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Abstract
We are living in a time where data is the new oil, where the industries are data-
driven. This change was expedited by the enormous amount of data that we are
producing every second and the increase in computational power. At present the
automotive sector is thriving in this data-driven model by their ubiquitous need for
common and industrial purposes and the various data they are collecting to improve
the sector as a whole. We can now see an automobile as not just a mechanical prod-
uct but as a robot on wheels. Along with this data-driven model, the electrification
of automobiles has revolutionized the industry. In the electrification process, the
battery module is one of the key components that power the systems. To do this
we must analyse the data from the battery modules for its efficient usage. However,
due to certain hardware issues or if the vehicle is out of range and it cannot update
the data we might lose data. This loss of data can obstruct the efficient usage of
the data in machine learning models to optimize the system.

There are several methods to impute missing data, for example, there are statisti-
cal methods such as the Auto-regressive methods, which are limited by their time
and the high cost of their computations. This thesis focuses on this problem and
designing a neural network model for masked prediction of the Time series data. In
this thesis, a Transformer Network is implemented for the masked prediction of the
missing time series data.

In this thesis, we have built the machine learning model from scratch after weighing
several factors. The data on which the model is trained is generated by the vehicle
collected. This was led by pre-processing, later following the selection of the model.
The model developed here is a variation of the transformer model, called the Time
Series Transformer(TST), which predicts the missing values in the time series data.
This model is then evaluated with suitable metrics by the model and the problem
statement. The thesis aims to predict the missing values to improve the quality of
the data collected and its quality usage to improve the performance of the vehicle.

Keywords: Time-series, Transformer, Deep learning, Time Series Transformer,
Masked Prediction.
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1
Introduction

Volvo Group AB is a globally renowned supplier of mobility solutions in the commer-
cial vehicle sector. Their involvement and investment in data analytics are growing
day after day, to ensure increased battery life of the vehicles.
A major component in the electrification process is the battery system. One key
issue in this system is its efficient usage for its prolonged life. So it’s important to
have quality data without any missing values for its usage for improving this system,
For this, the thesis contributes by creating a Time-series Transformer (TST).

1.1 About Volvo Groups AB
Volvo Group AB is the leading manufacturer of heavy trucks, construction equip-
ment, busses, power solutions for marine and other industrial applications, and fi-
nancing and services that increase the customers’ up-time and productivity, having
its headquarters in Goteborg, Sweden. They have production in 18 countries and
serve around 160 markets worldwide employing 102,000. They have 8 distinct brands
which consist of Volvo, Volvo Penta, Rokbak, Renault Trucks, Prevost, Nova Bus,
Mack, and Arquus. They also partner in alliances and joint ventures with SDLG,
Milence, Eicher, Dongfeng, and cellcentric.

Volvo Group is committed to changing society into a fossil-free environment and
sustainable life can be seen from its introduction of a wide range of electric mobility
solutions.

1.2 Thesis Objective
The objective of this thesis is to develop a reliable neural network model to do
masked prediction of the multi-variate time series data. The crucial inquiries that
can be addressed upon the completion of this research endeavor are outlined below.

1.2.1 Research Inquiries
1. Which network model can reliably predict the multi-variate time series data?
2. Whether the predicted data is by the original data generated?
3. Which evaluation metrics are appropriate for assessing the model’s perfor-

mance??
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1. Introduction

1.3 Scope
In an electric vehicle, the most important part is the battery module which powers
the vehicle. One of the key factors affecting the vehicle’s performance is the usage
of the battery module. For high performance and increased range of the vehicle,
the battery module must be used optimally. The battery module life and charging
cycle too depend on how efficiently the module is being used by the drive system.
To optimize this system, data collected from the vehicle can be used, but the issue
is that there may be a loss of certain data in different time steps which makes the
data hard to use for inference. To overcome this issue, this thesis aims to do masked
prediction of the missing time series data.

The primary aim is to build a transformer-based neural network model that can be
used to do masked prediction of the missing values and the complete data can be
used to train any machine learning model over different use cases. The predicted
data should also be compared with the original data by using evaluation metrics.

1.4 Goals
1. Conduct a comprehensive study of the data source to gain a thorough un-

derstanding of its significance. Employ various data visualization methods to
analyze the data and enhance comprehension of each data point’s importance.

