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Abstract 
Phantom limb pain is a chronic disease that commonly follows the amputation of a limb. 

Currently the origin of phantom limb pain is poorly understood, and several theories have been 

suggested. Most of the more recent theories all include a common element, brain plasticity. 

These plastic changes are believed to come from sensorimotor deprivation with intense 

behavioural changes1. However, how these changes happen and what causes them in the brain 

is still discussed. 

The human brain functions as a network where different parts communicate with one another 

to achieve complex functions such as cognition and feelings. In this study said network is 

studied to identify possible changes correlated with phantom limb pain. 

Electroencephalography data from a resting state condition was used to measure each subject’s 

functional connectivity by computing the phase lag index between each electrode pair. The 

functional connectivity was then used to create a special kind of graph called a minimum 

spanning tree. From the minimum spanning tree several different metrics were computed. 

These metrics reflect different characteristics of the network such as efficiency and shape. 

A statistical analysis was then applied on the metrics between control subjects with subjects 

suffering from phantom limb pain. The statistical significance limit was set to 5% and Welch’s 

t-test or the Wilcoxon rank sum test was used, depending on the distribution of the data, to 

compare the results. 

Several metrics were found to be significant at the 5% significant level. Most of the metrics 

found were in the Delta frequency band which indicate that the networks differ more at lower 

frequencies. However, after multiple comparison correction on one metric, the mean phase lag 

index, in the Beta frequency band were considered statistically significant between the groups. 
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1 Introduction 
In this sections a short background to the project is presented covering the uncertain origin of 

phantom limb pain (PLP) followed by the aim and scope of the project. Lastly the outline for the 

rest of the thesis is presented. 

 

1.1 Background 
Technological improvements in the field of non-invasive neuroimaging have opened vast 

possibilities in the study of the structure and function of the human brain. The ongoing quest to 

fully understand complex aspects such as cognition is in full progress. However, when it comes 

to understanding how the brain changes following a traumatic event such as an amputation many 

questions are still unanswered. One of the most challenging problems in this field is the 

understanding of the origin and maintenance of PLP, which is a severe form of chronic 

neuropathic pain arising from the missing limb. 

Many attempts have been made at explaining PLP. An early paper in the field written by Flor et. 

al.2 theorized that cortical reorganization could account for some non-painful phantom limb 

phenomena and have an adaptive function. It had been observed in patients suffering from 

chronic back pain that the amount of cortical alteration reduced the magnitude of pain hence they 

predicted that the same would be true in the relationship between cortical reorganization and 

PLP. However, with non-invasive magnetic source imaging (MEG) a strong correlation between 

cortical reorganization and PLP was found. Their data indicated that PLP is related to plastic 

changes in the primary somatosensory cortex. 

Makin et. al.3 analysed resting state functional connectivity of the brain of arm amputees. 

Functional magnetic resonance imaging (fMRI) was used to identify large scale reorganisation 

besides the primary sensorimotor cortex compared to a two-handed control group. They 

specifically examined changes in functional connectivity values between the cortical territory of 

the missing hand in the primary sensorimotor cortex and both the sensorimotor network and the 

default mode network (DMN). The sensorimotor network is normally strongly associated with 

the hand cortex while the DMN is typically dissociated. In this study, Makin et. al.3 show that the 

functional connectivity values between the missing hand cortex and the sensorimotor network 

were reduced in amputees and connectivity was weaker in patients who had been amputated for 

a longer period of time. Together with lower levels of functional coupling between the missing 

hand cortex and the sensorimotor network there was also a stronger connectivity between the 

missing hand cortex and the DMN. Their result demonstrated that plasticity following arm 

amputation is not restricted to local remapping but rather leads to a cascade of cortical 

reorganisation at a network level scale. It could however not identify a clear statistical 

relationship between increased coupling with the DMN and PLP which had been seen in other 
types of chronic pain. However, this could also be a limit of the type of data used, namely fMRI, 

which due to the physiological constraints of the temporal resolution of the hemodynamic 

response, might not give a complete representation of how brain networks change due to pain. 

An encompassing theory has been brought forwards by Max Ortiz-Catalan4 who proposes the 

stochastic entanglement of the pain neurosignature with impaired sensorimotor circuitry as a 

possible origin of PLP.  He argues that following amputation or sensorimotor impairment, the 

related motor and somatosensory circuitry become susceptible to perturbation and could wire 

together with other networks. Hence stochastic entanglement could occur, and networks of 

sensorimotor processing and pain perception begins to activate together. This would also explain 

why not all amputees suffers from PLP even though they experience almost identical conditions. 
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All these theories and studies share a common denominator, they all discuss the neural network 

in the human brain. 

This project intends to analyse brain networks for both healthy patients and patients suffering 

from PLP with a graph theory approach based on electroencephalography (EEG) data to evaluate 

the topological differences in said networks. If several networks in an PLP patient wire together 

the connectivity5 between the networks should differ compared to a healthy control. By 

computing the phase lag index (PLI) the functional connectivity can be determined. EEG data have 

a high temporal resolution in the range of milliseconds6 which could be important because the 

functional connectivity is highly time dependent and constantly changing5. An EEG amplifier is 

also very mobile and cheap compared to an MR scanner, alternatively used for functional 

connectivity studies. By using graph theory with each electrode as a node and the connections 

between them as edges a model can be created to evaluate whether PLP can be related to the 

connectivity between each node. The final aim is to find metrics that can show a difference 

between amputees with PLP and healthy controls and find metrics that correlate reliably to some 

aspect of PLP. 

 

1.2 Aim 
Develop a functional system to create brain networks and evaluate its potential to discern healthy 

patients from patients suffering from PLP. To evaluate the potential to discern the two groups 

graph theoretical measures are to be computed in both groups. From these metrics identify the 

ones that relate to the presence or absence of PLP. 

 

1.3 Scope and Limitations 
In this study only two groups are compared, subjects with PLP and subjects without PLP. The 

comparison is limited to graph theory and the metrics introduced in the    
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Method section. Different pain rating scales, time since onset etc. of PLP are not considered in the 

analysis. All analyses is done on EEG data recorded in the Biomechatronic and 

Neurorehabilitation Laboratory at Chalmers university of technology. 

 

1.4 Thesis Outline 
The thesis is divided into eight major sections, Introduction, Theory,   
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Method, Result,   



 

5 

 

Discussion,   



 

6 

 

Conclusion,  
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References and Appendix. The first section, Introduction, lays out the reasons why this study was 

carried out and how this aims to contribute to the scientific field. The introduction is followed by 

section 2, Theory, which covers the basics of the theory necessary to understand the methodology 

used in the study. Section 3,   
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Method,  presents how data are acquired, processed and how graph analyses were performed. It 

also gives relevant information about the participants of the study.  Result, in section 4, 

summarizes the results of the graph theory analyses and the statistical comparisons. Section 5,   
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Discussion, intends to address further considerations regarding the development and the 

execution of the different parts of this master thesis project, for instance clarifying why certain 

methods were adopted, what are the limitations of this study and how these could be address by 

extending this work. The project is shortly summarized in section 6,   
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Conclusion.  

2 Theory 
This project intertwines two disciplines. The first discipline being electrophysiological 

monitoring and brain imaging, more specific EEG, and the other the mathematical field of graph 

theory. 

 

2.1 Electroencephalography 
EEG is an electrophysiological recording technique used to measure the flow of neural ionic 

currents. The currents are recorded using pairs of electrodes either inside the scalp, 
electrocorticography (ECoG), or on the outside of it, scalp EEG. In this study the noninvasive scalp 

EEG was recorded and is hence focused upon. 

EEG measures the differences over time of the electrical potential at two electrodes. These 
electrodes may either be directly attached to the scalp surface or fitted into a cap to simplify the 
attachment. The positions in the cap or directly at the surface do most often abide to the 
international 10-20 system, see Figure 1 for labels and positions of the electrodes. This system 
aligns the electrodes based on a percentage of the distance of the scalp from the nasion to the 
inion and between the mastoids.  The “10” and “20” refers to how many percentages of the 
distance it is between the adjacent electrodes. The 10-20 system has over the years developed 
higher resolution versions of itself as well as the 10-10 system7 and the 10-5 system8 to include 
more and more electrodes placed around the scalp. 

 

 

Figure 1: Electrode locations of International 10-20 system for EEG recordings. The image is taken from Wikimedia 
Commons and is made by Asanagi9. 



 

11 

 

 

Figure 2: The figure shows how different dipoles contribute to the potential measurement. 

The potential differences are generated by neurons, in particular cortical pyramidal cells, that 

form synapses at their dendrites, see Figure 2: The figure shows how different dipoles contribute 

to the potential measurement. Due to their unique anatomical structure as a long apical dendrite 

perpendicular to the cortical surface, cortical pyramidal neurons are excellent dipoles. The 

direction of the dipole is determined by the superficial or deep location of the synaptic input. Due 

to the direction of the dipole it can be separated from EMG-signals which have a horizontal 

orientation. In Figure 2 it can be seen how the charge of the dipole affects the EEG-recording. 

There are two different intracellular potentials that potentially can generate scalp EEG signals, 

action potentials and postsynaptic potentials. An action potential is generated by a sudden change 

in transmembrane resting potential due to movements of intracellular and extracellular ions. 

