
Machine Learning Meets Localization

Hypothesis inference for localization of autonomous vehicles

Master’s thesis in Computer science and engineering

THEODOR STENHAMMAR
DAVID BEJMER

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2022

Master’s thesis 2022

Machine Learning Meets Localization

Hypothesis inference for localization of autonomous vehicles

THEODOR STENHAMMAR
DAVID BEJMER

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2022

Machine Learning Meets Localization
Hypothesis inference for localization of autonomous vehicles
THEODOR STENHAMMAR
DAVID BEJMER

© THEODOR STENHAMMAR, 2022.
© DAVID BEJMER, 2022.

Supervisor: Marina Axelson-Fisk, Department of Mathematical Sciences
Supervisor: Axel Beauvisage, Zenseact
Supervisor: Junsheng Fu, Zenseact

Examiner: Marina Axelson-Fisk, Department of Mathematical Sciences

Master’s Thesis 2022
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2022

iv

Machine Learning Meets Localization
Hypothesis inference for localization of autonomous vehicles
THEODOR STENHAMMAR
DAVID BEJMER
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
This thesis project was conducted in cooperation with Zenseact for the purpose
of creating a solution for determining the lane in which an autonomous vehicle is
driving. Solving this is part of the larger problem of localization and state estimation
of autonomous vehicles and is referred to as Lane-Level Localization (LLL).

The problem is connected to the area of Early Time Series Classification, which is
the field of applying supervised learning and time series classification techniques for
classifying time series accurately with as few observations as possible.

The problem of LLL may be solved by applying what is known as a multi-hypothesis
technique. This is a technique that estimates some state by tracking several different
possibilities (hypotheses) for the state and using some model for inferring the most
likely scenario.

It is found that using an architecture that allows for the possibility of rejecting
output depending on the certitude with which a classification can be made can be
adapted to solving the problem of LLL in autonomous vehicles. In the current
scenario, the model produced an accuracy of 99,5% while only rejecting to classify
in 1% of the sequences.

Keywords: Engineering, thesis, Zenseact, machine learning, localization, autonomous
driving, data, time series, early, early classification, lane-level localization.

v

Acknowledgements
We would like to thank Zenseact and our supervisors Axel Beauvisage, Junsheng Fu,
and Marina Axelson-Fisk for their help and guidance in the project and the writing
of the thesis.

We would also like to thank our peer-reviewers Jakob Hendén and Alfred Arvidsson.

David Bejmer & Theodor Stenhammar, Gothenburg, May 2022

vii

Glossary

Below is a list of the terms and concepts that are referenced in this thesis.

AD Autonomous Driving
ADAS Advanced Driver-Assistance Systems
ASF Achievement Scalarization Function
catch22 Feature set that is derived from the hctsa feature set for time series

classification.
CIF Canonical Interval Forest. Ensemble method for categorization of

time-series data. Uses the catch22 feature set.
Ego-vehicle The physical vehicle from which sensor measurements are gathered,

as opposed to a hypothetical vehicle pose.
ETSC Early time-series classification. The methods relating to classifica-

tion of partial time-series with accuracy and earliness.
GB Gradient Boosting. A tree ensemble machine learning algorithm.
GNSS Global Navigation Satelite System.
hctsa Highly Comparative Time-Series Analysis. A feature set for time

series analysis.
HD-map A map with precise information about lane geometry, lane marker

types, down to centimeter level precision
IMU Intertial Measurement Unit.
INS Interial Navigation System.
KF Kalman Filter. An optimal state estimator. Exists in several vari-

ations with different properties.
LSTM Long Short-Term Memory cell. A type of recurrent neural network

cell that is designed to capture information over longer timescales.
MQ Model qualities. A measurement of similarity between the HD-map

and perceived lane markers
MTS Multivariate time-series. A time-series in which each data point is

multi-dimensional.
NSGA2 Non-Dominated Sorting Genetic Algorithm 2. A genetic algorithm

for producing non-dominated solutions in multi-objective optimiza-
tion.

SVM Support Vector Machine.

ix

Contents

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 Background . 1
1.2 Aim . 3

2 Literature Review 5
2.1 Localization in autonomous driving 5
2.2 Classification of time series data . 6

2.2.1 Classification approaches . 6
2.2.2 Early time-series classification 7

2.2.2.1 Early classification of time series using multi-objective
optimization techniques by Mori et al. (2019) 8

2.2.2.2 TEASER: early and accurate time series classifica-
tion by
Schäfer and Leser (2020) 10

2.3 Multi-objective Optimization . 10

3 Data set 13
3.1 Data description . 13

3.1.1 Main feature set . 14
3.1.2 Supplementary feature set . 17

3.2 Data preprocessing and analysis . 18
3.2.1 Outliers and Scaling . 19
3.2.2 Missing data . 19
3.2.3 Data visualisations . 20

3.3 Data split . 23
3.4 Annotation . 24

4 Method 29
4.1 Experimental setup . 29
4.2 Definition of a multivariate time series 29
4.3 Solution design . 30
4.4 Evaluation . 31

xi

Contents

5 Experiments and results 33
5.1 Probabilistic classifier . 33

5.1.1 Momentary measurement model qualities 34
5.1.2 Averages . 36
5.1.3 Constructed feature set . 38
5.1.4 State-of-the-art methods and candidate selection 42

5.2 Trigger function . 43
5.2.1 Multi objective optimization 43

5.2.1.1 Objectives . 43
5.2.1.2 Optimization algorithm 44
5.2.1.3 Trigger functions . 45
5.2.1.4 Trigger function parameter optimization 46

5.2.1.4.1 Tr1 . 46
5.2.1.4.2 Tr2 . 47
5.2.1.4.3 Tr3 . 49

5.2.2 Testing of trigger functions . 50
5.2.2.1 Highlighted cases . 51

5.2.2.1.1 Incorrect classifications 51
5.2.2.1.2 Late prediction 52
5.2.2.1.3 No prediction 54

6 Discussion and Conclusion 57
6.1 Results discussion . 57

6.1.1 Data . 57
6.1.2 Probabilistic classifier . 58
6.1.3 Trigger function . 58
6.1.4 Hypothesis-inference . 59

6.2 Limitations and scope . 60
6.3 Conclusion . 60

Bibliography 61

xii

List of Figures

1.1 The robotic paradigm divides the continuous control loop into sensing
the environment, planning for the future, and taking an action. 1

1.2 Example of multiple hypotheses. The green vehicle is the reference
state of the vehicle and the beige vehicles are hypothetical states. . . 2

2.1 Selection process using reject classifier as described in Mori et al.
(2019). TS|t is a time-series prefix up to time t. pt

k is the k:th
highest probability (i.e. the k:th best hypothesis according to the
probabilistic time-series classifier. A trigger output of 1 signifies a
selection of the hypothesis corresponding to the highest probability pt

1). 9
2.2 A Pareto-front, or non-dominated set of solutions, shown by the red

line. Every square represents some selection of parameters and the
performance is evaluated over two dimensions, represented by the
coordinate axes. For every selection of parameters that is part of the
Pareto-front, no objective can be improved without a decrease in the
other objective. 11

3.1 Initialization of hypotheses based on GNSS. The blue and yellow el-
lipses show the uncertainty in the GNSS signal at the time of ini-
tialization. One hypothesis is initialized for each lane and they are
numbered according to the bottom of the image. 14

3.2 Example of perception overlaid on HD-map. Red color is the per-
ceived lane markers, placed with hypothesis 1 as reference point. The
green colored lines are the exact same as the red lines, except from
the perspective of hypothesis 0. Note the mismatch of the lane types
when the perceived lane markers are overlaid over hypothesis 1. . . . 16

3.3 Example of perception overlaid on HD-map. Red color is the per-
ceived lane markers, placed with hypothesis 1 as reference point. The
green colored lines are the exact same as the red lines, except from the
perspective of hypothesis 0. Note that the geometry of the perceived
lane markers differ significantly from the HD-map. 17

3.4 Boxplot showing a box of Q1-Q3, the median value as a green hori-
zontal line and whiskers reaching at the most 1.5 times the length of
the box. Outliers are presented as circles. 18

xiii

List of Figures

3.5 Momentary MQs for samples coming from correct and false hypothe-
ses respectively. The distributions are normalized to show density,
i.e. the total area of each of the two distributions sums to 1 (y axis).
On the x axis is the MQ-value. The distributions are presented by a
histogram of 50 bins over [-10, 5] and the data is split into two colors
by label. 20

3.6 Pairwise correlation matrix of the features and the target label using
Pearson correlation coefficient. A more blue color means a stronger
positive correlation while a more red color means a stronger negative
correlation. A value closer to 0 or a lighter color closer to white means
no correlation. Any absolute correlation value below 0.5 is considered
more or less weak. 21

3.7 Averaged version of the feature set, 50 bins over [-10, 5]. Color by
label. The average is taken as the mean value for each feature over
whole sequences. 22

3.8 Low-Pass version of the feature set, 50 bins over [-10, 5]. Color by
label. 22

3.9 Map showing the three different data sets in the colors red, blue and
green. They have been split into different sets based on the angle
from the reference point marked with yellow and their mean position. 24

3.10 Example annotation. The white shapes show the pose of the possible
hypotheses and the green shape show the pose of the reference vehicle.
The arrows signify lane center line and direction of movement. 26

3.11 Two annotation scenarios. In the left scenario, ∆y0 << ∆y1 and
hypothesis 0 is annotated as the correct hypothesis. In the right
scenario, y0 and y1 are similar, and no annotation is made for that
frame. 26

3.12 Example of lane merge leading to a convergence of hypotheses and
ambiguity in annotation. Reference vehicle is drawn behind the hy-
potheses for clarity, as longitudinal offset is not considered for anno-
tation purposes. 27

4.1 An overview of the full solution architecture, based on the process in
Mori et al. (2019). MTS|nt is the n:th time series prefix, up to time
t. pk is the predicted true-probability as given by the probabilistic
classifier for hypothesis k. A trigger output of 1 signifies an output
of the hypothesis corresponding to the highest probability in P 30

5.1 Solution architecture with the probabilistic classifier highlighted. . . . 33
5.2 Line plot showing the accuracy for different classifiers and amount of

training data. The models in the left figure are trained and tested on
momentary MQs with missing values replaced with the constant 5.
The models in the right figure are trained and tested on momentary
MQs with missing values replaced with the mean value for the given
feature in the training set. 35

5.3 Bar plot showing feature importances extracted from the trained Gra-
dient Boosting classifier. All values sum up to 1. 36

xiv

List of Figures

5.4 Line plot showing the 5-fold cross validation accuracy for different
time steps and differently trained GB classifiers, averaged over ten
runs. The legend describes what each GB classifier has been trained
on. Numbers in parentheses describe the size of the moving window,
over which it averages. 37

5.5 Correlation matrix of the feature set as described. A high value means
that the features have a positive correlation while a low value means
that they have a negative correlation. 40

5.6 Results by training on constructed feature set using a Gradient Boost-
ing classifier with default parameters. Evaluation done on time-series
prefix lengths between [40, 1201]. 41

5.7 Feature importances for the using the Gradient Boosting classifier.
All importance-values sum to 1. 41

5.8 Line plot showing the 5-fold cross validation accuracy for CIF-classifiers
trained on six different time series sizes compared to a GB classifiers
trained on a moving average of 200 and predicting on current average
as well as a GB classifier trained and tested on a constructed feature
set. The graph shows the accuracy for a given model at a given time
step. 42

5.9 Solution architecture highlighting the trigger function. 43

5.10 Recap of the geographic location of the different data sets. As can
be seen, the red data set is largest, with the green and blue data sets
being around a third to a half as large as the red. 45

5.11 The figure shows results from the optimizations on the three different
optimization data sets when using Tr1. The left column shows the
hypervolume. The right column shows the non dominated solution
sets, with the addition of the nadir and ideal points, as well as a red
X showing which solutions was chosen by the achievement scalariza-
tion function when using the weights (0.2, 0.8). The x-axis for the
convergence-graphs on the left shows the number of function evalua-
tions made by the algorithm. For the graphs on the right, the x-axis
shows the earliness cost and the y-axis presents the accuracy cost. . . 47