2. Determine appropriate evaluation metrics during the preliminary investigation
phase to assess the model’s reliability. Provide sound justifications for the
chosen metrics.

3. Perform data pre-processing to render the data suitable for project use. Aim
to maintain the inherent properties of the data by exploring diverse pre-
processing techniques and extracting valuable insights through visual repre-
sentations.

4. Develop a robust neural network model as the subsequent goal. The model
should align with the defined objectives, and its selection should be informed
by the literature study conducted during the research phase.

5. The final goal is to compare the differences between the original and predicted
data and incorporate methods to notch down the differences to ensure that
the model performs robustly in all scenarios.

2



2
Theory

This chapter breaks down the technical ideas necessary for a detailed understanding
of the thesis work.

2.1 Time-series Data

Time-series data is a sequence of data points that are recorded or collected at regular
time intervals. This data tracks the evolution of a variable over time, such as stocks,
temperature, etc. The regular time intervals can be daily, weekly, monthly, quar-
terly, or annually, and the data is often represented as a line graph or time-series plot.

Time-series data is grouped into various types using different criteria. Initially, the
categorization can be based on the patterns observed over time, such as trends,
seasonal variations, and irregularities. Another way to categorize is based on the
number of features in the data, where it can either involve a single feature (Univariate
Data) or multiple features (Multivariate Data) collected at a specific time..

2.1.1 The Trend

The data shows a trend when its value variably changes with time. An increasing
value shows a positive trend and a decreasing value shows a negative trend. Ana-
lyzing the data for this trend is comparatively straightforward. Figure 2.1.1 shows
a graph depicting a time series, illustrating a fairly straight downward trend with-
out any recurring seasonal patterns, though there are some fluctuations observed
throughout the timeframe..

Figure 2.1.1: A linear downward trend time series plot

3



2. Theory

2.1.2 Seasonal time-series data
Periodicity in time series data becomes apparent when the data incorporates dif-
ferent seasonal elements such as weekly, quarterly, or annual repetitions. These
seasonal variations may stem from natural factors like distinct seasons or weather
conditions, or they could be artificial conventions like fashion or habits. Figure 2.1.2
illustrates a plot exhibiting seasonality, where a recurring pattern is observable.

Figure 2.1.2: A periodic time-series plot

2.1.3 Irregular time-series Data
The time-series data, exemplified in figure 2.1.3, lacks a discernible pattern and is
characterized by considerable noise. Such data poses challenges in understanding
its distribution and conducting meaningful analyses.

Figure 2.1.3: A representative time-series plot with irregularities and no dis-
cernible patterns

2.1.4 Univariate and multivariate Data
Time-series data can be classified according to the number of features it encompasses.
When multiple features are collected or recorded at each time instance, it is referred
to as multivariate data. Conversely, if only one feature exists in the data for each
time instance, it is termed as univariate time-series data. This thesis specifically
addresses multivariate time-series data.

2.2 Artificial Neural Networks
This section elaborates on the concepts of artificial neural networks(ANNs) and
their working. ANNs are a subset of machine learning and are pivotal for deep
learning algorithms. ANNs are inspired by the human brain, mimicking the way

4



2. Theory

that biological neurons signal one another. An artificial neural network comprises
of numerous neurons and edges connecting these neurons. In this system, learning
happens by increasing or decreasing the strength(i.e, weights) of the connection
between these neurons over the entirety of the training process.

2.3 Feed Forward Neural Networks
A feed-forward neural network is an artificial neural network in which the connec-
tions between the neurons do not form a cycle. The feed-forward model is the
simplest form of a neural network as information is only processed in one direction,
but it can pass through multiple hidden nodes in that direction and never backward.

Figure 2.3.1: A simple feed-forward Neural Network model with one hidden layer

The purpose of a feed-forward neural network is to statistically approximate the
function f(x) and perform downstream machine learning tasks. Training of a multi-
layer perceptron with hidden layers comprises forward propagation and backward
propagation.[7]

For an n-dimensional input of x⃗ = {x1, . . . , xn}, and n- dimensional outputs of
{y1, . . . , yn}, the forward propagation is iteratively done to compute the value that
each neuron in the next layer will take using the equation y(l) = σ

(
W yl−1 + b

)
,

where W is the weights and b is the bias present in the neurons of layer l. σ is the
activation function used.

