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ABSTRACT 

This thesis explores the potential of using alternative binders to replace cement clinker on a 
European scale in order to reduce the carbon dioxide emissions associated with concrete/ 
cement. Numerous studies highlight the importance of increasing the replacement ratio to meet 
international environmental goals [1]. However, little advancement has been made with respect 
to describing how to achieve these replacement goals.  

This thesis work is focused on estimating the resource base, and the regional availability, of two 
conventional alternative binders, fly ash and blast furnace slag, in the EU. The availability of 
fly ash was estimated based on existing coal-fired power plants block net capacity. The blast 
furnace slag resource base estimated based on the existing and projected capacity of EU blast 
furnaces.  

Further, the thesis, through scenario analysis, explore how the availability of alternative binders 
may change over time as existing capital stock in the power and steel industries are phased out. 
The scenarios were assessed using simulations from Matlab and further analysed with a software 
for spatial analysis. The results show that in the short term (5-10 years) it is possible, in most 
EU regions, to meet the demand for conventional alternate binders. In the long term (10-30 
years), however, it will not be possible to fulfil a sufficient replacement in all European regions 
using only these two alternative binders. These finding confirms the importance of increasing 
the efforts to develop other measures to reduce the climate impact from concrete and cement, 
including increased use of lesser-known binders.  

This study can hopefully encourage further researcher aimed at developing: a better 
understanding of the availability of other alternative binders, of processing techniques and of 
means to distribute them, so that the environmental goals in the concrete and cement industries 
may be achieved. 

 

 

Keywords: fly ash, blast furnace slag, concrete, cement, clinker, scenario, mapping, QGIS  
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1. Introduction 

1.1. Objective 
The aim of this master’s thesis is to analyse the potential for and effects of increasing the 
replacement ratio of clinker content in cement through the introduction of alternative binders. The 
study explores the limitations and possible benefits of using alternative binders as to reduce the 
climate impact from concrete in Europe and Sweden. These limitations are subjected to two sub-
goals: linking the resource base of conventional alternative binders with cement demand across 
Europe regions while existing coal-fired power plants and blast furnaces are phased out and future 
cement demand estimates and maximizing clinker replacement. 

1.2. Background 
Throughout the last two millennia, humans have been using concrete in a wide range of 
applications. In modern society, concrete is next to water the most consumed material in the 
world. Over time, concrete has become one of the most important materials for human beings 
thanks to its many applications in structures and buildings, which provide shelter, transportation 
and mobility for people.  

However, concrete has not always been made in the same way. In the beginning, roman engineers 
tailored concrete with volcanic rocks. Over the last two centuries, however, cement clinker has 
replaced all other binders, thus capturing almost all market shares. Figure 1 provides an overview 
of the cement making process. 

 

Figure 1 Overview of a cement plant. Source: IEA Technology Roadmap [1] 

First, raw materials are quarried (1) from calcareous deposits such as limestone, marl or chalk. 
Then, they are crushed and milled (2) until it is obtained a fine powder called “raw meal”. Later, 
this fine powder enters the cyclonic preheater (3) of multiple stages rising its temperature to over 
900ºC by coming into contact with exhausted gases. At the end of this stage, the preheated 
material starts to calcine (5) as long as it approaches to the bottom of the preheater above the kiln 
and starts entering inside the combustion chamber. Once inside the rotary kiln, precalcined meal 
gradually becomes clinker (6) by constantly falling to hotter zones towards the flame, where fuel 
is fired directly. After that, clinker is cooled (7) from over 1000ºC to 100ºC on a grate cooler, 
where combustion air is blown onto the clinker. Once cooled, clinker is blended (8) and grinded 
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(9) with other mineral components to craft perfect cement mixture or is stored directly in silos 
(10). [1] 

The cement manufacturing process accounts for the vast majority of the carbon footprint of 
concrete. These carbon dioxide emissions arise mainly from two sources: approximately 40% 
from fuel combustion in the cement kiln and approximately 60% from the calcination of limestone 
[1]. Hence, it is clear that those emissions are lately accounted in buildings and infrastructures, 
increasing their carbon footprint. Then, it becomes a major priority to reduce cement production 
emissions’ to lower the whole carbon footprint of all concrete-made infrastructures. 

There are in general three overarching options, to reduce climate impact associated with the use 
of concrete. To use alternative construction materials such as wood or metals instead of concrete 
to optimise designs, i.e., to use less concrete for the same function; and to reduce the cement 
clinker content in concrete by replacing the clinker with alternative binders. 

 

Figure 2 Cement sector CO2 emissions reduction 2010-2050. Source: IEA Cement Roadmap Keyfindings.[2]  

In addition, there are four main areas of improvement that could contribute to lowering emissions 
from cement production [1] to 2050. As seen from a systems perspective, it is clear that achieving 
the maximum energy efficiency of the systems becomes the first step. Using the best available 
techniques (BAT) to produce cement helps reducing the amount of emissions around a 10%. Next 
focus of improvement are the fuel usage in the cement plant. As said before, inside the rotary kiln 
fuel, today often fossil fuels, is combusted to produce heat. Turning towards alternative fuels 
becomes another source of improvement that adds around a 24% of emissions reduction. Later, 
the clinker substitution for alternative binders represents a 10% emission reduction potential. 
Finally yet importantly, introduction of carbon capture and storage  (CCS) technologies in the 
cement industry could potentially reduce emissions to zero. Latest advances on CCS may have 
opened a door to possible business opportunities because of future policies on emission reductions 
across the EU [1]. 

Instead of achieving a rather less than a 50% emission reduction, Sweden ambitions go far more 
away from those figures. There are three cement facilities in Sweden located in the south region 
of the country. All three plants are owned by the same company, Cementa (a subsidiary to 
Heidelberg Cement) and have a collective production capacity of 2-3 Mtonnes of cement per year. 
However, one of the plants, located in Degerhamn is predicted to be decommissioned by 2019 in 
order to meet environmental goals [3]. As illustrated by Figure 3, Cementa has been working on 
a complete decarbonisation of its production processes, with the ambition to become carbon 
neutral by the year 2030. 
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Figure 3 Cement sector CO2 emissions reductions 1990-2030. Source: Swedish cement industry Roadmap [4]. 

 

Figure 4 Swedish cement production facilities. Source: Cemnet – QGIS mapping..[5] 

In order to achieve a lower clinker to cement ratio reduction, it has been proposed the use of 
alternative binders. These are materials that show hydraulic or pozzolanic behaviour, which 
means that is a material that can set and harden submerged in water by forming cementitious 
products in a hydration reaction. Some of the most common and widely used alternative binders 
are fly ash from coal-fired power plants and ground granulated blast furnace slag from integrated 
steel plants.  
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Most alternative binders share nearly all properties with ordinary cement clinker. But, many times 
its utilization is linked to external factors such as local availability, economical feasibility or the 
final design expected for the concrete. 

Many countries around the world have been exploring the use of alternative binders in the cement 
industry and it is common practice to use both fly ash and blast furnace slag in many cement and 
concrete applications. Figure 5 shows the share (vol. %) of alternative binders used in the 
production of clinker-based Portland cement in the EU28 in the period from 1990 to 2016. 

 

Figure 5 Mineral components used to produce clinker-based Portland cement, weighted average, EU-28. Source:[6] 

However, in a European and Swedish context, there have been some limitations of their 
application due to a lack of testable data and regulative directives. Therefore, it becomes a big 
opportunity of improvement to explore the alternative binders’ application. 

1.3. Problem statement 
Concrete is, as mentioned above, next to water the most consumed material in the world, being 
the cause of 5-8% of all global anthropogenic greenhouse gas emissions. Carbon dioxide 
emissions from the cement production account for the vast majority of these emissions.  

A key option to decrease these emissions is via replacement of clinker for alternative binders. In 
Europe, the average clinker to cement ratio of 74.2% [3], which is slightly under the average 
world ratio replacement of 75% [3]. However, previous work suggests that there is a considerable 
potential to both lower the clinker to cement ratio and to reduce the cement content in many 
concrete applications. Therefore, it is clear that there is a huge opportunity of improvement 
towards a less carbon intensive industry. 

Moreover, all countries that signed the Paris agreement in 2015 attempted to limit the rise in 
global temperature this century to less than two degree above preindustrial levels. As a result of 
this premise, the project is presented as part of the solution in order to achieve that goal with 
realistic changes. 

1.4. Methodology 
The methodology used in order to develop this thesis was conducted through quantitative research 
and literature review. In a quantitative research, any data analysed is in numerical form such as, 
e.g., statistics, figures or tables.  
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The literature review conducted in the thesis included a wide spectrum of categories. The most 
important category were reports from  well-known international organisations, e.g., “Technology 
Roadmap, Low-Carbon Transition in the Cement Industry” from International Energy Agency 
(IEA) [1] or “A Sustainable Future for the European Cement and Concrete Industry: Technology 
assessment for full decarbonisation of the industry by 2050” by Faviere et al. [7]. Other important 
sources of knowledge were scientific articles and papers related to alternative binders and their 
utilization in cement industry. 

After the literature review, it was developed a short overview of the most relevant alternative 
binders known today. This overview included a short description of these alternative binders’ 
origin and other data like, e.g., estimated use, estimated availability or rival uses. It was decided 
that fly ash and blast furnace were the two alternative binders chosen to conduct the estimates. 
This decision was influenced by the fact that these two alternative binders are widely used and 
because there is larger information available compared with the other alternative binders.  

Later, there were developed two sections in order to estimate the alternative binders’ resource 
base chosen. In the first section (see Section 3), it was conducted an estimation of the availability 
of fly ash and its future estimates for the period 2017-2050. In the second section (see Section 4), 
it was conducted an estimation of the availability of the blast furnace slag and its future estimates 
for the period 2017-2050. The fly ash estimates were calculated based on existing coal-fired 
power plants block net capacity, and the blast furnace slag estimates were calculated based on the 
existing and projected capacity of EU blast furnaces. 

In addition, it was developed a section in which is discussed first from a global point of view 
(world basis), and later more specifically (Western Europe), the cement demand evolution 
occurred in the last decades. Inside this section, it was included a sub-section describing estimated 
future cement demand and the scenario basis in which the following section will oscillate.  

In the last stage of the thesis, it was developed a scenario analysis using spatial GIS analysis and 
Matlab programming. Three scenarios were considered: a business as usual (BAU) scenario 
(constant demand), a Low-demand scenario (20% reduction of cement demand over the studied 
period) and a High-demand scenario (20% increase of cement demand over the studied period). 
In every scenario, conventional alternative binders (fly ash and blast furnace slag) and cement 
demand are tied in to achieve a certain clinker replacement ratio.  

Within the following subsections it is described in more detail the process used to estimate the 
availability of conventional alternative binders (fly ash and blast furnace slag) and the background 
of the spatial GIS analysis. 

1.4.1. Data sources 

Using reliable and trustable data sources is crucial for the project credibility. As one of the end 
objectives of the project is creating a set of scenarios in order to evaluate how alternative binders 
can scale up, high priority have been given to finding, using and producing as relevant and as 
accurate data as possible. Table 1 presents briefly the main data sources used in this work. 

The coming section provides a more thorough description and discussion of the method to 
estimate every magnitude used in the study. 

Table 1 Main data sources of the project. 

Data source Description 
Chalmers PP db [8] It consists on a set of data about all coal-fired power plants existing on 

Europe. It includes data describing, e.g., geo-referenced location and 
country, block net capacity, type of coal used, year of construction. 
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Chalmers IND db [4] It consists on a set of data about all blast furnaces existing on Europe. 
It contains a huge amount of parameters and data, from which there 
will be used: geo-referenced location and location, operational status, 
production and capacity as a whole and for each furnace, year of 
construction as a whole and for each furnace … 

Plantfacts [9] It consists on a set of data about existing blast furnaces in Europe. It 
contains detailed data and parameters of the blast furnaces, as well as 
basic information, e.g., steel production, location, status or daily hot 
metal production. 

Eurostat [10] From this website it will be used many indicators, ratios and overall 
GIS data. They offer geo-referenced data about statistical regions of 
Europe, being the most crucial for the project population figures.  

Cemnet [11] This association also provides useful indicators and figures for cement 
all across the world. However, as the project scope is limited to 
Europe, only EU28 countries data will be considered. Besides, they 
also produce useful reports about every country cement facilities. 

Cembureau [12] It is another European cement association which produces reports 
about cement consumption and production evolution in all Europe 
countries. Moreover, they also provide statistical figures about these 
and other parameters. 

GNR [13] It is a European project that provides many statistical data about 
cement for every EU28 country. Their data are presented both for one 
year or on a time evolution since they began to document it. 

1.4.2. Geographical scope 

The study covers all EU-28 member states. Table 2 shows the countries included in the study and 
the number of blast furnaces (steel industry column) and operating units (coal-fired power plants 
column): 

Table 2 Geographical scope of Europe, steel industry and coal-fired power plants. 

