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Towards Topic Detection Using Minimal New Sets
Madeleine Appert
Lisa Stenberg
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
A common way of detecting topics in a collection of articles is to use Hierarchical
Clustering. This has shown to be a successful way of clustering texts, and thereby
detecting topics. However, this is computationally expensive since the similarities
between all articles are compared pairwise.
This thesis aims to examine if smaller amounts of data could be used to detect topics.
Building on the work of Damaschke [9] and Guðjónsson [13], we processed articles as
a sequence of chronologically ordered documents, and represented each document by
the previously unseen word combinations, more formally known as minimal new sets
of words. Based on the words that each article now is represented by, we selected
articles with a word or word combination. We compared this selection to a ground
truth created with Hierarchical Clustering, to see if the minimal new sets can be
used to approximate clustering in a streaming setting.
We performed three experiments and evaluated their results. In the first we selected
articles based on one given word. In the second we selected articles based on a
given two-word combination. In the third we built on the second experiment, but
separated the selected articles if two consecutive articles were not published within
a given time limit.
Out of the experiments that we performed we found that tracking a pair of words
gave the best result. Additionally, we found that the Jaccard index of the word
combinations impacted the result, where words appearing more often together gave
better results.
The results indicate that minimal new sets can be used to detect topics. Our model
shows significantly better results than the corresponding random model. However,
we still do not consider our model to hold up against established methods. Therefore,
we do not think that our current method is suitable for a topic detecting system,
but rather that it could be possible to build on our methods.

Keywords: Minimal New Sets, Topic Detection, Text Mining
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1
Introduction

With the rapid growth of technology in the past few decades, the amount of informa-
tion available has increased. Unlike previous generations, we have instant access to
news in digital form from all around the world, as soon as they have been published.
Being well-informed is a necessity within a business as it enables leaders to make
strategic decisions. However, processing the vast amount of information available
to us has become a time-consuming activity. This motivates the need for tools that
gather relevant information and optimize information absorption.
Topic Detection and Tracking (TDT) is a research program which studies event-
based organization in broadcast news [4]. TDT mainly studies story segmentation,
identifying the stories that are the first to discuss a new event and tracking stories
about a specific event or a specific topic. We present a more formal definition of
a topic in Section 2.2, but for now we can consider a topic as several events that
are related to each other. A common way of detecting topics in a collection of
articles is to use Hierarchical Clustering [32]. An article is often transformed into
some vector representation, where the vectors are compared to determine how to
form the clusters. Even though this has shown to be a successful way of clustering
articles, it is computationally expensive, since all vectors are compared pairwise.
Therefore we want to investigate if smaller amounts of data can be used to detect
topics.
Guðjónsson [13] presents a new approach to On-line New Event Detection which
builds upon identifying minimal new sets of words from a sequence of articles and
using those to determine if the text referred to a new event. We aim to build on
their findings and use the minimal new sets from an article to create a smaller
representation of the article, and investigate if this representation can be used to
approximate clustering in a streaming setting. We call this model the MNS Chaining
model. In order to evaluate the correlation between features of minimal new sets
and topics, we define ground truth topics by clustering. Our goal is not to develop
an algorithm to detect topics or trends but rather to study to what degree minimal
new sets and trending topics correlate.
This project is carried out at DEVnet which is a consultancy company based in
Munich, Germany. DEVnet is in need of a tool that can segment articles into topics
and from that find the most relevant topics at a point in time. Based on our results
we aim to make recommendations of relevant articles from the given stream and
supply DEVnet with a tool that can be used within Business Intelligence.
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2
Background

In this chapter, we introduce basic terminology and concepts that we use in our
thesis. We present a formal definition of both minimal new sets and definitions of
events and topics. Finally, we discuss previous work within the field and how it
relates to our work.

2.1 Definition of Minimal New Sets
The formal definition of minimal new sets, MNS, that we use in the scope of our
studies is originally presented by Damaschke [9].

Definition 1. Let B0, B1, B2, ...Bm−1 be a sequence of sets that we call bags. For
another bag B := Bm we call a subset X ⊆ B new at m, if X was not already a
subset of an earlier bag : ∀i < m : X \Bi 6= ∅. Otherwise X is said to be old at m.
We call X ⊆ B minimal new at m if X is new and also minimal (with respect to
inclusion) with this property.

Consider one article, and a number k. Let k define the maximum size of a set of
words. This set of words is a subset of words that occur in a close neighborhood
within the article. A close neighborhood can be e.g. a few sentences at a time. Let
a bag for such an article be a multiset consisting of all such sets, meaning that each
word keeps its multiplicity. The definition of a new set is a set that is not a subset
of any of the previously seen bags (of previous articles). Minimal sets are sets that
are not supersets to any other sets. A minimal new set fulfills both of these criteria
[9].

As an example, suppose k = 2, and we have already processed three articles provid-
ing us with the bags:
B0 = {{’quick’}, {’dog’}, {’jump’}}
B1 = {{’brown’}, {’bear’}}
B2 = {{’brown’, ’dog’}, {’jump’, ’bear’}, {’brown’, ’jump’},
{’dog’, ’bear’}}

We now want to create the bag B3 which will correspond to article A3, where A3
= "The quick brown fox jumps over the lazy dog.". After the text has been
preprocessed, which we expand on in 3.1.1, the following text remains: "quick
brown fox jump lazy dog". The only words that have not been seen previously
are ’fox’, and ’lazy’. Therefore, these words are added to B3 as MNS of size 1.
Any set of size 2 containing either of these words would be new but not minimal.

2



2. Background

The following words remain, and can not be added as MNS of size 1 since they are
not new: ’quick’, ’brown’, ’jump’, and ’dog’. There exist six possible sets of size
2 that could be created from these words. Some of these have been seen in previous
bags and would not be considered to be new:
Seen in B0: {’jump’, ’dog’}, {’quick’, ’dog’}, {’quick’, ’jump’}
Seen in B2: {’brown’, ’dog’}, {’brown’, ’jump’}

The only set that has not been seen before is {’quick’, ’brown’}, which is added
to B3. We now have the bag for article A3, which looks as follows:
B3 = {{’fox’}, {’lazy’}, {’quick’, ’brown’}}

2.2 Definitions of Events and Topics
Events can be defined in several ways. For example, an event can be the earthquake
that took place in Japan 2011, another event can be the tsunami that follows the
earthquake. Some definitions of events leave it unclear if these are counted as one
single event or two separate events. We define an event in the same way as the
research program Topic Detection and Tracking (TDT) defines it [8], which is: "a
specific thing that happens at a specific time and place along with all necessary
preconditions and unavoidable consequences". This means that the earthquake and
the tsunami are the same event. We use the TDT definition of a topic which is “a
seminal event or activity, along with directly related events and activities” [3].

2.3 Related Work
Guðjónsson [13] believed that one is likely to find new combinations of words within
an article written about a new event. Guðjónsson created minimal sets using an
overlapping sliding window on the documents, considering three sentences at a time.
This was used to limit the amount of data, and also built on the idea that words
in close succession are more likely to relate to each other. Important words in close
succession were therefore joined into minimal sets. The sets found within a window
were added to a temporary sub-bag while a text was being processed. In the end, the
union of all sub-bags made the final bag that represents a text. Guðjónsson limits
the maximum size of his sets to 2, based on the likelihood that small MNS would
prove more informative than larger ones, as discussed by Damaschke [9]. Damaschke
showed that the use of MNS was a good indication when finding new events.

Fung et al. [10] worked on a problem called ‘hot bursty events detection’ where
they applied an algorithm to a sequence of chronologically ordered articles. They
defined a "hot bursty event" as a minimal set of bursty features that occur together
in a certain time window. One way to detect bursty features in a text is to use
the term frequency-inverse document frequency (tf-idf) schema [10], which is one
method used in [13]. This is described in more detail in section 3.1.2.

A common way to detect topics is to use hierarchical clustering. Garcia et al.
[11] introduced a hierarchical agglomerative algorithm that can be used to cluster

3



2. Background

both static and dynamic data sets. The clusters are obtained by calculating the
similarity measure between clusters, and creating graphs for each level in the tree.
Their algorithm, however, creates much fewer levels and clusters than other methods
such as Average-link [11], Complete-link [16] and Bisecting K-Means [11]. Their
results show that their algorithm performs well for dynamic data sets, requiring less
computational time and achieving a comparable or even better clustering quality
than standard methods.
Li et al. [22] introduce two new text clustering algorithms which both are based
on the idea that word sequences in documents play an important role to deliver
the correct meaning. They have two requirements for their algorithms. One is
associating a label to each cluster while running, which is time-consuming to do
afterwards. This gives a good description of the clusters and makes it possible to
browse through them quickly. Also, it should not be necessary to define the number
of clusters that the algorithm creates as they state that it’s difficult to know the
number of clusters in advance.

4



3
Methods

This chapter consists of two main sections. The first part describes the methods and
theory behind our model, which we call the MNS Chaining model, and the second
part presents the ground truth, i.e. what we compare our model to.

3.1 The MNS Chaining Model
In this section, we present methods used for preprocessing the text, how the minimal
new sets are enumerated, and how we find them. We also describe how we link
articles together based on the MNS.

3.1.1 Preprocessing
Gathering useful information from text is a process also known as text mining.
Preprocessing is an important first step to text mining, as it results in higher quality
data [36]. Articles are segmented into sentences and each sentence is tokenized, i.e.
represented as a list of words. Text is converted to lowercase, and punctuation is
removed along with stop words [5]. Stop words are the most common and generally
unimportant words within a language. A few examples of stop words in the English
language are ’and’, ’if’, and ’the’. All remaining words are stemmed using a Porter2
stemmer [29]. Stemming removes various suffixes allowing variations of a word to be
recognized as the same word, thus saving time and memory space [36]. The result
after stemming is not always an actual word itself. For example, while ’argument’
and ’arguments’ both are stemmed to ’argument’, the stemmed form of the words
’argue’, ’argued’, ’argues’, and ’arguing is ’argu’.

Recognizing and classifying entities such as people, organizations, locations, and
dates is an important task of Natural Language Processing (NLP) known as Named
Entity Recognition (NER) [17]. This is also included as a part of our tokenization
process. Introducing Named Entity Recognition to our preprocessing allows an
entity such as ’The United States of America’ to be identified and treated as
one token rather than a list of tokens, i.e. [’The’, ’United’, ’States’, ’of’,
’America’] . By introducing Named Entity Recognition ’The United States of
America’ can be used as one part of an MNS, rather than using a part of the entity
name. This means that we could avoid finding MNS such as {’United’, ’States’}
or {’New’, ’York’} but rather {’The United States of America’, ’...’} and
{’New York’, ’...’}.

5



3. Methods

We test three different libraries to perform Named Entity Recognition: Natural
Language Toolkit (NLTK) [5], spaCy [14], and Stanford NER [12]. A comparison
of the results can be seen in Listing 3.1, which also includes the runtime for each
library. The only library that recognizes a date is spaCy, as can be seen in Sentence
1. NLTK is not able to identify a person by their full name if the sentence begins
with the name, which can be seen in Sentence 4 and Sentence 5. While comparing
these two sentences, another interesting finding with Stanford NER is the inability
to identify ’the Museum of Natural History’ as a named entity when the order of
the two people being mentioned is switched. In Sentence 2, we see that Stanford
NER can not separate two succeeding named entities, whereas spaCy can not find
the second one.
While Stanford shows promising results, it is far too slow to be a viable candidate.
We choose to continue performing Named Entity Recognition using spaCy as it was
both the fastest performing library and provided the best results.

3.1.2 Calculating the Importance of Words
Within Natural Language Processing the importance for each word is often cal-
culated and used either as a weight or a filter. There are different methods of
quantifying the importance of a word for a text. Intuitively, one could argue that a
word mentioned many times in one article is likely to be more important. However,
a word that is mentioned often in a large collection of texts is likely to be less im-
portant to one specific text. Based on these ideas, there are a few metrics that are
commonly used to determine the importance of words [23].

• Term frequency (tft,d) - The number of times a term t appears within a given
document d.

• Document frequency (dft) - The number of documents in the collection that
contains the term t.

• Inverse document frequency (idft) - A weighted value of document frequency
scaled to the number of total documents, N , in the corpus. See Equation 3.1.
The logarithm is used in the formula to decrease the impact of high document
frequencies [18].

idft = log N

dft
(3.1)

• tf-idf - A combined value of term frequency and inverse document frequency.
See Equation 3.2. This value will increase if the given term is mentioned
frequently within an article or if it exists within a small part of the documents.
Similarly, the value will decrease if the given term is seldom mentioned within
an article or if it exists within a large part of the collection’s documents.

tf-idft,d = tft,d × idft (3.2)

Guðjónsson [13] used an incremental tf-idf model, meaning that the document fre-
quency for each term was recalculated for every new document processed. He did
not set up an initial document frequency. As a consequence, all terms received too
little weight in the beginning since they appeared in such a large part of the seen
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documents. Another option is to use a static model, where a training set is used
to establish the document frequencies. However, if the model is never updated, a
term that did not appear in the training set will always be considered new and will
therefore receive too much weight over time [6]. For these reasons, we choose to
use a combination of the two approaches. We use an initial six months of articles
for each data set as a training set to establish initial document frequency. We then
update the document frequencies incrementally, similar to Guðjónsson.

1 Sentence 1: Rami Eid studies at Stony Brook University in New York until May 2018
Expected: ['Rami Eid', 'Stony Brook University', 'New York', 'May 2018']

3

NLTK: ['Rami', 'Eid', 'Stony Brook University', 'New York']
5 STANFORD: ['Rami Eid', 'Stony Brook University', 'New York']
SPACY: ['Rami Eid', 'Stony Brook University', 'New York', 'May 2018']

7 ---------------------------------------------
Sentence 2: Mary Shelley's Frankenstein is a great movie.