5.12 The figure shows results from the optimizations on the three different
optimization data sets when using Tr2. The left column shows the
hypervolume. The right column shows the non dominated solution
sets, with the addition of the nadir and ideal points, as well as a red
X showing which solutions was chosen by the achievement scalariza-
tion function when using the weights (0.2, 0.8). The x-axis for the
convergence-graphs on the left shows the number of function evalua-
tions made by the algorithm. For the graphs on the right, the x-axis
shows the earliness cost and the y-axis presents the accuracy cost. . . 48

xv

List of Figures

5.13 The figure shows results from the optimizations on the three different
optimization data sets when using Tr3. The left column shows the
hypervolume. The right column shows the non dominated solution
sets, with the addition of the nadir and ideal points, as well as a red
X showing which solutions was chosen by the achievement scalariza-
tion function when using the weights (0.2, 0.8). The x-axis for the
convergence-graphs on the left shows the number of function evalua-
tions made by the algorithm. For the graphs on the right, the x-axis
shows the earliness cost and the y-axis presents the accuracy cost. . . 49

5.14 Scatter plot showing the performance of the three trigger functions
with their optimized parameters on the testing data. The x-axis de-
scribes the fraction of correct predictions, the y-axis shows the average
waiting time to prediction, in terms of the fraction of 30 seconds, and
the availability of a prediction is presented in the legend together with
the tested trigger function. 51

5.15 Model Qualities for the correct hypothesis to the left and the incor-
rect but selected hypothesis to the right. The y-axes shows the MQ
values and the x-axis represent the time steps. The black vertical line
represents the time step at which the wrong hypothesis was selected. 52

5.16 Averaged Model Qualities for the correct hypothesis to the left and
the incorrect but selected hypothesis to the right. The y-axes shows
the averaged MQ values and the x-axis represent the time steps. The
black vertical line represents the time step at which the wrong hy-
pothesis was selected. 52

5.17 Model Qualities for the correct (and highest probable) hypothesis to
the left and the second most probable hypothesis to the right. The
y-axes shows the MQ values and the x-axis represent the time steps.
The black vertical line represents the time step at which the wrong
hypothesis was selected. 53

5.18 Averaged Model Qualities for the correct (and highest probable) hy-
pothesis to the left and the second most probable hypothesis to the
right. The y-axes shows the averaged MQ values and the x-axis rep-
resent the time steps. The black vertical line represents the time step
at which the wrong hypothesis was selected. 53

5.19 The two highest probabilities from the probabilistic classifier, p’ and
p” respectively, for the time steps before prediction. The black verti-
cal line represents the time step at which a prediction was triggered. . 54

5.20 The two highest probabilities from the probabilistic classifier, p’ and
p” respectively, for a sequence in which the trigger function never
triggered a prediction. 54

5.21 The two highest probabilities from the probabilistic classifier, p’ and
p” respectively, for a sequence in which the trigger function never
triggered a prediction. 55

xvi

List of Tables

3.1 Table of metrics for the primary feature set. The minimum, mean,
standard deviation, maximum and proportion of present values are
shown for each feature in the main feature set (Model Qualities). . . . 18

3.2 Table showing the mean and standard deviation of the data set when
split on the target label, meaning if a given row is produced by a true
or false hypothesis. 21

3.3 Table showing the number of sequences included in each data set as
well as the mean and standard deviation for each feature. 24

5.1 Table presenting how the different data sets are used in each of the
three experiments. Train means the training of the probabilistic clas-
sifier, Optimize is the optimization of the trigger function parameters
and Test is the independent data set on which the whole solution is
applied. 45

5.2 The learned parameters by optimizing on three different data sets for
Tr1 . 47

5.3 Table showing the learned gamma parameters from the optimization
on the three different data sets for Tr2. 49

5.4 Table showing the learned gamma parameters from the optimization
on the three different data sets for Tr3. 50

xvii

List of Tables

xviii

1
Introduction

"... a fundamental aspect of a fully autonomous vehicle is its ability to
properly perceive its environment and localize itself on the road"

This was written by Laconte et al. (2022) with regards to Advanced Driver-Assistance
Systems (ADAS). A localization system needs to be precise in its perception of the
vehicle state as this information will be used as foundation for control decisions in
Autonomous Driving (AD). For performing a maneuver such as overtaking another
vehicle, there can be no uncertainty about the position of the vehicle.

1.1 Background
An autonomous vehicle is a robot and follows the Sense-Plan-Act1 (SPA) paradigm.
Sense, in this context, means the robot’s ability to gather and interpret information
from the surrounding environment. This depends on the hardware capabilities that
the robot has as well as how software is used to derive key information about the
environment and the state of the robot. Localization of a robot means finding the
state of a robot in relation to some environment, and is a key part of "Sense".

Figure 1.1: The robotic paradigm divides the continuous control loop into sensing
the environment, planning for the future, and taking an action.

GNSS devices are insufficiently precise for localization of an autonomous vehicle 2.
Some other method is therefore necessary in order to localize a vehicle.

1This was also the inspiration for the company name; Zenseact. For information on SPA see
Lauxmann (2015).

2For perspective, GNSS-devices are commonly cited to have 95% accuracy in localizing an object
within 3 meters. For further information on GNSS usage in autonomous driving, see Joubert et al.
(2020).

1

1. Introduction

Laconte et al. (2022) distills the task of localization in autonomous driving into three
smaller components; Road Level Localization (RLL), Ego-Lane Level Localization
(ELL), and Lane-Level Localization (LLL). RLL means identifying the road on which
the vehicle travels and ELL considers the position of the vehicle within the lane.
LLL concerns the task of identifying in which lane of the road the vehicle is traveling.

This thesis project is focused on solving part of the Lane-Level Localization problem
for autonomous driving. The project is performed in cooperation with Zenseact, a
software company that specializes in ADAS and AD solutions and provides such
services for Volvo. Zenseact works with the entire software solution for AD and
ADAS, the full Sense-Plan-Act loop of autonomous driving. Localization of the car
is part of the vehicle state estimation and is therefore a baseline from which decisions
can be taken.

For this project, we employ a version of Multiple-Hypothesis Tracking for lane-level
localization. This method was first proposed by Reid (1979) and uses the idea of
creating multiple possible hypotheses for the states of each target, and removing the
hypotheses that are unlikely to be true. The multiple-hypothesis tracking and re-
lated techniques have been used for localization purposes in many cases, for instance
by Jensfelt and Kristensen (2001) and by Jensfelt and Kristensen (2001).

Figure 1.2: Example of multiple hypotheses. The green vehicle is the reference
state of the vehicle and the beige vehicles are hypothetical states.

The use of multiple-hypothesis tracking solves the LLL problem by dividing it into
two sub-problems: the tracking of multiple hypotheses for the state of the vehicle,
and inferring the correct state out of the set of possible hypotheses. The tracking of
the hypotheses is accomplished using a state-estimator, for example a Kalman filter.
An example of multiple-hypothesis tracking for LLL is seen in figure 1.2.

2

1. Introduction

Creating an inference model for selection between these hypotheses is the subject of
this thesis project.

1.2 Aim
To make safer decisions a vehicle must know where it is in the road, and therefore,
robust and quick initialization of the localization is of importance. The aim of this
thesis project is to create an inference model using supervised machine learning tech-
niques for the task of online lane-level vehicle localization by classifying a number
of state hypotheses. The aim can be further specified as:

1. Literature review: Investigate state-of-the-art methods for machine learning
and localization of autonomous vehicles.

2. Domain analysis: Perform an analysis of the data and a specification of the
problem to be solved.

3. Problem specification: Based on literature study and domain analysis, propose
and examine approaches to hypothesis inference.

3

1. Introduction

4

2
Literature Review

Section 2.1 includes further information on techniques for lane-level localization and
state estimators. Section 2.2 includes information on techniques for time series
classification and the field of Multi-Objective Optimization is presented in section
2.3.

2.1 Localization in autonomous driving
Laconte et al. (2022) divide approaches to Lane-Level Localization into two paradigms;
Landmark Approaches and Map-Aided Approaches. In Landmark approaches, visual
features like lane markings and traffic signs are extracted from images and then
used to assess the number of lanes and the lane in which the vehicle is driving.
Map-aided approaches use environment perception based on sensor data to match
the location of the vehicle with a High-Definition map. An HD-map is a map that
contains detailed information about lane geometries, lane marker types, and other
information about a road network.

Map-Aided approaches use a map-matching algorithm to determine the lane in which
the vehicle is driving. The type of map that is best suited for this task is a mesoscale
map. This is a map that is between a microscale map and a macroscale map in
precision, providing a suitable trade-off between precision and density. Macroscale
maps have metric precision while microscale maps have centimeter accuracy.

Many different approaches to map-matching exist. Common approaches include
using a Particle Filter (PF) as done by Jo et al. (2017). This approach matches
the particles to a segment of the map. The particles are clustered by matched
lane segment and an hypothesis for the vehicle pose, position and orientation, is
estimated based on each cluster. A similar method is used by Li et al. (2018).

Another approach to vehicle state estimation is using a Kalman Filter. Whereas
Particle Filters use Monte Carlo 1 simulation to estimate the state of the vehi-
cle, a Kalman filter uses the assumption of linear state transitions and Gaussian-
distributed noise. The estimation of the vehicle state is achieved by interpolating

1Monte Carlo methods are methods that use random sampling to estimate a result or a distri-
bution.

5

2. Literature Review

between measurements of the hidden vehicle state and the expected position based
on the model of the linear system, using the covariances of the measurement and
the model.

The standard Kalman filter does not rely on simulations and is therefore faster.
There are variations to the Kalman filter to handle non-linear state transitions.
Examples of this are the Extended Kalman Filter (EKF), the Unscented Kalman
Filter (UKF), and the Cubature Kalman Filter (CKF).

For solving the Lane-Level Localization problem using Kalman filters, a filter is
initialized for each possible location given some initialization strategy, signifying
the different possible states of the vehicle. The solution to the problem consists of
inferring the correct hypothesis out of the set of possible hypotheses.

2.2 Classification of time series data
General approaches for classification of time series, as well as relevant considera-
tions are presented in section 2.2.1. The field of Early Time Series Classification is
introduced in section 2.2.2.

2.2.1 Classification approaches
We refer to tabular data as data that can be structured as rows and columns in
a table where each row represents a single item and the columns represent the
various measurements that make up that item. This is a common way of structuring
and representing data as it is versatile and can suit many different purposes. This
structure makes no assumption on the relation between different items of data.

Sequential data, on the other hand, can also be represented as a table using rows
and columns, but there exists a sequential relation between the items. This can be
observations over time, letters in a word, or any other sequence of items.

Methods for classification of time series data often differs from methods for classify-
ing tabular data. The reason for this is that the key information is in the sequential
relation in the data. The goal is to use a classification approach that captures this
information (Bagnall et al., 2017).

Like for any machine learning task, the type of data will determine which methods
are appropriate. For instance, sequential data can be discrete or continuous, as well
as univariate or multivariate, and this will need to be considered when choosing a
machine learning approach (Ruiz et al., 2021).

Time series data is a special case of sequential data, where the sequence is ordered
by time. Any methods that are used for classification of sequential data may there-
fore be of relevance for the purpose of time-series classification. Long Short-Term

6

2. Literature Review

Memory cells (LSTM)2 have been utilized in the field of natural language processing
in many cases such as Wang and Jiang (2015) and Yao and Guan (2018) but the
technique has also been applied specifically to time series classification in Huang
and Li (2021).

Historically, a common benchmark for time series classification has been the DTW-
1NN classifier. Dynamical Time Warping (DTW) is a similarity measurement be-
tween time series that can be paired with a 1-Nearest Neighbor classifier (1-NN) for
classification of time series Bagnall et al. (2017). The DTW similarity measurement
has also been adapted for measuring the similarity between multivariate time series
(Ruiz et al., 2021).

Time series classification can be done on raw data, or it can be done using some
feature extraction or transformation method. Examples of features that can be
extracted from time-series data are the mean of values, the variance, or the mode
of the data.

An example of using a feature extraction (or feature transformation) for time series
classification is ROCKET by Dempster et al. (2019). This method transforms time
series features by extracting features using random convolutional kernels, which is
convolutional kernels with random weights, as opposed to learned weights.

Time Series Forest (TSF) by Faouzi and Janati (2020) is a model for time-series
classification by use of feature extraction. TSF divides the time-series into windows
and extracts the mean, the standard deviation and the slope of the data within that
window. Classification is then performed using a tree ensemble over the extracted
features.

Another example of feature based time-series classification is the Canonical Interval
forest (CIF) as proposed by Middlehurst et al. (2020). The Canonical Interval Forest
uses a time-series feature set called catch22 first developed by Lubba et al. (2019).
The catch22 feature set is based a filtered version of the Highly Comparable Time-
Series Analysis (hctsa) feature set by Fulcher and Jones (2017) which originally
comprises over 7700 time-series features. The catch22 set is a selection of 22 features
from the hctsa feature set with the purpose of selecting as few features as possible
while sacrificing as little classification power as possible, in the interest of reducing
complexity and training time.