The difference is calculated between the predicted output y(out) and the target y
which is known as the cost and the function performing this the cost function. This
quantifies how well a machine learning model performs. This cost function must be
minimized by adjusting the models parameters(which are the weights and biases)
during training.

2.4 Recurrent Neural Networks
A recurrent neural network (RNN) belongs to the category of artificial neural net-
works designed for processing sequential or time series data. They find frequent

5



2. Theory

application in addressing ordinal or temporal challenges, including tasks like lan-
guage translation, natural language processing (NLP), and others.

RNNs are distinguished by their memory as they take information from prior inputs
to influence the current input and output. While traditional deep neural networks
assume that inputs and outputs are independent of each other, the output of re-
current neural networks depends on the prior elements within the sequence. Figure
2.4.1 shows the unfolded and folded architecture of a RNN [4]. This image to the
left shows the rolled version of RNN which shows the weight Wxh

between the input
x and the RNN Cell h. The weight between the output sequence y and the RNN
cell h is Why

.

Figure 2.4.1: A RNN structure in both a folded and an unfolded configuration
[3][2]

At each time step t, the RNN takes an input xt and produces an output term
yt, along with an RNN term ht, which serves as input for the next neuron. This
sequential information transmission continues to subsequent neurons. Equations
(2.1) and (2.2) outline the computation for ht and the output term yt:

ht = g1 (Whhht−1 + Wxhxt + bh) (2.1)
yt = g2 (Whyht + by) (2.2)

Here, Wxh
, Whh

, Why , bh, by are temporary coefficients, and g1, g2 are activation
functions.

A notable feature of RNNs is their dynamic architecture, adapting to the length
of the input sequence. Due to the temporal persistence of weights, updates occur
across time, resulting in fewer trainable parameters. However, RNNs also exhibit
several drawbacks, which will be explored in the subsequent section.

Even though the RNNs are advanced relative to a simple feed-forward neural network
they too have their limitations. These limitations are given below:

6



2. Theory

• Inability of parallel computations

• Vanishing or Exploding gradient problem

To counteract these problems the transformer model was developed which is ex-
plained in the next section.

2.5 Transformer Model

A transformer model is a neural network model that learns the context and thus
the meaning by tracking relationships in sequential data like the multivariate time
series data in this thesis. It is primarily used in the field of Natural Language
Processing and Computer Vision. Now let’s look at the model architecture for a
detailed understanding of the said network.

2.5.1 Transformer Architecture

The Transformer architecture eschews recurrence and instead relies entirely on an
attention mechanism to draw global dependencies between input and output. The
Transformer allows for significantly more parallelization [8]. Below the model archi-
tecture is visualized.

7



2. Theory

Figure 2.5.1: The Transformer Architecture as formulated in [8]

The transformer architecture consists of two main parts, namely the encoder block
and the decoder block.

The encoder is composed of a stack of six identical layers and each layer has two
sub-layers of which the first is the multi-head self-attention mechanism and the sec-
ond is a simple position-wise fully connected feed-forward network, each of these
sub-layers have a residual connection followed by a layer-normalization.

The decoder block is also composed of a stack of six identical layers, in addition
to the two sub-layers as in the encoder block the decoder has a third sub-layer
which performs multi-head attention over the output of the encoder stack. And the
self-attention sub-layer in the decoder stack is modified to prevent positions from
attending to subsequent positions. Given that the output embeddings are off-set by
a position and also considering the masking, it only does prediction based only on
the previous outputs.

Working of the attention mechanism is based on mapping a query and a set of key-
value pairs to an output, where all the said entities are vectors. The attention is

8



2. Theory

calculated as following:

Attention(Q, K, V ) = softmax(QKT

√
dv

)V (2.3)

Figure 2.5.2: The Attention Mechanism

Where Q,K and V are the query, keys and value, and dk is the dimension of the key.
In-order to get the weights of the values, we do dot products of the query with all
the keys divided by

√
dk and then apply softmax function.