9 Expected: ['Mary Shelley's', 'Frankenstein']

11 NLTK: ['Mary', 'Shelley', 'Frankenstein']
STANFORD: ["Mary␣Shelley's␣Frankenstein"]

13 SPACY: ["Mary␣Shelley's"]
---------------------------------------------

15 Sentence 3: I like The Bike Shop, it's better than the bike shop next door.
Expected: ['The Bike Shop']

17

NLTK: ['Bike Shop']
19 STANFORD: []

SPACY: ['The Bike Shop']
21 ---------------------------------------------

Sentence 4: Alice Andersson and Emma went to the Museum of Natural History.
23 Expected: ['Alice Andersson', 'Emma', 'the Museum of Natural History']

25 NLTK: ['Andersson', 'Emma', 'Museum', 'Natural History']
STANFORD: ['Alice Andersson', 'Emma', 'Museum of Natural History.']

27 SPACY: ['Alice Andersson', 'Emma', 'the Museum of Natural History']
---------------------------------------------

29 Sentence 5: Emma and Alice Anderson went to the Museum of Natural History.
Expected: ['Emma', 'Alice Anderson', 'the Museum of Natural History']

31

NLTK: ['Emma', 'Alice Anderson', 'Museum', 'Natural History']
33 STANFORD: ['Emma', 'Alice Anderson']

SPACY: ['Emma', 'Alice Anderson', 'the Museum of Natural History']
35 ---------------------------------------------

37 Runtime:
NLTK: 0:00:00.462305

39 STANFORD: 0:00:20.160481
SPACY: 0:00:00.027018

Listing 3.1: A comparison of three libraries used for named entity recognition,
namely Natural Language Toolkit (NLTK) [5], spaCy [14], and Stanford NER [12].
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3.1.3 Finding Minimal New Sets
The minimal new sets are identified partly using the same methods as Guðjónsson
[13]. In this section we explain the theory behind that method, along with our
decisions and improvements.

3.1.3.1 Enumeration of Minimal New Sets

Guðjónsson’s implementation builds on the efficient algorithm presented by Dam-
aschke [9].
Consider that articles are processed sequentially and the MNS of the nth article
are stored in bag Bn. At time m we have the enumerations of previously processed
articles stored in the bags B0, B1, B2, ...Bm−1, and the current task is to find all
minimal new sets of bag Bm. Candidate sets X ⊂ Bm are generated of increasing
size until all candidates are supersets of minimal new sets that have been discovered
in article m. Initially all sets of size 1, i.e. words, that are new at m are located
and ignored from the upcoming enumerations of a larger size. From the remaining
words, all possible sets of size 2, i.e. pairs, are generated and checked if they are
new at m. All sets of size 2 that are not new at m will be used to find sets of size 3
etc.
The way to determine if a candidate set is new is what makes the algorithm efficient.
Consider that we are processing candidate sets of Bm and we want to know if X is
new at m. Guðjónsson defined a function f to check where a set was first found.
The function f is defined as: f(X) := min{i|X ⊆ Bi}. If a value for f(X) (= i)
exists, then X was new at i and will be considered old at any subsequent index
j > i. However, if X is new at m, thus not a subset of any bag Bi, then f(X) is
undefined. If X is new at m, we set f(X) = m.
To determine if a set of size 1 is new at m, we check if it has been seen in any
previous bag. Since we are looking for sets that are both minimal and new, we must
consider that for any MNS X ⊂ Bm, all candidate sets Y ⊂ Bm where X ( Y , will
also be considered new at m, but not minimal.
Therefore, for a set Y where |Y | > 1, it is not always enough to check if f(Y ) is
defined, to know if it is new. If a value for f(Y ) exists, it is trivial to tell that Y is
old. However, if no such value exists, Y could still be old. To check if Y is a new
set, we must therefore check f(X) for each X ( Y . If f(X) = i is stored, we check
if Y ⊂ Bi. If the latter is true, this implies that Y was new at i but not minimal
since it is a superset of X, and therefore Y is not new at m.
Based on Guðjónsson’s findings, we limit the enumerations to only consider subsets
of size k ≤ 2. Additionally, Damaschke [9] discusses that minimal new pairs are
easy to find, while sets with k > 2 are rare. The differences between Guðjónsson’s
method to find sets and our own are explained further in Section 3.1.3.3.

3.1.3.2 Overlapping Sliding Window

Guðjónsson used an overlapping sliding window to process three sentences at a
time. He found that this approach achieved good results and a significant increase in
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performance [13]. Therefore, we choose to process our text using the same approach.
However, if every window is processed separately, without taking the actual overlap
into account, some sets will be found multiple times.

For example, a set which is found in a sentence sn will be found in each window that
includes that sentence. If the sliding window stretches across three sentences, the
exact same set would be found three times: once in each of the windows [sn−2, sn],
[sn−1, sn+1], and [sn, sn+2], as can be seen in Figure 3.1. It is undesirable to check
if this set is a MNS each time the window slides, as this is computationally more
expensive than necessary.

Figure 3.1: Sets found within one sentence could be found multiple times as the
window slides.

3.1.3.3 Improvements

As mentioned in the previous section, using Guðjónsson’s approach to find MNS
leads to an unnecessary amount of computations. Every time the window slides,
the new window covers a previously unseen sentence, sn. In our approach, we first
search for MNS using the same technique as Guðjónsson introduced, but we only
look at sentence sn. All new words, meaning MNS of size 1, are found during this
step. Therefore, when we continue to look for MNS across sentences, we can focus
on only searching for sets of size 2. Then, only previously seen words will be used to
make candidate sets. For each sentence that precedes sn within the current window
sn−x : 1 ≤ x < window_size, we search for new sets that contain one element
belonging to the old words of sn and one element belonging to the old words of
sn−x.

3.1.3.4 Filtering on Input or Output

We apply Guðjónssons method of filtering, meaning that the five words with the
highest ranking tf-idf score within an article are considered important, and the
MNS are filtered depending on if they contain one of the important words or not.
Additionally, it is important to consider at which point filtering is applied. One
way to filter is on input, where only the important words are used to construct
sets. Another way is to filter on output. Filtering on output means that sets are
constructed using the unfiltered text. Once filtering is applied, all sets that do not
include one of the important words are discarded.

For example, consider an article where the word crisis is deemed important and the
word financial is not. If filtering is performed on input, the word financial will
never be considered to make sets, and the set {crisis, financial} could never be
found. If filtering is performed on output however, {crisis, financial} could be
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created and since it contains an important word, the set will be kept post-filtering.
Hence, filtering on input gives fewer sets, and the impact of using different filters
could be important for our results. Guðjónsson [13] concludes that filtering on input
gives too few sets, therefore we chose to filter on output.

3.1.4 Linking Articles
Initially, the MNS are found in the data set. For each article, we create a bag which
consists of the union of all MNS found in the article. We select articles based on a
feature. A feature can specify that the bag of an article must contain one or a set
of words. We call the resulting selected set of articles a chain, which therefore can
be seen as a set that contains all articles with a certain feature.
To clarify the concept feature, a feature can specify that the word w should be an
element in an article’s bag. Then, only the articles that satisfy this criteria will be
selected. A feature can additionally specify that articles have to be found within a
certain time span to be linked together. To include a time limitation does not affect
which articles are selected, only how they are linked. If the time difference between
two consecutive articles is not within the defined range, the chain of articles will be
separated into two chains, as can be seen in Figure 3.2.

Figure 3.2: Four documents are linked in two different ways. In a), no time
limitation is applied. In b) however, a time limit of less than two days is used,
which means Document2 will be separated from Document3, and as a result we get
two chains instead of one.

3.2 Defining the Ground Truth
In this section we present the theory behind our ground truth and the methods
we have used to implement it. The purpose of this model is to have something
to compare our model to, which practically means to determine how many of the
articles in a chain belong to the same topic.
We define our ground truth of a topic by clustering, where a cluster of articles
represents a topic. Steinbach et al. [34] compare three techniques for text cluster-
ing: k-Means, Hierarchical Clustering, and Bisecting k-Means. They conclude that
although Hierarchical Clustering often is portrayed as the best one regarding accu-
racy, they find that Bisecting k-Means performs as good or better than Hierarchical
Clustering with lower running time.
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However, many algorithms that are considered scalable and fast, such as Bisecting
k-Means, require the number of clusters, k, to be defined in advance. This is prob-
lematic to specify for a data set consisting of articles since the number of topics
that should be produced is usually not known in advance. Hierarchical Clustering
Algorithms however, do not require k to be defined. Therefore we use a Hierarchical
Clustering Algorithm implementation by SciPy [19].

3.2.1 Hierarchical Clustering
A Hierarchical Clustering Algorithm creates a hierarchy of clusters, producing a
tree. Each leaf in the tree is a singleton cluster that contains a single document,
whereas the root cluster contains all documents in the corpus. Therefore, clusters at
different levels in the tree offer information of varying levels of abstraction. While
clusters close to the root are more general, clusters closer to leaves are specific [37].
This raises a question of where to cut the tree, i.e. which clusters should represent
topics. The result of clustering with a Hierarchical Clustering Algorithm is often
visually represented using a dendrogram, as can be seen in Figure 3.3.

Figure 3.3: A dendrogram is a visual representation of a classification scheme,
e.g. the result of hierarchical clustering. A full dendrogram would mean that each
leaf in the graph is represented by an individual item, in our case an article. The
leaves in a truncated dendrogram represent subclusters, i.e. groups of articles. This
means that the labels on the x-axis in the figure show the number of items in each
subcluster. The distances between clusters are shown on the y-axis [24].

A Hierarchical Clustering Algorithm is either agglomerative or divisive. In an ag-
glomerative, i.e. bottom-up clustering algorithm, each document is initially a single-
ton cluster and the closest clusters are merged until one cluster, the root, remains.
The opposite is done using a divisive, or top-down approach. Initially, all documents
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belong to the root cluster which is divided until each leaf is a singleton cluster. We
choose bottom-up clustering because we search for small clusters and therefore ex-
pect less error propagation than a top-down approach would provide.
There are multiple ways to measure the distance between clusters, i.e. to determine
the linkage criterion. We use two different linkage methods which are described in
more detail in Section 3.2.1.1 and 3.2.1.2. We decide to use UPGMA since it is the
most common method used within text clustering. Additionally, we decide to use
single linkage because the result will likely differ from using UPGMA.

3.2.1.1 Single Linkage

Using single linkage, two clusters are merged based on the shortest distance between
them. This means that the elements across the clusters are compared pairwise, and
the shortest distance determines the linkage criterion. The distance between two
clusters, Ci and Cj, using single linkage is defined as Equation 3.3.

D(Ci, Cj) = min
x∈Ci,y∈Cj

D( # »

Vx,
#»

Vy) (3.3)

One well-known problem with single linkage is the so called single-link effect or
chaining effect. It means that if there is a chain of points between two clusters,
the clusters might not be separated [1], see Figure 3.4. This also means that the
distance between elements within a cluster can be large.

(a) Using UPGMA. (b) Using single linkage.

Figure 3.4: Two natural clusters connected by a chain of points and clustered
using two different linkage methods. If single linkage is used, the two clusters may
not be separated due to the chain of points between them.

3.2.1.2 Unweighted Pair Group Method with Arithmetic Mean

Unweighted Pair Group Method with Arithmetic Mean (UPGMA), also called av-
erage linkage, merges two clusters based on the average distance between all objects
in the clusters. The distance between two clusters using UPGMA is given by

D(Ci, Cj) = 1
|Ci|

∣∣∣Cj

∣∣∣
∑

x∈Ci

∑
y∈Cj

D( # »

Vx,
#»

Vy). (3.4)

Since all objects are used to calculate the distance, and not only individual elements
as in single-link, a chaining effect is avoided.
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3.2.2 Making Documents Comparable
In order to cluster documents, they need to be comparable. A common approach
is to represent each document in the vector space model [27, p. 45], which means
that each document is represented as an n-dimensional vector. Bag-of-words is an
approach where n is the number of unique words that exist within the corpus, and
each component in a vector represents the number of occurrences of one specific
word in that document [2, p. 167].

We explore three different ways to represent a document: using spaCy [14], CountVec-
torizer [28], and TfidfVectorizer [28]. The method that spaCy uses is a technique
known as word embedding that represents each word by a 300-dimensional vector
[26]. Each document is then also represented as a 300-dimensional vector, based on
the document’s composition and the vectors of the words it contains. While this
technique is known to be very effective to estimate similarities between documents,
we find that it is not possible to find specific topics if documents are represented
this way. We believe that this can be due to word embeddings not functioning
well within the TDT definition of an event, see Section 2.1. For example, the word
vectors of Rome and Paris are very similar since both are capitals of European coun-
tries. However, there is a distinct difference between an event occurring in Rome
and one occurring in Paris.

CountVectorizer uses a bag-of-words model [33] and TfidfVectorizer is a modified
version of that. In both techniques, each component in a vector represents a word.
While CountVectorizer uses the number of appearances for each word in a given
document, TfidfVectorizer uses the tf-idf-value for the word. The later one shows
best result and therefore, we choose to represent documents using TfidfVectorizer.

Once the documents are represented as vectors, the documents can be compared
using a similarity measurement, which we expand on in the next section.

3.2.3 Measuring Similarity between Document Vectors
The similarity, or distance, is calculated pairwise between all document vectors.
While a higher similarity value denotes that two documents are more similar, a
higher distance value denotes that they are less similar. There exists a wide range
of measurements that can be applied, where some of the best performing approaches
within document clustering are cosine similarity and extended Jaccard [35].

