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Abstract

Statistical disclosure control aims to ensure that no sensitive information can be acquired
from published statistical data. One method to achieve this for statistical tables is cell
suppression, in which cells that are regarded as sensitive are suppressed, i.e., removed
from the table. Tables generally include marginal totals from which the missing values
can be computed, wherefore additional, non-sensitive, cells must be suppressed. The
selection of a set of suppressions such that no sensitive information can be derived,
while the loss of information is minimized, is modelled as an optimization problem,
called the cell suppression problem. For tables with complex structures an optimization
solver is required to solve this problem. In use at the statistical agency Statistics Sweden
is the commercial solver Xpress. This thesis was motivated by the question of whether
an open source solver is a viable alternative.

The traditional approach, used at Statistics Sweden, is so-called complete cell sup-
pression, in which sensitive values are removed completely from the table. This results in
an integer linear optimization problem. Two other approaches, partial cell suppression
and combined cell suppression, in which suppressed cell values are replaced by intervals
covering the actual values, have been suggested. These approaches, resulting in linear
and mixed integer linear optimization problems, respectively, are largely untested in the
literature. We have studied the three approaches theoretically and compared them com-
putationally for test instances of varying size, using the commercial solver CPLEX and
the open source solver GLPK.

Our test results show that GLPK performs well on small instances when using com-
plete cell suppression. For partial cell suppression, GLPK managed to solve only a subset
of the small instances. For combined cell suppression, none of the test instances were
solved by GLPK. For complete and partial cell suppression, CPLEX found optimal so-
lutions to all instances tested, but for combined cell suppression solutions were obtained
only for the smaller instances. Our results also indicate that combined cell suppression
yields solutions with the desirable qualities of both the other approaches, but at the cost
of large computation times. We conclude that for large problem instances, a commercial
solver is required for solving the cell suppression problem in a reasonable time.

Keywords: cell suppression, statistical disclosure control, open source, integer program-
ming, linear optimization, mixed integer linear programming
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Chapter 1

Introduction

One of the main assignments for national statistical institutes is to gather and publish
data that can be used for decision-making, debate and research. One problem that might
appear when doing this is that part of the collected data contains sensitive information.
It is very important for statistical institutes not to reveal this sensitive information
both since there are laws regulating that data on individual respondents should not be
derivable from published data and to ensure that respondents participating in surveys
can trust that their information is safe. That participants feel safe is of course crucial
in order to be able to ensure high quality of future surveys.

Statistical disclosure control seeks to prevent unauthorized people from gaining sen-
sitive knowledge from published statistical data. This methodology is not only used
by statistical institutes but is also applied to fields such as health information and e-
commerce, where it is important to protect information.

Data is often published in tables and several methods have been developed to prevent
people from gathering sensitive information from such tables (see [12]). One such method
is cell suppression, in which cell values that are considered sensitive according to some
criterion are removed from the table. However, after all sensitive cells have been removed
it might still be possible to calculate these values from marginal totals. Therefore, the
removal of additional (non-sensitive) cells is necessary. The goal of the cell suppression
problem (CSP) is to determine which cells should be suppressed in order to make the
table safe while keeping the information loss to a minimum.

1.1 Background

The national statistical agency Statistics Sweden (Swedish: Statistiska centralbyrån,
SCB) uses the software τ-argus (see [23]), developed and maintained by Statistics
Netherlands, for disclosure control of statistical tables. In τ-argus the user can tabulate
the gathered microdata, choose a sensitivity rule for deciding which cells are considered
sensitive and then apply a method for producing a safe table. The method used by
SCB for magnitude tables is complete cell suppression, which is one of several possible
approaches to cell suppression.

As a large national agency, the tables SCB work with often exhibit complex structures
with hierarchies and multiple dimensions. In order to find the optimal set of suppressions
for such instances τ-argus requires a linear programming solver. In use at SCB is the
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1. Introduction 1.2. Purpose

optimization solver Xpress (see [8]) which is a commercial software and as such has a
yearly license fee. Naturally, it is of interest to SCB whether it is possible to cut down
on the cost of optimization software by using an open source solver instead.

Other approaches to cell suppression, called partial cell suppression and combined
cell suppression, have been proposed in [10]. In that article, preliminary results on a
slightly modified model for partial cell suppression suggested that this approach could
be both computationally efficient and reduce the information loss necessary to protect
the sensitive data. The mathematical model for combined cell suppression has only been
outlined theoretically and not thoroughly tested.

1.2 Purpose

The purpose of this thesis is twofold. The primary question prompting the realization
of this project was to investigate whether open source software is a viable alternative
to Xpress for solving the CSP. Secondly, we shall compare three different variations of
cell suppression—complete, partial and the combination thereof—and explore how they
relate to each other from a theoretical viewpoint.

The three cell suppression problems will be compared computationally and test re-
sults will be presented for the commercial solver CPLEX (see [13]) and the open source
solver GLPK (see [11]).

1.3 Delimitations

This thesis is concerned only with magnitude tables with continuous response variables,
as opposed to tables with integer data. These concepts are explained in the introduction
to Chapter 2. Also, the mathematical models of the CSP that are formulated aim to
protect tables only from external attackers and not from internal attackers, terms that
will be made precise in Section 2.1. These delimitations are discussed more in depth in
Section 3.1.1. Finally, the reason CPLEX is used instead of Xpress is that the perfor-
mance of these two solvers is comparable (see [19]), and that CPLEX is immediately
available for usage at Chalmers University of Technology, whereas Xpress is not.

1.4 Thesis outline

This thesis is divided into six chapters. Chapter 1, contains the introduction, motivation,
and aim of the work. In the following two chapters, theory is prestented. Chapter 2
is concered with the theory of primary suppressions, focusing on discussing what data
should be sensitive and analyzing the most common sensitivity rules. The second part of
the theory, Chapter 3, deals with secondary suppressions and what should be expected
from a safe table. The complete, partial and combined CSP are presented in Sections
3.2, 3.3, and 3.4, respectively. In Chapter 4 the algorithms for solving these models
are presented and in Chapter 5 the algorithms’ performance on seven different problem
instances is evaluated and compared. Conclusions are drawn in the sixth and final
chapter of the thesis.
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Chapter 2

Primary suppressions

A table consists of a number of spanning variables and one response variable. The
spanning variables contain information about the traits of the respondents, for instance
age group, geographic location, or business area, while the response variable is the trait
the table displays, e.g, income, turnover, or number of empolyees. Keeping this vague
definition in mind, there exist essentially three different types of tables: non-hierarchical,
hierarchical, and linked. Simple examples of the three types are illustrated in Figures 2.1–
2.3. A non-hierarchical table is self-explanatory and is usually considered as an “ordinary
table”. A hierarchical table is similar, with the difference that at least one of the spanning
variables contains different levels. For the table in Figure 2.2 the hierarchy is present
in that the column spanning variable can be divided into subcategories: Aa and Ab for
A, and Ba, Bb, and Bc for B. A linked table is simply two or more tables (hierarchical,
non-hierarcichal and of any dimension) that have cells in common. For an example
consider Figure 2.3 and note that the totals of A and B are present in both tables but
then divided into two different row spanning variables. This creates “links” between the
two tables and when considered as one table it is referred to as a linked table. In this
context the tables that make up the linked table are called subtables.

If each cell in a table contains the number of respondents within a certain category
the table is called a frequency or counting table, and if each cell contains the sum of
a particular quantity for each respondent belonging to that cell the table is called a
magnitude table.

The three types of tables in Figures 2.1–2.3 can be represented by one mathematical
entity. We say that a table is a vector a = [a1 . . . aN ]T , where ai ∈ R for all i, that
satisfies the constraints {

Ma = b,

li ≤ ai ≤ ui, i = 1, . . . , N,

1 2 Total
A 250 100 350
B 300 200 500

Total 550 300 850

Figure 2.1: A 2D non-hierarchical table.

3



2. Primary suppressions

1 2 Total
A 250 100 350

Aa 100 50 150
Ab 150 50 200
B 300 200 500

Ba 115 60 175
Bb 175 125 300
Bc 10 15 25

Total 550 300 850

Figure 2.2: A 2D hierarchical table with one hierarchical spanning variable.

1 2 Total
A 250 100 350

Aa 100 50 150
Ab 150 50 200
B 300 200 500

Ba 115 60 175
Bb 175 125 300
Bc 10 15 25

Total 550 300 850

I II Total
A 150 200 350
B 55 445 500

Total 205 645 850

Figure 2.3: A linked table with one hierarchical and one non-hierarchical subtable.

where M ∈ Rm×N and b ∈ Rm represent linear relations between cell values and li ∈ R
and ui ∈ R, the lower and upper external bounds, define intervals in which the table
entries ai are known to lie. Typically, tables contain cells whose values are the sums of
other values in the same table, in which case M ∈ {0,±1}m×N and b = 0.

Example 2.1. For the table in Figure 2.1, Ma = b is equivalent to the equations

a11 + a12 − a13 = 0,
a21 + a22 − a23 = 0,
a31 + a32 − a33 = 0,
a11 + a21 − a31 = 0,
a12 + a22 − a32 = 0,
a13 + a23 − a33 = 0. �

For hierarchical or linked tables, usually a larger number of equations need to be fulfilled.
The equations for the table in Figure 2.3 are given in Example 2.2, with aij denoting
the values in the left subtable and ãij denoting the values in the right subtable.

4



2.1. Sensitivity rules 2. Primary suppressions

Example 2.2. For the table in Figure 2.3, Ma = b is equivalent to the equations

Row equations for left subtable
a11 + a12 − a13 = 0,
a21 + a22 − a23 = 0,
a31 + a32 − a33 = 0,
a41 + a42 − a43 = 0,
a51 + a52 − a53 = 0,
a61 + a62 − a63 = 0,
a71 + a72 − a73 = 0,
a81 + a82 − a83 = 0,

Column equations for left subtable
a11 + a41 − a81 = 0,
a12 + a42 − a82 = 0,
a31 + a43 − a83 = 0,

Hierarchy equations for left subtable
a21 + a31 − a11 = 0,

a51 + a61 + a71 − a41 = 0,
a22 + a32 − a12 = 0,

a52 + a62 + a72 − a42 = 0,
a23 + a33 − a13 = 0,

a53 + a63 + a73 − a43 = 0,

Row equations for right subtable
ã11 + ã12 − ã13 = 0,
ã21 + ã22 − ã23 = 0,
ã31 + ã32 − ã33 = 0,

Column equations for right subtable
ã11 + ã21 − ã31 = 0,
ã12 + ã22 − ã32 = 0,
ã13 + ã23 − ã33 = 0,

Link equations
ã11 + ã12 − a13 = 0,
ã21 + ã22 − a43 = 0,
ã31 + ã32 − a83 = 0.

�

Note that the equations to the left in Example 2.2 are also equivalent to Ma = b for the
table in Figure 2.2 since this table is identical to the left subtable of Figure 2.3.

2.1 Sensitivity rules

The first thing to be decided in the procedure of protecting a table is which cells should
be considered sensitive, and therefore should not be published (if the table has no sen-
sitive cells it can be published as-is and there is no CSP to solve). All sensitive cells
must be suppressed, and these suppressions are called primary suppressions. Several
articles, for instance [4] and [20], discuss different rules for the classification of sensitive
cells, sensitivity rules, and how well these rules perform. This is a crucial part of cell
suppression, since if the wrong cells are protected the whole procedure is meaningless.
The purpose of the following subsections is to give an overview of the most common
rules in the literature. First, some concepts need to be introduced.

Generally, a cell value in a table is the sum of one or more numbers. For instance, the
table in Figure 2.4 gives the turnover of companies by type of business and geographic
location. Clearly, there may be several companies in the same type of business and

5



2. Primary suppressions 2.1. Sensitivity rules

1 2 Total
A 120+80+40+10 55+45 350
B 280+15+5 99+99+2 500

Total 550 300 850

Figure 2.4: A 2D non-hierarchical table displaying turnover for companies by type of
business (A and B) and location (1 and 2) where each term in the cells A1, A2, B1, and
B2 is the turnover of a single company.

location. Each term in a sum that makes up a cell value is referred to as a contribution
and the entity from which it originates is called a contributor. Note that the contributions
to a marginal cell are all of the contributions to the table entries that sum up to the
corresponding marginal value.

Example 2.3. In Figure 2.4, the value of cell A1 is the total turnover of companies in
business type A in geographic location 1. There are four such companies (contributors)
with turnover (contributions) 120, 80, 40, and 10, respectively. The marginal cell Total1
contains the contributions 280, 120, 80, 40, 15, 10 and 5, i.e., all the contributions of A1
and B1. �

An entity that attempts to disclose sensitive information from a table is referred to as an
attacker. If the attacker has no more knowledge than the published table, including its
structure, and the external bounds, it is referred to as an external attacker. An attacker
that, in addition to this knowledge, is also a contributor to at least one cell of the table
is called an internal attacker.

The table in Figure 2.4 will be the main example used for examining the different
sensitivity rules. We argue that a good rule should make sure that the cells A2, B1, and
B2 in Figure 2.4 are sensitive, with the following motivations. If cell A2, with value 100,
is published, then the company with turnover 45, assumed to be the attacker, will know
that the other companies in the same business area and location have a total turnover
of 55. If the attacker knows that there is only one other company that contributes to
A2, then they know that company’s turnover exactly. The converse of course goes for
the company with turnover 55, assuming they have similar knowledge. For B1 and B2
the situation is similar but exact disclosure may not be possible. If the attacker is the
second largest contributor to one of these cells, then this internal attacker can find a
very good upper bound on the largest contributor to the same cell. This is possible
since all contributions must be non-negative (turnover cannot be negative) and one
contribution is known by the attacker. The value of cell B1 is 300, and the second
largest contribution is 15, so the largest contribution can be at most 300−15=285. For
B2, the largest contribution is at most 200−99=101. Further, it is reasonable to assume
that this attacker has knowledge about other companies in the same industry. If the
second largest contributor to B1 knows that there is one contributor to the cell that is
significantly larger than all the others, they also know that the upper bound of 285 on
the largest contribution is a good approximation of the real value, which is 280. Similarly
for B2, a contributor to this cell may know that there are two contributions that are
almost equal and that the rest are small.