When the action potential propagates to a synapse the postsynaptic potential is generated across 

a pair of neighboring neuronal membranes. If the postsynaptic potential exceeds a threshold level 

the action potential of the first neuron is delivered to the next. It is believed that the postsynaptic 

potential contributes to a higher degree to the generation of measurable extracranial electric 

fields. This is because contrary to the action potential the synaptic potential can be generated 

synchronously in a large number of neurons. It is possible because of its relatively longer duration 

(~30ms compared to ~5ms ).10 
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Figure 3: The image displays the difference between the waveforms of action potentials and postsynaptic potentials. 
Synchronous occurrence of postsynaptic potentials can produce a current flow large enough to be detected from outside 
of the head. The image was taken from Chang-Hwan’s book Computational EEG Analysis10. 

When numerous cortical neurons within a small area are activated synchronously a so called 

unidirectional neural current flow is formed. Such a current is called primary or impressed 

currents. Because of the dielectric properties of the human body the extracellular currents 

induced by the primary currents can flow anywhere in the human body. These extracellular 

currents are known as secondary, volume, or return currents. The flow of these secondary currents 

results in nonuniform potential distributions on the scalp. These are the potential differences 

between two scalp positions over time that defines the EEG.10 

There are a few other techniques that could be used to study the brain and its networks such as 

MEG and fMRI. Both MEG and EEG have high temporal resolution while fMRI have a higher spatial 

resolution. Because the dynamics of cognition are very fast11 EEG is very well suited when 

analyzing brain networks. 

 

2.2 Preprocessing 
Preprocessing is any transformation or reorganization that occurs between collection and 

analysis of data. Preprocessing steps are meant to facilitate the analysis and remove unwanted 

distortions like noise. Hence some preprocessing steps merely organize the data without 

changing them, other steps involve removing bad or artifact-ridden data without changing clean 

data, and some involve modifying the data with the purpose to clean them 

EEG data contain the signal, i.e. the potential differences discussed in the previous section, and 

noise. Proper preprocessing will attenuate the noise without altering the data. The data and noise 

are in most cases mixed together and the attenuation or removal of the noise may come at the 

cost of data. On the other hand, one may not be interested in all the data but only a certain 

frequency range which means data lost outside this range does not affect the result. In other 

words which preprocess routines that are applied in a project is heavily affected by what is being 

studied.11 
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2.2.1 Filtering 
A filter removes undesired components or features of a signal. This oftentimes involves removing 

some spectral characteristics of a signal, such as the powerline noise around 50-60 Hz11. In this 

study both infinite impulse response (IIR) and finite impulse response (FIR) filters were 

considered. 

 

2.2.1.1 Infinite Impulse Response Filter 

IIR filters are characterized by having an impulse response which never becomes zero but 

continues indefinitely. In practice, the impulse response approaches zero in most cases and can 

be disregarded past a certain point. The transfer function of an IIR filter is often defined in its Z-

transformed state: 

𝐻(𝑧) =  
∑ 𝑏𝑖𝑧−𝑖𝑃

𝑖=0

∑ 𝑎𝑗𝑧−𝑗𝑄
𝑗=0

. 

However, in most IIR filter designs the coefficient 𝑎0 is 1. Hence the IIR filter transfer function is 

often expressed as: 

𝐻(𝑧) =  
∑ 𝑏𝑖𝑧−𝑖𝑃

𝑖=0

𝑎0 + ∑ 𝑎𝑗𝑧−𝑗𝑄
𝑗=1

. 

𝑃 is the feedforward order, 𝑏𝑖 is the feedforward filter coefficients, 𝑄 is the feedback filter order 

and 𝑎𝑖  are the feedback filter coefficients. 

An IIR filter is very efficient compared to a FIR filter in order to meet the specifications in terms 

of passband, stopband, ripple and roll-off. These specifications can be achieved with a lower filter 

order. In other words, IIR filters are less computationally expensive than FIR filters. However, 

even though they can be implemented with a lower rank the implementation itself is more 

complicated. It is simpler to implement specific characteristics in a FIR filter especially when not 

one of the more common cases are of interest. IIR filters can also diverge due to their definition. 

Lastly an IIR filter have a non-linear phase and could cause phase distortions. 12 

 

2.2.1.2 Finite Impulse Response Filter 

A FIR filter is, as the name suggests, a filter whose impulse response have a finite duration. FIR 

filters are designed by finding the coefficients and filter order that matches the needs of the 

application. The impulse response of a FIR filter can be defined as: 

ℎ[𝑛] =  ∑ 𝑏𝑖 ∙ 𝛿[𝑛 − 𝑖] =  {
𝑏𝑛       0 ≤ 𝑛 ≤ 𝑁
0         otherwise

𝑁

𝑖=0

 

𝑁 is the filter order, an 𝑁th-order filter has (𝑁 + 1) terms in the sum. 𝑏 are the filter coefficients, 

i.e. the value of the impulse response at the specified instant. 𝛿 is the Kronecker delta function. 

The advantages of FIR filters are that they require no feedback which reduces the amount of 

errors due to summed iterations. They are also naturally stable. Most importantly FIR filters can 

easily be designed to have linear phase. This property is desirable when working with  

phase-sensitive applications.12 
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2.2.1.3 Zero-phase Filtering 

As mentioned earlier FIR filters can be designed to have a linear phase i.e. introduce a linear phase 

shift most often perceived as a time lag, see Figure 4. In this project phase-lag will be used as a 

measure of similarity, see section Graph Theory. Hence an alteration in the phase is undesirable. 

 

 

Figure 4: The figure shows how a signal gets delayed in time after filtering. The time lag in this case is very long. 

Zero-phase filtering is filtering done without affecting the phase of the signal. This is achieved 

when the frequency response of the filter is a real and even function. In some cases, the filters 

themselves are designed in a manner to achieve a real and even frequency response but this is 

almost impossible to do with IIR filters. Instead what can be done, both with IIR and FIR filters, is 

to apply the filter from both ends of the signal. If 𝑥[𝑛] is the input signal and ℎ[𝑛] is the filter’s 

impulse response, then the result of the first application is in frequency domain: 

𝑋(𝑒𝑗𝜔)𝐻(𝑒𝑗𝜔), 

where 𝑋 and 𝐻 are the Fourier transforms of 𝑥 and ℎ. Time reversal corresponds to replacing 𝜔 

with −𝜔 resulting in: 

𝑋(𝑒−𝑗𝑤)𝐻(𝑒−𝑗𝑤). 

 

For real-valued filter coefficients 𝐻(𝑒−𝑗𝑤) = 𝐻∗(𝑒𝑗𝑤), which means when the filter is applied 

again to this signal the result is: 

𝑋(𝑒−𝑗𝑤)𝐻(𝑒−𝑗𝑤)𝐻(𝑒𝑗𝑤) = 𝑋(𝑒−𝑗𝑤)|𝐻(𝑒𝑗𝑤)|
2

. 
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Which after time-reversal means that the filtering process is the same as filtering with a 

frequency response |𝐻(𝑒𝑗𝑤)|
2

 which is a real and even function. 

 

2.2.2 Artifact Removal 
There are several ways of removing artifacts. If the shape of an artifact is well known and enough 

data is acquired, then segments containing said artifact can manually be avoided. An example of 

this can be seen in Figure 5 where three blinks are marked in the data. Problems could occur if 

the artifact is present if not in all but in most of the epochs created to analyze the data. In EEG 

data these artifacts could be blinking, eye movements or swallowing. Although eye movements 

and swallowing are not frequent enough to infect most of the data, blinking is. Instead of 

removing all data epochs where blinking is found several other methods could be used to remove 

them. In this study independent component analysis (ICA) is used to filter our such artifacts.  

2.2.2.1 Independent Component Analysis 

ICA decomposes the signals into 𝑛 independent components where 𝑛 is the dimension of the data. 

In EEG data, 𝑛 would represent the number of available channels. The data are separated not by 

direct spatial filtering for activities generated in a predefined cortical location. But instead by 

using the information content of the data itself to separate parts of the EEG data from each active 

cortical and artifact area. Based on simple but statistically and physiologically plausible 

assumptions13 that over time these activities should be nearly independent. This assumption also 

includes that most of the far-field potentials detected at the scalp are generated within the skull. 

This approach has the major advantage that EEG sources will be grouped together into a single 

independent component (IC) that include all projections to the EEG channels while unrelated EEG 

sources will be rejected from said IC and stored into other ICs. Under favorable circumstances 

ICA transforms the recorded scalp data into a set of source recordings thereby discovering what 

distinct signals are present in the data instead of where the data is generated.14 

The data submitted to ICA are an 𝑛 by 𝑡 matrix (𝑋) where 𝑛 is the number of channels and 𝑡 the 

time points of the data. Unlike similar spatial filtering procedures ICA requires no channel 

location information. Based on the criterion that resulting source time courses (𝑈) are maximally 

independent ICA finds a component unmixing matrix (𝑊) that, when multiplied by the original 

data (𝑋), result in the matrix (𝑈) of IC time courses: 

𝑈 = 𝑊𝑋. 

𝑋  and 𝑈  are 𝑛 × 𝑡 matricies while 𝑊  is an 𝑛 × 𝑛 matrix. By inverting the unmixing matrix the 

mixing matrix ( 𝑊−1 ) can be computed. Each column of the mixing matrix represents the 
projection weight at each electrode, i.e. the IC scalp map. These projections are then mapped on 

a 2-D model to allow visualization of the scalp projection of each source. The source locations are 

presumed to be stationary, which means that the brain source locations and projection maps 

(𝑊−1) are assumed to be spatially fixed. Hence their activations (𝑈) reveal their activity time 

courses throughout the input data. Hence what is being done is rather: 

𝑋 = 𝑊−1𝑈. 