EU-28 Steel industry (number of 
blast furnaces) 

Coal-fired power plants 
(number of operating units) 

Austria 
Belgium 
Bulgaria 
Croatia 
Cyprus 

Czech Republic 
Denmark 
Estonia 
Finland 
France 

Germany 
Greece 

Hungary 
Ireland 
Italy 

Latvia 
Lithuania 

Luxembourg 
Malta 

Netherlands 
Poland 

Portugal 
Romania 
Slovenia 

2 
2 
- 
- 
- 
2 
- 
- 
2 
4 
7 
- 
1 
- 
4 
- 
- 
- 
- 
1 
3 
- 
- 
1 

5 
3 

27 
2 
- 

94 
9 

12 
14 
7 

149 
18 
10 
3 

27 
- 
- 
- 
- 
7 

318 
6 

35 
14 
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Slovakia 
Spain 

Sweden 
United Kingdom 

- 
1 
2 
1 

5 
34 
9 

30 
TOTAL 33 838 

1.4.3. Estimation of FA 
Fly ash (FA) is a by-product that belongs to the family of the coal combustion products (CCPs). 
CCPs are produced during the combustion of pulverized coal in the furnace of a power station 
boiler, resulting in the production of a number of solid products, traditionally regarded as residues 
[14]. The majority of the CCPs (80-85%) remain in the furnace gases, which are usually captured 
in an electrostatic precipitator at the boiler outlet [14]. Traditionally, this fraction is known as fly 
ash (FA).  

The estimates of the production of fly ash from coal-fired power plants in Europe are based on 
the following assumption. 

i. Capacity factor: 

Determining an average capacity factor is a key point to develop a realistic power output studio. 
However, capacity factors are a source of uncertainty because they are strongly linked to the 
energy need of the society which may vary from one year to another. Values near one means that 
a power plant is being nearly fully used at their maximum capacity.  

Data from different organisations provide different points of view on how capacity factor should 
be consider. U.S. Energy Information Administration (EIA) considers acceptable a 53,5% 
capacity factor [15]. A working paper from the University of Oxford considers a more 
conservative point of view stating a 20% capacity factor according to last years’ figures [16]. 
International Energy Agency (IEA) provides a range of values from 80 to 85% in which plants 
can be more efficient [17].  

Here, an average capacity factor for EU coal-fired power plants was calculated by comparing the 
known gross electricity generated from coal technology in EU-28 in 2017 (data extracted from 
International Energy Agency) [13] with the potential output from the current fleet of coal-fired 
power plants in the EU (Chalmers PP db in 2017) [8]. 

 
𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑃𝑃𝑒𝑒 · 24 · 365
 (1) 

Where 𝑃𝑃𝑒𝑒 is the block net capacity of all coal-fired power plants and 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is the electricity 
generated by coal in EU-28. Table 3 shows the block net capacity of all coal-fired power plants 
from Chalmers PP db, the gross electricity generated by coal and the capacity factor: 

Table 3 Coal-fired power plants capacity factor calculi. 

Total block net 
capacity (GW) 

Potential electricity 
supplied (GWh 

Electricity generated by 
coal (GWh) [18] 

Capacity 
factor 

163 1 421 300 669 000 0.47 

ii. Coal lower heating value (LHV): 

Table 4 Net calorific value of fossil fuels. Source: UPC "Energy Technology Course". 

Fuel Net calorific value 
Oil Products 10 000 kcal/kg 41 900 kJ/kg 
Coal Anthracite 7 000 kcal/kg 29 300 kJ/kg 
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Bituminous 6 000 kcal/ kg 25 000 kJ/kg 
Lignite 4 500 kcal/kg 18 800 kJ/kg 

Natural gas 9 000 kcal/m3 36 000 kJ/m3 
 

iii. Coal chemical composition: 

According to Table 5, for anthracite coal (hard coal) ashes and water represent a 2% of total coal. 
Then, a 10% of the 90% are volatile compounds. In summary, if we sum 2% from water and ashes 
and the 8% from volatile compounds it is obtained a 10% of non-combustible products.  

Similar as anthracite, lignite has a percentage of water and ashes. However, the water and ash 
content in lignite is significantly as larger than in hard coal, approximately 40%. The remaining 
60% is weighted among a 55% of fixed carbon and a 45 of volatile compounds. Through some 
calculus, all non-combustible products represent a 67% in lignite coal. 

Table 5 Coal chemical composition. Source: UPC "Energy Technology Course". 

Type of coal Fixed carbon  Volatile compounds H2O and Ashes 
Anthracite >90% <10% 2% 
Bituminous ~70% ~30% 8% 
Lignite ~55% ~45% 40% 
Peat ~50% ~50% 75% 

Table 6 summarizes the calculi previously described: 

Table 6 Coal chemical composition calculi summary. 

Coal Non-combustible products (%) Fixed carbon (%) 
Anthracite 10 90 
Lignite 67 33 

Based on these estimates, an average quantity of coal combustion products (CCPs) is possible to 
calculate. They can be calculated using the following relation: 

 𝑃𝑃𝑇𝑇𝑇𝑇=ṁ·LHV 
 (2) 

Where 𝑃𝑃𝑇𝑇𝑇𝑇 is the thermal power of the facility, ṁ is the coal mass flow per time unit and LHV is 
the lower heating value of the coal type used. Note that thermal power (𝑃𝑃𝑇𝑇𝑇𝑇) needs to be obtained 
from block net capacity (Pe) since is the only data given. Also, in order to match with the lower 
heating value their units need to be transformed.  

 𝑷𝑷𝑻𝑻𝑻𝑻=
𝑷𝑷𝒆𝒆
𝝁𝝁

 𝐱𝐱 𝐋𝐋𝐋𝐋𝐋𝐋 

 

(3) 

𝝁𝝁 0.36 
LCP 0.8 

Where 𝜇𝜇 is the coal-fired power plant efficiency and LCP is the load capacity factor. 

Besides, not all coal combustion products are suitable for binders application. According to some 
studies and regulations [14], about 85% of all CCPs are possible to use as fly ash. The 15% not 
used, it is meant to be bottom ash, which later is converted into conditioned ash through a water 
cooling stream. 

Table 7 Coal profitable fly ash content calculi. 



18 
 

Coal Non-combustible products (%) Profitable Fly Ash (%) 
Anthracite 10 8.5 
Lignite 67 56.95 

1.4.4. Estimation of BFS 

Blast furnace slag (BFS) is formed during processing of pig iron in a blast furnace. Iron ore is 
melted to over 1350 ºC, when slag is formed at the surface and is decanted by gravity. Later, that 
slag is rapidly cooled to below 800ºC to prevent crystallization of other compounds and finely 
ground. Depending on how is it cooled, air-cooled blast furnace slag is obtained (crushed stone 
look) or ground granulated blast furnace slag (water-cooled, looks like sand).[19] 

About 300 kg of slag are obtained per ton of pig iron produced. [20] Then, thanks to this 
assumption, it is possible to obtain an approximation of the blast furnace slag produced in Europe 
blast furnaces. Converting that information into a ratio [21]:  

 
𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
x

 𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜
x
𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑒𝑒

𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
=
𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 (4) 

Table 8 Steel to slag ratio summary. 

Ratio  
𝑴𝑴𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝑴𝑴𝒑𝒑𝒑𝒑𝒑𝒑 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊⁄  300/1 000 
𝑴𝑴𝒑𝒑𝒑𝒑𝒑𝒑 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝑴𝑴𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝒐𝒐𝒐𝒐𝒐𝒐⁄  1 000/1 600 
𝑴𝑴𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝒐𝒐𝒐𝒐𝒐𝒐 𝑴𝑴𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔⁄  1 400/1 000 
𝑴𝑴𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝑴𝑴𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔⁄  0.2625 

Data extracted from the European Steel Association [22] provides a useful view about the steel 
industry distribution across Europe. Data acquired thanks to information gathering and 
organisation collaboration shows million tons of steel produced in each country from Europe from 
2011 to August 2017. In order to achieve a wider perspective, data from 2017 will be ignored. It 
will be taken into account data from year 2016 as long as it can provide whole year variability.  

1.4.5. Estimation of cement demand 

Regional cement demand for each European region was estimated based on the population and 
per capita consumption of cement in each country. Data extracted from Eurostat [10] provides 
exact population figures for every NUTS region level 2 (see Section 1.4.6 for an extended 
description) in Europe. In addition, there were extracted data from NUTS region 0 (country level) 
for future calculi. Moreover, hypothesis regarding future population were required in the study. 
According to Eurostat projections [23], the population of EU28 countries will experience an 
increase. Table 9 shows the population rising compared to population in 2015 by the years 2030 
and 2050. 

Table 9 Population increase in EU28 countries in years 2030 and 2050. 

Year Population increase compared to 2015 
2030 2.3%  
2050 2.5% 

Data extracted from Cemnet [24] provides different information related to cement, e.g., 
consumption, production or capacity. However, consumption figures for year 2017 were the data 
used to conduct the cement estimates. Later, a cement consumption per capita ratio for year 2017 
was calculated by dividing cement consumption in each country by their population. Next, this 
ratio was used to estimate the cement demand in each NUTS region level 2 by multiplying it with 
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their correspondent population. Further information about cement estimates can be found in 
Section 5.4.  

However, using this method to estimate cement demand in each NUTS region level 2 is not 
perfect. This method assumes all cement demand is concentrated in the NUTS region centroid. In 
order to develop a more accurate estimation it would be required the centroid of every city or 
town of EU-28 countries. If this data had been available, the distance matrix used in the GIS 
spatial analysis (see Section 1.4.6) would have been different. 

1.4.6. GIS – Spatial Analysis 

To link the resource base of conventional alternative binders (fly ash and blast furnace slag) with 
cement demand across Europe regions requires spatial GIS analysis. In addition, scenario analysis 
was required to conduct future estimates. Future estimates were subjected to phased out of 
existing capital stock (coal-fired power plants and blast furnaces) and future cement demand 
estimates.  

The spatial analysis has been performed using QGIS, an open source Geographic Information 
System (GIS) [25] Nowadays, there are plenty of convenient mapping resources for spatial 
analysis and scenario analysis. However, for this case, it was chosen the QGIS 3.4.1 since it is a 
widely used open source tool that is able to provide the desired results.  

In spatial analysis, Europe was subdivided in hierarchical statistical regions, referred to as NUTS 
regions. NUTS, which means “Nomenclature of Territorial Units for Statistics”, is a geocode 
standard for referencing EU countries subdivisions for statistical purposes. There are three levels 
of NUTS defined, but in this case, it will be considered the level 2 only. This decision was 
motivated due to the easy availability to trustable data.  

Therefore, the first step was to introduce data related to countries shape and their own subdivions. 
This information about NUTS shape files and population numbers for each NUT were obtained 
from Eurostat [26]. Thanks to this, was possible to provide accurate data about more populated 
zones and how they are divided.  
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The next step was describing the per capita production and consumption for each subdivision. 
Estimates of annual production and consumption of cement comes from Cemnet, which provides 
a vast amount of information including, e.g., cement consumption, production and capacity for 
every country of the world [24]. EU coal fired power plants and blast furnaces were mapped based 
on data from Chalmers PP db (power plants) and Chalmers IND db and Plantfacts (blast furnaces) 
(see Table 1 for references and a description of the databases). Figure 6 shows the map shape after 
introducing all mentioned data. 

Since the goal is to maximize clinker replacement throughout Europe, one sub task was to 
estimate how the availability of these by-products are distributed. Thus to find out whether it is 
possible or not to send these fly ash and blast furnace slag from their production sites to each 
NUTS region it is required to solve a transportation problem. 

A transportation problem is the abstraction of the following statement: given a certain number of 
production sites with a certain production (A, B, C); a set of demand centres with a given demand 
(D, E, F); and a cost matrix (in this case a distance matrix between each production site and 
storage), find how to distribute all the production among storages with the smallest cost possible. 
Figure 7 illustrates the transportation problem. 

Figure 6 EU NUTS and Coal fired power plants (blue dots) and Blast Furnaces locations (red dots) 



21 
 

 

Figure 7 Transportation problem scheme. 

For the project objective, it can be a close approach to solve how to distribute the alternative 
binders among all regions in EU. In the analysis, the following correlations were made according 
to the transportation problem abstraction: 

- Production sites (A, B, C) were coal-fired power plants and blast furnaces location. Their 
production was fly ash and blast furnace slag estimates calculated in Sections 3 and 4.  

- Demand centres (D, E, F) were NUTS regions centroids. Their demand was cement 
demand estimates calculated in Section 5. 

- The cost matrix was the distance between each NUTS region centroid and each coal-fired 
power plant and blast furnace.  

