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Design with Regard to Explosion
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ABSTRACT

Structural elements subjected to explosion loads are often transformed to simplified
Single Degree of Freedom (SDOF) mass-spring system in order to facilitate and expedite
their design. This simplification has showed good results for single vibrating elements,
1.e. beams or slabs on stiff supports. However, if a structural system consisting of a beam
supported on two beams is considered, a 2DOF mass spring system is needed to capture
the response of the structure.

Models were created in the commercial FE software ADINA, and several parametric
studies were carried out for structures with various stiffness and mass ratios. First, a
beam on spring supports was studied as an intermediate step between a simple beam and
a structural system. Then, the beam-on-beam structural systems were modelled and the
equivalent 2DOF system was created and verified so that its response was agreeing with
the one obtained from Finite Element Method. Modification of ordinary SDOF systems
was carried out, resulting in the systems being capable of describing the behaviour of
each part of the structural system approximately.

It was discovered, that the response of the structure with an intermediate stiffness ratio
(between 3 and 8) is too complex to be described by a SDOF simplification, and there an
equivalent 2DOF system must be used. Outside of this range, both 2DOF and modified
SDOF systems give reasonable and acceptable results. After a detailed study, it was
found that treating the element as a part of a structure can result in its displacements
being reduced up to 40-50 %, i.e. it may be very conservative to assume a single vibrating
element in such a case.

Keywords: explosion, impulse load, reinforced concrete, SDOF, 2DOF, elastic, finite
element analysis, dynamic



Dimensionering for explosionslaster
Respons hos sammansatta strukturer och ekvivalent 2DOF system
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SAMMANFATTNING

Birande element som utsitts for explosionslaster forenklas ofta till ett system bestaende
av en massa och en fjader (SDOF), detta gors for att underlitta och snabba pa konstruk-
tionsarbetet. Denna forenkling har visat sig ge gott resultat i att beskriva beteendet hos
enskilda element som kommer i sviangning, t.ex. balkar och plattor som vilar pa styva
upplag. For en konstruktion dér en balk vilar pa tva andra balkar blir beteendet mer
komplext. For att modellera ett sadant arrangemang behovs det minst tva massor och tva
fjddrar i ett tvafrihetsgradssystem (2DOF).

I det kommersiella Finit Element programmet ADINA byggdes flera modeller upp.
Dessa anvindes i parameterstudier dér forhallandet mellan balkarnas massor och styvhet
varierades. Forst undersoktes en fritt upplagd balk som vilar pa fjadrar och jamfordes
med SDOF, detta var tinkt som ett forsta mellansteg. Direfter gors en FE-modell av
en balk som vilar pa tva andra balkar. Ett 2DOF system skapas med malet att kunna
beskriva en liknande respons som FE-modellen. Slutligen gors ett forsok att ytterligare
forbattra det ursprungliga SDOF systemet sa att det skall kunna anvéndas for att beskriva
ett element som en del av en struktur.

Studien visar att responsen hos system, med styvhetskvoter i ett intervall av 3 till 8, &r
mycket mer komplex dn vad ett SDOF system kan beskriva. I detta intervall fungerar
2DOF mycket bittre for att beskriva responsen. I 6vriga fall ger bada systemen ett
tillrdckligt bra resultat, men SDOF ér da littare att anvinda. I studien visas ocksa att om
element betraktas som en del av en struktur, kan den forvintade forskjutningen i vissa
fall reduceras med upp at 40-50 %. Med andra ord, att endast se pa elementet som om
det vilade pa fasta stod, kan vara vildigt konservativt.

Nyckelord: explosion, impulslast, armerad betong, enfrihetsgradssystem, tvafrihetsgrads-
system, elastisk, finit element analys, dynamisk
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NOMENCLATURE

Roman upper case letters

A
Ay
Aj
Ay
A_
C

E
E,
Ey
Es
EI

Area

Area of reinforcement

Area of upper reinforcement

Area of the cross section part under tension
Area of the cross section part under compression
Damping matrix

Young’s modulus

Young’s modulus of concrete

Kinetic energy

Young’s modulus of steel

Rigidity of the cross section

External force

Force vector

Force in the damper

equivalent force

Force in the spring

Characteristic load

Force in fictitious spring

Impulse

Moment of inertia

Characteristic impulse

Moment of inertia of the cross section in state |
Moment of Inertia of the cross section in state II
Stiffness matrix

Length

Distance between plastic hinge and adjacent zero moment section
Length of the upper beam

Length of the lower beam

Bending moment

Mass matrix

Cracking moment

Yielding moment

Bending moment in the lower beam

Ultimate bending moment

Bending moment in the upper beam

Pressure

Atmospheric pressure

Blast overpressure

Underpressure coming from the shock wave
Equivalent static load

Internal resistance force

Plastic resistance force

Period of vibration

Duration of the positive phase of the shock wave
Duration of the negative phase of the shock wave
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Shear force

Energy output from the explosion
External work

Elastic section modulus

Internal work

Plastic section modulus

Scaled distance

sEs=<

NS

Roman lower case letters

a Acceleration

b Width of the cross section

c Damping coefficient

c Wave propagation velocity

Ce Equivalent damping

d Effective depth of the cross section

f Frequency

fed Design value of the concrete compressive strength

fi i-th eigenfrequency

fsu Ultimate tensile stress of steel

Ssy Yield strength of reinforcing steel

h Height of the cross section

i Impulse intensity

it Positive phase impulse intensity

i Negative phase impulse intensity

k Stiffness

kq Adjusted stiffness

ke Equivalent stiffness

k, Stiffness ratio

ky, Plastic rotation capacity multiplication factor allowing for shear
slenderness

ky Stiffness of the upper beam

ko Stiffness of the lower beam

m Mass

My Adjusted mass

My Adjusted mass

M, Equivalent mass

Mpoint Point mass

my Mass ratio

m Mass of the upper beam

my Mass of the lower beam

m' Mass per length

p Momentum

q Uniformly distributed load

r Distance from the source of the explosion

1/r Curvature

(1/r), Ultimate curvature

(1/r), Curvature at yielding

t Time
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Uepel
Uep,pl
Umax,SDOF
Umax, ADINA
u pl

Urd

Ug

ur

Ura

Uy

Uya

UU max,ADINA

Uy max,SDOF
u

us

23V

uzA

NN R RoT oS oE o S

Time of arrival

Fictitious duration of the idealised shock wave

Deformation

Deformation vector

Deformation shape

Deformation in a linear elastic material

Total deformation in an elastoplastic material

Elastic part of the total deformation in an elastoplastic material
Plastic part of the total deformation in an elastoplastic material
Maximum deformation of a SDOF system

Maximum deformation obtained from ADINA

Deformation in an ideally plastic material

Ultimate plastic deformation

Displacement of the system point

Deformation of the lower beam obtained from 2DOF system
Deformation of the lower beam obtained from a ADINA
Deformation of the upper beam obtained from a 2DOF system
Deformation of the upper beam obtained from ADINA
Maximum deformation of the upper beam in ADINA
Maximum deformation of the upper beam in a SDOF system
Displacement of the first system point in a 2DOF system
Displacement of the second system point in a 2DOF system
Displacement of the first system point in ADINA
Displacement of the second system point in ADINA
Velocity

Velocity vector

Acceleration

Acceleration vector

Velocity

Mass of the explosive

Coordinate

Height of the compression zone in the concrete cross section
Coordinate from neutral axis of the cross section

Distance between centroids of the compressed and tensioned part

of the cross section

Distance between the neutral axis and the centre of gravity of the

bottom reinforcement

Distance from the centroid of the tensioned part of the cross section

to its elastic neutral axis

Distance from the centroid of the compressed part of the cross

section to its elastic neutral axis

Greek upper case letters

Ak
Am
At
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Greek lower case letters

(0] Slope

(o Ratio between the Young’s modulus of steel and concrete
oR Stress block factor for the average stress

B Intercept

Br Stress block factor for the location of the stress resultant
Y Stiffness adjustment factor

Y, Optimisation factor for the stiffness of the first body
Ye, Optimisation factor for the stiffness of the second body
Yin Mass adjustment factor

Yimy Optimisation factor for the mass of the first body

Yiny Optimisation factor for the mass of the second body
YinF; Mass adjustment factor

Y Optimisation factor for the force acting on the first body
Y5 Optimisation factor for the force acting on the second body
Y Correction factor for the characteristic impulse

€ Strain

& Strain at the level of bottom reinforcement

el Strain at the level of upper reinforcement

& Steel strain at the end of plastic plateau

Eu Steel strain at rupture

Ey Steel strain at the beginning of plastic plateau

& fsu Steel strain at the ultimate tensile stress

&, Ultimate steel strain

n Accuracy

n Relative deformation

60,1 Total plastic rotation

Ord rotation capacity of a plastic hinge

Kk Stiffness transformation factor

Kin Mass transformation factor

KnF Quotient of the mass and force transformation factors
Kin.mod Modified mass transformation factor

Kr Force transformation factor

KF mod Modified force transformation factor

A Eigenvalue

% Poisson’s ratio

p Density

o Stress

o, Stress in concrete

O¢c Compressive strength of concrete

O, Tensile strength of concrete

(of Stress in steel

oy Yield stress

O; i-th eigenvector

(0] Angular frequency

Wy Angular frequency of the beam

; i-th angular eigenfrequency

WDSPOF Angular frequency of the SDOF system
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1 Introduction

1.1 Background

In today’s world the need for building and structures to withstand loading from such
extreme sources as explosions has become more and more apparent, be it controlled
detonations as at construction sites or outcomes of terrorist activity. Examples of this
could be experienced in Scandinavia lately, namely in Stockholm in 2010 and in Oslo in
2011. Design against explosion is also a necessity in for example the processing industry,
road tunnels and military installations.

Response of a structure subjected to impulse loading can differ greatly from its response
to static load. This has made the design with regard to explosion a subject of interest, as
today’s comprehension in this field is still limited. Although Finite Element Modelling
is nowadays possible, such modelling is time consuming and requires skill to interpret
the results correctly. Therefore simplified models are of interest in order to provide
engineers with easier and quicker tools when faced with explosion related design tasks.
Such models have in recent years been studied at Reinertsen, in particular transforming
a reinforced concrete beam or slab into a Single Degree of Freedom mass-spring system
(SDOF). The SDOF simplification has been shown to describe the elastic behaviour of
simple vibrating structures such as beams or slabs quite well, see Klorek and Sandberg
(2013). Such system is easier and quicker to solve for displacements, which can later
be transformed into internal forces. However, as far as structural systems such as slabs
resting on beams, or a beam supported on beams are concerned, their response according
to simplified models is not entirely conforming to the Finite Element Analysis behaviour.
Therefore, there is a need for improvement of the model, preferably by considering
another degree of freedom, thus creating 2DOF simplified system.

This master’s thesis continues investigating the behaviour of reinforced concrete struc-
tures and structural systems consisting of several members subjected to impulse loading,
as it has been done before in six Master’s Theses written by Nystrom (2006), Ek and
Mattsson (2009), Augustsson and Héarenstam (2010), Andersson and Karlsson (2012),
Carlsson and Kristensson (2012) and Klorek and Sandberg (2013).

1.2 Aim

The purpose of this thesis project was to further complement the simplified analysis
approach for structures subjected to explosion loads, especially structures composed of
several members.

Response of a structural system is a resultant of dynamic and structural properties of
its individual components, and the 2DOF simplified model is believed to describe the
behaviour in a better way. Thus, one of the objectives was to develop the equivalent
2DOF mass-spring system, so that the response of a beam-on-beams structure can be
described by it with good accuracy. The behaviour of individual constitutive elements
of the structural system in relation to the overall structure’s behaviour is of particular
interest, hence an investigation of the influence of surrounding structure on its member’s
response was needed. Furthermore, an additional aim of this master’s thesis was to
optimise the ordinary SDOF models, so that they are capable of describing the movement

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2015:86 1



of the constitutive elements of the structural system in an approximate way and within a
limited range.

In order to further supplement the aims of this thesis project, a survey on how much can
be gained if the element is treated as a part of a structure rather than a single member
was desired.