Where W is trained to create as independent components as possible while constrained by the 

assumptions of ICA. 

As mentioned earlier ICA makes a key assumption: In the far-field signals produced by the cortical 

and non-cortical EEG sources are temporally distinct, and over sufficient input data, near 
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temporally independent of each other. Thus, the quality of the decomposition is highly dependent 

on two factors.13 

First, the number of time points of the 𝑛-channel data used in the decomposition must be enough 

to learn the 𝑛2 weights in the ICA unmixing matrix. A common rule of thumb is that the amount 

of data needed is related to the number of electrodes squared, 𝑛2, times a factor 𝑘. 𝑘 is usually set 

to be 25 or higher for a dataset with a high number of electrodes. In this project a sampling rate 

of 2400 Hz was used and a maximum of 62 channels, 62 when eye-channels were included 

otherwise 58, which means at least 40 second of filtered data is needed. However, ICA 

decompositions where 𝑘 > 25 tends to be more regular and produce more dipolar component 

maps. Hence the more data the better as long as the condition of the recording don’t change, i.e. 

going from a resting-state eyes-open condition to resting-state eyes-closed condition in the same 

data set. 

Second, as is the case with all signal processing: “garbage in, garbage out”. If the EEG data is still 

contaminated by high noise or the recording itself is faulty in some way the ICA decomposition 

will be of the same quality. ICA may be able to separate the typical noises such as powerlines. 

However, as it is very simple to remove that type of noise before the decomposition with filters it 

is recommended. 

 

 

Figure 5: The Figure displays EEG-data where three blinks are marked with red rectangles. A clear peak can be seen in all 
channels which is a characteristic trait of a blink artifact.  

 

2.2.3 Epoching 
EEG data is recorded continuously and is usually represented as a two-dimensional matrix where 

the rows are electrodes and columns are time. Epoching means dividing the data set in segments 
that are often locked around task-related changes in the EEG. It is not necessary in resting-state 

datasets but can be used to sort the data into non-overlapping segments to easily discard or keep 

epochs that are heavily affected by noise or artifacts. As can be seen in the Figure 6 epoch after 

event 2 and after event 3 is selected while the epoch after event 1 was considered un-useable. 

One thing to consider when choosing epochs is to make sure their length is appropriate. For ERPs 

the epochs can be as long as the time period of interest plus a baseline period. However, if the 
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analysis involve filtering edge artifact may become a problem due to transients created from 

filtering. 

 

Figure 6: The figure shows two EEG signals being epoched into three 2-second-long epochs where two of them are marked 
while the first one is unmarked. Due to the large artifact, which is likely from some type of movement, the first epoch is 
considered un-useable and is hence not marked. 

 

2.3 Connectivity 
Brain networks can be derived from different types of observational techniques Specifically they 

can be distinguished in either structural connectivity, functional connectivity or effective 

connectivity networks.15 

Structural connectivity describes the anatomical connections among a set of neural elements. 

When used to analyze the human brain, structural connections most often correspond to white 

matter projections linking cortical and subcortical regions. This kind of connectivity is relatively 

stable on time scales of seconds to minutes but may change during longer time scales of hours to 

days due to plastic experiences. In neuroimaging studies structural connectivity consists of a set 

of undirected links due to the impossibility to evaluate the directionality of projectionsfssd.15 

Functional connectivity corresponds to temporal correlations of activity and may occur between 

pairs anatomically unconnected regions. These times series data may be derived from various 

techniques such as EEG, MEG or fMRI. The data can be analyzed in numerous ways and are all 

based upon a correlation measure. The presence of a statistical relationship between two neural 

elements is often interpreted as a sign of functional coupling however, the presence of such a 

correlation does not imply a causal relationship15. Functional connectivity is a highly dynamic 

and time-dependent measure. It often changes in matters of tens or hundreds of milliseconds15 

as the connections are continually modulated by stimuli and task context.10,16,17 

Effective connectivity attempts to measure directed causality in a network and identify which 

mechanisms causes which reactions. Thus, effective connectivity networks are time- and task-

dependent in nature. Effective connectivity may be view as the union of structural and functional 
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connectivity. However, most studies are still carried out on either structural or functional 

connectivity data.10,15,16,17 

In Figure 7 the different connectivity types are described. The top images display how the 

elements interact with each other while the bottom part illustrate the connectivity matrix from 

the same network. In the effective connectivity the connection matrix is not symmetric which can 

be seen that the connection between two elements not necessarily is the same in a causal 

network. 

 

 

Figure 7: The image displays how the different connectivity measures interact among elements in the network. It also 
displays the connectivity matrix created from said networks. The image is taken from Sporns article about brain 
connectivity on Scholarpedia17. 

 

2.4 Graph Theory 
This theory section is based on several books about graph theory and graph theory in spectral 

analysis. If there is an interest for a deeper understanding they are all referenced in the 

bibliography of the thesis.18,19,20,21,22 

A graph may be used to illustrate any information that can be modelled both as objects and 

relationships between said objects. Graph theory is the study of those graphs consisting in the 

definition, computation and analysis of different metrics that reflect and summarize inherent 

properties such as nodal importance or topological properties.  

A graph, 𝐺(𝑁, 𝐸) consists of a set of nodes, 𝑁(𝐺), and a set of edges, 𝐸(𝐺), connecting the nodes to 

each other. The two nodes associated with an edge, 𝑒, are usually called end-nodes of 𝑒. The edge 

between two nodes, 𝑢 and 𝑣, are denoted by 𝑒(𝑢, 𝑣). The number of nodes in a graph is often 

denoted 𝑛 and the number of edges as 𝑚. Generally, graphs are drawn by representing each node 
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with a point or a small circle and each edge by a line segment between its two end-nodes, see 

Figure 8. 

 

Figure 8: The figure shows a typical graph with 7 nodes and 9 edges where edge h is a loop. Due to the loop at edge h and 
the multi edge between node 5 and 6 this is not a simple graph but a multigraph instead. 

A loop is an edge whose end-nodes are the same node, see edge ℎ in Figure 8. Other types of 

looped structures are multiple edges. These are edges with the same pair of end-nodes, edge 𝑖 and 

edge 𝑗 are an example of multiple edges. A graph that contains neither loops nor multiple edges 

is called a simple graph. If there are any loops or multiple edges the graph is instead called a 

multigraph. A graph can also be directed or undirected which reflects whether the edges have a 

direction, i.e. in a directed graph the connection is only valid in the direction assigned to it. In an 

undirected graph on the other hand the connection goes both ways. Whether a graph is directed 

or undirected is most often decided by the type of information that is being modeled. A graph is 

called weighted graph if a weight is assigned to each node or edge. If the weight is assigned to the 

edges it could reflect the distance or connectivity between nodes or if the weight is assigned to 

the nodes it can reflect nodal importance instead. If no weight is assigned to the edges the graph 

is often referred to as binary. The last definitions involve the nodes connected to each other. If 

𝑒 = (𝑢, 𝑣) then the two nodes 𝑢 and 𝑣 are said to be adjacent in the graph 𝐺 or to be neighbours 

in graph 𝐺. On the other hand, edge 𝑒 is said to be incident to node 𝑢 and 𝑣. With clean resting-

state EEG data with 𝑁 -channels the graph theoretical analysis is usually done in one of the 

following ways. 23 

The first approach calculates the connectivity matrix and considers a threshold 𝑇 . The 

connectivity matrix, i.e. the graph, gets binarized by setting all weights below 𝑇 to zero and the 

weights equal or over 𝑇 to one, see Figure 9. 
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Figure 9: The left image displays the phase lag index between each electrode in a weighted network where the weight 
corresponds to the color in the color bar. The image to the right is the same network but binarized at 0.5.  

If the weight matrix was symmetric the corresponding graph will be undirected whereas if the 

weight matrix was asymmetrical the corresponding graph will be directed. This entirely depends 

on the type of information the weight matrix is based upon. The number of nodes in the graph 

will always be 𝑁 but the number of edges, 𝑚, depends on what threshold is used.23 

The second approach to graph analysis is to not binarize the weight matrix and instead use all 

edges with their respective weights. In this case the maximum number of edges is (𝑁 − 1)𝑁/2. 

