How to Manage Technical Debt in a Lean Startup

Master of Science Thesis in the Programme Software Engineering

HAMPUS NILSSON
LINUS PETERSSON

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
Goteborg, Sweden, October 2013

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

How to Manage Technical Debt in a Lean Startup.

HAMPUS. NILSSON,
LINUS. PETERSSON,

© HAMPUS. NILSSON, October 2013.
© LINUS. PETERSSON, October 2013.

Examiner: MICHEL. CHAUDRON

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Goteborg, Sweden October 2013

Abstract

Startups are becoming ever more prominent in today’s world and the
lean startup movement has shown a method to reach success through rapid
development and prototyping. The effects this has on software quality and
how it should be handled is a novel subject, the concept of technical debt has
been known within the field Software Engineering for over a decade but there
is very little research on how it is, or should be handled in startup contexts.

This study aims to fill this void through interviewing nine startups com-
panies about their technical debt issues. Simultaneously the researchers
developed an internet startup project and evaluated the effectiveness of
methods and software tools that can be used to manage technical debt.

To address difficulties of discussing technical debt a new model for classify-
ing debt named the Technical Debt Quadrant is presented. To solve the issue
of managing technical debt in startups a list of concrete tips for managing
technical debt and a matrix appellated the Debt Strategy Matrix that can
be consulted in the different phases of a startup’s life was developed. The
validity of these new solutions will need to be further evaluated in future
studies to assess their usefulness.

The new terms for referring to technical debt will be of use for both
researchers and practitioners in the field of Software Engineering in the future.
The strategies for managing technical debt can be used without the overhead
associated with previous solutions by any startup to avoid long-term technical
issues.

Acknowledgements

We would like to thank the following people for their support during the work with our
master thesis.

Elma Delic, Henrik Lang and David Svensson at Alice.

Our supervisor Jan Bosch.

Our examiner Michel Chaudron.

Contents

Glossary
1 Introduction

2 Background
2.1 Lean Startup Methodology
2.1.1 Build-Measure-Learn
2.1.2 Minimum Viable Product
2.1.3 Metrics
2.1.4 Pivot
2.2 Technical Debto
2.2.1 Typesof Debt
2.2.2 Identifying Debt o
2.3 Toolsand Methods
2.3.1 SQALE e
2.3.2 Sonar e e
2.3.3 CAST AIP
2.3.4 CodeClimate e
2.4 Alice

3 Purpose

4 Method
4.1 Data Collection e
4.1.1 Primary Case L Lo
4.1.2 Secondary Caseso
4.1.3 Software Evaluation
4.2 Validity Threats

5 Result
5.1 Ewvaluated Software
5.1.1 Sonar e
5.1.2 CAST AIP e
5.1.3 Code Climate e
5.2 Primary Case
5.2.1 Process
5.2.2 Technical Debt
5.3 Interview Data
5.3.1 Jan Salvador vander Ven
5.3.2 Appello

ii

iv

10

11
11
11
11
13
13

CONTENTS

5.3.3 Burt 21

5.34 Duego 23

53.5 NetClean e 24

5.3.6 PugglePay 25

5.3.7 Recorded Future 26

5.3.8 Shpare e 28

5.3.9 Trimbia L 29

5.4 Interviews Summary Lo 30

6 Discussion 35
6.1 Analysis 35
6.1.1 Technical debt problems identified 35

6.1.2 Debt generating activities oo 37

6.1.3 Methodsinuse 38

6.2 Solution 40
6.2.1 The Debt Quadrant 40

6.2.2 Strategy 43

6.2.3 Debt Strategy Matrix 45

6.3 Validation 47

7 Conclusion 50
8 Future Work 51
References 52

iii

Glossary

Code Smell

Cowboy Programming

Kanban
Pivotal Tracker

SaaS

Scrum

Startup

Trello

An issue in the code, such as excessive complexity, duplica-
tion, poor commenting or obfuscated code etc.

Developers work without any formal process and assign
their own tasks without much intervention from business
developers.

An agile software development methodology focused on
just-in-time delivery.
An online task management board made for Scrum devel-

opment.

Software as a Service, a solution hosted online and delivered
to users over the web rather than being installed on their
own computers.

An agile software development methodology.

In this thesis a startup is defined as “A startup is a human
institution designed to create a new product or service
under conditions of extreme uncertainty.” (Ries, 2011, p.
27).

An online task management board.

iv

1 Introduction

When beginning work on a new software based product, following best practices and
spending time planning the architecture and design of the product may be time well
spent, given there are resources available and a set of semi-final requirements. However,
in a world where the model of the lean startup is becoming more common and the focus
of the product can change many times, both late and early in the development process,
time spent planning can be time wasted.

Eric Ries introduced the lean methodology in 2008 (Ries, 2008). Lean focuses on
performing the minimal amount of work on the product in order to sell, and design after
the customer’s wishes instead of spending time implementing features that you don’t know
are relevant. This is a valuable proposition for smaller development houses and startup
companies where the economic resources are limited (Moogk, 2012; Ries, 2008).

Merging these two concepts it’s obvious that forgoing planning, meticulous testing and
adherence of coding standards etc. can be a reality when developing using lean. This
will lead to an amassment of technical debt that will grow more unwieldy with time
(Poort, 2011). This report attempts to propose a solution to this problem by offering
guidelines on how to manage the debt early on and avoid ending up in a situation where
you need to put the brakes on development in order to rectify earlier mistakes.

The thesis first addresses the background of the lean startup methodology, defines
technical debt and presents previous work conducted within the domain. It also presents
a few prominent software solutions and methods that can be used to manage technical
debt. A brief evaluation of the software solutions is presented in a subsequent chapter. A
case study conducted at a company following the lean startup methodology is presented
containing experiences about how technical debt behaves in that type of setting. The
subject is further explored using interviews conducted at various startup companies to
investigate how it is currently handled in practice. Further, a new model of how to
characterize technical debt is presented which aids in communicating about technical debt
by defining a common terminology. Finally, a general strategy guide for how to manage
technical debt is presented followed by a more specific model where the management
strategies in the different phases of a startup’s life are defined and categorized.

2 Background

This chapter details what technical debt and the lean startup method is and a number
of different methods available for managing technical debt and their strengths and
weaknesses.

2.1 Lean Startup Methodology

The Lean Startup methodology was first introduced by Eric Ries in a blog post (Ries,
2008) which later lead to the book The Lean Startup: How Today’s Entrepreneurs Use
Continuous Innovation to Create Radically Successful Businesses (Ries, 2011). The
methodology emerged from Eric’s experience working with successful and failing startups.
The methodology is a mix of agile software development, customer development and lean
practices using frequent customer interaction and short iterations. It focuses on how to
utilize the time as efficiently as possible and how to quickly learn about the customers
and their needs.

2.1.1 Build-Measure-Learn

The process is focused around validated learning and what Ries calls the Build-Measure-
Learn feedback loop, visible in figure 2.1, to conduct experiments (Ries, 2011). It starts
with the Build stage where some kind of product is built. It may be as a working product,
an interactive mockup, a paper mockup or whatever fits the bill. This item is referred to
as the artifact, and is handed off to a customer and the Measure step of the feedback
loop starts. The response from the customer is measured using both quantitative and
qualitative techniques. The data from the measuring is used in the Learn step of the
feedback loop where the idea(s) can be validated or discarded. The process is then
restarted with new ideas and the Build-Measure-Learn loop continues in an iterative
fashion all through the project.

2.1.2 Minimum Viable Product

A Minimum Viable Product (MVP) is a very early version of the product that is built
for the purpose of learning about potential customers and validate the business idea. It
is built with as little effort as possible just to be put in the hands of customers so the
team can begin to receive feedback. It doesn’t have to be a fully functional product that
does everything in a perfect manner. (Moogk, 2012; Ries, 2011)

2.1. LEAN STARTUP METHODOLOGY

LEARN BUILD

PRODUCT

MEASURE

Figure 2.1: Build-Measure-Learn feedback loop.

For instance, when the online shoe store Zappo started, its founder Nick Swinmurn built a
very simple online web shop and when a customer ordered a pair of shoes, he went to the
local shoe store, bought the shoes and sent them to his customer (Ries, 2011). Instead
of spending a lot of time and money to build a fully functional product he created this
simple MVP with very little effort. Using this he could, with a very low risk, validate
his business idea in the real world before taking the next step. That’s mainly what the
MVP is about.

2.1.3 Metrics

To know whether the product development is actually leading to a real progress ap-
propriate measuring needs to be conducted. It is important to select the right metrics
and stay away from, so called, vanity metrics. Vanity metrics are metrics that “give
the rosiest possible picture” (Ries, 2011, p.182) and therefore may be very misleading.
These metrics differs between companies depending on their type of business. Instead,
actionable metrics are more appropriate. An example of an actionable metric is A/B
testing (also known as split testing). When using A /B testing a new feature is rolled
out to a group of customers and their behavior is measured (Burke, 2005). The data
generated from the test can then be used to make a decision about what action to take
next and help you confirm or refute your hypothesis. Of course, the A/B testing is only
one of many actionable metrics a startup may use. (Kohavi et al., 2007; Ries, 2011)

2.2. TECHNICAL DEBT

2.1.4 Pivot

During the project, as the team learns more about the customers’ needs and in what
direction the project should be heading the product is continually being evolved and
optimized. In some cases the project may be on the wrong track and needs to make a
slight (or sharp) turn and change its strategy. This change of strategy is called a Pivot.
(Ries, 2011)

Pivots are a polarizing moment for a startup, pivoting allows you to tune the product to
what the customers actually wanted and rid yourself of the parts of your initial idea that
turned out to be wrong. The difficulty of pivoting is to decide when it is appropriate and
doing it at the right time to make use of your strategic resources in the best possible way.
(Ries, 2011; Bingham et al., 2011)

2.2 Technical Debt

The concept of technical debt was introduced by Ward Cunningham back in 1992, and
refers the tendency for code that continue to be worked on to become more and more
ill-fitted for the new requirements it’s made to fit (Cunningham, 1992). As more and
more functionality is bolted on to the system, metaphorical “debt” is collected in the
form of increasing complexity. This debt needs to be repaid later on by taking the time
to rewrite the original system to better fit with the current demands, in the process that
is now known as refactoring.

Small amounts of technical debt can lead to flexibility in decisions, to quote Cunningham
(1992) “A little debt speeds development so long as it is paid back promptly with a
rewrite.”. It is however important to still keep track of the debt, as it will incur overhead on
development over time on development (Curtis et al., 2012; Kruchten et al., 2012).

2.2.1 Types of Debt

There are many definitions of the types of technical debt that exists. Kruchten et al.
(2012) divides the debt in two prominent categories, either visible - which is debt that
can be identified by people who are not software developers - or invisible - which is debt
that can only be identified by software developers.

Examples of visible debt is new features and defects, which are visible to managerial
staff who can easily see these objects in the backlog or similar tools. In essence this
encompasses the external quality attributes initially defined in ISO 9126 (2001) and later
supplemented by ISO 25010 (2011).

Invisible debt can be due to many factors and it is very difficult to put exact measures
on the size of it. This type of debt includes things like bad architecture, code complexity,

2.2. TECHNICAL DEBT

bad technology choices and code hygiene issues like lack of coding standards. Many of
the concepts here can be linked to internal quality metrics defined in ISO 25010 (2011),
that is, things that are not visible at runtime but only when looking at the source and
architecture of the application. Some external qualities can be linked here as well however,
like efficiency issues.

McConnel (2007) talks about technical debt from another aspect. Instead of dividing the
debt based on its characteristics he defines two basic categories based on how they are
incurred. The two groups includes debt that is incurred intentionally or unintentionally.
The unintentional group includes debt that comes from doing a poor job, for instance
when a junior programmer writes bad code due to lack of knowledge. Another example
is when a company acquires another company and technical debt is found after the
acquisition. Intentional debt is debt taken on consciously for strategic reasons. For
instance when a company must release a product before the debt can be cleaned up.

McConnel further divides intentional debt into short-term and long-term debt. Short-
term debt is incurred reactively and paid off frequently while long-term debt is incurred
proactively and paid off over the course of several years (McConnel, 2007).

Fowler (2009) has yet another categorization of the different debt types, in what he calls
the “Technical Debt Quadrant”. As seen in figure 2.2, Fowler groups the debt into four
categories: reckless deliberate/inadvertent debt and prudent deliberate/inadvertent debt.
The reckless debt includes debt which is taken on due to ignorance or lack of knowledge of
good design and best practices in a deliberate or inadvertent way. The prudent deliberate
debt on the other hand, is when you take on debt consciously for a good reason. Fowler
(2009) points out that the prudent inadvertent debt is a bit odd but argues that it is
inevitable for teams that are excellent designers.

Reckless Prudent

) "We must ship now
"We don't have time

Deliberate and deal with the

for design!"” 7
consequences

"Now we know how we
Inadvertent "What's layering?"
nadverten & . should have done it"

Figure 2.2: Fowler’s Technical Debt Quadrant.