1.3 Limitations

Pressure wave caused by an explosion load consists of both a positive and a negative
pressure phase. The latter although much longer, is of considerably lower magnitude. It
is common to disregard the negative phase when looking at structures with significantly
slower dynamic response than the duration of the positive phase (Johansson and Laine
2012a). This was the case for this survey and so the negative phase was omitted.

2DOF (as well as SDOF) models are just a simplification of a continuous structure,
which has infinitely many degrees of freedom. Moreover, the response obtained from
Finite Element Method is considered to represent the real behaviour of the structure.

Material response of concrete is non-linear, yet it was simplified to elastic and elasto-
plastic constitutive model. The discrepancy between reality and the models is assumed
to be small and its influence on the response to be acceptably small.

In order to simplify the study, only simply supported beams or structural systems
consisting of such beams were investigated. Moreover, only linear elastic material
response is studied.

It is known, that material might obtain considerably greater strength when exposed to
high strain rates. Impulse loading is such a case. However, this phenomenon of high
strain rate behaviour was neglected.

No effect of time-dependent deformation such as creep and shrinkage was taken into
account, which simplified things, having in mind that the material can be exposed to
impulse loading at any time of its service life. Temperature effects were disregarded
as well, considering that the thermal inertia of reinforced concrete is great enough to
withstand temperature difference acting in very short time.

Lastly, only the initial response of structures subjected to explosion was studied. In-
fluence of ground shock waves, impact loading from fragments of bombs or collapsed
secondary structures was disregarded.

1.4 Method

In order to attain deeper knowledge of the subject, a literature study was conducted first.
Studied materials include previous Master’s Theses as well as books and articles written
on the subject, and the results of this study is embodied in the first part of the report.

To correctly understand the behaviour of 2DOF system, SDOF systems with different
material models were thoroughly studied first. Response of a simply supported beam
transformed into such system was solved both with simplified hand calculations as well
as with numerical solution based on Central Difference Method in GNU Octave (2014)
and Finite Element solution in the commercial finite element analysis software ADINA

2 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2015:86



(2014) . This part of the study is not included in the report, since it was already performed
in the old Master’s Theses, e.g. in Carlsson and Kristensson (2012), and therefore it was
deemed unnecessary to repeat it.

In the next part of the report, as an intermediate step between a single member and a
structural system, a beam on spring supports was studied. The procedure of solution
was adequately modified to take into account the flexibility of the supports. FE models
of such beams were created in ADINA. The structures were then transformed into
equivalent SDOF systems and were examined both numerically and with respect to hand
calculations.

As a subsequent portion of the thesis project, the finite element models of the structural
systems were created, the behaviour of which is considered to represent reality. An
equivalent 2DOF mass-spring system was constructed to simulate the response of the
structures, and was studied numerically through comparison with the results of FE
analyses. Optimisation of the 2DOF system was carried out, so that the simplified model
reflected the behaviour of the structure observed in FE analyses. Moreover, a concise
study is conducted, stating how much can be gained in terms of smaller deformation, if
the element is treated as a part of a structure rather than a separate entity.

For the last part of the report, an ordinary SDOF system was altered in order to be able
to simulate the deformation of the constitutive elements of the structural system, and an
approximate range of application was searched for.

1.5 Outline of the report

Chapter 2 is a theory chapter based on the literature study performed. It covers basic
explosion theory, material models, structural response of beams under load as well as
basic dynamics and the concept of transformation into an equivalent mass-spring system.

Chapter 3 includes a parametric study of a beam supported on springs, since it is an
intermediate step between the member’s response and the response of a structural system.
The procedure of transformation for a structure with varying beam-to-support stiffness
ratio is developed.

Chapter 4 comprises the step-by-step development of an optimised 2DOF system capable
of capturing the response of a structural system consisting of beam supported on two
beams. The model is verified and its response compared to the FE solution, in terms of
deformation, bending moment and shear force. An example of solution of an arbitrary
beam-on-beams structural system is also included.

Chapter 5 includes comparison and development of modified SDOF systems, so that
the response of individual members can be approximated with quicker and easier hand
calculations. It studies several simplified models and shows the range of their application.

The results are presented and discussed along with tentative conclusions in every chapter.
The last discussion and conclusions chapters summarise the whole project and pertain
to all of the studies. Appendices present certain theory aspects, such as the Central
Difference Method, as well as provide supplementary results and tabulated values.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2015:86 3



2 Theory

2.1 Explosion

2.1.1 Explosion - what is it?

An explosion is a rapid release of energy with incidental instantaneous increase of
volume, and as a result a pressure (and also heat) wave is generated. Two types of
chemical explosions can be distinguished - detonations and deflagrations (Johansson and
Laine 2012a). The former requires a supersonic passage of combustion front through the
medium. The latter happens when the ambient medium ignition is a result of temperature
rise which accompanies the adjacent material combustion. Such ignition advances at
subsonic velocities. The shock wave front is usually spherical (or half-spherical if the
explosion takes place on the ground). Duration of such process is normally in the range
of miliseconds.

Normally, the released energy (in Joules) can be used to describe explosions. However,
according to Johansson and Laine (2012a), a more common way is to express the
explosion’s strength as the mass of TNT required.

The distance between the source of explosion and the body subjected to the load coming
from it has substantial influence on the amount of energy that reaches the body. The
larger the distance, the less energy reaches the structure. The configuration of the
detonation itself (i.e. point source, line source etc.) also has a big effect on the resultant
incoming energy. Since the pressure wave spreads spherically, the energy is reduced
cubically with distance from the source.

2.1.2 Shock wave

An explosion results in a shock wave. Such wave can have a quite complex form, but
is often simplified to an idealised shock wave. A front reaches the object at the time of
arrival 7,, when there is an instantaneous raise in pressure. The wave has a positive and
negative pressure phase, which can be seen in Figure 2.1.

A Pressure, P

Py + Pt
i+
Py fees ! ; = ,
1 1 2 \ .
Py P b - Time, T
0 H H ' >
ta to +T7 ta+TH +T~

Figure 2.1: Idealised shock wave.
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The area under the pressure-time graph is equal to the impulse intensity. The pressure of
the positive phase is much larger in magnitude, but its duration is quite short compared to
the negative phase. On the other hand, the negative pressure phase is of low magnitude.
Because of that, the impulse load in both phases are almost equal to each other.

2.1.3 Wave phenomena

The surrounding of the source of explosion can cause various effects on the shock wave
itself. Most importantly, it can and will be subjected to different wave phenomena, such
as reflection or diffraction. Those can play an important role on the resulting load.

The pressure wave can reach a structure at different angles, which have influence on
the pressure magnitude, but the most important fact is whether the wave is reflected by
the structure or not. If the surface is perpendicular to the direction of wave propagation,
then maximum reflection will take place. If the surface is parallel to the direction of
propagation of the wave front, it can be considered that the wave is unreflected by the
building, see Figure 2.2. The pressure of reflected wave is at least 2 up to 20 times
greater than unreflected wave, which is a tremendous effect.

building

unreflected
shock wave

LV

building

reflected

o >
shock wave

explosion

Figure 2.2: Reflection phenomenon in shock waves.

The other phenomenon of interest is diffraction. In this case diffraction can be described
as change of the direction of wave propagation caused by irregularities and obstacles
along its way. This means that even sides unexposed to the explosion can experience
pressure load coming from an explosion. These wave phenomena are schematically
illustrated in Figure 2.3.
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Figure 2.3: Reflection and diffraction phenomena.

2.1.4 Load on surface from explosion

Since the idealised shock wave has a complicated shape when it comes to describing the
load (see Figure 2.1), a simplification is often made. The negative pressure phase is disre-
garded, and the positive pressure phase is converted into an equivalent triangular pressure
load. In order to follow the process, the most important quantities and parameters must
be introduced first.

6

e Amount of energy - W

Generally specified as the equivalent amount of TNT (in kg). When using other
explosive than TNT, the energy output can be calculated as

W = w-equivalent weight factor (2.1)

where w is the mass of the explosive. Values for different types of explosive can
be seen in Table 2.1.

Scaled distance - Z

Scaled distance is a parameter that allows comparison between different charges
detonated at different distances. For a detonation occurring with free expansion in
every direction, a spherical wave front is created. In this case, the scaled distance
can be expressed as

z__T

- wl/3
where r 1s the distance from the source of explosion and W is the energy amount
defined in Equation (2.1).

(2.2)

Blast overpressure - P+

This is the value of maximum overpressure that is carried by the wave front. For
known scaled distance Z the value can be obtained e.g. from Figure 2.4.
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Table 2.1: Equivalent weight of various types of explosives. TNT as referrence. From

ConWep (1992).
Explosive Equivalent weight
Pressure | Impulse
ANFO 0.82 0.82
Composite A-3 | 1.09 1.07
Composite B 1.11 0.98
Composite C-4 | 1.37 1.19
H-6 1.38 1.15
HBX-1 1.17 1.16
Pentolite 1.42 1.00
RDX 1.42 1.00
TNT 1.00 1.00
Tritonal 1.07 0.96
1.000 000 -
i’\
~ —o—Reflected [ 7]
100 000 )\Y -=— Unreflected F=5
— —_
<
% 10000 BUEERY
+ s X
A Ao
g 1000 VN
=
8 | "‘\\
N
E o o
3 =
s
10 o
=
1
0.1 1 10 100

Scaled distance, Z [m/kg'/?]

Figure 2.4: Reflected and unreflected overpressure as a function of scaled distance Z.
From Johansson et al. (2014).
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e Positive phase impulse intensity - i "
The impulse intensity can be described as
g+ T

it = / (P(t) — Py)dt (2.3)

la

where P(r) defines the variation of the absolute pressure with time, and P, is the
ambient pressure of undisturbed air. The value can be obtained for a known scaled

distance Z from Figure 2.5.
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Figure 2.5: Reflected and unreflected impulse intensity as a function of scaled distance
Z. From Johansson et al. (2014).

e Fictitious duration - tZ
This parameter describes the duration of the simplified idealised shock wave, see
Figure 2.6. Note that it is shorter than the duration of idealised shock wave #,.
When blast overpressure P™ and impulse intensity i" are known, the fictitious

duration can be calculated as N
2i

Pt

ty = (2.4)

With all these parameters known, the simplified idealised shock wave can easily be
determined, see Figure 2.6.
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Figure 2.6: Simplified idealised shock wave.

2.2 Structural models

2.2.1 General notes

Reinforced concrete structures are of particular interest in this project. Since its response
under imposed load is complex, it is preferable to simplify it by adopting suitable
response models. Simplified material models result in simplified structural response.
The model used in this project is a linear elastic model, although ideally plastic and
elastoplastic model are also discussed. The material response of concrete and reinforcing
steel is presented for reference in this chapter as well.

2.2.2 Linear elastic

In a linear elastic material model the relationship between stress ¢ and strain € is linear.
The inclination of stress-strain curve is equal to Young’s modulus E. There is also no
plastic strain, which means that for increasing stress, strain increases as well (with no
limit). It is important to note that when unloaded, the strain will go back to its initial
value, which is zero for completely removed load. The stress-strain relationship is
presented in Figure 2.7 and can be expressed as:

o=E-¢ (2.5)

When a displacement u is induced in linear elastic material, a corresponding internal
resistance force R is achieved, and the structural response of linear elastic model can be
described as:

R=k-u (2.6)

The inclination of the response curve is k, which can be referred to as the stiffness of

the material, see Figure 2.7. In this thesis project, the linear elastic structural model is
referred to as just elastic.
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Figure 2.7: Linear elastic material model.

2.2.3 Ideally plastic

In an ideally plastic structural model, the strains are zero until the yield stress is reached.
Theoretically, the deformations could be infinite for the same value of yield stress, but in
practice there are some limits such as ultimate steel strain g, or plastic rotation capacity
for a structure. The behaviour can be seen in Figure 2.8. For an external force F acting
on the structure, the internal restistance force R is defined as

F if u=0
R= ] 2.7)
R, if u>0
oA R A
Oy | R,
3 u
: > >
0 Eu 0

Figure 2.8: Ideally plastic material model.