Clearly this reasoning is dependent on the example at hand, where the response

6



2.1. Sensitivity rules 2. Primary suppressions

variable is the turnover of companies and some amount of knowledge beyond the table
can be assumed. Otherwise the attackers would merely have upper bounds on individ-
ual contributions and no way of knowing that they are in fact good approximations.
However, cell suppression is very commonly used for magnitude tables with enterprise
statistics, which validates the argumentation.

Precisely defining the meaning of sensitivity in the context of cell suppression is not
simple but, with the reasoning above as a basis, what one generally wants to avoid is the
possibility that someone can gain information about an individual respondent. We shall
now study three different sensitivity rules, starting with the minimum frequency rule.

2.1.1 Minimum frequency rule

The minimum frequency rule is extremely simple. A cell is considered sensitive if it has
fewer than a prespecified number of contributors (see [12, pp. 140–141]). If the minimum
frequency is chosen to be 3 we get that the only sensitive cell in the table in Figure 2.4
is A2. Hence, the intuitive sensitivity of B1 and B2 is not captured by this rule. Of
course, a frequency f > 3 would capture this sensitivity, but this will only work for
specific examples since an example like B1, with one large contribution and f − 1 small
contributions, can always be constructed. Therefore, we quickly abandon the minimum
frequency rule and move on to the more interesting (n, k)-dominance rule.

2.1.2 (n, k)-dominance rule

The idea behind the (n, k)-dominance rule is to make sure that cells with contributors
having large enough contributions are regarded as sensitive, i.e., to check if the sum of
the n largest contributions to a cell is more than k% of the total cell value, denoted C.
Mathematically this means that a cell is sensitive if

c1 + c2 + . . .+ cn >
k

100C

where c1, . . . , cn denote the n largest contributors to the cell. Consider the (1, 90)-
dominance rule. This rule simply states that a cell is sensitive if the contribution of
the largest contributor is more than 90% of the cell value. This would imply that B1,
but no other cells, from Figure 2.4 would be considered sensitive. In order for B2 to be
sensitive according to a (1, k)-dominance rule it must hold that k/100 < 99/200 = 0.495.
This is probably not a good idea, since it implies that all cells to which one contributor
contributes with more than 50% of the cell value would be sensitive.

The alternative to lowering k is to take more contributors into account, i.e., to
increase the value of n. Applying a (2, 90)-dominance rule will indeed make A2, B1, and
B2 sensitive. So, it seems like a suitable rule for this simple example. However, it turns
out that also this rule suffer from inconsistency, which is illustrated in Example 2.4.

Example 2.4. Consider the hypothetical cells 46+45+9 and 80+9+4+4+3. Applying a
(2, 90)-dominance rule, the first cell will be labeled as sensitive while the second will not.
On the other hand, the best upper bound one contributor can get on one other contrib-
utor’s contribution in the first cell is 100−45=55 and for the second cell 100−9=91. So
the best upper bound on a contribution in the first cell is within (55− 46)/46 ≈ 19.6%
of the true value and for the second cell it is within (91− 80)/80 ≈ 13.8%. �

7



2. Primary suppressions 2.1. Sensitivity rules

This example implies that, in terms of one attacker from the same cell, the first cell
is actually safer than the second one. So in the context that no one should be able to
gain information about an individual respondent, it is inconsistent to label the first cell
as sensitive and the second as safe. In other words, a rule that leads to the first cell
being sensitive should also lead to the second cell being sensitive. This issue illustrates
that measuring dominance and sensitivity is not necessarily equivalent. This subtle
problem, unlike the one illustrated in the (1, k)-dominance case, cannot be circumvented
by changing the values of the parameters. This problem is a property of the rule itself.
As an example, for a (3, 90)-dominance rule the cells 80+9+4+4+3 and 46+45+8+1 can
be constructed to illustrate the inconsistency. As we shall see, the rule discussed next
does not suffer from this inconsistency.

2.1.3 (p, q)-prior-posterior rule

The third rule is the so-called (p, q)-prior-posterior rule which involves two parameters
p > 0 and q > 0, chosen such that p < q. It is assumed that without access to the
table, an attacker can estimate the contribution of any contributor to within q% of its
actual value. A cell is sensitive if one (or more) contributions can be estimated by
an individual attacker, with access to the table, to within p%. In order to formulate
this mathematically it might seem necessary to compute upper and lower bounds on all
contributions for every possible attacker (who might also be a contributor to some cell)
but this turns out to not be the case. Since a cell is sensitive if any contribution can
be estimated too closely by any attacker it suffices to check the best upper and lower
bound that can be computed on some contribution. The best bounds are obtained if
the second largest contributor of a cell attempts to approximate the largest contribution
of the same cell (see [4]). For a cell with nc contributions c1 ≥ c2 ≥ . . . ≥ cnc ≥ 0,
the second largest contributor (with contribution c2) can obtain an upper bound U on
the value of c1 by subtracting from the cell value their own contribution and the lower
bound of each of the other contributions, i.e.,

U =
nc∑
i=1

ci − c2 −
(

1− q

100

) nc∑
i=3

ci = c1 + q

100

nc∑
i=3

ci.

According to the (p, q)-prior-posterior rule this cell is sensitive if U < c1 +(p/100)c1 and
safe otherwise, which simplifies to the condition

q
nc∑
i=3

ci < pc1. (2.1)

A lower bound L on c1 can be calculated by the second largest contributor as

L =
nc∑
i=1

ci − c2 −
(

1 + q

100

) nc∑
i=3

ci = c1 −
q

100

nc∑
i=3

ci.

The condition L > c1− (p/100)c1 will yield precisely the same criterion as for the upper
bound and we conclude that, using the (p, q)-prior-posterior rule a cell is sensitive if and
only if (2.1) holds. Note that this criterion only makes sense when all contributions are

8



2.1. Sensitivity rules 2. Primary suppressions

Cell min. freq., f = 3 (1, 90)-dom. (2, 90)-dom. (20, 50)-prior-post.
A1 safe safe safe safe
A2 sensitive safe sensitive sensitive
B1 safe sensitive sensitive sensitive
B2 safe safe sensitive sensitive
A Total safe safe safe safe
B Total safe safe safe safe
1 Total safe safe safe safe
2 Total safe safe safe safe
Table Total safe safe safe safe

Table 2.1: The result of applying different sensitivity rules to the table in Figure 2.1.

non-negative, since otherwise the definitions of the upper and lower bounds above would
not be correct. See [12, p. 148] for a discussion regarding negative contributions.

The result of applying this rule with p = 20 and q = 50 to the example in Figure 2.4
is presented in Table 2.1 together with the results for a minimum frecuency rule with
f = 3, a (1, 90)-dominance rule, and a (2, 90)-dominance rule. As can be seen, the
problematic cells A2, B1, and B2 are labeled as sensitive by the (p, q)-prior-posterior
rule. Further, the (p, q)-prior-posterior rule does not have the weakness of inconsistency
that the (n, k)-dominance rule has. Indeed, all of the cells constructed to illustrate the
inconsistency are labeled as sensitive by a (p, q)-prior-posterior rule with p = 20 and
q = 50. For a discussion about why the inconsistency cannot exist for the (p, q)-prior
posterior rule as well as further discussion of these rules, see [20].

A rule that is similar to the (p, q)-prior-posterior rule is the so-called p% rule for which
it is assumed that the only a priori information an attacker has is that all contributions
are non-negative. With this rule, a cell is considered sensitive if the upper bound of a
contribution is within p% of the actual value. Since the lower bound of a contribution
is always zero, a criterion for the lower bound is not applicable. It can easily be derived
that the p% rule and the (p, 100)-prior-posterior rule yield the exact same criteria for
sensitive cell (since q = 100 means precisely that the lower bound on a contribution is
zero). For this reason the p% rule is considered a special case of the (p, q)-prior-posterior
rule.

Note here that it has been assumed that several contributors to a table do not
cooperate as attackers. The (p, q)-prior-posterior rule and p% rules can be generalized
to remove this assumption by changing the lower summation limit in the left hand side
of (2.1). If the second through r largest contributors of a cell try to approximate the
largest contribution, the cell is sensitive if

q
nc∑

i=r+2
ci < pc1.

See [18, p. 8] for further details.
The (p, q)-prior-posterior and p% rules are the most widely used in real applications

since the minimum frequency and (n, k)-dominance rules have obvious shortcomings.
That said, the minimum frequency rule can be used in combination with a (p, q)-prior-
posterior or p% rule to yield additional protection for cells with few contributors.
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Chapter 3

Secondary suppressions

Generally, if a table is published with only the sensitive cells omitted, then it will still
be possible to calculate the missing values using the marginal totals. Consider the table
in Figure 3.1 and assume the two suppressed cells are sensitive. Owing to the marginal
totals in this table, it is easy to exactly calculate the missing values. For example, the
value of cell B1 is given by solving the equation x + 120 = 200, i.e., B1 has the value
80. Therefore, in order to ensure that a table is safe for publication it is necessary
to suppress some cells in addition to those that are sensitive. These suppressions are
called secondary suppressions. The aim of the cell suppression problem is to choose these
secondary suppressions in such a way that the table as a whole is safe while the loss of
information is minimized. The choice is influenced by which sensitivity rule is used and
what paramenter values are chosen. In the next section we discuss what constitutes a
safe table, and in Section 3.4.1 we discuss the concept of information loss.

1 2 Total
A × 100 150
B × 120 200
C 70 80 150

Total 200 300 500

Figure 3.1: A table with two sensitive cells suppressed (replaced by ×).

3.1 Safe tables

Assume that for the table in Figure 3.1 the cells A2 and B2 have been chosen as secondary
suppressions, as illustrated in Figure 3.2. Suppose that an attacker is interested in the

1 2 Total
A × × 150
B × × 200
C 70 80 150

Total 200 300 500

Figure 3.2: The table in Figure 3.1 with two secondary suppressions added.

10
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value of cell B1. With no further information except that contributions to cell values are
non-negative, the attacker cannot compute the exact value. However, it is clear from the
marginal total of column 1 that the value cannot be higher than 130. So the attacker
knows that the value of cell B1 is in the interval [0,130]. Is this cell sufficiently protected?
For the (p, q)-prior-posterior and p% rules, the standard criterion in the literature for a
protected cell is the following:

The lower and upper bounds on the cell value that an attacker can compute
should be such that, for both these values, the cell would be considered safe
according to the sensitivity rule.

We shall say that a table is safe if every sensitive cell is protected according to this
criterion. Next, we derive explicit expressions for the bounds.

Recall that the criterion (2.1) for a cell being sensitive was derived by letting the
second largest contributor to a cell calculate an upper bound on the cell’s largest con-
tribution. A cell with value C =

∑nc
i=1 ci is sensitive if

U = C − c2 −
(

1− q

100

) nc∑
i=3

ci <

(
1 + p

100

)
c1

or, expressed in terms of the cell value, if

C <

(
1 + p

100

)
c1 + c2 +

(
1− q

100

) nc∑
i=3

ci.

Now, let Tu ≥ 0 and Tl ≥ 0 denote the distances from the cell value C to its upper and
lower bounds, respectively. With C +Tu as an upper bound on the cell value, the upper
bound on c1 that the second largest contributor can calculate is instead given by

C + Tu − c2 −
(

1− q

100

) nc∑
i=3

ci.

Thus, according to the criterion for protected cell formulated above, a cell is protected
if it holds that

C + Tu − c2 −
(

1− q

100

) nc∑
i=3

ci ≥
(

1 + p

100

)
c1

or, equivalently, that

C + Tu ≥
(

1 + p

100

)
c1 + c2 +

(
1− q

100

) nc∑
i=3

ci. (3.1)

An analogous requirement for the lower bound on the cell value is that

C − Tl ≤
(

1− p

100

)
c1 + c2 +

(
1 + q

100

) nc∑
i=3

ci (3.2)

should hold. From (3.1) and (3.2) it also follows that the smallest allowed values of Tu
and Tl, the values which yield equalities, are both equal to

p

100c1 −
q

100

nc∑
i=3

ci. (3.3)
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So, are the two sensitive cells A1 and B1 in the table in Figure 3.2 protected? We
shall look at three examples with different contributions to the cell values. Using the
p% rule with p = 10 and assuming that the attacker is any individual contributor to the
table, we compute the bounds on the values of the sensitive cells.
Example 3.1. First, assume the cell contributions are as follows.

1 2 Total
A (30+20) (40+30+30) 150
B (65+10+5) (40+40+40) 200
C 30+20+20 30+30+20 150

Total 200 300 500

Figure 3.3: The first example of individual cell contributions to the table in Figure
3.2, with parentheses marking the suppressed cells.

To begin with, we establish that the cells A1 and B1 are indeed sensitive. Given all
table values, the contributor with contribution 20 in cell A1 will find the upper bound
of the largest contribution in the same cell as 50− 20 = 30. This upper bound is equal
to, and thus obviously within 10% of, the largest contribution. In fact, according to the
(p, q) and p% rule a cell with only one or two contributors is always sensitive, which
is obvious from (2.1). For B1 the second largest contributor finds the upper bound
80− 10 = 70 < 1.1 · 65 = 71.5, meaning B1 is sensitive as well.