2.3. TOOLS AND METHODS

2.2.2 Identifying Debt

One way of keeping track of the debt is by making use of code analysis tools. These
can identify consistency errors, lack of commenting and documentation and other minor
transgressions. Curtis et al. (2012) introduces a very mechanical way of identifying debt
by using the CAST software suite, described in detail in section 2.3.3. This is very similar
to the concept of invisible debt that Kruchten et al. (2012) distinguished and the goal is
to make it understandable to non-software developers.

There is however no code analysis tool that can identify architectural missteps that can
require redesigning major parts of the system, or a choice to rely on a technology that
over time becomes obsolete or marginalized due to changes in the environment (Kruchten
et al., 2012). Identifying these threats relies on the expertise of the developers and their
ability to convey the risks of choices to the stakeholders. With experience all developers
get an understanding of what code is good code and what code is bad code and learns to
approach development in a way as to avoid much of it (Hunt and Thomas, 1999).

2.3 Tools and Methods

2.3.1 SQALE

SQALE (Software Quality Assessment based on Lifecycle Expectations) is a method
of assessing the technical debt in a software project. It is based on tools that analyze
the source code of the project, looking at different types of errors such as mismatched
indentation, different naming conventions and more. Each of the errors is assigned a
score based on how much work it would be to fix that error. The analysis then gives a
total sum of technical debt for the entire project. (SonarSource, 2013b)

Much of the SQALE method is grounded in visualizing the amount of debt present. As
such the analysis should be conducted on a daily basis if not more often, and illustrating
it on a dashboard or similar is another boon to show engineers what effect the code they
are writing is having on the shared codebase. (Letouzey and Ilkiewicz, 2012)

SQALE was designed to be generic and applicable to any programming language or
development methodology. The method itself is published under an open source license
and is entirely royalty free. An open source framework implementing it named Sonar
is available, which also exists in commercialized versions. This framework is an official
implementation of the SQALE methodology aimed to ease the communication of the
importance of technical debt between managers and programmers. (Freddy Mallet,
2010)

2.3. TOOLS AND METHODS

2.3.2 Sonar

Sonar is an open source platform that inspects and analyzes your code quality. It
is owned and maintained by SonarSource S.A in Switzerland. The software is cross
platform and written in Java. Out of the box Sonar supports code inspection for Java
(SonarSource, 2013b) but support for other languages can easily be added through plugins.
There are plugins available for a number of popular languages such as COBOL, C, C#,
C++, PHP, Python, VB.NET and more. Some are free community supported plugins
and some are commercial.

Sonar includes the ability to create dashboards that can be customized for different uses.
The dashboards are configurable using widgets that can be rearranged through drag and
drop. The widgets can contain anything from pure text to advanced and interactive
charts. Sonar comes with a number of default widgets and new widgets can be added by
plugins that need some kind of specialized visualizations.

The software comes in three different flavors; Open source, Professional and Enterprise.
The open source version is free and doesn’t include the commercial plugins or support.
The main differences between the other two packages are the number of included plugins,
level of support and training. The professional version starts at €12 500 and the enterprise
version starts at €50 000 (SonarSource, 2013a).

Sonar has a free plugin that calculates the technical debt in your codebase (SonarSource,
2012). However, it is very limited. SonarSource has instead created a commercial plugin
that is much more advanced and feature complete (SonarSource, 2013¢). The plugin is a
full implementation of the SQALE methodology (SQALE.org, 2013) and it uses the ISO
9126 quality model with characteristics and sub-characteristics. It can show all kinds
of metrics such as total remediation cost, remediation cost per file, remediation cost
per characteristic, remediation cost grouped by severity, overall SQALE rating, SQALE
rating per component and more. It presents all the data visually on a dashboard using
configurable widgets. The commercial plugins comes with a price tag of €2 700 per
year.

2.3.3 CAST AIP

The CAST Application Intelligence Platform (AIP) is a complete solution for analyzing
and measure software quality. The application is very comprehensive and focuses mainly
on complex enterprise systems. It helps companies to identify and mitigate I'T-risks,
analyze the architecture and code quality, monitor team performance, reduce technical
debt and a lot more. It has support for a lot of different programming languages,
databases and frameworks such as J2EE, Cobol and .NET.

The tools included in the CAST AIP can quantify the technical debt that has incurred
in the project and help the team to proactively manage and reduce it over time. CAST
AIP measures five different types of technical debt, or health factors as they call it. The

2.4. ALICE

health factors are: Changeability, Transferability, Security, Performance and Robustness
(Cast Software, 2013). CAST AIP can also benchmark and compare the quality and
performance with other applications through the appmarq repository provided by CAST.
This repository contains statistical data, trends and best practices from thousands of
other applications. The data in the repository has been extracted from applications in
different industries.

CAST AIP is focused around transparency and visualization of quality, trends, issues
etc. This visualization is done via web based dashboards that can be configured to
show relevant information based on its intended audience. These dashboards gives the
managers and developers a common place to follow the application’s evolution over
time.

2.3.4 Code Climate

Code Climate is a SaaS solution for monitoring technical debt that is made specifically
for monitoring the code quality of Ruby applications. The service makes use of multiple
analysis tools available for Ruby, like metric_ fu and Flog and composes them to a single
output view for the developer.

The software works from a website and only requires checkout rights to a git repository
to function. It monitors the codebase continuously, assigning graded score in the range
from F (worst) to A (best) to classes and methods across the project, pointing out “Code
Smells” such as cyclomatic complexity concerns, code duplication and there is also the
option of finding security related issues. Developers are notified by email weekly with
new issues arising in the code, or things that were improved. This provides continues
feedback on the status of health of the product and the intent is to keep developers
motivated to work with code quality issues.

2.4 Alice

Alice is a small startup located in Gothenburg, Sweden, that develops software used for
managing health and safety in companies. The company begun its software development
in 2013 in a business incubator setting at Chalmers University of Technology.

Alice’s first product was an incident management system where employees can report
incidents that happen at the workplace, such as accidents, deficiencies in the work
environment etc. The reported events are then tracked and handled by the responsible
manager(s) through a web interface. The company follows the Lean Startup methodology
created by Eric Ries and their first MVP was developed during the spring of 2013.

Alice was studied for a few months during the development of their first MVP. Since it is
a startup that follows the lean startup methodology it fits well with the research focus of

2.4. ALICE

this thesis. The product rapidly changed during development and changed direction and
target customers towards the end of the research project.

3 Purpose

The purpose of this study is to explore and better understand the concept of technical debt
in a lean startup context. In general technical debt is seen as a detriment to the software
development process, but this may not be the case for a startup using the lean startup
methodology as quick solutions can be a resource to be harnessed (Ries, 2009).

The problem with lean startups is that the rapid prototyping and development used
quickly generates a high level of debt (Poort, 2011), perhaps this debt can be used as a
leverage though, and what methods would be appropriate to manage it?

By reviewing literature in the area of startups and technical debt and joining it with
input from industry practitioners we identified some key areas that are lacking in the
handling of technical debt:

1. There is no good way of categorizing/classifying technical debt — Inter-
views and literature offers little in the way of classifying technical debt on a level
between breaking it into its smallest constituent parts and the types introduced by
Fowler (2004) that is aimed at debt acquisition, not inventory.

2. Methods for handling tech debt are focused on mature projects — The
methodologies available for handling technical debt are all aimed at projects that
either use more traditional management styles and planning than startups do.
There is a noticeable lack of how technical debt should be handled and reasoned
about in a lean startup.

3. Existing methods does not give clear guidance about when and how to
handle different types of debt — Finally the methods that are available are
all on either of a very mechanical focus, centered around code analysis or defined
through fuzzy, general guidelines on how experienced programmers work with
architecture. Our aim is to define more concrete guidelines and methods on how
debt should be handled in startups.

The goal of this study is to explore these areas in depth and their place and relationship
in the lean startup model. Possible solutions will be developed and presented but not
validated through practice due to the limited scope of the project.

10

4 Method

4.1 Data Collection

The study was performed by collecting data both through a primary case as well as from
a series of interviews with startup companies in the software business. In the primary
case a new software product was developed from the prototype stage to launch and a
short period afterwards and data was sampled using a soft systems research approach
(N. Denzin, 2000), were the researchers participated in the development.

Based on literature, experience gained from the primary case and the real life knowledge
collected from the interviews a model and a set of guidelines were defined.

4.1.1 Primary Case

The primary case was conducted at the startup company Alice in Gothenburg. The
authors participated in the development of a new software product for the business to
business market. The product development applied the lean methodology, developing an
MVP in tandem with trying to sell the product to customers and integrating feedback
from customers very early in the development process.

The primary case was used to get a first-hand experience of how a lean startup works. A
number of issues were investigated such as what challenges arise due to technical debt,
when in the development process do you have to worry about the debt etc. The primary
case was also used to evaluate a number of different software solutions that were available
to manage technical debt, revealing their strengths and weaknesses in relation to the
context of a startup. This was done by looking at factors such as setup overhead, how
easy it is to use the data the tool provides, how relevant the data is and how difficult it
is to integrate the feedback the tool provides into the product.

4.1.2 Secondary Cases

The secondary cases were used as complements to the primary case to support the
findings. The interviews focused around questions about how the company encountered
technical debt, what they did to handle it initially and how they are handling it ongoing
throughout development, and also to collect data on how older startups have handled
their technical debt problems over time.

11

4.1. DATA COLLECTION

Interviews

The companies to interview were picked from a list of startups in Gothenburg. The
reason for them all being in Gothenburg was so they could easily be interviewed in person
rather than by phone or some other form of less direct communication. From the list,
the companies that best seemed to fit the study were selected.

The interviews were conducted in a semistructured fashion. A semistructured approach
has the benefit of enabling the interviewer to improvise and probe deeper into a subject
during the interview (N. Denzin, 2000; Hove and Anda, 2005). Most of the interview
questions posed were formulated in an open fashion, this allows the interviewee to express
his view on the subject in depth (Wohlin et al., 2012; Hove and Anda, 2005). Before the
interviews were conducted it was not clear how the companies worked with technical
debt, how they defined it, or if they even knew what it was at all. The semistructured
approach made it possible for the interviewers to clarify and answer any questions the
interviewees had and avoid misunderstandings and misinterpretations. Also, interviews
are possible to change along the way as the knowledge about the subject increases. This
is much harder when you, for instance, use surveys (N. Denzin, 2000). The interviewees
were chosen by the companies but the type of person needed for the interview were given
by the interviewers. This was important since the people that were interviewed had to
have both a certain level of technical knowledge and been with the company since its
conception or close to it.

Before any interviews were conducted a number of questions were created and validated
by performing a mock interview to find weaknesses in phrasing and structure. Most of
the questions were used in all interviews, but a couple of questions were added or refined
for the last few interviews. When conducting an interview the questions were used as
guidance and appropriate follow-up questions were asked to probe deeper into interesting
subjects. A few example questions and answers can be found in table 4.1. The same two
interviewers were present at all interviews, both asking questions and taking notes. One
interviewer took more detailed notes while the other noted the most important things
and focused on listening. This made it easier to avoid misunderstandings and loss of
important data, and has been shown to make the interviewee more talkative (Hove and
Anda, 2005). After all the relevant questions had been asked and if there was time the
interviewee was also indulged on the results of the study so far and asked for their opinion
on the conclusions reached at that point.

After the interviews had been conducted, the collected data was analyzed using tabulation
(Wohlin et al., 2012). The data was arranged in tables containing the most relevant
characteristics, see table 5.1 and table 5.2, and conclusions were drawn from analyzing
it.

12

4.2. VALIDITY THREATS

Table 4.1: Examples of interview questions and answers.

Question Answer
Do you think about technical debt? Yes, but it is not discussed in those terms.
Is technical debt a problem for you? Yes, there are issues with the reliability

due to missing tests.
How do you deal with technical debt over We continuously refactor code around
time? the points where we work to keep the
codebase in good shape.
Do you think the technical debt will be- Yes, especially if developers leave the
come a problem in the future? company.

4.1.3 Software Evaluation

During the project several different software tools for monitoring technical debt and other
software metrics were evaluated. As the primary case development was only done using
Ruby on Rails, it was not possible to evaluate tools based on other languages in the
primary case. For these solutions, open-source projects were downloaded and analyzed
instead.

For the different products, the following aspects were in focus:

e The price of the solution, would it be feasible for a small development shop to
spend the money required to make use of the product.

e The scope of the solution, how much setup was required to begin using the software.
Excessive setup requirements would seriously impair a lean startup on focusing on
the product, which is orthogonal to the lean process.

e The maintenance requirements, when using the solution did it require continuous
manual labor to be useful and if so how much.

e Was the feedback the tool gave useful to the developers, did it give excessive
amounts of information, or too little. Were false positives common and could they
easily be avoided etc.

4.2 Validity Threats

This section considers the threats to the validity of the study performed according to the
four aspects of validity threats as established by Wohlin et al. (2012).

Construct Validity. Construct validity is the threat of the researchers view of the
subject being not properly investigated by the tools selected for the study (Wohlin
et al., 2012). As the sampling tool used in this study was interviews, the concept of
technical debt was discussed prior to the interview to make sure the interviewee had the

13

4.2. VALIDITY THREATS

same understanding of the subject. Also open-ended questions were an important part
of making sure that the subject was allowed to express tangential information on the
subject and explain their viewpoints thoroughly (Hove and Anda, 2005).