2.2.4 Elastoplastic

An elastoplastic structural model is a hybrid between linear elastic and ideally plastic
models. Strains are proportional to the stresses up until the stress reaches the material
yield stress oy, at the deformation of u,), .;. After that, plastic strain develops. Even when
the load is removed, plastic strains will still be present in the material. On reloading, the
material will follow the elastic curve up until the yield stress is reached, which can be
seen in Figure 2.9.

For an external force F acting on the body, the internal resistance force R can be defined
as

R— kuep,el lf u< Uep el (2.8)
R, it u>uep,e
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Figure 2.9: Elastoplastic material model.

2.2.5 Concrete

The stress-strain behaviour of concrete under load is schematically shown in Figure 2.10.
From this it can be seen that concrete has non-linear behaviour in both compression
and tension. However, in the initial stage of loading, the material response can be
approximated to linear elastic. It should be noted that compressive strength of concrete
can be up to 10 times higher than its tensile strength.

AC

tension
Octt

yo

compression

Figure 2.10: Material response of concrete.

2.2.6 Reinforcing steel

Steel shows linear elastic behaviour in the beginning of loading, up to the point when the
stress reaches the yield strength fi,. After that, the material enters a plastic plateau, when
the strain increases without increase of stress. After the plateau phase, strain hardening
starts and the strain increases with stress, although in a non-linear manner. After reaching
the ultimate tensile stress f;,, strains increase until rupture. The behaviour can be seen
in Figure 2.11. According to Eurocode 2, CEN (2004), the stress-strain relationship
for reinforcing steel can be simplified to an elastoplastic model with or without strain
hardening after reaching the yield strength f, .
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Figure 2.11: Material response of reinforcing steel according to tests and simplified
model in Eurocode 2 (CEN (2004)).

The amount of plastic deformation before rupture can be directly related to ductility of the
reinforcement. If the reinforcement is ductile, it can deform quite much before breaking
and therefore it can absorb more energy. Such behaviour is called ductile fracture and
is favourable in design, as it can indicate possible failure situations. Hot-rolled steel is
ductile. Opposite behaviour is called brittle fracture, and happens when material breaks
abruptly without any prior indication. Cold-worked steels are brittle.

Ductility of reinforcement is very important when plastic rotation is needed in the
structure. Plastic rotation depends on the ductility of reinforcement, see Section 2.3.3
for more information. Reinforcement comes in Class A, B and C, when ductility is
concerned, with class C being the most ductile steel.

2.3 Structural response of beams under load

2.3.1 Response of reinforced concrete cross section under load

The response of a reinforced concrete cross section subjected to a bending moment is
non-linear. It is therefore simplified in Eurocode 2, CEN (2004), into three states. A
summary of those can be seen in Figure 2.12.

In state I, the section is assumed to be uncracked and the reinforcement does not have
much influence. Stresses and strains vary linearly. Moment of inertia /; and the position
of neutral axis can be easily determined.

In state II the concrete is cracked and its influence is disregarded. The position of
the neutral axis shifts, and the tensile forces are assumed to be taken entirely by the
reinforcing bars. Stresses in concrete are still assumed to vary linearly. The reinforcement
can be converted to equivalent concrete areas and sectional constants so that moment of
inertia I;; can be calculated.

In state III, which can be referred to as the ultimate state, the reinforcement bars are
assumed to be yielding, and the stress variation in concrete is no longer linear. The
section can fail either by crushing of concrete or rupture of reinforcement. Stress block
factors o and fBg can be obtained from Engstrom (2011) depending on the highest
concrete strain.

The curvature % of the cross section can always be calculated as the inclination of the
strain distribution curve (Engstrom 2011). However, in linear elastic analysis it is more
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Figure 2.12: Different states in concrete cross section subjected to pure bending.

common to define it as the ratio between bending moment and the flexural rigidity of the
Ccross section, as:
1 M
= 29
r EI 29)
Bending moment acting on the section results in a certain curvature. A typical moment-
curvature relationship can be seen in Figure 2.13.
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Figure 2.13: Typical moment-curvature relation.
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The influence of all states (I to III) can be seen in this curve. First, when the concrete is
uncracked, the behaviour is linear, which results in a constant slope (stiffness in state
I - EI}) in the beginning of the diagram. When the cracking moment M., is reached,
the section cracks and loses stiffness at the same time. After that point, the state 11
model applies. In Figure 2.13 it can be seen that the behaviour in state II is not linear
(although this is due to so-called tension stiffening effect, which is not discussed here).
Nevertheless, an approximate stiffness in state Il - EI;; can be calculated. When the
curvature ( %)y is reached, the reinforcement starts to yield. Maximum curvature (%) L is
achieved when either concrete crushes or reinforcement strain exceeds its strain limit
value (plastic rotation capacity exceeded). The corresponding moments - M., My,
and Mg, must be obtained from sectional analyses. More information as well as the
methodology of the calculation can be found in Engstrom (2011).

The moment-curvature relation is often simplified to a bi-linear correlation, which can be
seen in Figure 2.14. It is clearly visible that the simplification results in slightly smaller
overall stiffness, thus giving conservative results. However, according to Engstrom
(2011), this simplification is enough to compute the plastic rotation capacity. It is
important to mention that such simplification results in a structural response as shown in
Figure 2.9.

Figure 2.14: Simplified bi-linear moment-curvature relation.

2.3.2 Theory of plastic hinges

When a cross section starts yielding, the deformation (and therefore strains) increase
when the load remains constant. The whole cross section is assumed to plasticise under
the ultimate moment M, i.e. the stresses in the cross section will be either oy, or —oy,
changing sign at the neutral axis. The plastic neutral axis is not necessarily situated in
the same position as the elastic neutral axis. However, this depends on the shape of the
cross section. The position of the elastic neutral axis can be determined by equilibrium
of first moments of area at both sides of the axis, while the plastic neutral axis divides
the cross section into two equal areas, since the stresses are the same all over the parts.
This is illustrated in Figure 2.15.

The plastic section modulus can be calculated as

A
Wpr =752 (2.10)

where A is the area of the whole cross section.
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Figure 2.15: Fully plasticised arbitrary cross section.

For example, the plastic section modulus for a rectangular cross section would be

W _bh ok bh?
PL= 7 g
while the elastic section modulus for the same section is

W_bh2
el — 6

Therefore the ratio between plastic and elastic modulus for a rectangular cross section is
1.5. This means that theoretically, the load bearing capacity in a plastic model can be
increased with 50 % with regard to the elastic model. This ratio depends on the shape of
the cross section.

It is also worth to mention that if the cross section is not symmetric about the neutral
axis (elastic or plastic neutral axis), then the section modulus will vary, i.e. the section
modulus with respect to top fibres will differ from the one calculated with respect to
bottom fibres.

Since according to the theory of plasticity there is no limit to plastic strain, the curvature
of a small region of the beam may be much larger than for the rest of the structure.
Provided the ductility of reinforcing steel is large enough, this critical section may
experience substantial deformation under constant moment Mg,;. When this moment
is reached, the section is considered to become a so-called plastic hinge. Creation of
a plastic hinge does not mean that the load bearing capacity of the beam is reached,
rather that the boundary conditions are changed. Provided that the beam was statically
indeterminate, it can still take more load, until another plastic hinge (or hinges) develops.
A structure that is n times statically indeterminate, can develop n+ 1 plastic hinges
before the collapse mechanism is formed. The principle can be seen in Figure 2.16.

For static load, when the critical number of plastic hinges is reached, the collapse mecha-
nism is formed and the structure collapses. However, for impulse loads, a mechanism
is desired. Such mechanism is active until the plastic hinge reaches its plastic rotation
capacity (i.e. cannot deform anymore). This is an important difference between static
and impulse loading.
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Figure 2.16: Plastic hinges and collapse mechanisms for simply supported and fixed
beam, from Nystrom (2006).
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2.3.3 Plastic rotation capacity

According to theory of plasticity, the plastic deformation has no limit. However, this is
not the case in real structures. When designing impulse loaded structures, the structure
must be able to withstand the largest deformation that the load caused. Normally, it is
not a problem to develop a mechanism. However, it can be problematic to maintain the
mechanism until desired deformation is reached. For simply supported beam such a

mechanism can be seen in Figure 2.17.

Figure 2.17: Mechanism shape and plastic rotation for simply supported beam. From
Klorek and Sandberg (2013).
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According to Engstrom (2011), plastic hinges can be classified as single or double.
Single plastic hinges are formed at fixed ends or near frame joints. Double plastic hinges
are formed in the span or over intermediate support. For the simply supported beam, the
plastic hinge will develop in the place, where the maximum bending moment is present.
Depending on loading conditions, it does not need to be in the mid-span, but it is often
so. In such a case the total plastic rotation is 6,,; = 6,1 + 6, 2, see Figure 2.18.

~ ~( )
'\'QT\\\ ////
|9pl,l ( N /// ) 9pl,2 |

Ly | Lo

A

Figure 2.18: Double plastic hinge in the span. From Engstrom (2011).

The plastic rotation itself can be determined in many different ways. In this project,
the provisions included in Eurocode 2, CEN (2004), were used. By using the graph in
Figure 2.19, the basic value of allowable rotation 6,; can be obtained. It depends on
the ductility class of the reinforcement and the ratio of the compressive zone height to

effective depth - 2
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Figure 2.19: Relation between basic value of allowble rotation and X yatio.

Furthermore, the received value must be multiplied with a correction factor k, , which
can be expressed as

ky = % 2.11)

where A is a function of L - distance between respective plastic hinge and adjacent zero
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moment section, and d - effective depth.

A 2.12
7 (2.12)
Eventually, the rotation capacity of the plastic hinge can be defined as
0,0 =ky - 0y (2.13)

According to Johansson and Laine (2012b), the values in Figure 2.19 correspond to the
rotation at one side of the plastic hinge. When the plastic hinge develops in the mid-span,
the allowable plastic rotation read from the graph, 6,;, can be doubled. The maximum
possible deformation that the structure can withstand can be expressed as a function
of the plastic rotation capacity, 6,;. For a simply supported beam with a uniformly
distributed load or point load in the mid-span, the maximum deformation as seen in
Figure 2.17 can be calculated as:

Upg = bra-L (2.14)

2

where 0, is the rotation capacity of the plastic hinge. This expression takes into account
the provisions included in Johansson and Laine (2012b), i.e. that the allowable rotation
read from Eurocode 2 can be doubled.

It can be seen from Figure 2.19 that for low values of x/d the member will fail with
rupture of reinforcement bars. For higher values of x/d the failure will be caused by
crushing of concrete. Reinforcement class C is much more ductile than class B, therefore
this type is preferable in structures subjected to explosion loads.

2.4 Work and energy

2.4.1 Fundamental parameters

In order to better understand the design approach for dynamically loaded structures,
some basic notions must first be defined.

e Velocity

Velocity is a vector quantity which defines the rate of change of position of an
object. If the change of position is denoted as Au, and the time required for this
shift to take place is denoted as At, then the velocity of the body can be defined as

. Au du
vy = lim = =

- _ 7 _ 2.15
Ar—0 At dt “ ( )

e Acceleration

Acceleration is a vector quantity describing the rate of change of velocity of a
body. If the change of velocity is denoted as Av, and the time required for this shift
to take place is denoted as Az, then the acceleration of the body can be defined as

Av dv
a= lim =

= lim —=— = 2.1
Azl—>0At dt “ (2.16)
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e Force

Force 1s a vector quantity, and according to Newton’s Second Law, the net force
acting on a body is equal to its mass times its acceleration.
dv

F:mE = ma 2.17)

e Pressure

Pressure is a scalar quantity, and it can be defined as force distributed over an area
on which this force is acting.