The transportation problem was solved using Matlab. The following inputs were used: 

- Production supplies of by-products (fly ash and blast furnace slags) for every facility. 
- Demand of by-products for every region (NUT level 2). There were to possibilities to 

fulfil the demand of by-products for every region. The first possibility was to assign the 
maximum quantity of by-products to the nearest regions surrounding coal-fired power 
plants and blast furnaces. The second and finally used possibility was to maximize the 
clinker replacement in all NUTS regions, assigning the same replacement to all zones. 

- Distance matrixes from production facilities to region centroids. 

After, it was designed a code that was able to assign the maximum quantity of by-products to the 
closest region. Given the inputs listed above, it replied with the quantities of by-products that was 
available for every region included in the simulation. Once obtained this extremely valuable 
information, it was finally uploaded to the QGIS map. Changing the colour of every NUTS region 
using a comparison formulation in the QGIS program, allowed to create a map that could show 
with an easy-to-interpret code of colours, which regions are covered the assigned replacement 
and which are not. 
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2. Alternative binders’ overview 
2.1. Description 

Concrete industry utilizes a large variety of cements depending on their final application. Each 
one of these cements has a different composition that makes it unique for a specific design, which 
means that each one has different properties and features. Today, the most commonly used cement 
is ordinary Portland cement (OPC), which account for the largest share of the climate impact of 
concrete [1]. To reduce climate impact, parts of the cement content can be substituted with 
alternative binders. 

Many alternative binders possess very similar properties to cement clinker that make them 
suitable for construction purposes in buildings and infrastructures. However, it is not always 
possible to add these alternative binders under uncontrolled conditions and without pre-treatment 
in many cases. Moreover, as mentioned before, many alternative binders require some kind of 
physical pre-treatment as, for instance, grinding or impurity extraction [27]. Chemical pre-
treatments which may require significant investments and can be limited by external factors like 
environmental taxes. 

Even though alternative binders differ significantly depending on their physical and chemical 
properties, it is a widely spread practice to classify them according to their origin, in other words, 
if they have been extracted from the earth directly or if they are by-products from another industry. 

So on, a first layout of alternative binders classified according to their origin [19]. 

 Natural origin: tipically need little or no preparation, e.g. separation and grinding. 
i. Volcanic origin 

- Unaltered pyroclastic material (vitreous pumices and ashes) 
- Altered pyroclastic material (zeolitised tuffs) 

ii. Sedimentary origin 
- Chemical sediments (diatomaceous earths, hydrothermal siliceous sinters) 
- Materials of mixed origin 
- Detrital sediments (naturally burned clays, burned clays/ shales –artificial-)  

 Natural thermally activated: natural materials activated by temperature (calcined). 
- Kaolinite 
- Illite 
- Montmorillonite 

 Man-made or artificial origin: these materials have undergone structural modifications due 
to manufacturing or production processes. 

- Blast-furnace slag 
- Fly ash 
- Silica fume 
- Burned organic matter residues 
- Steel/ non-ferro industry slags 
- Bottom ash 
- Municipal solid waste ash 
- Waste glass 
- Fluid cracking catalyst residues 

The following section provides a description of the most well-known alternative binders and their 
main properties and features useful for construction purposes. 
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2.2. Natural origin 
Volcanic rocks represent the large majority of natural pozzolans and are relatively widely spread 
and available in many countries [19]. 

But, not all volcanic rocks can be used as pozzolanic materials. Pyroclastic materials are the most 
suitable. They originate from volcanic eruptions, specifically, ashes and pumice. The larger the 
silica content is in the magma the more explosive will be the volcanic eruption and the better the 
pozzolanic  

A second group of alternative binders of are sedimentary materials, which use is scarcer [19]. 
Their use  is only considered under specific conditions, when sediments are rich in pozzolanic 
active components formed by deposition or alteration, for instance, naturally burned clays. 

Table 10 Cathegorization and description of alternative binders of natural origin. 

Material Volume In 
use 

Description 

Unaltered 
pyroclastic 
rocks (UPR) 

Plentiful* Y UPR result from rapid energy changes whereby magma moves and is 
violently erupted from a deep higher temperature and higher pressure 
environment to earth surface. [28] The gases originally dissolved in the 
liquid magma are then released.[19] 
They consist on quenched microporous structure particles in a glassy state. 
Those rocks can be deposited whether on ground or in water. The ones 
deposited on the ground are mixed with ashes from the volcanic 
eruption.[29] 
When the eruption is not enough explosive, the quenching process is not 
enough fast and creates ashes, which are not suitable for pozzolanic 
purposes. [19] 

Altered 
pyroclastic 
rocks (zeolites) 

Plentiful* Y Zeolites are formed where pyroclastic rocks and ash layers react with 
alkaline groundwater, controlled by pH and temperature too [30]. They are 
characterized by a high content of water adsorbed by the material, which 
produces a high loss on ignition. [19] 
However, zeolites can also be produced synthetically heating aqueous 
solutions of alumina and silica with sodium hydroxide. Since the main raw 
materials to produce and manufacture zeolites are alumina and silica, which 
are the most abundant components on earth, the potential supply of zeolites 
is almost unlimited. [31] 

Biochemical 
sediments 

N/A Y Biochemical sediments comprises sediments from the deposition of 
organism skeletons, as well as chemical precipitates resulting from the 
circulation of hydrothermal waters. Diatomaceous earths, also called 
diatomites, are the principal biogenic materials that show pozzolanic activity 
inside biochemical sediments. They consists of siliceous fossilized remains 
of diatoms, a type of hard-shelled protist.[32] The deposits result from an 
accumulation in oceans or fresh waters of the amorphous silica cell walls of 
dead diatoms that are microscopic single-cell aquatic plants (algae). 
It is very finely porous, very low in density and essentially chemically inert 
in most liquids and gases. Low thermal conductivity and a rather high fusion 
point.[32] 

Detrital and 
mixed origin 
rocks 

N/A Y Detrital and mixed origin rocks. These sediments are usually composed of 
stable mineral compounds derived from the erosion and weathering of other 
rocks. It is quite uncommon to find pozzolanic behaviour in sufficient 
quantities to consider them suitable for cement applications. [19] 

*Plentiful but localized 

2.3. Natural thermally activated 
Natural thermally activated alternative binders refer to a category of materials, of natural origin, 
that are tailored made for specific applications. These group of alternative binders comprise for 
instance streams of waste from clay pottery, bricks or tiles that can be recycled as a pozzolanic 
material in cement production. Thermally activated SCMs are traditionally blends of thermally 
activated clays or soils and lime [19]. 
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Natural thermally activated alternative binders are in use in many countries due to their excellent 
pozzolanic properties. These properties are a result of kaolinite-rich materials burned under 
controlled conditions, better known as metakaolin. The overall resource base, however, tends to 
be limited. 

Those materials can be obtained above from burned clays, also from shales, soils and burned 
agricultural residues. As a consequence, they are receiving considerable attention in rural areas 
with no possibility of obtaining more modern alternative binders [19]. 

Table 11 Cathegorization and description of alternative binders of natural thermally activated origin. 

Material Volume In 
use 

Description 

Kaolinite Limited* Y Kaolinite is obtained from clay deposits all over the worlds. However, there 
are only a few high purity deposits. Moreover, the industrial process to 
obtain them by removing mineral impurities is too expensive and complex. 
Once burned and grounded, this material becomes metakaolin, which has 
its pozzolanic properties enhanced. [33] 

Illite Limited* N/A Illite clay is usually found in deep oceans containing micaceous minerals. 
It can also be found underground but only in calcareous clays. [33] 
According to some studies, illite has a low-moderate pozzolanic activity. 
No treated illite is a practically inert component in cement and concrete 
chemistry. Only at certain ranges of calcination, 790-930 ºC, it is possible 
to obtain a decent compressive strength compared to OPC. [34]  

Montmorillonite Limited* N/A Montmorillonite clay is a type of smectite clay that tends to expand with 
water. It is formed through alteration of silicate minerals in alkaline 
conditions, such as pyroclastic rocks (e.g. volcanic ashes), that can be 
deposited in oceans. [35] 
Montmorillonite comprises many industrial applications such as oil 
decolourants, pesticide or heavy metal adsorbent in wastewater, and 
catalyst for certain chemical reactions. Their catalytic properties are 
enhanced when treated with acids.[34] 

*Clays are widely available, but supply of calcined clays, which requires process facilities allowing their calcination, 
is more limited 

2.4. Artificial origin 
The vast majority of the alternative binders of artificial origin are by-products and come from 
societal waste and valorization of industrial residues. 

Table 12 Cathegorization and description of alternative binders of artificial origin. 

Material Volume In 
use 

Description 

Blast furnace 
slags 

480-560 
Mt/year 
[1] 

Y The most widely used SCM. By-product obtained in the extraction of pig iron 
in blast furnaces. They present a latent hydraulic behaviour. [19] 
Depending on how slag is cooled, it is possible to obtain air-cooled GBFS 
(crystalline structured mass, more suitable as construction aggregate) or 
granulated GBFS (rapidly cooled with large amounts of water, which forms 
a glassy/ amorphous granulated GBFS. It can be mixed with cement clinker 
to use it as a binder for cement). [36] 
Nowadays is mostly combined with OPC to constitute a large fraction of 
blended cements. Their cementitious properties are properly activated in 
combination with lime, alkali hydroxides, sodium carbonates or sodium 
silicates and calcium or magnesium sulphates. 

Fly ash 780 
Mt/year 
[14] 

Y Fly ash are a big part of the over one billion tons of the coal combustion 
products (CCP) generated from the coal combustion [19]. It is usually 
captured with electrostatic precipitators or bag filters before the flue gases are 
emitted. [36] They also include municipal solid waste incineration fly ash. 
After being appropriately treated and dried, it can be used as clinker addition, 
cement addition or other industrial applications such as soil amelioration. 
[36] 
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Nature and properties of fly ash dependent on a variety of factors that include: 
coal’s mineral composition; furnace/boiler temperature; type and fineness of 
the coal; length of time the minerals are retained in the furnace/boiler. [14] 

Silica fume 0,9 
Mt/year 
[37] 

Y By-product of the silicon metal and ferro-silicon alloy industries. Silica fume 
is produced during the reduction of quartz at high temperatures in electric arc 
furnaces. Silica fume has nearly no variation in chemical composition over 
time.[19] 
Silica fume remains initially inert when is added to concrete. Once OPC and 
water start to mix with each other and hydrates, two chemical compounds are 
produced that produce strength with their crystallization. [38] 
It has a high pozzolanic activity due to its high content of SiO2 in amorphous 
form and a very fine particle size distribution, 0.1-0.2 um on average 
diameter.  

Burned 
organic 
matter 
residues 

N/A N They consist on burned agricultural remains such as rice husk or wood ashes, 
which can be used as OPC replacement. Once fired under controlled 
conditions, silica is concentrated in the residue enhancing pozzolanic 
properties. [19] The characteristics of the ash depend upon biomass 
characteristics, combustion technology and the location where ash is 
collected.  
Burned ashes present pozzolanic properties that makes them suitable for 
cement binders. Their strength decrease slightly with increase in ash content 
in the concrete. [39] 

Non-ferro 
industry slags 

N/A Y It comes from the steel manufacture process, when main raw materials (liquid 
iron and scrap steel), auxiliary raw materials (lime, ore, dolomite and 
fluorspar) and ferroalloys melt into two incompatible parts under high 
temperature.  
Cements blended with steel slag show higher later period strength, better frost 
resistance, good wear resistance and lower hydration heat. [40] 

Waste glass 130 Mt/yr 
[41] 

N Once the glass purpose ends, it becomes a waste and usually disposed as 
landfills. However, it can also be used as a potential supplementary 
cementitious material as long as it has a chemical composition and phase 
compared to traditional binders. When milled, reactions between glass and 
cement hydrates are enhanced. [41] Very finely ground glass has been shown 
to be excellent filler and may have sufficient pozzolanic properties to be 
utilized as a cement replacement. [42] 

Fluid catalytic 
cracking 
catalyst 
(FC3R) 
residues 

0,4 Mt/yr 
[43] 

N Fluid catalytic cracking catalyst residues (FC3R) are collected from petrol 
refineries. Even though the sources (refineries) are different, the catalyst 
residues do not produce different behaviour. [44] 
FC3R is formed by particles of spherical shape, highly porous and chemically 
composed by alumina, which provides its greats pozzolanic properties. [43] 

2.5. Key features 
Table 13 presents a summary of some important features related to the alternative binders 
reviewed above in a global context. As a matter to simplify the table, sources from natural origin 
will be displayed as “natural pozzolans” and natural but thermally activated as “activated clays”.  

Regarding only on estimated use figures, artificial origin alternative binders are the dominating 
sources. Fly ash and blast furnace slag provide approximately 600 Mtonnes of by-products to the 
cement industry globally. Although natural sources claim to provide a substantial amount of 
alternative binders, their availability is regionally limited and still requires larger research.  