Internal Validity. Internal validity is concerned with how the treatment is linked to
the outcome and if the researcher has missed any other factors besides the investigated
when analyzing the results. The greatest internal threat is selection bias, which is always
a threat when subjects are not chosen at random.

Threats related to instrumentation was avoided by using a proven interview technique
(N. Denzin, 2000; Hove and Anda, 2005) and allowing the companies to select the person
to be interviewed (increasing the randomness of the subjects).

In the primary case action research was used as a research method. Since the researchers
participated in, and influenced, the process and studied it at the same time, there are
risks of data collector bias and data collector characteristics (Onwuegbuzie, 2000). Data
collector bias is when the researcher(s) favor a group or result and therefore, consciously
or unconsciously, skews the data in that direction. Data collector characteristics concerns
the characteristics of the people conducting the data collection. Characteristics such as
age, gender, culture etc. may influence the type of data that is collected (Onwuegbuzie,
2000).

External Validity. The external validity is the ability to generalize the findings to the
general population. In this report this would be if the findings are valid for startups
beyond the investigated. As this is a qualitative study it cannot be identically replicated
at a later date, instead the intention is to study and explain the underlying phenomena
and patterns found. The greatest threat to the generalizability of the study is the fact
that all the companies interviewed where located in the Gothenburg area in Sweden, and
as such the Swedish work culture may influence the findings. This is mitigated in part
by also interviewing a startup coach in the Netherlands.

The results from the primary case may have a low generalizability due to the research
method used. Qualitative research is known to have a low generalizability, mainly because
of the low sample sizes which yields a low statistical significance. This is mitigated by
the findings in the secondary cases, i.e. the interviews.

Reliability. Reliability concerns the dependency between the data and the researchers
conducting the study (Wohlin et al., 2012). E.g. would the study yield the same results
if other researchers tried to replicate it.

Since the interviews were conducted in a semi-structured fashion when interviewing the
companies, questions and discussions that were not planned beforehand came up. All
discussions and interview questions may not be reflected in the report. If other researchers
would conduct the interviews at other companies, it is probable that the same questions
would not come up, yielding slightly differing results.

14

5 Result

The following chapter presents the results of the study, including evaluated software, a
summary of the primary case and company interviews.

5.1 Evaluated Software

During the case study, a multitude of software for analyzing code quality and assisting
with software development were evaluated.

5.1.1 Sonar

Sonar is a very comprehensive software solution with a lot of features, settings and
customizations. Unfortunately, it is relatively expensive if you require the commercial
plugins. For instance, if your project is written in VB.NET you need the commercial
plugins that cost about €6 000 per year. This may not be a huge cost for a big enterprise
company but for a startup with very scarce resources it’s very expensive. On the other
hand, if you can get by with the free plugins and the free version of Sonar this is not an
issue. However, the team still needs to put in time to install, configure and integrate the
software into the workflow to make full use of it. This might not take a long time for an
experienced user but for someone who has never used Sonar it may be a bit overwhelming
and hard to do properly.

In the primary case for this study the Ruby language was used. Sonar does not have
official support for Ruby so it could not be used directly in this project. There is an open
source plugin developed by PICA Group (2013) for the Ruby programming language,
however it is inadequate by supporting only a tiny subset of the metrics required for a
useful evaluation of code quality.

To evaluate Sonar a project written in a language supported by Sonar was analyzed
instead. The Storm project (Storm, 2013), written mostly in Java, was chosen. The
installation includes downloading the source code, configuring the database and launching
Sonar from the command line. To run the analysis a number of clients are available. For
this evaluation the default Sonar Runner was used, but there are clients available for
integration with CI systems such as Jenkins, Hudson, Bamboo and more.

Sonar runs as a web server and most of the configuration can be done directly in the
web interface. There are a huge amount of options where you can configure quality
profiles, encryption settings, dashboards, users and more. The configuration section is a
bit overwhelming and was left as default for this evaluation. The SQALE v.1.7 plugin
(SonarSource, 2013¢) was installed for technical debt analysis.

15

5.1. EVALUATED SOFTWARE

There were a few issues where the analysis tool could not parse the source code so some
files had to be excluded manually from the analysis. When the analysis completed a
dashboard with a few widgets showing information about technical debt, violations of
coding standards, SQALE rating and more was configured, as shown in figure 5.1. The
dashboard shows high level information but you can drill down to see exactly what code
is causing the issues.

@ storm

Dashboard Version 1.0 - fre, 15 mar 2013 11:28:32 40100 Tmechangese %]
Hotspots.
Reviews File Distribution by SQALE Rating Violations A\ Blocker 0 SQALE Sunburst Depth: (1 %)
a T
Time Machine I — W 2305 2 Criioal 9
S BEICEHE Rules compliance > Maier 1e32 E—
o, @ Minor I |
67,2% 7
TooLS Info 151
Cor " SQALE Rating Remediation Cost Lines of Code
D 188,7 days 18K
Viclations Drilldown Highest SQALE remediation costs [All characteristics | More
Libraries: 77,8 days toll
Clouds Config 15,7
Compare SQALE Pyramid Cost ™ Total® TridentBoltE xecutor 64 N
= portabiity | 08 1887 TridentTopoloayBuilder 35 W
sonar Maintainatiity [T 65 1882 TrdeniTopology 32 =
Secuity | 13 B4 witableUtils 31
Efficiency | 01 1301
Changeability [1087 1300 ynit tests coverage Unit test suecess
Reliability = 76 213 - Otests
Testabilty | 38 38

Size: Lines of code Color: Rules compliance 0.0% me==100.0%

SQALE Remediation Costs to reduce risk Cost Total @ [backtype storm utils.
A Blocker 0,0 0.0
Critical 16 18

Major 1714 1730
unor T 75 1605 oy

O
Lines of code Classes

[stormtrident backiype s
25230 lines 49 packages
6 380 statements. 2 468 methods

SQALE Kiviat

< 4 Pr»

393 files 51 acoessors
Comments Duplications
7,2% 6,6%
1427 lines 1660 lines
14,6% docu. API 91 blocks
1895 undocu. API 23 files

Figure 5.1: Dashboard in Sonar.

When everything is configured and integrated into your process Sonar works quite well.
However, it is important to configure the dashboards in a way so it does not get messy
and overloaded with information. The cost of setting up Sonar and integrate it into your
workflow will differ a lot depending on previous experience and what plugins you need. If
you are a startup don’t have any prior experience with the software and need expensive
commercial plugins to make use of the tool, it is probably not worth it.

5.1.2 CAST AIP

CAST Software are mostly focused on big enterprises and corporations. For this study the
authors were not given any access to Cast AIP to make a more thorough evaluation.

16

5.1. EVALUATED SOFTWARE

5.1.3 Code Climate

Code Climate is much simpler than its competitors. However, it is much easier to grasp
and quicker to get started with. It does not require any setup more than checkout
rights to your git repository. The pricing is low and starts at $34USD/month for 2
users (excluding the security monitor), $74USD /month for 8 users (including the security
monitor) and up to $399USD for 32 users (Code Climate, 2013). Since it is so easy to
get started with, integrate into your process in conjunction with its low pricing it fits
great in a startup.

The interface is clean and simple. It has a dashboard with a feed where all changes are
listed chronologically, it displays hotspots and a chart of your classes ratings, seen in
figure 5.2. It is easy to navigate through the different areas and find where the issues are
in your project. Also, each week an email is sent out with a summary of the past week’s
changes. The summary includes both new issues that has cropped up during the week as
well as improvements. This summary makes sure that you don’t forget about the system
and brings awareness to the team about the health of your application.

@ CODE CLIMATE oo hae oo

© 19248231

rails/rails Feed Classes Smells Trends

Summary of May 13th - 19th

-+ C

allback has

0-0 -

has gotten worse.

Classes by Rating

L

3.38

GPA

Summary of May 6th - 12th

Hotspots

o One class/module was added.
o HTML::Selector
o Rails::Engine

— € ActiveRecord::Relation::Merger has improved. o Time

Figure 5.2: Dashboard in Code Climate.

However, Code Climate lacks in many other areas. It does not support any other languages
than Ruby and it only performs analysis on pure ruby code files (not templates). It can
not analyze test coverage and the issues it brings up, while most often valid, can be hard
to pinpoint as the tool does not always tell exactly what or where the issues are. For
instance, it may state that a specific class definition is too complex, but not exactly what
part of it or how to mitigate it.

17

5.2. PRIMARY CASE

In the security monitor it is possible to mark an issue as a “false positive” which ignores
it in the future. This is not possible in the code quality section which means that if you
don’t agree with Code Climate about an issue you cannot manually ignore it. If you have
a lot of disagreement the issues you care about may get lost among the ones you don’t
care about.

5.2 Primary Case

Alice is a startup based in Gothenburg, Sweden, which develops software that companies
can use to manage health and safety. The team consists of five people; three business
developers and two software developers. The company started out as a master thesis
project at Chalmers University of Technology by the business developers and after the
product was decided, the developers were brought in to create an MVP. More information
about Alice can be found in section 2.4.

5.2.1 Process

Alice works in an agile fashion and follows the Lean Startup methodology. Since the team
is quite small and everyone is sitting close together it makes communication a breeze and
formal meetings mostly superfluous. The company used paper mockups as well as HTML
mockups before the development of the MVP started. To keep track of the features to be
implemented the simple online task board Trello is used. Test-driven development is not
used but tests are written for most features, especially for security-related and business
critical areas of the application. Alice exercised pair programming in the beginning but
now it’s used rarely since there are only two developers and one focuses on the web
application while the other focuses on the mobile application.

5.2.2 Technical Debt

They do not believe that the technical debt is a problem yet since their MVP is still being
developed. They do believe it may become a problem in the future though, especially
if the company decides to pivot or the developers are replaced. Alice believes that the
most important debt they have is in lack of tests and documentation, architecturally the
design is sound so far.

Alice does not have any formal coding standards defined but simply follows Ruby’s best
practices. They do have some informal guidelines though, regarding method complexity,
commenting etc. Manual code reviews are not used in any formal way so far. The codebase
is still quite small so the developers review each others’ contributions continually as
work is done. Also, they have not felt it necessary to create any external documentation

18

5.3. INTERVIEW DATA

for their application. Instead they try to write clear and self-documenting code, add
comments where appropriate and use the commit logs.

The team use Code Climate (read more about Code Climate in section 5.1.3) to keep track
of the code quality, though not focusing on optimizing it yet. They check it continually
to make sure the quality does not get out of hand but plan to use it more when their
MVP has stabilized.

5.3 Interview Data

5.3.1 Jan Salvador van der Ven

Jan Salvador van der Ven is a PhD student at the University of Groningen and an agile
enthusiast. He has an academic background but also experience from working in the
industry. He has experience from working as team lead, Scrum Master and Agile Coach.
Currently he works as an Agile Coach at the companies Factlink and Crop-R.

Process

In the companies where Jan has been involved the amount of planning varied a lot. Some
companies planned for several months before starting the development and others spent
a week planning. However, some level of planning was always present.

Most of the companies had some kind of beta or pilot version to test their idea on
potential customers. They used short iterations and actually built a working prototype.
The prototypes are very often reused and evolved to become the end product. Paper
mockups was rarely used other than as a design tool.

The companies were all using agile development processes involving short sprints in
small teams. They all write some tests, though the amount varies between different
companies. A commonality were that they all wrote unit tests but had issues with
integration tests.

Pair programming was used occasionally but only when the developers decided to pair
up on a complex problem. From his experience a lot of agile propagators wants to see
pair programming used all the time but in reality that does not always work.

Technical Debt

In the companies that Jan were involved some used software to keep track of the code
quality. However, no actions were actually based on this data. Instead a senior developer
reviews the code that is added by looking through commit logs. An issue with this is

19

5.3. INTERVIEW DATA

when the senior developer is too busy all code will not be reviewed. Through these
reviews the senior developer can hopefully discover when technical debt is added or where
there are risks for it to arise.

Debt was most often generated through quick fixes such as skipped tests or changing
the product to fit a particular customer’s demand, something that later had to be
generalized to be useful to the customer base or re-evaluated. These sorts of quick fixes
he finds are are more commonly the source of bugs, while architectural issues slows down
development.

Jan argued that if you avoid all the debt and do everything correctly from the beginning
you will become slow and lose some of your agility. On the other hand, as the debt
grows you will also loose speed and agility so a trade-off has to be made. In a startup
with scarce resources you often cannot afford to do everything right from the beginning.
You need to put the product on the market quick and later on, when you have paying
customers, you can be more relaxed and implement things properly.

5.3.2 Appello

Appello is a company working on developing navigational mapping solutions targeted
towards mobile devices. Their main customers are telephone operators who license their
maps and brand and market them themselves. The initial prototype begun development
in 2004 in the developers spare-time and they launched in 2006 and has since gradually
expanded their business.

