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Developing escape strategies for copepods using Q-learning
ERIK HOLMBERG
Department of Physics
Chalmers University of Technology

Abstract
Copepods are a type of small crustaceans with the ability to move using powerful
jumps. This project seeks to develop a model for the dynamics of these copepods in
the turbulent flows of the oceans and then apply Q-learning to find good navigation
strategies. Contained in this project is also the development of a statistical model
of a turbulent flow.
It is found that using Q-learning it is possible for the simulated copepods to learn
strategies that allow them to avoid dangerous areas almost equally as well as more
simple strategies that require more information.
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1
Introduction

1.1 Background

Copepods, a group of small crustaceans, have generated a lot of interest in the scien-
tific community during the past few years. One aspect that makes them interesting
is their ability to move around using powerful jumps when they detect large shear
changes. This ability allows them to navigate small-scale flows of the ocean in order
to escape predators [1][2]. Understanding the consequences of this behaviour has
been approached from many different directions, such as exploring the effect move-
ment by jumping has on population dynamics [3]. The strategies employed by the
copepods in determining when and where to jump have also been researched, both
experimentally and theoretically [4].
Ardeshiri et al. [3] develops a Lagrangian model for copepod dynamics. In this model
the copepods can always measure the strain magnitude S, and will jump when this
is above a certain threshold. The strain magnitude is an important property of the
flow and is used as a signal for when to jump since this behaviour is observed in
experiments. There are numerous reasons that the copepods could want to avoid
areas of high strain magnitude as it could both indicate and mask the presence of a
large predator as well as make catching prey harder. The model developed in this
project is in large part based upon the one devéloped by Ardeshiri.
Another field that has seen a lot of interest recently is machine learning. The
temptation to have a computer learn to solve a difficult problem has proven strong
and there are few areas of research where implementing machine learning in some
capacity has not been attempted [5][6]. One of the main advantages of machine
learning is that it excels at analyzing huge amounts of data and learning from
patterns in a way that is infeasible for a human.
Machine learning is, however, just an umbrella term for a wide array of algorithms.
The specific algorithm used in this project is called Q-learning [7], which in itself is
part of a branch of machine learning called reinforcement learning [8]. Reinforcement
learning relies on having an agent trying to perform a task repeatedly, each time
giving the agent a reward depending on its performance. The agent registers the
actions taken and the reward given during each attempt and eventually learns a
strategy through trial and error. Q-learning is simply a specific way to structure this
learning, detailed further in chapter 3. Q-learning has been successful in constructing
efficient navigation strategies in similar situations and is therefore the algorithm of
choice for this project [9].
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1. Introduction

1.2 Aim
The aim of the project is to program a two-dimensional statistical model of a tur-
bulent flow as well as a model for copepod dynamics, then use Q-learning to find
strategies for the copepods to avoid regions of high strain magnitude. The project
seeks to answer whether a similar or better performing strategy than the one found
by Ardeshiri et al. can be found despite not giving the copepod agent the ability to
directly measure the strain magnitude.
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2
Model

This chapter will walk you through the process of constructing the model of the flow
and the copepod agents.

2.1 Constructing a flow
The type of flow used in the model is a two-dimensional incompressible velocity
field consisting of a deterministic mean part uD(r) and an additional stochastic
part uS(r, t).

u(r, t) = uD(r) + uS(r, t) (2.1)

That the flow is incompressible means that the divergence of the velocity field is
zero at all points. This is important because the aim is to´model regular Navier
Stokes flows which all have this property.

2.1.1 Deterministic mean flow
For the deterministic mean, two commonly used model flows were used. The first is
a Kolmogorov flow [10], defined as

uD(r) = (uD0 cos y
L
, 0) (2.2)

where uD0 is a scale factor determining the magnitude of the velocities in the flow
and L is a spatial scale factor. The velocity of this flow is always parallell to the
x-axis and depends only on the y coordinate, this can be seen in the left panel of
figure 2.1.
The other type of deterministic flow used is a TGV flow [11], and is defined as

uD(r) = uD0(− cos x
L

sin y

L
, cos y

L
sin x

L
) (2.3)

which manifests as a periodic pattern of spirals in interchanging directions, seen in
the left panel of figure 2.2. Both of these flows are incompressible by design.