The inequalities (3.1) and (3.2) with p = 10 and q = 100 give that the lower bound
on A1 must be at most 0.9 ·30 + 20 = 47 and the upper bound at least 1.1 ·30 + 20 = 53.
For B1 the lower bound should be lower than or equal to 0.9 · 65 + 10 + 2 · 5 = 78.5
and the upper bound greater than or equal to 1.1 · 65 + 10 = 81.5. The lowest upper
bounds on these cell values are obtained if the largest contributor to one cell attempts
to disclose the value of the other. The largest contributor to cell A1 would obtain an
upper bound on B1 as

200− (30 + 20 + 20)− 30 = 100
which is greater than the required 81.5. The largest contributor to B1 can calculate an
upper bound on A1 as

200− (30 + 20 + 20)− 65 = 65
which is also greater than the required value 53. Studying Figure 3.3 and recalling the
assumptions of the p% rule, it is straightforward to see that no individual contributor
can calculate lower bounds that are too close, so the table is indeed protected. �

Example 3.2. For the second example, assume the following cell contributions.

1 2 Total
A (50) (40+30+30) 150
B (80) (40+40+40) 200
C 30+20+20 30+30+20 150

Total 200 300 500

Figure 3.4: The second example of individual cell contributions to the table in Figure
3.2, with parentheses marking the suppressed cells.
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In this instance, there is only one contributor to cell A1 and one to B1 (the cells
are so-called singletons), which as we shall see, can be problematic. Once again these
two cells are sensitive but we omit the calculations. The contributor to cell A1 can
calculate 80 as an upper bound on B1 and similarly, the contributor to B1 can find 50
as an upper bound on A1. Here, the disclosure was actually exact so clearly the table is
not safe. Whether the respective contributors would know that the disclosure was exact
depends on whether they know that they are singletons. From the formulation of the
p% rule (and also the (p, q)-prior-posterior rule) it is not immediately clear if they have
this information, but if the table concerns, for example, turnover of companies it might
be reasonable to assume that they do. �

Example 3.3. As the last example, consider the following contributions.

1 2 Total
A (48+2) (40+30+30) 150
B (70+8+2) (40+40+40) 200
C 30+20+20 30+30+20 150

Total 200 300 500

Figure 3.5: The third example of individual cell contributions to the table in Figure
3.2, with parentheses marking the suppressed cells.

This instance is similar to the preceding example with singletons, but a bit more
subtle. Even though there are no singletons, the largest contributor to A1 can estimate
B1 too closely. The largest contributor to cell A1 knows that the value of A1 is at least
48. Therefore the upper bound of B1 is

200− (30 + 20 + 20)− 48 = 82.

This is less than 85 which is required based on (3.1) with p = 10 and q = 100 and thus
this table is not safe for publication.

So the largest contributor to A1 finds the upper bound 82 for cell B1 and this is also
the upper bound on the largest single contribution to cell B1. Contrarywise, the second
largest contributor to B1 can only obtain

200− (30 + 20 + 20)− 8 = 122

as an upper bound on the largest contribution. This may seem contradictory since it
was claimed in Section 2.1.3 that it is the second largest contributor to a cell that can
make the best estimate of the largest contribution in the same cell. However, the claim
was made with the assumption that the complete table was available, which is not the
case in this example where some cells are suppressed. �

3.1.1 Further discussion

Example 3.3 has another interesting feature. The table was not considered safe since one
attacker could approximate a cell value too closely. Even so, seen as an approximation
of an individual contribution, that approximation was not too close according to the

13
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p% rule (with p = 10) since 82 ≥ 1.1 · 70 = 77. This brings about the question of why
the standard definition of a safe table is formulated to protect cell values rather than
the underlying contributions. Indeed, in [4] Daalmans and de Waal criticize this. With
the aim of protecting contributions, they formulate a new criterion that also allows
for negative contributions and attackers contributing to several cells. Further, they
construct an auditing problem that is used to determine whether a table is sufficiently
protected according to this new criterion. They do not, however, offer a method that
can produce tables that are safe according to this criterion.

In [9], Fischetti and Salazar-González construct a method for the CSP that works for
general magnitude tables (hierarchical, linked, and of any dimension) with continuous
response variables, with the aim of protecting cell values. The method only takes into
account external attackers. Salazar-González extends the method in [21] to work for
a general attacker. This improved method should theoretically be general enough to
be able to protect a table from both external and internal attackers and, if individual
protection levels (i.e, how closely an attacker is allowed to estimate a cell value) are
defined for each attacker, it should be possible to obtain a suppressed table in which
contributions, rather than cell values, are protected. The drawback is that this method
involves solving several optmization subproblems (the role of which will be explained in
Section 3.2) for each attacker, and the number of attackers may be huge. The author does
not discuss how to choose the protection levels or what attackers should be considered.
Tables with integer response variables are discussed briefly in [22]. A solution process is
suggested but not tested.

The models implemented for this thesis were first presented in [9] and [10] and aim
to protect a table, with continuous response variable, from external attackers only. It
is very important to be aware of precisely what is accomplished by these models. No
consideration is taken to internal attackers (entities that are themselves contributors
to the tables). This means that some of the protection could be undone if one (or
more) contribution is known exactly. This problem is especially prominent if the known
contribution is also known to be a singleton, as demonstrated above. The software in
use at SCB today for disclosure control, τ-argus, is based on the same mathematical
techniques that are presented in Section 3.2. Essentially, τ-argus can protect tables only
against external attackers, but options are offered to apply extra singleton protection
for a few specific situations (see [7, pp. 20–22] for details). Such measures have not been
included in the implementation for this thesis.

3.2 Complete cell suppression

To be able to construct a mathematical model that works for a general magnitude table
with continuous response variable we need to introduce a few sets. Let I = {1, 2, . . . , N}
denote the index set of table a = [a1 . . . aN ]T ∈ RN , let IS ⊆ I denote the set of sensitive
cells, as determined by some sensitivity rule, and let ISUP = {i ∈ I : ai is supressed} ⊆ I.
The set ISUP is referred to as a suppression pattern of table a.

Example 3.4. As an example we study the tables in Figure 3.6, with cells numbered
row-wise from left to right.
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1 2 3 Total
A 255 90 45 390
B 290 230 65 585

Total 545 320 110 975

(a)

1 2 3 Total
A × 90 × 390
B × 230 × 585

Total 545 320 110 975

(b)

Figure 3.6: (a): A table in which bold face indicates a sensitive cell; (b): the same
table with a suppression pattern (suppressed cells are marked by ×).

The table in Figure 3.6(a) has N = 12 cells, i.e., I = {1, 2, . . . , 12}. A1 is the only
sensitive cell, which means that IS = {1}. In Figure 3.6(b), the same table is given with
the suppression pattern ISUP={1, 3, 5, 7}. �

It is clear from Figure 3.6(b) that the values in Figure 3.6(a) is not the only possible
set of values for the suppressed cells which will ensure that all relations of the table
are fulfilled (for this simple table the only relations are the marginal totals). Generally,
given a table a ∈ RN with linear relations represented by a matrix M ∈ Rm×N and a
vector b ∈ Rm, and external bounds li and ui, i ∈ I, a vector y = [y1 . . . yN ]T ∈ RN is a
consistent table with respect to a and a suppression pattern ISUP ⊆ I = {1, . . . , N}, if
the constraints

My = b, (3.4a)
yi = ai, i ∈ I \ ISUP, (3.4b)

li ≤ yi ≤ ui, i ∈ ISUP, (3.4c)

are all satisfied. The largest possible value of a suppressed cell i ∈ ISUP in any consistent
table is denoted yi. Analogously, the smallest value possible is denoted y

i
. The interval

defined by these two values, i.e., [y
i
, yi], is the range of feasible values for cell i.

Example 3.5. We return to the table in Figure 3.6(b) and assume the external bounds
li = 0 and ui = 1000, i ∈ I. The values yi, i ∈ ISUP={1, 3, 5, 7}, are found by solving
the optimization problem

max yi,

s.t. [y2 y4 y6 y8 y9 y10 y11 y12] = [90 390 230 585 545 320 110 975],
y1 + y2 + y3 − y4 = 0,
y5 + y6 + y7 − y8 = 0,

y9 + y10 + y11 − y12 = 0,
y1 + y5 − y9 = 0,
y2 + y6 − y10 = 0,
y3 + y7 − y11 = 0,
y4 + y8 − y12 = 0,

0 ≤ yj ≤ 1000, j = 1, 3, 5, 7,

for each i ∈ ISUP. Analagously, y
i
, i ∈ ISUP, are found by replacing the maximization
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by minimization. This yields the following intervals on the suppressed cells

y1 ∈ [190, 300],
y3 ∈ [0, 110],
y5 ∈ [245, 355],
y7 ∈ [0, 110]. �

Recall that an external attacker has knowledge about the table structure (M), the pub-
lished cell values (ai, i ∈ I \ISUP) and the external bounds (li and ui, i ∈ I). This means
that yi and yi are precisely the upper and lower bounds of the interval that an external
attacker can compute on a suppressed cell value. Generally, the interval that an external
attacker can compute for a suppressed cell i is called the suppression interval of cell i.

Now, we can address the issue of how to determine whether a table is safe with
respect to a suppression pattern. As pointed out in the previous section, a sensitive cell
is considered protected if the upper and lower bounds on the cell value are sufficiently
large and small, respectively. In order to model this we introduce three non-negative
real numbers, protection levels, for each sensitive cell s ∈ IS, denoted PU

s (upper protec-
tion level), PL

s (lower protection level) and P SL
s (sliding protection level). For a given

suppression pattern, a sensitive cell s ∈ IS is protected if the following three conditions
hold:

ys ≥ as + PU
s , (3.5a)

y
s
≤ as − PL

s , (3.5b)
ys − ys ≥ P

SL
s . (3.5c)

The conditions (3.5a), (3.5b), and (3.5c) will be referred to as the upper, lower, and
sliding protection level requirements, respectively. Intuitively, these conditions mean
that an attacker should not be able to approximate a sensitive cell too closely, or, in
other words, that the range of feasible values for a sensitive cell is sufficiently large. If
the standard criterion for a protected cell, discussed in Section 3.1, is used, PL

s and PU
s

should be set equal to the expression in (3.3) in which case, typically, P SL
s = 0. However,

it is sometimes preferable to use PU
s = PL

s = 0 and P SL
s > 0 in order to minimize the

risk that the real cell value is in the middle of the suppression interval.

3.2.1 Model outline and attacker subproblems

The complete cell suppression problem must ensure that the suppression interval of every
sensitive cell is sufficiently wide. Mathematically, this means that (3.5a)–(3.5c) hold.
Also, the suppressed table should retain as much information as possible. As mentioned,
information loss is discussed thoroughly in Section 3.4.1.

Let a ∈ RN be a table with linear relations represented by M ∈ Rm×N and b ∈ Rm,
external bounds ui and li, i ∈ I, a set of sensitive cells IS ⊆ I, and protection levels
PU
s , PL

s , and P SL
s , s ∈ IS. In order to model the complete CSP, we introduce the vector

x = [x1 . . . xN ]T , where each xi is a binary variable that equals 1 if cell i is suppressed
and 0 otherwise, i.e., x corresponds to a suppression pattern ISUP = {i ∈ I : xi = 1}.
Also, we introduce a weight wi, i ∈ I, for every cell representing the cost of suppressing
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cell i. Now we can outline a model for the complete CSP:

min
N∑
i=1

wixi, (3.6a)

s.t.
{
the suppression pattern associated with x satisfies the
upper protection level requirement (3.5a) for all s ∈ IS,

(3.6b)

{
the suppression pattern associated with x satisfies the
lower protection level requirement (3.5b) for all s ∈ IS,

(3.6c)

{
the suppression pattern associated with x satisfies the
sliding protection level requirement (3.5c) for all s ∈ IS,

(3.6d)

x ∈ {0, 1}N . (3.6e)

Note here that as a measure of information loss (3.6a) only makes sense if the weights wi
are positive. Otherwise it would not be disadvantageous to suppress cells, which is not
a situation that is desirable. The constraints (3.6b)–(3.6d) depend on yi and yi, which
in turn depend on the suppression pattern corresponding to x. So how do we turn this
outline into a mathematical model expressed only in the xi variables? We shall describe
a model first suggested by Fischetti and Salazar-González in [9].

The first step is to formulate the optimization problems used to calculate the upper
limit ys and lower limit y

s
of the suppression interval for each cell s ∈ IS. For a fixed

x = x̂, ys is obtained by solving the attacker subproblem associated with the upper
protection level:

max
y

ys, (3.7a)

s.t. My = b, (3.7b)
yi ≤ ai + (ui − ai)x̂i, i ∈ I, (3.7c)
yi ≥ ai − (ai − li)x̂i, i ∈ I, (3.7d)

where the constraint (3.7b) guarantees that the structure of the table a is preserved and
(3.7c) and (3.7d) make sure that the non-suppressed cells, for which x̂i = 0, are fixed
to their original table values and that the suppressed ones, for which x̂i = 1, are within
the external bounds. Note that these constraints are equivalent to the conditions in the
definition of consistent table (3.4). Analogously, for a fixed x = x̂, y

s
is obtained by

solving the attacker subproblem associated with the lower protection level:

min
y

ys, (3.8a)

s.t. My = b, (3.8b)
yi ≤ ai + (ui − ai)x̂i, i ∈ I, (3.8c)
yi ≥ ai − (ai − li)x̂i, i ∈ I. (3.8d)

These subproblems are used to check if a cell is protected, i.e., if (3.5a)–(3.5c) hold, for
a given x̂. However, as we shall see, there is more knowledge to be gained, by studying
the linear programming (LP) duals of the attacker subproblems.
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3.2.2 Dual subproblems

The LP duals of the subproblems (3.7) and (3.8) will be used to derive constraints,
expressed in the xi variables, that impose the upper, lower, and sliding protection level
requirements. For an introduction to linear programming duality see [1, Ch. 10].