P= (2.18)

e Momentum

Momentum is a vector quantity, and it is a product of the mass of a body and its
velocity.
p=my (2.19)

The law of conservation of momentum implies that for a closed system, which is
not affected by external forces, the total momentum of the system cannot change.

e Impulse

If a force F is applied to the body for the time interval Az, the momentum of the
body changes as
Ap =FAt (2.20)

If the force is time dependent, then the resulting momentum change from time #;
to time 7, can be defined as

15)
Ap = /F(t)dt =1 (2.21)
n

where / is the resulting impulse. Equation (2.21) can be rewritten using relations
from Equations (2.16) and (2.17) as

15 15
1= /ma(t)dt = m/a(t)dt =my (2.22)
151 151

Explosion shock waves are measured in pressure. Therefore by using Equation
(2.18) in Equation (2.21), an expression for impulse as a function of pressure can
be obtained:

15)
I=A [ P(r)dt (2.23)
/

e Impulse intensity

Impulse intensity is the ratio of the magnitude of impulse to the area on which it is
acting.

i= :/P(l)dt (2.24)
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Therefore the intensity of the impulse can be understood as the area under the
pressure-time curve, see Figure 2.20.
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Figure 2.20: Impulse intensity as the area under pressure-time curve.

2.4.2 Characteristic impulse

There are two extreme cases of an impulse. Either the impulse is infinitely large for an
infinitesimally small time, or there is a smaller force acting for an infinitely long time.
The first case is called the characteristic impulse /i, see Figure 2.21a and Figure 2.21b.

F - F a

Fy -

>

(a) (b)

Figure 2.21: Extreme cases for an impulse - (a) characteristic impulse I;, and (b) charac-
teristic pressure load Fy.

If the structure has zero resistance (i.e. R = 0), then there is no difference in what does
F () look like. As long as the same impulse / is transferred to the body, the final response
will be the same, because the transferred energy is the same in every case. If the structure
resistance is non-zero (R # 0), this does not apply any more, and the shape of F(¢) has
influence on the final response. If an impulse / approaches the value of a characteristic
impulse [, the significance of resistance being different than zero diminishes, and for
I = I} the same final response is obtained as if there was no resistance in the structure
(i.e. R =0). External work and energy expressions defined in Section 2.4 are valid for
characteristic impulse /. For impulses other than characteristic, a way of modifying an
arbitrary impulse into equivalent characteristic impulse is needed. An arbitrary impulse
can be transformed to the characteristic one with the correction factor y;, defined as:

I = 2.25
k " (2.25)
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The procedure is thoroughly described in Johansson and Laine (2012b). The correction
factor is a function of the type of impulse load, see Figure 2.22. The three types of
impulse load are described by the equation:

F(t)=F (1 - 1>n (2.26)

I

»
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F I F

Il Il

v
v

t1 t1 t1
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Figure 2.22: Types of impulse loads - (a) rectangular load, (b) triangular load, (c)
quadratic decreasing load. From Johansson et al. (2014).

Elastic model

In case of elastic response, the correction factor 7; is also a function of the fundamental
period of the system, which can be described as

_27r
)

T (2.27)

where ® is the fundamental angular frequency of the system. The ratio between the
maximum load F} and the characteristic load F; is denoted as

F

= F (2.28)

YF

According to Johansson and Laine (2012b), the correction factor ¥ can be obtained from
Table 2.2.
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Table 2.2: Relation between the error d,;, the ratio %, and the impulse load correction
factor 7y for load types according to Figure 2.22. From Johansson et al.

(2014).
s, | oy Logw T_zw|T_xw%
n it 2%t 3w
[%] | [-] n=20 n=1 n=2
1 | 1.01 12.89 10.60 8.84
2 | 1.02 9.22 7.45 6.13
3 1103 7.51 6.10 5.00
4 |1.04 6.52 5.33 4.35
5 | 1.05 5.86 4.75 3.90
10 | 1.10 4.20 341 2.78
15 | 1.15 3.48 2.82 2.29
20 | 1.20 3.06 2.47 1.98
25 | 1.25 2.78 2.23 1.77
50 | 1.50 2.10 1.56 1.18
75 | 1.75 1.80 1.23 0.91
100 | 2.00 1.57 1.02 0.74

For example, for a ratio of T'/f; = 3.41 and the impulse type that corresponds to n = 1,
Table 2.2 gives ¥y = 1.10. Therefore, the characteristic impulse is calculated as [y =
1;/1.10.

Plastic model

In case of plastic response, the correction facor 77 is a function of parameter yr, which is
defined as the ratio between the maximum load F; and internal restistance R.

F
- 2.29
=7 (2.29)
According to Johansson and Laine (2012b), the correction factor ¥ can be obtained from

Table 2.3.
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Table 2.3: Relation between the error O, the load factor yr, and the impulse load
correction factor Yy for load types according to Figure 2.22. From Johansson
etal (2014).

Ot | W YFZ% YF—% YF:%
[%] [-] n=0 n=1 n=2
1 1.005 100 - -
2 1.010 52 70 77
3 1.015 35 46 52
4 1.020 27 35 39
5 1.025 21 29 32
10 | 1.049 11 15 17
15 | 1.072 7.7 10 12
20 | 1.095 6.0 8.0 9.0
25 | 1.118 5.0 6.7 7.5
50 | 1.225 3.0 4.0 4.5
75 | 1.323 2.3 3.1 3.5
100 | 1.414 2.0 2.7 3.0

For example, for a ratio of F; /R = 15 and the impulse type that corresponds to n = 1,
Table 2.3 gives 7 = 1.049. Therefore the characteristic impulse is calculated as [y =
11/1.049.

2.4.3 External work

Work defines the change of energy. Since according to energy conservation rule, no
energy can vanish, work is needed to transform energy from one kind to another. External
work is the amount of energy that is released and acts on the structure due to an explosion.
It is denoted here by W,.

According to Section 2.4.1, the increase in momentum of a body is equal to the impulse
that acts on that body. Before the explosion, the body has no velocity. The explosion load
can be simplified to a characteristic impulse, I; (see Section 2.4.2). The momentum of
the system must be preserved, from definition of impulse in Equation (2.22), the velocity
of the body is

V= fk (2.30)
m

The amount of external kinetic energy transferred to the structure is then

2 2
mv_Ii

E, = = 2.31
k > o (2.31)

If the impulse is the characteristic impulse, i.e. it acts over infinitely short time, then
it might be assumed that the external energy is fully converted to the kinetic energy of
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the structure. If the impulse acts over a longer time, then the structure will transform
part of the external energy into the internal energy (as it deforms under load, i.e. the
internal resistance of structure R # 0), even if the value of impulse is the same as the
characteristic one. This means, that the external work applied on the body can be equal
to the external kinetic energy only in the case of characteristic impulse. Transformation
of arbitrary impulse into characteristic impulse is presented in Section 2.4.2. Influence
of the impulse duration on external work can be seen in Figure 2.23.

F

A

We1 characteristic impulse

/

~ I =1, but We,l > We,g

We o for an arbitrary
impulse

A\ 4
~

dt tq

Figure 2.23: Influence of impulse duration on the value of external work. From Klorek

and Sandberg (201 3).

In the case of a characteristic impulse, it can be stated that the external work applied on
the structure is

IZ
_ 'k

We:Ek—%

(2.32)

2.4.4 Internal work

If the structure is subjected to an action of external work, it will start to deform. These
deformations will cause the energy to be stored as potential energy (spring and mass
analogy). If energy losses due to e.g. friction are disregarded, the element will deform as
long as the whole kinetic energy is converted into potential energy, or until it collapses.
Dynamically loaded structures vibrate about the equilibrium position. This means that
after the whole energy has been stored as potential energy in the form of deformations,
the structure will start to sway back (provided that there is elastic energy stored in the
body), losing this energy and converting it to kinetic energy again. This process is
recurring and as long as there is no damping or other forms of energy losses, it will
continue. The change of potential energy of the structure is described by the internal
work W; and is studied in this section for different material response models.

24 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2015:86



Elastic model
The response of an elastic model can be seen in Figure 2.24, with the work being the
area under the force-displacement diagram.

F,R
A

Uel

Figure 2.24: Internal and external work in elastic response. From Johansson and Laine

(2012b).
The internal work in this case can be expressed as:
ku?
i = Tl (2.33)

From the conservation of energy law, i.e. W; = W,, we get:
2 2
dic _ kg
2m 2

(2.34)

[ k
After substituting @ = 4/ — in Equation (2.34), the correlation for the maximum defor-
m

mation may be expressed as:
I
= K (2.35)

Plastic model
The response of a perfectly plastic model can be seen in Figure 2.25.

F,R
4

~

Up]

Ve

Figure 2.25: Internal and external work in plastic response. From Johansson and Laine
(2012b).
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The internal work in this case can be expressed as:

Wi = Ritp; (2.36)
From the conservation of energy law, i.e. W; = W,, we get:

12

k= Ry, (2.37)

2m P

The maximum deformation for a perfectly plastic material response is
2
I
2mR,,

Uy = (2.38)

Elastoplastic model

The elastoplastic response is the most complex of the three models considered. The work
equlibrium can be seen in Figure 2.26.

Uep = Uep,el T Uep,pl

| ~
| \Wl u
I |-

Uep,el  Uep,pl

Figure 2.26: Internal and external work in elastoplastic response. From Johansson and
Laine (2012b).

where the total deformation u,), is a sum of total elastic deformation u,, ., and total
plastic deformation u,), ;.

Internal work for this response can be written as

W= S Rttt = 2 (-4 2t i) (2:39)
From the conservation of energy law, i.e. W; = W,, we get:
Hence, by inserting Equation (2.38) into Equation (2.40)
uep,pl:i_wz pl—M
2mR,, 2 2

Note: u,; from Equation (2.38) is not the same plastic deformation as u, ,;.
The maximum total deformation for elastoplastic case can be therefore defined as

Uep,el _ R_m I]%
2 2k 2mR,,

Uep = Uep el T Uep pl = Upl T (2.41)
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2.5 Transformation into equivalent SDOF/2DOF system

2.5.1 Introduction

Continuous structures like beams or slabs have infinitely many degrees of freedom.
Computational discretization of the results in model with a finite number of degrees of
freedom, which can be solved using for instance finite element method. When designing
against explosion, a continuous structure is often transformed into a Single Degree of
Freedom (SDOF) system of mass on a spring. Such a system has one degree of freedom,
and can move only in one direction. The concept of transformation can be seen in Figure
2.27.

(t)

q(z,t) l F
F/\_/_TL\/—\/‘ —— :T‘ U= ug
‘ m
. m 1;:’ EI kéic
| A l ’

Figure 2.27: The concept of transformation into equivalent SDOF system. From Johans-
son and Laine (2012b).

In order to conduct the transformation, a system point representing the structure must be
chosen. It is the vibration of this single point, that the mass-spring SDOF system will
simulate. The system point can be arbitrary, but usually the point in the centre of the
beam or slab is chosen. Another alternative is to choose a point where the displacement
reaches its maximum, as it may not coincide with the centre for different types of
boundary conditions.

When a structural system consisting of slab on beams or beam on beams is studied, it is
possible to capture its behaviour in a better way by adopting a transformation into a Two
Degrees of Freedom system (2DOF), consisting of two masses on two springs. The idea
here is to treat each structural part (upper beam/slab or lower beam) as a separate mass
with distinctive stiffness. The principle of the transformation can be seen in Figure 2.28.

lF(t)

|

Figure 2.28: The concept of transformation into equivalent 2DOF system.
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2.5.2 Single Degree of Freedom system

A typical Single Degree of Freedom system (SDOF) consisting of a mass m on a spring
with stiffness k and a damper with damping c is studied. The system and its free body
diagram can be seen in Figure 2.29. The force in the damper is proportional to the body’s
velocity and the force in the spring is proportional to the displacement of the mass. The
external force acting on the body is referred to as F(z).

/1]

k=W

F, = ku T TFC—cu
lF@) lF@

(a) (b)

Figure 2.29: Single Degree of Freedom system (a) and free body diagram (b).
According to Newton’s second law, following relationship can be established:

mii=F(t)—F,—F.=F()—ku—cu
Consequently, the governing equation of motion can be expressed as:

mii+ cii+ku = F(t) (2.42)

And the eigenfrequency of the body’s vibration (when disregarding damping) is expressed
as:

W=1/— (2.43)

The Single Degree of Freedom system can be numerically solved for displacement with
Central Difference Method (CDM), which is described in Appendix A.