Process

Appello’s technical team consists of 8 developers, they use Scrum with three week
iterations, and have one rogue developer assigned to maintenance that uses a Kanban
process for bug fixing etc. They feel this division is a great way of managing maintenance.
They have also discovered with time that to use Scrum effectively the entire organization,
not just the development part, needs to be tuned and educated of the process, for example
so that the sales personnel don’t sell features that won’t fit into the current sprint.

As Appello is one of the older companies interviewed, the difference in how they worked
initially versus later on in the development cycle is an important subject. For the first
two years they used a cowboy programming style where there was no defined process,
but when Scrum started becoming popular in 2008 they switched to it and have stuck
with it since.

They do have some tests on the server-side of the software but don’t find them very
useful. They result in many false-positives and require lots of effort to maintain and keep
up to date as the product evolves. While there are no formal demands for documentation
they try to keep all code documented.

20

5.3. INTERVIEW DATA

They also make use of a wiki to document tweaks made for different customers, this
is very useful when the system breaks in the middle of the night and only the on-call
developer is available as he or she can easily overlook what is different from the standard
solution in the system.

Technical Debt

Because it is very difficult if not impossible to update deployed versions of the software
installed on cellphones, and there are still devices with the 2006 and 2007 versions of
the software in use. This means that they need to retain backwards compatibility for a
very long time, forcing them to keep around lots of old code for communicating using
the old protocols. They do not however spend any time maintaining this so it does not
introduce significant overhead even if it does constitute lots of technical debt. In contrast,
for the server side Appello does have a simple deployment environment, here they find
that the ability to quickly update the backend and resolve issues lessens the burden of
any technical debt and quick fixes as you can quickly patch them.

They are often forced to compromise on solutions to meet customer deadlines, something
they find always gives backlash later in the process. They find that often when you are
constrained on time and make quick fixes, you do not have time to document them either,
and when they are later encountered after a few months or a few years it’s harder to fix
because of this.

They do make use of static analysis tools to keep errors down, this was initially done due
to customer demand to get a report of the codebase error rate. But they have found the
tools very useful in catching latent bugs in the codebase and make regular use of it since
its introduction.

If they had the opportunity to start over, they would be much more adherent to standards
for protocols. Using standardized communication makes it easier to plug different systems
together in ways that was not conceived of initially (for example, for integration testing).
They would also like to have made the system more modular from the beginning, for the
same reason.

5.3.3 Burt

Burt is a company active in the marketing business, delivering detailed statistics and
analysis to online ad publicists on a massive scale. Their core business is joining analytics
from websites (page views, activity, ...) with information from the business systems such
as income. They were initially targeted towards advertising agencies, and spent 9 months
developing the initial product in close communication with their partners. Their initial
hope was to help the advertising agencies make better ads, but after a year they realized
their product was better suited to help the ad publisher’s needs instead, and shifted focus
through a minor pivot.

21

5.3. INTERVIEW DATA

Process

Burt works without any formal process but still in an Agile way, labeled by them as
“Ad-hoc Agile”. They describe it as “Kanban”-like. They have tried to do Scrum at times
but find the process is not compatible with their lean development methodology. Lean
requires you to present alternatives quickly and iterate only on what works, which makes
it difficult to have any meaningful length iterations with set goals in mind. They believe
the reason they have the ability to work without any formal process is thanks to their
small team size of about 10 developers.

They have the ambition to test all their code, but all team members do not see it as a
necessary aspect of development. They don’t feel that forcing these team members to
write tests is productive but rather have it that each developer realizes the benefits on
their own. As for documentation, there is a difference of opinion in the team but the
interviewed persons viewpoint was that code comments are a sign that the code is not
understandable enough. Comments are also easily forgotten while the code changes and
end up being out-of-date over time, making them a obstacle rather than an aid.

They do not make use of any static analysis tools, and believe these are too easily
circumvented by smart and lazy programmers to be of any real use. They may have been
used as a tool to promote personal growth of the skillset by single developers.

Technical Debt

During development the concept of technical debt is often on their minds, although they
do not speak of it by name, instead they all have an awareness of what parts of the code
are lacking in quality.

Their method of dealing with avoiding new technical debt is heavily oriented towards
lean. They prefer making prototypes of new functionality they can show for the customer
without writing any real code, and if it is deemed useful they can develop it later. Any
time spent on writing quality code for the system that will later be thrown away is
considered a great waste of time.

The interviewee makes a distinction between what he calls “incidental technical debt”
and regular technical debt. Incidental debt is what is created without an awareness from
the team, when corners are cut to meet a deadline, while the regular kind of technical
debt is created with discussion and an awareness by the team members. The incidental
kind of debt being much more dangerous as it is not known how much of it exists, and it
lessens the team’s ability to be agile with decisions in the future.

22

5.3. INTERVIEW DATA

5.3.4 Duego

Duego is a social network primarily aimed at the Brazilian market. The company was
founded in 2010 and gained investment capital to fund development in 2011.

The product was developed for 6 months during 2011 before launching. As the launch
was accompanied with marketing efforts they felt it necessary to have a reliable and
functional product from the start. The founders did several mockups to visually present
how they imagined the service to work to the developers and to define the product’s
functionality.

The service was first implemented in PHP as that was what the initial developers were
comfortable with. After a pivot were they refocused to have several front-ends in addition
to their website, they rewrote the entire system in Python Flask, making the web and
mobile equal citizens to their API.

Process

Duego works with a Scrum-based process. They initially used two week iterations but
have moved over to one week to better cope with rapid changes in requirements. They
view lack of process as a sign of a prioritization problem in the company, if you cannot
commit to leaving developers to do their thing for 1-2 week durations you need to
reconsider what you are doing.

They have a strong commitment to writing tests, always including test for the features
they have added in commits. Occasionally they write tests before they write the code
but this varies per developer and what is to be implemented. Their documentation is
entirely in the code except for the API they expose to their customers. The examples
in the API documentation is also tested along with running the regular tests in their
build system. This ensures that the examples works as advertised when tested against
production.

Technical Debt

They accrued a lot of technical debt as the product evolved the first two years as their
entire frontend and backend was unified in one giant PHP application. Eventually they
decided to rewrite it all when they were pivoting as repurposing the PHP application for
the new vision would be more work than doing it again.

They have a strong committal to tests and code quality, which is enforced by code reviews
before going into production and they don’t let anyone get away with skipping writing
tests. However, they find it’s rare that they get time to do major refactorizations of areas
of the code that are less than ideal, but they are aware of where the problems lie and do
not consider it an imminent issue.

23

5.3. INTERVIEW DATA

As for future issues, they find their current method sustainable. The culture at the
company ensures that new code is up to their standards and it is very rare that they
need to make compromises to meet launch dates or other demands.

5.3.5 NetClean

NetClean is an older company than most of the interviewed as it was founded ten years
ago, in 2003. The interviewed person was hired as a developer in 2005 and has been with
the company since. NetClean produces software that can detect child pornography on
computers and in networked systems. They sell the software to businesses and aim to
make it a hygiene factor at any workplace to have their software installed.

The idea has been the same all along but the product portfolio has been expanded
with additional products, such as mail server integration and network deep packet
inspection.

Process

Traditionally NetClean has been operating under a cowboy programming style, with
developers picking tasks to complete themselves. Lately however they have been moving
towards Scrum as the team is growing to the size were methodology becomes important.
The main issue they had with the old style was that as the team size grew, it was more
difficult to keep track of what others were doing, and it sometimes happened that people
picked up the same user story by mistake or other similar clashes.

They have difficulties in prototyping their software, both because it is deployed on
customer’s computers which makes it more difficult to push out updates frequently, and
because it is important that the system works properly.

Testing the software in a production environment is difficult due to the nature of the
product. Historically they have not been very focused on testing but they are moving
towards more tests now, many parts of the old code is unsuitable to testing and is being
replaced as it is being encountered. They do not have any guidelines for either testing or
documentation practices, rather it is to each developers own digression. They do have
up-to-date user manuals for their customers though.

Technical Debt

NetClean has been experiencing the pains of growing technical debt for a long time as
developers have moved on to different parts of the business and the product has grown.
They manage the debt continuously through gradual refactoring. As parts of the initial
product were coded in Visual Basic and the team has since moved to coding primarily in
C# older parts are easily identified. A rule of thumb is to not update Visual Basic code

24

5.3. INTERVIEW DATA

but rather replace the module with a C# based one, this means that refactoring is an
integral part of the development effort.

They have never felt the need to stop feature implementation entirely to work on improving
the existing codebase. However, as they have grown they have more flexibility to do
improvements to the code as they have a more diverse customer set and don’t need to
listen to every whim and abide every request. Instead they can spend more time on
doing things right rather than compromising. Recently they have also started using static
analysis tools to quantify the improvements that are done to the codebase. They find
the tool useful to make sure there are improvements, but the large amount of existing
errors makes it too daunting a task to try to remove all the technical issues.

They do not have many tests for the client side code, and are not directly trying to
backfill it either for existing code as it is in many cases difficult to test code that was not
written with testing in mind. Instead most tests are performed manually and they are
currently trying to establish a dedicated Q& A process.

They rarely need to do major changes to existing code, but the litter of small problems
becomes an issue when that is the case. Doing huge refactoring efforts is much more
difficult when the issues are everywhere, when you start refactoring the amount of things
that needs to be changed keeps growing even if you are only trying to improve on a small
part of the product.

5.3.6 PugglePay

PugglePay is a startup company in Gothenburg that specializes on payments and invoicing
for services over the web. The company was founded in 2011 and have three full time
developers today, and had four during the initial development stages. When the first
developers were brought in the founders had already planned a lot by creating user stories
etc. The founders had previous experience from this type of business so they knew a
lot about who the customers were and what they wanted. This led them on the right
track from the beginning so they could get their first customer only four months after
the project started.

Process

The company tries to have a pragmatic approach to how they work. They work in an
agile way but don’t use any formal processes but instead pick different parts from different
processes, such as Scrum, and uses what works good in their team. In their process they
use Pivotal Tracker for user story management and prioritization.

Since they work in the financial domain they believe it is important to have a well-tested
system of high quality. Due to this they test most of their code, sometimes before the
implementation is written but more often afterwards. Also, to increase the quality of the

25

5.3. INTERVIEW DATA

code, they make use of code reviews. If a developer has written a feature alone another
developer reviews it before it is merged with the rest of the code. If a feature is developed
in a pair programming session they don’t feel the need for a separate review, unless it is
a complex and important feature.

They have an API documentation but do not document the code itself in any strict way.
They make use of continuous deployment and push their changes to production often,
feeling confident in that their tests will catch the issues before they go live.

Technical Debt

PugglePay thinks technical debt is an important topic in the domain they work in. The
philosophy they have is that it does not become a big problem as long as you are aware
of it. When you take on some debt you buy agility for the moment but sacrifice future
agility. When they make changes to the code they try to refactor the code around it. By
doing this they increase their code quality and avoid some technical debt.

The company believes that most of their debt has come from big changes in their API. In
the beginning they over-engineered parts of the system and the API weren’t as flexible as
it had to be. The API has been re-worked a few times and now they have three different
APT versions to manage and have now started working on a fourth version.

PugglePay does not use code comments in their regular codebase as this is believed to be
a sign that the code is too complex. However, they use comments to document the API
functions. These comments are used to generate a separate website with documentation
of the API for their customers. Also, the comments include code examples which are
extracted and run as tests.

5.3.7 Recorded Future

Recorded Future was founded in 2009 in Gothenburg, Sweden. Today they have a
headquarter in Cambridge and offices in both Gothenburg and Arlington, VA. The
founders worked on the project for about 12-18 months as a side project before they
got in contact with investors and could work with it full time. In the beginning they
focused mainly on financial businesses but after a while they shifted focus to business
intelligence as it was a better fit for their product. Today their customers are mostly big
corporations and national organizations.

Process
Recorded Future uses a variant of Scrum as a development process. They work in small

teams of 4-5 people in two week iterations. In the beginning the company did not use any
formal methods, but as the company has grown more formal methods has been added.

26

5.3. INTERVIEW DATA

The developers don’t use test-driven development but they do write unit tests for the
parts of the software where they think it is appropriate. They feel that this is an area
where they need to improve and plans to do so in future projects.

Code reviews are not part of Recorded Future’s regular work process. Occasionally they
do perform some reviews but only if a developer actively requests it. Pair programming
is also something that is used at times but not in any formal way and only when a
developer feels the need for it.

Recorded Future uses Amazon’s cloud services and often deploys new code several times
per day. They use Chef recipes to manage their servers and can easily push different
code to different nodes that have specific roles.

Technical Debt

Recorded Future don’t think that the debt they have is a big problem. It helps that
their main system is global which makes it easier to maintain and update without legacy
issues. They do have some customers with local installations though which are a bit
more troublesome. Most of the system is configurable so when they test a new feature
they can test both the new and old code at the same time. An issue with this is that a
lot of old legacy code is left in the codebase and not cleaned up when an old feature is
discontinued. They don’t believe it is a problem though as the code is not in use. They
think it is better to prioritize the development of new features than to clean up the old
code.