Imposing the upper protection level requirement

Before formulating the LP dual of the maximization subproblem (3.7) we rewrite (3.7d)
to −yi ≤ −ai + (ai− li)x̂i in order to get non-negative dual variables. The dual problem
is then

min
γ, α, β

γT b+
N∑
i=1

(
αi(ai + (ui − ai)x̂i)− βi(ai − (ai − li)x̂i)

)
, (3.9a)

s.t. MTγ + α− β = es, (3.9b)
α ≥ 0, β ≥ 0, (3.9c)

where γ ∈ Rm, α ∈ RN , and β ∈ RN denote the vectors of dual variables associated
with (3.7b), (3.7c) and (3.7d), respectively, and es denotes the unit vector with a 1 in
position s. The objective function in (3.9a) can be rewritten as

γT b+ αTa− βTa+
N∑
i=1

(
αi(ui − ai)x̂i + βi(ai − li)x̂i

)
.

By using Ma = b and (3.9b) we get the following equalities for the first three terms in
the objective function

γT b+ αTa− βTa = γTMa+ αTa− βTa,
= (γTM + αT − βT )a,
= eTs a,

= as.

Thus, the objective function in (3.9a) can be reduced to

as +
N∑
i=1

(
αi(ui − ai) + βi(ai − li)

)
x̂i. (3.10)

Further, duality theory tells us that for a maximization problem the primal objective
function value at a primal feasible solution is always less than or equal to the dual
objective function value at a dual feasible solution, which implies

ys ≤ as +
N∑
i=1

(
αi(ui − ai) + βi(ai − li)

)
x̂i (3.11)

for all γ, α, and β fulfilling the constraints (3.9b) and (3.9c). Recall the upper protection
level requirement (3.5a), which says that ys ≥ as + PU

s needs to hold in order for cell s
to be protected. This, together with (3.11), yields the inequality

N∑
i=1

(
αi(ui − ai) + βi(ai − li)

)
xi ≥ PU

s (3.12)
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which has to hold for all (γ, α, β) satisfying (3.9b) and (3.9c) in order for the upper
protection level requirement to be fulfilled for cell s.

Imposing the lower protection level requirement

The procedure to derive an expression for the lower protection level requirement is
analogous. We rewrite (3.8d) to −yi ≤ −ai + (ai − li)x̂i and we also change (3.8a) to
max−ys. The LP dual of (3.8) is then expressed as

min
γ̃, α̃, β̃

γ̃T b+
N∑
i=1

(
α̃i(ai + (ui − ai)x̂i)− β̃i(ai − (ai − li)x̂i)

)
, (3.13a)

s.t. MT γ̃ + α̃− β̃ = −es, (3.13b)
α̃ ≥ 0, β̃ ≥ 0. (3.13c)

Analogously with the derivation of (3.10), the objective function in (3.13a) can be written
as

−as +
N∑
i=1

(
α̃i(ui − ai) + β̃i(ai − li)

)
x̂i.

Since the primal is a maximization problem, the dual objective value at a dual feasible
solution will be greater than or equal to the primal objective value at a primal feasible
solution, which gives

− y
s
≤ −as +

N∑
i=1

(
α̃i(ui − ai) + β̃i(ai − li)

)
x̂i (3.14)

for all γ̃, α̃, and β̃ satisfying (3.13b) and (3.13c). Using this together with (3.5b), i.e.,
y
s
≤ as − PL

s , yields
N∑
i=1

(
α̃i(ui − ai) + β̃i(ai − li)

)
xi ≥ PL

s (3.15)

which needs to hold for all (γ̃, α̃, β̃) satisfying (3.13b) and (3.13c) in order for the lower
protection level requirement of cell s to be fulfilled.

Imposing the sliding protection level requirement

Lastly, we need an analogous condition for the sliding protection level requirement (3.5c),
i.e., the condition ys−ys ≥ P

SL
s . By use of the inequalities (3.11) and (3.14) we get that

ys + (−y
s
) ≤ as +

N∑
i=1

(
αi(ui − ai) + βi(ai − li)

)
x̂i

− as +
N∑
i=1

(
α̃i(ui − ai) + β̃i(ai − li)

)
x̂i

Using this together with (3.5c), i.e., ys − ys ≥ P
SL
s , we end up with

N∑
i=1

(
(αi + α̃i)(ui − ai) + (βi + β̃i)(ai − li)

)
xi ≥ P SL

s . (3.16)
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for all (γ, α, β) satisfying (3.9b) and (3.9c) and for all (γ̃, α̃, β̃) satisfying (3.13b) and
(3.13c).

The inequalities (3.12), (3.15), and (3.16) impose the upper, lower, and sliding pro-
tection level requirements, but define an infinite number of constraints on x. However,
it is shown in Appendix A that for these inequalities, the extreme points of the polyhe-
dra defined by (3.9b)–(3.9c) and (3.13b)–(3.13c) are sufficient in order to impose all the
protection level requirements.

3.2.3 The complete CSP

Finally, we have arrived at the following mathematical formulation of the complete CSP

min
x

N∑
i=1

wixi, (3.17a)

s.t.

∑N
i=1

(
αi(ui − ai) + βi(ai − li)

)
xi ≥ PU

s for all
extreme points (γ, α, β) of the set defined by (3.9b–c),

s ∈ IS, (3.17b)


∑N
i=1

(
α̃i(ui − ai) + β̃i(ai − li)

)
xi ≥ PL

s for all
extreme points (γ̃, α̃, β̃) of the set defined by (3.13b–c),

s ∈ IS, (3.17c)


∑N
i=1

(
(αi + α̃i)(ui − ai) + (βi + β̃i)(ai − li)

)
xi ≥ P SL

s

for all extreme points (γ, α, β) and (γ̃, α̃, β̃) of the
sets defined by (3.9b–c) and (3.13b–c), respectively,

s ∈ IS, (3.17d)

x ∈ {0, 1}N . (3.17e)

The model (3.17) is called the complete CSP because suppressed cells are completely
removed from the table. As demonstrated, after protecting the table using (3.17) it is
still possible to calculate a suppression interval on each sensitive cell value. This fact
inspired another approach, called partial cell suppression, which is described next.

3.3 Partial cell suppression

Partial cell suppression is an approach to cell suppression that is slightly different from
complete cell suppression. In this approach all variables are continuous and represent
the difference between the real cell value and the bounds of the suppression interval.
The idea is that instead of suppressing cells completely, i.e., substituting them with
some arbitrary symbol, each cell that needs to be suppressed is assigned an interval
that covers the actual value. To get an idea of what this means, recall Figure 3.6(a),
which shows an example table with one sensitive cell, and Figure 3.6(b) which shows the
same table protected by complete cell suppression. Using partial cell suppression the
protected version could instead be the table in Figure 3.7.

As shown in the previous section, an attacker can compute intervals for cell values
that have been suppressed. A table is safe if the suppression intervals of the sensitive
cells are sufficiently large. Using partial cell suppression it is possible to control the
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1 2 3 Total
A [240, 274] 90 [26, 60] 390
B [271, 305] 230 [50, 84] 585

Total 545 320 110 975

Figure 3.7: The table in Figure 3.6(a) protected using partial cell suppression.

widths of the suppression intervals so that a table can be published with intervals that
are no larger than is necessary for the table to be safe. In this section we shall describe
a model for the partial CSP that was introduced by Fischetti and Salazar-González in
[10] and that is in the same spirit as their model for the complete CSP.

For a table a we introduce the non-negative variables, z+ = [z+
1 . . . z

+
N ] and z− =

[z−
1 . . . z

−
N ]. The published table will contain the intervals [ai − z−

i , ai + z+
i ]. The case

z+
i = z−

i = 0 is allowed and means that the actual value is published. Further, the
inequalities ai + z+

i ≤ ui and ai − z
−
i ≥ li should hold, since it would be meaningless to

publish intervals that are wider than what is given by the external bounds ui and li.

3.3.1 Model outline and attacker subproblems

The goal now is to find a set of intervals for which the suppressed table fulfills the
upper, lower, and sliding protection level requirements, while the information loss is
minimized. We shall first introduce the attacker subproblems for the partial CSP. With
(z+, z−) = (ẑ+, ẑ−), an attacker now knows that the actual value of a sensitive cell
s ∈ IS is in the interval [as − ẑ−

s , as + ẑ+
s ], so the maximal possible value of ys, denoted

ys, is given by

max
y

ys, (3.18a)

s.t. My = b, (3.18b)
yi ≤ ai + ẑ+

i , i ∈ I, (3.18c)
yi ≥ ai − ẑ−

i , i ∈ I, (3.18d)

and the minimum possible value, denoted y
s
, by

min
y

ys, (3.19a)

s.t. My = b, (3.19b)
yi ≤ ai + ẑ+

i , i ∈ I, (3.19c)
yi ≥ ai − ẑ−

i , i ∈ I. (3.19d)

Then, all protection levels for cell s are fulfilled if

ys ≥ as + PU
s , (3.20a)

y
s
≤ as − PL

s , (3.20b)
ys − ys ≥ P

SL
s , (3.20c)

hold. The bounds in the subproblems, (3.18c)–(3.18d) or (3.19c)–(3.19d), together with
(3.20a)–(3.20c), imply z+

s ≥ PU
s , z−

s ≥ PL
s , and z+

s − z−
s ≥ P SL

s for all sensitive cells
s ∈ IS.
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The partial CSP should aim to minimize the loss of information, computed as
N∑
i=1

(w+
i z

+
i + w−

i z
−
i )

for some weights w+
i > 0 and w−

i > 0, i ∈ I. We outline the partial CSP, similarly to
the complete CSP in (3.6), as

min
N∑
i=1

(w+
i z

+
i + w−

i z
−
i ), (3.21a)

s.t. PU
s ≤ z+

p ≤ us − as, s ∈ IS, (3.21b)
0 ≤ z+

i ≤ ui − ai, i ∈ I \ IS, (3.21c)
PL
s ≤ z−

s ≤ as − ls, s ∈ IS, (3.21d)
0 ≤ z−

i ≤ ai − li, i ∈ I \ IS, (3.21e)
z+
s + z−

s ≥ P SL
s , s ∈ IS, (3.21f)

(3.20a)–(3.20c) hold for all s ∈ IS. (3.21g)

We need to find out how to impose (3.20a)–(3.20c) for the model (3.21), but first there
is an important observation to make.

If all weights w+
i and w−

i , i ∈ I, are positive, then in an optimal solution to (3.21)
the interval [aj − z−

j , aj + z+
j ] for every suppressed cell j ∈ ISUP will coincide with the

suppression interval [y
j
, yj ]. To realize why this is, consider a feasible solution (ž+, ž−)

to (3.21) for which all protection level requirements are fulfilled. Assume that for some
cell k ∈ ISUP, ak+ ž+

k = yk and ak− ž−
k = y

k
do not both hold. Then, either ak+ ž+

k > yk
or ak−ž−

k < y
k
(or both) must hold, because of the bounds in the subproblems (3.18) and

(3.19). This means that the objective value of (3.21) could be improved by decreasing ž+
k

or ž−
k , while also preserving the suppression intervals for all cells, and therefore (ž+, ž−)

cannot be optimal. In simplistic terms: we do not publish an interval that is wider than
the interval an external attacker can compute. Hence, an optimal solution to the partial
CSP with positive weights fulfills

ys = as + z+
s , s ∈ IS, (3.22a)

y
s

= as − z−
s , s ∈ IS. (3.22b)

The first of the equalities, (3.22a), implies the upper protection level requirement (3.20a)
and the second, (3.22b), implies the lower protection level requirement (3.20b). Together,
they imply the sliding protection level requirement (3.20c).

3.3.2 Dual subproblems

We will use duality theory in the same fashion as for the complete CSP to construct a
model for the partial CSP, expressed only in terms of the z+

i and z−
i variables.

Imposing the upper protection level requirement

After rewriting (3.18d) to −yi ≤ −ai + ẑ−
i the LP dual of the maximization subproblem

(3.18) becomes
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min
γ, α, β

γT b+
N∑
i=1

(
αi(ai + ẑ+

i )− βi(ai − ẑ−
i )
)
, (3.23a)

s.t. MTγ + α− β = es, (3.23b)
α ≥ 0, β ≥ 0. (3.23c)

Identically to the derivation of (3.10), by using Ma = b and (3.23b), we get the equality

γT b+ αTa− βTa = as.

Thus, the objective function in (3.23a) reduces to

as +
N∑
i=1

(αiẑ+
i + βiẑ

−
i ).

From duality theory we know that in a maximization problem, the objective function of
the primal is less than or equal to the objective function of the dual, wherefore

ys ≤ as +
N∑
i=1

(αiẑ+
i + βiẑ

−
i )

with equality attained only for an optimal solution to the dual. Thus, we can express
the equality (3.22a) as

as + ẑ+
s = as +

N∑
i=1

(α∗
i ẑ

+
i + β∗

i ẑ
−
i )

for an optimal solution (γ∗, α∗, β∗) to (3.23). Then we also have that

ẑ+
s ≤

N∑
i=1

(αiẑ+
i + βiẑ

−
i ) (3.24)

for all γ, α, and β satisfying (3.23b) and (3.23c). For arbitrary but fixed values of α
and β that are feasible in (3.23), (3.22a) will be satisfied for all z+ and z− that also
satisfy (3.24). Finally, since the upper protection level requirement (3.20a) follow from
(3.22a), we conclude that (3.24) defines a set of constraints that guarantee that all upper
protection levels are fulfilled.