2.5.3 Two Degrees of Freedom system

A typical Two Degrees of Freedom system (2DOF) consisting of masses m; and m; on
springs with stiffnesses k; and k» and dampers with damping c¢; and c; is studied. The
system and its free body diagram can be seen in Figure 2.30. Forces in the dampers
are proportional to the relative velocity of the mass and the forces in the springs are
proportional to the relative displacement of the body. The external force acting on the
body is referred to as F(t).

The forces acting on the bodies are
Fyp=ki(uy—up)  Fp=ci(u—ia) Fo=ku  Fa=cp
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Second Newton’s law for the first mass gives

mlu‘l:F(t)—k1u1+k1u2—c1u1+c1u2 (2.44)

and for the second mass

matin = kyuy — kjus +ciup — cin — kour — cotin (2.45)
////

kg tj C2

mo IUQ

Fkl Fcl Fk2 F(:2
2t SRS
mq mo
m

(a) (b)

Figure 2.30: Two Degrees of Freedom system (a) and free body diagrams (b).

By rewriting equations (2.44) and (2.45) into matrix form, the system of equations of
motion is obtained

mp O li1 C1l —C1 u1 ki —k; up| F(l‘)
{0 mz} {uz} T {—Cl cl +6‘2} {uz} + {—kl ky —i—kz} Ltz] o { 0 (2.46)
Equation (2.46) can be written in algebraic form as
Mii+ Cu+Ku=F 2.47)
where M is the mass matrix, C is the damping matrix, K is the stiffness matrix of the
system, and F is the force vector.

Damping reduces the amplitude of vibration over time. Since in design of structures
subjected to explosion loads, only the maximum amplitude of vibration is usually of
interest and damping will therefore be disregarded in this study as well, as recommended
in Johansson and Laine (2012b).

In order to determine the eigenfrequencies of the system, an eigenvalue problem must be
solved. The non-trivial solution of this problem can be expressed as

det (K—AM) =0 (2.48)
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where A is a vector containing the angular eigenfrequencies a)l-zz

2
A= {g;z} (2.49)

An explicit form of the eigenfrequency for each body is then solved as

k k k
wl:\/er v K o (2.50)
2m1m2
kimi —r+k k
0)2:\/ 1mp —r—+Kimy + Kymy 2.51)
2m1m2
where
r= \/ k3m? + 2k3mimy + k3m3 + 2k kom? — 2kikymymy + k3m? (2.52)

The eigenvector ¢; (modal shape) of the system can be solved for each eigenfrequency
as
(K—AM)¢; =0 (2.53)

The 2DOF system can be solved numerically for displacements u;(¢) and u;(¢) with
Central Difference Method, which is described in Appendix A. Octave code for solving
an arbitrary 2DOF system with different material response of individual elements, as
well as with different properties of the elements in different directions is included in
Appendix C.

2.5.4 Transformation factors

As already described in Section 2.5.1, a beam or slab can be transformed into an
equivalent SDOF mass-spring system. Starting from Equation (2.42) and adopting
subscript e as to indicate that this is an equivalent system, one gets:

Meli + Coli + kot = Fo (1) (2.54)

where m, is the equivalent mass, c, is the equivalent damping, k. is the equivalent
stiffness and F,(¢) is the equivalent force. Based on provisions described in Section
2.5.3, the damping contribution is disregarded. Denoting the mass of the structure as m,
its stiffness in the system point as &, and the force acting on it as F (), the equivalent
parameters can be expressed as:

Me = KM (2.55)
k, = Kk (2.56)
F, = kpF (2.57)

The parameters k;,, k; and K are called transformation factors. According to Biggs
(1964), the following relation is fulfilled

Ky = Kf (2.58)
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The equation of motion can be then written as:

Kmmii + Kiku = KpF (1) (2.59)
After division by kr, one gets
Kn .. K
= i+ —ku = F (1) (2.60)
Kr Kr

And using equation (2.58) in equation (2.60) results in:

5o i+ ke = F (1) 2.61)
KF

K,
The ratio — is defined as
KF
K,
Kb = — (2.62)
KF

The final form of the equation of motion for the transformed system is then

Ky - mii + ku = F (1) (2.63)

The transformation factors are derived from energy conservation rules. For more details
and for complete derivations, the reader is referred to Johansson and Laine (2012b).

r4 e 4 41

2 w(x) ==
—_—

L

'II'
Figure 2.31: Notations used in derivation of transformation factors K.

For a simply supported beam of length L with mass distribution m’(x) (according to
Figure 2.31), the mass transformation factor xj, is defined as:

L
_ [ () u(x)?

The force transformation factor xr is defined as:

L
~[q(x)-u(x)
Ky = O/ iy (2.65)

And the stiffness transformation factor, xj can be expressed as:

L
[ M(x)-u" (x)
K = 0/ S (2.66)
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Provided that the mass distribution and uniformly distributed load are constant along the
beam (i.e. m'(x) = m’ and ¢(x) = ¢), the expressions take the form:

L
1 [ u(x)?
Knm = — 5—dx (2.67)
L uy
0
L
1 [u(x)
Kp = — dx (2.68)
LJ us
0

where u(x) is the deflection shape and u,(x) is the displacement of the system point. It
depends on boundary conditions and whether the assumed response is elastic or plastic,
see Figure 2.32.

| ] | 1 |
A R o}

- o~
plastic hinge

Figure 2.32: Difference in the shape of deflection for elastic and plastic response. From
Johansson and Laine (2012b).

In the case of a simply supported beam from Figure 2.31 subjected to uniformly dis-
tributed load ¢, which has a system point in the middle, the maximum displacement of
this point is

5qL*
- .
U = 384ET (2.69)

and the deflection shape u(x) can be expressed as:

gL’ 2 xt

The transformation factors are summarised for beams with different boundary conditions,
load case and type of material response in Table 2.4 and 2.5.
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Table 2.4: Transformation factor for a beam subjected to a point load. From Johansson

and Laine (2012b).
Point load on beam element
| 4 | £ o4 | ol |
K= | 1 ro A ol

Elastic deformation curve
K 0.486 0.371 0.455 0.236
Kr 1.000 1.000 1.000 1.000
KnF 0.486 0.371 0.446 0.236

Plastic deformation curve
K 0.333 0.333 0.333 0.333
Kr 1.000 1.000 1.000 1.000
KnF 0.333 0.333 0.333 0.333

Table 2.5: Transformation factor for a beam subjected to an uniformly distributed load.

From Johansson and Laine (2012b).

Uniformly distributed load on beam element

Elastic deformation curve
Kin 0.504 0.406 0.483 0.257
Kr 0.640 0.533 0.600 0.400
KnF 0.788 0.762 0.805 0.642
Plastic deformation curve
K 0.333 0.333 0.333 0.333
Kr 0.500 0.500 0.500 0.500
KnF 0.667 0.667 0.667 0.667
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2.6 Equivalent static load

2.6.1 General notes

In order to make the design against explosion loads easier, it is possible to convert
the impulse loading into an equivalent static load. According to Johansson and Laine
(2012b), handling of such loads becomes more instinctive for structural engineers. The
concept here is to find such a static load Q, for which the work it does corresponds to the
work done by the impulse load on the structure. To do this, energy balance equation are
used. Namely, the external work (Equation (2.32)) done by the impulse must be equal to
the internal work done by the force Q. The magnitude of equivalent static load depends
on the constitutive model used.

In general, the force Q can be expressed as
0= [atx)ar @71

2.6.2 Elastic model

For the elastic model, the force Q acting in the system point of simply supported beam
(i.e. in the mid-span) results in internal work according to
Quey
2
The maximum elastic displacement from Equation (2.35) is used instead of u,; in this
relation, giving

W; =

(2.72)

]
Wi — Ol

- 2.7
=50 (2.73)

From the work balance (external work - Equation (2.32)):

on I}
=k _ Tk 2.74
2mw  2m ( )

Thus the equivalent static load for elastic response can be defined as
O=Low (2.75)

2.6.3 Plastic model

For the plastic model, the force Q acting in the mid-span of the simply-supported beam
results in internal work according to

W; = Qupl (276)

The maximum elastic displacement from Equation (2.38) is used instead of u,,; in this
relation, giving

o1
= 2.77
= IR, 2.77)
From the work balance (external work - Equation (2.32)):
o _ i
— = 2.78
2mR,, 2m ( )
Thus the equivalent static load for elastic material response can be defined as
QO=R, (2.79)
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2.6.4 Elastoplastic model

For the elastoplastic model, the equivalent static force Q is obtained in the same manner
as for the plastic model. Therefore

O=R, (2.80)

However, in this model, the resistance R,, is defined with respect to the stiffness k and
elastic part of the deformation u,) o

Ry = Kitep o1 2.81)

2.7 Summary of SDOF system loaded with characteris-
tic impulse
A summary of fundamental parameters for Single Degree of Freedom system under

characteristic impulse can be seen in Table 2.6.

Table 2.6: Expressions for external and internal work, displacements and equivalent
static load for SDOF system loaded with a characteristic impulse Iy. From
Johansson et al. (2014).

Notion Elastic Plastic Elastoplastic

FR

External I/? I;? I/%
work T om T om T om
ku? R

Internal work W; = 261 W= Rm“pl W= 7’" (uep7el + 2Mep,pl)
Total defor- o o . Uep el
mation Utor = Ue] Utor = Up] Utor = Up] + 5
Elastic defor- Iy Ry

. Ue] = —— - Uepel = ——
mation mao ’ k
Plastic defor- I _ Uep,el
mation i ol = 2mR,, Heppl = Hpl 2
qulvalent 0=1ILo 0=R, O=R,
static load
Angular fre- o k
quency  Vm
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3 Parametric study - beam on spring supports

3.1 Introduction

The response of a structural system consisting of a beam resting on two beams depends
not only on the stiffness and mass of the beam that is directly exposed to the explosion
load, but also on the flexibility and mass of the supporting elements. For better under-
standing, as well as in order to achieve a smooth transition between a beam structure
transformed into a SDOF system, and such structural system described by a 2DOF sys-
tem, an intermediate study was carried out first. The aforementioned structural system
is simplified to a beam on spring supports, as seen in Figure 3.1. The lower beams are
transformed to springs with the same stiffness, k;, and no mass, while the upper beam
remains unchanged, with the stiffness k| and the mass m;.

ek T
— P ky = k2
= 7

Figure 3.1: Intermediate simplification of structural system.

The goal of this study was to develop a modified SDOF model that is able to describe the
displacement of a beam on spring supports, as well as the total displacement of the beam
and spring system. It was also of big interest to evaluate its response, and determine
reasonable limits stating for which stiffness ratios kj /k; it is needed to consider the
flexibility of lower beams, and when it could be safely disregarded.

The beam on spring supports was modelled in the commercial FE software ADINA
(2014). The modified SDOF model’s response was solved in GNU Octave (2014) using
the Central Difference Method. For the sake of simplicity, only linear elastic response
was studied.

3.2 Outline of the study

3.2.1 Parametric beams, springs and load case

The subjects of the study were three different fictitious concrete beams and three different
spring supports. Since in this study it was not of high importance to keep practical cross
section’s dimensions of the beams, but rather to have reasonable parameters such as
eigenfrequency (after transformation into SDOF), the cross section was in each case
adjusted to achieve the desired parameters. Each beam had the length L of 4 m and the
mass Mpeqm, 0f 1000 kg. Young’s modulus for the concrete was chosen as E = 33 GPa.
Concrete density was chosen as p = 2400 kg/m?>. The procedure of determining the
cross section dimensions (height 4 and width b) was as follows:
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1. The frequency (in Hz), f, of an equivalent SDOF system (transformed from a

simply supported beam) (in Hz) is chosen.

2. The stiffness of the beam is calculated as

2 2 2
ki = mi0” = 47" KurMpeam |

(3.1)

In this case, a frequency of an equivalent SDOF system was chosen. The system
was created from a simply supported beam subjected to an evenly distributed load
- hence the transformation factor x;,,r = 0.788.

3. The moment of inertia is calculated as

1

5k L?
~ 384E

4. The cross sectional area A is determined from

_ Mpeam

~ pbhL

5. The height is obtained as

6. The width is obtained as

List of studied beams can be seen in Table 3.1:

Table 3.1: Parametric beams used in the study.