Other promising alternative binders are activated clays and burned organic matter residues. As 
mentioned below in the table, clays are widely available in many world regions. However, taking 
maximum profit of their features requires calcination processes, which can only be conducted in 
specific facilities. Moreover, burned organic matter residues includes different sources, e.g., 
biomass ash or rice husk ash. Some studies claim that the available biomass ash is estimated in 
100-140 Mtonnes [45].   

Conventional alternative binders (fly ash and blast furnaces slag) are widely used in cement 
industry. In particular, blast furnace slag is nearly fully used in many countries, being especially 
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difficult to increase their utilisation. However, fly ash utilisation can still be largely improved. It 
is estimated that only 30-50 % of the total resources of fly ash are currently being used. 

Non-ferro industry slags is another portion of alternative binders that can help reduce cement 
emissions. These kind of slags are estimated in a maximum quantity of 205 Mtonnes. However, 
cement industry is not the only interested manufacturer for these by-products. Inside non-ferro 
industry slags are included by-products, e.g.  bauxite, copper and other minor residues. 
Aluminium industry is actually using nearly the whole quantity of these bauxites residues for their 
manufacturing processes. 

Other minor sources of alternative binders from artificial origin are silica fume and FC3R (fluid 
catalytic cracking catalyst residue). Their potential contribution pales in comparison with the 
sources commented before. However, these alternative binders may have a niche of utilisation 
due to regional availability. 

Table 13 Alternative binders' key features. 

Material Geographical 
spread 

Treatment 
requirement 

Price range 
($/ tonne) 

Estimated 
use 
(MT/y) 

Estimated 
availability 

Rival 
uses 

Natural 
pozzolans 

Widely  Crushing, drying 35-90 [45] 75 [45] Plentiful but 
localized. [27] 

No 

Activated clays Widely, but 
require 
process 
facilities 
allowing 
their 
calcination. 

High water 
demand, 
crushing, drying 
and calcining 

13 
(common) 
150 (kaolin) 
600-700 
(metakaolin) 
[45] 

2-3 [45] Clays are widely 
available, but 
supply of 
calcined clays, 
which 
require process 
facilities 
allowing 
their calcination, 
is more limited. 
[27] 

Yes 

Blast furnace 
slag 

Blast furnaces Grounding 1-110 [45] 290 [45] 480-560 variable 
quality and 
availability. [45] 

Yes 

Fly Ash Coal-fired 
power plants 

Separation 35-110 [45] 300 [45] 600-900 variable 
quality and 
availability. [45] 

Yes 

Silica Fume Silica 
industries 

Superplasticiers- 
none 

300-1100 
[45] 

>1 [45] 1-2.5 [27] No 

Burned organic 
matter residues 
(biomass ash, 
rice husk ash) 

Agricultural 
zones 

Grinding, 
selective 
removal 

N/A N/A 100-140 
(Biomass ash) 
[45] 
22 (rice husk 
ash) [27] 

Yes 

Non-ferro 
industry slags/ 
residues 

Non-ferro 
industry 
industries 

Grinding, 
thermal 
activation  

29-180 [45] 5-205   30-40(Copper 
slag) 
5-15 (other) 
100-150 
(Bauxite residue) 
[27] 

No 

Waste glass Recycling 
glass facilities 

Chemical pre-
treatment 

53 €/ tonne 
[46] 

N/A 130 [41] Yes 

Fluid catalytic 
cracking catalyst 
(FC3R) residues 

Petrol 
refineries 

Thermal 
activation [43] 

N/A N/A 0.4 [43] Yes 
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3. Estimation of Fly Ash availability 
3.1. Current supply 

As described in Section 1.4.2 Estimation of FA the availability of fly ash in Europe were estimated 
based on detailed data describing European coal-fired power plant fleets. Table 14 shows a 
summary of the estimates obtained: 

Table 14 Amount of fly ash per region. 

Region Estimates of Fly Ash (kt FA/ year) 
EU-28 84 000  
SWEDEN 51 

The data clearly shows how, compared to a European level, Sweden has a little amount of locally 
sourced fly ash. Representing less than 1% of total fly ash produced in Europe. Figure 8 shows 
the countries with the most production of fly ash residues:  

 

*Note that all countries with less than a 5% have been erased from the labels. 

Figure 8 Fly ash per country in Europe in 2017. 

Three countries, Germany, Poland and the Czech Republic, which are the most production-
intensive on fly ash as by-products for cement industries, account for significantly more than half 
of the production. 

Summing the amount of fly ash of Sweden, Finland, Estonia and Denmark, a potential of less 
than a 4% is obtained. Taking into consideration this, it is clearly unproductive to focus efforts 
towards fly ash production in Sweden. This would signify that only when obtaining FA from 
countries like Poland or Germany at an economic price, can fly ash be a real opportunity as an 
alternative binder for Swedish cement production. 

Section 6 further describes how the future potential for meeting the EU and Sweden demand for 
alternative binders were explored by combining scenario analysis with geospatial analysis. 
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3.2. Estimates of future supply of fly ash 
Estimating future scenarios is a useful tool to decide in which direction current decisions should 
be driven. Scenarios are not projections of the future, that is to say, they may be thought more 
like the answer to “what if” than to attempt to depict the actual future development [47]. Exploring 
a range of future possibilities helps decision making decide on which policies to drive future 
developments, for example, when it comes to combating climate change. However, each future is 
“path-dependant”, which means it results from a large series of conditionalities [47]. 

To sum up, forecasting is, in most cases, very difficult and its outcome influenced by human 
judgement. Here, two of the key assumptions when estimating the future supply of fly ash were: 

- Lifespan of coal power plants of 40 years. 
- Study horizon until 2050. 

It may be overconfident to assume that all coal power plants with more than 40 years will shut 
down from one day to another. Despite of having plants with more than 100 years of operation, it 
is common sense that no plant will close if they are allowed to operate. In addition, firms may 
have little economic incentive to retire existing plants [48]. It is often assumed that equipment 
lifetime is an important determinant on timing the capital investment/ retirement, while it is not 
always the case. Plant lifetime is usually extended thanks to investment in maintenance and 
equipment enhancement to meet market and policy emission goals. Even a high performance 
improvement of an exceptional magnitude on a new technology may not make a firm retire 
existing equipment whose capital costs have been paid [47]. In other words, even if a plant is 
inefficient compared to what modern technology can offer, this inefficiency must be very large in 
order to outweigh the costs of building a new and more efficient plant [47].  

Nevertheless, for the case of study, it will help to answer to “what if” all coal power plants with 
more than 40 years of lifetime automatically shut down and which are the consequences to fly 
ash used for blended cements production. 

Currently there are 418 coal power plants operating in Europe. Of these, around 70% are using 
anthracite as primary fuel. Assuming that lifespan of coal power plant is about 40 years of 
operation, it can be expected, according to year of construction, the yearly distribution and number 
of coal power plants operating. Table 15 shows the existing coal-fired power plants sorted by age 
and by their primary fuel. 

Table 15 Existing coal-fired power plants sorted by age. 

Type of coal X>40 40>X>30 30>X>20 20>X>10 X<10 
H (n) 292 115 79 25 0 
B (n) 126 62 24 14 0 
ALL (n) 418 177 103 39 0 

* Where X means lifetime of the coal-fired power plant. 
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Figure 9 Coal power plants sorted per age. 

Figure 9 shows how most of the coal power plants currently in operation in Europe are quite old 
with a lifetime of more than 40 years. The  European Central Bank, which is a major investor in 
power plants, recently announced that it will no longer invest in coal plants [49]. Thus, can be 
assumed that no more coal power plants will appear in the future.  

Thus based on the age structure of existing coal-fired power plants (Figure 9) and the assumed 
average technical life time of 40 years the fly ash resource base for the period 2017-2050 could 
be estimated. 

Table 16 Fly ash resource base estimation up until 2050 calculi summary. 

Type of coal 2017 2025 2030 2035 2040 2045 2050 
H (Mt/y) 12.6 4.6 3.4 2.2 1.6 1.5 1.3 
B (Mt/y) 71.4 27.4 21.6 19.9 11.6 9.1 7.9 
ALL (Mt/r) 84.0 32.0 25.0 22.1 13.2 10.6 9.2 

 

Figure 10 Fly ash resource base estimation up until 2050. 
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Clearly, after first five years a large share of the existing of coal-fired power plants should be 
dismantled as they reach the end of their technical life time. Installed coal capacity is reduced 
from 162 to 60 GW. This decrease obviously affects directly the amount of fly ash available, 
being reduced more than a 60%. After this point, the number of power plants decrease in a slower 
rate than before. In exception of years 2035 to 2040 where there is a significant reduction of 
almost a 50% from the previous year.  

Moreover, it is important to note that the biggest contributor to the fly ash resource base is lignite 
plants. Based on the data and assumptions used here, the  general distribution is 85% lignite fly 
ash and 15% anthracite fly ash. This distribution is a result of the high amount of non-combustible 
products contained in lignite coal, accounting for approximately 67% of the original coal mass. 
*Note that all countries with less than a 5% have been erased from the labels. 

Figure 11 shows the estimated per country fly ash resource base in the year 2050. 

 

*Note that all countries with less than a 5% have been erased from the labels. 

Figure 11 Fly ash per country in 2050. 

Again, Germany account for the largest part of the overall resource base, this since a significant 
number of their coal power plants still are relatively “young”.  This is mainly due to the recent 
construction of 13 power plants (in the last 6 years), the majority of them with a huge block net 
capacity.  

Sweden stops producing fly ash at some point between 2025 and 2030. If Sweden in the future 
wants to utilize fly ash as an alternative binder, it should use resources from other countries such 
as Germany or Poland.  
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4. Estimation of blast furnace slag availability 
4.1. Current supply 

Whether air cooled blast furnace slag (ABS) or ground granulated blast furnace slag (GGBS), all 
blast furnace slag can be used for construction purposes [50] (a more thorough description is 
provided in Section 2.4). The main difference arises from the granules measure, being far tinier 
when cooling slag with water. In case of ABS, its utilization is mostly linked to be used as a 
concrete aggregate. GGBS is finely grounded until obtaining a fine powder for blended cements 
[51].  

In the following estimation, as a simplification, it will be assumed that whole BFS resource base 
is transformed into GGBS for cement industry.  

As described in Section 1.4.3. the availability of blast furnace slag in Europe were estimated based 
on detailed data describing European blast furnaces. Table 13 shows a summary of the calculi: 

Table 17 Estimation of blast furnace slag availability in Europe and Sweden. 

Region kTones of slag/ year 
EUROPE 26 600 
SWEDEN 989 

As seen in Table 17, compared to a European level, Sweden has a little amount of slag. 
Specifically it represents less than a 3% of total blast furnace slag use in Europe. Figure 12 shows 
the most important countries that can have a high potential of taking profit of their blast furnace 
slag. 

 

*Note that all countries with less than a 5% have been erased from the labels. 

Figure 12 Blast furnace slag per country in Europe. 

Clearly, countries with the highest potential of taking real profit of their BFS as by-products for 
cement industry are Germany, France and Italy.  

Currently, it does not seem that Sweden can take a real profit from BFS as a reliable source of 
alternative binders. In order to achieve higher ratings of utilisation it will be required to import 
part of that resource base from other countries with larger production, i.e. Germany. 
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4.2. Estimates of future supply of blast furnace slag 
Actual steel production can be divided into two main categories: primary steel (produced in blast 
furnaces) and secondary steel (produced in electric arc furnaces). The latter dominate in regions 
such as the US and Western Europe, while the former arises stronger in emerging economies like 
India and China. Electric arc furnace technology accounts for a 75% of total steel production in 
Western Europe [52]. By 2050 that share is projected to decrease to a 66% because of reduced 
scrap availability.  

From a waste utility point of view, blast furnaces will need to account for a larger share in order 
to meet steel commodities. Thus, the availability of blast furnace slag resources are expected to 
increase in Western Europe and the US. Therefore, steel consumption is forecasted to decrease in 
these regions in China steadily from 66% share in 2010 to a 52% by 2050 [52].  

 

 

Figure 13 Steel consumption 1971-2050. Source: " Long-term model-based projections of energy use and CO 2 
emissions from the global steel and cement industries” [52] 

Besides, in countries such as China and India they see increased share for EAF from 13% and 
18% to 30% and 50% respectively. Energy efficiency measures and upgrades are forecasted to 
strongly reduce energy use per tonne of steel in regions such as Western Europe and the US. Also, 
emissions will decline slowly too from 150 Mt/yr to 100 Mt/yr in the US and 300 Mt/yr to around 
170 Mt/yr for Europe by 2050 [52]. 

The OECD in a recent report, “Global Material Resources Outlook to 2060” [53] adds another 
point of view on how materials use will rise in coming decades. The assumptions used in this 
outlook will be presented and discussed later in the Cement Demand expectations section (Section 
5.2.). But, as a starting point, it may be useful to have a perspective on how steel consumption, or 
specifically iron ores consumption, will evolve by 2060.  