Multi-head attention is an attention mechanism module which runs the attention
mechanism several times in parallel. The independent attention outputs are then
concatenated and linearly transformed into the expected dimension. Multi-head

9



2. Theory

attention allows the model to jointly attend to information from different represen-
tation sub spaces at different positions.[8]

MultiHead(Q, K, V ) = Concat(head1, ..., headh)W O (2.4)

Figure 2.5.3: Multi-Head Attention

where headi = Attention(QW Q
i ). Because of this there is a reduced dimension of

each head by which, the total computational cost is equivalent to that of single-head
attention with full dimensionality.

10



3
Methodology

This part outlines the flow of the entire thesis, from the literature review to getting
the predicted results in a detailed manner. The following flowchart explains the
steps that were involved in the thesis project.

Figure 3.0.1: Work Flow of the Thesis

3.1 Literature Review
The literature review was started with the thought of getting the methods and pro-
cedures that were previously successful in predicting and forecasting similar types of
time series data. The different articles, papers, and resources used were taken from
Google and Google Scholar. The decision on pre-processing steps, data visualiza-
tions, and the model needed for the use case were all decided during the literature
study. The detailed description of the literature studied for this thesis is mentioned
in 2.

3.2 Data set
The data comes from the Field test trucks, which are processed and retrieved from
the EMOB-General Signals category. The data from the sensors is transmitted as
a Control Area Network (CAN) message, comprising time-dependent multivariate
information. We took data from 9 different vehicles to incorporate different models
under different conditions. Figure 3.2.1 below shows the data from one single vehicle
with a gap less than 10 seconds between each timestamp.

3.3 Data Visualisation
Data visualization helps us understand the data that is present when not much
information is provided. It helps us to track down trends, understand the underlying
facts that the data represents and helps us to arrive at valuable conclusions out of

11



3. Methodology

Figure 3.2.1: A small slice of the dataset with the 10 important features

it. For a time series data set, it is very important to properly visualize the data as
it helps us in understanding the trends that each feature follows as time progresses
and helps to get an insight into how the forecast or prediction might look. Different
visualization techniques are being employed for the time series data as shown below.

3.3.1 Plotly graphs
Various data features are plotted as pulse graphs in Python using the plotly module.
The pulse graphs use unique colours to differentiate multiple features and plot each
feature across time in the x axis. Each attribute’s distribution range is shown by
the y axis. Users have the option to choose a particular attribute within the data
and concentrate exclusively on analyzing that feature using the real-time graphs.

Figure 3.3.1: Standardized time series data for the 4 important features using
plotly graph

3.4 Data Pre-processing
Pre-processing data is a critical step in the machine-learning process. Data pre-
processing involves cleaning the data, removing missing values, and modifying the

12



3. Methodology

data based on the use case. These processes are carried out because the raw data
obtained from the sensors is frequently inconsistent, incomplete, and may contain
errors. The pre-processing started with choosing the signals required to do the
analysis. These signals were fetched from various domains in the form of CAN
signals. These CAN signals are the different values that are received from the
sensors placed at the battery modules that tell the characteristics of the module
at each time stamp from the different field test trucks. The different steps of pre-
processing performed are mentioned in the below sections.

3.4.1 Data Loading
The signals that we used for this thesis are taken from the the field test trucks in the
form of CAN signals, as mentioned in 3.2 and we considered taking 10 important
features from the signals obtained. This obtained data frame was processed later
such that some columns were removed the outliers were dropped and other changes
were performed to make the data clean enough to be sent inside the model.

3.4.2 Choosing of Battery Pack and dropping of values
The obtained signals contained almost 80 features for 6 different battery packs. For
this process, we chose one battery pack that had less Nan values. Battery pack
3 had the least and only that pack is considered. Now, the most important 10
columns were extracted, which include current, voltage, ambient air temperature
etc. The other columns were removed using the ’drop’ function. After this process,
for initially sending the data set inside the model, it is necessary to have no Nan
values present in the data set. So, the Nan values can either be imputed or can be
removed. We decided to remove them. It was removed under the condition that if
any feature of one particular timestamp had a Nan value, then that data point was
removed from the data set.

3.4.3 Removal of outliers
After sorting the columns, the obvious outliers are removed from the data set.(i.e)
soc in negatives, current values greater than +- 200 and voltage greater than +-700.
These thresholds are fixed based on the standard set for the battery modules.