This results in a weighted graph and requires specific metrics to characterize it which may or may 

not be applicable to binary graphs.23 

Alternatively, one could also combine both methods and keep the weights assigned to edges over 

a specified threshold. This is more common when larger networks are analyzed, and a weighted 

network is preferable where it becomes impractical to keep all edges.23 

A problem with these design methods is the threshold 𝑇. When comparing two networks with the 

same 𝑁 and 𝑇 it is very unlikely that they’ll have the same 𝑚. The value 𝑚 does however influence 

several common graph theoretical metrics like the clustering coefficient and path length. This 

means that the chosen threshold functions as a bias in further calculations because it changes 𝑚. 
Another problem is the choice of 𝑇 , which is essentially arbitrary. One could address this by 

considering a range of values of 𝑇 but then these ranges become arbitrary and the value of each 

𝑇  is still biased. A range of 𝑇  values also causes problems with the statistical analysis due to 

separate tests will have to be done for each value of 𝑇, increasing the likelihood of type 1 error.23 

Two solutions have been proposed, fixing 𝑚 and comparison with random control networks to 

create normalized metrics. To fixate 𝑚, 𝑇 can be chosen separately for each graph to be compared 

such that all graphs have the same 𝑚. This will solve the bias arising from different values of 𝑚 

but introduce a new problem, proper choice of the value of 𝑚 . Another option would be to 

consider random graphs with the same 𝑁, 𝑇 and 𝑚. These graphs can be obtained by randomly 

shuffling the original graph and create a normalization factor by computing the graph theory 

metrics of interest on the randomized graphs as well and use the mean of those as a normalization 

value, see Figure 10. Normalization does however not solve all the bias problems24 and leaves an 

open choice of proper choice of 𝑚. A bias is still present due to normalization effects on different 

types of network’s properties, meaning that depending on the type of network the normalization 

process increases or decreases certain metrics more.23,24 
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Figure 10: The image illustrates how to generate a normalized value of the characteristic path length 
(𝐿), 𝑎 𝑐𝑜𝑚𝑚𝑜𝑛 𝑔𝑟𝑎𝑝ℎ 𝑡ℎ𝑒𝑜𝑟𝑦 𝑚𝑒𝑡𝑟𝑖𝑐. Note that the number of edges is kept constant in the randomization process. This 
is to not introduce a bias in the normalization factor. 

In the case of weighted graphs, problems occur based on the sum of the weights, 𝑊. The total 

weight will affect both the weighted clustering coefficient and the weighted path length for both 

the original graph and randomly shuffled graphs if that ‘solution’ is applied. A higher 𝑊 results in 

both higher clustering coefficient and higher path length which means a bias will be present if 

two graphs have different 𝑊. The normalization process discussed in the previous paragraph 

reduces the bias but does not solve it completely.23 

Stam et. al23 proposed creating a so called minimum spanning tree (MST) as a means to obtain an 

unbiased representation of a weighted network. 

 

2.4.1 Minimum Spanning Tree 
A MST is an acyclic subgraph, i.e. a simple graph, that connects all nodes and minimizes the 

weights between the nodes in the network25. MST is designed to avoid biases caused by the 

differences in connectivity in networks with the same number of nodes23. The MST always 

contains 𝑚 = 𝑁 − 1  edges, where 𝑁  is the number of nodes. An MST is created by applying 

Kruskal’s algorithm which iteratively selects the edges in the connectivity matrix with the lowest 

weights and adds the edge to the tree only if no loops are created. The result is hence a graph with 

no cycles or loops in which all nodes are connected23, see Figure 11. 

An MST constructed from a weighted graph with unique weights is unique. This uniqueness 

discards the need to choose and arbitrary threshold or value of 𝑚 to reconstruct the graph. MST 

have the advantage of focusing on the most important subgraph and avoid biases due to 

differences in 𝑊 since after the tree has been constructed the edges are binary. A tree is also a 

much simpler structure and simplifies the analysis of the graph. However, the downside with this 

approach is that some properties of a graph is not reflected by the MST, particularly those that 

are based on cycles. 
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Figure 11: The figure shows a minimum spanning tree made from the phase lag index from data in the beta frequency 
band. Each electrode is represented by one node in the network. 

2.5 Statistical Analysis 
There are several methods to evaluate whether a result is statistically significant or not. The type 

of test that should be used depends on the type of data analyzed and its distribution.26 

The most common way to use statistical analysis is to use hypothesis testing. This is a method of 

making statistical decisions using experimental data. This data is evaluated regarding two 

different hypotheses, the null hypothesis (𝐻0) or the alternative hypothesis (𝐻1). An example of 

null hypothesis is for example that the samples under analysis come from to the same 

distribution: this can be evinced by showing that the mean of the two sample are equal at a certain 

level of confidence. The opposite case, the alternative hypothesis, affirms that the two samples 

come from two different distributions instead. The statistical analysis then evaluates the 
probability that the means are different. Usually a threshold, 𝛼 , is decided upon which the 

probability needs to be less than. This probability is usually 5%, 1% or 0.1%.26 

To begin with, the number of groups to compare between is relevant. Depending on whether 

there are one, two, three or more groups, different statistical tests can be employed. In this study 

the number of groups are two, as there are two conditions (pain and no pain). 26 

Next the distribution of the data is relevant. Depending on the normality of the distribution either 

a parametric or nonparametric test is suitable. Many tests such as ANOVA or t-tests assume that 

the data follows a normal distribution. Tests that assume the data is normal distributed is called 

parametric tests. This might seem like a restrictive constraint, however surprisingly many types 

of biological data follow the normal distribution when a large enough sample is available. In some 

situations, usually when the samples are small, when the data is not normal distributed so-called 
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nonparametric tests are needed. Nonparametric tests can be applied regardless of the data 

distribution. Most parametric tests have a nonparametric variant. 26 

Nonparametric tests are thus more robust than its parametric counterpart. However, 

nonparametric tests usually have less power. This means that the probability that the test will 

reject the null hypothesis when the alternative hypothesis is true is less likely i.e., they tend to 

make more type II errors, false negatives. 26 

To decide whether a parametric or nonparametric test is more suitable, a normality test can be 

used. Common tests are D’Agostino-Pearson normality test or Kolmogorov-Smirnov test but there 

are several others that are used as well. Normality tests are also based on statistical analysis 

which means that they lose power when the samples are not large enough. This is because small 

samples do not contain enough information to decide whether the distribution is normal or not. 
26 

Data can also be dependent or independent between samples. Data is considered dependent 

when we expect it to vary less between certain groups of the data, for example mothers and 

daughters in a genetic study. 26 

Further corrections must be done when several metrics are analyzed at the same time due to the 

cumulative chance of getting false positives. If the tests are done at the 5%-level, there is still a 

5% chance of incorrectly rejecting the null hypothesis. When instead 100 tests are done, and all 

corresponding null hypothesis are true it is expected to be 5 incorrect rejections. If the tests are 

statistically independent from each other the probability of at least incorrectly reject one null 

hypothesis is 1 − 0.95100 = 0.994 i.e. 99.6% chance. Hence a multiple comparison is performed 

when several metrics are analyzed. 26 

A common multiple comparison correction is the so-called Bonferroni correction. The Bonferroni 

correction does not require any specific distribution of the data nor any specific dependences. It 

is however, one of the more conservative multiple comparison methods which means it have a 

lot of power when it neglects the null hypothesis but that is at the cost of more false negatives. 

The Bonferroni correction is done by dividing the threshold by the number of variables being 

analyzed, 𝛼𝐵𝑜𝑛 =  
𝛼

𝑚
 where m is the number of metrics analyzed. 26  
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3 Method 
This project intends to analyze brain networks for both healthy subjects and patients suffering 

from PLP with a graph theory approach based on EEG data to determine topological differences. 

EEG data have a high temporal resolution in the range of milliseconds. Functional connectivity is 

highly time dependent and is constantly changing15 which makes EEG more suitable than fMRI 

when the characteristics of the network is to be evaluated. 

 

3.1 Participants 
Data from ten amputees with PLP were collected. The age of the amputees with PLP varied from 

17 to 66 with a mean age of 47 years old, two of them were females and eight of them were males. 

The amputee’s PLP pain ranged from zero to four on the weighted pain distribution27 (WPD) pain 

scale. Data was also gathered from five healthy subjects, two of them were females and three of 

them were males. These subjects age ranged from 22 to 42 with a mean age of 28 years old. No 

history of neurological or psychiatric illness were present in the group of amputees or healthy 

controls. The paradigm of the experiment was explained to all participants and a written 

informed consent was collected prior to participating in the experiment. This study was approved 

by the Västra Götalandsregionens ethical committee and conformed to the ethical aspects of the 

Declaration of Helsinki.   

 

3.2 Procedure 
The EEG sessions started with preparation and placement of electrodes. The participants were 

asked to preform several different tasks during the recordings however only the resting state 

data were used in this study. The resting state data were collected during two different 

conditions, eyes-open and eyes-closed. During the eyes-open recording the participant were 

instructed to watch a white cross with a grey background on a computer screen to prevent the 

eyes from fatiguing. The screen was placed approximately 80 cm away from the participant. The 

recordings were at least five minutes long to ensure enough artifact free data were collected. The 

eyes-closed experiment was executed in a similar fashion but without the screen. During the 

recording the laboratory was emptied to avoid distractions. The data from resting state  

eyes-closed was used in the graph theory analysis. 

 

3.3 EEG Recordings 
The EEG data was recorded using Guger Technologies active electrode system, g.HIamp-

RESEARCH, with 64 channels. Later in the study the system got upgraded to the 128-channel 

equivalent. Even though data was collected from all 128 channels only the same electrodes were 

used in the network analysis. The relevant electrodes was placed according to the extended 10-

10 system (FPZ,1,2, AFZ,3,4,7,8, FZ,1,2,3,4,5,6,7,8, FCZ,1,2,3,4,5,6, FT7,8, CZ,1,2,3,4,5,6, CPZ,1,2,3,4,5,6, TP7,8, PZ,1,2,3,4,5,6,7,8, 

POZ,3,4,7,8, OZ,1,2, A1,2, see Figure 12 for a graphical and an image of the experimental electrode 

setup) and applied using an elastic electrode cap, g.GAMMAcap. The recordings were done with 

AFZ as the ground and no electrode was used as a reference during the recordings. However, in 

the 64-channel recordings A2 was recorded and in the 128-channel recordings A1 and A2 was 

recorded to enable offline re-referencing. Four electrodes were also placed around the eyes in the 

128-channel recordings to more easily detect eye-movements for artifact removal. No filters were 

use during the data acquisition and a sampling frequency of 2400 Hz were used. The analog to 
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digital converter precision was 24 bits. The electrodes used were active Ag/AgCl electrodes, 

g.SCARABEO. 