As the figure show, iron ores use may be doubled by 2060 worldwide. However, materials 
intensity is predicted to decrease in all regions. As global GDP and materials use are forecasted 
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to grow with different growth rates, finally results in a general decrease of materials intensity per 
unit of GDP. In the case of OECD Europe, this rate goes from 0,4 to 0,3 [53]. 

 

Figure 14 Growth in materials use expected to 2060. Source: Global Material Resources Outlook to 2060. [53] 

Other analysts, like McKinsey&Company suggest a more specific point of view for the steel 
sector. As said before, the steel demand growth globally over the last decade was mostly driven 
by the industrialization and urbanization of China [54]. 

 

Figure 15 Apparent demand for finished steel, million tons. Source: McKinsey&Company [54]. 

Figure 15 clearly describes this trend. While steel production in regions such as North America 
and Europe have remained steady and even declined, China and India has experienced an 
enormous growth. Therefore, the overall global steel industry capacity has been growing. The 
largest growth in crude steel making have occured in China and other emerging economies. If, as 
expected, these capacities continue increasing in the next decades, creating an overcapacity effect 
in regions where demand has remained impassive such as Western Europe as North America. 
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There are a number of key trends that are expected to have important implications for the future 
development of global steel demand. Some of the most important drivers and trends are 
summarized in Table 18: 

Table 18 Trends with significant impact on steel demand by user segment. Soure: McKinsey&Company. 

Industry sector Overall industry trends 
Transport • Growth of lightweight materials 
 • Penetration of electrical vehicles (lower steel intensity) 
Construction • Shift towards higher buildings (increased steel intensity) 
 • Increased mechanization to reduce steel wastage 
 • Higher buildings and more prefabrications require more structural steel. 
Oil & gas • Unconventional technologies and deep-water drilling is increasing 

(more steel intensity) 
 • Increased need for new distribution pipelines 
Shipbuilding • Larger vessels can imply less total material (decrease steel intensity) 

Whereas future car production is likely to grow in the coming years, steel consumption will 
remain flat due to their lower steel intensity. The current trend of using more lightweight materials 
in cars can be expected to significantly reduce the amount of steel consumed per car [54]. Thus, 
both trends will compensate their effects, expecting steel consumption to be stay on a constant 
level. 

4.3. Study scenarios 
With these future trends for the steel sector as a background, it is clear that some tools are required 
to estimate future slag production. In the GIS analysis that will be described in Section 6.1., two 
scenarios are explored. As have been clearly stated above, the scenarios used in this work can be 
characterized as a explorative (i.e.-“what if” type scenarios), and are not intended to predict future 
developments. They become a tool to explain what would happen if different policies were 
applied. In this case, one of the key assumptions on the key drivers in the scenarios is the technical 
lifetime of blast furnaces, which here has been assumed to be 40 years. But, the main distinction 
between both suggested scenarios is going to be the year in which the lifetimes is counted from. 
Date of construction and an average technical lifetime to describe how existing blast furnaces can 
be expected to be decommissioned may have limitations (see e.g. [55]) but it gives a reasonably 
good indication of coming trends. 

- Case A: In this Case, existing blast furnaces are assumed to be decommissioned as they reach 
the end of their technical lifetime, i.e. 40 year after construction. 
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Figure 16 Blast furnaces separated according to their year of commissioning. Source: [9] 

Figure 16 shows the year of commissioning of all blast furnaces in Western Europe. The vast 
majority of the BF’s were commissioned during the period 1950-1980. This means that more 
than 80% of all blast furnaces have already 40 years or more. It is thus clear that most 
European BF’s will be decommissioned in the coming years. 

 

Figure 17 Amount of slag capacity production forecast until 2050, Case A. 

Figure 17 shows the development of slag production in Europe in Scenario 1.  The amount of 
slag obtained from steel blast furnaces decreases dramatically in the first years after applying 
the restriction of 40 years lifetime. Table 19 presents the estimated steel production capacity 
and slag production, 2017-2050, in Scenario 1.  

Table 19 Steel and slag forecast until 2050, Case A. 

 2017 2025 2030 2035 2040 2045 2050 

Steel capacity (kT/y) 101 200 24 000 18 000 11 200 5 000 2 800 0 
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Slag production (kT/y) 26 600 6 200 4 700 3 000 1 300 700 0 

Most of the plant closures occur in the beginning of the studied period, closures then gradually 
slow down until the end of the period, when BF’s finally remaining are decommissioned.  

- Case B: year of last relining. This scenario takes into account the last year in which the 
blast furnace was relined or refurbished. It means, that in this scenario the lifetime of all 
kilns will significantly increase compared with the Case A. This assumption limits all 
existing BF’s to be relined just one more time their existing parts. 
 

 

Figure 18 Amount of slag capacity production forecast until 2050, Case B. 

Clearly, the amount of slag available is higher than in Case A. As a result of prolonged blast 
furnaces lifetime, the decommissioning occurs at a slower rate, allowing for a softer decrease of 
the amount of slag available. However, towards the end of the studied period, from 2040, many 
of the recently nowadays (2017 surroundings) relined furnaces face their end. Table 20 presents 
the estimated steel production capacity and slag production, 2017-2050, in Case B. 

Table 20 Steel and slag forecast until 2050, Case B. 

 2017 2025 2030 2035 2040 2045 2050 
Steel capacity (kT/y) 101 200 93 300 90 000 82 300 62 300 32 700 3 000 
Slag production (kT/y) 26 600 24 500 23 500 21 600 16 400 8 600 800 

As said before, the major reduction occurs in the period from 2040 to 2050. This means that many 
of the existing furnaces have been recently relined during 2000-2010 period.   
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5. Cement demand 
5.1. Historic development in cement demand 

For decades, cement and concrete have been a cornerstone in modern construction and an 
important part of societal development.  Cement consumption is strongly correlated with 
economic activity [56] and all phenomena involved in how fast it increases. From first data 
collected, European cement production and demand has been increasing steady up until today. 
Despite decreasing after the economic crisis occurred in 2008, cement consumption continued 
increasing again to levels of 2000 [57].  Figure 19 shows the cement production during the period 
2001-2011 in EU-28 countries.  

 

Figure 19 Cement production in EU-28 countries. Source: CEMBUREAU [57]. 

Some of the main indicators associated to cement industry on a country are GDP and cement 
consumption, both on a per capita basis [58]. As common understanding has become, those two 
variables are highly correlated among them, creating an inverted U curve when describing the 
evolution in any developed country.  

 

Figure 20 Total annual cement use in Sweden for the years 1893 to 2011. Source: [59] 
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Figure 21 Gross domestic product for Sweden, 1970-2016 period. Source: OECD Economic Outlook. [60]  

As an example, Figure 20 and Figure 21, show the evolution of these two variables in Sweden. 
As it can be deduced, the higher the GDP the higher the cement consumption until a peak point, 
when it starts decreasing even if GDP keeps increasing. Features behind this shape are: 

- Countries with low GDP have low cement consumption being only at the starting point 
economical development. 

- Emerging economies have an economic development requiring heavy investment in 
manufacturing facilities, machinery and transportation, which pulls cement consumption 
in all kinds of buildings and infrastructures, resulting in massive cement needs and fast 
peaks of cement consumption [58]. 

- Mature economies, once having reached a certain point of economic development, 
consumption rate decreases since much of the infrastructure have already been built. 
From here on, the cement consumed in maintenance gains a stronger position. This does 
not mean that the country can continue growing, but in a slower rate. Moreover, 
technological progress may also bring new materials to substitute cement, reducing the 
cement intensity. 

An study conducted by  van Ruijvena et al [52] describes how cement consumption per capita 
evolved for the period 1970-2012. In order to represent this evolution over 42 years they used a 
linearized regression model that relates economic activity with cement consumption. Figure 22 
shows cement consumption per capita for each region according to its GDP per capita in the 
period specified previously.  
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Figure 22 Per capita consumption of cement vs. GDP per capita. Source: [52] 

Just like in the case of Sweden, developed economies describe an inverted U pattern, whereas 
emerging countries keep growing their cement consumption per capita. 

Generally, cement consumption is split into three categories depending on the final purpose in 
which is going to be used: civil engineering and commercial and residential building construction. 
The first end-use category refers to all infrastructure needed for transport (bridges, railways, ports 
…) and facilities that cannot be included in other sections (e.g. water and sewage infrastructures). 
The second category, commercial buildings refer to both stores and offices for companies or 
administration. The final category, as the name indicates, residential buildings includes houses, 
hotels, flats and all kinds of construction for people to leave. 

Simultaneously, the cement consumption distribution has also been changing over the years. As 
discussed above, the more GDP grows the more the cement consumption increases until a peak 
point. At higher rates of economic development, investment in infrastructures and commercial 
tends to be relatively higher. 

 

Figure 23 Relative variation of the cement used per "civil engineering", "commercial" and "residential" for Sweden. 
Source:[59] 
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A comparison between the GDP evolution graphic and the relative variation of cement end-uses 
in Sweden tend to support the theories stated above (see Figure 23). Moreover, on the description 
of cement consumption in Figure 21 and Figure 23, the following trend can be traced: when 
reaching the peak point of cement consumption, commercial and residential share increased, 
losing market shares to civil engineering after that. A few years later, cement consumption 
experienced a moderated expansion, which is likely linked to the fact of enlarged share of civil 
engineering again after the residential peak point. In recent years, the evolution reflects a pretty 
stable and steady fluctuation between three cement purpose sections. 

 

Cement can also be divided depending on the end-use. The European Cement Association 
(Cembureau) classifies cement consumption and domestic deliveries into three types: ready-
mixed concrete, precast concrete and others. Ready-mixed concrete refers to concrete that is 
mixed and prepared of site but cast on site. Precast concrete include reinforced and pre-stressed 
concrete structural elements and frames manufactured [61] under specific conditions, which are 
cast offsite and directly delivered to the construction site. Generally, precast concrete parts present 
enhanced strength properties. The last category includes a wide variety of concrete components 
containing cement that may not be included in neither of the previous categories, including, e.g., 
tiles, bricks, blocks or pipes.  

 

Figure 24 Evolution of cement consumption by end users (%) in EU 28. Source: CEMBUREAU. [62] 

From data provided by CEMBUREAU [62], the evolution of cement consumption by users in EU 
28 countries in the period from 2000 to 2013 can be deduced.  

As a general trend, ready-mixed concrete dominate concrete and cement consumption [62] 
accounting for approximately 50-60% of the total. The remaining part is divided between precast 
concrete and other cement containing concrete products. Apart from 2007 (when the last recession 
started), the graphical data exhibit a quite steady and constant fluctuation of the three sections in 
a short range. 

5.2. Describing cement demand 
To analyse and match cement demand with supply of cement and alternative binders it is 
necessary to describe current consumption in EU, and in Sweden. The data presented in Table 21 
Cement consumption in EU and Sweden.Table 21 and Table 22 shows amount of cement 
consumed annualy in the EU and Sweden.  
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Table 21 Cement consumption in EU and Sweden. 

Region/ country  Cement consumption 2017 (kt/yr) 
EU 28 [63]  160 760 
Sweden [61]  2 400  

Table 22 Population and consumption/ capita in EU and Sweden. 

Region/ country Population (Million people) Consumption/ capita (kg/capita) 
EU 28 [64] 511.8 315 
Sweden [64] 9,99 240 

Swedish cement consumption per capita is well under the EU 28 average.But, it may be noted 
that Swedish cement consumption may be slightly different. Some studies offer a wider point of 
view using all Nordic countries data when calculating production/ consumption figures. For 
instance, Rootzén and Johnsson, 2016 [61] use data from cement facilities in Norway, Finland, 
Denmark and Sweden to describe production and consumption figures. 

5.3. Estimates of future demand for cement 
To assess the overall climate impact from cement production it is important to try to estimate the 
future evolution of demand. Many studies have discussed the evolution of cement consumption 
intensity and production in the coming years, usually with a time horizon until 2050-2060. The 
disparity among the studies may explained by many factors, e.g., assumed relationship between 
economic development and cement consumption or on how they expect future climate policies 
will evolve.  

Van Ruijven et al [52] assumes that no climate policies will be applied to future cement industry. 
Figure 25 shows the resulting projection, suggests that cement consumption will continue to 
increase in the coming years. But, not all countries/ regions experience the same growth. 
Emerging economies such as India or Latin America will keep on increasing their consumption 
continuously. Other regions such as China will increase their consumption until a peak point 
where at this point will start to decrease steadily (in line with the hypothesis of inverted U) [56]. 
Cement consumption in developed regions such as Europe, USA and Canada will keep stagnated 
with tiny fluctuations.  