2.2.2 Early time-series classification
Santos and Kern (2017) defines Early time-series classification (ETSC) as:

"... the problem of trying to come to a classification decision with as little
observations of a time series as possible, while sacrificing classification
accuracy as little as possible"

2A form of Recurrent Neural Network (RNN)

7

2. Literature Review

The idea is to use ETSC-techniques in situations where earliness is key. Examples
of application areas include detecting gas-leakages, which was done in an early ap-
plication of ETSC-techniques by Hatami and Chira (2013) and classification of drug
response in Multiple Sclerosis patients in Ghalwash et al. (2012).

The goal is to make a prediction as soon as it can be made with certitude, with
the idea that the more observations are made, the more certain a prediction is. The
problem becomes finding methods for managing this trade-off between accuracy and
earliness. ETSC can also be achieved by a variety of different ways. Santos and Kern
(2017) provide a review of some approaches to ETSC.

Another consideration is that ETSC often requires a different approach to classifi-
cation than offline time series classification. The reason for this is that in ETSC the
full time series is not available. Some methods for time series classification, such
as the Multi-Layer Perceptron for classification of time series as proposed by Wang
et al. (2016), are dependent on the length of time series. A method that is indepen-
dent of the length of the time series can be used any time new data is collected, but a
method that is dependent on the length can only be used for the specific time series
length that it is constructed for. The application of such length-dependent methods
for ETSC requires defining a set of lengths at which time series are evaluated and
constructing a set of classifiers, one for each length.

An approach that been used by Schäfer and Leser (2020) and Mori et al. (2019)
consists of a two-tiered structure. This is based on dividing a time-series into seg-
ments of different lengths and using a probabilistic classifier trained to output class
probabilities for different lengths of time series segments. This is then combined
with a reject-classifier that chooses to output a prediction or wait for more data
depending on the certitude of the prediction.

2.2.2.1 Early classification of time series using multi-objective opti-
mization techniques by Mori et al. (2019)

Mori et al. (2019) propose a novel approach to multi-objective optimization for early
time series classification which involves optimizing accuracy and earliness by training
the parameters of a trigger function that makes the decision of predicting or waiting
for more data. The approach by Mori et al. (2019) is shown in figure 2.1.

The purpose of the trigger function is to be responsible for deciding if the output
from the probabilistic classifier is reliable enough to make a prediction (output of 1)
or wait for more data (output of 0). If it deems the prediction to be reliable enough,
then the hypothesis with highest posterior probability is chosen. Mori et al. (2019)
proposes using a linear trigger function. The linear trigger function has been shown
to be competitive against more complex rules and state-of-the-art methods.

Trγγγ(pt, t) =

0, if γ1p
′
t + γ2(p′

t − p′′
t) + γ3

t
L

≤ 0
1, otherwise

(2.1)

8

2. Literature Review

Figure 2.1: Selection process using reject classifier as described in Mori et al.
(2019). TS|t is a time-series prefix up to time t. pt

k is the k:th highest probability
(i.e. the k:th best hypothesis according to the probabilistic time-series classifier.
A trigger output of 1 signifies a selection of the hypothesis corresponding to the
highest probability pt

1).

pt is the probability vector obtained at the current time step t and with length
equal to the amount of active hypotheses. p′

t and p′′
t are the largest and second

largest probability respectively in this vector, and γ = (γ1, γ2, γ3) is the vector of
parameters that needs to be chosen, where γi ∈ [−1, 1] for all i. L is the length of
the time series, so that t

L
is the fraction of the time series that has been observed

at time t.

The algorithm used to perform the multi-objective optimization is the non dom-
inated sorting genetic algorithm NSGA2, which is a genetic algorithm for multi-
objective optimization first proposed by Deb et al. (2002).

The accuracy cost is defined as the classification error or percentage of wrongly
classified sequences:

Cac(X, Trγ) = 1
|X|

∑
x∈X

ι(ŷx ̸= yx) (2.2)

where ι as above is a Boolean function which takes a value of 1 if the condition is
true and 0 otherwise. X is the set of sequences (time series) on which to evaluate.
Trγ is the trigger function as described in Equation 2.1, parameterized by γ.

The earliness cost is defined as the average length of the time series portion that
has been observed at the time of prediction:

Cea(X, Trγ) = 1
|X|

∑
x∈X

t∗
x

Lx

(2.3)

Where X and Trγ is as described above, t∗
x is the time step for which an hypothesis

selection is available for x using Trγ, and Lx is the length of x.

9

2. Literature Review

2.2.2.2 TEASER: early and accurate time series classification by
Schäfer and Leser (2020)

The solution proposed by Schäfer and Leser (2020) is similar to the solution proposed
by Mori et al. (2019).

TEASER employs a two-tiered architecture where the first tier produces class prob-
abilities, and the second tier decides whether a selection can be made with. A set
of first tier- and second tier-classifiers are trained for specific lengths of data.

The earliness and accuracy definitions are similar to the ones found in Mori et al.
(2019). The difference is that they are not phrased as "costs" for the purpose of
multi-objective optimization. The accuracy is therefore phrased as the proportion of
correct predictions rather than the proportion of incorrect predictions. The earliness
is phrased as the average proportion of remaining data, rather than the average
proportion of observed data.

These measurements are also supplemented by the harmonic mean:

HM = 2(1 − earliness)accuracy

(1 − earliness) + accuracy
(2.4)

As the time series are of variable lengths, it is noted by the authors that the time
series that are trained on longer segments of time series will have less data available.
For this reason, they choose to use a single class classifier, trained on each class.

2.3 Multi-objective Optimization
There are a few advantages to optimize over the two objectives separately instead
of merging them together into one objective. Firstly, with a single objective, there
would be a need to weight the importance of the availability and accuracy in advance,
which according to Mori et al. (2019) may be difficult in some situations. Moreover,
no consideration needs to be made regarding the scaling of the measures, which
wouldn’t be the case if they were to be optimized together. Finally, the results
from a multi-objective execution give a clearer picture of the availability-accuracy
trade-off without having to run the algorithm several times as would be the case in
the single-objective scenario.3

The results are given in the form of a Pareto-front or a set of non-dominated solu-
tions, i.e. for any solution, no one objective can be improved without a detriment
to the other objective.

3For further information on multi-objective optimization, see Deb and Deb (2014).

10

2. Literature Review

A definition of Pareto-optimality is presented by Marler and Arora (2004) as follows:

"A point, x∗ ∈ X, is Pareto optimal iff there does not exist another
point, x ∈ X, such that F (x) ≤ F (x∗), and Fi(x) < Fi(x∗) for at least
one function"

A Pareto-front is shown in figure 2.2.

Figure 2.2: A Pareto-front, or non-dominated set of solutions, shown by the red
line. Every square represents some selection of parameters and the performance
is evaluated over two dimensions, represented by the coordinate axes. For every
selection of parameters that is part of the Pareto-front, no objective can be improved
without a decrease in the other objective.

The dark green squares are the solutions that are part of the Pareto front. Notice
that for every light square, there is some other green square that is at least just as
good in both objectives.

The hypervolume is a performance-indicator used in multi-objective problems and
coupled to the Pareto-front. For two objectives, the hypervolume is the surface area
given by the non-dominated solutions in the Pareto-front and a reference point. This
is represented by the light blue area in figure 2.2 and is calculated with respect to
some reference point, represented here as the orange diamond.

The hypervolume can be used to visualize the progress made by an algorithm and

11

2. Literature Review

give a hint towards if the algorithm has converged, and therefore if the optimization
can be stopped.

Consider finding some new solution at the location of the dotted red square. Such
a solution would not be dominated by any solution in the Pareto front and would
therefore be added to the optimal set. The increase to the hypervolume measurement
would be equal to the shaded area above and to the right of the new solution. An
increase to the hypervolume means a new non-dominated solution has been found.

12

3
Data set

The data used in this project is a data set provided to us by Zenseact and it was
collected in the months between September 2020 and May of 2021. It has been
collected during several different trips on highways in the vicinity of the city of
Gothenburg.

Section 3.1 provides a description of the data domain. Section 3.2 contains an
exploration of the data and section 3.2.3 provides an analysis of the data for the
purposes of classification. In section 3.3, the split of the data into training and
validation sets is described and motivated.

3.1 Data description

The data set consists of time series of data describing aspects of a driving scenario.
The time series are segmented into sequences of 30 seconds where each sequence
starts with an initialization of hypotheses. This involves initializing one Kalman
Filter for each lane in the map. For each filter, longitudinal position is determined
by the GNSS position while the lateral (in-lane) position is determined by the left
and right lane markers. The vehicle heading is determined by direction of the tangent
along a projected lane segment.

13

3. Data set

Figure 3.1: Initialization of hypotheses based on GNSS. The blue and yellow
ellipses show the uncertainty in the GNSS signal at the time of initialization. One
hypothesis is initialized for each lane and they are numbered according to the bottom
of the image.

There are 553 sequences, totaling around four and a half hours of driving. Each
sequence contains up to 6 hypotheses of varying length. Not all hypotheses are
present for the full 30 seconds as they may have been deactivated early. An early
deactivation of an hypothesis can be due to the hypothesis running out of the map,
which happens when the road parts and there is no map available for the road the
hypothesis is on.

The data can be split into a main feature set and a supplementary feature set as
described in the following sections.

3.1.1 Main feature set
The features in the main feature set are similarity measurements represented by so
called Model Qualities (MQs), which describe how well the models used to process
vehicle sensor measurements correspond to the actual environment, as described by
the HD-map and relative to the position of the hypothesis.The features are part of
the same numerical domain, (−∞, 0], where a lower value means that the sensor
measurement for a given feature matches the HD-map worse, from the perspective
of a given hypothesis. Any missing MQ is represented by the arbitrarily chosen
constant 5.

Following are the six different features which are all collected from the front facing
camera:

• Left primary lane marker geometry

14

3. Data set

• Right primary lane marker geometry

• Left primary lane marker type

• Right primary lane marker type

• Left secondary lane marker geometry

• Right secondary lane marker geometry

Lane marker geometry represents how well the geometry of the lane markers per-
ceived by the car sensors follow the expected geometry as displayed by the HD-map.
"Primary" in this case means the lane markers of the lane the hypothesis is located
in, and "secondary" means the lane markers of the adjacent lanes. Lane marker
type shows how well the perceived type of the primary lane markers conform to the
lane marker types in the HD-map. Lane marker types could be for example solid,
dashed, etc.

This set comes in two versions, filtered and unfiltered MQs. The filtered MQs are
MQs that have been processed with a low-pass filter which smooths the MQs over
time. They share a domain with the regular MQs.

There may be up to six running hypotheses in parallel, each with their own set of
MQs as mentioned above. The Model Qualities are delivered at a frequency of 40Hz.

15

3. Data set

Figure 3.2: Example of perception overlaid on HD-map. Red color is the perceived
lane markers, placed with hypothesis 1 as reference point. The green colored lines
are the exact same as the red lines, except from the perspective of hypothesis 0.
Note the mismatch of the lane types when the perceived lane markers are overlaid
over hypothesis 1.

Figure 3.2 shows the perceived lane markers and their type, overlaid on the HD-map.
The Model Quality geometries are based on the difference between the perceived lane
geometries compared to the HD-map. It can be seen clearly how the type MQs will
have a good value for hypothesis 0 and a poor value for hypothesis 1. In this case,
it can be inferred from the lane marker types that the ego-vehicle occupies the right
lane.

16

3. Data set

Figure 3.3: Example of perception overlaid on HD-map. Red color is the perceived
lane markers, placed with hypothesis 1 as reference point. The green colored lines
are the exact same as the red lines, except from the perspective of hypothesis 0.
Note that the geometry of the perceived lane markers differ significantly from the
HD-map.

Figure 3.3 shows a case where the lane marker types are the same, but the geometry
differs significantly due to that hypothesis 1 is on an off-ramp on a highway. Given
this information, it can be inferred that the ego-vehicle occupies the right lane.

3.1.2 Supplementary feature set
Beyond the main features, the data set also contains several pieces of supplementary
information shown below:

• Coordinate data

• Lane configuration

• Topological information

The coordinate data contains the latitude and longitude for each different hypothesis
as given by the Kalman filters, based on GNSS and INS. Among the supplementary
features, this is the only feature which is specific for each hypothesis.

Lane configuration is supplementary ground truth information about which lane the
car occupies. It has an update frequency of 1Hz, as opposed to 40Hz which the rest

17

3. Data set

of the data set has. This feature is discrete in the integers from 0 to 6.

