per
client” approach, which is a fast approach with a few tens of clients but can
get bad quickly when the client count goes up [5]. But since the thread pool
is used for communication with the clients this should be more effective than
an ordinary “one thread per client” solution [9].

The number of threads adds some complexity to the solution with the han-
dling of shared resources and thread synchronization, but to make the server
responsive and quick for many clients at the same time it should be a good
solution.

As of the end of this project the server makes changes to and collects data
from mainly two different sources, the OnGuard WMI provider and the
server database. It is also possible to connect the server to Bosch VMS
clients and control some parameters in these systems. In the future it
could be necessary to also make a connection directly against the OnGuard
database to be able to implement some functionality against OnGuard, but
this should be avoided as far as possible since WMI is the recommended way
for a third party program to get into the OnGuard system. Communication
with the server database is done using SQL queries. Communication with
the WMI provider is divided into two parts. First there is one connection
where WQL queries are executed and methods can be called on retrieved
objects. Second there is also a WMI sink that subscribes to certain events
from the WMI provider which are then delivered asynchronously.

Currently there are only three external events that the server reacts to.

e Connection attempts from clients.
e Packets received from connected clients.

e Events that are received in the WMI sink from the OnGuard WMI
provider.

The following text describes the event and data flow in the server design
shown in for the three external events that it reacts to.

19

When the server receives a connection attempt the Connection Listener
raises a “Client Connected” event with the newly established connection.
The Client Communicator listens to this event and adds this connection
to its internal list of connections and starts an asynchronous read on the
connection. If the server doesn’t receive a correctly formulated handshake
request with a client ID that is present in the server database within a
certain time interval the connection will be discarded.

The second external event, when a packet is received from a client, triggers
the Client Reader to send out the newly received package in a “Package
Received” event. The Client Communicator receives this event and then
resends it as a “New Input Data Ready” event which the Input Handler picks
up and adds the package to its internal list of packages. The Input Handler
is somewhat the brain of the server and it takes the incoming package,
parses the information to a server command, executes the command and
then creates a package that should be sent back to the client. The execution
of the command could mean changes in the server database, changes in the
OnGuard WMI provider or retrieving of data from either of the two, data
which should potentially be sent back to the client. After the Input Handler
has finished with its tasks regarding a certain packet it raises a “New Package
Ready” event containing the newly created return package. The Output
Handler takes this return package and adds it to its internal list of outgoing
packages. When it has sent out all packages that were waiting before the
new package it calls the send function in the Client Communicator with
the given package which starts an asynchronous send to the correct client.
Which client should receive the return package is decided by comparing the
Client ID in the message and that which is registered on the client from the
handshake.

When the third external event, receiving an event in our WMI sink from
the OnGuard WMI provider happens, the WMI Sink will create an event
package using the information received. After this it will raise a “New Event
In OnGuard” event containing the newly created event package. The Input
Handler will react to this event and put the event package in its internal
package queue. When it’s time for the Input Handler to process the event
from the package queue it checks what event it is, looks in the database if
any client subscribes to this event and creates an event package for each
client and raises a “New Package Ready” event with each package. The
output handler reacts as in the second case and sends these packages out in
the same manner.

Heartbeat using Ping and Pong messages is implemented in the server and

is handled internally by the Client Communicator, without packages being
passed to the Input Handler. If a client doesn’t respond to one of the ping

20

messages that is sent out from the server, it will be disconnected.

3.2 The design of the database

The server database is a Microsoft SQL Server relational database manage-
ment system. Microsoft SQL Server is used because this is the RDBMS that
Lenel uses for its OnGuard system, and since we are working closely with
OnGuard we use the same.

The current design of the database is shown in Appendix A. The core of this
design is the Clients and Users tables. When a client connects to the server
it has to perform a handshake procedure providing a UUID that is registered
on a client in the Clients table, else the connection will be discarded. When
a user tries to log in on a connected client the username and password
combination has to be present in the Clients table, else the log in will fail.
The server is responsible for updating the LoggedOnUser column and the
Connected column in the Clients table, so that it always corresponds to the
current state.

The LnlEvents table contains the events from OnGuard that are available for
the clients to subscribe to, which they do in the ClientsSubscribesToLnlEvents
table.