Recorded Future has done some technology changes since the start. In the beginning
they used MySQL as a database but later they realized that this was not a good fit for
their product and migrated over to Sphinx. Eventually they also left Sphinx in favor
of Elastic Search. They believe that these changes are part of the natural evolution of
their product and that the debt acquired will not become an issue any time soon. They
try to act on resolving actual issues before they occur arises and constantly have some
architectural changes they plan to implement.

The company believes that they chose a good path from the beginning. Based on
previous experiences they knew they wanted to separate the API and not couple it with
the backend technology. This made it easy for them to, for instance, switch the backend
database technology when issues arose.

Recorded Future have some documentation in the code but no external documentation
other than some design documents. They don’t have any formal coding standards since
they believe that forcing their developers into a specific standard is bad. The developers
often converges over time to a common coding style. They don’t believe that the code
quality or documentation are any issues yet but they need to become better at writing
tests.

27

5.3. INTERVIEW DATA

The company does not use any tools to analyze their codebase and they believe that it
would not be very beneficial in their current situation.

5.3.8 Shpare

Shpare is a newly founded company that targets conferences and tries to make it easier
for people attending the conference to find who is interesting to them and their interests
and book a meeting to get acquainted.

Shpare was initially developed in the spare time of a single developer, who simultaneously
learned Ruby on Rails as it was developed. They have had more developers in the time
at times.

Process

They operate with a Lean agile approach, as the software is mainly used during conferences
efforts are usually concentrated over a few days. A Trello board is used to manage user
stories, initially a more strict Scrum-based solution was tried but this proved to be too
much overhead to be useful and locked them out of doing things the way they wanted
to.

They do test but not rigorously, tests are mainly of the backend systems and not of the
frontend. Self-documenting code is the goal with a few comments to clarify complex logic,
something that could be done better. The API for the service is exhaustively documented
however, as it is business critical.

Technical Debt

As Shpare was initially developed as the developer got acquainted with Ruby on Rails,
many mistakes were made. However, the initial version of the product ought to be
considered an advanced prototype, and Shpare found the feedback on this version a huge
aid in further development and all of the debt associated with it was dissolved. After
another year of development the service was heavily refactored once again to a better
architecture.

Additional integration testing would be a good idea as there are many issues with
functionality breaking and nobody noticing it. The fact that their business is dormant
and being used in bursts makes this a particularly pronounced problem. They also believe
that adding new functionality before you know that the current functionality is working
properly and being used by your customers is a bad idea. Keeping unused functionality
around is a waste of maintenance resources.

28

5.3. INTERVIEW DATA

They find that continuous integration is a great aid in managing debt. As issues can be
pushed instantly if you have a powerful deployment environment most visible debt issues
will not affect you for any longer period. They find architectural debt a much larger
problem than code and tests issues as it must be fixed eventually, and doing so takes a
considerable time and effort.

5.3.9 Trimbia

Trimbia is a startup company in Gothenburg developing a business to consumer solution
for managing finances. Their focus is on being a lightweight alternative to many of the
professional software suites, both in cost and time commitment. They begun developing
their prototype in 2012. They first did it as a pure HTML application with some
JavaScript to simulate interaction, after validating the concept they set out to build the
MVP in Ruby on Rails.

Process

Trimbia tried to work with a loosely defined Scrum method in the beginning. They had
weekly iterations with accompanying planning meetings, a synchronized backlog with use
cases. They found that it was a poor choice for the prototyping stage as a sprint is too
long a duration to set goals for. Also, as the team is quite small the process introduced
more overhead than benefit.

The two developers are both themselves the product owners and inquire the business
developers for additional requirements as they move along. They also conducted market
surveys and talked to customers to get a better understanding of what they would later
build.

For code quality, they have few guidelines, they find it unnecessary for teams as small
as theirs. They unceremoniously agreed to the Ruby standard guidelines, and all their
documentation is in the form of source code comments. They focus on documenting
complex data structures and let the rest of the code document itself.

They don’t strive to do test-driven development for the entire product, but rather for
a small subset. Mainly the financial parts which they feel must work properly for the
product to be viable, and also because writing the tests helps define all the special
cases.

Technical Debt

So far they have not had many issues with technical debt. Their product is still young
and following the same architecture and using the same technology stack they envisioned

29

5.4. INTERVIEWS SUMMARY

from the start. The slow user-pickup rate also means that they have ample time to
implement features the “correct” way.

They think the threshold of when technical debt becomes a problem is when the pro-
grammer feels reluctant to start working on a piece of code due to the problems present
in it, either with the general quality or the complexity of it being a significant hindrance
to modifying it. They feel they are far from this pain point as of now but think it might
become a greater problem if and when they pivot and greater changes are forced on the
code.

Overall their approach has been to keep the server-side components more modular, while
the client-side is less refined. This is because they believe the client side will be subject
to more change from customer feedback, while server-side change will be motivated by
decisions made by themselves.

5.4 Interviews Summary

Looking at commonalities between the different companies, there are many recurring
patterns that can be established.

The table 5.1 shows the similarities and differences of the companies and their processes.
Most of the companies have been founded in the last 5 years, with Appello and NetClean
being significantly older. The most common platform used was Ruby on Rails, which is
a popular platform in the startup world in general (Morini, 2011). The older companies
used Java and C#, this can be traced to the fact that the Ruby on Rails and Python Flask
frameworks were not mature enough at the time of the companies being founded.

Most of the companies produced web solutions, and they all had server-side components
that they themselves were responsible for managing and updating. The companies that
deployed client-side applications or programs found technical debt issues more concerning
as bugs and issues could not be solved immediately, instead the software was on a
fixed schedule meaning quality control was of more importance. For the internet based
components they all found the ability to rapidly update the live version of their website
or service very useful.

Many companies initially tried to use Scrum or a similar process to boost development,
but few succeeded in finding it useful, instead it turned out to be more overhead on
development efforts. Many described the iterations as being unnecessarily constricting
when working directly with customers and rapidly changing requirements. Instead they
settled for a cowboy programming style with a task board used to keep track of user
stories, with the small team size allowing everybody to be appraised of prioritization and
what different people are working on.

Looking at the process and debt issues in more detail in table 5.2, common factors can be
found as well. All the companies made use of testing to some degree, mainly for backend

30

5.4. INTERVIEWS SUMMARY

systems and deployments. Many found test-driven development to be too strict, both in
up-front effort with writing the tests and also with lessened agility as tests needed to
be updated continuously with new functionality. Many expressed regret for not having
enough tests, but found enforcing it to be an ineffective tool due to both the time spent
and the fact that experienced developers who are opposed to the methodology can work
around it.

Documentation was viewed as unnecessary by all but Appello. The view expressed was
that it quickly grew outdated, and another sentiment being for self-documenting code,
some mentioned the book “The Pragmatic Programmer” (Hunt and Thomas, 1999) as
a source of inspiration. Hunt and Thomas (1999) argues that comments in the code
indicates that the code is bad and that you should strive to write code that is so clear
and easy to grasp that low-level comments become unnecessary. If used at all they should
be reserved for high-level explanations.

All the companies that had an API service as part of their business offering were rigorous
with keeping it accurate, seeing it as a critical part of their service. Some companies also
published manuals, mainly because their business was geared towards other businesses
and doing so reduced support requests.

Code guidelines were not in use by most companies. Many said that the guidelines are
not constructive and can easily lead to arguments between developers, finding it more
useful to focus the energy on developing the product.

Prototypes were used differently between B2B and B2C companies. The business targeted
companies had a very close relationship with some customers and felt comfortable in
showing them extremely simple drafts of new features and inquiring about their usefulness.
The ones that did not, found their product too sensitive to present incomplete versions
of or simply found it of limited use. The consumer targeted on the other hand used
prototypes coupled with metrics to judge if a feature was being used and if so how,
optimizing the service as it was being developed. This is close to the lean philosophy of
prototyping.

All companies felt the need to refactor parts of the software as new features were developed,
developers often doing so at their own disgression as they encountered it. Some expressed
the benefits of not having strict iteration deadlines allowing developers to spend the time
necessary to improve a certain system. Many of the interviewees addressed the fact that
for developers in small teams it is much easier to keep track of where the debt lies and
what needs to be done to address it. Because of this acute awareness they felt more bold
in taking on additional debt and stressed the importance of discussing it within the team
before committing to suboptimal solutions.

When time was short and features were necessary in a very short time, all compromised
on tests and documentation (if used) first and foremost. If that was not enough to save
time they simply skipped refactoring ugly parts of the code and kept on patching the old
solutions.

31

5.4. INTERVIEWS SUMMARY

The companies that did perform major rewrites either did so because of lack of experience
with the environment early on, or as part of a major pivot, where the opportunity for
a rewrite meshed with the new business direction. This gave them both the time and
motivation to perform the changes necessary. The companies that did not undergo a
major pivot still often had a minor pivot where they changed the target customer, in
these cases the product was mostly left unchanged.

The one area that companies regretted compromising on, or felt particularly proud of
spending time on doing the right way was data structures and protocols. If they had
a suboptimal database design initially they found it affected development for a very
long time after its conception, and wished they had done it a better way initially. The
companies that did spend time on designing the data structure layers better found that
even if they needed to change direction or technology it was relatively easy thanks to the
well-designed already existing solution.

Only a few of the companies had any knowledge about the Lean Startup methodology
and even fewer actually used it. Shpare and Trimbia were the only companies to actively
employ the methodology. They started selling the product before it was developed, made
use of prototyping and so on. Other companies, such as Burt, were “Lean” in some areas
but it had mostly grown into the team as they found appropriate ways of working, not
actively researched and employed from the start, in a formal Lean Startup manner.

32

€€

Table 5.1: Company Characteristics

Company Type Founded Team Size' Process Platform? Product Type

Appello B2B 2004 8 Scrum Java Map solutions for mobile

Burt B2B 2009 ~10 Kanban-like Ruby Web Service, Advertisment Tracking

Duego B2C 2010 ~15 Scrum Python Website, Social Networking

NetClean B2B 2003 9 Scrum C# Software, Child Porngraphy Detection
PugglePay B2B 2011 3 Cowboy Ruby SaaS, Invoicing

Recorded Future B2B 2009 ~20 Scrum Java/Scala SaaS & Licensing®, Information agreggation
Shpare B2C 2010 1 Cowboy Ruby Web Service, Social Networking

Trimbia B2C 2012 2 Cowboy Ruby Web Service, Cash flow analysis

!Only technical developers are included in this number.
2Main implementation language, ancillary parts like mobile applications are not considered here.
3 Allowing customers to deploy their own installations of the software for private use.

AHVININNS SMAIAYHINI 76

29

Table 5.2: Company Debt Characteristics

Company Testing Documentation Prototyping? Refactoring Problems Tech Changes
Appello Limited® Yes No Continuous® No

Burt Volontary”, common No Yes Continuous No

Duego Mandatory API Sometimes Major Rewrite PHP to Python Flask
NetClean Volontary Manuals No Continuous VB to C#

PugglePay Mandatory API No Pre-emptive® No

Recorded Future Limited API, Manuals No Continuous Database layer twice
Shpare Limited API Yes Major Rewrite twice ~ No

Trimbia Limited No Sometimes Continuous No

415 prototyping used continuously during the process, not only when developing the first version.
5Testing of certain subsystems. Not integrated into the process.
5Problems are fixed when they interfere with implementing new features.
"Some developers do it because they find it a useful tool. Not integrated into the process.
8Refactor bad code even if it is not necessary for implementing a new feature.

AHVININNS SMAIAYHINI 76

6 Discussion

This chapter is a reflective account of the experiences gained while working in a lean
startup fashion, the usage of the static analysis tools and a discussion of the meaning
and similarities between companies interviewed. From these sources and literature a
new way of modeling technical debt is presented. Then using this model we introduce a
set of recommendations which details how a new startup should manage their debt and
process.

6.1 Analysis

6.1.1 Technical debt problems identified

This details some of the reasons that startups accrued technical debt and the reasons
thereof in an attempt to delimit the problem scope and identify the underlying issues.
The problems are enumerated and will be referred to later as different solutions are
presented.

I It is difficult to talk about technical debt.

The first issue that was identified while talking to industry practitioners is that while
technical debt is a well-known concept, there is very little terminology to discuss the
details of it. During all interviews the interviewees had to start from the beginning in
describing different aspects of their debt.

For example, many companies described that they were not very worried about debt that
was visibly present in the codebase, like lack of tests or documentation. While they found
debt issues with technologies and processes much more damaging. The communication
was however very long-winded, and this is a problem. The models introduced previously
by Kruchten et al. (2012) and Fowler (2009) are neither well-known nor an appropriate
tool for saying exactly what type of debt a company has. Instead it is always necessary
to describe it in detail, which is a waste of time and could be simplified by more powerful
terminology when it comes to classifying technical debt.

IT The debt you don’t know about is dangerous.

Many of the interviewed companies expressed that they were not worried about their
respective mountains of technical debt in the lack of tests, documentation and hacks
because they were aware of the presence of it.