Topological information is a categorical feature explaining the surrounding road and
includes lane splits or merges and whether there are on- or off-ramps in the area.
This information is included as it affects the initialization of the Kalman filters.
They will not initialize if the surrounding road is not adequate.

3.2 Data preprocessing and analysis
This section presents further information about the main feature set and describes
the decisions that were taken when preparing the data. Our choices for the data
preprocessing such as handling outliers, feature scaling, and missing data will be
discussed in subsections 3.2.1 and 3.2.2.

min mean median std max availability
L. Geo -224.54 -0.63 -0.15 1.55 0 0.99
R. Geo -363.51 -1.60 -0.25 2.95 0 0.99
L. Type -8.58 -3.18 -0.15 3.28 -0.12 0.93
R. Type -8.58 -3.39 -0.15 3.92 -0.12 0.79
L2. Geo -308.59 -4.17 -1.91 3.54 0 0.90
R2. Geo -399.26 -5.49 -7.67 3.84 0 0.46

Table 3.1: Table of metrics for the primary feature set. The minimum, mean,
standard deviation, maximum and proportion of present values are shown for each
feature in the main feature set (Model Qualities).

Table 3.1 shows descriptive statistics of the feature set, including minimum, mean,
median, standard deviation, maximum and availability for each feature.

Figure 3.4: Boxplot showing a box of Q1-Q3, the median value as a green horizontal
line and whiskers reaching at the most 1.5 times the length of the box. Outliers are
presented as circles.

18

3. Data set

3.2.1 Outliers and Scaling
We take outliers to be values less than -10. These values far from the mean may
occur due to variance or it may be due to some anomaly.

A lower bound is placed on the features at -10, since the information given by any
value lower than that is not deemed to add any additional information. This is
because any model quality value that is very low is likely to be due to some error in
the preparation of the data. This choice is also made since some machine learning
models (e.g. linear models) may be affected by outliers more than others, such as
decision tree ensembles.

Table 3.1 shows that outliers are present for the geometrical features.

A common approach for feature scaling is to subtract by the mean and divide by
the variance. The reason for this is that some machine learning algorithms use
the distance between data-points to perform clustering or classification, and if the
scale of the features differ significantly, features with larger values will dominate
the outcome. The MQs differ slightly in their means and variances, but not by
a lot. Therefore, we have chosen to not perform any scaling, normalization, or
standardization on the data.

3.2.2 Missing data
Missing data can be handled, for example, by removing any rows in which some data
is missing, or imputing values to fill in any missing values. Both of these methods
have their drawbacks. Removing missing data will reduce the number of available
data points for training. It also runs the risk of removing data disproportionately if
some scenarios more commonly produce incomplete data. Imputation can be done,
for example, by adding the mean of the feature in any place where the feature is
missing. There are no guarantees that this will work well as any imputation of data
means introducing something that was not present originally.

Several factors can affect the availability of a certain feature. The corresponding
element needs to both be perceived by the sensors and be present in the HD-map.
For example, to have a primary lane marker geometry measurement, it means that a
lane has been perceived by the sensors, this lane has been found to exist in the map,
and a similarity measurement has been computed between the perceived lane and
the lane in the HD-map. If any of these steps are not completed, the measurement
will not exist for that time step.

In table 3.1, the availability for each feature is presented. Primary lane marker
geometries are available in 99% of the data set, but for the right lane marker type
and especially the secondary right lane marker geometry, availability is limited to
79% and 46% respectively.

The problem with removing incomplete data is that our data set contains a lot of
rows with at least some missing data, which means that the size of the training set

19

3. Data set

would be drastically reduced. A lot of valuable data would also be discarded, as
there is no reason to assume that all features are necessary to discern between a
true and false label. Furthermore, in a prediction scenario, the availability of data
will probably reflect the availability in the training data set.

In our case, examples for imputing missing values can be done with the mean, the
median, or the mode of the data. This prevents the loss of data from deleting values,
but the value that is inserted for a given row may not be appropriate. This is because
this imputation method does not take into account the co-variance of features. The
exact methods for imputation will depend on the experiments being done and will
be discussed in more detail in the "Experiments and results" chapter.

3.2.3 Data visualisations
This section presents visualization of the data such as pairwise correlations and
descriptions and distributions of the features split on the target label made with the
aim of better understanding the data set.

Figure 3.5: Momentary MQs for samples coming from correct and false hypotheses
respectively. The distributions are normalized to show density, i.e. the total area
of each of the two distributions sums to 1 (y axis). On the x axis is the MQ-value.
The distributions are presented by a histogram of 50 bins over [-10, 5] and the data
is split into two colors by label.

Figure 3.5 shows the feature distributions and table 3.2 presents the mean and
standard deviation of the MQs when split on the target label. From table 3.2, it
can be noted that lane marker type qualities takes discrete values. This is because

20

3. Data set

Feature - mean(std)
Hypothesis label L1 Geo R1 Geo L1 Type R1 Type L2 Geo R2 Geo
True -0.30(0.59) -0.41(0.88) -0.19(0.58) -0.16(0.50) -3.04(3.20) -4.11(3.24)
False -0.59(1.48) -2.13(3.26) -4.88(2.93) -5.73(3.70) -4.37(3.53) -6.17(3.90)

Table 3.2: Table showing the mean and standard deviation of the data set when
split on the target label, meaning if a given row is produced by a true or false
hypothesis.

there are only a certain number of possible lane marker types, and therefore also
only a certain number of possible marker type combinations.

False hypotheses produce lower MQ averages with higher variance than true hy-
potheses. Since the Model Qualities may contain more or less noise coming from
sensor measurements, inaccurate associations, or inaccurate HD-map, it is of in-
terest to explore if the features can be preprocessed in some way to increase the
performance of a probabilistic classifier.

Given the numbers from table 3.2, averaging MQs may be one way to easier be able
to discern if a row comes from a true or a false hypothesis. Figure 3.7 shows the
distribution of the mean feature values over whole sequences and for true and false
hypotheses respectively. Indeed, the feature distributions for the different labels
seem to be more separable than in 3.5.

Figure 3.6: Pairwise correlation matrix of the features and the target label using
Pearson correlation coefficient. A more blue color means a stronger positive correla-
tion while a more red color means a stronger negative correlation. A value closer to
0 or a lighter color closer to white means no correlation. Any absolute correlation
value below 0.5 is considered more or less weak.

Figure 3.6 confirms what has been seen in the distributions and table 3.2 and tells

21

3. Data set

us that the "lane marker type" MQs have a strong correlation with the target label.

Figure 3.7: Averaged version of the feature set, 50 bins over [-10, 5]. Color by
label. The average is taken as the mean value for each feature over whole sequences.

Figure 3.8: Low-Pass version of the feature set, 50 bins over [-10, 5]. Color by
label.

In Figures 3.7 and 3.8, the difference in distribution can be seen using two different

22

3. Data set

methods for introducing a temporal component.

For a correct hypothesis, the averaged Model Qualities are expected to converge
to better values as time passes and more samples are collected. This is expected
since it is assumed a correct hypothesis will continue to be correct. For an incorrect
hypothesis, the values are expected to converge to poorer values. Good values may
occur in the momentary features for an incorrect hypothesis if there is similarity in
the types or the geometries of the lanes between the incorrect hypothesis and the
correct hypothesis. In these cases the similarity causes the model to be unable to
discriminate between the hypotheses.

Another reason for good values for an incorrect hypothesis is that something has
occurred during the collection or processing of the data. An example of this is the
vision system incorrectly identifying a solid lane marker as a dashed lane marker
due to wear on the road. Problems such as these may occur for only a short period
of time, and such problems with the data can be bridged by averaging the features.

Together with the insights from figure 3.7 and table 3.2, this suggests that a good
idea would be to use a moving average as input for classification, as opposed to
the momentary MQs. The idea is that, over time, a correct hypothesis will have
feature values converging to better values, making it easier to identify as a correct
hypothesis. Using an average is also a means of imputing the data that is missing
in the momentary model qualities.

3.3 Data split

When evaluating the performance of a model it is important that it is tested on
data which it has not been trained on. Therefore, it is customary to split data into
separate training- and validation data sets.

Since a model’s performance will reflect what it has encountered in its training, it
is of interest to let the training data be as varied as possible. The sequences are
therefore evenly split around the city of Gothenburg. In figure 3.9 the data set splits
are shown on a map.

23

3. Data set

(1) Green (2) Blue (3) Red
No. sequences 88 104 361
L1 Geo -0.359 (1.025) -0.655 (1.416) -0.874 (1.751)
R1 Geo -1.72 (2.970) -1.052 (2.436) -1.326 (2.448)
L1 Type -3.352 (3.241) -3.159 (3.231) -2.928 (3.409)
R1 Type -3.959 (4.060) -2.827 (3.698) -2.843 (3.725)
L2 Geo -3.505 (3.454) -4.846 (3.302) -4.999 (3.367)
R2 Geo -5.412 (3.396) -6.095 (3.876) -5.074 (4.481)

Table 3.3: Table showing the number of sequences included in each data set as
well as the mean and standard deviation for each feature.

Figure 3.9: Map showing the three different data sets in the colors red, blue and
green. They have been split into different sets based on the angle from the reference
point marked with yellow and their mean position.

There needs to be multiple sets as training, validation, and testing will be performed.
This split has been chosen to be done geographically so each set covers distinct areas
of Gothenburg.

3.4 Annotation
Creating high-quality data annotation is a tricky topic. One approach is to use
manual annotation of data with agreement. This means that all items in the data
set are shown to someone and each item is assign a class by that person. This can
be done using agreement between multiple people for a higher quality annotation.

Another approach is to use some form of automated annotation. This can be em-
ployed for tasks where some information relating to the ground truth of the data
is available during training, but not during usage of the finished model. This extra

24

3. Data set

information can then be used to create ground truth labels for training the model.

Automated annotation is more scalable than manual annotation but the quality
of the labels will depend on the annotation procedure. For this thesis, there is
no possibility of creating manual annotations as it too laborious. An annotation
procedure has therefore been developed.

The data annotation is done automatically based on the reference model of the
vehicle state. The longitudinal component is not considered since the main goal of
the model is to localize the vehicle at the lane level. A fundamental assumption is
that at any point in time there is at least one hypothesis which is correct.

The annotation procedure requires is a minimum distance to the reference model for
labeling an hypothesis as correct, as well as a window for ambiguity that is used in
the labeling algorithm. Any hypothesis that is further away from the ground truth
than the minimum distance cannot be labeled as correct. In the case where at least
one hypothesis is within the minimum labeling distance, and another hypothesis is
within the window of ambiguity, no hypothesis will be labeled as correct for that
time step.

Multiple hypotheses can be labeled as correct if they both are within the minimum
distance for labelling, and in this case we define these hypotheses as converged. This
labelling is done for every time step (40Hz). In other words, one or more hypotheses
can be labeled as correct if no other hypotheses are close enough for the classification
to be unclear.

The procedure for annotation is as follows:

The pose of the reference vehicle is extracted as geodetic coordinates and the po-
sitions of the hypotheses are converted into a Cartesian frame with origin at the
position of the reference vehicle. For each hypothesis, it’s position in x is the longi-
tudinal offset of an hypothesis with respect to the reference vehicle, and the position
in y is the lateral offset.

The hypothesis with the smallest y is considered the best hypothesis.

Around six percent of the whole data set lacks labels. The missing labels represent
the time steps at which there is ambiguity as to which hypothesis is correct.

Sequences with missing labels are removed from the data set as the labelling for
these sequences are judged to more likely be of lower quality.

25

3. Data set

Figure 3.10: Example annotation. The white shapes show the pose of the possible
hypotheses and the green shape show the pose of the reference vehicle. The arrows
signify lane center line and direction of movement.

In Figure 3.10 there are three active hypotheses (white boxes). Hypothesis 0 is very
close to the reference vehicle, and for this time-step, we would like the annotation
to reflect that this must be the correct hypothesis.

(a) (b)

Figure 3.11: Two annotation scenarios. In the left scenario, ∆y0 << ∆y1 and
hypothesis 0 is annotated as the correct hypothesis. In the right scenario, y0 and y1
are similar, and no annotation is made for that frame.

26

3. Data set

Figure 3.11 shows two annotation scenarios on a straight road. When the reference
vehicle is close to the center, annotation becomes more difficult. That the reference
vehicle is close to the center may be due to driving close to the center line, but also
due to some problem with the reference system or the overlaying of the reference on
top of the HD-map.