The Bosch VMS clients that the server should be able to send functions to
are registered in the BoschClients table.

The other tables are for functions that have not yet been implemented.

3.3 The design of the client

[Figure 6]shows the design of the client. The client is developed with a “Model
View Control” design pattern in mind, but with QML and the declarative
environment acting as both View and Control. The only threads running
are two event handler threads. One which handles all the input from the
user and updates the GUI and one which is used to communicate with the
server and to decouple these tasks from the main thread so that the GUI
doesn’t freeze.

At startup of the client it loads some settings from a local INI file into
the main model, it then uses these settings to make a connection attempt
against the server. If the connection was successful it will send a handshake

21

I Server

Server Communication

View and ContrOl:/’ Connector
|

——_-—-—_-—— = =

GUI Thread

\

Internal models
User Account,
Color Theme,

etc.

|

(|
Declarative |
|

|

User Interaction

Environment

- e - = = = = = —_ — _— _— _ _ —_ =

Figure 6: The general design of the client.

command to the server and wait for a response. In the response will be
embedded all the client specific data that needs to be loaded from the server
at client startup, implemented so far are only the input signals and output
signals that the client subscribes to. In the future things like fonts, colors,
sizes and how the workspace should be customized should probably also be
loaded from the server at handshake. The input and output signals that are
loaded from the server are used to populate the main input signals model
and the main output signals model. These are classes that inherit QAb-
stractListModel, which makes them possible to connect to views in QML or
to proxy models to be able and sort and filter them. After the handshake
has been done the client is officially connected and a user can now log on
to the server. After login the user is presented with the workspace that is
customized for that particular client and, depending on the users permis-
sions, will be able to enter the administration menu to make configuration
changes in both the client and the server.

Currently the design for each individual client workspace is specified in QML
code. This could be solved in many different ways but by specifying it only
using QML code the doors are kept open to use Qt Creators development
interface for Qt Quick applications for this task. Instead of developing some
own development interface for specifying how the workspace for a client
should look and which components the user should be able to interact with.
This development interface is not yet released but will be soon.

In the workspace that is specified using QML code it is possible to connect
different events and relays in OnGuard to different buttons and animations
in the declarative environment. It is also possible to control different Bosch
VMS clients that are registered in the database from the declarative envi-
ronment.

22

3.4 Usage example

With the solution, as it is at the end of this project, it is possible to imple-
ment control panels. A control panel is simply some buttons and indicators
on a touchscreen which makes it possible for a user to control different things
in the environment that is being surveyed. When Galder Security create this
type of control panel today they use Alarm Monitoring on a separate client.
From now on they could use the solution presented in this master thesis
instead, producing the same functionality but with much more graphical
appeal and also saving money on licensing costs.

Manoverpanel2 T2 System status Tree (alldevices) | 20

| A Pending Alarm:

Figure 7: A screenshot of a simple control panel implemented in Alarm
Monitoring.

In [Figure 7] we see a simple control panel implemented in Alarm Monitoring,.
The top left button opens the door to the inventory. The button also has
a color indication on its outer edge, green if the lock is locked and red if
it is unlocked. The top right button functions in the same way as the top
left button, but for the door into the laboratory. The bottom left button
connects an intercom call between the intercom telephone at the client and
the intercom telephone outside the inventory. The button also has a color
indication on its outer edge, red color indicating that an intercom call is
connected. Above the button is a small dot that changes color to yellow

23

when there is an incoming call. The bottom right button has the same
functionality as the bottom left button but with the intercom telephone
outside the laboratory.

In we see a simple control panel implemented in the workspace
for a client that has been developed in this project. The two panels on the
left side implements the exact same functionality as the control panel that
was shown in and described above. The top left panel implements
the same functionality as the two buttons to the left in and the
bottom left panel implements the same functionality as the two buttons on
the right in Instead of text on the buttons, as in the
functionality of the button is instead described with a small icon in the
middle of the button. A door indicates that the button opens a door when
pressed and a telephone indicates that the button connects an intercom call
when pressed. The color indication on the outer edge of the buttons in
has been exchanged here with a color change of the icon in the
middle of the button. The little dot that changes color to yellow in
when there is an incoming call has been exchanged with an animation of
the icon in the middle of the button. On the right side we have three panels
that, instead of communicating through OnGuard as the panels on the left
side, communicates directly with a Bosch VMS client. Each of the three
panels implement the same functionality but for different cameras. The left
button connects the specific camera on a big monitor and the right button
starts recording of the stream from the camera onto a hard drive.