3.4.4 Consideration of only 1 status
The other values that come along with the features are the status at which the
timestamp of the truck is currently at. There are 3 different statuses at which the
truck can be. For initial considerations, the status ‘Driving Not charging’ is chosen.
The reason to choose this status is that this status undergoes major changes in the
sensor values than the other statuses and the prediction of the features in this status
is more important than the rest.
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3. Methodology

3.4.5 Batch separation conditions
Batch separation is one of the most important processes of this thesis as it helps
us in dividing the data set retrieved based on the different conditions under which
the data was recorded. Doing this makes a batch have only a particular set of data.
Also, the model is developed in such a way that it takes in data as batches, which
helps the model to learn different scenarios from different batches.

For the batch separation process, the time difference between each timestamp is
noted and that is stored as a separate feature. This is performed for all the 9 ve-
hicles. The data is grouped based on the different vehicles present. By doing this,
we ensure that each batch has data from one particular vehicle. That also acts as a
condition for batching. After calculating the differences, the filename difference be-
tween the consecutive timestamps is also recorded as either 1(different filenames) or
0(same filenames). The filename is the labeling given to each timestamp value dur-
ing the retrieval of data from the CAN signals by the data engineering department.
The change in filename between timestamps indicates a change in the scenario or
condition or the date on which the truck was tested.

After performing all of the above mentioned procedures, the entire data set is divided
into batches based on the condition, and Batch IDs are also generated for the same.
The Batch IDs are made as the indices of the data set.

3.4.6 Standardization using z-score
Scaling of the data is a very important process while performing data pre-processing.
This helps us to maintain the data values in the same range, which helps us maintain
the constancy of the dataset taken while sent inside the model for training. In
this thesis, Standardization using z-score is considered to scale down the values.
Standardization is done across each feature in the data set and is performed based
on the formula

Z = X − µ

σ
(3.1)

where:
• Z is the standardized value (z-score).
• X is the original value of the data point of that feature.
• µ is the mean of the distribution.
• σ is the standard deviation of the distribution.

Figure 3.3.1 is the plot of the standardized data for a small slice of the entire data set.
After standardization, the minimum value of the dataset was -4 and the maximum
was 4. After the process of standardization, the data set is ready to be used for
training the model. .
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3.5 Model
The core of our model is based on a Transformer encoder as developed in the original
transformer work by Vaswani et al., however, we do not use the decoder part of this
architecture.
Before we go into our model architecture let’s see how the data is sent into the model.
As we have described before we pre-process our data but since we are handling time
series data we will have varying lengths of the data. In order to have consistency
during training we have a set length of the data that is been sent into the model.
That is if we have a dataset that exceeds the set length we slice the data and if it is
below the set length we do padding to get it to the set length.

Figure 3.5.1: A dataset being padded before inputted into the model.

Now let’s see the mechanism of the model architecture. Each training sample X
is a multi-variate time series of length w and m different variables, constitutes a
sequence of w feature vectors (i.e., X = x1, x2, x3...xw). In short one row in our
dataset is one feature vector(i.e., one data point).
These feature vectors xt at each time step t is simultaneously inputted into the
model. And then these are linearly projected onto a d-dimensional vector space,
where the projections are indicated by ut. This d-dimension is similar to the trans-
former model dimension.

ut = Wpxt + bp (3.2)

Where Wp and bp are learnable parameters and ut are the model input vectors, which
are analogous to the word vectors in NLP Transformer.
The transformer model is independent of the position of the input data and since
we are dealing with time series data it is important to include the temporal sense to
the data, for which we add positional encoding to the input vectors before the data
is inputted to the attention layers of the transformer encoder.

Once we have done with the input encoding, the encoded data is inputted to the
transformer encoder where the learning happens. There are attention layers that
will learn the inter-dependencies between the various features along with the posi-
tional embedding making the model learn the relation of the data with respect to
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Figure 3.5.2: Model Architecture

time.

Previously we have seen how the data flows through the model, now let’s see how
the model is trained on the given data.

The initial step for the training is the creation of the mask. A binary mask(M) with
dimensions similar to the training dataset is created, it is created independently for
each training sample. Now the input is masked by element-wise multiplication with
the binary mask, X ′ = X · M .
Here masking is done column-wise of length w(length of the data), i.e., corresponding
to a single variable in the multivariate time series. Also, the masking is controlled
by a ratio called the masking ratio(r), the data is masked proportional to r.