What they instead were afraid of was the debt that they did not know about, examples of
this were weaknesses of their initial design that they had not found yet, lacking adherence

35

6.1. ANALYSIS

to standards that they were not aware of or how pivoting might affect the aptness of
their design.

III Test-driven development is too strict but some testing is good.

All of the interviewed companies and our own work in the primary case utilized testing
for development. But it was very rarely done in a systematic way as it was found to be
too time-consuming. Instead tests were kept on a low level and focused on the critical
parts of the system that could not be allowed to fail.

An issue with not always writing test is that code that had been written without testing
was found by practitioners to end up with dependencies which make unit testing difficult
or even impossible. So at a later stage when you want to backfill on tests you find yourself
with a codebase that is very difficult to write sane tests for due to its complexity. In
contrast if you have the mindset of always writing tests for your code you naturally end
up with modularized code with these dependencies (Janzen and Saiedian, 2008).

IV Complexity and difficulty in deploying your product makes handling debt more
difficult.

Many companies mentioned the relationship between their release cycle and their ability
to handle debt. If your product is a client side application, it is more important to ensure
its quality than if it is a web site or service. The reason for this being that a website can
be fixed almost instantly if you have a quick deployment architecture. An application
installed on a user’s machine or phone on the other hand you can at most update every
week, however this might annoy users and you should try to be more conservative in
updates (even if the friction in issuing them is decreasing steadily as app stores become
more ubiquitous).

For web services, many felt as if they could afford many dirty hacks in order to make
it function, because resolving them when they break is a simple matter. They weighed
this against the loss of agility of architectural issues in the project, with the deployment
flexibility being a counterweight to handling more technical debt.

V Prototyping is difficult to apply to most problem domains but valueable when
possible.

The practice of prototyping and testing out new features using mockups, which is an
important part of lean has shown to be a difficult thing to do. Many companies want
to make use of prototypes more but find it hard due to the nature of their product,
either it being a sensitive thing to test or it only being possible in real production
environments.

However, the companies that were able to make use of prototyping on a regular basis
felt that it was very valuable, showing that it still is a very useful tool. The question is
how can prototyping be done easily with lean development while not spending excessive
amounts of time on doing them properly.

36

6.1. ANALYSIS

VI Static analysis is not a helpful tool early on in software development.

Our experience in the primary case and the sentiments of the interviewed companies is
that the available code analysis tools are inappropriate in a startup environment. The
tools place unnecessary restriction on implementation when you want to be as flexible as
possible. The warnings they produce are often false positives, this sets a bad precedent
for developers to ignore warnings. The issue is further compounded by experienced
programmers being able to identify the patterns the tool identifies and only work to
avoid warnings produced by the tool, and not actually resolving the issues.

This setting changes with time however, and older companies seem to start to benefit from
tools like this as the scope of the project grows beyond the ability for every programmer
to have a clear view of it. This complexity becomes a source of errors and misinformation
and then the analysis tools start becoming useful because developers can spend the time
required to configure them properly and interpret the results.

6.1.2 Debt generating activities

This section describes what companies did when they generated debt, sometimes creating
debt is unavoidable, sometimes it’s required for business and sometimes it is due to
process errors, the latter being the thing we attempt to identify.

The obvious villains in the technical debt arena are deadlines. All expect for one
startup found that the stress of deadlines was the primary source of technical debt issues,
something that was present even in Cunningham’s (1992) original article. Deadlines also
affected development differently depending on the stability of the startup, companies
with a set customer baase had more security in denying customer requests and controlling
their own fate than newer startups without any loyal customer base. These instead had
to resort to produce results quickly, even if it meant figuratively tossing quality out the
window.

This leads to debt creation through lack of communication. This can occur through secrecy
(a developer hiding debt from others) due to shame for not implementing something
properly, due to stress or lack of knowledge. This debt will eventually surface as the
project moves along, and when it does it will suddenly need to be repaid, requiring
allocating further effort to the implementation. This problem was continuous at many of
the companies and was often not with conscious intent, rather being a byproduct of any
technical development. The epitome of this is problem II.

Many startups went through at least a minor pivot. This has shown to be, in some
cases, an opportunity to shed much of the debt you have already gathered. For example,
when doing a technology pivot you may replace all or part of your technology stack or
how data is stored. However, this requires you to have the funds and time to redo your
product. Some pivots were motivated by necessity and the companies had to make do
with the minimal possible changes to fit to the new requirements. If resources are not

37

6.1. ANALYSIS

available, this can be a source of major future debt since the architecture required by
the new direction may not match with the old, and it will be significantly more difficult
to change it later on in the future. In addition, spending time trying to perfect your
architecture, for example by through test-driven development is wasted as the goals of
the project change, see problem III.

Another source of debt was personnel changes. When developers leave a startup they
often take a considerable amount of the knowledge in the project with them due to the
small team sizes and abundance of tacit documentation. When they leave the other
members then lose the knowledge of the debt they created. This generally became a
problem after a few years when technical staff either moved to more business oriented
positions or changed companies altogether. This issue was seen in the primary case and
was also brought up by the companies in the interviews.

Related to this is the issue of consultants developing software. Appello for example hired
consultants to create some of their ancillary products and later ended up with having to
redo large parts of it to avoid being reliant on an external stakeholder forever, as the
consulting team did not communicate with their own developers very well.

Poor technology choices can be considered a debt generating activity. However, it is
very rare for a company to consciously select a poor choice for implementation in order
to get short term benefits. Instead, poor technology choices surfaces with time as the
system grows and its bottlenecks are discovered. Resulting in a form of unknown debt
that requires time and effort to fix once it is discovered and cannot be planned for.

Also, when choosing technology it is important that the developers have the experience
and competence to use it. Otherwise you will incur a lot of technical debt as the developers
don’t know exactly how to work in the best way possible. We saw this issue where
the developer learned the framework while building the product which led to major
rewrites later on as it was discovered that the framework was not harnessed as it ought
to be.

6.1.3 Methods in use

This section describes what methods the interviewed companies used to manage their
debt, why they selected this solution and their relative usefulness

The most common solution to handling debt issues that the interviewed companies
expressed was that technical debt was less of an issue as long as all developers were aware
of it, counteracting problem I. If all programmers in the company knows that tests are
missing, or that part of the program has architectural or coupling issues, the debt is less
significant than it would be if they were oblivious of this. When developers are aware of
where there are debt issues and how serious they are, they can be taken into account
when planning feature implementation, which lessens the impact of the debt.

38

6.1. ANALYSIS

Most companies tried to write modular code with low coupling. By keeping the code
modular it is easy to switch out or change parts of the system without it affecting other
parts. This approach was applied from the beginning at Recorded Future which enabled
them to easily change database system when they outgrew the old solutions thanks to
the upfront investment in flexibility. The foresight and planning required however does
not mesh well with lean methodologies.

Another method for more conscientious programming was the use of test-driven develop-
ment. The common use case being complicated code that dealt with data manipulation
(not UI etc.) since it aided in explaining the data flows to the developer as well as
documenting it. Trimbia among others used this method. Practicing restraint in what
should be tested is a way of dealing with problem III.

If prototyping is an alternative for your product and does not require excessive investment
to attempt it remains an incredibly useful tool however and can be invaluable in testing
new ideas, iterating on problem V. The requirements to make use of it properly are
difficult to fulfill in many situations, having access to first-adopters who are willing to
sacrifice reliability to try out new things is much more common when working towards
consumers and more difficult in business-to-business setups where the stakeholders are
betting much more on the system’s functionality and reliability.

A common approach, among the interviewed companies, to keep the debt from growing
over time is to conduct refactoring. Most of the companies did not do this in a formal
way but instead the developers refactored code as they encountered it while working. For
instance, PugglePay had this notion of always leaving the code a bit better than when
you started working on it, refactoring ugly code around the point where you are working.
This keeps the codebase from deteriorating and mitigates technical debt issues.

We also found that it is important to adhere to standards when developing your data
structures and protocols. By keeping them standardized it will make it easier in the
future when you, for example, want to integrate your product with other software
solutions. This issue was voiced by Appello who had issues with supporting and testing
older versions of their products that used a non-standardized solutions. Making use
of standardized components also gives you greater interoperability and thus flexibility,
aiding with problem IV.

Many companies noted that you often have deadlines that you need to meet to make
sure your customers are as happy as possible. This is where they incurred a lot of
the debt they had. However, PugglePay did not have this issue as they believe that
meeting deadlines are not as important as most business developers believe and therefore
prioritized the quality of their product higher. We believe that this depends on what
kind of product you are developing, what kind of customers you have, in what stage your
product is in and how accepting and flexible your customers are in accepting less than
ideal software.

This approach would not work very well for companies with problem V, such as Shpare

39

6.2. SOLUTION

whose product is mostly used in bursts of a few days during conferences so postponing
releases may mean that they miss the entire opportunity to market and test their
product. NetClean also suffers from this issue but for them it is due to their product
(child pornography detection) and big business customers not being very open to having
prototype software running.

As for problem VI, static analysis tools was not used by the majority of the interviewed
companies. However, the two oldest companies did find it useful. They did not use it
from the start but felt that as the company and their products grew larger the benefits
became increasingly more viable. The younger, and smaller, companies felt that it was
easy for the developers to keep track of the changes made to the codebase and where
technical debt may be present, without any dedicated software.

When it comes to picking suitable technologies for implementation, companies generally
picked the solution they were most comfortable with. For many this resulted in later
having to change parts of the stack. There is no good way to avoid this zugzwang in
dealing with technology or architecture debt. The only escape is through developer
experience and selecting solutions that are known to work in the problem space your are
targeting. However this is not possible when the problem domain is new and existing,
tried solutions do not already exist, which is often the case for startups.

6.2 Solution

6.2.1 The Debt Quadrant

Problem I that we found in our research is that of subdivision and communication of
technical debt. Our research found that the existing subdivision of technical debt by
Kruchten et al. (2012) is too heavily geared towards quantization. This is a valid approach
for enterprise applications where measurement is a very useful tool to communicate to
management the hidden overhead of lacking code quality. This model however is difficult
to apply to startups as they do not have the time available to perform precise metrics
and even if they did, errors discoverable by metrics are unlikely to represent the problems
startups face.

McConnel (2007) proposes another division, he splits debt into unintentional and in-
tentional debt, with intentional debt having further subdivision into short and long
term. The problem with this classification is it only addresses how debt is incurred,
not the disposition of the debt you have. The ideas he brings forward are useful for
communicating the consequences of technical debt to non-software developers but is less
useful for thinking about what debt is acceptable and what is not. His view is also like
Kruchten’s in that it is geared towards the more mature organization were issues of code
standards and documentation are more significant.

40

6.2. SOLUTION

Strategic Don't incur
Known Concrete Debt Unknown Concrete Debt
"We must deliver now!" "I don't know what I'm doing"”
-
-
Known Design Debt Unknown Design Debt
"We know this is a bad solution” "We know nothing about this"
Minimize Unavoidable

Figure 6.1: Technical Debt Quadrant.

Fowler (2009) suggested categorizing technical debt into a quadrant with four areas of
debt, separating deliberate versus inadvertent debt, and reckless versus prudent debt.
This is a more astute way of dissecting technical debt, but has the same issue again. The
debt is categorized by how it is acquired, not by its characteristics.

The debt quadrant we propose is presented in figure 6.1 mitigates problem I by introducing
a new categorization of technical debt that has a different goal from the ones previously
proposed, here we group the debt into known and unknown debt and if it’s concrete
(dealing with lack of documentation, tests, code quality issues, repetition etc.) or design
(technology choices, architectural issues such as coupling and cohesion) debt.

This is based on the fact that the companies when thinking about their own debt
have expressed the difference between the debt you know is there, constantly looming
over your work, lessening your agility and requiring maintenance and the unknown
debt created through incompetence or inadvertently during development, or incidentally
as it’s impossible to predict what the proper course of action is before one has been
attempted.

It is the debt created carelessly that is a threat to most companies. An example of an
unknown concrete debt would be a developer, being stressed and not communicating a
quick fix he did on a deployment server to solve an issue. This fix then further down the
road causes other issues, and the fact that the fix exists at all is only discovered after
developers spend time delving and debugging the code. If the developer had instead
communicated that he did perform a dirty hack here (and even better documented what
it did) it would be less of an issue as at least there would be an awareness of something
being less than ideal.

41

6.2. SOLUTION

For unknown design debt the metaphor of debt is less apt. This type of debt is created
naturally while working on the project as the architecture and technology you selected
initially turns out to be the wrong choice for your product. This is materialized as
problem II, and awareness of this type of debt mitigates it. An example is that you may
run into scaling issues with your database, or discover that the way you structured your
data makes it difficult to search properly. When this is discovered, this unknown design
debt turns into known design debt, which is easier to handle.

Known design debt is issues that developers are aware of exists and affects the system.
Generally debt of this type will be prioritized to be resolved quickly because the system
can not cope with the new requirements until it is addressed. It can be of a less serious
nature where it is only a drag on implementing new features, this can be considered the
interest of the technical debt.