The positions of the electrodes were measured with the Polaris Krios. A handheld digitizing 

scanner designed to localize electrodes or sensors for EEG, MEG, NIRS, PSG and ECG. The 

electrodes positions were saved and labeled in Polaris Krios software and exported. 

 

 

Figure 12: The figure on the left show the possible electrode positions in the g.GAMMAcap. The image on the right is the 
g.GAMMAcap placed on a participant where 128 electrodes are connected. Note that even though recordings where made 
with all 128 electrodes only 58 were used in the analysis. 

 

3.4 EEG Preprocessing 
The EEG-recordings were imported in EEGLAB v.14.1.2b28, a MATLAB based open toolbox, 

together with the electrode positions.  The data was band pass filtered between 0.5-90 Hz using 

a zero-phase FIR filter to remove linear trends and high frequency noise. The data was also notch 

filtered between 45-55 Hz to remove the powerline noise. The main purpose of the filtering was 

to improve results from ICA. The first 15 seconds of each data set was then removed to discard 

data heavily affected by transients from the filtering process and artifacts created from the 

initiation of the EEG-recording. ICA was performed to remove blinks, eye-movements and other 

stereotyped artifacts from the data14. The “runica” algorithm implemented in EEGLAB was used 

for improved detection of sub-Gaussian distributions29. The independent components related to 

artifacts was identified with the automatic algorithm ADJUST30. ADJUST uses artifact-specific 

spatial and temporal features that have been optimized to capture blinks, eye movements and 

generic discontinuities. The channels representing these artifacts was set to zero before 

retransformation back from independent components. ICA was applied to the full data set to 

ensure that the algorithm learnt all weights needed for full decomposition. ICA decomposition 

tends to be more regular and produce more dipolar maps with a higher amount of data points, 

but it is recommended to use at least 25 ∙ 𝑁2 data points to learn 𝑁 weights13. In the cases where 

a channel is completely contaminated this channel is interpolated from the remaining channels.  

Once again, the data was filtered but now into the relevant frequency bands, delta (0.5-4 Hz), 

theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), low gamma (30-45 Hz) and high gamma (55-90). 

The first 15 seconds of the recordings had to be removed in order to avoid transients from the 

filtering process. All filters used during the preprocessing was FIR filters of order 15840.  
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From the cleaned data 10 artifact free epochs were manually extracted which were 2 s long. 

Functional connectivity is highly time dependent and constantly changing as mentioned before 

hence a short time interval is preferred however if a shorter time window than 2 s was to be used 

frequencies lower than 0.5 Hz would not be possible to register. Therefore, to get results in the 

common frequency bands a shorter time window was not used. Lastly the data was re-referenced 

to the average of all scalp channels. 

Filters of this order are very slow and creates significant transients lasting several seconds but 

needed when step cut-off edges are needed as in the 0.5 Hz limit. Since these transients were 

already present from the first cut-off edge the same order was used for the remaining filters as 

well. Another argument to use high-order filters is to improve the results from the PLI analysis. 

Since it requires band-pass filtering over the relevant frequencies steep cut-off edges could be 

preferable. 

 

 

Figure 13: The Figure displays the preprocessing pipeline which describes how data from the g.HIamp becomes processed 
to enable analysis. 

 

3.5 Functional Connectivity 
In order to measure the connectivity between the cortical regions the functional connectivity 

between all pairs of electrodes were evaluated. In this project PLI was used to determine the 

strength of the functional connectivity between nodes, electrodes, in the network. PLI is a 

measure of phase synchronization designed to mitigate spurious phase synchrony resulting from 

common sources for example volume conduction. PLI is defined to quantify the asymmetry of the 

distribution of phase differences between two signals. If the phase synchrony is due common 

sources, then the phase differences are expected to be symmetrically distributed around zero. 

The calculation of PLI involves first bandpass filtering around the band of interest and then 

calculating the instantaneous phase angle: 𝜑(𝑡) = 𝑎𝑟𝑐𝑡𝑎𝑛
�̃�(𝑡)

𝑥
, where �̃�(𝑡)  is the Hilbert 

transform of 𝑥(𝑡). The PLI between two signals is calculated as: 

𝑃𝐿𝐼𝑥𝑦 =  
1

𝑁
|∑ 𝑠𝑖𝑔𝑛 (𝜑𝑥(𝑡) −  𝜑𝑦(𝑡))

𝑁

𝑡=1

| 

The PLI ranged from 0 to 1 where 0 represents no synchronization or a coupling centered around 

0 (mod 𝜋) and 1 represents perfect synchronization.10 

 

3.6 Minimum Spanning Trees 
An MST was calculated for each PLI matrix. In this project the weights are defined as 1 − 𝑃𝑆𝐼 to 

maximize the connection strength instead of minimizing it. Even though the weights in 𝐺𝑤 are 

used to create the MST, the tree itself is binary meaning an edge either do exist or doesn’t. There 
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are numerous MST metrics that can be used to describe the topological properties of the tree23. 

In this study the metrics in Table 1. Summary over graph metrics. were examined. These metrics 

can be divided into two groups, nodal properties and topological properties. Nodal properties 

refer to metrics that describes a single node in the network while topological properties describe 

the structure of the network. 

 

3.6.1 Nodal properties 
The degree (𝐷 ) of a node is the number of edges connected to it. The degree is a simple 

measurement of connectivity of a specific node as it directly reflects its number of connections.  

Eccentricity (𝐸) is the local largest distance i.e. the largest distance between a specific node and 
any other node. Eccentricity expresses how central a node is to the MST. A central node has a low 

eccentricity value.  

The betweenness centrality (𝐵𝐶) of a given node 𝑢 is the number of shortest paths between any 

pair of nodes, 𝑖 and 𝑗, going through that node divided by the total number of paths between 𝑖 and 

𝑗. The 𝐵𝐶 value measures how important a node is to the flow of information between all other 

nodes in the network and ranges from 0 to 1. The nodes with the highest 𝐵𝐶 have the highest load 

in the network. Degree, eccentricity and betweenness centrality measures relative nodal 

importance and can be used to discern critical nodes in the network. A node with a high centrality 

is characterized as a network hub. 

 

3.6.2 Topological properties 
The diameter of the MST is defined as the largest distance between any two nodes in graph. The 

upper limit of the diameter becomes 𝑑 = 𝑚 − 𝐿 + 2  where 𝑚  is the number of edges in the 

network and 𝐿 is the leaf fraction. The diameter is the graphs maximum eccentricity and hence 

reflects the efficiency of the network. 

Leaf fraction (𝐿) refers to the number of nodes in the MST with degree = 1. Leaf fraction quantifies 

whether the tree have a more chain-like structure, low leaf fraction, or more star-like structure, 

high leaf fraction. 

Tree hierarchy ( 𝑇ℎ ) indicates how well balanced a network is with respect to efficient 

communication and risk of overload of hub nodes. 

𝑇ℎ =  
𝐿

2𝑚𝐵𝐶𝑚𝑎𝑥
 

𝑇ℎ is proposed to be related to optimal network performance31.  

The degree correlation 𝑅 indicate whether the degree of a node is related to the degree of its 

neighboring nodes to which it is connected. 𝑅 is computed by calculating the Pearson correlation 

between the degrees of neighboring nodes. Networks with a negative degree correlation is often 

called assertive while networks with negative degree correlation is called disassortative. 

Kappa (𝜅) is the width of 𝑅 and reflect the spread of information in the network. High kappa 

indicates high-degree nodes which in turn leads to more synchronization in the tree. However, it 

also makes the network more vulnerable if such a node is damaged.  

Finally, the mean of all weights in 𝐺𝑤 is computed to extract the mean connectivity in the tree. 
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All metrics were calculated in MATLAB with either custom made scripts or available toolboxes. 

The toolboxes used were EEGLAB v.14.1.2b28, the EEGLAB plugin ADJUST30,32and a function to 

test the normality of a data distribution by Öner et. al.33. 

Table 1. Summary over graph metrics. 

Metrics Definition 

𝐷 Degree Number of neighbors for a given node in the MST. 

𝐿 Leaf Fraction Fraction of nodes with degree = 1 (leaves) in the 
MST. 

𝑑 Diameter Largest distance between any two nodes of the 
tree. 

𝐸 Eccentricity Largest distance between a specific node and any 
other node in the tree. 

𝐵𝐶 Betweenness Centrality Normalized value representing the number of 
shortest paths going through a certain node. 

𝑇ℎ Tree Hierarchy Indicates the balance of the network with respect 
to efficient communication and risk of overload of 
hub nodes. 

𝑅 Degree Correlation Topological measure which describes whether a 
node is prone to connect with other nodes of the 
same degree 

𝜅 Kappa Reflect the spread of information in the network. 
High 𝑘 indicate high-degree nodes which leads to 
more synchronization in the tree 

 Mean Connectivity The mean of the connectivity weights used to 
create the MST. 