2.1.2 Stochastic flow
The stochastic flow is modelled in a way that has previously successfully explained
complex dynamics observed in small inertial particles [12][13][14] . When construct-
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2. Model

ing the stochastic part of the field we need to make sure that it is also incompressible,
this will be satisfied if it is of the form

uS(r, t) = (∂yφ(r, t),−∂xφ(r, t)) (2.4)

since the requirement is ∂xuSy + ∂yuSx = 0. The following function φ is in our case
calculated by using a Fourier decomposition with random coefficients

φ(r, t) =
√

2π η2uS0√
2LxLy

∑
k

ak(t)eik·r−k2η2/4. (2.5)

Here, uS0 is a magnitude scale factor much like in the deterministic flow. Lx and
Ly are the system sizes in the x-direction and y-direction. η is the correlation
length of the flow and k is a wave vector that can take values on the form k =
2π(nx/Lx, ny/Ly) where nx, ny ∈ Z. For each of these possible k and each time
step t, there is a complex Fourier coefficient ak(t) randomly drawn from a Gaussian
distribution with zero mean and covariance 〈aka

∗
k′〉 = δkk′ . An additional constraint

on these values is a∗k = a−k in order for the sum in (2.5) to be real.
In each time step these coefficients are updated according to

ak(t+ δt) = (1− δt/τ)ak(t) + bk(t), (2.6)

where δt is the time step used in the simulation, τ is the correlation time of the
flow and bk(t) are independent complex Gaussian random numbers with zero mean
and covariance 〈bkb

∗
k′〉 = 2δt/τδkk′ . This choice of bk(t) yields an exponential time

correlation and keep the conditions of ak fulfilled, as long as b∗k = b−k.
Generating φ in this way yields a function with Gaussian space correlation and
exponential time correlation:

〈φ(r, t)φ(r′, t′)〉 = η2u2
S0

2 e−(r−r′)2/(2η2)−|t−t′|/τ . (2.7)

When realizing this calculation however, one has to choose how many k’s to consider,
since we cannot actually compute an infinite number of Fourier modes. For the tests
in this project, this limit has been set at max n = 5,minn = −5 för both nx and ny.
The left panels of figures 2.1 and 2.2 show what the velocity fields look like. In
these realizations uS0 = 0.025uD0, which means that the deterministic part of the
velocity is significantly larger than the stochastic part at typical locations. This
can be seen in the velocity maps of the flows which look very organized. For our
purposes, one of the most important properties of the flow is the strain magnitude,
and the strain magnitude maps, shown in the right panels of figures 2.1 and 2.2 look
quite randomized in comparison to the velocity field. Here we can see several low
and high strain magnitude “pockets” caused by the stochastic flow even though the
overall structure of the deterministic flow is still clearly visible. From figure 2.3 we
see that the mean of the strain magnitude of the stochastic flow is approximately
13 times the value of uS0. Compare this to the deterministic flow where the mean
of the strain magnitude is equal to uD0. This relationship between uS0 and uD0
depends on a number of factors notably including the correlation length η. A larger
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2. Model

η would lead to lower strain magnitudes for the same values of uS0 as the flow would
be more “smooth”.
It is worth noting that the coefficient 13 in the relationship between uS0 and the mean
strain magnitude is not the same as the one expected by analytical calculations.
According to the analytical calculations the coefficient should have been

√
8/η ≈

28.3, it is unclear why this is the case but it is likely due to some error in the code.

Figure 2.1: To the left is the velocity field of a typical Kolmogorov flow generated
with the method described in this section, to the right is a contour map of the strain
magnitude of the same flow. The top and bottom parts of the map are high strain
magnitude regions due to the deterministic part of the flow but they also have low
strain magnitude pockets due to the stochastic part.