Extended Jaccard builds upon the Jaccard index, which is commonly used to com-
pare sets. Cosine similarity is the most common approach within text clustering
[2, p. 89]. Due to a lack of time we therefore decided to only continue with cosine
similarity for our experiments and not to use extended Jaccard. However, we will
use the basic version of the Jaccard index as a filter in one of our experiments, see
Section 4.4.

We denote the vector that represents document d by #»

Vd. The cosine similarity
between two documents i and j is measured as the cosine of the angle between their
corresponding vectors, #»

Vi and
#»

Vj. It is calculated using the Equation 3.5 [15].
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simC( #»

Vi,
#»

Vj) =
#»

Vi •
#»

Vj

‖ #»

Vi‖‖
#»

Vj‖
(3.5)

When comparing vectors that represent documents, it has been widely observed that
the direction of the vectors is more important than their length [38]. Therefore,
cosine similarity has become a popular metric within document clustering as the
length of a document vector has no effect on the result. An example to visualize
this is given in Figure 3.5.
In the figure, we consider three documents i, j, and, k, where j is the combination
of two copies of document i. Although j has twice the length of i, these documents
have the same composition since each word that appears in i will appear twice as
often in j. Document k has a different composition, as it does not contain the word
red. As can be seen in Figure 3.5c, the vectors i and j have the same direction,
and the angle between them is 0◦. The cosine similarity between i and j is 1 and
the two documents are considered identical. The angle between k and either of the
other vectors is

√
30
6 ≈ 24◦, which means that the cosine similarity would be roughly

0.91.

Figure 3.5: Three example documents represented as vectors in the vector space
model.

The range of cosine similarity is [0,1], where 1 indicates that the vectors are pointing
in the same direction and 0 means that they do not have any words in common.
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4
Experiments

We define some features that we want to explore, and run these through our frame-
work. The experiments that we run are described below.

4.1 Data Sets
We apply our methods to the data set Reuters Corpus Volume I (RCV1) [21]. It
contains over 800,000 manually categorized news articles in English, from the years
1996 and 1997. The articles were made available by Reuters, Ltd. for research
purposes. Every article is marked with an industry, region and category code (called
topic code within the Reuters data set). This enables testing on a more narrow data
set.
We choose three categories to use as data sets which are presented in Table 4.1,
where N is the number of articles that we use for our experiments. These are
chosen based on the possibility to find and track actual topics within them. For
example, the category ’New products/services’ proves to be a weak candidate as it
does not seem to contain topics, but rather single articles about new releases.
Although RCV1 contains a year’s worth of articles, we only perform our experiments
on the articles from the the last six month of that year. We refer to the articles from
the first six months as N0, and they are used for preprocessing purposes to improve
the quality of the tf-idf scores, as mentioned in Section 3.1.1. They are also used
to find MNS so that the first articles that we use in our experiments do not have a
disproportionately large amount of MNS.

Data set Category code Category N N0

D1 GDIS Disasters and Accidents 4614 4040
D2 GENV Environment and Natural World 3467 2794
D3 GCRIM Crime, Law Enforcement 17064 15155

Table 4.1: The three data sets used for our experiments.

A large part of research within the field of text mining uses micro-text, which means
to use social media to retrieve data, Twitter commonly being one of the main sources
[20] [2] [27]. One advantage with using mainstream media as a source is the higher
quality of text. There are fewer misspelled words, the grammar is better, and there
are fewer additions such as emojis.
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To find the number of clusters for each category, we manually examine different
values for max distance (max_d) between clusters. It shows that we need to use
different max_d-values for each combination of data set and linkage method, if we
want each cluster in every data set to represent a specific topic. However, they are
quite similar, see Table 4.2.

Data set Linkage method Metric max_d Clusters Biggest cluster

D1 UPGMA Cosine 0.8 776 140
D1 Single linkage Cosine 0.4 2738 107
D2 UPGMA Cosine 0.75 1004 88
D2 Single linkage Cosine 0.4 2343 68
D3 UPGMA Cosine 0.75 3836 299
D3 Single linkage Cosine 0.4 8771 278

Table 4.2: Different maxd values for different combinations of data set, linkage
method and metric.

4.2 Framework for Experiments
In order to conduct our experiments, we build the following framework: first we
define features of the MNS that we want to explore, see Section 3.1.4. We then link
articles based on a given feature. Lastly, we use the ground truth (see section 3.2)
to check how many of the articles belong to the same topic. The flow of experiments
in the framework are visualized in the Figure 4.1.

4.3 Tracking One Word
We start with the simplest tracking which is to link articles based on one word at
a time. For each word w we link articles where w is an element in an article’s bag.
This creates one chain of articles for each word that is used for linking.

4.4 Tracking Two Words
The second experiment examines if two words frequently appearing together in bags
is a good indication that they belong to the same topic. We start by removing all
combinations which only occur once, because a vast amount of these combinations
exist and they do not provide interesting data. This is further explained in Section
4.6.

As can be seen in Table 4.3, there exist millions of word-combinations that could
be tracked for each data set. To determine how often a combination of two words
appears, we calculate the Jaccard index of the occurrences of the two words. The
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Figure 4.1: A visualization of the framework we build to perform experiments.
Based on the data set and the experiment to run, defined by the user, the Exper-
imenter creates a set of Features and one by one sends these to the ArticleLinker
to retrieve their corresponding chains. These chains are sent to the GroundTruth
which returns the cluster affiliation for each article in a chain. The results of all
features are saved for analysis.

Jaccard index, also known as the intersection over the union, is defined in Equation
4.1.

J(A,B) = A ∩B
A ∪B

(4.1)

In the equation, consider a combination of words (a, b). For our purposes, A is the
set of articles where a exist, and B is the set of articles where b exist. The range of
the Jaccard index is [0,1], where 1 means that the two sets have the same content,
and 0 means that they do not have any elements in common.

The Jaccard index can also help us filter our word combinations, since it is unfeasible
to use all the millions of combination to link articles on. To be able to analyze how
the Jaccard index impacts the results, we want to choose a low limit. Originally,
we set our lower bound to a Jaccard index greater than 0.05, but this results in too
much data to process as one data set had 45000 combinations on average. When
we explore to set the lower bound to 0.1 instead, we find that this allows us to
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filter away uninteresting combinations that appear rarely, while giving us a feasible
amount of data to process.

Data
set

Unique
words

Words that
occur more
than once

Combina-
tions
found

Combinations
existing more
than once

Combinations
with Jaccard
index > 0.1

D1 17 479 10 700 2 567 821 446 165 11 176
D2 17 018 10 526 3 376 467 666 860 11 409
D3 44 027 25 540 8 357 595 1 888 910 18 341

Table 4.3: An overview of how many unique words and how many combinations
exist within the article bags of each data set, and how these amounts decrease with
filtering.

4.5 Adding a Time Feature
We believe that a word or a combination of words could be important for different
topics at different points in time. Therefore, we extend the previous experiments by
adding a time feature. With the time feature we study if limiting the allowed time
interval between articles could provide better results. We analyze the published
dates of articles, both as a whole for each data set, but also within the cluster of
each topic. An observation from our Reuters data set is that the article count drops
noticeably over the weekend. If the articles within a topic span over more than a
week, but have a brief pause over the weekend for example, it does not mean that it
is a new wave or that it is a new topic. An important insight from this observation
is that the time interval can’t be too strict. We define two articles in a chain that
are published consecutively within the allowed time interval to appear within close
succession.
To specify close succession we analyze the time delta between consecutive articles
in each ground truth topic. Therefore, we look at the distribution of time deltas for
a data set and let the 50th percentile to the 90th percentile in 10 percentage point
intervals define close succession. See Table 4.4.

Data set/Percentile 50 60 70 80 90

D1 4 8 15 27 51
D2 7 12 21 34 59
D3 6 10 17 28 53

Table 4.4: Different percentiles for the distribution of time deltas using UPGMA.
The percentiles are shown in days, where for example the 50th percentile, i.e. the
median, of D1 is 4 days.

The chains are initially composed exactly like in the experiments above, but then
broken apart into shorter chains depending on the defined close succession. We let
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a chain of articles be sorted in a chronological order. If two succeeding articles in a
chain have a bigger time gap than a defined close succession, the chain is split into
two chains. Since trends span over different time periods it is difficult to decide a
fixed value for close succession.

4.6 Evaluation of Results
The chains are compared to the ground truth to see how many articles belong to the
same cluster. We explore several ways to determine the success of one chain when
comparing against the ground truth. A common way to measure similarity between
sets is the Jaccard index, defined as Equation 4.1. We considered using this to define
the success rate of a chain, where a chain would be compared against each cluster
to which articles in the chain belong. The highest Jaccard index would be chosen
as the success rate. For example, a chain with articles that belong to cluster Cl1
and Cl2 would be compared against both clusters individually. The highest Jaccard
index between the two would define the success rate.

However, the Jaccard index is not ideal for our purposes because the cluster sizes
affect the results too much. Even if all articles in a chain belong to the same cluster,
the success rate could still be low if the cluster size is large. Additionally, let us
consider a chain where all except one of the articles belong to the same cluster.
If the one article that belongs to a separate cluster represent a singleton-cluster,
the success rate would be 1/`. Then, if the other cluster is larger than (l − 1) · `,
the success will be determined by the singleton cluster. This would mean that the
success of the chain was determined by noise, which we do not want.

Therefore, we choose to define another measurement. Equation 4.2 contains the
names of variables which we refer to in this section. The values of these variables
are defined for one given chain. The length of the chain is denoted by `. Let the
articles in the chain be grouped by which cluster they belong to. Then a group of
a chain is defined as all articles that belong to the same cluster. The number of
groups, which is the number of unique clusters that the articles in the chain belong
to, is denoted by g. The size of the largest group is denoted by lgs, and the size
of the cluster that its articles belong to is denoted by cl. Figure 4.2 displays an
example of this.

` = chain length
g = number of unique clusters

lgs = size of largest group of articles
cl = cluster size (4.2)

We refer to our first try of a measurement as m1. Let the articles in a chain be
grouped by which cluster they belong to, then each group of a chain is defined by
all the articles that belong to the same cluster. The value of m1 is defined by the
largest group of a chain and the chain length, see Equation 4.3. Consider a chain
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Figure 4.2: An example displaying the values that the variables get for one chain.
The chain has a length of 6. The largest cluster group is cluster A with 4 articles
belonging to it. There are 3 unique cluster that the articles belong to. Cluster A
has the size 5.

with five articles, where four of them belong to the same cluster. The largest group
of the chain consists of those four articles and the score of that chain is 4/5.

m1 = lgs
`

(4.3)

However, this approach has some flaws. As can be seen in Figure 4.3 there seems
to be a relation between chain length and m1, where shorter chains generally give
better results. This is not surprising since shorter chains have a higher probability
of getting a 100% success. Consider drawing random samples of articles to define
a chain. Now consider the probability that all articles in the chain are in the same
cluster. A chain with only one article in it would automatically have a success rate
of 100%, and the probability for a high success rate decreases with the length of the
chain. To create a better measurement, we identify two more factors that we find
important.

One of the important factors is a weight for chain length, which punishes shorter
chains. An observation we made is that the punishment should not be linear. It
is common practice to use the logarithm to reduce the impact of high values of a
variable. Therefore we define this measurement factor, m2, as Equation 4.4.

m2 = ln (`) (4.4)

Another identified factor, m3, is the number of unique clusters, g, to which the
articles in a chain belong. We consider m3 to be max if all articles in a chain belong
to the same cluster, i.e. if g = 1. Furthermore we consider m3 to be 0 if no articles
in a chain belong to the same cluster, i.e when g is equal to the length of the chain.
Just as the punishment for chain length, we believe that this measurement should
be non-linear. The measurement factor for number of groups is defined in Equation
4.5.
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Figure 4.3: The chain lengths of D2 plotted against m1.

m3 = ln
(
`

g

)
(4.5)

When selecting a random article, the probability of selecting one from a large cluster
is greater than selecting one from a small cluster. Therefore, we compensate for
cluster size. We choose to compensate according to the cluster which the largest
group of articles belongs to, and call this factor m4. The measurement factor for
cluster size is defined in Equation 4.6.

m4 = cl (4.6)

The total measurement, mtot, is defined as a product of the factors, m1,m2,m3
divided by m4. The formula is defined in Equation 4.7. A suitable property for this
measurement is that the success rate of one chain fulfills the behaviour to be zero if
no articles in a chain share the same cluster.

mtot = m1 ·m2 ·m3

m4
=

lgs
`
· ln (`) · ln

(
`
g

)
cl (4.7)

After evaluating this measurement, we find that the factor m4 has a much larger
impact on the resulting measurement, mtot than the other factors. This is due to m4
having a much larger range than the other factors. Intuitively, the outcome of the
measurement should be at its maximum if the cluster size is as small as possible.
Additionally, all articles in a chain need to belong to the same cluster. For this to
be possible, the cluster size must be larger than or equal to the chain length. These
two requirements imply that cluster size must be equal to the chain length for the
final measurement to be maximum. The maximum of our current measurement can
be seen in Equation 4.11, where we see that the measurement will actually decrease
for larger chains, which is the opposite of what we want.
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0 ≤ m1 ≤ 1 (4.8)
1 ≤ g ≤ ` =⇒ 0 ≤ m3 ≤ ln (`) (4.9)
if (m1 = 1 ⇐⇒ g = 1) =⇒ cl ≥ ` (4.10)

mtot ≤
m1[lgs = `] ·m2 ·m3[g = 1]

m4[cl = `] = 1 · ln (`) · ln (`)
`

= ln2 (`)
`

(4.11)