 

 

3.7 Statistical Comparison 
The null hypothesis used in the statistical analysis was that the mean of the metrics data 

distributions was equal while the alternative hypothesis was the opposite, that they were 

unequal. The comparison was made between participants with PLP and healthy controls without 

PLP. The evaluation was made using the Welch’s t-test or the Wilcoxon rank sum test. This was 

because the data acquired were independent, the variance of the two sample groups was unequal, 

and the two sample sizes were unequal. If the data were normally distributed Welch’s t-test was 
adopted and if not, Wilcoxon’s rank sum test was applied instead. To test the normality of the 

data, the D’Agostino & Pearson test was used.34 

This way a table over the mean of each metrics and its corresponding p and test value, t or rank 

sum, was computed.35,36 Multiple comparison corrections were done both as the Bonferroni 

correction and FDR-correction. The multiple comparison correction is not presented in section 4, 

Result, but is discussed in section 5, Discussion.   



 

29 

 

4 Result 
Before the metrics were compared the data-distribution was examined. The result from the 

normal distribution analysis is presented in Table 2. A one indicates that the data passed the 

D’Agostino & Pearson test while a zero indicates that the data is not normal distributed. Several 

other tests were also used to ensure that not only the skewness and kurtosis indicate normal 

distribution. The result from all 10 tests examined can be found in Appendix A. 

Table 2: The table show which of the metrics in the different frequency bands passed the D’Agostino & Pearson test for 
normality. A one in the table indicates that the data is normal distributed while a zero indicate that it is not. 

Frequency 

band 

Metric 

 
Delta 

 
Theta 

 
Alpha 

 
Beta 

Low-
Gamma 

High-
Gamma 

𝒔𝒕𝒅 𝒐𝒇 𝑫 0 0 1 0 0 0 
𝑳 0 0 1 1 0 0 
𝒅 1 1 0 1 1 1 
𝑬 1 1 0 1 1 1 

𝑩𝑪 1 1 0 1 1 0 
𝑻𝒉 1 1 1 1 0 0 
𝑹 1 1 0 0 1 1 
𝜿 0 0 0 0 0 0 

Mean PLI 0 1 0 0 0 0 

 

The results of the statistical comparison between the groups, control without pain and amputee 

with PLP, is presented in Table 3 to Table 8. The section is divided into the different frequency 

bands analyzed and all results are presented with 3 significant digits.  

4.1 Delta 0.5-4 Hz 
Below, the result of the statistical comparison is presented for the delta frequency band. The 

metrics standard deviation of the degree, the leaf fraction, the diameter, the eccentricity, the 

betweenness centrality, the tree hierarchy and kappa were considered statistically different 

between the groups at a threshold of 𝑝 = 0.05 . Any metric marked as bold is considered 

statistically significant. Note that this threshold is not Bonferroni corrected. 

Table 3: The table shows the mean and variance of the metrics of the network. It also shows how the result of the statistical 
analysis between the groups. Any metric marked as bold is considered statistically significant at the 0.05 threshold. Note 
that this threshold is not Bonferroni corrected. 

 Control Amputee (PLP) Group Comparison 

 M STD M STD 𝒕 Rank Sum 𝒑 

𝒔𝒕𝒅 𝒐𝒇 𝑫 1.42 0.27 1.56 0.330 - 2900 0.00669 

𝑳 28.8 3.44 30.2 3.24 - 3020 0.0283 

𝒅 16.7 2.87 15.5 2.74 2.36 - 0.0201 

𝑬 13.1 2.13 12.2 2.06 2.60 - 0.0107 

𝑩𝑪 0.0521 0.00828 0.0477 0.00787 3.09 - 0.00264 

𝑻𝒉 0.794 0.0879 0.836 0.0905 -2.70 - 0.00817 

𝑅 -0.296 0.0937 -0.293 0.0866 -0.210 - 0.834 

𝜿 7.92 2.35 9.01 3.08 - 3070 0.0467 

Mean PLI 0.370 0.0542 0.364 0.0650 - 3550 0.908 
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4.2 Theta 4-8 Hz 
Below, the result of the statistical comparison is presented for the theta frequency band. No 

metrics were considered statistically different between the groups at a threshold of 𝑝 = 0.05. Any 

metric marked as bold is considered statistically significant. Note that this threshold is not 

Bonferroni corrected. 

Table 4: The table shows the mean and variance of the metrics of the network. It also shows how the result of the statistical 
analysis between the groups. Any metric marked as bold is considered statistically significant at the 0.05 threshold. Note 
that this threshold is not Bonferroni corrected. 

 

 

4.3 Alpha 8-12 Hz 
Below, the result of the statistical comparison is presented for the alpha frequency band. The 

metrics standard deviation of the degree and the leaf fraction were considered statistically 

different between the groups at a threshold of 𝑝 = 0.05. Any metric marked as bold is considered 

statistically significant. Note that this threshold is not Bonferroni corrected. 

Table 5: The table shows the mean and variance of the metrics of the network. It also shows how the result of the statistical 
analysis between the groups. Any metric marked as bold is considered statistically significant at the 0.05 threshold. Note 
that this threshold is not Bonferroni corrected. 

 Control Amputee (PLP) Group Comparison 

 M STD M STD 𝒕 Rank Sum 𝒑 

𝒔𝒕𝒅 𝒐𝒇 𝑫 1.25 0.180 1.32 0.211 -2.06 - 0.0418 

𝑳 25.96 3.18 27.2 3.34 -2.19 - 0.0308 

𝑑 20.2 3.58 19.4 3.63 - 3830 0.189 

𝐸 15.9 2.77 15.2 2.63 - 3830 0.189 

𝐵𝐶 0.0629 0.0101 0.600 0.00931 - 3900 0.107 

𝑇ℎ 0.773 0.105 0.810 0.115 -1.89 - 0.0608 

𝑅 -0.286 0.0732 -0.297 0.0942 - 3680 0.507 

𝜅 7.40 1.87 7.74 2.05 - 3300 0.316 

Mean PLI 0.320 0.0811 0.297 0.0519 - 3880 0.123 

 

 Control Amputee (PLP) Group Comparison 

 M STD M STD 𝒕 Rank Sum 𝒑 

𝑠𝑡𝑑 𝑜𝑓 𝐷 1.14 0.180 1.12 0.172 - 3600 0.762 

𝐿 23.8 3.03 24.0 2.98 - 3540 0.956 

𝑑 21.5 3.44 20.9 3.41 0.937 - 0.351 

𝐸 16.7 2.53 16.3 2.53 0.705 - 0.482 

𝐵𝐶 0.0652 0.00846 0.0635 0.00862 0.505 - 0.614 

𝑇ℎ 0.703 0.106 0.701 0.0981 0.109 - 0.913 

𝑅 -0.258 0.109 -0.255 0.0980 -0.138 - 0.890 

𝜅 6.28 1.51 6.19 1.48 - 3630 0.639 

Mean PLI 0.401 0.0280 0.401 0.0319 -0.0462 - 0.963 
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4.4 Beta 12-30 Hz 
Below, the result of the statistical comparison is presented for the beta frequency band. The mean 

PLI was considered statistically different between the groups at a threshold of 𝑝 = 0.05. Any 

metric marked as bold is considered statistically significant. Note that this threshold is not 

Bonferroni corrected 

Table 6: The table shows the mean and variance of the metrics of the network. It also shows how the result of the statistical 
analysis between the groups. Any metric marked as bold is considered statistically significant at the 0.05 threshold. Note 
that this threshold is not Bonferroni corrected. 

 Control Amputee (PLP) Group Comparison 
 M STD M STD 𝒕 Rank Sum 𝒑 

𝑠𝑡𝑑 𝑜𝑓 𝐷 1.06 0.163 1.07 0.150 - 3410 0.620 

𝐿 21.58 2.76 21.6 2.93 0.00447 - 0.996 

𝑑 23.18 2.95 23.7 4.05 -0.852 - 0.396 

𝐸 17.9 2.12 18.3 2.93 -0.972 - 0.333 

𝐵𝐶 0.0693 0.00746 0.0702 0.00950 -0.618 - 0.538 

𝑇ℎ 0.621 0.102 0.619 0.101 0.114 - 0.910 

𝑅 -0.225 0.0907 -0.209 0.020 - 3330 0.412 

𝜅 6.10 1.54 6.3 1.38 - 3320 0.352 

Mean PLI 0.441 0.0360 0.424 0.0358 - 4300 0.000831 

 

 

4.5 Low-Gamma 30-45 Hz 
Below, the result of the statistical comparison is presented for the delta frequency band. No 

metrics were considered statistically different between the groups at a threshold of 𝑝 = 0.05. Any 

metric marked as bold is considered statistically significant. Note that this threshold is not 

Bonferroni corrected 

Table 7: The table shows the mean and variance of the metrics of the network. It also shows how the result of the statistical 
analysis between the groups. Any metric marked as bold is considered statistically significant at the 0.05 threshold. Note 
that this threshold is not Bonferroni corrected. 