Figure 2.2: To the left is the velocity field of a typical TGV flow generated with
the method described in this section, to the right is a contour map of the strain
magnitude of the same flow. The center of the map is a high strain magnitude
region due to the deterministic part of the flow but it also has low strain magnitude
pockets due to the stochastic part.
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2. Model
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Figure 2.3: This graph shows the mean strain magnitude as a function of the
scale of the velocity flow. This only takes into account the stochastic part of the
flow and shows that even a small velocity perturbation will lead to a large strain
perturbation.

2.2 Properties of the flow
This section will explain some concepts of fluid dynamics required to understand
what it is that the copepods are trying to avoid.
Since the copepods are moving in a fluid, their movement is governed by flow of the
fluid. To describe the effects of the flow on a particle, it is useful to define the tensor
A = ∇uT which consists of the spatial derivatives of the flow u. The elements of A
are

Aij = ∂ui
∂xj

. (2.8)

A can be decomposed into a symmetric tensor S and an asymmetric tensor O with
the definitions

S = 1
2(A + AT), O = 1

2(A− AT). (2.9)

The symmetric tensor S describes the strain of the flow, or the local rate of defor-
mation. This is a very important tensor as the magnitude of the strain, defined as
S =

√
2S : S, determines whether a part of the flow is desirable for the copepods

or not. The anti-symmetric tensor O describes the rotation of the flow and has a
relation to the vorticity vector of the flow wf . More specifically, for any vector x

Ox = 1
2wf × x. (2.10)

In terms of these tensors, the effect of a flow on the trajectory of an elliptic particle
in two dimensions, which is how the model approximates the copepods, can be
expressed as
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2. Model

ṅ = On + λ2 − 1
λ2 + 1(Sn− (nTSn)n). (2.11)

as first derived by Jeffery [15]. Here n is the orientation vector of the particle, which
in our case can be viewed as the direction the copepod is facing. λ is the shape
parameter of the elliptic particle. More specifically it is the aspect ratio between
the diameter parallell to the orientation vector and the diameter orthogonal to it.
In this project λ is chosen to be 3.

2.3 Copepod jumps
Experimental data suggests that copepods mainly move by performing powerful
“jumps” [2]. These jumps are characterised by a quick acceleration to a speed
significantly greater than that of the flow, followed by a slower decrease in speed
untill they are once again “at rest” and ready for another jump. In this thesis, these
jumps are modeled in the way introduced by Ardeshiri et al. [3].
The copepods are assumed to be rigid, homogeneous, neutrally buoyant particles
small enough to be considered perfect tracers in a flow, except during a jump. In
Ardeshiris model, the movement of the copepods is described as

ṙ(t) = u(r(t), t) + J(t, ti, te, S,n) (2.12)

where u(r(t), t) is the flow and J(t, ti, te, S,n) is an added velocity term describing
the jumps that in this model is the copepods only way of moving on their own. In
addition to being a function of t, it also depends on the initial and final times ti and
te as well as the magnitude of the strain S. The jumps are modelled as

J(t, ti, te, S,n) = H[S(ti)− ST ]H[te − t]uJe
ti−t
τJ n(ti) (2.13)

where H[x] is the Heaviside step function and ST is the threshold of the strain mag-
nitude where the copepods will start jumping. uJ is a parameter that determines
the copepods speed at the beginning of the jump, similarily τJ determines the du-
ration of the jump. ti and te serve as time markers keeping track of when the jump
started and when it’s going to end. ti is assigned the value of t when two criteria
are fulfilled, S(t) > ST and t > te. This ensures that a jump only starts when the
previous jump is over and the strain magnitude is sufficiently high. At the same
time, te is set to ti + cτJ where c is chosen to make sure that the amplitude of the
jump has reached a negligable level before it is terminated.
In the simulations, the positions and orentations of the copepods are updated using
the Runge-Kutta method with a timestep of δt.