Therefore, we define m′4 as the logarithm of cluster size instead, so that the different
factors impact the total measurement with similar weights, see Equation 4.12. But
to make sure that we do not divide by zero, we define mtot = 0 if cl = 1. The new
maximum is therefore ln(`), see Equation 4.13.

m′4 = ln (cl) (4.12)

mtot ≤
m1[lgs = `] ·m2 ·m3[g = 1]

m′4[cl = `] = 1 · ln (`) · ln (`)
ln (`) = ln (`) (4.13)

Lastly we normalize the final measurement with the maximum value. This gives us
a measurement which is bounded to [0,1], see Equation 4.16.

if cl = 1 : mtot = 0

otherwise : mtot = m1 ·m2 ·m3

m′4 ·max(mtot)
=

lgs
`
· ln (`) · ln

(
`
g

)
ln (cl) · ln (`) =

lgs
`
· ln

(
`
g

)
ln (cl) (4.14)

mtot ≥
m1[lgs = 1] ·m2 ·m3[p = `]

m′4
=

1
`
· ln (1)
ln (cl) = 0 (4.15)

mtot ≤
m1[lgs = `] ·m2 ·m3[g = 1]

m′4[cl = `] = 1 · ln (`)
ln (`) = 1 (4.16)

4.6.1 Comparing Results
To be able to compare our results we simulate random draws, which means that we
create chains by randomly selecting articles. If the results from an experiment are
not significantly better than the results from the random model, the experiment is
considered unsuccessful.
We begin by calculating a simple empirical probability mass function for chain
length, which is based on the actual results of one experiment and one data set.
Based on that probability mass function we follow the steps below. Let M be the
number of chains to sample. We choose M to be the same number of chains as
generated from the experiment.
While one chain should not be able to contain a specific article more than once, an
article should be able to appear in multiple chains. Each chain is created indepen-
dently of chains that have previously been created.
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1: for M times with replacement do
2: Generate random number to be chain length, `r, from the probability mass

function
3: Randomly draw `r articles from the entire data set without replacement
4: end for

The random model is used to calculate a z-score [7], which is a measure of how
many standard deviations away from the mean a value is. The z-score of a result
xi is calculated as Equation 4.17, where µrand and σrand is the mean and standard
deviation of our random model. A negative z-score therefore means that the result
is below the mean of our random model, and a positive high z-score means that our
model performs much better than the random model.

zi = xi − µrand

σrand

(4.17)

We also calculate a p-value [30] for each chain with a hypergeometric test, to be able
to measure the significance of our results. The hypergeometric test is also known as
the one-tailed version of Fisher’s exact test [25] [31], which uses the hypergeometric
distribution to help determine whether an observation is statistically significant
or not. In a test for over-representation this means to calculate the probability
of drawing k or more successes from the data set under the null hypothesis: the
hypothesis that there is nothing special about the data set. In our case, we compute
the probability of drawing k or more articles from a cluster with size K randomly,
where the length of the chain is `, and the total number of articles in the data set is
N . If this probability, also called p-value, is sufficiently low, we can reject the null
hypothesis and say that the result is significant. To decide if the result is significant,
the p-value 0.05 is commonly used in statistics as a limit. This means that if the
p-value is less than 5%, the result is counted as statistically significant.
The probability mass function of a hypergeometric distribution [30], i.e. the proba-
bility of exactly k successes in n draws, is given by Equation 4.18.

pX(k) = P (X = k) =

(
K
k

)(
N−K
`−k

)
(

N
`

) (4.18)

4.7 Environment
We perform our experiments on a laptop with the following specifications:

• Processor: Intel(R) Core(TM) i5-4200U CPU @ 1.60GHz 2.30 GHz.
• Installed RAM: 12,0 GB
• System type: 64-bit operating system, x64-based processor
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Results

This chapter presents the results of each experiment described in Chapter 4.

Table 5.1 describes, for each data set, the lengths of the chains generated by our
methods together with a description of the tf-idf-values. We list the minimum and
maximum chain length along with the mean and standard deviation. As can be
seen the minimum chain length is always 2, which is not surprising since we filter
out chains of smaller length. The maximum chain length and other values vary
depending on the data set. Both chain length and tf-idf-values are used in the
analysis.

Experiment: Tracking one word
Data set Measure Chain length Average tf-idf

D1 mean 12.66 0.087
std 27.38 0.055
min 2 0.016
max 1523 0.643

D2 mean 13.53 0.070
std 25.80 0.056
min 2 0.011
max 1337 0.452

D3 mean 20.60 0.097
std 59.59 0.075
min 2 0.012
max 4019 1.158

Table 5.1: Description of chain length and average tf-idf-value for all data sets when
tracking one word. Since a word has different tf-idf-values for different documents,
we calculated an average tf-idf for each word.

In the experiment of tracking two words, we list the chain lengths and the Jaccard
index. Once again, as can be seen in Table 5.2, the minimum chain length is 2,
and the maximum chain length and other values vary between the data sets. The
values, however, differ substantially from Table 5.1, where the results of tracking
one word are presented. When tracking two words, we include the Jaccard index,
see Section 4.4, since we want to analyze if combinations that appear more often
together achieve better results.
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Experiment: Tracking two words
Data set Measure Chain length Jaccard index

D1 mean 2.68 0.20
std 3.77 0.15
min 2 0.22
max 210 1.00

D2 mean 2.64 0.20
std 2.62 0.14
min 2 0.14
max 69 1.00

D3 mean 3.00 0.26
std 5.47 0.20
min 2 0.10
max 192 1.00

Table 5.2: Description of chain length and Jaccard index for all data sets when
tracking two words.

In order to further evaluate the results from our experiments, we compare the MNS
Chaining model to a random model. A new random model is created for each
combination of data set, linkage method and tracking on one or two words, with or
without time feature, see Section 4.6.1.

Data set Linkage Experiment mavg
tot zavg-score pavg-value

D1 UPGMA One word 0.070 6.11 0.0041
D1 Single One word 0.049 9.10 0.0029
D1 UPGMA Two words 0.196 13.93 0.0015
D1 Single Two words 0.176 20.69 0.0047
D1 UPGMA Time feature 0.156 12.97 0.00070
D2 UPGMA One word 0.056 6.52 0.0046
D2 Single One word 0.030 3.85 0.0043
D2 UPGMA Two words 0.195 10.42 0.0012
D2 Single Two words 0.131 8.07 0.0071
D2 UPGMA Time feature 0.141 15.34 0.00059
D3 UPGMA One word 0.099 26.07 0.0031
D3 Single One word 0.077 30.11 0.0054
D3 UPGMA Two words 0.289 40.53 0.00016
D3 Single Two words 0.254 48.78 0.00017
D3 UPGMA Time feature 0.208 34.38 0.000081

Table 5.3: Our experiments generate valuesmavg
tot . The z-scores indicate the relation

of our results compared to the random model, for details see Section 4.6.1. The p-
values indicate the significance of our result, see Section 4.6.1.
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In Table 5.3 we present the mean success rate mavg
tot for various experiments along

with corresponding mean z-score, zavg-score, and mean p-value, pavg-value. Since
mtot is defined for one chain, we need to define a measure for an entire experiment.
Let c denote a chain and let C be all chains in the experiment, then we define mavg

tot

as follows:

mavg
tot =

∑
c∈C mtot

|C|
(5.1)

Similarly, z-scores and p-values are defined for each chain. Most z-scores are within
the interval [0, 7], but a few can be up to almost 200. For details see Appendix
B.1. We want to evaluate our results from an experiment as a whole, and therefore
compare our results against a random model by calculating the z-score for each
experiment.
To get a z-score for a whole experiment, we define zavg-score as the sum of z-scores
over all chains divided by the number of chains. A positive z-score denotes that
our model performs better than the random model. For example, for data set D1,
tracking one word and single linkage, the average z-score is 9.1 which means that
our result on average is roughly 9 standard deviations away from the mean of the
random model.
The p-values indicate the significance of the results from each experiment. P-values
are within the interval [0, 1] and low values indicate high significance. A common
threshold to say that a result is statistically significant is 0.05.
Note, that since the zavg-scores and pavg-values are calculated from each individual
experiment, and thus an individual random model is created for each experiment,
the rows cannot be compared in the columns of Table 5.3, see Chapter 6.
We only test the time feature in an experiment where we track two words and use
UPGMA as linkage method. We test different percentiles for the distribution of
time deltas to define close succession, see Table 4.4. The 90th percentile experiment
(between 51 and 59 days) gives the best results, for all data sets 5.4. The numbers
in Table 5.3 correspond to the 90th percentile experiment.

5.1 Measurable Properties of the Tracking Words
and Their Impact

In this subsection, we aim to display different indicators for our experiments in order
to prepare for comparison and analysis of our results. Note that we only present a
selection of the plots here and that the corresponding plots for the all data sets can
be found in Appendix B.
Figure 5.1 shows the z-scores of D1 from tracking one word, in regard to each word’s
tf-idf-value. From the graph, it is difficult to see the individual points and therefore
determine which data points are noise. Therefore, we divided the data points into
intervals based on their tf-idf-value, and plotted each as a box plot, see Figure 5.2.
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Figure 5.1: The average tf-idf of all words in MNS from D1 plotted against their
z-score.

Box plots show the spread of the data, where the box represent the first and the
third quantile, i.e. 50% of the data points are within the box. The whiskers of box
plots can represent several alternatives, where one alternative is to represent min
and max. The whiskers in our box plots is 1.5% from min and max respectively and
the individual dots outside the whiskers represent outliers.

Figure 5.2: Box plots of different intervals for the average tf-idf of all words in
MNS from D1 plotted against their z-score.

Figure 5.3 shows the z-scores of D2 from tracking two words, in regards to the
Jaccard index of the word combination. Similar to the scatter plot for tf-idf, Figure
5.1, it is difficult to tell one point from another in some areas of this graph. We once
again divide the data points into intervals based on the Jaccard index and present
the data using box plots, as can be seen in Figure 5.4.

27



5. Results

Figure 5.3: The Jaccard index of two words plotted against the z-score. Data set:
D2.

Figure 5.4: Box plots of different intervals of the Jaccard index of two words
plotted against the z-score on data set D2.

5.2 Time Feature
Since tracking two words with UPGMA gives the best average success in our other
experiments, as can be seen in Table 5.3, and because of a shortage of time, we
decide to add the time feature only to tracking two words and to analyze against
the UPGMA-ground truth.

We also analyze if breaking the chains into subchains improves the MNS Chaining
model. Consider a chain c where the majority of the articles belong to cluster A.
We will simplify the notion of this by saying that the chain c belongs to cluster A.
Suppose that c is split by the time feature into two subchains c1 and c2. If both
subchains still belong to cluster A, dividing the chain was unnecessary. However, if
c1 and c2 now belong to two different cluster, dividing does make sense.
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Data set Percentile
50 60 70 80 90

D1 Mean mtot 0.087 0.103 0.116 0.135 0.157
D2 Mean mtot 0.063 0.074 0.090 0.110 0.141
D3 Mean mtot 0.085 0.105 0.130 0.164 0.209

Table 5.4: The mean success of tracking two words with different time deltas. The
values for each percentile can be seen in Table 4.4.

We therefore define a successful split as a split where the resulting subchains belong
to different clusters. In Equation 5.2 we define a total score for one chain, where
the score for one chain is determined by the number of successful splits divided by
the number of total splits. The range of this score is [0,1] where 0 means that there
where no successful splits, and 1 means that all splits where successful. Table 5.5
represent the mean scores for all chains within the experiment.

Successful split rate = Successful splits
Number of splits (5.2)

Data set Average successful
splits per chain

Average number of
splits per chain Successful split rate

D1 0.80 1.02 0.78
D2 0.81 1.02 0.80
D3 0.46 1.03 0.45

Table 5.5: All columns represent the mean of each parameter and data set, where
the rightmost column is the fraction of the second and third column. The rightmost
column tells us the proportion of successful splits.
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6
Discussion and Conclusion

In this chapter, we start off by comparing our initial goals and expectations with
the outcome of our experiments. We continue with presenting our main challenges
and suggest possible future work.

6.1 Analysis of Our Results

In following subsections we discuss the magnitude of the z-scores and p-values in
Table 5.3. We also discuss the impact of tf-idf-value, Jaccard index and time feature
on the success rate.

6.1.1 Magnitude of z-scores and p-values

A z-score is a measure of how many standard deviations away from the mean of the
random model that a result is. In Table 5.3, the z-scores are relatively high compared
to z-scores in other experiments in the literature. This is because the standard
deviations of our random models are very close to zero, which automatically causes
larger z-scores, see Equation 4.17.

The standard deviations of the random model are close to zero due to how our
measurement works. A chain’s score, mtot, is zero if all articles in the chain belong
to different clusters, i.e. if the number of unique clusters, g, is equal to the chain
length `. We draw the chain lengths for the random model from the probability
mass function of the chain lengths from our experiments. The chains from our
experiments are typically very short, see Table 5.1 and Table 5.2. Since it is more
likely that all articles in one chain belong to different clusters if the length of the
chain is small there are many chains in the random model with success rate zero.

Since Table 5.3 shows that the p-value for all experiments are below 1% we determine
the results as significant. We think that this can be explained by the size of N , the
number of articles in the data set, and how these are clustered in our ground truths.
Since we have so many articles to choose from, from a large amount of clusters, it
is not very likely to choose two or more articles from the same cluster by random
chance.

30



6. Discussion and Conclusion

6.1.2 Impact of the tf-idf-value on the Success Rate
We expected that words with higher tf-idf, i.e. more important words, would provide
better results than common words. However, in Figure 5.1 it initially seems like
words with a low tf-idf-value have a higher chance of succeeding than words with a
high tf-idf-value. In the box plots in Figure 5.2 the data is presented in intervals,
which facilitates the evaluation of the results. Since the last three box plots all
include significantly less data points than the previous box plots, we account these
plots as noise. Upon evaluation of the remaining box plots, we realize that the
median of the success increase for each tf-idf-interval. Therefore, we conclude that
our hypothesis is confirmed.