Finally, there is the known concrete debt. This type can be created in two ways. Either
as a conscious decision, with the team deciding that there is not enough time to finish
writing the tests or that copying a class and changing it slightly will be much faster than
making the original class more flexible. This type of debt is often the source of bugs,
although these bugs are often more trivial to fix than the ones caused by design debt,
which may require considerable rewrites to resolve. This type of debt can also be created
when an unknown concrete debt is discovered, often surfacing as a bug and making it
known to the team.

Then the question is, how should debt be managed. Our view is that the four different
kinds of debt all should be handled in different ways.

First off, creation of unknown concrete debt should be avoided as much as possible. This
debt is dangerous in its invisibility and will result in continuous minor bugs cropping
up, requiring time spent investigating the source. A startup should strive to have open
communication between developers so that all new debt creation is brought to attention
rather than hidden. It can also be avoided by having skilled workers who create less debt
incidentally as they are working.

Known design debt should be kept to a minimum. This type of debt has the highest
“interest”, any architectural issues that crop up as you are developing needs to be resolved
sooner rather than later so that you can remain agile in addressing new requirements
further down the road. Keeping major design debt around will make new features more
and more difficult as you need to find more creative ways to work around the limitations
of the system rather than remaking it to fit your vision properly.

Known concrete debt is the type of debt that is your strategic capital. This is where
you should create debt when you need to meet deadlines or in order to try out a new
feature quickly. While it can result in bugs these bugs are often easily resolved through
minor code changes and don’t require refactoring. This type of debt is discarded if the
feature is thrown out, this can also be said to be true of design debt to some extent,
but not as heavily because relics of your design modification will remain even after the

42

6.2. SOLUTION

feature is thrown out. An example would be changing a one-to-many relationship to a
many-to-many to accomodate a new feature. This change will not be reverted even if the
feature that required it is removed.

The unknown design debt is essentially unavoidable. However once discovered, it should
be addressed so it does not slow down future development in the same way known design
debt would. The only way to avoid it appears to be either through selecting mature
technologies, where all the kinks have already been sorted out or through developer
experience. Expert programmers are more adept at choosing the correct architecture
from the start and predicting the future issues, while novices will not find the same
patterns and commit more mistakes.

In conclusion this new definition of technical debt in conjunction with the methods for
managing each type helps to mitigate problems I and II that was posed earlier.

6.2.2 Strategy

In order to address the issues and methods in technical debt handling we discovered in
startups and through lean development in general, we propose a strategy guide on how
to tackle technical debt. This section will detail the overall approach a startup should
have with debt, while the action scheme presented in 6.2.3 is a more targeted view of the
problem focused around the different stages of a startup’s life.

Always discuss decisions that will result in new debt being created — This is
motivated by avoidance of unknown concrete debt, illustrated in the lower right quadrant.
Unknown debt is very hurtful to your organization, since you cannot take it into account
when planning. Instead you should practice discussing decisions related to debt which
will result in little being created. This should be done by having an open atmosphere
where developers are not afraid to surface issues, either through daily meetings or by
having an open floor plan were people can speak freely. It can be further enhanced
adding TODO and FIXME style comments to the code as shortcuts are taken, ideally with
attached contact information so you can find the person who added it easily. This turns
the debt into known concrete debt instead and helps to mitigate problem II.

The last area in which technical debt should be accumulated is in protocols
and data structures — Compromising on as fundamental part of the software as
data structures and protocols is generally a very bad decision. This is because while
architecture can be changed, code refactored or in the worst case even rewritten, data
structures and protocols will persist for a very long time. This will be a continuous
burden on development, possibly for the lifetime of the product. Any decision to do quick
hacks in communication protocols between clients, or a sub-optimal database design
should be taken with care. Having temperance in decisions will ease problem IV primarily
through keeping your code standardized. Collecting data in the wrong format can be
a huge issue to convert later in development and will require considerable efforts to fix.
Companies that carefully picked their initial design were however able to retain their data

43

6.2. SOLUTION

definitions over a very long time and through pivots even when the system architecture
around the definitions changed.

A quick deployment environment raises your debt tolerance — The ability to
deploy your product to customers quickly and efficiently, for example it being a web
service in contrast to a desktop application, allows you to tolerate more technical debt,
see problem IV. This does not mean that your agility in implementing features or fix
bugs will not be lessened by greater debt. Rather it means that you can maintain a high
debt and the external quality of your product will not suffer considerable as issues will
often be resolved before they have even been discovered by any significant part of your
user base. This is very similar to lean’s lauded MVP implementation strategy where you
only implement features you find are being used or requested, with the parallel being
you only fix bugs that cause issues and do so quickly.

Prototyping can be used to manage debt through validation — Prototyping and
lean feature implementation remains an excellent tool for validating ideas you have about
your product just as Ries (2008) touts. It is also a very useful debt management tool,
since there is no debt in a prototype that you later discard. It can also be used for
envisioning requirements and thus orchestrating a better architecture initially, rather than
diving in into implementing something that is less than ideal, thus avoiding introducing
unknown design debt into your product. The main issue with this is the difficulty in
applying it to certain types of project, see problem V.

You can take parts of a prototype and turn it into parts of your system, as long as care
is taken. If your product domain and customers allow you to make use of prototypes or
A /B testing you ought to do so. Reasons for it not being so may be that your system is
of vital importance, your customer base fickle or bureaucratic and anything that is not
functioning properly is a major detriment.

Static Analysis only becomes a useful tool late in a startups life — Finally, the
way of dealing with problem VI. Using tools to quantize your debt becomes useful only
once you have a stable customer base. This is when you should delve into your concrete
debt mountain and start considering what parts needs to be improved. Static analysis
tools then becomes an aid in that they can show your progress in repaying debt clearly,
setting up a tool that shows how every commit will affect your debt in a very efficient tool
visualizing the problem. Introducing this too early however can be a detriment as clever
programmers will work around the warnings produced, and it will affect your flexibility
in growing your product if you are shackled by debt constraints too early.

Taking on the right kind of technical debt is acceptable when attracting your
customers — Almost all companies we interviewed felt that compromising on some
aspects of your development was a necessity. What should be kept in mind is to primarily
compromise in the concrete debt realm of your product. Code duplication, lack of tests
and documentation and waning code standard adherence should be sacrificed first. While
introducing code smells through strong coupling and dirty hacks should at least be
documented with a FIXME, following the rule stated above. Selecting sub-par architecture

44

6.2. SOLUTION

and technological solutions should be vehemently avoided but can be a last resort. This
does not directly relate to a problem statement but is rather a general observation of
how debt should be approached.

Applying these rules and keep debt in mind during even initial development should result
in a more sanguine atmosphere in startups. It should be mentioned however that startups
often find themselves in dire situations constrained of resources, and compromises will
need to be made that will reflect poorly on technical debt issues for a long time. Options
should be considered carefully and the rules still be kept in mind, even if not applied, for
the duration of the project. On the other hand, as your product grows more stable with
time and you diversify your customer base you can be more picky with what you choose
to implement and no longer need to follow your customers every whim. This allows you
to slow down debt accumulation by implementing things properly and retain your ability
to be agile. When constrained for time, the next section will detail what decisions you
should make for your stage in the project.

6.2.3 Debt Strategy Matrix

The previous section focused on general tips for avoiding and handling technical debt,
this section attempts to complement the general guide by zeroing in on different phases
of a project’s lifetime and offering solutions to each.

A division of a startup’s debt strategy into different periods of their development is a
logical step. We settled on four phases: Pre-Deployment, First Customer, Growth and
Adolescence.

Pre-Deployment is the period from the initial idea for the startup to when the first
customer is recruited. The length of this phase varies widely depending on the relative
complexity of the product. A simple web service can set up a landing page and start
recruiting customers immediately while something like Appello’s mapping service will
require a considerable time investment before the product can start being used. While it
is certainly possible to recruit interested customers before the product is usable, as per
the lean suggestion, it might be difficult if you target organizations.

Once the First Customers have been recruited it becomes very important to retain these.
This makes it possible to start prototyping new features (depending on how fickle they
are) and receiving feedback on different parts of the product. Once this starts happening
there is no longer time to linger and avoid technical debt as was possible before, and the
startup will need to compromise to show their customers that they care about them and
develop the product to their needs.

After enough customers have been recruited for the product to have taken off (either
through being self-sustaining economically or achieving an exponential growth which
proves the product’s potential) the Growth phase is entered. This is where the system is
likely to show its weaknesses and where quick solutions to keep it operational becomes a

45

6.2. SOLUTION

reality. To ensure quality and stability testing becomes more important and tackling the
difficulties of problem III becomes relevant. Also as the team size grows documentation
and process become more vital as communication becomes more difficult. The important
thing to start keeping in mind here is to document the solutions you implement as per
the strategy so that they can be identified later when they start becoming the bottlenecks
themselves.

Finally a startup enters the adolescence phase. Here the product has found a stable
customer base and is in no immediate danger of failing. The safety of a less precarious
position allows you to start decreasing your technical debt that was accumulated during
the First Customer and Growth phases and start with systematic approaches to handle it.
This means that problem VI is worth handling and more traditional software engineering
practices and methods are become relevant to structure both your team and your software
and ensure its persistent quality over time.

With this temporal division in hand, and joining it with the different kinds of technical
debt that Kruchten et al. (2012) mentions and which are related to the quality metrics
defined in ISO 25010 (2011) it is possible to make a matrix showing what course of action
should be taken in each phase of a startup’s life and each type of debt. This matrix can
be seen in table 6.1. The first two types of debt listed are design debt while the following
four are different forms of concrete debt, the final two are a mix of concrete and design
debt and depend on the exact details.

Table 6.1: Debt Strategy Matrix

Pre-Deployment | First Customer | Growth | Adolescence
Architectural strong | weak 1 weak | $
Structural strong | weak 1T weak | +
Test T weak | J +
Documentation strong 1 strong 1 weak | J
Code Complexity weak 1 T - 4
Coding Style Violations T strong 1 strong 1 4
Low Internal Quality weak 1T T T +
Code Smells weak 1 T weak 1 4

The matrix shows the different kinds of debt and how they should be approached when
the necessity arises. The upward arrows 1 means that this type of debt can be gathered
in this phase of the project while the downward arrow | means that type of debt should
be avoided, and possibly be paid back if the opportunity arises. A dash means that
type of debt should be contained on the same level. The strong and weak distinctions
refer to how pronounced the handling should be. A weak avoidance would mean that

46

6.3. VALIDATION

it is acceptable to take on this sort of debt if the medium or strong options have been
exhausted.

Some of the tips warrant additional explanation. Tests become more relevant to write with
time as after acquiring customers the importance of the system not breaking unexpectedly
grows. Documentation starts becoming relevant in the growth phase as your organization
grows and the same level of communication may not be possible.

Coding Style and Complexity we have found is not of importance to any of the interviewed
companies as the small team sizes lead to consensus with time. This avoids the egregious
code and if it ever becomes an issue it is in general easy to fix.

Code Smells and Internal Quality are more important than the different forms of concrete
debt, but are still not as important as architectural decisions. These types of debt
can be accrued without worry when the pressure of a deadline is looming, but they
result in more persistent problems, and can be a requirement to fix later on when
testing or documentation becomes a priority since coupling and understandability are
prerequisites.

Depending on your product different types of debts ought to be avoided with more vigor.
A startup dealing with financial data for example may want to focus more on testing even
initially to guarantee that the system does not result in erroneous transactions, similarly
a company with their API as an important part of their product does not benefit from
forgoing documenting it to save time. Discussing decisions regarding technical debt with
your business goals in mind will be helpful in all cases.

Once adolescence is achieved, technical debt issues moves into the realm of more traditional
management methods. This means you should reduce the debt you have accrued (hopefully
mainly in the form of concrete debt) in general and find a stable level where the debt
does not constrain you moving forward but avoid the situation of excessive process in
keeping your code base clean shackling you instead.

6.3 Validation

Earlier we introduced some of the issues facing startups regarding technical debt and its
treatment. In this section we will go through each of the problems and validate how they
are solved by the models and strategies presented earlier.

Current models of classifying technical debt are inadequate.

The terminology for talking about technical debt was found inadequate during the in-
terviews conducted. While the concept of technical debt is well-known, most software
engineers have a poor understanding of the borders of its definition and what it en-
compasses. Several interviewees described different types of debt they had during the

47

6.3. VALIDATION

interview, but the communication was long-winded as they did not have the proper
terminology to pinpoint what they meant quickly.

Examples of this is how Burt described issues with their technology choices ending up
inadequate being a source of debt, which is what we later defined as the unknown design
debt. Appello described their initial development of several clients being haphazard, and
they knew this would result in what we later named known design debt.

Everybody described the lack of tests and documentation et. al. as a major constituent
of their debt that they knew of, which is what we named known concrete debt. Some
had also encountered problems with undocumented code left by contractors or older
programmers being unfathomable when it was reviewed later in development, which is a
topical description of unknown concrete debt.

The debt quadrant we introduced categorizes the debt that companies have and talk
about in a succinct way. While it challenges previous technical debt models it does not
have the same scope, while previous models focused around the acquisition of technical
debt or the absolute quantization of it our models aim is to define apt terminology to
discuss technical debt between practitioners and researchers.