2.3.1 Changes to the existing model
The main addition to the model made in this project is in the way the copepods
decide whether to jump or not. In the previous model, the copepods could measure
the magnitude of the strain directly. If this measured strain was above a fixed
threshold the copepod would always jump, otherwise it would never jump. In this
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2. Model

project, this is replaced by a strategy developed through Q-learning that also gives
a more realistic amount of information to the copepods. This will be explained in
the next chapter.
Another change to the original model is the possibility of sideways jumps in addition
to the existing forward jumps. These are meant to represent the copepods ability to
quickly rotate before jumping[16], thus giving the simulated copepod some amount
of control over the direction of the jump.
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3
Q-learning

This chapter will explain the core concepts of Q-learning and show how it is imple-
mented in the copepod model.

3.1 Reinforcement learning
Reinforcement learning is a form of machine learning, meaning that it is a type of
algorithm that teaches a computer to solve a problem without explicitly telling the
computer what to do. Reinforcement learning relies on the principle of trial and
error to find an optimal strategy. The simulated agent will try to perform an action
and will be given a reward depending on how successful it is. This reward will then
impact how likely the agent is to attempt the same action again.

3.1.1 Q-learning
The basis for any reinforcement learning is a set of states, each with a set of possible
actions. Performing an action in a certain state nets the agent a reward depending
on the success of that action. The exact way that this happens depends on the
specific algorithm used.
The algorithm used in this project is called Q-learning7. The premise of Q-learning
is that every combination of state S and action A has a Q-value Q(St, At) at a given
time step t. If the simulated agent is in state St and performs action At at time t,
this value will be updated according to

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)]. (3.1)

In this expression, Rt+1 is the reward given to the agent at time t+ 1. This reward
should be based on what the agent is trying to learn. If, for example, the agent is
learning to navigate northward on a map, a suitable reward would be the distance
north traveled since time t. The term maxaQ(St+1, a) can be thought of as the
expected future value of ending up in state St+1 as it will take the Q-value of the
best action available from that state. The discount factor γ determines how much
the agent values future rewards, or how long-sighted it is. α is the learning rate
and determines how much the agent will let each update influence the learned value.
A large α will quicken the learning process but might also make it harder for the
algorithm to converge as values will fluctuate more. Both α and γ should be in the
range of 0 to 1.
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3. Q-learning

To explain this more conceptually: The agent, being in a certain state, performs a
certain action and then in some way measures how successful this action was (the
reward Rt+1 and the value of the resulting state γmaxaQ(St+1, a)). This is then
compared to how successfull this action was previously excpected to be (the old
Q-value Q(St, At)) and the difference multiplied by the learning rate α is added to
the old Q-value.

3.1.2 Exploration and exploitation
When implementing a reinforcement learning algorithm it is important to consider
the balance of exploration and exploitation, this is represented in the algorithm by
the parameter ε. Every time the agent chooses an action, there is a probability ε
that it will choose completely at random. When not choosing at random, it chooses
the action a : maxaQ(S, a) where S is the current state of the agent. This is the
action that is believed by the agent to give the best future reward.
If ε = 0 the agent will always choose the “greedy” action that is the current estimated
best option. The risk of this is that an action that is actually optimal might be
discarded due to an unfortunate poor reward in an early trial or similar. A nonzero
ε will make sure that the entire action-state-space of the Q-matrix will eventually be
visited many times, which is necessary for the algorithm to converge to the optimal
solution. In this project ε is chosen to be 0.01.

3.2 Setting up the Q-learning
In order to use the Q-learning algorithm described in section 3.1.1 in our specific
model, choices need to be made regarding the state space, the action space and the
learning parameters.

3.2.1 State and action space
In an attempt to model the sensory input of the copepods in a less demanding
way than in Ardeshiri et al. the state space is based on two values that could be
known to the copepod by measuring the velocity of the flow at four points on its
body. The two values are projections of the strain nTSn and nTSp where p is the
orientation vector orthogonal to n. Each of these values will fall into one of three
states: positive, negative or close to zero. This results in a total of 9 states. In
comparison, Ardeshiris model gives the agents direct access to the strain magnitude
S which, although it can be calculated from the projections used in our model,
requires more sophisticated calculations which it is unclear whether the copepods
can perform. Knowing the two projections is likely to be less useful than knowing
the strain magnitude S as the 9 states in our model will “overlap”, meaning that
the same value of S will appear in several different states. This will make it harder
for the agent to know when it is in an area of high strain magnitude. As for the
action space the model has 4 available actions in each state: jump in the direction
of the instantaneous orientation n, rotate left and then jump, rotate right and then
jump and not jumping. This means that the Q-matrix will be a 9× 4 matrix.