Imposing the lower protection level requirement

The procedure is similar for the lower protection level requirement. After changing
the objective of the minimization subproblem (3.19) to max −ys and the lower bound
(3.19d) to −yi ≤ ai − ẑ−

i we obtain the LP dual

min
γ̃, α̃, β̃

γ̃T b+
N∑
i=1

(
α̃i(ai + ẑ+

i )− β̃i(ai − ẑ−
i )
)
, (3.25a)

s.t. MT γ̃ + α̃− β̃ = −es, (3.25b)
α̃ ≥ 0, β̃ ≥ 0. (3.25c)
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We can derive that the equality (3.22b) is equivalent to

−as + ẑ−
s = −as +

N∑
i=1

(α̃∗
i ẑ

+
i + β̃∗

i ẑ
−
i )

for an optimal dual solution (γ̃∗, α̃∗, β̃∗) to (3.25). From this we get the set of constraints

z−
s ≤

N∑
i=1

(α̃iz+
i + β̃iz

−
i ) (3.26)

for all γ̃, α̃, and β̃ satisfying (3.25b) and (3.25c), which guarantee the lower protection
level requirement (3.20b). As was the case for the complete CSP, it is sufficient to
consider only the extreme points of the polyhedra defined by (3.23b)–(3.23c) and (3.25b)–
(3.25c) in the inequalities (3.24) and (3.26) (see Appendix A).

3.3.3 The partial CSP

We can now formulate the partial CSP as

min
z+, z−

N∑
i=1

(w+
i z

+
i + w−

i z
−
i ), (3.27a)

s.t. PU
s ≤ z+

s ≤ us − as, s ∈ IS, (3.27b)
0 ≤ z+

i ≤ ui − ai, i ∈ I \ IS, (3.27c)
PL
s ≤ z−

s ≤ as − ls, s ∈ IS, (3.27d)
0 ≤ z−

i ≤ ai − li, i ∈ I \ IS, (3.27e)
z+
s + z−

s ≥ P SL
s , s ∈ IS, (3.27f){∑N

i=1(αiz+
i + βiz

−
i )− z+

s ≥ 0 for all
extreme points (γ, α, β) of the set defined by (3.23b–c)

s ∈ IS, (3.27g)

{∑N
i=1(α̃iz+

i + β̃iz
−
i )− z−

s ≥ 0 for all
extreme points (γ̃, α̃, β̃) of the set defined by (3.25b–c),

s ∈ IS. (3.27h)

3.4 Combined cell suppression

In this section we derive a third model for the CSP, called the combined CSP, which is a
combination of the complete CSP and the partial CSP. But first, we discuss information
loss, which will serve as a motivation for the combined CSP.

3.4.1 Information loss

One crucial part of optimization is to choose an objective function that minimizes or
maximizes the right quantity. In many classical optimization problems, such as the
traveling salesperson problem and the set covering problem, the objective function is
quite easily determined. In the former problem the aim is typically to minimize the
length of the route and in the latter to minimize the number of sets. For the CSP the
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question of the objective function is a bit more complicated. This is because the concept
of an optimal suppression pattern is not trivial. In vague terms, an optimal solution to
the CSP should be a safe table where the loss of information is as small as possible. The
main difficulty lies in defining the concept of information loss. To illustrate that this is
indeed difficult we will examine the following four natural ways of defining information
loss for the CSP:

I. the number of suppressed cells,

II. the sum of the suppressed cell values,

III. the sum of the widths of the suppression intervals, and

IV. the number of suppressed contributions.

There are also several other ways of measuring the information loss which will not be
discussed here. We refer the interested reader to [12]. The definitions I–IV of information
loss can be contradictory, as is shown in Example 3.6.

Example 3.6. We borrow two tables from [20, Fig. 11 and 12], reproduced in Figure
3.8, where suppressed cells are replaced by their suppression intervals.

[99, 101] [0, 2] 101
[0, 2] [0, 2] 2
101 2 103

(a)

[51, 77] [0, 26] 77
[0, 26] [0, 26] 26

77 26 103

(b)

Figure 3.8: Tables from [20] with the suppressed cells replaced by their suppression
intervals.

According to definition I and II the information loss is equal in Figures 3.8(a) and
3.8(b), since both tables contain four suppressed cells and the sum of the suppressed
cells equals 103. According to definition III, however, the table in Figure 3.8(a) has an
information loss of (101−99)+(2−0)+(2−0)+(2−0)=8 while the table in Figure 3.8(b)
has an information loss of (77−51)+(26−0)+(26−0)+(26−0)=128. �

So while definitions I and II say that the tables have an equal loss of information, defi-
nition III says that the difference in information loss is large. Definition IV could easily
provide a third view on the information loss difference, if for instance, the total number
of contributors to Figure 3.8(a) is twelve and Figure 3.8(b) has eight contributors. Then
we have different definitions saying that the information loss is either equal, a lot larger
for Figure 3.8(a), or a little larger for Figure 3.8(b).

Turning to the models for the CSP derived in Sections 3.2 and 3.3 we need to in-
vestigate what kind of information loss the objective functions (3.17a) and (3.27a) can
represent. In the case of complete cell suppression the objective function can measure
the information loss as in I, II, or IV by setting the weights wi to 1, the corresponding
cell value ai, or the number of contributors to cell i, respectively. However, since all vari-
ables are binary, the objective function cannot represent the sum of the widths of the
suppression intervals and therefore the complete CSP cannot measure information loss
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as in III. On the other hand, using partial cell suppression we can measure information
loss according to definition III (by setting all weights w+

i and w−
i in (3.27a) to 1) but not

according to I, II, and IV. One way to interpret this difference of the objective functions
is that the complete CSP has a ‘yes’ or ‘no’ answer to whether a cell is suppressed, while
the partial CSP tells us “how suppressed” a cell is (in terms of the interval widths).

The definition of information loss is important and the models define it differently.
So, which one of them is the best? What properties characterize a good solution to
the CSP? The answers to both questions are non-trivial. Too many suppressed cells
is not desirable since this will lower the practical usefulness of the data, and for the
same reason the suppression intervals should not be too large. The complete CSP does
not take the width of the intervals into account while the partial CSP cannot take
the number of suppressions into account. This does indeed lead to large suppression
intervals in complete cell suppression and to a large number of suppressions in partial
cell suppression, as we shall see in Chapter 5. So, none of them fulfill our demands,
wherefore we next formulate the model proposed in [10], which combines the complete
and partial cell suppression approaches.

3.4.2 The combined CSP

As mentioned above, the idea behind combined cell suppression is to construct a model
with an objective function that can take both suppression interval widths and number
of suppressions into account. This is done by summing the objective functions of the
complete and the partial CSP, according to

min
N∑
i=1

(w+
i z

+
i + w−

i z
−
i + wixi).

The combined model is similar to the partial CSP but has constraints that link the
binary variables to the continuous ones. The subproblems are the same as in partial cell
suppression. We end up with the following model, referred to as the combined CSP

min
z+, z−, x

N∑
i=1

(w+
i z

+
i + w−

i z
−
i + wixi), (3.28a)

s.t. PU
s ≤ z+

s ≤ (us − as)xs, s ∈ IS, (3.28b)
0 ≤ z+

i ≤ (ui − ai)xi, i ∈ I \ IS, (3.28c)
PL
s ≤ z−

s ≤ (as − ls)xs, s ∈ IS, (3.28d)
0 ≤ z−

i ≤ (ai − li)xi, i ∈ I \ IS, (3.28e)
z+
s + z−

s ≥ P SL
s , s ∈ IS, (3.28f){∑N

i=1(αiz+
i + βiz

−
i )− z+

s ≥ 0 for all
extreme points (γ, α, β) of the set defined by (3.23b–c)

s ∈ IS, (3.28g)

{∑N
i=1(α̃iz+

i + β̃iz
−
i )− z−

s ≥ 0 for all
extreme points (γ̃, α̃, β̃) of the set defined by (3.25b–c)

s ∈ IS, (3.28h)

x ∈ {0, 1}N . (3.28i)
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As a final remark: To the complete and the combined CSP it is possible to add a
constraint

∑N
i=1 xi ≤ S meaning, that a maximum of S suppressions are allowed. Also,

to the combined CSP a constraint z+
i + z−

i ≥ Wixi can be added in order to impose
a minumum width Wi > 0 for the interval of every suppressed cell. Both of these
constraints are of limited use since they require prior knowledge of what suppressions,
and how many, are necessary to protect a table, and generally this is not known.
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Chapter 4

Algorithms

In this chapter algorithms for solving the complete, partial and combined CSP are pre-
sented. They are all based on the cut-and-branch procedure first described in [22]. As
shown in the previous chapter, each model contains sets of constraints which are com-
posed of one constraint per extreme point of the feasible set of the dual of an attacker
subproblem. Since the number of extreme points may be huge for large CSP instances,
it would be impractical to include all these constraints in the model. The basic idea
for all the algorithms presented is to decompose the CSP into two subproblems for each
sensitive cell, and one master problem. The master problem is initially either of the
models derived in the Chapter 3, but with the complicating constraints removed, which
leaves (3.17a,e), (3.27a–f), and (3.28a–f,i). The subproblems are precisely the attacker
subproblems used when deriving the different models. These will be used to generate
constraints that are necessary in an optimal solution to the CSP, which are added to the
master problem as needed during the course of the algorithm. The full details of each
algorithm are given in the following sections but in order to help the understanding a
general overview is given below.

First the master problem is initialized and solved without any complicating con-
straints. This solution will almost certainly not be a feasible solution to the CSP, since
all constraints that impose the protection level requirements have been removed. Then
the attacker subproblems are solved for each sensitive cell and every upper, lower, and
sliding protection level is checked. A protection level that is not fulfilled, together with
the dual solution to the corresponding subproblem, induces a constraint that is violated
by the current solution to the master problem. To exemplify, in complete cell suppres-
sion we would solve the maximization problem (3.7) for a sensitive cell s and check if
ys ≥ as + PU

s . If this does not hold, then a constraint in (3.17b), with the dual solution
to the subproblem inserted, is a valid constraint that is violated by the current solution
to the master problem. After the protection levels are checked for all sensitive cells, the
induced constraints are added to the master problem, which is then resolved, starting a
new iteration of the algorithm. The algorithm proceeds until the master problem yields
a solution for which all protection level requirements are fulfilled. The procedure is
illustrated in Figure 4.1.

The next section presents the full algorithm for the complete CSP in more detail.
Since the algorithms for all three models are essentially the same, the reasoning therein
holds for the partial and the combined CSP algorithms as well.
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Initialize master problem

Solve master problem

For every sensitive
cell, solve subproblems
with master problem
solution as input

Are any
protection

levels
violated?

Add induced constraints
to master problem

Master problem
solution is feasible
and optimal in CSP

Yes

No

Figure 4.1: Flowchart of the general algorithm used to solve the CSP.
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4.1 Algorithm for the complete CSP

In the case of the complete CSP (3.17) the initial master problem is given by

min
x

N∑
i=1

wixi, (4.1a)

s.t. xs = 1, s ∈ IS, (4.1b)
x ∈ {0, 1}N , (4.1c)

i.e., the model (3.17a,e) with the additional constraint (4.1b), which says that all sensitive
cells must be suppressed. This constraint is implicit in (3.17) but is added here in order
to give the algorithm a non-trivial starting point. Let x̂ be the solution to (4.1). The
subproblems, two for each sensitive cell s ∈ IS, are given by

max
y

ys, (4.2a)

s.t. My = b, (4.2b)
yi ≤ ai + (ui − ai)x̂i, i ∈ I, (4.2c)
−yi ≤ −ai + (ai − li)x̂i, i ∈ I, (4.2d)

and

max
y

−ys, (4.3a)

s.t. My = b, (4.3b)
yi ≤ ai + (ui − ai)x̂i, i ∈ I, (4.3c)
−yi ≤ −ai + (ai − li)x̂i, i ∈ I. (4.3d)

with optimal objective values ys and −ys, respectively. Let
(
γ̂s, α̂s, β̂s

)
and

(̂̃γs, ̂̃αs, ̂̃βs)
denote the solutions to the duals of (4.2) and (4.3), respectively. If some protection level
is not fulfilled for x̂, meaning that there is one or more s ∈ IS for which at least one of the
constraints ys ≥ as+PU

s , y
s
≤ as−PL

s , and ys−ys ≥ P
SL
s does not hold, x̂ does not yield

a safe table and is therefore not a feasible solution to the complete CSP (3.17). In this
case, the dual solutions to the subproblems are used to construct constraints of the form
(3.17b), (3.17c), or (3.17d) that are then added to the master problem. By construction,
these constraints are equivalent to demanding that a solution to the complete CSP
yields a safe table. This ensures that if the solution to the master problem is not
safe, constraints will be added that make the current solution to the master problem
infeasible, which guarantees that the master problem in the next iteration will have a
different solution. Note that the subproblems are always feasible and have finite optimal
solutions, since all variables are subject to upper and lower bounds and since the original
table is always a feasible solution.

It has been shown (see Appendix A) that it is sufficient to consider the set of extreme
points of the dual feasible set of the subproblems in the constraints (3.17b)–(3.17d). This
means that only a finite number of constraints are necessary to generate and that the
algorithm will terminate finitely, presuming that the solutions found to the subproblems
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are extreme points to the respective dual feasible sets. This will be the case, e.g., if the
simplex algorithm is used.

The algorithm terminates when no protection level requirements are violated by the
solution to the master problem. This solution is then both feasible and optimal in the
complete CSP. It is feasible since the constraints generated guarantee that the resulting
suppressions yield a safe table (all sensitive cells are protected). It is optimal since in
each iteration the master problem is a relaxation of the complete CSP (some constraints
are not included), and once an optimal solution to a relaxed problem is feasible in the
full problem it must also be optimal in the full problem.

Algorithm 4.1 solves (3.17).

Algorithm 4.1.