N
Beam fiHz] | ky; {a h; [m] | b; [m]
Beam 1 8 1990975 | 0.0761 | 1.369
Beam 2 16 7963902 | 0.152 | 0.683
Beam 3 4 497744 | 0.0381 | 2.738

(3.2)

(3.3)

(3.4)

(3.5)

With the beam stiffness denoted as & ;, and the spring stiffness denoted as k; ;, the choice
of the three parametric springs and their stiffness ratios with respect to beam 1 can be
seen in Table 3.2 and the beam-to-spring stiffness ratios used in this study can be seen in

Table 3.3.
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Table 3.2: Parametric springs used in the study.

ko, j

N
Spring Stiffness ko ; {E} Spring to beam stiffness ratio h

Spring 1 1 990 975 1
Spring 2 995 488 1/2
Spring 3 331 829 1/6

Table 3.3: Beam to spring stiffness ratios used in the study.

ki :

% Spring 1 | Spring 2 | Spring 3
2,j

Beam 1 1 2 6

Beam 2 4 8 24

Beam 3 0.25 0.5 1.5

The load case in the study was chosen to be a line load of the same value for every
beam. A triangular impulse was chosen, with the maximum force being gqx = 25 kN/m
during the time #{ = 2 ms. This is a reasonably low value of an explosion load, but for
the parametric study it is not that important.

3.2.2 Modelling in ADINA

In the model, 3-D beam elements were used. The beam consisted of 30 elements along
the length. Material type for the concrete beam was modelled as linear elastic, with spec-
ified Young’s modulus, Poisson’s ratio and the density, which can be seen in Table 3.4.

Table 3.4: Material parameters used in the FE analysis.

Parameter Value
E 33 GPa
vV 0.2
5 2400 kg/m>

For modelling supports, there are two alternatives. The first alternative involves the use
of spring elements. Their length was set to one metre and the corresponding stiffness was
assigned to them. The second alternative involves the modelling of 1-D truss elements
and assign them such length, cross sectional area and Young’s modulus, that the resulting
stiffness corresponds to the desired spring stiffness. The stiffness of the truss element in
its longitudinal direction can be expressed as

_EA
L

In this case, the length of this element was chosen as L = 1 m, and the cross sectional
area was decided to be A = 1 m?. A linear elastic material with the needed Young’s
modulus was created and assigned to the truss elements.

k (3.6)
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Both models were tested, and the results agreed with each other. The alternative with
spring elements was eventually chosen to conduct the rest of the study, as it required less
work. As for outputs, the vertical displacement of the mid-span of the beam was recorded,
as well as the vertical displacement of the beam’s end (i.e. spring elongation/contraction).

According to Carlsson and Kristensson (2012), the time increments for the implicit
analysis need to be carefully chosen. The time function assigned to the load in ADINA
was specified so that the load increment from O to 1 happens during the first 0.2 ms, and
then drops to 0 at 2 ms and stays there. In the dynamic analysis, a total of 1500 time
steps were used, each one with the duration of 0.2 ms, giving the total time of analysis
of 0.3 s. The shape of the time function can be seen in Figure 3.2.

) A

0.2 2

Figure 3.2: Time function used to describe the load.

3.3 Modified transformation factors

3.3.1 General notes

When transforming the structure into an equivalent SDOF system, transformation factors,
kr and K, are needed, and as already mentioned in Section 2.5.4, those depend on
the deformation shape. Due to flexible supports, the deformation shape of the beam
is now not the same as it was earlier, i.e. for simply supported beam. Therefore the
transformation factors listed in Section 2.5.4 are not valid anymore and cannot be used
in an analysis with the Central Difference Method; new transformation factors must
be derived. The only entity that changes is the deformation shape, as it must take the
spring flexibility into account. Apart from it, the procedure is the same as presented in
Johansson et al. (2014).
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3.3.2 Beam subjected to uniformly distributed load

q
kz% ki %kz
-/x 7/
A L L

Figure 3.3: Beam on spring supports subjected to uniformly distributed load.

For the beam presented in Figure 3.3, the deformation shape is the sum of the simply
supported beam deformation and the spring contraction, and therefore it can be expressed

as
qL3 23 ¥ qL L
_ XN sor 0<x< = 3.7

“¥) = S4E ( 2 r) T VR S

The system point is again chosen in the mid-span of the beam, and its deflection can be
expressed in a similar manner.

S5qL*  qL
T 384E1 T 2k 38)
The beam stiffness is denoted k; and is in this case equal to
384E1
kg = —— 3.
1= (3.9)

The transformation factors are defined in Section 2.5.4. If the uniformly distributed load
and distributed mass are constant along the beam (i.e. g(x) = g and m’(x) = m), then the
integrals can be expressed and simplified as

3 3 4
L L/2 L/2 qL zi + X_ + ﬁ
2 [ul) 24EI 2 13) " 2k
(ki ko) = == / / - dx =
384EI ' 2k,
32k,
_ 16(kLP+60EI) kit 55
C 5(5kL3H+192EI) Tk + 2k
(3.10)

2
gL’ 22 x* q
L L/2 /2 —— x___|__ 4+
1 [u?(x 2 [ ut(x (24EI ( L? 2k
Km(kl,kz):z/ (Z)dxzz/ (Z)dx: / 2/ dx
0 " o 0

u 5qL4 LaL gL
384E1 ' 2k,

,  6dkiky  15872k3
_ 128(90720(EI)? +3024EILk; + 31L°k3) K+ —s—+ g7
315 (SkoL3 + 192E1)? (ky + 2k)?
(3.11)
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It is therefore possible to compute the modified transformation factors for varying spring
stiffness k. These can be seen in Figure 3.4, Figure 3.5 and Figure 3.6, which present
the variation of kr, K, and K, for varying beam-to-support stiffness ratio k; /k.

r—|1 10 T T T T T T T T

)

S 09}

S

o)
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8 0.77 k 1

= kp ! kp
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0 4 8 12 16 20 24 28 32

Stiffness ratio, k /k»

Figure 3.4: Modified transformation factor, K, for varying beam-to-support stiffness

ratio, ky /ky. Beam subjected to uniformly distributed load.
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Figure 3.5: Modified transformation factor, K, for varying beam-to-support stiffness

ratio, ki /ky. Beam subjected to uniformly distributed load.
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Figure 3.6: Modified transformation factor, K, for varying beam-to-support stiffness
ratio, ky /ky. Beam subjected to uniformly distributed load.

3.3.3 Beam subjected to point load

Figure 3.7: Beam on spring supports subjected to point load.

For the beam presented in Figure 3.7, the deformation shape is the sum of the simply
supported beam deformation and the spring contraction, and therefore it can be expressed

as

PIL? 43 P L
- Bx— )+ for 0<x< = 3.12
u¥) = 13E7 ( S ) "o, O Usrs3 (3.12)

The system point is chosen in the mid-span of the beam, and its deflection can be
expressed in a similar manner.

= PL + P (3.13)
T 48ET T 2k, '
The beam stiffness is denoted k; and is in this case equal to
48E1
ki = [ (3.14)

For the beam subjected to a point load, the transformation factors are defined in Sec-
tion 2.5.4. If the distributed mass is constant along the beam (i.e. m’(x) = m), then the
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integral can be expressed and simplified as

m(k1,k2) =

PI? a3\ P\’
L L)2 L)2 _
0 [P 2 (48E1 (SX )*2@) .
L PL} P\’
0 0 + —
48E1 ' 2k,
5kik, 68k%
Skiky 68K

_ 20160(EI)*+ 1050EIL3k, + 17L%3 2 35
35 (kL3 + 24E1)? ) (ki +2k2)*

ki +

(3.15)

It is therefore possible to compute the modified transformation factors for varying spring
stifftness kp. These can be seen in Figure 3.8, which presents the variation of K, = K, r

for varying beam to support stiffness ratio & /k.
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Figure 3.8: Modified transformation factor, K, for varying beam-to-support stiffness
ratio, ki [ky. Beam subjected to a point load.

3.3.4 Discussion

It can be seen in Figure 3.4, that when the spring is much stiffer than the beam (i.e.
ki /ky = 0), the behaviour of the beam is close to a simply supported beam, i.e. the
deformation form of a soft beam on stiff supports can be compared to the deformation
form of a simply supported beam. The transformation factor for a simply supported
beam is K = 0.504, and it can be seen that this value is reached when k| /k; = 0. The
same applies for K;,, and K;,,r, which reach the values x;,, = 0.504 and «;,r = 0.788 when

the ratio k /k, tends to zero.

For a beam subjected to point load, the situation is analogous. Although x;, and K,,r
have the same values (due to kr = 1 from definition), it can be seen that for a soft beam
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on stiff supports, the values reach ky; = K,,r = 0.486, which is the solution for a simply
supported beam.

For higher values of stiffness ratio, it is evident that all transformation factors converge
to 1.0 as the beam becomes stiffer. If the beam is very stiff (compared to the supports),
then its movement can be compared to a rigid body motion; i.e. there will be vertical
deformations (due to spring movement), but the beam itself would hardly bend regardless
of the type of loading due to very high stiffness.

For the stiffness ratios from Table 3.3, the corresponding transformation factor, x,r, can
be seen in Table 3.5. They are then used in hand calculations, as well as in Octave for
solving the SDOF system with the Central Difference Method.

Table 3.5: Transformation factors, Ky, for the studied cases.

KnF Spring 1 | Spring 2 | Spring 3
Beam 1 | 0.815 0.849 0.916

Beam 2 0.892 0.932 0.970
Beam 3 0.789 0.797 0.830

3.4 Modified SDOF system

3.4.1 Description of the system

Beam on spring supports can easily be transformed into an equivalent SDOF system.
The concept of transformation is presented in Figure 3.9.

lF(t)

F(t) o
g g k2 ko
Z

Figure 3.9: The concept of transformation into an equivalent SDOF system.

The main difference now (compared to a case with stiff supports) is the presence of
additional springs with stiffness kj, otherwise the procedure is analogous to that given
in Section 2.5.2. The group of springs is replaced with one spring with an equivalent
stiffness k.. Since the springs are connected both in parallel and in series, therefore the
following correlation is true:

1 1 1
—=—+4— 3.16
Hence the equivalent stiffness can be expressed as:
2k1ko
= 3.17
‘= etk (3.17)
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After employing the Central Difference Method, the deformation u; (¢) can be obtained.
It is an overall system deformation. However, the displacement of the beam only is often
of interest, as it is transferred directly to bending moment and can be used in design. To
find the deformation of the beam is to find the elongation/contraction of the first spring
with stiffness k1. The force in the fictitious equivalent spring can be calculated as

Fi(t) = keu (1) (3.18)

The two springs connected in parallel can be treated as one spring with stiffness 2k;.
Then the system takes the form of a mass on two springs connected in series, with
stiffnesses k; and 2k, respectively. Since those springs are connected in series, the force
in each of them is the same. Therefore the deformation of the lower spring, uz(¢), can be
expressed as

F(t) _ kewi (2)

) = =
(1) ks 2ky

(3.19)

The resulting elongation/contraction of the upper spring, uy (¢), is then the difference
between the overall system deformation and the deformation of the lower spring, i.e.

uy (t) = ui(t) —ur(t) = uy (1) — ke;—/iz(t) = (?) (1 B 2k_k€2) B

2kiky ki ks
— Il LA T R 1— _
() ( 2% 2k +k1)) (1) ( 2% -|-k1) )T

3.4.2 Hand calculations

(3.20)

Simple hand calculations can be performed for this modified SDOF system in order to
estimate the response of the structure. Knowing the equivalent stiffness, the angular
frequency of the system can be calculated as:

k
OspoF = | ———— (3.21)
KinFMpeam

Finally, the total elastic deformation of the structure (together with springs’ movement)
can be determined with
Ik

Umax,SDOF = (3.22)
KmF Mpeam WSDOF

where I; denotes the characteristic impulse and ;,r = x(k1, k) represents the aforemen-
tioned modified transformation factor.