10



3. Q-learning

3.2.2 Reward
The choice of reward is extremely important as it decides what the agent will try to
learn. The goal of the chosen reward in this project is to emulate the desire of the
copepods to avoid regions of high strain magnitude S. The chosen reward is

Rt = −S(t)2. (3.2)

This reward has two desired properties. It decreases as the strain increases, and it
does so in way that disproportionately punishes large strains. The reason why this
is desirable is because it is more important for the copepods to avoid the highest
strain regions than find the lowest strain regions.
Since the reward will always be negative, all Q-values will be negative once the Q-
learning has converged. Thus setting all initial Q-values to zero will ensure some
exploration of the entire Q-matrix. This strategy of setting optimistic inital Q-values
works because the algorithm will almost always pick the action with the highest Q-
value which means that all state-action combinations are likely to be tried a number
of times before the best one is found.

3.2.3 Training
The final steps to set up the Q-learning is to decide how to structure the updating
of the Q-matrix. To simplify the model slightly, the decision was made to only
update the Q-matrix at set time intervals. These intervals were set to be equal to
the relaxation time of the copepods, that is the time from the start of a jump until
the copepod is ready to jump again. This means that every time the Q-matrix is
updated the copepod will be capable of jumping. This allows the algorithm to use
these certain time steps to do a number of things at the same time:

• Determine which state the agent is currently in.
• Calculate the reward Rt = −S(t)2 where S(t) is the instantaneous strain

magnitude.
• Update the Q-matrix.
• Choose and execute the next action.

All of these things happen at these certain time steps and never at other time steps.
This is slightly unrealistic as the copepods would normally be free to jump at any
time but it makes the model a lot simpler.
It is of course also important to decide the duration of the training session. The
terminology used in this project has been that a training session consists of a number
of episodes. Each episode starts with a copepod placed randomly in the flow and
continues for a set number of timesteps. The only information that is carried over
between the episodes is the Q-matrix.

3.2.4 Parameters
We recall that the updating formula for the Q-learning is

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)].
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3. Q-learning

For all results presented in this thesis, the parameters in this formula has been set as
follows: α = 0.1, γ = 0.99, ε = 0.01. Remember that ε is the probability to perform
a random action rather than the most profitable action in a given timestep. The
reason that a rather small ε is chosen is that even though we are only interested in
finding the best strategy, having the agent mostly follow the optimal path will allow
for training in the scenarios that it is more likely to encounter when following the
finished strategy.
To summarize, the parameters used during the simulations (including the ones
brought up in the previous chapter) are found in table 3.1.

Table 3.1: List of all fixed parameters used during the simulations.

Learning rate α 0.1
Discount factor γ 0.99
Exploration rate ε 0.01

Base mean flow velocity uD0 (mm/s) 1
Base stochastic flow velocity uS0 (mm/s) 0.025
Stochastic flow correlation length η (mm) 0.1

Stochastic flow correlation time τ (s) 0.1
Stochastic flow system size Lx, Ly (mm) 1

Jump speed uJ (mm/s) 50
Jump duration τJ (s) 0.01

Copepod aspect ratio λ 3
Simulation timestep δt (s) 0.001

Runge-Kutta stepsize h (mm) 0.001
Timesteps per episode 10000

Episodes 500
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4
Results and discussion

This section will present the results obtained during the project.