42 
 

 

 

Figure 25 Cement consumption 1971-2050. Source: [52] 

Despite of an increasing share of efficient cement production technologies, it will not be sufficient 
to negate the effects of consumption growth. However, energy use per tonne clinker is expected 
to decrease in all regions thanks to production technology improvements. As is well known, 
cement kilns often strive to use the cheapest and most available fuel. In the near future, it is 
assumed the depletion of relatively low cost natural gas, triggering a switch towards cheap coal 
and bioenergy. Regarding carbon dioxide emissions, they increase until a peak point somewhere 
between 2020-2030 and start decrease steadily until 2050. 

Other studies suggest even worse future expectations with regards to the climate impact from 
cement manufacturing. In a study carried out by EU Joint Research Centre (EU JRC) [56] 
compares development relative a business as usual (BAU), reference scenario. In addition to 
parameters such as GDP and primary fuel prices this analysis assumes conservative features for 
the near future such as: 

- Trend for shaft kilns 
- No fluidised cement technology, no alternative cement product penetration 
- No change in clinker/cement ratio in cement production  

The BAU scenario predicts high cement consumption in the near future (time horizon until 2030). 
The cement consumption will increase on a global level to 2880 Mt/yr 2030 at an annual 2% 
growth rate. Generally, the study by EU JRC does not differ from the previous studies in different 
global regions. The biggest difference appears in Western Europe, where its consumption is 
assumed to reach a peak point somewhere between 2010-2020 and start to decrease thereafter. 

OECD in their report, “Global Material Resources Outlook to 2060” [53] adds another perspective 
on how materials use will rise in coming decades. Figure 26 show how a number of key-materials 
are expected to increase to 2060 (cement may be included in non-metallic minerals section).  
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Figure 26 Growth in materials use expected to 2060. Source: Global Material Resources Outlook to 2060, OECD.[53] 

Population growth and the rate at which countries catch up in income levels are assumptions 
introduced in the study that introduce a range of uncertainty of around 20% on either side of the 
central baseline scenario. However, in all cases, global materials are expected to grow over time 
to 2060. 

At the same time, materials intensity is predicted to decrease in all regions. As global GDP and 
materials use are forecasted to grow with different growth rates, finally results in a general 
decrease of materials intensity per unit of GDP. To support this assumption, the authors point to 
the ongoing shift towards more services globally and the expected end of the construction boom 
in emerging economies, especially in China. 

In summary, the vast majority of studies conclude that cement consumption and production will 
increase in the coming decades. There will be differences in how consumption and production 
evolves and differences in growth rates between regions. Emerging economies are expected to 
increase their consumption and production constantly, while a stable or in some cases stagnating 
demand is expected in developed regions and countries. 

5.4. Study scenarios: Cement demand 
In this section will be discussed the study scenarios that will provide the basis for the spatial GIS 
analysis. Based on the varying expectation with regards to supply and demand for cementitious 
material (as described in Sections 3-4), it is clear that relying on just a single prediction of the 
future development of supply and demand will not cover the rage of possible outcomes. Thus, 
here, three different scenarios were assessed to cover a wider range of possibilities: 

- Scenario 1: Business as Usual. In this scenario, in line with other work [52][56], cement 
demand in Europe is assumed to remain relatively stable through the studied period. 
Cement consumption is assumed to increase up until 2020, later it will start to decrease 
and stay constant for EU-28 countries. Cement consumption and production are here 
assumed to remain at current (2017) levels throughout the studied period. 

Table 23 Scenario 1 cement consumption in EU28 and Sweden. 

Region/ country Cement consumption 2017 (kt/yr) 
EU 28 [63] 160 760 
Sweden [65], [61] 2 400  
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- Scenario 2: Decreasing demand. In this scenario, thanks to conscious actions to improve 
material efficiency, predicted cement demand can slowly decrease from current levels. 
Actions like: optimisation of the quantity of cement needed in a specific concrete recipe 
[3], increase of concrete waste recycling, efficiency of cement production or better 
packing and selection of concrete aggregates are here assumed to a reduction in the 
amount of cement needed in concrete, contributing to lowering of overall cement demand 
[7]. Overall a 20% reduction of cement demand is assumed between 2017 and 2050. 

Table 24 Scenario 2 cement consumption in EU28 and Sweden, 2017-2050 period. 

Region/ country Cement consumption 2030 (kt/yr) Cement consumption 2050 (kt/yr) 
EU 28 131 600 131 800 
Sweden 1 960 1 970 

 

- Scenario 3: Increasing demand. In contrast to the previous scenario, in this one is 
highlighted an increase on the cement consumption and production capacity. Without 
climate policy, future projections for cement consumption show a fast increase over the 
next few decades [52]. This growth is typically assumed to be smaller for EU-28, where 
cement consumption, both in absolute and relative terms, are expected to be low. Here, 
in the High-demand scenario, a 20% increase between 2017 and 2050 is considered. 

Table 25 Scenario 3 cement consumption in EU28 and Sweden, 2017-2050 period. 

Region/ country Cement consumption 2030 (kt/yr) Cement consumption 2050 (kt/yr) 
EU 28 197 400 197 700 
Sweden 2 940 2 950 
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6. GIS analysis 
6.1. Scenarios design 

To cover a range of possible outcomes, three scenarios of the future development of cement 
demand were explored (see Section 5.3). A BAU scenario (constant demand), a Low-demand 
scenario (20% reduction of cement demand over the studied period) and a High-demand scenario 
(20% increase of cement demand over the studied period). In addition, two cases, (Steel slag Case 
A and B), describing different future development of the availability of blast furnace slag were 
included in the scenario analysis. Table 26 summarizes the scenario layout: 

Table 26 Scenarios design 

Scenario 1 (BAU) 2017 2030 2050 
Cement demand (Mt/year) 160   
Fly ash (Mt/year) 84   
Blast furnace slag Case A (Mt/year) 26.6   
Blast furnace slag Case B (Mt/year)   
Scenario 2 (Low-demand)     
Cement demand (Mt/year)  131 132 
Fly ash (Mt/year)  25 9.2 
Blast furnace slag Case A (Mt/year)  4.7 0 
Blast furnace slag Case B (Mt/year)  23.5 0.8 
Scenario 3 (High-demand)    
Cement demand (Mt/year)  197 198 
Fly ash (Mt/year)  25 9.2 
Blast furnace slag Case A (Mt/year)  4.7 0 
Blast furnace slag Case B (Mt/year)  23.5 0.8 
Bonus scenario 1 (Low-demand) [1]    
Cement demand (Mt/year)  131 132 
Fly ash (Mt/year)  25 9.2 
Blast furnace slag Case A (Mt/year)  4.7 0 
Blast furnace slag Case B (Mt/year)  23.5 0.8 
Bonus scenario 1 (High-demand) [1]    
Cement demand (Mt/year)  197 198 
Fly ash (Mt/year)  25 9.2 
Blast furnace slag Case A (Mt/year)  4.7 0 
Blast furnace slag Case B (Mt/year)  23.5 0.8 
Bonus scenario 2 (Case 1)[7]    
Cement demand (Mt/year)  160 160 
Fly ash (Mt/year)  25 9.2 
Blast furnace slag Case A (Mt/year)  4.7 0 
Blast furnace slag Case B (Mt/year)  23.5 0.8 
Bonus scenario 2 (Cases 2 and 3)[7]    
Cement demand (Mt/year)  131 132 
Fly ash (Mt/year)  25 9.2 
Blast furnace slag Case A (Mt/year)  4.7 0 
Blast furnace slag Case B (Mt/year)  23.5 0.8 

In addition, two bonus scenarios where explored. The first bonus scenario explores development 
based on the levels of cement clinker replacement suggested by the IEA Technology Roadmap 
[1], and the second bonus scenario explore developments based on inputs from the study “A 
Sustainable Future for the European Cement and Concrete Industry: Technology assessment for 
full decarbonisation of the industry by 2050” by Faviere et al. [7]. 
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6.2. Business as usual (Scenario 1) 
As a first step the current situation, with respect cement demand the availability of fly ash and 
blast furnace, were explored.  

Approximately, all countries and their foreign regions such as French islands are consuming an 
average of 161 Mt of cement per year [11]. It is clear, however, that not all regions are consuming 
at the same rate. The most populated regions tend to be the regions with highest consumption. As 
shown in Figure 27, the most red/orange-coloured regions are the ones with a bigger cement 
consumption.  

 

Figure 27 Cement consumption heatmap in EU NUTS. 

Italian regions like, e.g., Lombardia or Toscana stand out with high cement demand, followed by 
Mediterranean regions of Spain, central France, Romania and Poland. Sweden and the Nordic 
countries, on the other hand, have few or no regions where cement consumption excess 680 kt 
per year.  

Just as cement consumption is unevenly distributed, coal-fired power plants and blast furnaces, 
which are the sources of alternative binders considered here, are not evenly located across Europe. 
There is a clear unbalance between the central regions of Europe and the more external regions. 
Figure 28 and Figure 29 show the location of European blast furnaces and coal-fired power plants, 
estimated production of blast furnace slag and fly ash at each location, as well as heatmaps giving 
an indication of the geographical spread of the availability of blast furnace slag and fly ash 
respectively. 
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Figure 28 Blast furnaces slag 2017 heatmap. 

 
Figure 29 Coal-fired power plants heatmap. 

The heatmaps represent with a colour gradient the availability of blast furnace slag and fly ash 
which depend on the distance to the nearest blast furnace and/or coal-fired power plant steel and 
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power. The size of the round markers indicates the scale of the production of blast furnace slag(red 
markers) and fly ash (blue markers). Centrally located regions like Germany, Poland, The 
Netherlands, Belgium and the Czech Republic have a superior production of alternative binders 
compared to other regions. In many other regions, Sweden included, production is almost 
negligible. 

Table 27 presents a summary of the results of the analysis of the current situation including an 
estimate of the maximum average clinker cement replacement in all possible regions. Comparing 
all possible supply with all cement demand, it results in the following calculi.  

Table 27 Scenario results. 

Supply alternative binders 
(kt/yr) 

Cement demand 
(kt/yr) 

Max. average substitution (%) 

110 500 160 760 70 

 

Figure 30 Scenario 2017 mapping results. 

Figure 30 presents all the regions in which it is possible to substitute at least a 70% of their cement 
demand by conventional alternative binders, i.e., fly ash and blast furnace slags. For sure, as long 
as it has been calculated a 70% and not an exact 68,7%, not all regions are fully covered. This 
difference was taken in order to meet the demand of actual Europe regions without taking into 
consideration overseas regions outside of the European continent. In addition, some of the 
southern regions of Spain and Portugal are also uncovered.  

6.3. Low-demand scenario (Scenario 2) 
The development of cement demand is the key driver in all of the scenarios assessed here. In the 
coming decades, many changes in policies related to construction and GHG emissions are likely 
to occur. The Low-demand scenario (Scenario 2) explores a development where cement demand 
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is reduced by 20% over the studied period at the same time as the supply of conventional 
alternative binders gradually decline. 

In the scenario runs the goal of the GIS analysis was to maximise average cement clinker 
replacement in a maximum number of regions across Europe. The basic assumptions were (see 
also section 3, 4 and 5): 

- 20% reduction in cement demand 2017-2050. 
- Existing coal-fired power plants decommissioned as they reach the end of their technical 

life (40 years). 
- Existing blast furnaces: 

o Decommissioned as they reach the end of their technical life (40 years) (Case A). 
o Are relined once (to extend their lifetime) and decommissioned after 40 years 

(Case B). 

Before keeping up with the study, it requires adding another hypothesis regarding future 
population. According to section 1.4.5., the population across Europe would have increase a 2.3% 
compared to current population by 2030. Thus, in order to progress with the study and offer a 
trustable result, population in all NUT regions must be increased this percentage when estimating 
cement demand.   

On the one hand, the consumption map does not offer any changes in respect to the actual one. 
There is simply an increase of 2.3% due to the population projections and a reduction of 20%, as 
the scenario tells.  

On the other hand, there is a huge change in the number of plants that could supply alternative 
binders available. From the initial 840 facilities, there only remain around 200. In the figures 
below can be deduced a reduction in the number of markers of every map. Also, the reddest 
regions before have partially lost some of their original intensity.   

In the Figure 32, it is shown the second way to estimate, since the last year the facility was relined 
(Case B). Unlike their counterpart, this method allows for a more conservative perspective, 
allowing actual blast furnaces a longer lifetime. Later on, it will be shown the facilities mapping 
using the other assumption (Case A), knowing in advance that the amount of blast furnaces will 
be considerably lower. 
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6.3.1. Scenario 2 – 2030 

 

Figure 31 Blast furnace slag (relining (Case B)) heatmap 2030. 

 
Figure 32 Coal-fired power plants heatmap 2030. 
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Figure 29Figure 31 and Figure 32 shows how the achievable clinker replacement in 2030 will be 
considerably lower than the one found for the BAU scenario. Table 28 shows for the Low-demand 
scenario (Scenario 2) in the year 2030 the estimated supply of alternative binders, the cement 
demand and an estimate of the maximum average percentage of clinker cement replacement in 
all possible regions. 