Figure 3.12: Example of lane merge leading to a convergence of hypotheses and
ambiguity in annotation. Reference vehicle is drawn behind the hypotheses for
clarity, as longitudinal offset is not considered for annotation purposes.

In cases where hypotheses converge, like during a lane merge as seen in Figure 3.12,
the hypotheses will end up overlapping. If there is no ambiguity in the annotation
process before the merge, there will be one true label before the merge, no true label
during the merge, and two true labels after the merge. As the task is to perform
Lane-Level Localization, an additional hypothesis within a lane does not contribute
with more information. For this reason, whenever an hypothesis converges into the
true hypothesis, that hypothesis is removed from the timestamp of convergence.

The same thresholds that are used for labelling are used for defining convergence.

For ensuring that the annotations and the data are of good quality, the sequences

27

3. Data set

are required to be fully annotated.

28

4
Method

The various aspects of our methodology are presented. This is followed by our defi-
nition of a time series in section 4.2 and a description of our methods for developing
our solution in section 4.3. A description of the evaluation strategy is presented in
4.4.

4.1 Experimental setup
All programming is done in Python and, where nothing else is noted, the library
scikit-learn (Pedregosa et al., 2011) is used for the building and implementation of
the different machine learning models.

To be able to train a supervised machine learning model, ground truth labels must
be present. These ground truth labels will be calculated from a reference model.
The reference model is calculated offline by using data from a set of external sensors
with high precision during data collection, including an OXTS system.1

As the reference model is derived from processed sensor measurements it cannot be
guaranteed to be correct, but it will be more accurate than the online systems.

4.2 Definition of a multivariate time series
Time Series (TS) and Multivariate Time Series (MTS) are defined as follows, based
on Xing et al. (2012) and Mori et al. (2019), but adapted to our purpose:

A time series (TS) is a time-ordered sequence of pairs (timestamp, value) with some
maximum length L.

TS = {(ti, xi), i = 1, ..., L} (4.1)

Where xi is the value of TS at time ti. xi is also referred to as the momentary value
of TS at i.

1Oxford Technical Solutions. An intertial navigation system (INS).

29

4. Method

A multivariate time series (MTS) is a time series in which the values are vectors
such that xi ∈ Rn where n is the number of values of the time series.

MTS = {(ti, xi), i = 1, ..., L} (4.2)

The evaluation of a (multivariate) time series at a certain time step is also defined
as follows: Let MTS|t be the prefix of MTS at t such that

MTS|t = {(ti, xi), ∀ i where ti <= t} (4.3)

4.3 Solution design
The problem is further specified as finding a method for classification of time series
that is early and accurate. Beyond this, the solution should be scalable, meaning
it should work well for more data, longer lengths of time series, more features, and
more hypotheses. It should also be robust to poor data quality and only produce
predictions with a low false positive rate.

Figure 4.1: An overview of the full solution architecture, based on the process in
Mori et al. (2019). MTS|nt is the n:th time series prefix, up to time t. pk is the
predicted true-probability as given by the probabilistic classifier for hypothesis k. A
trigger output of 1 signifies an output of the hypothesis corresponding to the highest
probability in P .

The solution design for this project was based on the solution that was presented in
Mori et al. (2019) and adapted to our specific goals and domain. The full architecture
of the Hypothesis Inference solution is shown in figure 4.1. The input of the model
is a set X of n time series, evaluated at time t. The output of the model is the index
of the hypothesis with the highest probability of being correct.

The solution consists of two steps. First, the multivariate time series data is input
into a probabilistic classifier. This classifier is binary, where the "true" class signifies

30

4. Method

that an hypothesis is correct, and the "false" class signifies that an hypothesis is
incorrect. The probabilistic output is the belief of the classifier that an hypothesis
is part of the "true" class.

A comparison of the probabilistic outputs is what is used to determine the certitude
with which a selection can be made. The outputs are sorted by magnitude and are
used as input to a trigger function whose output determines if a selection should be
made at this time step or if the model needs more data (time) to become more con-
fident in that the highest probable hypothesis, given by the probabilistic classifier,
is correct.

The architecture contains two primary parts: the probabilistic classifier and the
trigger function. The following chapter describes the results in developing these two
parts, as well as the results of the unified solution.

Some limitations for the design of the probabilistic classifier and the trigger functions
follow:

The probabilistic classifier has been chosen to make its first output at time step
40. This corresponds to one second at 40Hz and has been chosen for comparability
between the various methods. It could be set to a different value, but a lower value
increases the likelihood of no data being present up until that point.

As some methods require input data of specific length, a set of evaluation points
(time steps) have been chosen at which the probabilistic classifier evaluates the
sequences. Six evaluation points have been chosen on a logarithmic space between 40
and 1201. These choices have been made partly to facilitate a more fair comparison
for different probabilistic classifiers, but also has the added benefit of making the
algorithm faster in both training and testing.

4.4 Evaluation
The primary scoring metric used is the accuracy which is a very common classi-
fication metric because of its simplicity and interpretation. It corresponds to the
ratio given by taking the sum of true positives and true negatives divided by all
predictions, or in simpler terms, the percentage of correct predictions:

Accuracy = TP + TN

TP + TN + FP + FN
(4.4)

The performance of the genetic algorithm in the multi objective optimization will be
evaluated with the help of the hypervolume with a reference point set to [1.1,1.2].
This point is chosen arbitrarily and is slightly worse than the theoretically worst
possible cost of the two objectives. Since the multi objective optimization will
contain also availability and earliness, these two measures will also be evaluation
metrics in addition to accuracy. Earliness is defined as the average portion of a
sequence which has passed before a prediction is triggered. Availability is a sort of

31

4. Method

discretized earliness measure, in which a prediction will be defined available if it is
triggered during the first 30 seconds of a sequence (before it is finished).

An Achievement Scalarization Function (ASF) will return an optimal solution based
on a vector of weights, in this case the weights are set to [0.2,0.8] for accuracy and
availability, as well as accuracy and earliness. The weights are set arbitrarily but
with the intent that accuracy is more important than availability/earliness. Put
shortly, the reason for favoring accuracy is because the localization output is used
by other systems in which it is more interesting to be correct than to be fast in
prediction.

For evaluation of the final solution, both quantitative and qualitative measures will
be adopted. Interesting cases that will be evaluated include sequences in which
a wrong hypothesis is selected, sequences with a late prediction and sequences in
which the trigger function does not trigger a prediction. The qualitative evaluation
consists of choosing a representative sequence, showing the selected plots of data
and discussing the scenario in relation to the inference method.

32

5
Experiments and results

This chapter explains and motivates the approach by breaking the problem down
into smaller components. The main components of the solution are presented in
sections 5.1 and 5.2. These sections contain intermediary results and evaluations. A
presentation and discussion of the performance of the solution follows in chapter 6.
The results will be presented in a way that highlights the process and will therefore
include parts which are commonly seen included in the method.

5.1 Probabilistic classifier
This section deals with finding a probabilistic classifier for the multivariate time
series data.

Figure 5.1: Solution architecture with the probabilistic classifier highlighted.

We considered using a deep learning approach but chose not to include this as it was
deemed to take a lot of time and energy which could better be directed elsewhere.
We did not believe an LSTM- or CNN-based solution would be significantly better
than simpler models due to the low dimension of the data.

It was realised early that there would be an advantage to use a probabilistic solution
that is not dependent on exact lengths of time series. This would allow for continuous

33

5. Experiments and results

output of belief in hypotheses instead of specifying a set of time steps to be used
for evaluation. This makes the model more reactive as output does not have to wait
until the next evaluation step.

Using models that are not dependent on input size will also make both the training
and the usage of the models simpler to manage. The reason for this is that a
single model can be used for all the time steps instead of training a model for each
evaluation step. This reduces the total complexity of the solution and makes it more
scalable. For our purposes, models that require a fixed input size could be used,
as the time space is capped at 30 seconds (1200 time steps), but for a real-time
processing scenario, the length of driving sequences are not restricted to 30 seconds.
As was noted by Schäfer and Leser (2020), the longer the sequence runs, the less
data will be available for training and for evaluation. This problem is also avoided
by using a model that is not dependent on input size.

There has been a lot of work done in the classification of time series and we wanted
to include some state-of-the-art method for comparison purposes and to see if it
would actually perform better. This is presented in section 5.1.4.

5.1.1 Momentary measurement model qualities
In this section a selection of machine learning algorithms are tested on momentary
data. This is the data that has not been averaged or filtered over time. The
measurement model qualities are computed solely on measurements acquired at
the current time step. The results will be used as a heuristic to which model to be
used for further development. The following set of machine learning classifiers are
compared:

• Gaussian Naive Bayes, NB

• Logistic Regression, LR

• Linear Support Vector Classifier, Linear SVC

• Kernel Support Vector Classifier, Kernel SVC

• Random Forest Classifier, RF

• Gradient Boosting Classifier, GB

Naive Bayes, Logistic Regression and Linear Support Vector Machines are simple,
widely used models which are quite easy to understand. The Kernel SVM is chosen
as a non-linear SVM alternative, using a radial basis function kernel. Ensembles of
decision trees are popular and often well performing for data which is in dense tab-
ular form. Therefore, a Random Forest classifier and a Gradient Boosting classifier
are added to the model comparison.

All above models are trained in their default configurations as presented in scikit-

34

5. Experiments and results

learn. The motive behind not tuning the models is that the default configuration
is deemed good enough at showing how well a model performs on a given data set
while at the same time keeping the complexity of the task down.

The model selection experiment will be run in two distinct scenarios which differs
only in how missing values are treated: In scenario 1, the missing data is imputed
by a constant, 5.0. This is the original form of the data as presented to us. In the
second scenario, the missing values are imputed with their mean value.

To make the comparison more informative, the models will be trained on seven data
sets of different sizes, where the sizes are spread evenly on a logarithmic scale from
500 to 70000. The rows are sampled at random from the training data set but with
a set seed value for reproducibility and consistency. Given the nature of the data
being quite similar between adjacent time steps, we expect the random sampling to
provide us with a good representation of the full data set while keeping the cost of
training time down.

Each probabilistic classifier will be run and evaluated by a 5-fold cross validation
score, i.e. the training data is split into 5 folds and in each iteration the classifier use
one of the folds as validation set while training on the other four folds. By using the
GroupKFold-class in scikit-learn, the folds will be sampled on sequences, hence no
validation set will include samples from a sequence seen in that particular training.

The performance of the models is evaluated on their accuracy score. Also, feature
importances from the Gradient boosting tree ensemble are extracted and presented.

Figure 5.2: Line plot showing the accuracy for different classifiers and amount of
training data. The models in the left figure are trained and tested on momentary
MQs with missing values replaced with the constant 5. The models in the right
figure are trained and tested on momentary MQs with missing values replaced with
the mean value for the given feature in the training set.

Figure 5.2 presents the results from the 5-fold cross validation scoring. The left figure
shows when missing values are replaced with the constant 5. Naive Bayes and the
linear models perform in the 0.96-area of accuracy while the decision tree ensembles
and the non linear SVM reaches an accuracy of around 0.98. The figure to the right

35

5. Experiments and results

Figure 5.3: Bar plot showing feature importances extracted from the trained Gra-
dient Boosting classifier. All values sum up to 1.

presents the results from the same experiment but with missing values are replaced
with the mean for that feature. I.e. the mean value for each and every feature in
the training set is used to replace missing values in the training- and validation sets.
This feature imputation technique clearly increased the performance for the linear
models, but did not significantly change the performance for the other models. As
long as the training size is at least 1000, adding more data to training do not seem
to affect the accuracy scores significantly.

Figure 5.3 presents the feature importances extracted from the fitted Gradient
Boosting classifier. It clearly shows that the marker types are the features which
the model relies on the most for prediction. Note also that R! Geo has a higher
feature importance than L1 Geo. Table 3.1 shows that there is a difference in the
distribution of R1 Geo between the true and false labels.

5.1.2 Averages
This subsection presents experiments in which the time component of the data set
will be considered in training and validation. To decrease the complexity of the
experiments, only the Gradient Boosting classifier will be trained and validated on
the different scenarios. This classifier has been chosen since it performed well in the
previous experiments. Also, being based on decision trees, it is quite robust with
regard to the existence of missing values.

The choice of constructing input data to the classifier which encompass temporal
information is because the momentary measurements contain more or less noise.
Also, a correct hypothesis should over time converge towards having better averages
than a false hypothesis, given that the situation would be one that could theoretically
be distinguished by the sensor measurements, i.e. lane marker geometries or lane
marker types that differs between a correct and a false hypothesis. Therefore, for

36

5. Experiments and results

the following experiments, the models will predict on the current average for each
feature and time step.