4.1 Tuning the learning

As mentioned in chapter 3, the state space of the Q-matrix is made up of three
different levels of S‖ = nTSn and three different levels of S⊥ = nTSp. The decision
remaining to be made is where the thresholds between these levels are. Assuming
that the levels are distributed as shown in table 4.1, a sweep of possible values for
the threshold T was performed, the results of which is shown in figure 4.1. From
this sweep we can conclude that the optimal threshold is probably around 0.37 and
this is the value used for T in all upcoming results. This sweep was done in the
Kolmogorov flow but a very similar result was obtained in the TGV flow. Figure
4.2 shows how the reward progresses through a training session.

Table 4.1: Table illustrating how the state space is structured with regards to the
threshold parameter T .

S⊥ < −T |S⊥| < T S⊥ > T
S‖ < −T s−− s−0 s−+
|S‖| < T s0− s00 s0+
S‖ > T s+− s+0 s++

13



4. Results and discussion
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Figure 4.1: Results of a parameter sweep over the strain threshold T . For each
value of T , 4 training sessions were run. The mean total reward for the last part of
these trainings are plotted against T with the standard deviations shown as error
bars. The most efficient T is likely around 0.37.

Figure 4.2: The total reward earned by an agent in each episode of a training
session, averaged over five training sessions. The opaque line shows the mean reward
and the shaded area shows the standard deviation. As the training proceeds the
strategy improves from an average reward around -150 to an average reward around
-80. Learning parameters are α = 0.1,ε = 0.01,γ = 0.99.

4.2 Learned strategies
After a training session the Q-matrix will in most cases have stabilized. The strategy
that has then been learned is defined by the actions that have the highest Q-value
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4. Results and discussion

for each state. To answer the question of whether the same strategy is learned every
time, the results of many training sessions are aggregated into tables 4.2 and 4.3
for the two flows. The tables also summarize the strategies generally learned during
the training and we can observe that in each case only three show any signinficant
correlation between runs. An observation can be made that in the Kolmogorov
flow, the three conclusive states all share the same perpendicular component and
only differ in the parallell component. In the TGV flow, they all instead share the
same parallell component and differ in the perpendicular one.

Table 4.2: The left table shows the sum of all learned strategies over 40 training
sessions in the Kolmogorov flow. For each state and action, the number in the
corresponding box is the number of training sessions that ended with a strategy
performing that action in that state. The right table shows a simplified summary of
the conclusions one can draw from this result. States where results vary wildly are
marked with ? while states where the same action prevails often are marked with
that action.

· ↑ ← →
s−− 7 9 15 9
s0− 3 11 9 17
s+− 7 11 13 9
s−0 1 30 7 2
s00 38 0 1 1
s+0 0 34 1 5
s−+ 8 13 8 11
s0+ 3 13 19 5
s++ 10 9 10 11

State Action
s−− ?
s0− ?
s+− ?
s−0 ↑
s00 ·
s+0 ↑
s−+ ?
s0+ ?
s++ ?

Table 4.3: The left table shows the sum of all learned strategies over 40 training
sessions in the TGV flow. For each state and action, the number in the corresponding
box is the number of training sessions that ended with a strategy performing that
action in that state. The right table shows a simplified summary of the conclusions
one can draw from this result. States where results vary wildly are marked with ?
while states where the same action prevails often are marked with that action.

· ↑ ← →
s−− 5 7 12 16
s0− 1 38 1 0
s+− 2 21 6 11
s−0 2 9 6 23
s00 40 0 0 0
s+0 3 18 13 6
s−+ 5 3 20 12
s0+ 1 35 3 1
s++ 2 13 17 8

State Action
s−− ?
s0− ↑
s+− ?
s−0 ?
s00 ·
s+0 ?
s−+ ?
s0+ ↑
s++ ?
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4. Results and discussion

Figures 4.3 and 4.4 shows what the execution of the learned strategies look like in
practice. A core element of the strategy is of course to jump when the agent is in an
area with a high strain magnitude and to stay still when in an area with a low strain
magnitude, this can be seen in both examples. In the Kolmogorov example we can
see that the agent sometimes jumps away from the optimal line even after it finds it.
This could be due to finding high strain magnitude pockets caused by the stochastic
field. It does however find its way back eventually. Figures 4.5 and 4.6 illustrate the
results of the learned strategies in a slightly different way. These figures contain the
distribution of copepod agents after they have followed the learned strategies for an
episode and we can observe that the low strain regions are in all cases more densely
populated than the high strain areas. In each of these figures, the right panel shows
the results of following a strategy that is a “mirroring” of the strategy used in the
left panel, meaning that all left turns are replaced by right turns and vice versa.
Noting the qualitative similarity between the two results, it is likely that mirroring
a strategy has no bearing on the effectiveness of the strategy. This symmetry should
be taken into considration when evaluating the results in tables 4.2 and 4.3.