KONTOR

Koppla upp kamera | | Starta inspelning

©

ENTRE

Koppla upp kamera | | Starta inspelning

i f » LABORATORIE

KONFERENSRUM

Koppla upp kamera | | Starta inspelning

Figure 8: A screenshot of a simple control panel implemented in the client
workspace.

24

4 Discussion

Due to the use of a development framework that the developer did not have
any previous experience in, the design approach on this project has been very
iterative. In the beginning of the project an inventory management program
was developed, both due to the fact that the company needed an application
for this but also to be able to learn and evaluate the Qt framework. During
the development of the client four iterations of the QML code for the GUI
have been developed before the final iteration was settled upon.

No special project management method was used due to the fact that there
was only one developer. Looking back it would have been nice to use for ex-
ample Scrum and some Agile Software Development techniques, since these
effectively force the development team to have very good communication
and follow up with the management. If the development will continue on
this project these techniques should probably be adopted.

When investigating what method to use to connect against a database using
C#, many different methods came up. The approach that looked like the
best was Ling to SQL, which is a method where objects that represent the
different tables in the database are created automatically to be used in the
code. But due to the fact that only Microsoft Visual Studio Express was
available for use and using Ling to SQL with this development environment
seemed less than straight forward, the final solution uses the SqlConnection
class in the .NET library instead with which it is possible to send SQL
queries to the database and iterate over the data that is returned.

25

5 Future work

Before continuing development on a solution that implements all of the de-
sired functionality that is found in Alarm Monitoring, the integration with
OnGuard needs to be investigated further. It is still uncertain if functions
like acknowledge alarms and intercom communication easily can be commu-
nicated through the OnGuard system, and these are functionality that are
crucial for a full-fledged surveillance system like this.

Another thing that should be considered before further development is if
the administrative interface should be put in its own program that commu-
nicates directly with the server database. Including this logic in the server
and the client means a lot of extra work and complexity for very little profit.

In the future a layer of security also needs to be added to the solution, but
seeing that these security systems often resides in closed networks something
like encryption of the communication should probably be sufficient.

26

6 Conclusions

In this project a solution that implements some of the functionality that
Galder Security AB requested has been produced. The solution uses a
client-server model and allows for multiple clients connecting at the same
time to the server. From the client and through the server it is possible
to communicate with OnGuard and the different subsystems that OnGuard
communicates with. It is also possible to communicate directly with differ-
ent Bosch VMS clients from the client and through the server. The solution
uses new and exciting techniques in Qt Quick to produce the graphical user
interface in the client that the user interacts with.

With the solution in its current state it is possible to produce tailor-made
control panels. The design of the control panels is specified using QML code
and different signals and slots make it possible to interact with OnGuard
and Bosch VMS from this code through the client and the server. With these
control panels it is possible to replace existing control panels that are usually
implemented in Alarm Monitoring, making it possible for Galder Security
AB to potentially sell copies of the product in a relatively early stage of
its development and in this way support the continuing development of the
product.

Development has also started on a simple inventory management system

for the company to use. This was a by-product from the beginning of the
project when evaluating and learning Qt and Qt Quick.

27

References

1]

[11]

[12]

Galder Security AB. Bosch VMS. Accessible at: http://www.
galdersecurity.com/cctv/bosch-vms.html, year = 2010, note = [re-
trieved 2010-01-12].

Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernndez,
Michael Kay, Jonathan Robie, and Jérome Siméon. XML Path Lan-
guage (XPath) 2.0, 2007. Accessible at: http://www.w3.org/TR/
xpath20/.

Bosch. Bosch VMS. Accessible at: http://www.boschsecurity.
se/content/languagel/html/1671_SVE_XHTML.asp, 2011. [retrieved
2010-01-12].

Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler,
and Franois Yergeau. Extensible Markup Language (XML) 1.0
(Fifth Edition), 2008. Accessible at: http://www.w3.org/TR/2008/
REC-xm1-20081126/.