A model which predicts on the current average will probably perform differently if
it is trained on momentary values as opposed to some kind of averaged values. This
will be evaluated below. Another aim of this experiment is to note if the performance
increases with a passed number of time steps as the model predicts on the current
average for each feature.

The first experiment will consist of a 5-fold cross validation where a Gradient Boost-
ing classifiers will be trained in different ways, either with momentary values, moving
averaged values (window sizes of 10, 100, 200 or 400 time steps), or with a sequence
average (one sample per sequence and hypothesis, containing the mean values of the
features).

The classifiers trained on momentary values and moving averaged values will be
trained on 10000 samples while the model trained on sequence averages trains on
813 samples since this is the number of time series in the training set. The models
predict on each time step and the accuracy measurements for different time steps
and classifiers are presented in figure 5.4. The figure legend describes on which data
the models have been trained on. It is clear that the accuracy measurements are
improving with the number of passed time steps for each model. Models trained on
a rolling average of size 200-400 seem to achieve the best accuracy.

Figure 5.4: Line plot showing the 5-fold cross validation accuracy for different
time steps and differently trained GB classifiers, averaged over ten runs. The legend
describes what each GB classifier has been trained on. Numbers in parentheses
describe the size of the moving window, over which it averages.

37

5. Experiments and results

5.1.3 Constructed feature set
Classification on average qualities can be extended to include more features than
just the averages of the original columns. In this section, we construct a feature set
based on our knowledge of the domain.

The type information for the lane markers have been shown to be of high importance
for classification. From a practical perspective, this seems reasonable as mismatched
geometry may be due to some small miss-alignments or imperfect precision in vision,
but mismatched marker types should be a strong indicator that the hypothesis
is incorrect. Lane marker type information has been incorporated in localization
systems by Cui et al. (2016) and Lee et al. (2021).

The constructed feature set will contain the following information:

• Mean of MQs

• Standard deviation of MQs

• Harmonic mean of average type MQs

• Availability of type qualities

Mean of MQs is calculated by taking the mean of each feature for a sequence, and
averaging over all features (i.e. a mean of means). This will provide condensed
information about the tendency for good MQs in that sequence. As the MQs are
measurements of similarity between the perceived lanes and the HD-map, a correct
hypothesis is expected to have good MQs on average.

Standard deviation of MQs is calculated by taking the standard deviation of each
feature for a sequence, and averaging over all features. This will give an indication
of the tendency for MQs to fluctuate. This may be relevant as MQs that have a
high variance may be due to sometimes having lane data that matches the correct
hypothesis, and sometimes not. A correct hypothesis would be expected to always
have matching lane data and therefore a low standard deviation.

Harmonic mean of average type qualities is derived by averaging the left type data
and the right type data over the full sequences. The feature is the harmonic mean
between these average values. We expect the lane marker type information to be
powerful when combined, as a single lane marker type may be correct for an in-
correct hypothesis. This approach is a way to combine the type MQs into a single
measurement.

type_avg = Sx
l + Sx

r

2|x|
(5.1)

Where Sx
l is the sum of left marker type MQs and Sx

r is the sum of right marker
type MQs.

Availability of type qualities is the portion of rows for which type data is available.

38

5. Experiments and results

It is calculated by

type_ava(x) = Nx
l + Nx

r

2|x|
(5.2)

Where x is a sequence, Nx
l is the number of rows in x with left marker type data

present, Nx
r is the number of rows in x with right marker type data present, and |x|

is the size of x.

This may be relevant as average type MQs can be good even though the actual types
does not match. This can happen if one side has a good match, and the other side
has no type data present. In this case the average type MQs feature would be close
to 0, but the availability would be around 0.5.

It is worth keeping in mind that good lane marker type qualities does not necessarily
mean that the hypothesis is correct, as this only means that the lane markers adja-
cent to the hypothesis have the same types as the lane markers adjacent to the true
hypothesis. An example of this is when the road contains more than three lanes and
the hypothesis occupies one of the two center lanes. This means that the true hy-
pothesis will share dashed lane marker types with the false hypothesis that occupies
the other center lane. In this situation there is ambiguity between the hypotheses,
and this will have to be resolved by either incorporating some other information,
such as geometrical information, or by waiting until the type ambiguity is resolved.

39

5. Experiments and results

Figure 5.5: Correlation matrix of the feature set as described. A high value means
that the features have a positive correlation while a low value means that they have
a negative correlation.

The above mentioned constructed feature set is extracted and then used as input
to a Gradient Boosting Classifier on the full length sequences (1201 time steps).
Testing is done on different lengths of time series prefixes and is evaluated using
accuracy score. Validation is performed by 5-fold cross validation using the Green
data set. Figure 5.6 presents the cross validation results. The constructed feature set
performs well on the training data set. The performance tends to increase as more
information is gathered, which confirms our expectation of an earliness-accuracy
trade-off.

40

5. Experiments and results

Figure 5.6: Results by training on constructed feature set using a Gradient Boost-
ing classifier with default parameters. Evaluation done on time-series prefix lengths
between [40, 1201].

Figure 5.7: Feature importances for the using the Gradient Boosting classifier. All
importance-values sum to 1.

Almost all importance is placed on the feature that is derived from the type data.
This is in line with what have been seen in previous experiments, that the type data
is highly important. Some relevance is also placed on Mean of MQs, which shows
that the general idea of having low model qualities is associated with a correct
hypothesis seems to hold.

The variance of MQs and the availability of type qualities does not influence the
classification significantly in this model. Some performance increase would perhaps

41

5. Experiments and results

be attainable by combining the availability feature with the type averages feature
with the idea that a good type average that is based on few samples will be less
reliable than a good type average that is based on more samples. On the other hand,
the accuracy is very close to 1.0 so in order to document a significant improvement,
a more difficult testing set would be necessary.

5.1.4 State-of-the-art methods and candidate selection

Canonical Interval Forest (CIF) will be evaluated as a first tier classifier in the
following way: Separate CIF-classifiers will be trained on time series consisting of the
first 40,80,160,320,640 and 1200 time steps respectively in each time series. Missing
values will be replaced with the constant 5 as in earlier experiments. A 5-fold cross
validation-scheme is used on the training set, and the model will be compared to a
Gradient Boosting Classifier trained on moving averages with a window size of 200
and predicting on current average for each time step, as well as a Gradient Boosting
Classifier trained and tested on the constructed feature set.

The results from the model comparison are presented in figure 5.8. All models
seem to perform similarly regarding the accuracy, with the two Gradient Boosting
Classifiers having slightly better accuracy than the CIF, reaching a fair bit over 0.99.

Figure 5.8: Line plot showing the 5-fold cross validation accuracy for CIF-classifiers
trained on six different time series sizes compared to a GB classifiers trained on a
moving average of 200 and predicting on current average as well as a GB classifier
trained and tested on a constructed feature set. The graph shows the accuracy for
a given model at a given time step.

42

5. Experiments and results

5.2 Trigger function
This section deals with the training and selection of different trigger functions. The
trigger function is what decides if a prediction will be made for the current time
step, or if the model waits for more data before considering outputing a prediction.
Figure 5.9 shows in which part of the complete solution the trigger function is. As
input, the trigger function takes a vector of probabilities given by the probabilistic
classifier, and based on these probabilities it either decides to make a prediction or
to wait for more data. The probabilistic classifier is a Gradient Boosting Classifier
trained on a moving average of 200 time steps over the MQs. The optimization of
the trigger function parameters will be done with regards to two objectives, making
it a multi-objective optimization problem which will be approached with the genetic
algorithm NSGA2.

Figure 5.9: Solution architecture highlighting the trigger function.

5.2.1 Multi objective optimization
Two different sets of objectives will be evaluated. As a baseline, the earliness and
availability objectives together with a trigger function proposed by Mori et al. (2019)
will be optimized. In the other set of objectives, instead of earliness, a cost func-
tion for availability will be used. The motivation behind optimizing on availability
instead of earliness is that for our purposes the availability of a prediction is more
important than the earliness of a prediction. In cases where no prediction can be
made with certitude, the model should not be pushed to predict by an earliness
(time) component. Two different trigger functions will be evaluated for this second
set of objectives.

5.2.1.1 Objectives

The earliness- and accuracy objectives are explained in 2. The cost functions for
availability is shown in equation 5.3.

43

5. Experiments and results

Cav(X, Trγ) = 1
|X|

∑
x∈X

ι(∄ŷx) (5.3)

where X is the set of sequences, ŷx is the prediction made for sequence x, i.e. the
hypothesis with highest posterior probability at time step t∗

x and ι is a Boolean func-
tion which takes a value of 1 if the condition is true and 0 otherwise. I.e. ι returns
a 1 if no prediction is made for x. Shortly put, the cost function for availability re-
turns the fraction of times when no prediction is made. The explained cost function
regarding availability is not that different from the earliness cost function given our
scenario, as the sequences are 30 seconds long. I.e. the availability cost is sort of
a discretized earliness cost which only outputs a positive value if no prediction has
been made during the sequence, while the earliness cost is more continuous in that
it returns a growing value from the first time step. As a recap and comparison, the
earliness cost function is presented in equation 5.4.

Cea(X, Trγ) = 1
|X|

∑
x∈X

t∗
x

Lx

(5.4)

The first optimization problem is formulated by the minimization of the cost func-
tions earliness and accuracy as in equation 5.5, while the second optimization prob-
lem is presented by equation 5.6.

min
γ

(Cea(X, Trγ), Cac(X, Trγ)) (5.5)

min
γ

(Cav(X, Trγ), Cac(X, Trγ)) (5.6)

5.2.1.2 Optimization algorithm

As in Mori et al. (2019), the algorithm that is used is the NSGA2 algorithm. It
is used because of its popularity in multi-objective optimization scenarios. The
algorithm has been implemented in python using the pymoo package. Except for
a parameter change in population size to 8 and termination step of 16, the default
parameters are used. The mentioned adjustments to the default parameters has
been made to make the algorithm run faster.

The performance of the algorithm is evaluated by use of the hypervolume with
reference point [1.1,1.2]. An achievement scalarization function will be used in the
selection of one of the solutions from the non dominated solution sets.

44

5. Experiments and results

The training of the classifier, optimization of the trigger function and testing of the
complete model will be done three times, in a rotating manner on the data sets.
This is done to be able to test the model on all three different data sets, but still
without leaking information from training and optimization to testing. Table 5.1
shows these details. The data sets are presented as colors and can be visualized
geographically in figure 5.10. To explain it more in detail, a given classifier will first
be trained on the training data set. Then it will be applied to the optimization-data
set, in which it will output probabilities for each time step and hypothesis. These
probabilities are used in the optimization of the multi objective problem. Lastly,
the full solution with the optimized parameters is applied on the testing data set.
This is one rotation. The results from the three rotations will be aggregated and
presented as a single result for each trigger function.

Figure 5.10: Recap of the geographic location of the different data sets. As can
be seen, the red data set is largest, with the green and blue data sets being around
a third to a half as large as the red.

Data sets
Case Train Optimize Test
1 Green Blue Red
2 Blue Red Green
3 Red Green Blue

Table 5.1: Table presenting how the different data sets are used in each of the
three experiments. Train means the training of the probabilistic classifier, Optimize
is the optimization of the trigger function parameters and Test is the independent
data set on which the whole solution is applied.

5.2.1.3 Trigger functions

The following trigger functions will be evaluated:

Tr1
γγγ(p, t) =

0, if γ1p
′ + γ2(p′ − p′′) + γ3

t
T

≤ 0
1, otherwise

(5.7)

45

5. Experiments and results

Tr2
γγγ(p) =

0, if γ1p
′ + γ2(p′ − p′′) ≤ 0

1, otherwise
(5.8)

Tr3
γγγ(p) =

0, if γ1p
′ + γ2(p′ − p′′) + γ3

p′

p′′ + γ4 ≤ 0
1, otherwise

(5.9)

where p’ and p” are the highest and next highest probability given by the proba-
bilistic classifier, γ is the vector of learned parameters, t is the time step for the
current prediction and T is the length of the sequence (1200).

The first trigger function, Tr1, is proposed by Mori et al. (2019) and is being used
with the objectives accuracy and earliness. The second and third trigger functions
are based on the optimization of the objectives accuracy and availability. Tr2 is a
quite simple trigger function with only two parameters, where only the highest prob-
ability and the difference between the highest and the second highest probabilities
are considered. Tr2 is the same trigger function proposed by Mori et al. (2019) but
without the time fraction term. The third trigger function, Tr3, is like the Tr2 but
also includes a ratio of the highest and second highest probabilities as well as a free
parameter. This parameter exists to provide a variable threshold for the trade-off
between the other terms.