6.1.3 Impact of the Jaccard Index on the Success Rate
Since we believe that one word is not enough to capture a topic, we expected to
achieve significantly better results for tracking a combination of words than tracking
only one word. This hypothesis can be confirmed if comparing different rows in the
column mavg

tot in Table 5.3.

We also expected that word combinations with a higher Jaccard index would achieve
higher success than those with a lower Jaccard index. We reason that the Jaccard
index indicates how strongly two words relate to each other, and if this value is
high they seldom appear in the absence of the other word. As explained in Section
5.1, the scatter plots of the Jaccard index were difficult to evaluate due to the high
number of data points in each plot. Therefore, we divide the data into intervals
depending on their Jaccard index, and evaluate the results with a box plot for each
interval instead. Both the scatter plots and the box plots can be found for all data
sets in Appendix B.3.

The box plots generally show that the median z-score increases when the Jaccard
index increases, this is especially true for the box plots of UPGMA. It is more
difficult to make a general assessment of the box plots for Single linkage. While the
median is 0 for the first few boxes for D1 and then increases, the median for D2 is
0 for all boxes. The same graph for D3 however, shows that the median increases
steadily, more similar to the box plots of UPGMA.

We can see that for some of the intervals, the box plots contradict our hypothesis.
In all box plots, the last interval which represents the Jaccard index (0.9, 1], has
a median lower than the previous box. We believe that this is due to some word
combinations that naturally are probable to occur together, without describing a
topic. Examples of this that we have seen are

• An abbreviation along with the full form of the word or phrase, such as [iiec,
the international institute for energy conservation]

• A name of a person or a location that are important to multiple topics, such
as [helmut, kohl]

• Sayings, such as [wreak, havoc]
• Words that naturally appear together, such as [divorce, marriage]
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We can also see that there exist other intervals that contradict our hypothesis.
However, in the majority of these intervals, the number of data points are relatively
small, and therefore these intervals cannot be given the same importance as the
other intervals. Our final conclusions regarding the Jaccard index is therefore that
our hypothesis is true.

6.1.4 Impact of the Time Feature
Our expectations of adding a time feature was that words in closer succession would
give better success, i.e. smaller time deltas would give better results. We expected
this since we believe that the same word can be important for different topics at
different times. Table 5.4 shows the opposite. In Table 5.3, we can even see that
adding a time feature gets worse mean success, mavg

tot , than the other experiments.
We believe this is due to lower time delta generating smaller chains and therefore it
is more likely that a chain gets success rate zero.

If we go beyond our measurement when we analyze the results, we realize something
interesting. We looked at how chains were broken up, and if the separation into sub
chains made any difference. If a chain is broken into sub chains and all sub chains
still belong to the same cluster, breaking the chain apart can be seen as unnecessary
work. The result shown in Table 5.5 show that 78-80% of the splits for D1 and D2
were successful, but for D3 the same rate is only 45%. This means that for D3 more
than half of the splits where unnecessary. We think that this indicates that a time
feature could improve the model, but it would be necessary to do this experiment
on more data sets to be able to draw a conclusion.

6.2 Main Challenges
In these subsections we present the main challenges we encountered during the
project.

6.2.1 Defining our Ground Truth
The main challenge we had while defining our ground truth was to determine if
the clustering provided us with a suitable model. Since there does not exist a way
to automatically decide whether the clustering gives the desired granularity, we
had to manually evaluate the results when deciding a maximum distance allowed
between clusters, see Chapter 3.2.1. Although we tested multiple distances and
manually checked several clusters per distance, we still cannot be entirely sure that
our clusters do not contain noise.

In Appendix A, we display the resulting top ten chains from tracking two words to
manually analyze the result. For each article in a chain, the title is printed along
with the publication date and corresponding cluster id. When we look at the chains
generated from D3, it seems like the articles in one chain belong to an actual topic,
judging by the titles. When we do the same comparison for D1 and D2 however,
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we see that the majority of the chains do not really capture topics, even though all
articles in each top chain belong to the same cluster.
We consider that this could be due to different kinds of words being important for
different data sets. Words that are important for distinction need to be mentioned
frequently for the clustering to work properly. Most top features in D3 contain a
name which intuitively seems important for a data set about criminality. For the
other data sets, which are about disasters and the environment, a word representing
a geographical place is probably essential when tracking on words, but it is unlikely
that the location is mentioned repeatedly. This might be the reason why our model
performs better on D3 than on D1 and D2. This could have different causes: it
could simply be that the ground truth is lacking (at least in the cases for D1 and
D2), but it could also be that the top chains, by bad luck, happen to represent the
worst clusters of the ground truth.

6.2.2 Relevant Chain Lengths
One important aspect we have considered is how small a chain can be to still be
interesting for tracking. We definitely know that a chain of just one article is not
enough since we think that a topic cannot be defined by one article. But are just
two or three articles enough? In our experiments, we get significantly more chains
of a small chain length, which means that the higher we set the minimum limit for
chain length, the less data we have for analysis. Since we did not want to limit our
data too much we set the minimum limit to greater than 1.

6.2.3 Evaluating the Result
Overall a big challenge for us has been to define how we measure success of a chain
and of an experiment since our model is very complex. Even though we believe
that we succeeded to identify the most important factors of the measurement, it
was challenging to know how the different factors relate, and how this could be
evaluated further.
For a chain to get the best score possible with our measurement, the chain length,
`, should be equal to the cluster size, cl, see Section 4.6. When studying the chain
examples in Appendix A we see that all of our top ranking chains are an exact match
for a cluster. As we mention in 6.2.1, many of these clusters do not capture topics.
Additionally, since many of the chains are very short, this could be an indication
that the cluster size still has too much impact on the success rate of a chain.
When we reason about the factors in our final measurement, we also discuss what
we expect from the chains and how our measurement reflects that. Consider a
few articles that roughly have the same content and that are processed for MNS
sequentially. It is then likely that a lot more MNS are found in the article that
is processed first in comparison to the one that is processed last. Since we link
articles based on MNS it is therefore more likely to link the first few articles within
a topic than the last, even if they have a similar composition. Therefore, it could
be possible that the chains that we create only captures a subset of a topic. If it
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seems unreasonable to expect a chain to be an exact match against a cluster, that
could further motivate dampening the effect of the cluster size.

The z-scores in Table 5.3 seem to indicate that better results are achieved when single
linkage is used instead of UPGMA. However, it is important to note that different
rows in the table for z-score and p-value cannot be compared. Since the random
model builds on a probability mass function derived from a specific experiment,
data set, and linkage method, the z-score and p-value for each experiment will be
calculated from a unique random model. The reason for the higher z-scores for
single linkage can however be derived from the ground truth clustering, see next
paragraph.

As can be seen in Table 4.2, the number of clusters created by single linkage is at
least double to the amount of clusters created by UPGMA for all data sets. If two
articles are randomly drawn it is therefore more likely to draw from the same cluster
if UPGMA is used. This means that the random models for single linkage are very
likely to perform much worse than the random models for UPGMA. The mean and
standard deviation for single linkage will have smaller values. For this reason the
z-scores can be higher when using single linkage compared to UPGMA, even though
UPGMA has a higher mean success.

6.3 Future Work
One identified problem, that also Guðjónsson [13] mentions in his thesis, is that
the algorithm that finds minimal new sets is not capable of forgetting over time.
For example, consider there being an earthquake in California in both 2016 and
2017. Then one wishes the method to identify this as two different events. The
terminology used in articles referring to the two events would most likely still have a
large overlap. Therefore, it is reasonable to expect that a significantly fewer amount
of MNS would be found in the articles referring to the later event since they already
appeared in the articles of the first event. Implementing some form of forgetfulness
would decrease storage space, improve speed of determining if a candidate set is new
or not, and allow finding MNS that were found a long time ago.

We have limited our research to handle articles in one language, namely English.
Future work could therefore be to handle multiple languages or test against another
language and see if the results would differ.

Expanding finding stop words into also including domain specific stop words would
probably result in more relevant sets. In a medical journal the word patient is
probably mentioned many times, and should therefore be considered as a stop word.

Another way of attacking our research question could be to investigate if MNS can
be used in a different way to detect topics. One idea could be to use the articles’
bags of MNS to create a vector representation. These vectors could then be used
when measuring similarity between documents, and these comparisons could be the
base for clustering. The vectors would then likely be smaller than how we represent
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documents in the ground truth, which means that one also would investigate if
smaller sets of data could be used to detect topics.

6.4 Ethics
For the methods that we use and the applications, we cannot see anything ethically
problematic.
However, our method could be used in other contexts. Suppose an email provider or
the owner of a social media platform uses the method on a user’s inbox to extract
information. Our method could then be used to identify important words from the
data extracted from the inbox. This could be used to ’classify’ users in a legally and
socially unacceptable way. What could be even worse, is if the method for would
work incorrectly, and the extracted information was used against the user. The user
may then risk to be faultily suspended from his/her accounts.
In summary, the method used in a certain context could violate a user’s integrity.

6.5 Conclusion
The aim in this project was to investigate if smaller amounts of data can be used to
detect topics, in comparison to methods where the entire document is used, which
is how topics are commonly detected. We have explored this by creating a model
we call MNS Chaining model, where we select articles based on the MNS found in
each article and compare this selection to a ground truth created with Hierarchical
Clustering.
Of the experiments we performed, we found that linking articles together based on
two words gave a significantly better result than linking based on one word. All
experiments generated a majority of very short chains. Since we think that longer
chains are more interesting to look at, we thought that it was difficult to find a
balance between choosing enough data and choosing good data.
We expected that tracking important words and tracking on more common com-
binations of words would perform better, which showed to be true, as discussed
in Section 6.1.1. We also expected that adding a time feature would improve the
model. This was however difficult to evaluate. According to our measurement the
time feature worsens the outcome of the model. Nonetheless, when we took a closer
look, see Section 5.2, it seemed that the results from the splits actually made sense.
In general, a big challenge for us has been to evaluate our results. Especially con-
sidering that we could not find an already well established evaluation method that
could be applied to our model. Instead, we had to create our own measurement by
defining how different important factors relate to each other.
Particularly interesting were the high z-scores and low p-values of our model. Al-
though these indicate that the MNS Chaining model performs very well, these values
are not very surprising if the results are critically analyzed, see Section 6.1.1. The
values of the z-scores are motivated with the results of the random model. The
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random model is based on an empirical probability mass function for chain length,
and since the generated chains in general were very short, the random model also
primarily consists of short chains. Since we defined the success rate of a chain to
be zero if all articles belong to different clusters, and this is more likely to happen
if the chain is short, many of the chains in the random model have a score, mtot,
equal to zero.
Although we defined our ground truth using a well established method to achieve a
strong base for comparison, we realized that there were flaws in our ground truth.
There does not exist a way to automatically check the quality of the results from our
clustering, also the data sets are too large to check all clusters manually. Therefore,
we cannot say with certainty that all clusters actually represent topics well.
We think that there are indications that MNS can be used to detect topics. The
MNS Chaining model definitely shows better results than the random model, and
some chains have even been an exact match for a cluster. However, we still do not
consider our model to hold up against established methods. Therefore, we do not
think that our current method is suitable for a topic detecting system, but rather
that it could be possible to build on our methods. A promising future investigation
would be to cluster the articles based on their MNS. That is, to represent each
document as a vector based on its MNS rather than the entire text as a whole, and
cluster on the resulting vectors. This would investigate the same question that we
have tried to answer, but in a different way.
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A
Appendix - Top ten chains

The Tables A.1-A.3 show top ten chains in each data set from experiment with two
words using UPGMA sorted from highest z-score. Displayed with each article in the
chain is also its UPGMA-cluster id and the size index of that cluster. For example
"size index 5/3836" means that it is the 5th biggest cluster out of 3836 clusters.

A.1 Data set 1

Feature: AND[soccer,stadium] Z-score: 71.39
Size of largest cluster: 7
published title cluster id size index
1997-04-07 VIETNAM: Building collapse kills two

in Vietnam soccer game.
41 136/776

1997-04-07 NIGERIA: Policeman dies in Nigeria
soccer stampede.

41 136/776

1997-04-10 GUATEMALA: Guatemala stadium
reopening.

41 136/776

1997-04-14 GUATEMALA: Site of tragedy, Guatemala
soccer stadium to reopen.

41 136/776

1997-04-15 GUATEMALA: Victims blast reopening of
Guatemala stadium.

41 136/776

1997-06-26 UK: UK government looks again at
soccer tragedy.

41 136/776

1997-07-28 MOZAMBIQUE: Two die in road chaos
after Mozambique soccer game.

41 136/776

Feature: AND[tobago,trinidad] Z-score: 71.39
Size of largest cluster: 4
published title cluster id size index
1997-04-03 TRINIDAD AND TOBAGO: Quake jolts

Trinidad and Tobago.
185 268/776

1997-04-22 USA: Quake reported off coast of
Trinidad.

185 268/776

1997-04-22 TRINIDAD AND TOBAGO: Quake rocks
Caribbean holiday island.

185 268/776

1997-04-23 TRINIDAD AND TOBAGO: Quake rocks
Caribbean holiday island, two hurt.

185 268/776
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Feature: AND[condol,pope] Z-score: 71.39
Size of largest cluster: 4
published title cluster id size index
1997-04-18 VATICAN: Vatican sends condolences

over haj tragedy.
156 263/776

1997-05-12 VATICAN: Pope sends condolences after
Iran quake.

156 263/776

1997-07-11 VATICAN: Pope sends condolences for
Venezuela earthquake.