2 3 4 5

x

0.5

1

1.5

2

2.5

3

3.5

y

Path of a copepod using the learned strategy

Start

Figure 4.3: An example of the path an agent can take in the Kolmogorov flow
after learning a strategy. Each dot represents the agents position at one time step,
the places where the dots are further apart are places where the agent performed a
jump. In this example, the agent starts out in an area with a high strain magnitude
and moves to find an area with a low strain magnitude.
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Path of a copepod using the learned strategy
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Figure 4.4: An example of the path an agent can take in the TGV flow after
learning a strategy. Each dot represents the agents position at one time step, the
places where the dots are further apart are places where the agent performed a jump.
In this example, the agent manages to find its way to the center of a spiral where
the strain magnitude is low.
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Figure 4.5: These images show the distribution of 500 copepod positions after
each copepod has navigated for a complete episode using a Q-learning developed
strategy in the Kolmogorov flow. The left panel shows the results of using the
developed strategy while the right panel shows the results of using a “mirrored”
strategy, meaning that all left turns are replaced with right turns and vice versa.
The similarity between the two panels show that mirrored strategies perform at a
similar level.
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Figure 4.6: These images show the distribution of 500 copepod positions after each
copepod has navigated for a complete episode using a Q-learning developed strategy
in the TGV flow. The left panel shows the results of using the developed strategy
while the right panel shows the results of using a “mirrored” strategy, meaning that
all left turns are replaced with right turns and vice versa. The similarity between
the two panels show that mirrored strategies perform at a similar level.

To shed some light on why these particular strategies emerge and why they differ
from field to field, I took a closer look on how exactly the values nTSn and nTSp
change with the orientation of the agent. Assuming n = (cosα, sinα)T and p =
(− sinα, cosα)T the values for the Kolmogorov flow (only considering the mean part
of the flow) will be:
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nTSn = −uD0

L
cos y

L
sin 2α (4.1)

nTSp = −uD0

L
cos y

L
cos 2α (4.2)

While for the TGV flow it will be:

nTSn = uD0

L
sin x

L
sin y

L
cos 2α (4.3)

nTSp = uD0

L
sin x

L
sin y

L
sin 2α (4.4)

This doesn’t immediately give an answer but it allows for some speculation. The
terms can be thought of as consisting of two factors. One is the one that is the same
for both nTSn and nTSp, this one depends on the coordinates of the agents. The
other one depends on the orientation angle α, and in both flows one of the values
takes the form cos 2α and the other is sin 2α. What these factors mean in practice
is that the magnitude of the term in question will be larger when the orientation of
the agent is horizontal or vertical (cos 2α) or diagonal (sin 2α). The interesting part
is that the places are reversed between the flows.
Connecting this to observations made regarding the learned strategies we remember
that the agent in the Kolmogorov flow learned strategies most consistently when
nTSp was close to zero. This is in that case the term with cos 2α. In the TGV
flow the same was true for nTSn wich in that case is also the term with cos 2α.
It is tempting to find a connection here. cos 2α being close to zero means that
the agent is oriented diagonally, it could be that the agent spends most of its time
oriented in such a way due to some property in the rotational dynamics of the flow
(2.11). Numerical data from the simulations support this, as shown in figure 4.7
where the left panel correlates to the Kolmogorov flow and the right to the TGV
flow. This tendency of the agent to be oriented diagonally offers an explanation as
to why the states where cos 2α is close to zero are seemingly more important parts
of the strategy. The results from the TGV flow also shows that two of the peaks
are significantly larger than the two others, the exact cause of this is unknown but
is likely rooted in the stability of the rotational dynamics. It should be noted that
the prevalence of diagonal orientations is a property of the flows and is not inherent
in the copepod model.