Step 0: Initialize the master problem (4.1).

Step 1: Solve the master problem to obtain x̂.

Step 2: For each sensitive cell s ∈ IS, solve the subproblems (4.2) and (4.3) with x̂ as
input in order to obtain ys, ys,

(
γ̂s, α̂s, β̂s

)
, and

(̂̃γs, ̂̃αs, ̂̃βs).
Step 3: For each s ∈ IS:

a. If ys < as + PU
s , add the induced constraint, (3.17b) with α = α̂s and β = β̂s,

to the master problem.

b. If y
s
> as − PL

s , add the induced constraint, (3.17c) with α̃ = ̂̃αs and β̃ = ̂̃
βs,

to the master problem.
c. If ys − ys < P SL

s , add the induced constraint, (3.17d) with α = α̂s, β = β̂s,

α̃ = ̂̃αs, and β̃ = ̂̃
βs, to the master problem.

If no constraints were added in steps 3a, 3b, or 3c, terminate since x̂ is a safe,
and thus an optimal, solution to (3.17). Otherwise, go to Step 1.

We make two remarks on this algorithm, that are also applicable in the case of partial
and combined cell suppression.

First, in each iteration the master problem has to be solved to optimality, if the final
solution should be guaranteed to be optimal in the CSP. To see why, consider the case
where the master problem is not solved to optimality. If the given, suboptimal, solution
to the master problem is to suppress every cell in the table, this solution will obviously
yield a safe table (assuming that a feasible solution to the CSP exists), so the algorithm
will terminate. However, this solution is almost certainly not optimal in the CSP.

Secondly, if the master problem is solved to optimality in each iteration, then before
the algorithm terminates not a single feasible solution to the CSP is produced, since the
master problems that are solved are relaxations of the CSP. Thus, the algorithm cannot
be aborted prematurely with the expectation that a solution to the master problem
will be feasible but suboptimal in the CSP. This could be considered a drawback, since
one might be more interested in quickly finding a feasible solution rather than finding
an optimal one. Also, for large problem instances the algorithm might not be able to
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find the optimal solution within a reasonable amount of time. For this reason it would
be desirable to have a heuristic that could build a feasible solution to the CSP from a
solution to the master problem. In [9] a heuristic that fills this purpose is presented but
it has not been implemented in the context of this thesis.

4.1.1 Strengthened constraints

It is possible to strengthen the constraints (3.17b)–(3.17d). Defining the constants di ≥ 0
and D ≥ 0 appropriately, these constraints can all be expressed as

N∑
i=1

dixi ≥ D. (4.4)

As pointed out in [9], because the coefficients di are non-negative and the variables xi
are binary, if (4.4) holds then

N∑
i=1

min{di, D}xi ≥ D (4.5)

will also hold. The proof is simple. Let x ∈ {0, 1}N satisfy (4.4) and let T = {i ∈
{1, . . . , N} : di > D}. If xi = 0 for all i ∈ T , then it holds that

N∑
i=1

min{di, D}xi =
N∑
i=1

dixi ≥ D.

Otherwise, there is at least one j ∈ T such that xj = 1 and we have

N∑
i=1

min{di, D}xi ≥ Dxj = D.

For binary variables xi, (4.4) and (4.5) are equivalent, but (4.5) is stronger when
the integrality is relaxed, in the sense that (4.5) cuts off more of the feasible set of the
relaxation than (4.4) does. This is of interest since the integrality of xi is relaxed in
the solution process of the master problem (4.1). Note that this strengthening is only
possible for the complete CSP and not for the partial or combined CSP.
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4.2 Algorithm for the partial CSP

For the partial CSP (3.27) the initial master problem is given by

min
z+, z−

N∑
i=1

(w+
i z

+
i + w−

i z
−
i ), (4.6a)

s.t. PU
s ≤ z+

s ≤ us − as s ∈ IS, (4.6b)
0 ≤ z+

i ≤ ui − ai i ∈ I \ IS, (4.6c)
PL
s ≤ z−

s ≤ as − ls s ∈ IS, (4.6d)
0 ≤ z−

i ≤ ai − li i ∈ I \ IS, (4.6e)
z+
s + z−

s ≥ P SL
s s ∈ IS, (4.6f)

with solution (ẑ+, ẑ−). The two subproblems are given by

max
y

ys, (4.7a)

s.t. My = b, (4.7b)
yi ≤ ai + ẑ+

i i ∈ I, (4.7c)
−yi ≤ −ai + ẑ−

i i ∈ I, (4.7d)

and

max
y

−ys, (4.8a)

s.t. My = b, (4.8b)
yi ≤ ai + ẑ+

i i ∈ I, (4.8c)
−yi ≤ −ai + ẑ−

i i ∈ I, (4.8d)

with optimal objective values ys and−ys and dual solutions
(
γ̂s, α̂s, β̂s

)
and

(̂̃γs, ̂̃αs, ̂̃βs),
respectively. Algorithm 4.2 solves (3.27).

Algorithm 4.2.

Step 0: Initialize the master problem (4.6).

Step 1: Solve the master problem to obtain (ẑ+, ẑ−).

Step 2: For each sensitive cell s ∈ IS, solve the subproblems (4.7) and (4.8) with
(ẑ+, ẑ−) as input in order to obtain ys, ys,

(
γ̂s, α̂s, β̂s

)
, and

(̂̃γs, ̂̃αs, ̂̃βs).
Step 3: For each s ∈ IS:

a. If ys < as + ẑ+
s , add the induced constraint, (3.27g) with α = α̂s and β = β̂s,

to the master problem.

b. If y
s
> as − ẑ−

s , add the induced constraint, (3.27h) with α̃ = ̂̃αs and β̃ = ̂̃
βs,

to the master problem.

If no constraints were added in steps 3a or 3b, terminate since (ẑ+, ẑ−) is a safe,
and thus an optimal, solution to (3.27). Otherwise, go to Step 1.
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4.3 Algorithm for the combined CSP

Finally, for the combined CSP (3.28) we have the initial master problem

min
z+, z−, x

N∑
i=1

(w+
i z

+
i + w−

i z
−
i + wixi), (4.9a)

s.t. PU
s ≤ z+

s ≤ (us − as)xs s ∈ IS, (4.9b)
0 ≤ z+

i ≤ (ui − ai)xi i ∈ I \ IS, (4.9c)
PL
s ≤ z−

s ≤ (as − ls)xs s ∈ IS, (4.9d)
0 ≤ z−

i ≤ (ai − li)xi i ∈ I \ IS, (4.9e)
z+
s + z−

s ≥ P SL
s s ∈ IS, (4.9f)

xs = 1 s ∈ IS, (4.9g)
x ∈ {0, 1}N . (4.9h)

with solution (ẑ+, ẑ−, x̂). The subproblems are identical to the subproblems in partial
cell suppression, (4.7) and (4.8). Algorithm 4.3 solves (3.28).

Algorithm 4.3.

Step 0: Initialize the master problem (4.9).

Step 1: Solve the master problem to obtain (ẑ+, ẑ−, x̂).

Step 2: For each sensitive cell s ∈ IS, solve the subproblems (4.7) and (4.8) with
(ẑ+, ẑ−) as input in order to obtain ys, ys,

(
γ̂s, α̂s, β̂s

)
, and

(̂̃γs, ̂̃αs, ̂̃βs).
Step 3: For each s ∈ IS:

a. If ys < as + ẑ+
s , add the induced constraint, (3.27g) with α = α̂s and β = β̂s,

to the master problem.

b. If y
s
> as − ẑ−

s , add the induced constraint, (3.27h) with α̃ = ̂̃αs and β̃ = ̂̃
βs,

to the master problem.

If no constraints were added in steps 3a or 3b, terminate since (ẑ+, ẑ−, x̂) is a
safe, and thus an optimal, solution to (3.28). Otherwise, go to Step 1.

34



4.4. A note on problem complexity 4. Algorithms

4.4 A note on problem complexity

A noteworthy difference between the three formulations (3.17), (3.27), and (3.28) is that
the complete CSP is an integer linear program (ILP), the partial CSP is a continuous
linear program (LP) and the combined CSP is a mixed integer linear program (MILP).
It is well known that LPs can be solved in polynomial time using, e.g., an interior point
method (see [17]). This means that the partial CSP, in contrast to the complete and
the combined CSP, belongs to a class of problems that are in some sense “easy”. The
complete CSP has been shown to belong to the class of NP-hard problems (see [15] or
[16]) and it is not known if there exists a polynomial time algorithm for this type of
problems. The combined CSP is at least as hard (meaning it is also NP-hard), in the
sense that the complete CSP can be viewed as a special case of the combined CSP. The
combined CSP is reduced to the complete CSP by removing the continuous variables
from the objective function (setting w+

i = w−
i = 0) and interpreting any z+

i or z−
i

that are greater than 0 to mean that the cell should be completely suppressed (that is,
replaced by some arbitrary symbol).
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Chapter 5

Tests and results

This chapter presents results for the three models and a number of test instances, using
both the commercial solver CPLEX and the open source solver GLPK. The results will
be used to compare solutions to the models, and to compare the performance of GLPK
and CPLEX for solving the CSP. First, a breakdown of the problem instance details
and the chosen parameter values are given in Section 5.1, followed by the computational
results regarding the solutions to the complete, partial, and combined CSP in Section
5.2. The solutions are compared according to two criteria: (i) the number of suppressions
and (ii) the sum of the widths of the suppression intervals. In Section 5.3 computation
times are presented. We first compare the computation times for the different models
and then the performance of GLPK is evaluated.

The algorithms used to solve the complete, partial, and combined CSP, as pre-
sented in Chapter 4, were implemented in C++ and the optimization solvers used were
CPLEX 12.1 and GLPK 4.55. The simplex algorithm was used for all LP problems that
arose in the solution process and the strengthened constraints derived in Section 4.1.1
were used when solving the complete CSP. Tests were run under Red Hat Enterprise
Linux 6.6 on a PC with Intel Core i5-4570S and 16GB RAM.

5.1 Problem instances and parameters

The seven tables used for testing are all based on data obtained from SCB. The data
are synthetic, created to possess properties similar to those of real data. The tables are
magnitude tables in which the response variable is the turnover of companies. There
are two linked tables, each consisting of three hierarchical subtables. The other five
tables are non-linked and hierarchical. The subtables of the two linked tables, as well as
the non-linked tables, are two-dimensional. We remark that none of the tables contain
empty cells, i.e., cells with value zero. For more detailed information about the problem
instances, see Table 5.1, which presents the total number of cells, the number of sensitive
cells, and the number of rows in the matrix M . The instances 1B and 2C are subtables
from the linked tables 1LINKED and 2LINKED, respectively. The instances 1ALT,
2ALT, and 3ALT are based on the same data as 1LINKED and 2LINKED but structured
differently from these two.

Whether a cell is sensitive or not has been determined using the p% rule with p = 10.
In the complete CSP, the protection levels PL

s and PU
s are both given by (3.3) with p = 10
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Instance No. of cells No. of sensitive cells No. of rows in M
1LINKED 222+597+359 2+46+32 653
1B 703 47 356
2C 401 61 203
3ALT 778 71 299
2LINKED 402+636+364 45+96+60 663
1ALT 1428 124 925
2ALT 1996 435 1184

Table 5.1: Data for the seven problem instances used to test and compare the three
cell suppression models (each term for 1LINKED and 2LINKED corresponds to one
subtable).

and q = 100, and P SL
s are all 0. In the partial and combined CSP, both PL

s and PU
s are

set to 0, while P SL
s is set to two times the value given by (3.3) (again with p = 10 and

q = 100). The protection levels were chosen in this way for the partial and combined
CSP, since if only lower and upper protection levels are used in these models it will often
be the case that the resulting intervals are symmetric with the actual cell value in the
middle. The external bounds were chosen as li = 0 and ui = 11ai, meaning that the
variables yi in the subproblems are bounded by zero and eleven times the actual cell
value.

For the complete and the partial CSP, two different objective functions are tested,
called Unity and Value. Unity means that all weights in the objective function are set
to 1: wi = 1 in the complete CSP and w+

i = w−
i = 1 in the partial CSP. In the complete

CSP this means that the number of suppressions is minimized and in the partial CSP that
the sum of the suppression interval widths is minimzed. In the other objective function,
Value, each weight is set to the corresponding cell value: wi = ai in the complete CSP
and w+

i = w−
i = ai in the partial CSP. This choice favors the suppression of cells with

small values. The model variants for the complete and partial CSP are referred to as
Complete-Unity, Complete-Value, Partial-Unity, and Partial-Value.

In the combined CSP, these two variants of objective functions are combined in two
ways. One is referred to as Unity-Unity, meaning that the weights of both the continuous
and binary variables are set to 1: wi = w+

i = w−
i = 1. The other is referred to as Unity-

Value, where the weights on the continuous variables are set to 1 and the weights on the
binary variables are set to the corresponding cell values: w+

i = w−
i = 1 and wi = ai.

The model variants for the combined CSP are referred to as Combined-Unity-Unity and
Combined-Unity-Value.