5.2.1.4 Trigger function parameter optimization

In this subsection, the results from the optimization of the multi objective problem
will be presented.

5.2.1.4.1 Tr1 The performance of the genetic algorithm for Tr1 as well as the non
dominated solution sets for the three data sets are presented in figure 5.11. It is clear
by looking at the hypervolume graphs that all optimizations converged more or less.
A clear pareto front can be seen for the first data set (upper right graph). The red
cross shows which solution is chosen by the achievement scalarization function when
using the weights (0.2,0.8) for earliness and accuracy respectively. The optimization
data sets used can again be seen in table 5.1.

46

5. Experiments and results

Figure 5.11: The figure shows results from the optimizations on the three different
optimization data sets when using Tr1. The left column shows the hypervolume.
The right column shows the non dominated solution sets, with the addition of the
nadir and ideal points, as well as a red X showing which solutions was chosen by the
achievement scalarization function when using the weights (0.2, 0.8). The x-axis for
the convergence-graphs on the left shows the number of function evaluations made
by the algorithm. For the graphs on the right, the x-axis shows the earliness cost
and the y-axis presents the accuracy cost.

Table 5.2 shows the learned gamma parameters in the optimization of Tr1 with
regards to accuracy and earliness.

Learned parameters
Optimization set γ1 γ2 γ3
1 -0.04765224 0.77984266 -0.07144765
2 -0.09821839 0.82967275 -0.94366265
3 -0.07649895 0.71893477 -0.09503177

Table 5.2: The learned parameters by optimizing on three different data sets for
Tr1

5.2.1.4.2 Tr2 The performance of the genetic algorithm for Tr2 as well as the
non dominated solution sets for the three data sets are presented in figure 5.12. Also

47

5. Experiments and results

these optimizations converged more or less. Note that the genetic algorithm found
an optimal solution from the start in the third case. Also note that the x-axis for
the graphs showing the pareto fronts now show availability cost instead of earliness
cost.

Figure 5.12: The figure shows results from the optimizations on the three different
optimization data sets when using Tr2. The left column shows the hypervolume.
The right column shows the non dominated solution sets, with the addition of the
nadir and ideal points, as well as a red X showing which solutions was chosen by the
achievement scalarization function when using the weights (0.2, 0.8). The x-axis for
the convergence-graphs on the left shows the number of function evaluations made
by the algorithm. For the graphs on the right, the x-axis shows the earliness cost
and the y-axis presents the accuracy cost.

Table 5.3 shows the learned gamma parameters in the optimization of Tr2 with
regards to accuracy and availability. The learned parameters leads to a trigger
function which favors a large difference between the highest and second highest
probability to approve a prediction.

48

5. Experiments and results

Learned parameters
Optimization set γ1 γ2
1 -0.55631805 0.66314203
2 -0.5910955 0.75623487
3 -0.41022409 0.99736572

Table 5.3: Table showing the learned gamma parameters from the optimization on
the three different data sets for Tr2.

5.2.1.4.3 Tr3 The performance of the genetic algorithm for Tr3 as well as the
non dominated solution sets for the three data sets are presented in figure 5.13. The
first two optimizations converged more or less, but the last one may have needed a
few more evaluations in the form of larger population size or number of generations.

Figure 5.13: The figure shows results from the optimizations on the three different
optimization data sets when using Tr3. The left column shows the hypervolume.
The right column shows the non dominated solution sets, with the addition of the
nadir and ideal points, as well as a red X showing which solutions was chosen by the
achievement scalarization function when using the weights (0.2, 0.8). The x-axis for
the convergence-graphs on the left shows the number of function evaluations made
by the algorithm. For the graphs on the right, the x-axis shows the earliness cost
and the y-axis presents the accuracy cost.

49

5. Experiments and results

Table 5.4 shows the learned gamma parameters in the optimization of Tr3 with
regards to accuracy and availability.

Learned parameters
Optimization set γ1 γ2 γ3 γ4
1 -0.53672518 0.762149 0.1410882 0.33220885
2 -0.83180287 0.67649847 0.12448933 0.43641496
3 -0.04731121 0.58173865 0.22345755 -0.24882616

Table 5.4: Table showing the learned gamma parameters from the optimization on
the three different data sets for Tr3.

5.2.2 Testing of trigger functions

The trigger functions are compared as follows: Given that the trigger functions are
optimized in three scenarios, with different training and optimization data sets as
given by table 5.1, the testing will also be split in the three data sets, so that no
information leakage is happening from training and optimization to testing. The
testing will be done with the optimized parameters presented in tables 5.2,5.3 and
5.4, and the results from the three different test runs are aggregated.

The average accuracy, earliness and availability for each trigger function are pre-
sented in figure 5.14. The earliness, as presented here, is calculated as the average
number of seconds passed before a prediction is made. Accuracy is the portion of
correctly predicted sequences, and availability is shown in the legend and describes
the fraction of sequences that got a prediction (within 30 seconds).

Accuracy and earliness are only calculated over the sequences where a prediction
is made. Figure 5.14 shows that the Tr2 achieved the highest accuracy, but also a
somewhat higher time to prediction. It is worth noting that Tr1 which is optimized
on earliness and not availability still results in a perfect availability score.

50

5. Experiments and results

Figure 5.14: Scatter plot showing the performance of the three trigger functions
with their optimized parameters on the testing data. The x-axis describes the frac-
tion of correct predictions, the y-axis shows the average waiting time to prediction,
in terms of the fraction of 30 seconds, and the availability of a prediction is presented
in the legend together with the tested trigger function.

5.2.2.1 Highlighted cases

We investigate the driving scenarios for which the solution produces an incorrect
classification, as well as the driving scenarios in which the solution is not immediately
able to produce a classification. The trigger function used for all further result
analysis is Tr2, if nothing else is implied.

5.2.2.1.1 Incorrect classifications Two failed predictions were made by the
solution using Tr2. Figure 5.15 shows one failure case. It presents the Model Qual-
ities up to the point of prediction. The left graph shows the MQs for the correct
hypothesis, while the right graph shows the MQs for the selected, incorrect, hy-
pothesis. Missing values are represented with the constant 1 to make the graphs
more readable. Note the lack of one of the Model Qualities types (R1 Type) for the
correct hypothesis for most of the sequence up until prediction. Figure 5.16 shows
the averaged MQs up until each time step, which is what is used as input to the
probabilistic classifier.

51

5. Experiments and results

Figure 5.15: Model Qualities for the correct hypothesis to the left and the incorrect
but selected hypothesis to the right. The y-axes shows the MQ values and the x-axis
represent the time steps. The black vertical line represents the time step at which
the wrong hypothesis was selected.

Figure 5.16: Averaged Model Qualities for the correct hypothesis to the left and
the incorrect but selected hypothesis to the right. The y-axes shows the averaged
MQ values and the x-axis represent the time steps. The black vertical line represents
the time step at which the wrong hypothesis was selected.

It is worth noting that the correct hypothesis produces a short amount of bad R1
Type qualities after around 40 time steps, figure 5.15. Given the strategy of using
the current average quality as input to the model, this results in bad R1 Type
qualities for every time step after this, which can be seen in figure 5.16.

5.2.2.1.2 Late prediction In 70 out of 553 sequences in the test sets, the trigger
function did not trigger the first time, and a prediction was made later in the
sequences. For these late predictions, the average time to prediction was 8.1 seconds.
One example of a late prediction is shown in figures 5.17 and 5.18, where figure 5.17
shows the momentary MQs for the two hypotheses with the highest probability
from the probabilistic classifier, with the left column being the correctly selected
hypothesis and the right column showing the second most probable hypothesis, as
given by the probabilistic classifier. Figure 5.18 shows the averaged MQs up until
each time step for the same two hypotheses. The second most probable hypothesis

52

5. Experiments and results

have good MQ type values up until time step 130. A decline in R1 type (red line) is
clearly seen in figure 5.18 up until a correct prediction was made at time step 199.
The probabilities p’ and p”, the highest and second highest probabilities outputed
by the probabilistic classifier, for the time steps up until prediction are shown in
figure 5.19. It clearly shows that the belief in the second most probable hypothesis,
as given by the probabilistic classifier, decreases during the last 80 time steps before
the trigger function triggers a prediction to be made.

Figure 5.17: Model Qualities for the correct (and highest probable) hypothesis to
the left and the second most probable hypothesis to the right. The y-axes shows the
MQ values and the x-axis represent the time steps. The black vertical line represents
the time step at which the wrong hypothesis was selected.

Figure 5.18: Averaged Model Qualities for the correct (and highest probable) hy-
pothesis to the left and the second most probable hypothesis to the right. The y-axes
shows the averaged MQ values and the x-axis represent the time steps. The black
vertical line represents the time step at which the wrong hypothesis was selected.

53

5. Experiments and results

Figure 5.19: The two highest probabilities from the probabilistic classifier, p’
and p” respectively, for the time steps before prediction. The black vertical line
represents the time step at which a prediction was triggered.

5.2.2.1.3 No prediction 5 out of 553 sequences did not get a classification, i.e.
the trigger function never triggered in these sequences. Figure 5.20 shows the top
two probabilities, p’ and p”, in one of these cases. The blue line represent the prob-
abilities for the correct hypothesis while the orange line represent the probabilities
for an incorrect hypothesis.

Figure 5.20: The two highest probabilities from the probabilistic classifier, p’
and p” respectively, for a sequence in which the trigger function never triggered a
prediction.

Figure 5.21 shows the top two probabilities for another sequence in which no predic-
tion was made. Note that no prediction is triggered even if the probabilistic classifier
is confident in the correct hypothesis and the difference between the correct and in-
correct hypothesis is more than 0.6 in the end.

54

5. Experiments and results

Figure 5.21: The two highest probabilities from the probabilistic classifier, p’
and p” respectively, for a sequence in which the trigger function never triggered a
prediction.

In figure 5.21 we see a case in which no prediction is made for the entire sequence.
The belief in hypothesis 1 starts to decrease from around 700 time steps in, but no
prediction is made for the remaining 500 time steps even though the probability of
1 being true drops to below 0.4. For this sequence, the type MQs starts to decrease
at around time step 700.

This is a consequence of the heavy preference that was put on accuracy over avail-
ability. Using a moving window average instead of including the full time series
prefix would mean that the features would be more reactive to a change in the MQs.
This would in turn lead to a quicker and more severe change in the probabilities,
and a prediction may have been possible before the end of the sequence.

55

5. Experiments and results

56

6
Discussion and Conclusion

This chapter contains a discussion of the results and the project as a whole in
section 6.1, and our main conclusions are summarised in section 6.3. A number of
suggestions for future work are also provided.

6.1 Results discussion
As a solution to the hypothesis-inference localization problem, a two-tiered approach
including a supervised machine learning classifier and an optimized trigger function
has been shown to perform well. The results from the two parts of the hypothesis-
inference solution will be discussed in the following sections.

6.1.1 Data
One main finding is that the data that was used is limiting. One reason for this is
that many of the sequences cannot be annotated using our procedure of automated
annotation which means that they are discarded. This is problematic as it cannot
be assumed that this removal will not shift the distribution of the data set.

For example, lane merges may lead to ambiguity in annotation as the vehicles get
close to each other, and the entire sequence may end up being discarded. In this case,
the lane merge scenario type may be entirely removed, or at least underrepresented,
in the data set.

The requirement for sequences to be fully annotated was put in place to ensure that
only sequences with a clear answer as to which hypothesis is true was used. As we
have seen, this may lead to imbalance of the data set or removal of problematic
sequences which we would expect an online solution to able to handle.

The data set also seems to contain insufficient features for determining the true
hypothesis with certitude in certain scenarios. As lane geometries tend to be similar
due to the parallel lanes, there is a reliance on lane types. This leads to an inability
to predict the correct hypothesis in cases with similar type data.

The data set that is being used has been processed in several steps and is reliant on
the correctness of the map, the perception system for the lane edges, the algorithm

57

6. Discussion and Conclusion

for computing the MQs, and the reference model. Errors can be introduced in any
of these steps.

6.1.2 Probabilistic classifier
Several different machine learning classifiers have been compared, such as Naive
Bayes, Logistic Regression and Random Forest classifiers. It was found that they
all performed similarly well in the binary classification task, deciding if a sample
belonged to a true or false hypothesis.