Each masked segment will have a state transition probability such that the length
of the masked segment follows a geometric distribution with mean lm and this is
followed by an unmasked segment of length lu = 1−r

r
lm.

Here we control the length of the mask instead of going for a constant length value
because very short masked sequences (e.g., of 1 masked element) in the input can
often be easily predicted with good approximation by replicating the immediately
preceding or succeeding values or by the average thereof. To obtain enough long
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Figure 3.5.3: Binary Mask.

masked sequences with relatively high likelihood, a very high masking proportion r
would be required, which would render the overall task detrimentally challenging.
For this case, we have done this masking pattern because it tends the model to
learn to attend both to preceding and succeeding segments in individual variables,
as well as to existing contemporary values of the other variables in the time series,
and thereby learning to model inter-dependencies between variables.

At the end of the data flow through the model the model outputs the estimates
of the full input vector xt, but only the predictions of the masked values will be
considered during the computation of the loss function and hence it determines how
the model is trained by its influence in the updation of the learnable parameters.
In the next section, we will discuss the evaluation metrics that were considered in
the study.

3.6 Evaluation Metrics
After the prediction of the missing values from the best model, it is important to see
how precise the values are in comparison to the original values so that to validate the
predictions being made. This brings us the need to calculate the evaluation metrics
for the test run performed. Different evaluation metrics can be performed for time
series data based on the requirements, which can be both visual and quantitative.

3.6.1 Visual Metrics
The visual way of representing the obtained predictions is the simplest method of
approaching or evaluating the model performance. The different visual techniques
employed for this thesis are mentioned below

3.6.1.1 Prediction vs original plots

This contains the plot of the obtained predicted values in comparison to the ground
truth of that particular timestamp. This helps us get a visual idea of how matching
the predictions are with the ground truth values. The plots are obtained with the
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Figure 3.5.4: Model Training

help of the plotly package as it helps us to have an interactive view of the different
features.

3.6.1.2 Boxplots of features

A boxplot can be used to graphically compare predicted and actual values by display-
ing their distributions and summary statistics. By plotting the features of predicted
and ground truth values side by side, we can compare the medians, outliers range
and IQRs. This helps us in understanding the spread of the values which helps us
to find the differences between the data sets.

3.6.2 Quantitative Metrics

3.6.2.1 Mean absolute error

The mean absolute error (MAE) is characterized as the average difference between
the actual values and the predicted values within the dataset.[6] This metric is
very useful in predicting the performance of the model taken,(i.e.), it acts as an
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accuracy metric. MAE is a straightforward measurement between ground truth and
predictions. This helps us in knowing how much error the predictions hold and can
be evaluated based on that. The range for MAE ranges between 0 to ∞ [5]. The
equation for MAE is as below (3.3)

MAE = 1
n

n∑
j=1

|yj − ŷj| (3.3)

3.6.2.2 Root Mean Square Error

Root mean square error is the metric that calculates the error between the pre-
dicted and actual values by taking the mean of the squared differences between the
predicted and the actual values,[1] i.e., the error, and then taking the square of it
to calculate the metric. RMSE can be used as an evaluation metric to compare
with different models as a comparison. RMSE is an even more strict metric than
MAE as it gives strict penalties for the outliers between the ground truth and the
predictions, as the errors are squared. The RMSE for a particular data set and its
prediction is calculated using the formula (3.4) [1]

RMSE =
√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (3.4)
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4
Results

This chapter consists of the results and the corresponding discussions. During our
study, we ran the network for different hyperparameters to analyze the network’s
behavior for different situations and to visualize them. The setup for each simulation
will be explained below along with the graph of the Training & Validation curve and
the actual & predicted values.

Each simulation setup will include, the number of features, learning rate, Early
stopping patience, Learning rate reduction factor, Masking length, and the masking
ratio. These are the Hyper-parameters associated with the machine learning algo-
rithm we have developed. By changing these values in different combinations, we
ran different simulation setups. In this study, we ran the network for numerous sim-
ulation setups out of which we have chosen five different setups which are delineated
below.