Francesco Callari. Operating Systems Course Material. Ac-
cessible at: http://www.cim.mcgill.ca/~franco/0pSys-304-427/
lecture-notes/node68.html, 1995. [retrieved 2011-01-12].

James Clark and Steve DeRose. XML Path Language (XPath) Version
1.0, 1999. Accessible at: http://www.w3.org/TR/xpath/.

Nokia Corporation. Qt Quick, 2010. Available in the Qt Assistant.

Nokia Corporation. Using the Meta-Object Compiler (moc), 2010.
Available in the Qt Assistant.

Ian Griffith. Doing Work Without Threads. Accessible at: http://www.
interact-sw.co.uk/iangblog/2004/09/23/threadless, 2004. [re-
trieved 2011-01-12].

James Kovacs. Identify And Prevent Memory Leaks In Managed Code.
MSDN Magazine, 2007. Accessible at: http://msdn.microsoft.com/
en-us/magazine/cc163491.aspx.

Lenel. Lenel Alliances. Accessible at: http://www.lenel.com/
alliances, 2010. [retrieved 2010-11-30].

Microsoft. BI Resources - SQL Server 2008. Accessible at: http://www.
microsoft.com/bi/products/sql-server-2008.aspx, 2009. [re-
trieved 2010-02-10].

28

http://www.galdersecurity.com/cctv/bosch-vms.html
http://www.galdersecurity.com/cctv/bosch-vms.html
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath20/
http://www.boschsecurity.se/content/language1/html/1671_SVE_XHTML.asp
http://www.boschsecurity.se/content/language1/html/1671_SVE_XHTML.asp
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.cim.mcgill.ca/~franco/OpSys-304-427/lecture-notes/node68.html
http://www.cim.mcgill.ca/~franco/OpSys-304-427/lecture-notes/node68.html
http://www.w3.org/TR/xpath/
http://www.interact-sw.co.uk/iangblog/2004/09/23/threadless
http://www.interact-sw.co.uk/iangblog/2004/09/23/threadless
http://msdn.microsoft.com/en-us/magazine/cc163491.aspx
http://msdn.microsoft.com/en-us/magazine/cc163491.aspx
http://www.lenel.com/alliances
http://www.lenel.com/alliances
http://www.microsoft.com/bi/products/sql-server-2008.aspx
http://www.microsoft.com/bi/products/sql-server-2008.aspx

[13]

Microsoft. Implementing Finalize and Dispose to Clean Up Unman-
aged Resources. Accessible at: http://msdn.microsoft.com/en-us/
library/blyfkhb5e (v=VS.90) .aspx, 2010. [retrieved 2010-12-07].

Microsoft. ~ The Managed Thread Pool. Accessible at: http:
//msdn.microsoft.com/en-us/library/0ka9477y.aspx, 2010. [re-
trieved 2010-12-01].

Microsoft. The .NET Framework. Accessible at: http://www.
microsoft.com/net/, 2010. [retrieved 2010-12-07].

Microsoft. WQL (SQL for WMI). Accessible at: http://msdn.
microsoft.com/en-us/library/aa394606 (v=VS.85) .aspx, 2010. [re-
trieved 2010-12-07].

Microsoft. Microsoft SQL Server 2008 - Overview. Ac-
cessible at: http://www.microsoft.com/sqlserver/2008/en/us/
programmability.aspx, 2011. [retrieved 2010-02-10].

Microsoft. ~ The C# Language. Accessible at: http://msdn.
microsoft.com/en-us/vcsharp/aa336809, 2011. [retrieved 2010-02-
10].

Walter Oney. Programming the Microsoft Windows Driver Model, 507-
510. Microsoft Press, 2002.

Bjarne Stroustrup. The C++ Programming Language. Accessible
at: http://www2.research.att.com/~bs/C++.html, 2010. [retrieved
2010-02-10].