156 263/776

1997-08-06 VATICAN: Pope sends condolences to
S.Korea for plane crash.

156 263/776

Feature: AND[nickel,smelter] Z-score: 71.39
Size of largest cluster: 3
published title cluster id size index
1997-04-14 AUSTRALIA: WMC says Victor nickel

production shut down.
103 325/776

1997-06-30 FINLAND: Outokumpu details smelter
blast damages.

103 325/776

1997-06-30 FINLAND: OUTOKUMPU BLAST HALTS
OUTPUT,INJURES THREE.

103 325/776

Feature: AND[mobutu sese seko,zair] Z-score: 71.39
Size of largest cluster: 3
published title cluster id size index
1997-04-15 CONGO: Angolan cargo plane crashes in

Congo, three dead.
600 331/776

1997-06-08 DEMOCRATIC REPUBLIC OF CONGO: Plane
crash in Congo kills 27 - businessmen.

600 331/776

1997-07-13 DEMOCRATIC REPUBLIC OF CONGO: Kabila’s
Congo bans use of Russian pilots,
planes.

600 331/776

Feature: AND[disturb,solar] Z-score: 71.39
Size of largest cluster: 3
published title cluster id size index
1997-04-09 USA: North American power grid braces

for solar storm.
75 284/776

1997-04-10 USA: Solar storm slows, weakens as it
nears Earth - NOAA.

75 284/776

1997-06-30 UK: SATELLITES IN DANGER FROM SOLAR
FLARES - EXPERT.

75 284/776

Feature: AND[disturb,magnet] Z-score: 71.39
Size of largest cluster: 3
published title cluster id size index
1997-04-09 USA: North American power grid braces

for solar storm.
75 284/776
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1997-04-10 USA: Solar storm slows, weakens as it
nears Earth - NOAA.

75 284/776

1997-06-30 UK: SATELLITES IN DANGER FROM SOLAR
FLARES - EXPERT.

75 284/776

Feature: AND[smelter,sterlit] Z-score: 71.39
Size of largest cluster: 3
published title cluster id size index
1997-07-08 INDIA: India’s Sterlite denies gas

leak - paper.
100 328/776

1997-07-09 INDIA: India’s Sterlite contests
copper smelter shutdown.

100 328/776

1997-08-10 INDIA: REPORT ON INDIA’S STERLITE IN
2-3 DAYS.

100 328/776

Feature: AND[magnet,solar] Z-score: 71.39
Size of largest cluster: 3
published title cluster id size index
1997-04-09 USA: North American power grid braces

for solar storm.
75 284/776

1997-04-10 USA: Solar storm slows, weakens as it
nears Earth - NOAA.

75 284/776

1997-06-30 UK: SATELLITES IN DANGER FROM SOLAR
FLARES - EXPERT.

75 284/776

Feature: AND[copper,sterlit] Z-score: 71.39
Size of largest cluster: 3
published title cluster id size index
1997-07-08 INDIA: India’s Sterlite denies gas

leak - paper.
100 328/776

1997-07-09 INDIA: India’s Sterlite contests
copper smelter shutdown.

100 328/776

1997-08-10 INDIA: REPORT ON INDIA’S STERLITE IN
2-3 DAYS.

100 328/776

Table A.1: Top ten chains in D1

A.2 Data set 2

Feature: AND[chile,tompkin] Z-score: 53.66
Size of largest cluster: 8
published title cluster id size index
1997-03-21 CHILE: Chile minister slams U.S.

magnate over park plans.
820 87/1004

1997-04-11 CHILE: U.S. tycoon’s proposed reserve
in Chile under fire.

820 87/1004
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1997-05-13 CHILE: U.S. ecologist charges
"harassment" by Chileans.

820 87/1004

1997-05-14 CHILE: Chile denies harassment of U.S.
eco-millionaire.

820 87/1004

1997-05-14 CHILE: U.S. eco-millionaire charges
harassment by Chileans.

820 87/1004

1997-05-16 CHILE: Chilean legislators defend U.S.
eco-millionaire.

820 87/1004

1997-05-21 CHILE: U.S. eco-millionaire wants
national park in Chile.

820 87/1004

1997-07-10 CHILE: U.S. eco-millionaire splits
Chilean opinion-poll.

820 87/1004

Feature: AND[endesa,ralco] Z-score: 53.66
Size of largest cluster: 6
published title cluster id size index
1997-02-20 CHILE: World Bank criticizes Chile’s

Endesa - report.
819 119/1004

1997-02-20 CHILE: Chile’s Endesa rejects World
Bank criticism.

819 119/1004

1997-06-06 USA: Greens cry foul on World Bank’s
Chile dam report.

819 119/1004

1997-06-10 CHILE: Chile approves building of
controversial dam.

819 119/1004

1997-06-10 CHILE: Chilean Indians, activists
protest licensing of dam.

819 119/1004

1997-06-11 CHILE: Endesa to appeal conditions for
Ralco dam.

819 119/1004

Feature: AND[tobago,trinidad] Z-score: 53.66
Size of largest cluster: 4
published title cluster id size index
1997-04-03 TRINIDAD AND TOBAGO: Quake jolts

Trinidad and Tobago.
237 184/1004

1997-04-22 USA: Quake reported off coast of
Trinidad.

237 184/1004

1997-04-22 TRINIDAD AND TOBAGO: Quake rocks
Caribbean holiday island.

237 184/1004

1997-04-23 TRINIDAD AND TOBAGO: Quake rocks
Caribbean holiday island, two hurt.

237 184/1004

Feature: AND[diesel,emir] Z-score: 53.66
Size of largest cluster: 3
published title cluster id size index
1997-07-13 DUBAI: UAE oil spill barge towed away. 906 299/1004
1997-07-13 DUBAI: Oil spill threatens UAE water

supplies.
906 299/1004
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1997-07-16 DUBAI: Diesel spill leaves sour taste
in UAE.

906 299/1004

Feature: AND[botswana,the okavango riv] Z-score: 53.66
Size of largest cluster: 3
published title cluster id size index
1997-05-20 LESOTHO: Namibia to eventually use

Okavango water, official.
277 311/1004

1997-07-03 NAMIBIA: Nambia suspends immediate
plans to drain Okavango.

277 311/1004

1997-07-03 NAMIBIA: Namibia suspends plans to tap
Okavango.

277 311/1004

Feature: AND[mmt,royal] Z-score: 53.66
Size of largest cluster: 3
published title cluster id size index
1997-03-20 CANADA: Senate motion to kill Canadian

MMT bill fails.
620 295/1004

1997-04-09 CANADA: Canada’s ban on MMT passes
final hurdle.

620 295/1004

1997-04-25 CANADA: Canada makes tobacco, MMT
bills law.

620 295/1004

Feature: AND[persson,seminar] Z-score: 53.66
Size of largest cluster: 3
published title cluster id size index
1997-04-11 SWEDEN: Environment spending to

generate jobs - Swedish PM.
458 228/1004

1997-04-11 SWEDEN: Sweden PM says to spend 10 bln
Skr on environment.

458 228/1004

1997-04-11 SWEDEN: Sweden hopes to create 50,000
new ’green’ jobs.

458 228/1004

Feature: AND[about 600,phalaborwa] Z-score: 53.66
Size of largest cluster: 3
published title cluster id size index
1997-05-08 SOUTH AFRICA: S.AFRICAN GREENS ASSURED

ON IRON PLANT PROJECT.
358 278/1004

1997-05-21 SOUTH AFRICA: Public to have input on
planned SAfrica iron plant.

358 278/1004

1997-06-20 SOUTH AFRICA: S.Africa govt opposes
iron ore pipe through Kruger.

358 278/1004

Feature: AND[maputo,phalaborwa] Z-score: 53.66
Size of largest cluster: 3
published title cluster id size index
1997-05-08 SOUTH AFRICA: S.AFRICAN GREENS ASSURED

ON IRON PLANT PROJECT.
358 278/1004

1997-05-21 SOUTH AFRICA: Public to have input on
planned SAfrica iron plant.

358 278/1004
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1997-06-20 SOUTH AFRICA: S.Africa govt opposes
iron ore pipe through Kruger.

358 278/1004

Feature: AND[maputo,mozambiqu] Z-score: 53.66
Size of largest cluster: 3
published title cluster id size index
1997-05-08 SOUTH AFRICA: S.AFRICAN GREENS ASSURED

ON IRON PLANT PROJECT.
358 278/1004

1997-05-21 SOUTH AFRICA: Public to have input on
planned SAfrica iron plant.

358 278/1004

1997-06-20 SOUTH AFRICA: S.Africa govt opposes
iron ore pipe through Kruger.

358 278/1004

Table A.2: Top ten chains in D2

A.3 Data set 3

Feature: AND[rosneft,sidanko] Z-score: 140.19
Size of largest cluster: 7
published title cluster id size index
1997-02-28 RUSSIA: Russian SIDANKO in 3rd fight

for key oil producer.
2020 485/3836

1997-03-20 RUSSIA: Russian court postpones
Purneft hearing to April 3.

2020 485/3836

1997-04-14 RUSSIA: Moscow court turns down
SIDANKO suit vs Rosneft.

2020 485/3836

1997-07-07 RUSSIA: Russian Rosneft oil firm mulls
legal setback.

2020 485/3836

1997-07-16 RUSSIA: Russian court halts
Purneftegaz ownership change.

2020 485/3836

1997-08-04 RUSSIA: Russia Purneftegaz asks
Yeltsin to decide on owner.

2020 485/3836

1997-08-14 RUSSIA: Russian Purneftegaz oil firm
court case delayed.

2020 485/3836

Feature: AND[privatis,rosgosstrakh] Z-score: 140.19
Size of largest cluster: 7
published title cluster id size index
1997-02-26 RUSSIA: Court suspends Russian

Rosgosstrakh privatisation.
2024 476/3836

1997-03-24 RUSSIA: Court backs Russian
Rosgosstrakh selloff plans.

2024 476/3836

1997-03-25 RUSSIA: Court drops suit against
Russian insurer sale.

2024 476/3836
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1997-05-14 RUSSIA: Russia court to consider suit
against insurer sale.

2024 476/3836

1997-05-20 RUSSIA: Russian Audit Chamber slams
Rosgosstrakh sale.

2024 476/3836

1997-06-02 RUSSIA: Moscow court postpones
Rosgosstrakh sale hearing.

2024 476/3836

1997-08-13 RUSSIA: RUSSIAN ROSGOSSTRAKH COURT
HEARING DELAYED AUG 28.

2024 476/3836

Feature: AND[echostar,news corp] Z-score: 140.19
Size of largest cluster: 7
published title cluster id size index
1997-05-09 USA: News Corp to contest EchoStar

claim.
190 499/3836

1997-05-09 USA: Gulf widens between Echostar and
News Corp..

190 499/3836

1997-05-09 USA: Echostar says files against News
Corp.

190 499/3836

1997-05-12 USA: EchoStar files suit against News
Corp..

190 499/3836

1997-05-12 USA: News Corp declines comment on
Echostar.

190 499/3836

1997-05-12 USA: EchoStar amends suit, seeks
financing.

190 499/3836

1997-06-09 USA: News Corp names Echostar in
counterclaim.

190 499/3836

Feature: AND[fininvest,telecinco] Z-score: 140.19
Size of largest cluster: 4
published title cluster id size index
1997-07-24 SPAIN: Italy’s Berlusconi in Spain

legal wrangle.
3108 785/3836

1997-07-25 SPAIN: Germany’s Kirch in Spanish
legal wrangle.

3108 785/3836

1997-07-29 ITALY: Italian tax police search
Fininvest group offices.

3108 785/3836

1997-07-29 ITALY: FOCUS-Italian tax police search
Fininvest offices.

3108 785/3836

Feature: AND[o connor,perzigian] Z-score: 140.19
Size of largest cluster: 4
published title cluster id size index
1997-05-05 USA: Judge dismisses actor’s suit

against drug dealer.
143 964/3836

1997-07-25 USA: Carroll O’Connor cleared in
slander suit.

143 964/3836

1997-07-25 USA: Jury deliberates in Carroll
O’Connor slander case.

143 964/3836
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1997-07-25 USA: Carroll O’Connor found not guilty
in slander suit.

143 964/3836

Feature: AND[laser,visx] Z-score: 140.19
Size of largest cluster: 4
published title cluster id size index
1997-03-26 USA: Pillar Point, LaserSight enter

settlement.
3764 957/3836

1997-03-31 USA: VISX, Autonomous in pact, settle
suits.

3764 957/3836

1997-05-28 USA: VISX settles patent litigation
with LaserSight.

3764 957/3836

1997-06-18 USA: Summit, VISX settle patent
dispute.

3764 957/3836

Feature: AND[cinema,perreira] Z-score: 140.19
Size of largest cluster: 4
published title cluster id size index
1997-06-14 INDIA: Indian police arrest four after

cinema fire.
3341 774/3836

1997-06-14 INDIA: Four arrested after India
cinema fire kills 57.

3341 774/3836

1997-06-14 INDIA: Indian police accuse cinema
managers of homicide.

3341 774/3836

1997-06-14 INDIA: Four arrested after fire kills
57 in India cinema.

3341 774/3836

Feature: AND[mcafe,symantec] Z-score: 140.19
Size of largest cluster: 4
published title cluster id size index
1997-04-23 USA: Symantec says files McAfee

lawsuit.
738 892/3836

1997-05-14 USA: Trend Micro sues McAfee, Symantec
for infringement.

738 892/3836

1997-07-21 USA: Symantec adds charges to McAfee
suit.

738 892/3836

1997-07-22 USA: McAfee denies Symantec
allegations.