Table 28 Scenario low cement demand 2030 (relining (Case B)) results. 

Supply alternative binders 
(Relining (Case B)) (kt/yr) 

Cement demand (kt/yr) Max. average substitution (%) 

48 600 131 600 40 

 

Figure 33 Scenario 2030 Low Demand (relining (Case B)) mapping results. 

Figure 33 shows how in 2030 in the Low-demand scenario it would be possible to achieve a 40% 
substitution rate in most European regions. However, there are a number of Spanish and UK 
regions that will not be able to fulfil their by-products demand. This difference is due to estimating 
using a 40% substitution rate instead of a 36.9%. Another thing to note is that the transportation 
costs are likely to increase since fewer facilities are available to supply alternative binders. By 
2030 the number of production facilities with by-product that are suitable as alternative binders 
(blast furnaces and coal-fired power plants) have been reduced considerably. This means that the 
remaining facilities with a larger production need to supply to more regions, causing increased 
transportation costs. 

In the other case considered, Case A, the existing blast furnaces will be decommissioned at a 
faster rate. The primary iron-making facilities are assumed to decommission blast furnaces as 
they reach the end of their technical life (40 years). Since many European blast furnaces are 
already old, by 2030, a significant share of these will have been decommissioned. The estimates 
presented in Table 29 show how this would lower the supply of alternative binders even further 
and consequently lower the maximum achievable average substitution rate. 
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Table 29 Decrease in supply of alternative binders since no relining is assumed to take place (Case A) 2030 Low 
demand scenario. 

Supply alternative binders 
(Relining (Case B)) (kt/yr) 

Supply alternative binders 
(No relining (Case A)) (kt/yr) 

Reduction in supply of 
alternative binders (%) 

48 600 29 800 40 

 

Figure 34 Blast furnace slag Heatmap (No relining (Case A)).  

Figure 34 has far less facilities than Figure 31, creating a situation in which the remaining facilities 
will need to spread their by-products even more in order to meet the maximum demand. Clearly, 
under these circumstances, the availability of clinker replacement will be lower than in Case B, 
where blast furnaces were assumed to be decommissioned at a slower rate. Table 30 summarize 
for the Low-demand scenario (Scenario 2) in the year 2030, with no relining of blast furnace 
(Case A) the estimated supply of alternative binders, the cement demand and an estimate of the 
maximum average percentage of clinker cement replacement in all possible regions. 

Table 30 Scenario low demand 2030 (no relining (Case A)) results. 

Supply alternative binders (No 
relining (Case A)) (kt/yr) 

Cement demand 
(kt/yr) 

Max. average substitution (%) 

29 800 131 600 25 
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Figure 35 Scenario 2030 Low Demand (no relining (Case A)) mapping results. 

At a first sight, apart from the lower average substitution rate, there are not big changes with 
respect to regions provisioning. Although reducing the achievable replacement ratio, there are 
still some Spanish and UK regions with very low or no by-products supply.  

6.3.2. Scenario 2 - 2050 

In the year 2050, the end of the studied period, all remaining blast furnaces will have been 
decommissioned in Case A, and only 35 coal-fired power plants are still in operation (see Figure 
36A) 

As can be seen in the pie chart (Figure 36B), Germany, in 2050, continues to be the biggest fly 
ash producer. A majority of the remaining coal-fired power plants are located in Germany (see 

Figure 36A: Coal-fired power plants in 2050. Figure 35B: pie chart showing biggest fly ash  producers in 2050. 
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Germany
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Poland
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Figure 36A). The following two major producers keep on the same ratings just like 2017 scenario: 
Czech Republic and Poland. 

Consequently, clinker replacement in 2050 in Scenario 2 is predicted to be significantly lower 
compared to the 2017 and 2030. The maximum average percentage of clinker cement replacement 
across all region is in this Scenario estimated to be less than 10% (Table 31). 

Table 31 Scenario Low-demand 2050 (Case B) results. 

Supply alternative binders 
(kt/yr) 

Cement demand (kt/yr) Max. average substitution 
(%) 

10 000 131 800 10 

 
Figure 37 Scenario 2050 Low-Demand (Scenario 2) mapping results. 

Unlike most all other scenarios, in this one there are more regions without a minimum by-products 
supply being covered. The recent additions to the list of regions without coverage are southern 
France, whole Italy, Cyprus and Greece Islands. Clearly, the new additions obtain their red colour 
because of being the furthest ones in relation to the remaining coal-fired power plants. 

6.4. High-demand scenario (Scenario 3) 
The High-demand scenario (Scenario 3 explores a situation where cement demand increases over 
the studied period. This may represent a development where few or no policies or measures aimed 
at lowering the climate impact of cement and concrete are enforced. This would also be 
representative for emerging economy, since larger amounts of cement are required in developing 
economies in order to build new infrastructure.  

Logically, a higher demand will results in less by-products, in relative terms, to each region and 
thus lower replacement ratios. Since assumptions with respect to the decommissioning of blast 
furnaces and coal-fired power plants are the same in Scenario 2 and 3, the development of the 
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supply of alternative binder will be the same. Thus, the main focus will be to check differences 
in respect to the alternative binders coverage. 

The basic assumptions were (see also section 3, 4 and 5): 

- 20% increase in cement demand 2017-2050. 
- Existing coal-fired power plants decommissioned as they reach the end of their technical 

life (40 years). 
- Existing blast furnaces: 

o Decommissioned as they reach the end of their technical life (40 years) (Case A). 
o Are relined once (to extend their lifetime) and decommissioned after 40 years 

(Case B). 

6.4.1. Scenario 3 - 2030 

Table 32 presents, for the High-demand scenario (Scenario 3 Case B (with relining of blast 
furnaces)) in the year 2030 the estimated supply of alternative binders, the cement demand and 
an estimate of the maximum average percentage of clinker cement replacement in all possible 
regions. 

Table 32 Scenario high demand 2030 (relining (Case B)) results. 

Supply alternative binders 
(kt/yr) 

Cement demand (kt/yr) Max. average substitution 
(%) 

48 600 197 400 25 

 

Figure 38 Scenario 2030 High Demand (relining (Case B)) mapping results. 

The results do not show huge differences compared to the low demand scenario. Only one Spanish 
region (Andalusia) is not being covered at least a 25%. Therefore, instead of a 35% achievable 
substitution it descends to a 25%.  In the case where no relining of blast furnaces are assumed to 
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take place (Case A) supply of alternative binders are even lower. As presented in Table 33, 
maximum average percentage of clinker cement replacement across the studied regions in the 
High-demand scenario with no relining of blast furnaces is estimated to be less than 20%. 

Table 33 Scenario high demand 2030 (no relining (Case A)) results. 

Supply alternative binders 
(kt/yr) 

Cement demand (kt/yr) Max. average substitution 
(%) 

29 800 197 400 20 

 

Figure 39 Scenario 2030 High-demand (no relining (Case A)) mapping results. 

As predicted, the number of uncovered regions increases. Apart from being almost whole Ireland 
and UK uncovered, there are also several Mediterranian regions from Spain, France and Italy. In 
addition, north of Finland, Cyprus and almost all Romanian regions are also uncovered. 

6.4.2. Scenario 3 - 2050 

In the year 2050, the end of the studied period, with a high cement demand and all remaining blast 
furnaces decommissioned (in Case A) and only 35 coal-fired power plants still in operation, the 
supply of alternative binders and consequently the achievable substitution rate will have been 
considerable lowered.  
 
Table 34 Scenario High-demand (Case B) 2050 results. 

Supply alternative binders 
(kt/yr) 

Cement demand (kt/yr) Max. average substitution 
(%) 

10 000 197 700 10 
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Figure 40 Scenario 2050 High-demand mapping results. 

Figure 40 reflects this situation mentioned. With only a few remaining facilities suppling 
alternative binders and with an increased demand, the ability to replace cement clinker will be 
very limited. The situation will be worst in the regions furthest away from central Europe (i.e. 
Germany, Czech Republic and Poland were the remaining coal-fired power plants are located). 

Also, note that some regions outside Central Europe, e.g., Sweden and Finland still cover their 
by-products demand despite being further away from supply. The main reason for this is the 
transportation cost considered (see section 1.4.6). Central Europe is not considered an intensive 
cement zone, so supply easily satisfy demand.  

6.5. Bonus Scenarios 

6.5.1. Scenario base on the IEA cement roadmap 
The first “bonus” scenario was based on input from the Cement Industry Technology Roadmap 
developed by the IEA [1]. Here, instead of seeking to achieve the maximum replacement rate in 
the largest number of regions, a fixed replacement ratio was assigned. Once introduced the data, 
the program will state which regions can be covered that ratio in which not.  

The IEA Cement Industry Roadmap considers two main scenarios: 

- The Reference Technology Scenario (RTS), considered a “business as usual scenario”, in 
which temperature will rise up to 2,7ºC to 2100 [1], and 

- The 2ºC Scenario (2DS), in which temperature will not rise up to 2ºC to 2100 [1]. 

Besides, it considers two cases. A Low-variability case, which is considered the most likely future 
and thus the reference scenario and a High-variability case, in which is the relative variation of 
cement demand is scaled over time in the different regions.  
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Table 35 presents some of the main results from the IEA study: 

Table 35 IEA Technology Roadmap scenario results. 

 

The analysis presented here was based on IEA’s 2DS scenario and the Low-variability case (see 
Table 36) 

Table 36 2DS ratios used for the study (world basis). 

2DS 
2030 2050 

Clinker ratio Substitution ratio Clinker ratio Substitution ratio 
0,64 0,36 0,6 0,4 

However, these numbers are suited for a world basis scenario. It is clear that they must be adjusted 
to a Europe level. The IEA study also provides a handful of figures in which are represented the 
evolution of the clinker to cement ratio in different regions. Figure 41 shows the Europe clinker 
to cement ratio evolution in the 2DS: 

 

The figure states that Europe evolves from an estimate 0,75 clinker to cement ratio in 2014 to an 
also estimated 0,65 in 2030. Since the IEA study does not provide any specific data for the EU in 
2050 the following analysis was based on the world basis result for 2050 in order to conduct the 
simulation. 

The method applied to estimate the development of cement demand and the supply of alternative 
binders were the same as in Scenario 1-3 above (see Sections 6.1, 6.3 and 6.4 for extended 
description of the method) 

Figure 41 Clinker to cement ratio evolution in Europe, 2DS. 
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Figure 42 Scenario 2030 IEA 35% substitution Low-demand relining (Case B) mapping results. 

 

Figure 43 Scenario 2030 IEA 35% substitution Low-demand no relining (Case A) mapping results. 
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Figure 44 Scenario 2030 IEA 35% Substitution High-demand relining (Case B) mapping results. 

 

Figure 45 Scenario 2030 IEA 35% Substitution High-demand no relining (Case A) mapping results. 

Figure 42 and Figure 43, represent the low demand scenario in 2030. Figure 42 does not show 
any difference with their previously done homologue, Figure 33, as long as the substitution rate 
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assumed was the same. However, the following figures show a phenomenon that was expected to 
happen: the more the demand grows or the supply declines, the less regions fully covered their 
by-products supply. When this happens, the most external regions of Europe stop receiving their 
by-products quantity. This trend is enforced and strenghted towards the end of the studied period 
as more and more blast furnaces and coal-power plants are closed. 

 

Figure 46 Scenario 2050 IEA 40% Substitution Low-demand (Case B) mapping results. 
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Figure 47 Scenario 2050 IEA 40% Substitution High demand (Case B) mapping results. 

As the figures above state, a 40% substitution rate is quite difficult to achieve in all Europe regions 
using the hypothesis of this study. Only the surrounding regions to the remaining coal-fired power 
plants in 2050 will be able to meet the by-products demand.  

These results build on the assumption that existing blast furnaces and coal-fired power plants are 
phased out at the end of their technical lifetime. Resulting a radical decline in the supply of 
conventional alternative binders. While this development would be in line with EU climate goals, 
it is by no means certain. If this relatively rapid phased out of blast furnaces and coal-fired power 
plants would be realised there are, as discussed above, a number of non-conventional alternative 
binders could potentially fill the gap. However, more research and quantifiable data need to be 
conducted in order to create predictions that are more accurate.  

6.5.2. Scenario from ETHZ cement roadmap 

The second “bonus” scenario was based on the Technology assessment for full decarbonisation 
of the cement and concrete industry by 2050 undertaken by the Swiss Federal Institute of 
Technology (ETHZ), Zürich, and the Swiss Federal Institute of Technology (EPFL), Lausanne, 
and commissioned by the European Climate Foundation. The objective of the ETHZ/EPFL was 
to assess the potential of technologies to reduce CO2 emissions from the cement and concrete 
industry [7]. The mitigation options reviewed in the report are: 

- Reduce CO2 emissions from clinker production by improving the energy efficiency of 
cement plants. 