Methods and tools for handling technical debt are focused on mature projects.

While researching the existing methods and tools for managing technical debt such as
SQALE (section 2.3.1), CAST AIP (section 2.3.3) and Sonar (section 5.1.1) etc. we
found them to be focused on more mature projects and not suitable for startups. This
finding became even more evident when we interviewed the startup companies. Among
the interviewed companies, the younger did not feel the need for any static analysis tools
but the older ones did. This approach of not bothering with any dedicated analysis tools
in the beginning worked well for the companies and we had the same experience in the
primary case. The tools that had been tried by many both as a past-time and as a
serious utility for managing code quality were found to introduce more overhead than
benefits, the loss of flexibility was a serious concern, as was the difficulty of enforcing the
practices on the programmers. This sentiment is included in our strategy through the
static analysis guideline.

Regarding general methods for managing technical debt, several of the companies stated
that the impact of the debt is reduced if there is knowledge about it, because then
it is possible to plan with the debt in mind and avoid putting yourself in a situation
where the debt will cripple you by surprise. While the debt was still a factor in slowing
development it did not eclipse it, we have included this practice as a general guideline
in the technical debt strategy as it seems to mitigate many of the damaging aspects of
technical debt. This way of working does however not scale to larger organizations as we
found companies experienced issues with it no longer being possible for every developer
to be aware of everything when complexity reached a certain level. It is also the case
that in larger companies there are often more people involved in the projects, and the
personnel rotation is higher which further complicates communication.

48

6.3. VALIDATION

Existing methods do not give clear guidance about when and how to handle
different types of debt.

In the debt matrix presented in section 6.2.3 we present clear and concrete guidelines for
how and when a startup should handle different types of technical debt. A startup can
easily consult the matrix and use it as support when making decisions. This is something
that was found lacking in the existing tools and methods while researching the primary
case, as they were heavily focused on communicating debt to managerial staff and not
with small teams where technical knowledge was ample.

The need for the division into different phases is apparent when looking at the interviewed
companies. Their issues differed depending on what phase they were in. Older companies
found that they could spend the time and resources to backfill issues, very new companies
similarly had time but for different reasons, in that their product still had such a small
customer base that the pressure was more focused around recruiting customers than fixing
bugs and quick additions to meet an external requirement. Companies that had just
started selling their product had issues with meeting the demands from the customers
as they were not in a position of power to negotiate and often had to compromise
with differing levels of success. Finally the companies that had assembled a customer
base and the popularity of their offers rapidly growing had many issues with problems
surfacing.

Also, in our strategy guide, we have several points which gives guidance on how to
act with specific types of debt in a concrete way. For instance, Appello incurred some
technical design debt when they did not use standardized protocols when developing in
their early phases, which has given them issues later on. Issues like these are mitigated
by the rule of always retaining standardized data structures and protocols. Burt is an
example of this who were able to retain their initial data definition through their pivot
and scaling phases, and the savings in not migrating and changing the data is worth the
upfront investment.

Many customers exclaimed that debt issues most often arose due to strict deadlines,
something echoed in the literature. Under pressure most resorted to skip writing tests,
in extreme cases they would resort to architectural compromises and releasing poten-
tially incomplete solutions if the market pressure was too high. Doing so resulted in
unmaintainable code that required several programmer’s effort to even modify later on
as the consequences of changes were unpredictable. Appello’s issues with their debit
system were a prime example of this. This is cemented by the debt matrix that was
developed.

49

7 Conclusion

In this thesis a model for how we believe technical debt should be categorized is presented.
We found that a few researchers have tried to create such models but found them to be
less than ideal as a guide to communicate technical debt issues. The prior models focused
on describing how the debt is incurred or how it should be viewed by management rather
than what type of debt it is in a way that is relatable to developers. The model instead
focuses on aiding communication among developers and researchers and aiding in how
you should act on it practically.

We also present a general strategy that guides startups in how to manage their debt.
These more general guidelines are accompanied by the debt strategy matrix which is a
more concrete guide on how to manage technical debt and how to act on it. It includes
guidelines regarding what kind of debt to incur or avoid, depending on in what phase
the company currently is. Technical debt can, and should, not be avoided at all times as
it can be used as leverage for strategic reasons. It makes you more agile for a period of
time but lessens your future agility as the “interest” is paid off.

Debt that concerns the architecture level has been found to generally be considered more
dangerous to companies to incur. This is because it is often hard to fix these issues in
later stages of software evolution. Concrete debt on the other hand is something that
can be incurred when appropriate as long as it is managed and kept under control.

What was also found in the study is that the awareness is an important factor. When the
developers are aware of the technical debt it is less dangerous as it can be accounted for
when planning for the future. When the debt is unknown and hidden it is more dangerous
as it can crop up at unexpected times and be hard to mitigate properly.

20

8 Future Work

When conducting this study we found some interesting subjects that ought to be looked
into further, but unfortunately are out of scope for this study.

It seems that the programming language used is correlated with the way debt is approached
in the company. This can be due to the strong philosophies of how things are done
within the respective communities. For instance, in the Ruby community there is a
lot of focus on writing clear, self-documenting code with a strong test suite. As the
code is self-documenting the need for external documentation or lots of code comments
is regarded unnecessary. The companies using another language, like Java, seemed to
be more in favor of documentation, both in the code as comments as well as external.
A study focusing around on how the programming language effects the occurrence of
different coding practices like testing, documentation etc. would reveal more about the
correlation.

Since the lean startup movement is relatively new, there are few companies that have
applied it and survived for enough years for technical debt problems to become a
considerable issue. A possible future approach is to conduct a longitudinal study of the
debt approach for companies using a lean startup methodology to see how they handle it
when they grow more mature.

This study is affected by survival bias as only successful companies were interviewed.
Looking at failed startups, with technical debt problems, and investigate how they
approached their debt would be another subject to explore. Did they think about it at
all? Did they accumulate so much debt that the company couldn’t survive? This would
be an interesting subject to investigate further.

Finally, the rules that were developed and presented in section 6.2.2 and the debt matrix
in section 6.2.3 ought to be validated through application in a lean startup. A study
in which the rules are followed in some projects and not in others (possibly evaluating
several MVPs) will give greater credence to their applicability. It was not possible to
perform this in this project due to the constraint on time and resources present.

o1

Bibliography

Bingham, C. B., Eisenhardt, K. M. and Furr, N. R. (2011), ‘Which strategy when?’, MIT
Sloan Management Review 53(1), 71-78.

Burke, K. (2005), ‘Online a/b testing’, Target Marketing 28(5), 37-38,42.

Cast Software (2013), ‘Measuring and Managing Technical Debt with CAST AIP’. (2013-
04-02).
URL: http://www. castsoftware.com /resources/document/brochures/measuring-and-
managing-technical-debt-with-cast-aip

Code Climate (2013), ‘Code Climate Plans Pricing’. (2013-05-20).
URL: hitps://codeclimate.com/pricing ?v=str

Cunningham, W. (1992), The wycash portfolio management system, in ‘Addendum to the
proceedings on Object-oriented programming systems, languages, and applications’,
ACM Press, Vancouver, pp. 29-30.

Curtis, B., Sappidi, J. and Szynkarski, A. (2012), ‘Estimating the principal of an
application’s technical debt’, IEEE Computer Society.

Fowler, M. (2004), ‘Technical debt’, Martin Fowler. Accessed: 2013-01-09.
URL: http://martinfowler.com /bliki/ Technical Debt.html

Fowler, M. (2009), ‘Technical debt quadrant’, Martin Fowler. Accessed: 2013-04-20.
URL: hitp://martinfowler.com/bliki/Technical DebtQuadrant. html

Freddy Mallet (2010), ‘SQALE, the ultimate Quality Model to assess Technical Debt’.
(2013-03-03).
URL: http:/ /www.sonarsource.org/sqale-the-ultimate-quality-model-to-assess-
technical-debt/

Hove, S. E. and Anda, B. (2005), Experiences from conducting semi-structured interviews
in empirical software engineering research, in ‘Software Metrics, 2005. 11th IEEE
International Symposium’, IEEE, pp. 10-pp.

Hunt, A. and Thomas, D. (1999), The Pragmatic Programmer: From Journeyman to
Master, Pearson Education.
URL: http://books.google.se/books?id=5wBQEp6rulAC

ISO 25010 (2011), Systems and software engineering — systems and software quality
requirements and evaluation (SQuaRE) — system and software quality models, ISO
25010, International Organization for Standardization, Geneva, Switzerland.

ISO 9126 (2001), Software engineering — product quality, ISO 9126-1 to 9126-4, Inter-
national Organization for Standardization, Geneva, Switzerland.

52

BIBLIOGRAPHY

Janzen, D. S. and Saiedian, H. (2008), ‘Does test-driven development really improve
software design quality?’, Software, IEEE 25(2), 77-84.

Kohavi, R., Henne, R. M. and Sommerfield, D. (2007), Practical guide to controlled
experiments on the web: listen to your customers not to the hippo, in ‘Proceedings
of the 13th ACM SIGKDD international conference on Knowledge discovery and
data mining’, ACM, pp. 959-967.

Kruchten, Philippe, Nord, L., Robert and Ozkaya, I. (2012), ‘Technical debt: From
metaphor to theory and practice’, IEEE Computer Society.

Letouzey, J. and Ilkiewicz, M. (2012), ‘Managing Technical Debt with the SQALE
Method’, IEEE Computer Society.

McConnel, S. (2007), ‘Technical debt’. Accessed: 2013-04-20.
URL: hitp://construz.com/10z_Software_Development/Technical Debt

Moogk, D. R. (2012), ‘Minimum viable product and the importance of experimentation
in technology startups’, Technology Innovation Management Review (March 2012:
Technology Entrepreneurship).

Morini, T. (2011), ‘Here’s why ruby on rails is hot”. (2013-05-15).
URL: http://www.businessinsider.com/heres-why-ruby-on-rails-is-hot-2011-5

N. Denzin, Y. L. (2000), The Handbook of Qualitative Research, Sage Publications.

Onwuegbuzie, A. J. (2000), ‘Expanding the framework of internal and external validity
in quantitative research..

PICA Group (2013), ‘Ruby Sonar Plugin’. (2013-03-02).
URL: hittps://github.com/pica/ruby-sonar-plugin

Poort, J. (2011), ‘Creating mountains of technical debt in lean startups’ Accessed:
2013-05-20.
URL: hitp://launchingtechventures.blogspot.se/2011/03/creating-mountains-of-
technical-debt-in.html

Ries, E. (2008), ‘The lean startup., Startup Lessons Learned. Accessed: 2013-01-09.
URL: hittp://www.startuplessonslearned.com/2008/09/lean-startup. html

Ries, E. (2009), ‘Embrace technical debt.’, Startup Lessons Learned. Accessed: 2013-03-
12.
URL: hittp://www.startuplessonslearned.com/2009/07/embrace-technical-debt.html

Ries, E. (2011), The lean startup: How today’s entrepreneurs use continuous innovation
to create radically successful businesses, Crown Business.

SonarSource (2012), ‘Sonar Technical Debt Plugin’. (2013-03-26).
URL: hitp://docs.codehaus.org/display/SONAR /Technical+Debt+Plugin

93

BIBLIOGRAPHY

SonarSource (2013a), ‘Sonar Comparison’. (2013-03-26).
URL: http://www.sonarsource.com/products/software/comparison/

SonarSource (2013b), ‘Sonar Features’ (2013-03-26).
URL: http://www.sonarsource.com/products/features/multi-language-support/

SonarSource (2013¢), ‘Sonar Technical Debt (SQALE)’. (2013-03-26).
URL: http://www.sonarsource.com/products/plugins/governance/sqale/

SQALE.org (2013), ‘SQALE.org’. (2013-03-26).
URL: http://www.sqale.orq/

Storm (2013), ‘Storm’. (2013-05-20).
URL: https://github.com/nathanmarz/storm

Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., Regnell, B. and Wesslén, A. (2012),
Ezxperimentation in Software Engineering, Kluwer Academic.

o4

	Glossary
	Introduction
	Background
	Lean Startup Methodology
	Build-Measure-Learn
	Minimum Viable Product
	Metrics
	Pivot

	Technical Debt
	Types of Debt
	Identifying Debt

	Tools and Methods
	SQALE
	Sonar
	CAST AIP
	Code Climate

	Alice

	Purpose
	Method
	Data Collection
	Primary Case
	Secondary Cases
	Software Evaluation

	Validity Threats

	Result
	Evaluated Software
	Sonar
	CAST AIP
	Code Climate

	Primary Case
	Process
	Technical Debt

	Interview Data
	Jan Salvador van der Ven
	Appello
	Burt
	Duego
	NetClean
	PugglePay
	Recorded Future
	Shpare
	Trimbia

	Interviews Summary

	Discussion
	Analysis
	Technical debt problems identified
	Debt generating activities
	Methods in use

	Solution
	The Debt Quadrant
	Strategy
	Debt Strategy Matrix

	Validation

	Conclusion
	Future Work
	References