If only the beam deformation (without springs’ movement) is of interest, the procedure
can be slightly modified to obtain an estimate. The angular frequency of the beam is
calculated as

k
wp = — (3.23)
KimFMpeam

and the total elastic deformation can be determined with
I
UU max,SDOF = ———————— (3.24)
e KinF Mpeam DOp
where I, denotes the characteristic impulse and x,,r = x(k,k>) represents the aforemen-
tioned modified transformation factor.
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3.5 Discussion and conclusions

3.5.1 Results of the parametric study

Selected results of the analysis are presented in Figure 3.10 to Figure 3.12, which
correspond to the cases where k /k, = 0.25, k; /ko = 2 and k| /kp = 24, respectively.
These figures represent the relative deformation 7 as a function of time #. The parameter
n is defined as the ratio between the actual deformation of interest and the maximum
total deformation of the structure obtained in the FE analysis. It can be expressed as

N =40 (3.25)
Umax ADINA

For results of the remaining cases, the reader is referred to Appendix B.

There are three pairs of lines in each graph. In each pair one line signifies the total
relative deformation of the structure (i.e. deformation of the beam along with contrac-
tion/elongation of the spring supports), while the other corresponds to the deformation
of the beam alone. The solid lines indicate numerical results from the Finite Element
Analysis in ADINA, while the dashed lines denote the numerical solution of a SDOF
system from Octave, using the Central Difference Method. Dash-dotted lines represent
the results of hand calculations, i.e. using Equation (3.22) and (3.24). In ADINA, the
displacements of the mid-span point and end support were stored. The aforementioned
"beam only" displacement is in this case the difference between those two deformations.

It can be seen that in each case, the SDOF system displacement fits quite well to the actual
vibration obtained from FEM. The inconsistency in eigenfrequencies is rather small, and
there are no secondary oscillations. Furthermore, the maximum deformation are close
to each other, which proves that the results are good. However, when looking at the
vibration of the beam only, one can see secondary oscillations which are not captured by
the equivalent SDOF system. This is believed to be the influence of higher eigenmodes,
which are present in the structure, and are taken into account in the FE analysis, but
not in the SDOF system. Even though those peaks and valleys are not preserved in the
SDOF model, the overall behaviour and amplitude seem to fall reasonably as an average
value, and the results are therefore deemed reasonable.

As for the results of the hand calculations, it can be seen that for low stiffness ratios, the
results are not on the safe side for the whole structure as well as for the beam only. As
the stiffness ratio increases, the result of the hand calculation for the beam begins to be
on the safe side, which is a good indication.

The beam-to-support stiffness ratio has a large influence on the relation between the
beam and overall deformation. When the ratio k; /k; is small (close to 0), it means that
the beam is relatively flexible (or the support is much stiffer than the beam). Therefore,
the energy coming from the explosion will be consumed mainly on the movement of the
beam, as it either deforms easily or has stiff supports and acts like a simply supported
beam. Then the total deformation and beam deformation are expected to be reasonably
close to each other, and this indeed is the case, which can be seen in Figure 3.10. The
total deformation comprises almost only the beam deformation, since the supports are
relatively stiff and not expected to deform much.

46 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2015:86



Relative deformation, n [-]

0.00 0.05 0.10 0.15 0.20 0.25
Time, ¢ [s]

Total - FEM
——Beam - FEM
Total - SDOF
----Beam - SDOF
Total - Hand
= - Beam - Hand

Beam
frequency
4 Hz

0.30

Figure 3.10: Relative vertical displacement as a function of time. Beam subjected to

uniformly distributed load. Stiffness ratio ky /ky = 0.25.
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Figure 3.11: Relative vertical displacement as a function of time. Beam subjected to

uniformly distributed load. Stiffness ratio ky [ky = 2.
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Figure 3.12: Relative vertical displacement as a function of time. Beam subjected to
uniformly distributed load. Stiffness ratio ki /ky = 24.

As the stiffness ratio grows, the beam becomes relatively stiffer (or the supports are
becoming more flexible). This means, that there will be no definite predominance of
neither beam nor support in deformation. It can be seen in Figure 3.11 and Figure 3.12,
that the higher the stiffness ratio gets, the greater the discrepancy between beam and
support deformation.

In the other extreme case illustrated by Figure 3.12, the beam-to-support stiffness ratio is
ki /ky = 24. This means, that the beam is much stiffer than the support (or relatively that
the support is very flexible in comparison with the beam). In such a case, the expected
response is mainly due to support movement. The beam should react as a rigid body,
and undergo a rigid body motion, but should not be greatly influenced by bending. This
is indeed the case now, since it can be seen that the amplitude of the beam vibration is
approximately 10 % of the total deformation in the structure. It is also worth to mention
that, the higher the stiffness ratio, the less influence of secondary oscillations there is,
and the SDOF model becomes more accurate compared to the FEM response.

As far as the hand calculation results are concerned, it can be seen that the total de-
formation is not always on the safe side, but reasonably close in each case. However,
the deformation of the beam only calculated by hand, starts to deviate from the actual
deformation value even at rather small changes of k; /k,. Even though for low stiffness
ratios, k1 /k, the results agree to a reasonable extent, this concurrence ceases quickly.
From the rest of results included in Appendix B, a conclusion can be drawn; the higher
the stiffness ratio is, the more the deviation of the hand result from the actual value. The
beam’s deformation is of particular interest, because it is further used to estimate the
design bending moment, which can govern the design process.

48 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2015:86



The relative deformation of the beam, 7, is defined as:

Uy max,SDOF
= LUmaxSDOF (3.26)
Umax ADINA

Those parameters were gathered for various stiffness ratios, and are presented in Fig-
ure 3.13. This graph summarises the conclusions mentioned above and provides a quick
reference on the relevance of the stiffness of the support on the deformation of the beam.
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Figure 3.13: Relative deformation of the beam, My, as a function of the stiffness ratio
ki /ks.

3.5.2 Preliminary conclusions

The study included in this chapter is to be considered as an intermediate step between
a SDOF simplified model and a structure represented with a 2DOF system. Granted
that such model corresponds well to the reality and is efficient, a preliminary conclusion
could be drawn already now. There is not much expected to be gained (in terms of total
deformations) by expanding the analysis into a 2DOF system for a structure (structural
system) with a low stiffness ratio. On the other hand, a structure with a high stiffness
ratio, k1 /k, could preferably be analysed using a 2DOF model, since the expectations in
terms of lower deformations are high. However, it should be noted that this analysis was
carried out only for a linear elastic material response, and not much can be said about
the ideally plastic or elastoplastic response.
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4 Transformation into 2DOF system

4.1 Introduction

As a next step in the process, a structural system consisting of a beam resting on two
beams is studied. The response of such system cannot be easily analysed using a SDOF
model, since it was already proved in Chapter 3 that the response of the structure depends
on the structural properties of individual members. In the study carried out in that chapter,
only the influence of the member’s stiffness was considered, since the spring supports
were assumed to have no mass. Now, on the other hand, both parts of the structure have
both stiffness and mass, and it is believed that not only the stiffness ratio k; /k;, but also
the mass ratio m /my has influence on the response. Furthermore, it is also reasoned that
the angular frequency ratio, @; /@, plays also an important role on the response.

The idea here is to transform the structure into an equivalent 2DOF system, so that each
part has its own degree of freedom and therefore such system is believed to be able
to describe the vibration of the whole structural system. The concept can be seen in
Figure 4.1.

Figure 4.1: The concept of transformation into an equivalent 2DOF system.

The aim of this study was to develop a 2DOF model, that can describe the vibrations of
both parts of the structure (upper and lower beam). It was also of big interest to compare
the response of such structure (especially the upper beam) and a simply supported beam
with the same properties. This way it can be determined if, when, and to what extent the
deformation is overestimated by a SDOF model.

The structural system consisting of a beam resting on two beams was modelled in the
commercial FE software ADINA (2014). The 2DOF system was solved using the Central
Difference Method in GNU Octave (2014). For the sake of simplicity, only the linear
elastic response was studied.

4.2 Outline of the study

4.2.1 Parametric beams and the load case

In order to achieve a wide sweep of stiffness ratios, a total of 13 reinforced concrete
beams were created, where the three parametric beams used in Chapter 3 were treated as
a starting point. The rest of the beams was created according to the procedure described
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in Section 3.2.1. However, in this study the stiffness is a very important parameter, hence
it was the main parameter for beam creation. Each beam was 4 m long and the cross
section was adjusted so that it weighted 1000 kg. The stiffness and mass of the upper
beam is denoted as k; and m, while the stiffness and mass of a single lower beam is
referred to as k» and my, respectively.

It is assumed, that the upper beam is subjected to a uniformly distributed load coming
from an explosion. Moreover, it is assumed to be simply supported on the two lower
beams. Hence the stiffness of this beam can be expressed as

384E1
kf = —=— 4.1
1= 373 (4.1)
The lower beams are simply supported, and are assumed to be subjected only to a point
load in the mid-span (which comes from the upper beam). The stiffness of one such
beam can therefore be calculated as

48EI
k=

4.2)

A list of the studied beams can be seen in Table 4.1, and beam-to-beam stiffness ratios
can be seen in Table 4.2.

Table 4.1: Parametric beams used in the study.

Beam no. Stiffness, Stiffness, Height [m] | Width [m]

ki = 384E1 {E} ky = 48E1 {E}

5L |m L3 |m

2 2 2 2 2 ¥
Beam 1 1990 975 1 244 359 0.07611 1.36873
Beam 2 7 963 902 4977 439 0.15221 0.68346
Beam 3 497 744 311 090 0.03805 2.73746
Beam 4 996 488 622 805 0.05381 1.93562
Beam 5 331 829 207 393 0.03107 3.35267
Beam 6 4 977 440 3110900 0.12033 0.86566
Beam 7 5972928 3733 080 0.13182 0.79024
Beam 8 10 618 528 6 636 580 0.17576 0.59268
Beam 9 13 273 160 8 295 725 0.19650 0.53011
Beam 10 15927792 9954 870 0.21526 0.48392
Beam 11 21237 056 13273 160 0.24856 0.41909
Beam 12 23 891 688 14 932 305 0.26363 0.39512
Beam 13 31 855 584 19 909 740 0.30442 0.34218
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Table 4.2: Stiffness ratios for the parametric beams used in this study. Valid for beams
of equal mass, i.e. my/my = 1.

% B1 B2 B3 B4 BS B6 B7 | B8 | B9 | B10 | B11 | B12 | B13
B1 1.60 | 040 | 640 | 320 | 9.60 | 0.64 | 0.53 | 0.30 | 0.24 | 0.20 | 0.15 | 0.13 | 0.10
B2 | 640 | 1.60 | 25.60 | 12.79 | 38.40 | 2.56 | 2.13 | 1.20 | 0.96 | 0.80 | 0.60 | 0.53 | 0.40
B3 040 | 0.10| 1.60 | 0.80 | 240 | 0.16 | 0.13 | 0.08 | 0.06 | 0.05 | 0.04 | 0.03 | 0.03
B4 | 0.80 | 0.20 | 3.20 1.60 | 480 | 0.32 | 0.27 | 0.15| 0.12 | 0.10 | 0.08 | 0.07 | 0.05
B5 0.27 | 0.07 | 1.07 | 0.53 1.60 | 0.11 | 0.09 | 0.05 | 0.04 | 0.03 | 0.03 | 0.02 | 0.02
B6 | 4.00 | 1.00 | 16.00 | 7.99 | 24.00 | 1.60 | 1.33 | 0.75 | 0.60 | 0.50 | 0.38 | 0.33 | 0.25
B7 | 480 | 1.20 | 19.20 | 9.59 | 28.80 | 1.92 | 1.60 | 0.90 | 0.72 | 0.60 | 0.45 | 0.40 | 0.30
B8 853 | 2.13 | 3413 | 17.05| 51.20 | 3.41 |2.84 | 1.60| 1.28 | 1.07 | 0.80 | 0.71 | 0.53
B9 | 10.67 | 2.67 | 42.67 | 21.31 | 64.00 | 4.27 | 3.56 | 2.00 | 1.60 | 1.33 | 1.00 | 0.89 | 0.67
B10 | 12.80 | 3.20 | 51.20 | 25.57 | 76.80 | 5.12 | 4.27 | 240 | 1.92 | 1.60 | 1.20 | 1.07 | 0.80
BI11 | 17.07 | 4.27 | 68.27 | 34.10 | 102.40 | 6.83 | 5.69 | 3.20 | 2.56 | 2.13 | 1.60 | 1.42 | 1.07
B12 | 19.20 | 4.80 | 76.80 | 38.36 | 11520 | 7.68 | 6.40 | 3.60 | 2.88 | 2.40 | 1.80 | 1.60 | 1.20
B13 | 25.60 | 6.40 | 102.40 | 51.15 | 153.60 | 10.24 | 8.53 | 4.80 | 3.84 | 3.20 | 2.40 | 2.13 | 1.60

For beams with equal mass, i.e. m;/my = 1, the angular frequency ratio can be easily

calculated, i.e.
k k
aomo_ oL (4.3)
ky my ko

Beams 8-12 in Table 4.1 result in very high stiffness ratios for some cases (up to
ki /ky = 153.6). When the length or the cross section dimensions are changed for the
beam, its mass and stiffness changes as well. If analysis of different mass ratios m; /m;
are of interest, it is easy to just increase or decrease the width of the cross section, as
the stiffness and mass of the beam change with the same factor. If the length is changed,
the stiffness changes in a cubic manner, for instance for a beam two times shorter, the
stiffness is eight times higher and the mass is two times lower. This provides a very wide
range of potential results for different stiffness and mass ratios. In this study, the analyses
were made up to the case where kj/ky = 36 (in most cases), since it was deemed a
reasonable limit of interest. There is also a possibility of changing the Young’s modulus,
E, if other stiffness is desired. However, this alteration causes deviations in the wave

propagation velocity (¢ = \/g), which is not desired (Carlsson and Kristensson 2012).