738 892/3836

Feature: AND[gorilla,max] Z-score: 140.19
Size of largest cluster: 4
published title cluster id size index
1997-07-18 SOUTH AFRICA: Gorilla survives

gunbattle in S.African zoo.
45 780/3836

1997-07-22 SOUTH AFRICA: GORILLA BECOMES
S.AFRICA’S LATEST CULT FIGURE.

45 780/3836

1997-07-22 SOUTH AFRICA: Gorilla becomes South
Africa’s latest cult figure.

45 780/3836
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1997-08-15 SOUTH AFRICA: GORILLA MAX’S ASSAILANT
ESCAPES FROM PRISON.

45 780/3836

Feature: AND[azteca,nbc] Z-score: 140.19
Size of largest cluster: 4
published title cluster id size index
1997-04-30 MEXICO: FOCUS-NBC, Mexico’s Azteca in

legal battle.
1624 818/3836

1997-04-30 MEXICO: NBC says to take legal action
vs TV Azteca.

1624 818/3836

1997-04-30 MEXICO: Mexico’s TV Azteca to file
lawsuit against NBC.

1624 818/3836

1997-08-14 MEXICO: Legal row with NBC clouds
Azteca’s IPO.

1624 818/3836

Table A.3: Top ten chains in D3
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B.1 Histograms of Z-scores
In Figures B.1-B.3 we have plotted histograms of the z-scores for tracking on one
word for each data set and linkage method, to show the distribution of z-scores.
Figures B.4-B.6 show the plotted histograms for tracking on two words.

Figure B.1: Histograms of z-scores for tracking one word with data set D1.
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Figure B.2: Histograms of z-scores for tracking one word with data set D2.

Figure B.3: Histograms of z-scores for tracking one word with data set D3.
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Figure B.4: Histograms of z-scores for tracking two words with data set D1.

Figure B.5: Histograms of z-scores for tracking two words with data set D2.

Figure B.6: Histograms of z-scores for tracking two words with data set D3.
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B.2 Z-score in regards to Average tf-idf-value

Figure B.7: The average tf-idf of all words in MNS from D1 plotted against their
z-score.

Figure B.8: Box plots of different intervals for the average tf-idf of all words in
MNS from D1 plotted against their z-score.
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Figure B.9: The average tf-idf of all words in MNS from D2 plotted against their
z-score.

Figure B.10: Box plots of different intervals for the average tf-idf of all words in
MNS from D2 plotted against their z-score.
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Figure B.11: The average tf-idf of all words in MNS from D3 plotted against their
z-score.

Figure B.12: Box plots of different intervals for the average tf-idf of all words in
MNS from D3 plotted against their z-score.
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B.3 Z-score in regards to Jaccard Index

Figure B.13: The Jaccard index of two words plotted against the z-score. Data
set: D1.

Figure B.14: Box plots of different intervals of the Jaccard index of two words
plotted against the z-score on data set D1.
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Figure B.15: The Jaccard index of two words plotted against the z-score. Data
set: D2.

Figure B.16: Box plots of different intervals of the Jaccard index of two words
plotted against the z-score on data set D2.
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Figure B.17: The Jaccard index of two words plotted against the z-score. Data
set: D3.

Figure B.18: Box plots of different intervals of the Jaccard index of two words
plotted against the z-score on data set D3.
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C.1 article_linker.py
Creates chains, i.e. links articles based on a specified feature. Described in more
detail in Section 3.1.4.

1 import pickle_handler
2 from collections import defaultdict
3 from features import Feature, FeatureType
4

5 __author__ = "Madeleine Appert & Lisa Stenberg"
6

7

8 class ArticleLinker:
9 def __init__(self, category):

10 self.category = category
11 self.articles = pickle_handler.get_pickled_mns(category)
12 self.article_count = 0
13 self.vocabulary = None
14 self.no_wanted_words = 0
15 self.jaccard_similarity_combos = {}
16 self._set_vocab()
17

18 def get_tracking_words(self, percent_of_words=1):
19 """
20 Finds the percent_of_words% of words that appear most frequently in
21 MNS within the category and returns them.
22

23 :param percent_of_words: Percent of words that should be returned.
24 Is by default set to 1 (which is a lot).
25 :return: Dictionary where key is the word and value is a list with 2
26 values: [total count, document frequency].
27 """
28

29 def sort_on_total_count(x): return x[1][0]
30 # def sort_on_document_frequency(x): return x[1][1]
31

32 sorted_list = sorted(self.vocabulary.items(),
33 key=sort_on_total_count, reverse=True)
34

35 no_wanted_words = round(percent_of_words/100*len(self.vocabulary))
36 self.no_wanted_words = no_wanted_words
37 as_dict = dict(sorted_list[:no_wanted_words])
38 print("Tracking words from {0} retrieved. {1}% of {2} words - {3} "
39 "words in total.".format(self.category,
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40 percent_of_words,
41 len(self.vocabulary),
42 no_wanted_words))
43 return as_dict
44

45 def get_tracking_tuples(self, percent_of_words=10):
46 self.calculate_jaccard()
47

48 def bigger_than_x_percent(x):
49 return x[1][0] >= (percent_of_words / 100)
50

51 def sort_on_jaccard(x):
52 return x[1]
53

54 above = [t for t in self.jaccard_similarity_combos.items() if
55 bigger_than_x_percent(t)]
56 self.no_wanted_words = len(above)
57 as_dict = dict(above)
58 print("Tracking words from {0} retrieved. Of {2} combinations, "
59 "those with above {1}% in jaccard are used - {3} combinations "
60 "in total.".format(self.category,
61 percent_of_words,
62 len(self.jaccard_similarity_combos),
63 self.no_wanted_words))
64 return as_dict
65

66 def get_chain_tuples(self, feature):
67 """
68 Provided a Feature object, gets the articles that fit the
69 requirements, split up based on the time variable.
70 :param feature: A Feature object
71 :return: List of tuples. Each tuple contains a list of article IDs
72 and a list of corresponding dates.
73 """
74 chain = self._get_chain(feature)
75 if not chain:
76 return chain
77 sorted_tuple_list = self._get_sorted_list_dates_and_ids(chain)
78

79 # Split the chain of articles based on the time variable and get
80 # tuple with ids and dates.
81 chains = self.split_chain_by_time(sorted_tuple_list, feature.time)
82 return chains
83

84 def get_co_occurrences(self, word):
85 return list(self.co_occurrences[word])
86

87 def _get_chain(self, feature):
88 """
89 Provided a Feature object, gets the articles that fit the content
90 based requirements.
91 :param feature: A Feature object
92 :return: List of article IDs. If no matches are found an empty list
93 will be returned.
94 """
95 chain = []
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96 if feature.feature_type == FeatureType.CONTENT:
97 # 'feature' holds a list of words. Find article IDs based on that
98 # list.
99 chain = self._get_chain_for_content(feature.content,

100 feature.operation_type)
101 elif feature.feature_type == FeatureType.FEATURE:
102 # 'feature' holds a list of Feature objects. Call this method
103 # recursively for each and join the results.
104 chains = [self._get_chain(f) for f in feature]
105 chain = self._join_lists(chains, feature.operation_type)
106 elif feature.feature_type == FeatureType.MIX:
107 # 'feature' holds a mix of Feature objects and words. Do like
108 # above, for the 2 types, and join the results.
109 features = [e for e in feature if isinstance(e, Feature)]
110 chains = [self._get_chain(f) for f in features]
111 content = [e for e in feature if isinstance(e, str)]
112 chains.append(self._get_chain_for_content(content,
113 feature.operation_type))
114 chain = self._join_lists(chains, feature.operation_type)
115 return chain
116

117 @staticmethod
118 def _join_lists(elements, operation):
119 """
120 Takes a list of lists and performs the given operation to create one
121 list.
122 :param elements: List of lists (containing article IDs).
123 :param operation: Function to perform, defined by the variable
124 operation_type in a Feature object.
125 :return: A list (containing article IDs).
126 """
127 content_based_matches = elements[0]
128 for b in elements:
129 content_based_matches = operation(content_based_matches, b)
130 return content_based_matches
131

132 def _get_chain_for_content(self, content, operation):
133 """
134 Will create a list of IDs of the articles that contain all the words
135 provided in the list content.
136 :param content: A list of words
137 :return: A list of article IDs
138 """
139 content_match_list = []
140 for word in content:
141 content_match_list.append(self.word_found_in[word])
142 return self._join_lists(content_match_list, operation)
143

144 @staticmethod
145 def _is_time_within_range(prev_date, date, time_limit):
146 """
147 Checks if the given parameter date, is within the limit from the
148 parameter last_date
149 :param prev_date: Date to count from, sets the start of the allowed
150 time interval
151 :param date: Date that is being checked
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152 :param time_limit: Timedelta object, sets the end of the allowed time
153 interval
154 :return: True if prev_date isn't a date (no start of the interval
155 exists). True if date is within the allowed interval. Else False.
156 """
157 return (not prev_date) or date - prev_date < time_limit
158

159 def _get_sorted_list_dates_and_ids(self, id_list):
160 """
161 Get a sorted list of tuples, that contains dates and the article ids,
162 based on the provided list of IDs.
163 :param id_list: List of IDs
164 :return: Sorted list of dates and IDs.
165 Example:
166 <class 'list'>: [(Timestamp('1997-03-06 00:00:00'), [424633]),
167 (Timestamp('1997-03-09 00:00:00'), [429315])]
168 """
169 # Create a dict where the key is the published date and the value is
170 # a list of IDs.
171 date_dict = defaultdict(list)
172 for article_id in id_list:
173 date = self.articles[self.articles._id == article_id].iloc[
174 0].datetime
175 date_dict[date].append(article_id)
176 return sorted(date_dict.items())
177

178 def split_chain_by_time(self, sorted_tuple_list, time_limit):
179 """
180 Splits the given list of IDs based on the timestamps of the articles
181 and the allowed time_limit.
182 :param sorted_tuple_list: Sorted list of tuples where 1st elem is
183 date and 2nd is list of IDs for that date.
184 :param time_limit: Timedelta object.
185 :return: List of tuples. Each tuple contains a list of article IDs
186 and a list of corresponding dates.
187 """
188 chains = []
189 current_articles, current_dates = [], []
190 prev_date = None
191 for date, values in sorted_tuple_list:
192 if not time_limit or self._is_time_within_range(prev_date, date,
193 time_limit):
194 current_articles.extend(values)
195 current_dates.extend([date for _ in values])
196 else:
197 chains.append((current_articles, current_dates))
198 current_articles = values
199 current_dates = [date for _ in values]
200 prev_date = date
201 chains.append((current_articles, current_dates))
202 return chains
203

204 def _set_vocab(self):
205 """
206 Goes through all articles and adds the words found in its MNS to the
207 vocabulary. Creates the instance variable vocabulary, which is a
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208 dictionary that keeps track of the total word count and the document
209 frequency for each word. Also creates the instance variable
210 word_found_in which is a dictionary that keeps track of the articles
211 that has the word.
212 :return: None
213 """
214 self.co_occurrences = defaultdict(lambda: defaultdict(int))
215 self.vocabulary = {}
216 self.article_ids = []
217 self.word_found_in = defaultdict(list)
218 for index, row in self.articles.iterrows():
219 sorted_words = sorted(row['df'].items())
220 indexes = range(len(sorted_words))
221 self.article_ids.append(row['_id'])
222 for (word, (count, tfidf)), i in zip(sorted_words, indexes):
223 # TODO Currently not doing anything with tfidf
224 for (other_word, _) in sorted_words[i + 1:]:
225 self.co_occurrences[word][other_word] += 1
226 current = self.vocabulary.get(word, [0, 0])
227 current[0] += count
228 current[1] += 1
229 self.vocabulary[word] = current
230 self.word_found_in[word].append(row['_id'])
231

232 # Remove words that only exist within one article.
233 # Note that these words will still exist in the value part of
234 # self.co_occurrences.
235 print("Vocabulary for {0} has been set up. A total of {1} words "
236 "found. Number of combinations: {2}".format(self.category,
237

len(self.vocabulary),↪→

238 self.combo_count()))
239 only_has_one = [word for word, (total, doc_freq) in
240 self.vocabulary.items() if doc_freq == 1]
241 for word in only_has_one:
242 del self.vocabulary[word]
243 del self.word_found_in[word]
244 if word in self.co_occurrences.keys():
245 del self.co_occurrences[word]
246 print("Removed all words that only exist in 1 document. A total of "
247 "{0} words remain.".format(len(self.vocabulary)))
248

249 def combo_count(self):
250 """
251 Temporary to count total number of combinations that exist, before
252 filtering.
253 """
254 tmp = {}
255

256 def get_document_frequency(x):
257 return self.vocabulary[x][1]
258

259 for k, v in self.co_occurrences.items():
260 k_value = get_document_frequency(k)
261 d = dict((k2, v2) for k2, v2 in v.items())
262 for k2, v2 in d.items():
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263 k2_value = get_document_frequency(k2)
264 jaccard_similarity = v2 / (k_value + k2_value - v2)
265 tmp[(k, k2)] = (jaccard_similarity, k_value, k2_value, v2)
266 return len(tmp)
267

268 def calculate_jaccard(self):
269 def get_document_frequency(x):
270 return self.vocabulary[x][1]
271

272 for k, v in self.co_occurrences.items():
273 k_value = get_document_frequency(k)
274 d = dict((k2, v2) for k2, v2 in v.items() if v2 > 1)
275 for k2, v2 in d.items():
276 k2_value = get_document_frequency(k2)
277 jaccard_similarity = v2/(k_value+k2_value-v2)
278 self.jaccard_similarity_combos[(k, k2)] = (
279 jaccard_similarity, k_value, k2_value, v2)

C.2 features.py
A class representing features which we use to link articles. Described in more detail
in Section 3.1.4.