4.1 Simulation Setup 1

• Number of Features - 4

• Learning rate - 0.0001

• Early stopping patience - 10

• Learning rate reduction factor - 0.5

• Masking length - 3

• Masking ratio - 0.2

• Optimizer - RAdam
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Figure 4.1.1: Original(left) vs Predicted(left) masked values for setup 1. The data
points with circles are the masked values and the rest are the values not considered
for prediction

Figure 4.1.2: Training and validation loss curve for setup 1
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Figure 4.1.3: MAE and RMSE score of the features for setup 1

As detailed above this setup is run with the mentioned combination of the hyper-
parameters. Here out of all the features collected from the truck we have selected
only four features that have more impact in understanding the battery modules of
the truck after a comprehensive exploratory data analysis.

From observing Figure 4.1.2 we can see that both the training loss and validation
loss are close enough to indicate a good fit but there is a relatively slight dip in the
validation loss going slightly below the training loss. The MAE and RMSE scores
show that predictions are low, but if we look at Figure 4.1.1 we can see that the
predictions seem to be wavering from the original values and for some features, the
scale of variation is quite tolerable in the range of −10 to +10.

4.2 Simulation Setup 2

• Number of Features - 4

• Learning rate - 0.0001

• Early stopping patience - 10

• Learning rate reduction factor - 0.5

• Masking length - 6

• Masking ratio - 0.3

• Optimizer - RAdam
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Figure 4.2.1: Original(left) vs Predicted(left) masked values for setup 2. The data
points with circles are the masked values and the rest are the values not considered
for prediction

Figure 4.2.2: Training and validation loss curve for setup 2
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Figure 4.2.3: MAE and RMSE score of the features for setup 2

This simulation setup is run with the hyper-parameters mentioned above which are
quite similar to the simulation setup 1 but here we have increased the masking length
to 6 and the masking ratio to 0.3. Here by observing Figure 4.2.2 we can see that
there is a clear gap between both the training loss curve and the validation loss curve
with no overlaps. And also the MAE and RMSE scores have increased as compared
to the first setup. Here the values of the predicted as compared to the original one
vary much more than the setup 1. Knowing that masking length and masking ratio
are the only differences from setup 1 we infer from this that the increase in the mask
must have made demanding for the model to predict longer sequences. Also, the
increased masking ratio has masked more features increasing the training loss and
the model might be exposed to more information during validation, leading to lower
loss, as observed from Figure 4.2.2.

4.3 Simulation Setup 3

• Number of Features - 4

• Learning rate - 0.0001

• Early stopping patience - 10

• Learning rate reduction factor - 0.5

• Masking length - 10

• Masking ratio - 0.25

• Optimizer - RAdam
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Figure 4.3.1: Original(left) vs Predicted(left) masked values for setup 3. The data
points with circles are the masked values and the rest are the values not considered
for prediction

Figure 4.3.2: Training and validation loss curve for setup 3
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Figure 4.3.3: MAE and RMSE score of the features for setup 3

In this simulation setup, we run the network with the above-mentioned hyper-
parameters which are similar to setup 2, where the masking length and masking
ratio are changed. But here we have increased the masking length and decreased
the masking ratio. By observing Figure 4.3.2 we can see that the gap between the
training loss and the validation loss has decreased as compared to setup 2 and also
the MAE and RMSE scores for this setup lie between that of the previous two se-
tups, lower than the of setup 2. Again here when observing Figure 4.3.1 we can see
that the predicted values are varying within a tolerable range as that observed in
setup1. And similar to setup1 some features show huge variations, here the first and
second graphs of Figure 4.3.1 show relatively huge variations while the third and
fourth graphs show good predictions within the tolerable range.

4.4 Simulation Setup 4

• Number of features - 10

• Learning rate - 0.0001

• Early stopping patience - 10

• Learning rate reduction factor - 0.5

• Masking length - 3

• Masking ratio - 0.25

• Optimizer - RAdam
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Figure 4.4.1: Original(left) vs Predicted(left) masked values for setup 4. The data
points with circles are the masked values and the rest are the values not considered
for prediction

Figure 4.4.2: Training and validation loss curve for setup 4
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Figure 4.4.3: MAE and RMSE score of the features for setup 4

In this simulation setup we have run the network with the above-mentioned hyper-
parameters and the major difference between this setup and all the previous setups
is that, here we have used 10 input features to train the model as compared to the 4
input feature in the previous setups. The remaining values of the hyper-parameter
are similar to setup1. This inclusion of more features has a noticeable decrease in the
MAE and RMSE scores. However, the predicted values as opposed to the original
values as observed in figure 4.4.1 are similar to those observed in setup1 and setup3.