 Control Amputee (PLP) Group Comparison 

 M STD M STD 𝒕 Rank Sum 𝒑 

𝑠𝑡𝑑 𝑜𝑓 𝐷 1.06 0.172 1.06 0.202 - 3680 0.491 

𝐿 22.5 2.79 22.2 3.29 - 3740 0.349 

𝑑 22.0 2.68 21.0 3.28 1.86 - 0.0650 

𝐸 16.8 1.97 16.3 2.30 1.50 - 0.136 

𝐵𝐶 0.0651 0.00774 0.0644 0.00764 0.458 - 0.648 

𝑇ℎ 0.651 0.0940 0.648 0.109 - 3620 0.694 

𝑅 -0.234 0.0983 -0.215 0.113 -1.11 - 0.271 

𝜅 5.82 1.56 5.86 1.75 - 3530 0.968 

Mean PLI 0.535 0.0237 0.524 0.0292 - 3620 0.694 
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4.6 High-Gamma 55-90 Hz 
Below, the result of the statistical comparison is presented for the delta frequency band. No 

metrics were considered statistically different between the groups at a threshold of 𝑝 = 0.05. Any 

metric marked as bold is considered statistically significant. Note that this threshold is not 

Bonferroni corrected 

Table 8: The table shows the mean and variance of the metrics of the network. It also shows how the result of the statistical 
analysis between the groups. Any metric marked as bold is considered statistically significant at the 0.05 threshold. Note 
that this threshold is not Bonferroni corrected. 

 Control Amputee (PLP) Group Comparison 

 M STD M STD 𝒕 Rank Sum 𝒑 

𝑠𝑡𝑑 𝑜𝑓 𝐷 1.18 0.226 1.24 0.358 - 3560 0.891 

𝐿 24.16 3.83 24.0 5.30 - 3730 0.363 

𝑑 20.5 3.12 20.0 3.63 0.784 - 0.436 

𝐸 15.7 2.32 15.4 2.71 0.659 - 0.511 

𝐵𝐶 0.0607 0.00767 0.604 0.0100 - 3710 0.427 

𝑇ℎ 0.680 0.107 0.685 0.168 - 3740 0.352 

𝑅 -0.270 0.155 -0.242 0.160 -1.02 - 0.309 

𝜅 6.64 1.96 7.19 2.88 - 3440 0.709 

Mean PLI 0.571 0.0312 0.570 0.0479 - 3500 0.929 
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5 Discussion 
The aim of the project was to develop a functional system to create brain networks and evaluate 

which metrics could possibly be used as a bio marker for PLP. In this section the methods and 

results will be discussed with that as a basis. 

 

5.1 Method 
This section discusses what was taken into consideration when the methods for this project was 

established. It also discusses the possible changes that could be done in the future if a similar 

project or an extension of this study is to be made. 

 

5.1.1 Data Collection and Processing 
In the   
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Method section it was explained why EEG was preferred over other techniques such as fMRI and 

MEG. It can also be argued that EEG is cheaper and a more accessible method which could become 

an important factor if the research is continued. In the following subsection it is also discussed 

how handedness corrections could be made to lessen the differences between right- and 

lefthanded subjects. 

The filters in this study have an extremely high order. If the method is to be applied for real-time 

recordings such high rank filters are most likely not needed. The first band-pass filter and notch-

filter could be applied for the data at the same time with similar rank as used now (that’s being 

done in current software without problems) while small epochs get filtered into respective 

epochs by filters with a rank of around ten, for further analysis. 

The epoch selection could also be automated. There are a few functions in EEGLAB that enables 

automatic artifact detection. However, EEG is very subjective at times and currently there is no 

algorithms that do a better job than what can be done by simple observing the data, especially if 

the observer is experianced11. The amount of data in this study was not excessive to the point of 

requiring automation. Even though the author had little experience, with 7-minute-long 

recordings where a total of 20 seconds of data was extracted, artifact free epochs were rather 

easy to select. 

In the end eyes-closed resting state recordings were used to compute the graph theoretical 

metrics. There are no theoretical proofs that eyes-closed data would yield better result than eyes-

open. However, as mentioned in the Theory section “garbage in, garbage out”. The choice was 

made by simply observing which of the two types contained the least number of artifacts and was 

the least contaminated by unwanted noise. 

 

5.1.2 Participants 
In this project subjects without PLP are compared with subjects with PLP. Among the control 

subjects there was one participant who was an amputee but did not suffer from PLP. In a 

comparison study it is usually desired to only study one change between the groups. Hence at the 

beginning of the project three groups were considered healthy controls, amputees without PLP 

and amputees with PLP. A comparison between these three groups would have made a more 

powerful statement about the network changes in specifically PLP as one could claim that the 

observed changes originates from the PLP itself and not for example the amputation. It is also 

important to note that such a study might not be feasible due to the lack of possible participants. 

Today it is hard to recruit amputees with PLP during the duration of a  

6-month project. It is even harder to recruit amputees without PLP. This could be because of a 

lack of interest when the amputee is healthy but more likely because the sheer lack of amputees 

without PLP. 

Another factor that could be eliminated is handedness. Handedness is known to modulate neural 

responses in the brain37. Hence to really change as few attributes as possible between and in the 

groups all subjects should have their right hand as their dominant one and the amputation should 

have been done on said hand. Once again due to the lack of available subjects this might not be 

feasible. In total there are 4827 lower limb amputees in Sweden38.  What could be done instead is 

mirror the results to a predetermined handedness, i.e. all left side amputee’s EEG-data gets 

mirrored to the right side after the EEG recording.  

 



 

35 

 

5.1.3 Network study 
To begin with, the choice to make a global network study, i.e. the entire brain is analyzed, was 

based on successful studies of other diseases such as dyslexia29,39 and epilepsy40,41 among 

others42,43,44. Several studies have also been made on functional connectivity in PLP where they 

claim to have found a network-level reorganization of the human brain3,45. These studies have 

however not fully explored the entirety of the human brain network but have explored certain 

regions of interest and their connections, such as the somatosensory cortex and the default mode 

network. Hence an exploratory study could provide new findings.  

 

5.1.4 Functional Connectivity 
Functional connectivity can be measured by several different metrics. The choice of metrics can 

affect the outcome of a study if it is not well adjusted to the data or experiment. In this project PLI 

was used. What differs the PLI from other phase-based measure of connectivity is that it discards 

zero-phase lag. In an EEG study there is bound to be false connectivity between electrodes due to 

volume conduction or measuring of the same signal. This type of correlation is discarded with the 

PLI. However, this is not the only kind of signals which could have a zero-phase lag. There could 

be zero-phase lag between neural signals as well which would not contribute to the analysis when 

PLI is used. Another type of connectivity metrics broadly used are those based on amplitude 

rather than on phase. Whether or not to use phase-based or amplitude-based measures of 

connectivity depends on the application. Phase-based methods are more appropriate to tests 

hypothesis where phase and moment-by-moment changes in synchronization are considered, 

which neural communication is at least in the higher frequency bands46. An example of this is 

provided by a study by Kuntzelmam et. al.47 where they show that the coherence measure, which 

is based on amplitude, of functional connectivity was better suited for the slower frequency 

bands, delta and theta, while PLI, which is phase-based, produced more reliability in the faster 

frequency bands, alpha and beta. The same study also concluded that neither metric produced 

reliable results in the gamma frequency band. 

In a study by Harmeier et. al.48 the reproducibility of the PLI and the weighted phase lag index 

(wPLI) were tested on high-resolution EEG-recordings and both were considered to have good 

long-term test-retest-reliability.  This is a very important feature if these methods are to one day 

be used to identify potential biomarkers for PLP, and another argument why to use the PLI or the 

wPLI. 

What could be considered is using wPLI instead of the original PLI. wPLI is an extension to PLI 

that accounts for the magnitude of the phase difference as well. It has been reported to be less 

sensitive to noise48 but is not as well established as a method yet.  

 

5.1.5 Graph Theory 
There is a lot that could be said about the application of graph theory. As mentioned before there 

are several studies where graph theory and network studies have been a success and biomarkers 

among other things have been identified for different diseases. However, this doesn’t imply that 

there will always be network differences to be found that can be credited the researched 

condition, especially when not all possible metrics are evaluated.  

One could compute all known metrics in graph theory and search for a statistically significant 

difference between them. The first problem that occurs is that it is very time consuming. All 

metrics need to be found and then implemented correctly. Secondly, the more metrics that are 
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being examined the higher the probability that a special case occurs which would result in false 

results. In this project metrics was chosen to cover specific characteristics of a network such as 

centrality, load, efficiency and topology. Since previous studies3,45 had shown significant 

differences between healthy controls and amputees with PLP in the mean functional connectivity 

of the networks it was also considered a metric.  

 

5.1.6 Statistical Comparison 
Statistical comparisons lose more of its power the more metrics are examined. This is because it 

increases the likelihood of encountering a special case among the collected data. Hence, it is 

important to correct the results of the analyses for multiple comparisons. In every frequency 

band, nine different metrics are examined and in total there are six frequency bands. If a desired 

threshold is at  𝑝 = 0.05  before multiple comparison the Bonferroni correction would lie at  

𝑝 =  
0.05

9∙6
 ≈ 9.3 ∙ 10−4. This threshold is adapted to neglect the possible false positive, type I error, 

finds due to examining several metrics. However, it decreases the amount of type I errors at the 

cost of more type II errors, false negatives. In an exploratory study such as this one this might be 

an over correction. 