The performance did not seem to differ significantly between the same model trained
and tested on differently sized rolling window averages. The similarity in perfor-
mance may be due to the fact that the data is low-dimensional, and does not con-
tain any complex synergies that a more advanced classifier would be able to capture.
This is further supported by the "feature importances" extracted from the proba-
bilistic classifier which clearly shows that the lane types are the strongest indicators.
It is also confirmed in the constructed feature set as presented in section 5.6, where
the most relevant factor in the classification is the combination of the lane types. A
classifier using this simple constructed feature set manages to achieve a performance
similar to that of the state-of-the-art CIF-classifier.

However, since the CIF creates many different features from the input data, it
requires some strategy for handling the missing data. Imputing with a constant (as
in the case of the decision tree ensembles) or other methods will affect the different
calculated measures. A CIF would likely work better if used with more dense input
data, as opposed to the Model Quality data set, which by nature contains features
that are sparse, such as the secondary lane markers.

6.1.3 Trigger function
The results from the comparison of the different trigger functions are similar, and
the performance is mostly good. We suspect that this is due to the limitations in
the data. The original data set contained many driving sequences that had to be
removed due to being short, and the automated annotation procedure did in many
cases not succeed at annotating full sequences. We elected to only keep the sequences
that were of full length and contained annotations for the full sequence. This may
have led to a heavily refined data set that contains driving sequences that are easily
classified. On the other hand, this choice was motivated by the bad quality data
which was found in sequences lacking some of the labelling.

Although the convergence of the optimization of all different trigger function pa-
rameters cannot be guaranteed, and some of the optimization runs may have done
well with a few more function evaluations, we think that the majority of optimiza-
tion runs would not create better solution sets by letting the genetic algorithm run
for longer. Tr2, the simple trigger function optimized on availability and accuracy
seems to give the best accuracy while still keeping the availability high and earliness
quite low. An interesting thing to note is that Tr1, which was not optimized on

58

6. Discussion and Conclusion

availability, still gets a full availability in the test. Overall all three trigger functions
performed quite well and it is difficult to say with certainty that one is much better
than another.

6.1.4 Hypothesis-inference
When evaluating specific cases in the hypothesis-inference with Tr2, some cases exist
where the system makes a correct prediction by waiting for a better information state
before making a decision. Finding these cases in which an insufficient information
state is identified, a rejection is performed, and later a correct classification is made,
tells us that the application of these techniques for solving the lane-level localization
problem is a sound approach.

Some sequences were predicted very late (or not at all) even though the information
state seemed to improve and be sufficient for classification. For this project, we
elected to heavily prioritize accuracy over earliness, which leads to this inertia in
the model. For a real implementation of this architecture for real-time localization,
this will need to be adapted.

One method is to use a windowed average instead of an average over the entire time-
series prefix to improve reactivity. This only become more important as sequences
get longer than the 30 second sequences that were used for this study. In essence,
the choice of how the input data to the model has been smoothed over time will
probably be dependent on a trade off between accuracy and reactivity, where less
smoothed data will lead to a model that will be able to be more reactive to changes,
but at the same time may be too nervous in its prediction, risking a higher false
positive rate and therefore a lower accuracy. On the other hand, in scenarios where
the MQs in the initial part of a sequence are equally good for several hypotheses and
therefore not enough for the probabilistic classifier to differentiate between a correct
and incorrect hypothesis, a more reactive probabilistic classifier may be needed to
quickly identify the correct from the incorrect hypothesis when their MQs start to
diverge.

This study has been made on quite strongly filtered data. In this scenario the use
of early time series classification techniques seem to work well for the localization
of autonomous vehicles. The choice of probabilistic classifier and trigger function
does not seem to make a big difference to the performance of the model. A natural
next step to this study would be to investigate how this method of hypothesis
inference would perform on more up-to-date, less filtered and more general data.
Furthermore, since this classification procedure is highly dependent on lane type
data, the incorporation of other meaningful features would be something to consider
to increase the robustness of the probabilistic classifier.

A robust model can handle a wide set of driving scenarios. If the training data is
over-represented by straight highway driving, it may end up performing well in these
scenarios, but less well in more uncommon scenarios, such as in the presence of ramps
or intersections. This tells us that it is important to consider the balance of the data

59

6. Discussion and Conclusion

set. This may be done by categorizing driving scenarios and using a balanced and
varied set of sequences. Examples of categories can include the presence of on- and
off-ramps, lane merges, number of lanes, etc.

6.2 Limitations and scope
Given the relatively short time frame of 20 weeks for the completion of the project,
it has been approached with a proof-of-concept mindset, where simplifications have
been made in several parts of the research, development and testing to be able to
reach a complete working solution:

• Machine learning classifiers have been trained with default parameters.

• The data set that is being used was collected between September of 2020 and
May of 2021.

• Only fully annotated sequences are used.

• No deep learning approaches has been evaluated since we believe that working
with deep learning would have taken a lot of time that could be directed
elsewhere.

6.3 Conclusion
We conclude that early time series classification techniques are promising for the
purpose of lane-level localization of autonomous vehicles. A well performing solu-
tion was found using a Gradient Boosting classifier together with a trigger function
with parameters optimized on accuracy and availability. This solution achieved an
accuracy of 99,5% as well as an availability of prediction of 99%. The solution is
trained and tested on filtered data which means that real world performance may
differ somewhat.

Different shapes of the linear inequality trigger, as well as the probabilistic classifier,
show similar results which tells us that the data is the limiting factor. Our conclusion
is that the low dimensionality of the data and the heavy influence of lane marker
types means that more complex models show no benefit over simpler models. The
majority of driving scenarios are easily classified, but for some types of scenarios we
have identified that our proposed solution is insufficient. Due to the reliance on lane
type data, these scenarios are mostly related to missing or similar lane type data.

60

Bibliography

Bagnall, A., Lines, J., Bostrom, A., Large, J., and Keogh, E. (2017). The great
time series classification bake off: a review and experimental evaluation of recent
algorithmic advances. Data Mining and Knowledge Discovery, 31(3).

Cui, D., Xue, J., and Zheng, N. (2016). Real-Time Global Localization of Robotic
Cars in Lane Level via Lane Marking Detection and Shape Registration. IEEE
Transactions on Intelligent Transportation Systems, 17(4).

Deb, K. and Deb, K. (2014). Multi-objective Optimization. In Search Methodologies,
pages 403–449. Springer US, Boston, MA.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation, 6(2):182–197.

Dempster, A., Petitjean, F., and Webb, G. I. (2019). ROCKET: Exceptionally fast
and accurate time series classification using random convolutional kernels.

Faouzi, J. and Janati, H. (2020). pyts: A python package for time series classifica-
tion. Journal of Machine Learning Research, 21(46):1–6.

Fulcher, B. D. and Jones, N. S. (2017). hctsa: A Computational Framework for
Automated Time-Series Phenotyping Using Massive Feature Extraction. Cell
Systems, 5(5).

Ghalwash, M. F., Ramljak, D., and Obradović, Z. (2012). Early classification of
multivariate time series using a hybrid HMM/SVM model. In Proceedings - 2012
IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2012.

Hatami, N. and Chira, C. (2013). Classifiers with a reject option for early time-series
classification. In Proceedings of the 2013 IEEE Symposium on Computational
Intelligence and Ensemble Learning, CIEL 2013 - 2013 IEEE Symposium Series
on Computational Intelligence, SSCI 2013.

Huang, M. X. and Li, Y. (2021). Tapnet: The design, training, implementation, and
applications of a multi-task learning cnn for off-screen mobile input. In Conference
on Human Factors in Computing Systems - Proceedings.

Jensfelt, P. and Kristensen, S. (2001). Active global localization for a mobile robot

61

Bibliography

using multiple hypothesis tracking. IEEE Transactions on Robotics and Automa-
tion, 17(5):748–760.

Jo, K., Jo, Y., Suhr, J. K., Jung, H. G., Sunwoo, M., Li, F., Bonnifait, P., Ibanez-
guzman, J., Ibañez-guzmán, J., Li, F., Bonnifait, P., Using, J. I.-g., Definition,
H., Gnss, E., Li, F., Bonnifait, P., Ibanez-guzman, J., Cardenas, I. L., Du, J.,
and Barth, M. J. (2017). Using High Definition Maps to Estimate GNSS Po-
sitioning Uncertainty To cite this version : HAL Id : hal-01569092 Using High
Definition Maps to Estimate GNSS Positioning Uncertainty. IEEE Transactions
on Intelligent Transportation Systems, 9(6).

Joubert, N., Reid, T. G. R., and Noble, F. (2020). Developments in Modern GNSS
and Its Impact on Autonomous Vehicle Architectures. In 2020 IEEE Intelligent
Vehicles Symposium (IV), pages 2029–2036. IEEE.

Laconte, J., Kasmi, A., Aufrère, R., Vaidis, M., and Chapuis, R. (2022). A survey
of localization methods for autonomous vehicles in highway scenarios.

Lauxmann, R. (2015). Sense-Plan-Act – the role of chassis systems.

Lee, S., Choi, J., and Seo, S. W. (2021). Ego-lane index-aware vehicular localisation
using the DeepRoad Network for urban environments. IET Intelligent Transport
Systems, 15(3).

Li, F., Bonnifait, P., and Ibanez-Guzman, J. (2018). Estimating localization un-
certainty using multi-hypothesis map-matching on high-definition road maps. In
IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, vol-
ume 2018-March.

Lubba, C. H., Sethi, S. S., Knaute, P., Schultz, S. R., Fulcher, B. D., and Jones,
N. S. (2019). catch22: CAnonical Time-series CHaracteristics.

Marler, R. and Arora, J. (2004). Survey of multi-objective optimization methods
for engineering. Structural and Multidisciplinary Optimization, 26(6):369–395.

Middlehurst, M., Large, J., and Bagnall, A. (2020). The Canonical Interval For-
est (CIF) Classifier for Time Series Classification. In Proceedings - 2020 IEEE
International Conference on Big Data, Big Data 2020.

Mori, U., Mendiburu, A., Miranda, I. M., and Lozano, J. A. (2019). Early classifi-
cation of time series using multi-objective optimization techniques. Information
Sciences, 492.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–
2830.

Reid, D. (1979). An algorithm for tracking multiple targets. IEEE Transactions on
Automatic Control, 24(6):843–854.

62

Bibliography

Ruiz, A. P., Flynn, M., Large, J., Middlehurst, M., and Bagnall, A. (2021). The
great multivariate time series classification bake off: a review and experimental
evaluation of recent algorithmic advances. Data Mining and Knowledge Discovery,
35(2).

Santos, T. and Kern, R. (2017). A literature survey of early time series classification
and deep learning. In CEUR Workshop Proceedings, volume 1793.

Schäfer, P. and Leser, U. (2020). TEASER: early and accurate time series classifi-
cation. Data Mining and Knowledge Discovery, 34(5).

Wang, S. and Jiang, J. (2015). Learning Natural Language Inference with LSTM.

Wang, Z., Yan, W., and Oates, T. (2016). Time Series Classification from Scratch
with Deep Neural Networks: A Strong Baseline.

Xing, Z., Pei, J., and Yu, P. S. (2012). Early classification on time series. Knowledge
and Information Systems, 31(1):105–127.

Yao, L. and Guan, Y. (2018). An Improved LSTM Structure for Natural Language
Processing. In 2018 IEEE International Conference of Safety Produce Informati-
zation (IICSPI), pages 565–569. IEEE.

63

Bibliography

64

	List of Figures
	List of Tables
	Introduction
	Background
	Aim

	Literature Review
	Localization in autonomous driving
	Classification of time series data
	Classification approaches
	Early time-series classification
	Early classification of time series using multi-objective optimization techniques by Mori2019EarlyTechniques
	TEASER: early and accurate time series classification by Schafer2020TEASER:Classification

	Multi-objective Optimization

	Data set
	Data description
	Main feature set
	Supplementary feature set

	Data preprocessing and analysis
	Outliers and Scaling
	Missing data
	Data visualisations

	Data split
	Annotation

	Method
	Experimental setup
	Definition of a multivariate time series
	Solution design
	Evaluation

	Experiments and results
	Probabilistic classifier
	Momentary measurement model qualities
	Averages
	Constructed feature set
	State-of-the-art methods and candidate selection

	Trigger function
	Multi objective optimization
	Objectives
	Optimization algorithm
	Trigger functions
	Trigger function parameter optimization
	Tr¹
	Tr²
	Tr³

	Testing of trigger functions
	Highlighted cases
	Incorrect classifications
	Late prediction
	No prediction

	Discussion and Conclusion
	Results discussion
	Data
	Probabilistic classifier
	Trigger function
	Hypothesis-inference

	Limitations and scope
	Conclusion

	Bibliography