4.5 Simulation Setup 5
• Number of Features - 4
• Estimators - 1000
• Learning rate - 0.01

Figure 4.5.1: Original vs Predicted values of the 1st feature for setup 5 using
XGBoost
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Figure 4.5.2: Original vs Predicted values of the 2nd feature for setup 5 using
XGBoost

Figure 4.5.3: Original vs Predicted values of the 3rd feature for setup 5 using
XGBoost
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Figure 4.5.4: Original vs Predicted values of the 4th feature for setup 5 using
XGBoost

Figure 4.5.5: MAE score of the features for setup 5

Up until now the model under study is based on neural networks and since we had
varying predictions for certain features of the data these features had values that
were closely ranged, making them approximately similar for a significant length of
time. Therefore we trained the truck data on a statistical model to see how well
the model is performing for such a feature that we have identified as said previously
along with the features that have a diverse range of values.

For this case, we used the XGBoost statistical model as this model is best suited
to train data with a time sense i.e., they are one of the best statistical models to
train time series data. Here for this setup, we have chosen the four features that
we have been using for the study up until now. From the figure 4.5.4 we can see
the predicted values and the original values of the chosen four features. These MAE
scores show that the model is predicting within a highly feasible tolerance range.
But the problem with this model is that our transformer-based neural network model
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used in the previous setups does representation learning in which the model learns
both the time dependency of the data under study and also the inter-dependencies
within the features simultaneously, whereas, in this statistical model, we do target
based supervised learning that learns the time sense of the data, therefore we need to
run the model for different targets for the model to learn to predict a single feature
at a time which our neural network model learns how to predict all the features
simultaneously.
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5
Conclusion

This thesis systematically investigated the performance of a neural network model
designed for analyzing battery module data from trucks. Through various simula-
tion setups with different hyperparameters, we explored the behaviour of the model
under diverse conditions. The key findings from the selected setups shed light on
the intricate relationship between hyperparameters and model performance.

Simulation Setup 1 demonstrated a relatively good fit between training and valida-
tion loss, indicating a potential risk of overfitting. The increase in masking length
and ratio in Simulation Setup 2 led to a wider gap between the training and vali-
dation loss curves, suggesting challenges in predicting longer sequences. Simulation
Setup 3, with an increased masking length and decreased ratio, showed improved
performance compared to Setup 2.

Simulation Setup 4 incorporated a higher number of features, resulting in decreased
Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) scores, high-
lighting the potential benefit of including more input features in the model. Lastly,
Simulation Setup 5 explored the use of the XGBoost statistical model, revealing its
capability to predict within a feasible tolerance range but emphasizing its limita-
tion in capturing interdependencies among features compared to the neural network
model.

After seeing the results, we observed that our model still needs a lot of improvements
in the accuracy of predictions. This is because the data it learned from was limited
and not diverse enough. Despite this, the model has a unique strength – it learns
from all the features in the dataset to make predictions. This sets it apart from
traditional statistical models. Also, the differences in predicted values compared to
the original ones are in the range of what the company considers acceptable. This
can make us say that this model has set the right base for further developments that
can yield better-performing results. Right now, our model is an experimental study
showing how neural networks can predict features compared to the usual statistical
methods. We’ve made progress, but there’s more work needed to make the model
ready for real-world use. This thesis gives us a good starting point and shows the
potential of using neural networks for predictions.
In summary, we successfully developed and applied a Neural Network pipeline, con-
sidering various parameters to ensure versatility. However, upon closer examination,
we identified certain limitations in the network’s performance based on the given
data. To explore alternative approaches, we conducted a comparison between our
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Neural Network and a statistical model. This comparison sheds light on the distinct
strengths and weaknesses of each approach. Looking ahead, the future scope of this
thesis would be to train the model with large and varying data, refine the Neural
Network architecture, adjust hyperparameters, and explore different masking meth-
ods that can ensure the forecasting of data values as the masking method and the
Neural network models hold scope for improvements on these. This could enhance
predictive accuracy and broaden the applicability of our model in future studies.
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