In Sections 5.2 and 5.3.1 we compare the solution quality and computation times,
respectively, of the six model variants for the seven problem instances. This comparison is
made with solutions obtained using CPLEX. For the complete and partial CSP, optimal
solutions are presented for all instances and objective functions. For the combined CSP,
the computation time required to obtain feasible solutions proved excessive for some
problem instances. For this reason, no feasible solutions were obtained for 2LINKED,
1ALT, or 2ALT using combined cell suppression. Instances 1LINKED, 1B, 2C, and 3ALT
were solved to optimality with Combined-Unity-Value. The same four instances were
solved with Combined-Unity-Unity but, on account of the large amount of time required
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to find optimal solutions to the master problem (initially (4.9)), a non-zero relative mixed
integer programming (MIP) gap tolerance was used when solving the master problem in
each iteration of Algorithm 4.3. Recall that the master problem is a MILP and therefore
a branch and bound procedure is necessary to solve this problem. In CPLEX the relative
MIP gap is defined as |bestnode− bestinteger|/|1e-10+bestinteger| (see [14, p. 92]). For
the combined CSP master problem, which is a minimization problem, ‘bestinteger’ is
the lowest objective value of any solution found so far in the branch and bound tree
that fulfills the integer requirements (4.9h) and ‘bestnode’ is the highest lower bound
for the objective value, verified over all branches of the tree. The branch and bound
procedure terminates when the relative MIP gap is lower than the tolerance, which, in
Combined-Unity-Unity, was set to 2 · 10−5 for 1LINKED, 5 · 10−5 for 1B, and 10−6 for
2C and 3ALT.

5.2 Solution quality

This section presents and discusses the quality of the solutions, measured by the number
of suppressions and the sum of the suppression interval widths. Detailed data for Fig-
ures 5.1–5.6 are given in Appendix B, Tables B.1–B.5. These data were obtained using
CPLEX.

First, Figure 5.1 yields the total number of suppressions, primary and secondary, of
each model variant for each instance, normalized by the minimum number required (as
obtained by Complete-Unity). In partial and combined cell suppression every cell that
is replaced by an interval is counted as one suppression. It is rather well known, and
pointed out by Fischetti and Salazar-González in [10], that the partial CSP tends to
suppress more cells than the complete CSP. Our results are in line with that notion.

For each instance, Complete-Unity gives the smallest number of suppressions, which
is inevitable since the objective function in this model is defined to minimize the number
of suppressions. Both Partial-Unity and Partial-Value yield more suppressions than
Complete-Unity and Complete-Value. The reason for this is, as discussed in Section
3.4.1, that the partial CSP does not take into account how many cells are suppressed.
Partial-Value suppressed fewer cells than Partial-Unity for all instances except 3ALT and
2LINKED. When cells have different weights in the partial CSP (as in Partial-Value) the
intervals that are necessary in order to protect the sensitive cells will be concentrated
to the cells with small weights. In Partial-Unity, all cells have the same weights and the
intervals do not concentrate to any specific cells. This can lead to a larger number of
suppressions in Partial-Unity than in Partial-Value as is the case in 1LINKED, 1B, 2C,
1ALT, and 2ALT. However, it can also be the case that Partial-Value needs to suppress
a large number of cells with small values in order to produce a safe table when Partial-
Unity can instead suppress a small number of cells with larger values, as in 3ALT and
2LINKED.

The combined CSP variants, Combined-Unity-Unity and Combined-Unity-Value, are
both similar to Partial-Unity in that the weights on all the continuous variables equal 1.
The difference is that in Combined-Unity-Unity and Combined-Unity-Value, each sup-
pression inflicts a penalty in the objective function, owing to the binary variables repre-
senting whether cells are suppressed or not. It is clear from Figure 5.1 that this results in
a smaller number of suppressions for the combined CSP variants than for the partial CSP
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variants. The exceptions are instances 1LINKED and 1B for Combined-Unity-Unity, due
to the fact that these were not solved to optimality. Note that 2C and 3ALT were also
not solved to optimality for Combined-Unity-Unity, but the relative MIP gap tolerance
in the master problem was smaller than in 1LINKED and 1B (10−6 compared to 2 ·10−5

and 5 ·10−5, respectively). How optimal solutions to Combined-Unity-Unity would com-
pare to the other model variants in terms of number of suppressions is not clear. What
can be said for our instances is that, since the optimal solutions to Partial-Unity and
the suboptimal solutions to Combined-Unity-Unity have equal sums of the suppression
interval widths, as seen in Table B.2, and since a set of intervals (i.e., z+

i and z−
i ) that

are feasible in Partial-Unity are also feasible in Combined-Unity-Unity, optimal solutions
to Combined-Unity-Unity would not have more suppressions than Partial-Unity.

Figure 5.2 presents the sum of the widths of all suppression intervals for each model
variant and instance, normalized by the minimum width required (as obtained by Partial-
Unity). Obviously, the sum of the suppression interval widths for both variants of the
complete CSP is much larger than that of each variant of the partial and the combined
CSP. This is certainly to be expected since the complete CSP model includes no concept
of suppression interval width and hence cannot take it into account. Even so, Complete-
Value results in smaller widths than Complete-Unity, since suppressing cells with small
values results in smaller suppression intervals than suppressing cells with large values.
This can be explained by simply considering two non-negative numbers with unknown
values but known sum. The intervals in which the unkown numbers may lie, under the
restriction of preserving the sum, depend on the (known) sum of the two numbers, mean-
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Figure 5.1: Number of suppressions obtained for each instance and model variant,
normalized by the minimum number required for each instance (detailed data are found
in Table B.1). 2LINKED, 1ALT, and 2ALT were not solved with Combined-Unity-Unity
and Combined-Unity-Value.
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Figure 5.2: Sum of the suppression interval widths obtained for each instance and
model variant, normalized by the minimum width required for each instance (detailed
data are found in Table B.2).

ing that suppressing cells with large values introduces more uncertainty than suppressing
cells with small values.

The sum of the suppression interval widths are very similar for Partial-Unity, Partial-
Value, Combined-Unity-Unity and Combined-Unity-Value. The objective function in
Partial-Unity is defined to minimize the width, wherefore this model results in the small-
est width. However, it is the case that Combined-Unity-Unity has also minimized the
width for each instance, which can be seen by comparing Partial-Unity and Combined-
Unity-Unity in Table B.2.

It is clear from the results presented in this section that the principal undesirable
characteristic of partial suppression, i.e., the numerous suppressions, can be alleviated
by introducing the binary variables used in combined cell suppression. Also, partial
cell suppression and combined cell suppression result in much smaller suppression inter-
vals than complete cell suppression. If the number of suppressions and the sum of the
suppression interval widths are deemed appropriate measures of solution quality, then
combined cell suppression is superior. However, when discussing complete cell suppres-
sion, the significance of suppression interval widths must be interpreted with great care,
for the following reason.

For all tests presented in this chapter we have assumed the external bounds li = 0
and ui = 11ai, meaning that yi ∈ [0, 11ai]. Still, it is possible that the exact same
solutions may be found to the complete CSP if the upper bound ui is altered (either
decreased or increased). Suppose that there is a suppressed cell j and that yj in some
attacker subproblem attains its maximal value, i.e., yj = uj , according to (3.7c) or (3.8c).
It might be the case that yj could be allowed to take either a lower or a higher value
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without affecting the solution to the complete CSP. So, if uj is changed, the solution
to the complete CSP could be the same but the suppression interval of cell j, [y

j
, yj ],

would change. In this sense, identical solutions to the complete CSP can have different
suppression interval widths depending on the chosen parameter values. Keeping this in
mind, it still holds that the suppression intervals must be smaller in partial and combined
cell suppression than in complete cell suppression, since in the partial and combined CSP
the suppression intervals, effectively the values of the z+

i and z−
i variables, are always

chosen as small as possible in order for the resulting table to be safe.

5.3 Computation time

Having compared the solutions to all three models, for some possible objective functions,
it is of course relevant how the computation times differ. First, the model variants are
compared in Section 5.3.1. All solutions for this comparison were obtained with CPLEX.
Then, the performance of GLPK is evaluated in Section 5.3.2.

5.3.1 CPLEX

For each of the seven instances and six model variants, Figures 5.3 and 5.4 show the
CPU time and wall time, respectively, used by CPLEX. These figures clearly illustrate
that the combined CSP is very computationally heavy. The four instances for which the
combined CSP was solved, 1LINKED, 1B, 2C, and 3ALT, required huge computation
times compared to the other models. This is especially pronounced for Combined-Unity-
Unity even though it was not solved to optimality for any instance.
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Figure 5.3: CPU time in seconds used by CPLEX to solve each instance and model
variant (detailed data are found in Table B.3).
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Figure 5.4: Wall time in seconds used by CPLEX to solve each instance and model
variant (detailed data are found in Table B.4).

Comparing Figures 5.3 and 5.4 we see that for Complete-Unity and Complete-Value,
the wall times are shorter than the CPU times, meaning that CPLEX can benefit from
using multiple CPU cores in the complete CSP (for detailed timings, see Tables B.3 and
B.4). Combined-Unity-Value also has this benefit but, intriguingly, Combined-Unity-
Unity, Partial-Unity, and Partial-Value do not.

It is obvious that the relations between the computation times of the model variants
depend on the specific problem instance. Measured both in CPU time and wall time,
Complete-Unity is faster than Complete-Value for 1B, 2C, and 2ALT but considerably
slower for 1ALT and the two linked tables, 1LINKED and 2LINKED. Partial-Value
is the fastest for every instance except 3ALT where Complete-Value is less than 0.5
seconds faster (both CPU time and wall time). Particularly, for 2LINKED the difference
between Partial-Value and the other models is immense (again, see Tables B.3 and
B.4). It is noteworthy that Partial-Unity, which is an LP, for some instances requires
as much, or more, computation time than either variant of the complete CSP, which
is an ILP (compare with, e.g., Complete-Value for 1LINKED or Complete-Unity for
2C). This is partly explained by Figure 5.5, which presents the number of constraints
generated in the subproblems for each model variant and instance. For Partial-Unity it
is necessary to generate a significantly larger number of constraints than for Complete-
Unity and Complete-Value before a solution to the master problem is feasible (and
optimal) in the CSP. We point out that Partial-Value, which is also an LP, is faster
than both Complete-Value (except for 3ALT) and Complete-Unity even though it, like
Partial-Unity, generates more constraints. However, it is also the case that Partial-Unity
generates significantly more constraints than Partial-Value, which may account for some
of the difference in computation times for these two model variants. Compared to the
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Figure 5.5: Total number of constraints generated in the subproblems for each instance
and model variant using CPLEX (detailed data are found in Table B.5).
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Figure 5.6: CPU time in seconds plotted against the number of constraints generated
for each instance and model variant using CPLEX (detailed data are found in Tables
B.3 and B.5).

complete CSP variants, the number of constraints generated by Combined-Unity-Unity
and Combined-Unity-Value is very large as well.
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Finally, Figure 5.6 presents the CPU time used plotted against the number of con-
straints generated in the subproblems for each instance and model variant. In this figure
we see that, at least ostensibly, the computation times for the partial CSP are more cor-
related to the number of constraints generated than for the complete and combined CSP.
We can also note that for an approximately equal number of generated constraints, the
computation time is lower for the partial CSP than for the complete and the combined
CSP.

It should be noted that during testing, it has been observed that the external bounds
can have a rather large impact on the computation times. A higher upper bound often
leads to a lower computation time for all model variants.

5.3.2 GLPK

Turning to the open source solver GLPK, the performance is naturally not on par with
that of CPLEX and many test instances could not be solved within reasonable time. For
the combined CSP, no instance was solved because after the first few iterations
of the solution process the computation time per iteration increased drastically, even
when a large relative MIP gap tolerance was used in the master problem. It seems likely
that this is due to numerical difficulties introduced by the constraints (3.28b)–(3.28e), in
which the coefficients on the x variables can be very large. For the partial CSP, GLPK
sometimes ended in an infinite loop when solving the last iteration of the master problem
even though the optimal solution had been found. This is probably a case of degeneracy
cycling, which can cause the simplex algorithm to never terminate if the optimal solution
is degenerate (see [1, pp. 243–244]).

GLPK was tested on the smaller instances 1LINKED, 1B, 2C, and 3ALT. Table 5.2
shows the computation times for the model variants that were solved, together with the
corresponding times for CPLEX, and Table 5.3 shows the ratio between the computa-
tion times of the two solvers (times for GLPK divided by times for CPLEX). For the
instances that were solved, GLPK was considerably slower than CPLEX but not neces-
sarily prohibitively slow. Using Complete-Value, each instance was solved in five minutes
or less, and using Complete-Unity, 1B and 2C were solved in less than seven and three
minutes, respectively. Complete-Unity was too slow for 1LINKED and 3ALT and the
computations were aborted. For the partial CSP variants, GLPK is less reliable. Partial-
Unity was too slow for 1LINKED and the computation was aborted. Partial-Unity and
Partial-Value ended with infinite loops solving 1B and 1LINKED, respectively.
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5.3. Computation time 5. Tests and results

Model variant 1LINKED 1B 2C 3ALT
Complete-Unity

GLPK n/a 384.93 | 385.08 160.59 | 160.72 n/a
CPLEX 853.73 | 503 2.95 | 2.94 2.93 | 2.90 34.74 | 24.5

Complete-Value
GLPK 232.43 | 232.65 106.42 | 106.48 300.29 | 300.42 168.03 | 168.19

CPLEX 7.64 | 7.38 15.47 | 14.87 215.17 | 86.92 1.53 | 1.35
Partial-Unity

GLPK n/a n/a 4037.73 | 4040.79 70.27 | 70.31
CPLEX 475.56 | 476 122.18 | 122.34 138.65 | 138.82 3.88 | 3.89

Partial-Value
GLPK n/a 5.42 | 5.42 1.94 | 1.94 5.59 | 5.60

CPLEX 5.26 | 5.30 1.49 | 1.50 2.43 | 2.43 1.73 | 1.73

Table 5.2: CPU time in seconds (left number) and wall time in seconds (right number)
for four instances and all complete and partial cell suppression model variants. Compu-
tation times for the instances and model variants that were not solved are marked with
n/a (not available).