In exploratory studies it is common, since a lot of metrics are computed, to instead compute the 
false discovery rate (FDR)49. The FDR does instead compute the amount of “false discoveries” we 

can expect based on the computed 𝑝 -values and threshold. A 𝑞 -value threshold is then 

determined which represents the acceptable proportion of features that turn out to be false leads. 

In this study the 𝑞-threshold was determined to be 0.05 which means that 95% of the discoveries 

are probably true. The 𝑞-value was computed for all metrics and the results of the statistically 

significant metrics are presented in Table 9:  
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Table 9:The table show the previous computed 𝑝-value, their corrected FDR 𝑝-value and the corresponding 𝑞-value. 

Metric 𝒑 FDR-corrected 𝒑 𝒒 
𝑠𝑡𝑑 𝑜𝑓 𝐷 (delta) 0.00669 0.0956 0.0876 
𝐿 (delta) 0.0283 0.173 0.165 
𝑑 (delta) 0.0201 0.144 0.144 
𝐸 (delta) 0.0107 0.0918 0.0918 
𝐵𝐶 (delta) 0.00264 0.0566 0.0566 
𝑇ℎ (delta) 0.00817 0.0876 0.0876 
𝜅 (delta) 0.0467 0.200 0.200 
𝑠𝑡𝑑 𝑜𝑓 𝐷 (alpha) 0.0418 0.199 0.199 
𝐿 (alpha) 0.0308 0.165 0.165 

Mean PLI (beta) 0.000831 0.0356 0.0356 

 

The goal of this study was never to determine exactly what metric would be most suitable as a 

biomarker in PLP. Instead, the goal was to explore the possibility that graph theory can be used 

to detect network differences and where to continue the exploration. The FDR was computed 

using the FDR-function in MATLAB which employs the FDR-procedure introduced by Storey49. 

 

5.2 Results 
This section discusses the results from the graph theory application on the functional 

connectivity network. The discussion is divided into the different frequency bands, the same way 

they were previously presented. 

 

5.2.1 Delta 0.5-4 Hz 
The delta frequency band was the frequency span which included most, seven out of ten, of the 

statistically significant metrics without taking either the Bonferroni correction or FDR correction 

into account.  

The Bonferroni correction would demand a 𝑝-value of below 9.3 ∙ 10−4 to classify something as 

statistically significant. With this corrected 𝑝-value none of the metrics would be considered 

statistically significant. The same problem occurs after the FDR-correction as well. Not because 

they are all considered to be false positive findings but rather that their FDR-corrected 𝑝- value 

falls just short of the 0.05 threshold decided upon in the methods.  

The most promising metric in this frequency band in Bonferroni correction and FDR correction 

aspect were the betweenness centrality which could be an indication of being the most 

interesting metric to further investigate. 

 

5.2.2 Theta 4-8Hz 
The theta frequency band showed no statistically significant metric. None of the metrics showed 

even a slight trend towards being different between the groups.  

This is not a total loss, no results are also results. This indicates that the theta band might not be 

suitable to be used to identify PLP. This would mean for future studies that the theta frequency 

band could be left out and lesser amounts of data can be analyzed leaving a more forgiving 

multiple comparison correction. It is important though to not interpret this as there is no 
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difference in network differences in the theta frequency band between amputees with PLP and 

controls. Just as type I errors are more likely to occur when more data is examined so is type II 

errors. There are new papers that relate chronic pain with a change of neural oscillations in the 

theta frequency band50, this study however failed to find the same changes. 

 

5.2.3 Alpha 8-12 Hz and Beta 12-30 Hz 
Noxious stimuli have previously been correlated with alpha and beta oscillations in sensorimotor 

areas51. Hence, it is not surprising to find statistically significant metrics in these frequency bands.  

However, the standard deviation of the degree and the leaf fraction do not remain statistically 

significant after either the Bonferroni correction or the FDR-correction. The mean PLI on the 
other hand is the only metric whose 𝑝-value is below the Bonferroni corrected threshold in this 

study. The FDR analysis comes to the same conclusion that the mean PLI most likely is a metric 

in the alpha frequency band that is significantly different between the two groups and is unlikely 

due to multiple comparisons.  

The reason why just the mean PLI is different between the groups could be because of the 

importance pain. When you hurt yourself, the natural reaction is too quickly do something to 

relieve the pain. In the case of PLP it might be the same, the brain focuses on the pain and other 

functions and task becomes less important and becomes dulled which result in a lower 

connectivity.  

5.2.4 Low-Gamma 30-45 Hz and High-Gamma 55-90 Hz 
The gamma frequency band showed no statistically significant metric. The gamma frequency 

band have in several studies shown a correlation with chronic pain50,51,52 and was thus a 

frequency band with high expectations. Further research showed however that graph theoretical 

measure become less reliable for such high frequencies, independent of whether power or phase 

is used to evaluate the functional connectivity47. Other papers also show that EEG-data in such 

high frequencies may be heavily contaminated by EMG noise53. Thus, the lack of results in the 

gamma frequencies might be justified. 

 

5.3 Future Work 
As mentioned several times, this project was an exploratory project where graph theory 

application to EEG data was tested as a promising way to discern controls from amputees without 

PLP. All in all, it has been shown that several metrics manages to capture the differences between 

the groups but far from enough proof is available to claim either of them as a biomarker for PLP. 

The results of this project show a clear trend of more statistically different results in the lower 

frequency bands, especially in the delta frequencies. These were however not powerful enough 

to still show these results after a multiple comparison correction had been applied. However due 

to the exploratory nature of this project the delta frequency band shows the most promise for 

future study. Because there was not only a single metric that indicated a network difference 

between the groups but instead, most of them did. This could be an indication of a severe network 

differences between the groups in this frequency band. 

To further investigate the delta frequency band several adjustments could be done to adapt the 

methods to this frequency band. As mentioned before the choice of metric to evaluate the 

functional connectivity depends on the expected frequency of the data. In this study PLI was 

chosen above other metrics such as coherence due it being more reliable on higher frequencies. 
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If the delta frequency band is the focus of the study coherence would most likely be the better 

option. 

The MST have shown to be able to capture network differences between the two groups of 

subjects. Hence future studies should expect so see similar results. One could try to evaluate the 

same or equal metrics with more classical graph theory to determine which one is superior. 

However, the bias problems mentioned in the Theory section would still be a factor that have to 

be dealt with. 

The participants of this study are quite diverse, and little is done to close that gap. In a future 

study a method to properly mirror the data in cases where the amputation is done on different 

sides of the body could be implemented. One could also try to recruit healthy volunteers to match 

the amputees in gender, handedness and/or age since these things could affect graph theoretical 

measures25,31,35. Or better yet, create the control group from amputees without PLP, this might 

however not be feasible. 

One aspect that is not taken into consideration in this project is the intensity of PLP in the subjects. 

This is another parameter which could create a spectrum of differences in the graph theoretical 

metrics. Possible pain scales could be the Weighted Pain Distribution introduced by Max Ortiz-

Catalan27 or the more common pain rating index formed by the summed contribution of 15 

qualities of pain as in the short-form McGill Pain Questionnaire54. 
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6 Conclusion 
Th results from this study confirms that it is possible to identify network differences between 

subjects with PLP and subjects without PLP. Most of these differences were found in the delta 

frequency band but a few were also found in the alpha and beta frequency band. Even though 

differences were found that were considered statistically significant at the 0.05 threshold it is 

important to notice that all but one metrics, the mean PLI in the beta frequency band, were not 

considered statistically significant after either Bonferroni correction or FDR-correction. Even 
though more statistically significant results are desired as an exploratory study this should still 

be considered a success with respect to the aims of the project.  
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Appendix 

A. Tables over Normal Distribution Tests 
The following tables indicate which of the 10 normal distribution tests each metric passed in the 

different frequency bands. It is to be noted that the test defined in this reported to be the deciding 

factor was the D’Agostino & Pearson test. Each table takes up about one page of space and for 

easy of reading is hence dedicated a full page each. 

  



 

46 

 

Table 10: The table show which normal distribution tests each metric passed. This table is over the metrics computed from 
the delta frequency band, 0.5-4 Hz. A 1 in the table indicate that the test is passed at the 0.05 threshold and a 0 indicate 
that the test was failed. 
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Table 11: The table show which normal distribution tests each metric passed. This table is over the metrics computed from 
the theta frequency band, 4-8 Hz. A 1 in the table indicate that the test is passed at the 0.05 threshold and a 0 indicate that 
the test was failed. 
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Table 12: The table show which normal distribution tests each metric passed. This table is over the metrics computed from 
the alpha frequency band, 8-12 Hz. A 1 in the table indicate that the test is passed at the 0.05 threshold and a 0 indicate 
that the test was failed. 
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Table 13: The table show which normal distribution tests each metric passed. This table is over the metrics computed from 
the beta frequency band, 12-30 Hz. A 1 in the table indicate that the test is passed at the 0.05 threshold and a 0 indicate 
that the test was failed. 
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Table 14: The table show which normal distribution tests each metric passed. This table is over the metrics computed from 
the low-gamma frequency band, 30-45 Hz. A 1 in the table indicate that the test is passed at the 0.05 threshold and a 0 
indicate that the test was failed. 
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Table 15: The table show which normal distribution tests each metric passed. This table is over the metrics computed from 
the low-gamma frequency band, 45-90 Hz. A 1 in the table indicate that the test is passed at the 0.05 threshold and a 0 
indicate that the test was failed. 
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