19



4. Results and discussion

Figure 4.7: These figures show the distribution of the orientation angle α in a
histogram measured during 200 episodes using the learned strategy. The left panel
shows data from the Kolmogorov flow while the right is from the TGV flow. Both
distributions show clear peaks at −3π

4 , −π
4 ,

π
4 and 3π

4 . The distribution from the
TGV flow has a substantially higher frequency of all other angles, this is because
the agents will rotate continuously once they find their way to a spiral.

4.3 Performance compared to previous results

It is not obvious how best to compare the strategies developed in this project to the
simple strategy used by Ardeshiri et al.[3]. As a reminder, in that report the copepod
agents could measure the strain magnitude directly and would jump whenever the
measured strain magnitude was higher than a certain threshold. This is hard to
compare fairly to this model for a number of reasons:

• The agents don’t have access to the same information. The Ardeshiri agents
know the absolute strain magnitude while the ones in this project only know
two projections of the strain.

• They don’t have the same freedom of movement. The agents in this project
could only jump at fixed timesteps while the Ardeshiri ones could jump at any
time as long as the previous jump had ended. On the other hand, the agents
in this project can jump in different directions which the Ardeshiri ones could
not.

• It is unclear what the best metric to measure them against each other is.
The agents in this project are specifically trained to optimize the value of
Rt = −S(t)2 at certain timesteps so measuring their performance by something
else might be unfair.

Even though it might not be completely fair, it seems that the best comparison
would be to measure the reward that the agents in this project has been trained
with and to allow the agents using the Ardeshiri strategy to optimize their strain
magnitude threshold to achieve the same goal. By doing a parameter sweep similar
to the one done in figure 4.1 the optimal value for the strain magnitude threshold
is determined to be 0.87. Running the simulations with this threshold gives the
comparison in table 4.4:
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Table 4.4: Results of a comparison between the simple Ardeshiri strategy and one
learned through Q-learning.

Mean total reward Standard deviation
Q-learning -76.8 2.10
Ardeshiri -68.4 1.90

The results of the comparison favor the Ardeshiri strategies, though it is important
to remember that those agents have an advantage in information. The question still
remains which sensory input most closely resembles reality, it could be possible to
determine this experimentally by observing the trajectories of copepods as the two
different sensory input should lead to distinctly different trajectories.

4.4 Conclusion
The model was succesfully programmed and simulates the movement of the copepods
in the intended way. In the end, the learning algorithm did not find a strategy that
outperformed the simple Ardeshiri strategy. It did, however, come reasonably close
with a less demanding sensory input. The fact that no advanced strategy emerged
to beat the simple Ardeshiri strategy can be used to argue that the assumptions
made by Ardeshiri et al. regarding the validity of their strategy were correct.
Some interesting patterns emerged in the the strategies learned by the copepods
depending in the flow. It was deemed likely that this was due to properties in the
two flows studied that made the agents more likely to be oriented diagonally.

4.4.1 Future work
There are a lot of areas where this model could be expanded in the future. A larger
Q-matrix with more states would allow for even more sophisticated strategies. A
3D model might be able to explore aspects of the copepods movement in ways not
possible in two dimensions. The model could also be made more advanced in a lot of
other ways. For example, predator agents could be introduced and copepods could
be made to interact with each other. It could also be of interest to test the model in
new flows, notably the channel flow.The model could also be modified to simulate
other kinds of copepods. The ones in this project moved only by jumping, but there
are other kinds of copepods that also or only move by swimming at a more constant
pace.
There are also some unsolved problems in this project that could be investigated
in the future, mainly the discrepancy between analytical and experimental results
regarding the relation of the stochastic scale factor and the mean strain magnitude
discussed in section 2.1.2 as well as the size different of the peaks in figure 4.7.
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