Model variant 1LINKED 1B 2C 3ALT
Complete-Unity n/a 130.48 | 130.98 54.81 | 55.42 n/a
Complete-Value 30.42 | 31.52 6.88 | 7.16 1.40 | 3.46 109.82 | 124.59
Partial-Unity n/a n/a 29.12 | 29.11 18.11 | 18.07
Partial-Value n/a 3.64 | 3.61 0.80 | 0.80 3.23 | 2.24

Table 5.3: GLPK CPU time divided by CPLEX CPU time (left number) and GLPK
wall time divided by CPLEX wall time (right number) for four instances and each
complete and partial CSP model variant.
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Chapter 6

Conclusions and further research

In the introduction to this thesis the question of whether an open source solver is a
viable alternative to the commercial solver Xpress when solving the cell suppression
problem was asked. In order to answer this question tests were run on seven different
test instances for one well known open source solver, GLPK. The main indication of our
results is that GLPK is considerably slower than CPLEX (see Tables 5.2 and 5.3)—a
commercial solver comparable to Xpress—which is expected, but also that GLPK has
greater difficulties with solving problems that exhibit poor numerical properties. The
complete CSP model is, for our test instances, rather well behaved and some of the
smaller instances were solved using GLPK. The larger instances, however, required an
unreasonable amount of time to solve. The partial and combined CSP models proved to
be even more problematic. GLPK could not solve the combined CSP even for the smaller
instances, since this problem is too computationally heavy, and GLPK is unreliable for
the partial CSP. For some choices of objective function in the partial CSP, some instances
were solved quickly, whereas other instances ended with an infinite loop, likely due to
degeneracy cycling. There exist several methods that can resolve degeneracy cycling
for the simplex algorithm, e.g., Bland’s rule (see [2]). From the results presented in this
thesis, it can be concluded that an open source solver could possibly replace a commercial
one for the complete and partial CSP applied to small problem instances.

Concerning the solution quality of the three models formulated, the first thing to
keep in mind is that it is not clear how information loss should be defined and that
this might depend on the specific data of a given application. Still, intuitively, a small
number of suppressions is desired. Also, the suppression intervals should preferrably
be small since a published table is likely to be more useful if the known interval of a
suppressed cell is small. With these considerations, complete, partial, and combined
CSP solutions were compared in terms of number of suppressed cells and the sum of the
suppression interval widths. Assuming that these are proper measures of information
loss, the combined CSP yields the best solutions (see Figures 5.1 and 5.2). On the other
hand, at least with the implementation made for this thesis, combined cell suppression
is extremely slow compared to complete and partial cell suppression (see Figures 5.3 and
5.4). So, as is, combined cell suppression is promising but probably too slow to be of
practical use. Whether a better implementation could make it a more tractable method
for solving the CSP is an open question.

In the comparison between complete and partial cell suppression, the results dis-
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6. Conclusions and further research

tinctly show that the complete CSP yields a smaller number of suppressions but larger
suppression intervals, while the opposite is true for the partial CSP (see Figures 5.1
and 5.2). Recalling that the sum of the suppression interval widths should be inter-
preted with care in complete cell suppression, it is still a fact that the partial CSP
yields smaller intervals. The computation times for the model variants Complete-Unity,
Complete-Value, and Partial-Unity show no obvious trends: one model can be very fast
for one particular instance but slow for another. Partial-Value generally required lower
computation times and was faster by a large margin for some instances (see Figures 5.3
and 5.4). Choosing between complete and partial cell suppression is mainly a question
of what is deemed more important: a small number of suppressions or small suppression
intervals, or possibly something else entirely.

There are also considerations of less mathematical nature that should be taken into
account when discussing wheter to completely remove cell values or replace them by
intervals. It is of utmost importance that respondents feel assured that their data will
be safe when they participate in surveys. It may be more obvious that the data is
protected if a × is published than if an interval is given. That said, it is also the
case that a general user of published statistical material may not be experienced in
mathematical optimization. Such a user, confronted with a statistical table containing
a complete suppression might assume that there is no way of knowing the missing value
even approximately. In this situation, partial and combined cell suppression would
have the benefit of very directly and in a simple manner providing the user with an
approximate value.

Interesting questions for potential future research include whether heuristic methods
could be used to quickly find feasible solutions to the partial or combined CSP. A heuris-
tic for the complete CSP exists (see [5]) which could potentially be adapted for the partial
and combined CSP. Investigation could also be made into how a table’s structure (hier-
archies, links and the distribution of sensitive cells) affects the computational difficulty
of the CSP. Possibly, the matrix M could be partitioned into submatrices with specific
properties, thereby allowing efficient network optimization algorithms to be used. This
has been done (see [3]) for 2D tables with one hierachical spanning variable (such as the
table in Figure 2.2) and for 2D and 3D tables without hierarchies, but not generalized to
linked tables or tables with higher dimensions and several hierachical spanning variables.
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Appendix A

Reducing the number of
constraints

We shall show that in the inequalities (3.12), (3.15), (3.16), (3.24), and (3.26) it suffices
to consider the extreme points of the dual feasible set of the attacker subproblems in
order to impose all protection level requirements. The sets are defined by (3.9b)–(3.9c),
(3.13b)–(3.13c), (3.23b)–(3.23c) and (3.25b)–(3.25c). For M ∈ Rm×N , γ ∈ Rm α ∈ RN ,
and β ∈ RN , these can be expressed as

MTγ + α− β = e,

α ≥ 0N , β ≥ 0N ,
(A.1)

where e ∈ {es,−es}. The set defined by (A.1) is a polyhedron, denoted P, which can be
expressed as

P =


γα
β

 ∈ Rm+2N : A

γα
β

 ≤

e
−e
0N
0N




with

A =


MT IN×N −IN×N

−MT −IN×N IN×N

0N×N −IN×N 0N×N

0N×N 0N×N −IN×N

 .
Further, the inequalities (3.12), (3.15), (3.16), (3.24), and (3.26) can be written as

dTαα+ dTβ β ≥ D (A.2)

where dα ≥ 0, dβ ≥ 0 and D ≥ 0. To exemplify, for (3.12) we have dα = diag(u − a)x,
dβ = diag(a − l)x and D = PU

s , where diag(v) denotes the diagonal matrix containing
the elements of the vector v. For fixed x or (z+, z−), we will show that if (A.2) holds
for all extreme points of P, it holds for every point in P. Under the assumption that
M ∈ Rm×N , where N > m, has rankm, A has full column rank. Note that ifM does not
have rank m it contains redundant rows which can be removed. We have the following
representation theorem.
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A. Reducing the number of constraints

Theorem A.1. Let A ∈ Rk1×k2 and b ∈ Rk1. Let P := {x ∈ Rk2 : Ax ≤ b}, Q denote the
convex hull of the extreme points of P , and C := {x ∈ Rk2 : Ax ≤ 0k1}. If rank A = k2
then P = Q+ C := {x ∈ Rk2 : x = v + u for some v ∈ Q and u ∈ C}.

See for example [1, pp. 53–54] for a proof. Applying Theorem A.1 yields that P = Q+C
where Q denotes the convex hull of the extreme points of P and

C =


γα
β

 ∈ Rm+2N : A

γα
β

 ≤ 04N

 .
For clarity, we note that C can also be expressed as

C =


γα
β

 ∈ Rm+2N : MTγ + α− β = 0N , α ≥ 0N , β ≥ 0N

 . (A.3)

Hence, every point in P can be expressed as the sum of a point in Q and a point in C.
But every point in Q can be expressed as a convex combination of the extreme points of
Q and every point in C can be expressed as a linear combination of the extreme directions
of C. Denote extreme points of Q byγiQαiQ

βiQ

 , i = 1, . . . , κ1,

where κ1 is the number of extreme points. Further, denote the extreme directions of C
by γ

j
C

αjC
βjC

 , j = 1, . . . , κ2,

where κ2 is the number of extreme directions. Thus, every point in P can be expressed
as γα

β

 =
κ1∑
i=1

λi

γiQαiQ
βiQ

+
κ2∑
j=1

µj

γ
j
C

αjC
βjC


where λ1, . . . , λκ1 ≥ 0 such that

∑κ1
i=1 λi = 1 and µ1, . . . , µκ2 ≥ 0. Now we can rewrite

the left-hand side of (A.2) as

dTαα+ dTβ β = dTα

 κ1∑
i=1

λiα
i
Q +

κ2∑
j=1

µjα
j
C

+ dTβ

 κ1∑
i=1

λiβ
i
Q +

κ2∑
j=1

µjβ
j
C

 .
For all i, the coefficients dα, dβ, αiQ, and βiQ are non-negative by assumption, and for all
j, the coefficients αjC and β

j
C are non-negative because of the definition (A.3) of C. Thus
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A. Reducing the number of constraints

the following manipulations can be made

dTαα+ dTβ β ≥ dTα
κ1∑
i=1

λiα
i
Q + dTβ

κ1∑
i=1

λiβ
i
Q

=
κ1∑
i=1

λi
(
dTαα

i
Q + dTβ β

i
Q

)
≥ min

i=1,...,κ1

(
dTαα

i
Q + dTβ β

i
Q

) κ1∑
i=1

λi

= min
i=1,...,κ1

(
dTαα

i
Q + dTβ β

i
Q

)
.

Since we have assumed that (A.2) holds for all extreme points of P, we conclude that

dTαα+ dTβ β ≥ min
i=1,...,κ1

(
dTαα

i
Q + dTβ β

i
Q

)
≥ D

which means that (A.2) holds for all points in P.
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Appendix B

Result tables

Model variant 1LINKED 1B 2C 3ALT 2LINKED 1ALT 2ALT
Complete-Unity 175 103 100 134 329 250 686
Complete-Value 186 115 125 155 380 298 770
Partial-Unity 258 173 223 182 446 399 941
Partial-Value 205 126 146 196 483 350 939
Combined-Unity Unity∗ 263 151 114 151 n/a n/a n/a
Combined-Unity Value 183 110 109 147 n/a n/a n/a

*Master problem relative MIP gap tolerance 2 · 10−5 for 1LINKED, 5 · 10−5 for 1B, and 10−6 for
2C and 3ALT.

Table B.1: Number of suppressions for each instance and model variant using CPLEX.

Model variant 1LINKED 1B 2C 3ALT
Complete-Unity 17.2423482 28.3697370 204.0447465 81.2936786
Complete-Value 16.3297076 8.0999652 65.7830270 26.4115329
Partial-Unity 2.7806461 1.89757392 22.2080002 8.75365272
Partial-Value 2.93774604 1.9825934 23.75345768 9.33581636
Combined-Unity Unity∗ 2.7806461 1.89757392 22.2080002 8.75365272
Combined-Unity Value 2.96362734 1.97632202 22.92805248 9.27856334

*Master problem relative MIP gap tolerance 2 · 10−5 for 1LINKED, 5 · 10−5 for 1B, and 10−6 for
2C and 3ALT.

Model variant 2LINKED 1ALT 2ALT
Complete-Unity 335.3078217 48.8765260 234.4279953
Complete-Value 132.3576353 16.6801674 118.9257130
Partial-Unity 33.39228014 5.84831024 23.60951334
Partial-Value 37.25232462 6.17920594 29.18775085
Combined-Unity Unity n/a n/a n/a
Combined-Unity Value n/a n/a n/a

Table B.2: Sum of the suppression interval widths, divided by 107, obtained for each
instance and model variant using CPLEX. Values are displayed exactly as reported by
CPLEX.
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B. Result tables

Model variant 1LINKED 1B 2C 3ALT 2LINKED 1ALT 2ALT
Complete-Unity 853.73 2.95 2.93 34.74 8709.06 345.91 271.26
Complete-Value 7.64 15.47 215.17 1.53 3128.73 50.62 1660.4
Partial-Unity 475.56 122.18 138.65 3.88 1115.51 164.87 567.44
Partial-Value 5.26 1.49 2.43 1.73 74.38 13.58 200.66
Combined-Unity Unity∗ 54909.5 4078.56 29383.6 35.42 n/a n/a n/a
Combined-Unity Value 5543.03 190.02 5415.46 754.52 n/a n/a n/a
*Master problem relative MIP gap tolerance 2 · 10−5 for 1LINKED, 5 · 10−5 for 1B, and 10−6 for
2C and 3ALT.

Table B.3: CPU time in seconds used by CPLEX to solve each instance and model
variant.

Model variant 1LINKED 1B 2C 3ALT 2LINKED 1ALT 2ALT
Complete-Unity 503 2.94 2.90 24.5 2880 210 218
Complete-Value 7.38 14.87 86.92 1.35 1100 40.5 584
Partial-Unity 476 122.34 138.82 3.89 1120 165 568
Partial-Value 5.30 1.50 2.43 1.73 74.41 13.59 200.82
Combined-Unity Unity∗ 54938.7 4080.87 29397.9 35.50 n/a n/a n/a
Combined-Unity Value 3156.3 145.42 2257.99 357.81 n/a n/a n/a
*Master problem relative MIP gap tolerance 2 · 10−5 for 1LINKED, 5 · 10−5 for 1B, and 10−6 for
2C and 3ALT.

Table B.4: Wall time in seconds used by CPLEX to solve each instance and model
variant.

Model variant 1LINKED 1B 2C 3ALT 2LINKED 1ALT 2ALT
Complete-Unity 3345 1037 556 1015 2791 3935 3915
Complete-Value 1016 1214 595 342 1801 2423 2369
Partial-Unity 84377 32616 33278 6531 187621 62094 160776
Partial-Value 5156 1629 4910 2766 48492 9690 83918
Combined-Unity Unity∗ 74219 32819 44765 4715 n/a n/a n/a
Combined-Unity Value 10477 1745 4323 1892 n/a n/a n/a

*Master problem relative MIP gap tolerance 2 · 10−5 for 1LINKED, 5 · 10−5 for 1B, and 10−6 for
2C and 3ALT.

Table B.5: Number of constraints generated in the subproblems for each instance and
model variant using CPLEX.
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