- Reduce CO2 emissions from cement by reducing the clinker content. 
- Reduce CO2 emissions from concrete by reducing the cement content. 
- Reduce CO2 emissions from concrete structures by adapting the concrete mix design and 

the element shape to the final application. 
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Some of the key assumptions used from an economic activity point of view in the roadmap 
scenarios that should be reflected in the simulation are: 

- Cement demand projected to remain stable for the coming decades. 
- Stable population 
- Existing production capacity 
- No investment in new cement infrastructure will occur in Europe 

There are three scenarios considered with a handful of strategies for CO2 reduction in the 
cementitious value chain. Not all scenarios make use of all the potential technologies to achieve 
that emissions reduction. Table 37 presents the clinker substitution ratios stated in the 
ETHZ/EPFL report which were used in this assessment: 

Table 37 ETHZ clinker substitution ratios for each scenario. 

Scenario 2015 2030 2050 
Reference scenario 23 30 35 
Scenario 1 23 30 35 
Scenario 2 23 30 40 
Scenario 3  23 30 40 
Extreme scenario 3 23 30 50 

The reference scenario is pretended to be an extension of the RTS in the IEA technology roadmap 
(see Section 6.5.1). Scenario 1 uses the same cement demand as the reference scenario, but cement 
producers must do the investment of all new technologies. Both scenarios 2 and 3 use reduced 
cement demand as long as the amount of cement required for concrete is considered to be reduced. 
Besides, the scenario 3 considers higher use of prefabrication. Also, there exists an extreme 
scenario 3 in which the required clinker substitution must be over 50%. 

At the time to simulate, the inputs used are the cement demand assumptions from the report next 
to the clinker substitution ratios and the project-calculated by-products supplied by the coal-fired 
power plants and the blast furnaces. Below are presented the results of the simulations driven. 
The figures show some disparities compared with the project scenarios. First of all, the results for 
the 2030 time frame. 
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Figure 48 Scenario 1, 2030 30% substitution relining (Case B) mapping results. 

 

Figure 49 Scenario 1, 2030 30% substitution no relining (Case A) mapping results. 

Relining or not, the vast majority of the Europe regions are within the coverage rates of 
substitution and so they are able to achieve the percentage goal for the scenario 1. However, for 
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the right figure, it is clear that a big part of France, Spain, Romania, Finland and whole UK decay 
their by-products supply to levels that do not allow them to achieve that 30% clinker substitution.  

 

Figure 50 Scenario 2&3, 2030 30% substitution relining (Case B) mapping results. 

 

Figure 51 Scenario 2&3, 2030 30% substitution no relining (Case A) mapping results. 
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This is not the case for the scenario 2&3, in which the cement demand is an 80% of the scenario 
1 demand. Considering relining, allows supplying all regions of Europe all their by-products 
demand. 

Therefore, the 2050 scenarios present similarities with their homologues from the IEA technology 
roadmap, in which the substitution ratio was a 40% too (as it is the case for scenarios 2 and 3). 

 

Figure 52 Scenario 1, 2050 35% substitution (Case B) mapping results. 
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Figure 53 Scenario 2&3, 2050 40% substitution (Case B) mapping results. 

Again, only the regions surrounding the remaining coal-fired power plants receive their by-
products demand. As seen in the figures, regions from Belgium, central Germany, Bulgaria, 
Latvia, Estonia and southern Finland would be covered. Although being a discrete number of 
regions, achieving a 40% substitution can be considered an impressive goal taking into 
consideration the reduced supply considered of these two sources by 2050, in means of the project. 
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6.6. Summary of results 
Table 38 shows the results obtained from the spatial GIS analysis conducted through all the thesis 
scenarios. For the BAU, Low-demand and High-demand scenarios the table gives the maximum 
average clinker replacement ratios achieved in each time period. For the IEA and ETHZ/EPFL 
scenarios the table gives the number of regions from the total (276) in which the targeted clinker 
replacement ratio was achieved. The results from every scenario are divided according to the case 
they belong to: Case A (no relining) and Case B (relining). 

Table 38 Summary of GIS analysis results.  

  2017 2030 2050 
BAU scenario (%) 
 

 70 - - 

Low-demand scenario (%) 
 
 

Case A - 25 10 
Case B - 40 10 

High-demand scenario (%) 
 
 

Case A - 20 10 
Case B - 25 10 

  Low High Low High 
IEA scenario (number of regions) 
(replacement ratio: 35% in 2030, 40% in 
2050) 

Case A - 174 105 0 0 
Case B - 276 175 45 26 

  S1 S2&3 S1 S2&3 
ETHZ/ EPFL scenario (number of 
regions) (replacement ratio: 30% in 2030, 
35% in 2050) 

Case A - 165 198 37 47 
Case B - 276 276 38 51 

7. Concluding discussions 
In modern society, concrete is next to water the most consumed material in the world thanks to 
its many applications in structures and buildings, which provide shelter, transportation and 
mobility for people. Concrete has become one of the most GHG emission-intensive activities in 
the world because of clinker usage for its cement. CO2 emission from cement clinker production 
account the vast majority of concrete emissions, approximately 60-70%. Countries that are more 
environmentally concerned have started to work on reducing cement emissions by implementing 
new measures and techniques in different stages of its production.  

One of the most promising options is the application of alternative binders to substitute part of 
the Clinker content of cement. During the last decades, much research has been in devoted to 
studying the suitability and the effects of different alternative binders in the final applications of 
concrete. These alternative binders are usually classified by their origin, being from natural 
sources or a by-product (residue) from other industries. The most well-known and most widely 
used alternative binders are fly ash from coal-fired power plants and blast furnace slag from steel 
industry blast furnaces. These two by-products are currently being used, however not at their 
maximum potential for the case of the fly ashes. This and other reasons such as the availability of 
information and well-known effects of the final concrete mixture make them the most suitable for 
this project study. In this study, thorough analysis have been carried out to estimate an 
approximate quantity for both fly ash and blast furnace slag produced in Europe countries for 
three periods: current, 2030 and 2050. The analysis is based on explorative scenarios (“what if“ 
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type scenarios) which, in turn, build on a number of simplifications and assumptions. One of the 
key assumptions relates to capital stock turnover. Here, key capital, coal-fired power plants and 
blast furnaces, are assumed to be decommissioned as they reach the end of their technical lifetime. 
While actual life times tends to vary considerably, a lifespan of 40 years was used as the basic 
assumption for both power plants and blast furnaces. The assumption goes in line with the Paris 
Agreement goals, which means that all OECD countries should phase out coal power generation 
by 2030 [66]. However, coal power generation in Germany may continue up to 2038 as a result 
of slower decommissioning [67].  

Nevertheless, for blast furnaces two different possibilities were considered. The basic assumption 
was exactly the same one as the coal-fired power plants lifespan hypothesis, when they reach 40 
years they are phased out in means of estimating future supply of slag. However, since 
approximately 80% of the existing furnaces are already that old (>40 years), and thanks of having 
data about the year in which they were last relined, a second possibility arose. This second one 
considered counting 40 years of operation since the beginning of the year in which they were 
lastly relined, as long as their machine parts would have been replaced by new ones. 

Based on these assumptions and data provided it was possible to estimate an approximate quantity 
of both by-products. On the one hand, it was estimated 143 megatons of profitable fly ash 
currently available to use.  The estimate includes fly ash produced from lignite and anthracite coal 
in 840 power plants. The estimates of fly ash developed are correlated with the capacity factor 
used. However, a fixed capacity factor was used to conduct the estimation. The difference 
between using a slightly higher or lower capacity factor do not significantly affected the final 
clinker replacement ratios achieved. As a result of using an average replacement ratios, the 
possible differences between different capacity factors were not relevant enough to split the fly 
ash estimates into two additional cases. The most production-intensive zones are Germany that 
accounts a 35 % of total FA produced, followed by Poland and the Czech Republic with a 16 and 
13 % respectively. For its part, Sweden produces a modest amount of 51 kt/ year, which is 
equivalent to 1 % of the total fly ash production in the EU. For both 2030 and 2050 estimations, 
the amount of fly ash available would be dramatically reduced to 25 and 9.2 Mt/ year respectively. 
As discussed above, many of the existing facilities already surpass the 40 years lifespan, which 
conditions the future possibilities of massively exploiting that resource. 

The amount of blast furnace slag, on the other hand, were estimated to be an approximate of 26.6 
Mt/ year from 33 facilities. Again, Germany is the country with the highest production of slag 
accounting for 29 %, followed by France and Italy with both a 12 %. Just as was the case with fly 
ash, Sweden contributes with a low quantity, approximately 989 kt of slag per year, or 3 % from 
total. Whereas using the year in which the furnace was first constructed results in a shorter 
lifespan, using the year in which the furnace was last relined allows for prolonged operational 
life. In the later case, blast furnace slag can contribute to a greater extent to the total resource base 
of by-products. From the current 26.6 Mt, it drops to 4.7 for the first case (no relining) an to 23.5 
for the second case (relining) in 2030. In 2050, Case A estimates lead to a null production while 
Case B estimates are 0.8 Mt/year. 

These estimated supply of conventional alternative binders need to fulfil part of the expected 
cement demand. Many studies try to predict how cement consumption will evolve in the near 
decades. Currently, EU-28 regions consume 160 million ton of cement each year. Two different 
scenario for the future development of cement consumption were explore: a Low-demand and a 
High-demand scenario. Each will take into consideration population growth projections made by 
Eurostat with a tolerance of ± 20 % from the initial demand.  
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- The low demand scenario may be caused by features like: optimisation of the quantity of 
cement needed in concrete [3], increase of concrete waste recycling, efficiency of cement 
production or better packing and selection of concrete aggregates can allow to a reduction 
of the cement needed in concrete.  

- The high demand scenario may be a consequence of no climate policies and increased 
investments in new building and infrastructure over the next few decades. 

Combining the estimates of supply of alternative binders with the cement demand scenarios allow 
to simulate and calculate which are the possible clinker replacement ratios across EU-28 regions 
under the studied period. The results show how as supply of conventional alternative binders 
decreases, the maximum average substitution rate achievable across EU-28 regions decreases as 
well. The current maximum average substitution rate was estimated to be approximately 70%. 
However, the results also show the potential for replacing cement clinker with conventional 
alternative binders will considerably lower in the coming decades: 

- In the Low-demand scenario a 40/ 25 % (relining/ no relining case) replacement ratio was 
achieved in 2030. 

- In the High-demand scenario, a 25/ 20 % (relining/ no relining case) replacement ratio 
was achieved in 2030. 

- In 2050 in both scenarios, with the exceptions of a few external regions (where the 
remaining coal-fired power plants are not located) it was possible to achieve a 10% 
replacement ratio in most regions of EU-28.  

The simulation results show how, given the assumptions and limitations applied in the study, if 
the limited to only these two conventional alternative binders it will not be possible to achieve 
higher replacement ratios. Thus, one recommendation would be to dedicate more work to increase 
the knowledge about and the use of other alternative binders. Increased use of non-conventional 
binders like, e.g., calcined clays, natural pozzolans, and organic ashes could potentially help 
meeting the relatively ambitious cement clinker replacement goals proposed in previous studies 
by IEA and ETHZ/ EPLF (see [1] and [7]). They state an approximate goal of replacing 35 % of 
cement clinker with alternative binders by 2030 and 40 % by 2050. It is clear that these goals will 
be very challenging to meet under the project hypothesis, at least in the EU-28. It is worth noting 
that some of the scenarios suggested by IEA and ETHZ/ EPFL, use different cement demand 
evolution compared to the ones used in this work. The substitution ratios achieved in 2030 in the 
scenarios explored in this work are quite near the ones suggested by IEA and ETHZ/ EPFL. 
However, in 2050 period the supply remaining cannot fulfil a 40 % replacement ratio demand. 
Only regions located close to the remaining coal-fired power plants would see their demand 
covered, at the cost of creating a large amount of regions with no possible supply of fly ash or 
blast furnace slag. 

In summary, this work raises the concern that, despite all efforts done towards analysing the 
potential for increasing the cement clinker substitution rates, the resource base of conventional 
alternative binders in the EU-28 in the coming decades may be significantly lower than previously 
expected. It may be possible to substitute large amounts of clinker by conventional alternative 
binders such as fly ash and blast furnace slag, in the short term (5-10 years). However, longer 
term (10-30 years), the need to phase out an ageing fossil capital stock, included coal-fired power 
plants and blast furnace, to meet climate targets will rapidly and significantly reduce the resource 
base of conventional alternative binders. Even though there is already a relatively large body of 
literature analysing the potential for and effects of an increased use of unconventional alternative 
binders in concrete, this study highlights the importance of stepping up efforts to analysing their 



71 
 

availability and how to distribute them all across Europe regions.  With an increased use of 
unconventional alternative binders in combination with several other measures to reduce the 
climate impacts of cement and concrete, it would still be possible to allow continued use of 
concrete without jeopardising the climate goals. 
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