29

http://msdn.microsoft.com/en-us/library/b1yfkh5e(v=VS.90).aspx
http://msdn.microsoft.com/en-us/library/b1yfkh5e(v=VS.90).aspx
http://msdn.microsoft.com/en-us/library/0ka9477y.aspx
http://msdn.microsoft.com/en-us/library/0ka9477y.aspx
http://www.microsoft.com/net/
http://www.microsoft.com/net/
http://msdn.microsoft.com/en-us/library/aa394606(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa394606(v=VS.85).aspx
http://www.microsoft.com/sqlserver/2008/en/us/programmability.aspx
http://www.microsoft.com/sqlserver/2008/en/us/programmability.aspx
http://msdn.microsoft.com/en-us/vcsharp/aa336809
http://msdn.microsoft.com/en-us/vcsharp/aa336809
http://www2.research.att.com/~bs/C++.html

Appendix A

30

|VisionEverisActivatedBylnitvenls =~ 7
Y VissonEvents_ID: INTEGER (FK)
¥ LniEvents_EverkID: INTEGER (FK)
9 LriSvenits_PanelID: INTSGER (FK)
T R——T T 9 LiEvenits_SecondaryDevicelD: INTEGER {FK)
M ot TNTESER A 7 LriSvanie_TemieslD: INTSGER (FK)
e § e e 1 s s oo o
: ——— = FiTnciexd
7 LriEverit=_PanelD: INTSGER (FK) LB Te At ¥ VisionEvents_ID
} LriSvenite_SmcondaryDevicelD: INTEGER (Fi) |- VimionSents_hes_lnlSemnts Mlnd=cd
9 LriEveris_DevicalD: INTEGER (FK) = ¥ LniSvmnts_Demvic=ID
9 Cenits_CheriID: CHAR(IS) (FK) ¥ LniSvmnie_SmeoryiaryDevicalD
§ ArfEvents_BvetDescfege VARCHAR(SS) (R | | LPeEAmcTied | oD THTEGER ¥ LniEvmniz_PanelD
|8 S U i e T
|3 Climntsfims_LnlSvmnts SiTngime? : =
§ LriSvents_DevicelD F&%ﬂﬂwﬂf
Ll (DevicalD LedEvmritTe Dmmcivator]s VizianZveriiz_I0:
M “M“m”nhmu.v Y LriEvenits_EwerID: INTEGER (Fi)
 LoiEvesits_EvertTD LriCuip i - 9 LriSvenits_PanelID: INTEGER (FK)
3 LiErte Erat D 7 DmvislD: INTEGER 7§ LriSvanie_SmenndiaryDevizsTD: INTEGER (FK)
—— 9 SecondaryDmvic=ID: INTEGER [— § LniEvents_DevicelD: INTEGER (FK) e \imimnEvmnle
] Pan=iIl: INTEGER J LniEvents_EventDeschmgex: VARCHAR(ES) (FK) By 3 ID: INTEGER
 Defmuifzs: EIT : Az LalEvents_ PRTnderd —————————————————— [Name: vancaRE)
¥ VemionEvmntz 10 G Sz 2 TNT
| VisionSimnte_hes LnlSmnts Alnd? P ———
¥ LniSvmnte_DeviesID Mo . BT
T = T ¥ LniSvmnts_SscondsryDevicelD
T UnerID: INTEGER & ¥
3 e _.EHB- 5 Uszmame: VARCHAR[ES) “ \isianErertConras
Log=dlnileer L @ Pmm=word 2: VARCHAR[ES) =
M__ Hame: ‘pwnmu_.pkma @ Frstiame: VARCHAR(ES) -
Py — M Ez&:.u%nnszma 7 VizianEverkz_ID: INTEGER (FK)
|3 Tt Antexd | Lo 7 LeiDutputs_PanellD: INTEGER (FK)
@ Logz=i0nls=r 9 LDt SecondaryDeviceID: INTEGER (FK)
Y LriChuilp s DevicelD: INTEGER (FK) VimignEvant s InGroupAtCent
VisionSvents_Aes_{niOulputs AN Tnoex] AV
¥ VimionEvents_I0
ChantHasimionSvertGroms |3 VisionSients_hes LniDulputs MRTnosed
¥ LniOutputs_Denic=TD
Av ¥ Liutpits_S=coviary Devic=lD
§ LniOutputs_Pansll

T Oenits_CentID: CHAR[3S) (7K)
} VissnEvents_I0: INTEGER (FK)
9 Groughlame: VARCHAR(ES)

¥ Chets_ChmtID
|3 Climnts_fims_ViziznSimnts_KTndme?
 VizionEemis_ID

Figure 9: The current design of the database.