1 from enum import Enum
2 from datetime import timedelta
3

4 __author__ = "Madeleine Appert & Lisa Stenberg"
5

6

7 def intersect(a, b):
8 """
9 Returns a list which is the intersection of two lists.

10 :param a: First list
11 :param b: Second list
12 :return: A list which is the intersection of two lists.
13 """
14 return list(set(a).intersection(b))
15

16

17 def unite(a, b):
18 """
19 Returns a list which is the union of two lists.
20 :param a: First list
21 :param b: Second list
22 :return: A list which is the union of two lists.
23 """
24 return list(set(a).union(b))
25

26

27 class FeatureType(Enum):
28 FEATURE = 1
29 CONTENT = 2
30 MIX = 3
31
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32

33 class OperationType(Enum):
34 """
35 Each enum-value is set to a function. Will either intersect or unite 2

lists.↪→

36 """
37 AND = intersect
38 OR = unite
39

40

41 class Feature:
42 def __init__(self, content, operation_type=OperationType.AND, time=None):
43 self.operation_type = operation_type
44 if time and not isinstance(time, timedelta):
45 raise ValueError("Param time must be a timedelta!")
46 if not content:
47 raise ValueError("Content needs to be injected!")
48 self.time = time
49 self.content = content if isinstance(content, list) else [content]
50 self._set_feature_type()
51 self._set_time()
52

53 def add_feature(self, new_content):
54 self.content.append(new_content)
55 self._set_feature_type()
56 self._set_time()
57

58 def _set_time(self):
59 """
60 Sets the variable time to the lowest it can be. Compares this
61 instance own time value with the time values of any nested Feature
62 objects.
63 """
64 # Edit the time variable to the lowest one
65 for f in [e for e in self.content if isinstance(e, Feature)]:
66 self.time = f.time if f.time and (not self.time or f.time <
67 self.time) else self.time
68

69 def _set_feature_type(self):
70 """
71 Sets the enum variable feature_type to what it should be, based on
72 the objects found in the variable content.
73 """
74 if all(isinstance(elem, str) for elem in self.content):
75 self.feature_type = FeatureType.CONTENT
76 elif all(isinstance(elem, Feature) for elem in self.content):
77 self.feature_type = FeatureType.FEATURE
78 elif all(isinstance(elem, (str, Feature)) for elem in self.content):
79 self.feature_type = FeatureType.MIX
80 else:
81 raise ValueError("At least one element isn't a string or a "
82 "Feature: ")
83

84 def __iter__(self):
85 """
86 Enable using the 'for f in feature' syntax
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87 :return: An element in the content.
88 """
89 for i in self.content:
90 yield i
91

92 def __str__(self):
93 """
94 Overrides the common str() method. Returns a string containing the
95 elements in content and the timedelta value.
96 :return: A string containing the elements in content and the
97 timedelta value.
98 """
99 return_string = "AND[{0}]" if self.operation_type == \

100 OperationType.AND else "OR[{0}]"
101 strings = [str(c) for c in self]
102 strings = ",".join(strings)
103 return_string = return_string.format(strings)
104 # Remove any inner timedelta information as it will not be applied
105 days = "days"
106 while days in return_string:
107 i = return_string.index(days)
108 for e in reversed(range(i)):
109 if not return_string[e].isdigit():
110 start = e
111 break
112 end = i + len(days)
113 return_string = return_string[:start] + return_string[end:]
114 if self.time:
115 return_string = return_string + '-' + str(self.time.days) + days
116 return return_string

C.3 ground_truth_getter.py
Creates a ground truth based on a linkage method and metric. From a chain of
article id’s the class will return a corresponding list of cluster id’s. Described in
more detail in Section 3.2.

1 import pickle_handler
2 import pandas as pd
3 from scipy.cluster.hierarchy import fcluster
4

5 __author__ = "Madeleine Appert & Lisa Stenberg"
6

7

8 class GroundTruthGetter:
9 def __init__(self, category, max_d, linkage_method='average',

10 metric='cosine'):
11 self.category = category
12 self.linkage_method = linkage_method
13 self.metric = metric
14 self.max_d = max_d
15

16 (_, self.category_df, self.linkage_matrix) = self._load_pickles()
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17

18 self.assignments = self._get_assignments()
19

20 def _load_pickles(self):
21 linkage_matrix = pickle_handler.get_pickled_linkage_matrix(
22 self.category, self.metric, self.linkage_method)
23 articles_data = pickle_handler.get_pickled_data_frame(self.category)
24 docs = articles_data.get('text').tolist()
25 return docs, articles_data, linkage_matrix
26

27 def _get_assignments(self):
28 """
29 Based on a linkage matrix it returns a DataFrame with articles and
30 their corresponding cluster_ids.
31 :return: a DataFrame with the assignments
32 """
33 clusters = fcluster(self.linkage_matrix, self.max_d,
34 criterion='distance')
35 assignments = pd.DataFrame({'cluster_id': clusters})
36

37 assignments = assignments.join(self.category_df, lsuffix='_caller',
38 rsuffix='_other')
39

40 return assignments
41

42 def get_clusters(self, chain):
43 """
44 Returns the corresponding ground truth cluster id's based on a chain
45 of articles
46 :param chain: A chain of article id's
47 :return: the cluster-ids that the elements in the chain has been
48 assigned to
49 """
50

51 cluster_ids = []
52 for article_id in chain:
53 try:
54 article_row = self.assignments[self.assignments._id ==
55 article_id].iloc[0]
56 c_id = article_row.cluster_id
57 except Exception as e:
58 print('Article id {0} does not exist in category {1}'.format(
59 article_id, self.category))
60 print(e)
61 raise
62

63 cluster_ids.append(c_id)
64

65 return cluster_ids
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C.4 experimenter.py

The file that runs all our experiments. Can also be seen as the controller of our
model. Described in more detail in Section 4.2 and Chapter 4.

1 import ground_truth_getter
2 import article_linker
3 import features
4 import pickle_handler
5 import analyzer
6 import pandas as pd
7 import datetime
8 import sys
9

10 __author__ = "Madeleine Appert & Lisa Stenberg"
11

12

13 max_ds = {('GENV', 'average', 'cosine'): 0.75,
14 ('GENV', 'single', 'cosine'): 0.4,
15 ('GDIS', 'average', 'cosine'): 0.8,
16 ('GDIS', 'single', 'cosine'): 0.4,
17 ('GCRIM', 'average', 'cosine'): 0.75,
18 ('GCRIM', 'single', 'cosine'): 0.4}
19

20 linkage_methods = ['average', 'single']
21 metrics = ['cosine']
22

23

24 class Experimenter:
25

26 def __init__(self, category):
27 self.category = category
28

29 self.al = article_linker.ArticleLinker(category)
30 self.analyzer = analyzer.Analyzer()
31

32 # Will contain data from runs, where one run looks like exp_run
33 # exp_run = {(linkage_method, metric, features):
34 # pd.DataFrame['article_id', 'cluster_id']}
35 self.results = {}
36

37 def run_experiments(self, tracking_method='track_one_word',
time_limit=None):↪→

38 """
39 Runs all experiments
40 """
41 print('##############################')
42 print('## Running experiments on category {0}'.format(self.category))
43

44 if tracking_method == 'track_one_word':
45 print("## Tracking on ONE word.")
46 print('## Timedelta: {0}'.format(time_limit))
47 print('##############################')
48

49 tracking_words = self.al.get_tracking_words(100)
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50 self._track_one_word(tracking_words, time_limit)
51 pickle_handler.pickle_object(
52 "ResultsNER_{0}1Word{1}Words_Timedelta{2}".format(
53 self.category, self.al.no_wanted_words, time_limit.days),
54 self.results)
55

56 if tracking_method == 'track_two_words':
57 print("## Tracking on TWO words.")
58 print('## Timedelta: {0}'.format(time_limit))
59 print('##############################')
60

61 tracking_words = self.al.get_tracking_tuples()
62 self._track_multiple_words(tracking_words, time_limit)
63 pickle_handler.pickle_object(
64 "ResultsNER_{0}2Word{1}Words_Timedelta{2}".format(
65 self.category, self.al.no_wanted_words, time_limit.days),
66 self.results)
67 # Currently doing analysis in total analyser post run.
68 # self.analyzer.analyze_experiments(self.results)
69

70 def _compare_chain_to_ground_truths(self, chain_tuple, fts, values,
71 chain_number):
72 """
73 Compare a chain to all different kinds of linkage methods and metrics.
74 :param chain_tuple: A tuple containing a list of article IDs and a
75 list of corresponding dates.
76 :param fts: Features used to created chain. Needed to be able to save
77 run settings
78 :param chain_number: In case chain was split up, int to differentiate
79 between them.
80 """
81 chain, dates = chain_tuple
82 for linkage_method in linkage_methods:
83 for metric in metrics:
84 settings = (linkage_method, metric, (fts, chain_number),

values)↪→

85

86 # Init ground truth getter
87 max_d = max_ds[(self.category, linkage_method, metric)]
88 gt = ground_truth_getter.GroundTruthGetter(self.category,
89 max_d,
90 linkage_method,
91 metric)
92

93 # Get clusters for chain
94 gt_assignments = pd.DataFrame({'article_id': chain,
95 'cluster_id': gt.get_clusters(
96 chain),
97 'datetime': dates})
98

99 self.results[settings] = gt_assignments
100

101 def _track_one_word(self, tracking_words, timedelta=None):
102 """
103 Link articles together based on one word.
104 """
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105 list_of_tuples = []
106 total = len(tracking_words)
107 skip = 0
108 for w, values in tracking_words.items():
109 fts = features.Feature(content=[w], time=timedelta)
110 skip += 1
111 sys.stdout.write("Remaining: {0} Testing feature: {1}".format(
112 total - skip, fts))
113 sys.stdout.flush()
114 sys.stdout.write("\r")
115

116 chain_tuples = self.al.get_chain_tuples(fts)
117 list_of_tuples.append((w, values, chain_tuples))
118 for chain_tuple, chain_number in zip(chain_tuples, range(len(
119 chain_tuples))):
120 self._compare_chain_to_ground_truths(chain_tuple, fts,
121 tuple(values),

chain_number)↪→

122 pickle_handler.pickle_object(
123 "Chains{0}1Word{1}Words_Timedelta{2}".format(self.category,
124

self.al.no_wanted_words,↪→

125 timedelta.days),
126 list_of_tuples)
127

128 def _track_multiple_words(self, tracking_words, timedelta=None):
129 """
130 Link articles together based on multiple words.
131 """
132 print("Tracking tuples: {0}".format(len(tracking_words)))
133 skip = 0
134 start_time = datetime.datetime.now()
135 count = len(tracking_words)
136 list_of_tuples = []
137 for (word1, word2), values in tracking_words.items():
138 skip += 1
139 fts = features.Feature(content=[word1, word2], time=timedelta)
140 sys.stdout.write("Remaining: {0} Testing feature: {1}

".↪→

141 format(count - skip, fts))
142 sys.stdout.flush()
143 sys.stdout.write("\r")
144

145 chain_tuples = self.al.get_chain_tuples(fts)
146 if not chain_tuples == []:
147 list_of_tuples.append((fts, values, chain_tuples))
148 for chain_tuple, chain_number in zip(chain_tuples, range(len(
149 chain_tuples))):
150 self._compare_chain_to_ground_truths(chain_tuple, fts,
151 values, chain_number)
152 end_time = datetime.datetime.now()
153 print("Got all chains for 2 words! Took: {0}".format(end_time -
154 start_time))
155 pickle_handler.pickle_object(
156 "Chains{0}2Words{1}Words_Timedelta{2}".format(
157 self.category,
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158 self.al.no_wanted_words,
159 timedelta.days),
160 list_of_tuples)

C.5 random_linker.py
The random model which is described in Section 4.6.1.

1 import numpy as np
2 import pandas as pd
3 import pickle_handler
4

5 __author__ = "Madeleine Appert & Lisa Stenberg"
6

7

8 class RandomLinker:
9 def __init__(self, ids, file_name):

10 """
11 Firstly we calculate a simple empirical probability mass function for
12 chain length, which is based on the actual results of one experiment
13 and one data set. Based on that pmf we follow the following steps:
14

15 (1) Let N be the number of chains to sample. We choose N to be the
same↪→

16 number of chains as generated from the experiment. Repeat step 2 and
17 3 with replacement.
18 (2) Draw a chain length l using the pmf.
19 (3) Randomly draw l articles from the entire data set (ids), without
20 replacement.
21

22 :param ids: List of article ids.
23 :param file_name: Name of results file
24 """
25 self.ids = ids
26 df = pickle_handler.load_from_pickle(file_name)
27

28 # Get the empirical pmf for chain length
29 if 'chain_length' in df.columns:
30 # Needed because we have different names for Tracking one/two
31 # words and time feature
32 chain_lengths = pd.Series.to_frame(df.groupby(['chain_length'])
33 ['chain_length'].count())
34 else:
35 chain_lengths = pd.Series.to_frame(df.groupby(['doc_freq'])
36 ['doc_freq'].count())
37 chain_lengths.columns = ['count']
38 total_nbr_of_chains = chain_lengths['count'].sum()
39 chain_lengths['probability'] = chain_lengths['count'].apply(
40 lambda c: c / total_nbr_of_chains)
41

42 # Based on pmf - draw chain lengths
43 rand_chain_lengths = np.random.choice(
44 list(chain_lengths.index), total_nbr_of_chains,
45 p=list(chain_lengths['probability']))
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46

47 self.chains = []
48 # For every chain, draw len(chain) articles without replacement
49 for chain_length in rand_chain_lengths:
50 self.chains.append(np.random.choice(self.ids, chain_length,
51 replace=False))
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