For example, an analysis with the mass ratio of m;/m; = 0.25 and an intermediate
stiffness ratio is needed. The subject of the analysis is chosen to be Beam 6 resting on
Beam 5 (two Beams 5 actually). From Table 4.2, the stiffness ratio k; /k; for such a
case is 24. However, this ratio is valid only when the masses of the beams are the same.
Beam 5 is needed to be four times heavier, and thus the width of its cross section is
increased four times and its length is kept constant. This results in four times greater
stiffness, resulting in the actual stiffness ratio kj /k, = 24 /4 = 6 and the actual mass
ratio my /my = 0.25.
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The explosion load used in this study is the same as the one used in Chapter 3. The
uniformaly distributed force with the magnitude of 25 kN/m is applied as a line load
on the upper beam only. The duration of the load is 2 ms. For a visual reference, see
Figure 4.3.

4.2.2 Modelling in ADINA

The model consisted of three beams, each one 4 meters long, see Figure 4.2. Material
type was set to linear elastic, with specified Young’s modulus, Poisson’s ratio and density,
see Table 3.4. The cross section dimensions are specified according to Table 4.1. For
representation of the beams, 3-D beam elements were used, and each beam was divided
into 30 elements. The model can be seen in Figure 4.2.

The boundary conditions at points B and C were set so that the translation in X, Y and Z
direction was locked at point C, and in X and Z direction at point B. Rotational degrees
of freedom at both points were kept intact, with the exception of rotation around the Y
axis at points C. This rotation was locked in order to prevent torsion of the lower beams.
Moreover, only small deformations were consider, so that Euler’s beam theory can be
applied.

The upper beam shares a node with each lower beam at their mid-span. At these points,
an end release is specified in order to assure that the upper beam is working as simply
supported. End release in ADINA is set for the bending moment about the Y axis.
Therefore, no moment can be transferred between the two beams at the support, and the
upper beam can be expected to work as a simply supported beam.

C

Figure 4.2: Model of the structure in ADINA.

The time function for the load was created, so that the initial increment from O to 1
happens during first 0.2 ms. This is to avoid computational errors, according to Carlsson
and Kristensson (2012). After this initial peak, the function is linearly decreasing until
the time is 2 ms, as can be seen in Figure 4.3. This results in a triangular impulse type,
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which sufficiently described the intended load case. The time step used in these analyses
was 0.2 ms, and there were a total of 4500 time steps, resulting in the total time of
response being 900 ms.

f@t) A

0.2 2

Figure 4.3: Time function for the load used in ADINA.

Two types of analyses were run in ADINA for the model; a modal analysis, which finds
the eigenfrequencies and eigenmodes of the structure, and a dynamic direct integrated
implicit analysis, which gets the deformation of the structure over time.

In the output, two specific displacements are of particular interest. The displacement
of the upper beam in mid-span (denoted further as u;4(¢)) and the displacement of the
mid-span in the lower beam (denoted further as u4(¢)). Since the displacement u;4(2) is
the total displacement of the structure, it is later post-processed into the deflection of the
upper beam only - uya(t):

uUA(t) = ulA(t) — M2A<t) “4.4)

The deflection of the lower beam uy4(¢) is equal to the deformation uy4(¢) and can be
obtained directly from ADINA.

MLA(Z‘) = btzA(l‘) 4.5)

An illustration of this reasoning can be seen in Figure 4.4.

UuirA

U24

Figure 4.4: Deformations obtained as a result of the analysis.
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4.3 Response of 2DOF model - transformation factors

4.3.1 Differential equation system

As derived in Section 2.5.3 and Section 2.5.4, the differential equations of motion for the
2DOF system are

KinF, M1 0 li1 kq —ky up| F(t)
0 2KmF2m2:| [uz} * {—kl ki +2ky| |lun| | O (4.6)

where k| and m are the stiffness and mass respectively of the upper beam, while k; and
my denote the stiffness and mass of one lower beam. The transformation factors K,r,
and K, can be obtained for each beam from Table 2.4 and Table 2.5, depending on the
loading conditions. It is assumed here, that the beams’ supports are not susceptible to
deformation, i.e. the beams can be treated as simply supported.

The upper beam is subjected to a uniformly distributed load, therefore the transformation
factor K5, from the table Table 2.4 is

Knr, = 0.788 4.7)

The lower beams are considered to be subjected to point load (reaction from upper beam),
hence the transformation factor K, obtained from Table 2.5 is

Konr, = 0.486 (4.8)

This equation system is solved using the Central Difference Method in GNU Octave
(2014). The outputs are the displacements () and u,(¢). Since the deformation u; is
the overall deformation of the system in the mid-span, the upper beam deflection uy (7)
can be calculated as

uy (1) = uy (t) —up(t) (4.9)

The deflection of the lower beam u;, can be obtained directly from the solution as

ur(t) = uy (1) (4.10)

The number and duration of time steps is the same as the one specified in ADINA. This
was done in order to assure, that at each time the same force acts on the body, so that the
comparison is easier.

In this section, when referred to the 2DOF model, the model using the ordinary transfor-
mation factors K, is meant.

4.3.2 Results and conclusions

For the first attempt, the response of the structure consisting of beam no. 1 supported
on beams no. 1, see Table 4.1, is studied. The mass of the upper and lower beam is the
same, therefore the mass ratio m; /my = 1. Even though both of the beams are the same,
the loading situation causes a change in their stiffness. The stiffness ratio can then be
obtained directly from Table 4.2, which gives k; /k, = 1.6. The results can be seen in
Figure 4.5. The top part of the graph represents the relative displacement of the mid-span
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of the upper beam, while in the bottom part of the graph the relative deformation of the
mid-span in the lower beam is plotted. The solid line indicates the equivalent 2DOF
system solution, and the dashed line is the solution from ADINA.
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Figure 4.5: Relative deformation of the upper (top) and lower beam (bottom) over time.
Beam no. 1 resting on beams no. 1 according to Table 4.1.

It can be seen in the graph, that the upper beam’s initial response (first two-three sways)
according to the 2DOF model agrees reasonably with the FE results both in terms of
the amplitude and frequency. However, the shift in frequencies becomes clearly visible
later on. The same applies for the lower beam, with the initial shape and frequency of
displacement agreeing between the model. However, the shift in frequencies is also
present, and the amplitudes of the 2DOF solution are somewhat higher than the actual
response.

It is worth to note that this is an intermediate stiffness ratio case. By looking at the
maximum amplitudes of both beams, it can be said that their movement is comparable,
i.e. both of them deflect up to 50-70% of the total deformation of the system. There is
no part of the structure, in which the movement governs the overall system behaviour;
no dominating frequency can be seen. The 2DOF model possesses two eigenfrequencies,
and neither of them is clearly visible here. It means that both eigenmodes represent the
energy of the movement, see Section 4.4.2.

Another case of interest is a structure comprising beam no. 11 resting on beams no. 7
with a chosen mass ratio of m;/my = 4. The length of the beams is kept unchanged
and therefore the width of beam no. 11 (upper beam) must be increased four times in
ADINA. At the same time, it also implies a four times greater stiffness. From Table 4.2
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it can be read, that for a case where beam no. 11 rests on beams no. 7 the stiffness ratio
is 5.69. However, since the upper beam is in reality four times stiffer, the actual ratio
will be ky /k, =4-5.69 = 22.76, which is a rather high ratio. The results are presented
in Figure 4.6.
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Figure 4.6: Relative deformation of the upper (top) and lower beam (bottom) over time.
Beam no. 11 resting on beams no. 7 according to Table 4.1.

For clarity, the results are presented for half the run time, i.e. up until 0.45 s. The shift
in frequencies between the FEM and 2DOF model is still present and is clearly visible
for both the lower and the upper beam. At the same time, the amplitudes of the lower
beam’s motion according to both models seems to agree with each other quite well, with
the 2DOF solution being on the safe side. The same can be said for the upper beam. The
amplitudes according to the 2DOF model seem to match the FE model, being a bit on
the safe side. However, the shift in the frequencies is still present and visible.

This is a high stiffness ratio case, and based on the conclusions from Chapter 3, the
movement of the lower beams should be dominant here. This is indeed the case, and
it can be seen by looking at the values of displacement for both parts of the structure.
The movement of the upper beam constitutes about 20 % of the overall movement of
the whole structure. The lower beam vibrates with a lower frequency, and the secondary
oscillations in this beam do not pose a significant influence. At the same time, the
behaviour of the upper beam is opposite. It vibrates mainly in the higher eigenfrequency,
but there is also a secondary vibration (with a longer period) at the lower eigenfrequency.
However, this secondary vibration does not influence the movement greatly. Therefore,
it can be concluded that the behaviour of the structure (in term of the magnitude of
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displacements) is governed by the vibration of the lower beams, and this is confirmed by
both models.

For the third case, a structure consisting of beam no. 1 placed on beams no. 6 is studied.
A mass ratio of m;/my = 0.25 is chosen, hence the width of the cross section of the
lower beams must be increased four times in ADINA. Table 4.2 states that the stiffness
ratio for this case is 0.64, but since the lower beam is now four times stiffer, the actual
stiffness ratio for this case is k1 /k, = 0.64/4 = 0.16, which is a low ratio. Results from
both models are presented in Figure 4.7.
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Figure 4.7: Relative deformation of the upper (top) and lower beam (bottom) over time.
Beam no. 1 resting on beams no. 6 according to Table 4.1.

For clarity, the results are again presented for the half of the run time, i.e. up until 0.45 s.
The first thing that is conspicuous when comparing the graphs, is that the response of the
upper beam according to the 2DOF model agrees very well with the FE solution both
in terms of frequency and amplitude. It cannot be clearly stated if the 2DOF model is
on the safe or unsafe side though. However, there is a discrepancy between the models’
response for the lower beam. On the other hand, the lower beam’s movement is just
a fraction of the overall structural movement, and hence is not that significant. The
equivalent 2DOF model seems to result in higher amplitudes, giving results on the safe
side. The overall shape of the lower beam’s deformation seems to match between the
models.

Since this is a low stiffness ratio case, one could expect that the overall movement of the
structure will comprise mainly the motion of the upper beam, as it is resting on relatively
stiff supports. By looking at Figure 4.7 it can be seen that this is indeed the case. By
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considering the absolute values of the deformation, it can be said that the vibration of the
upper beam is dominating. It is vibrating at a lower frequency, with no evident secondary
oscillations. Lower beams’ deformation constitute about 10 % of the overall structure
movement. The supporting beams also seem to vibrate at the same main frequency as
the upper beam.

As an overall conclusion, it can be said that for extreme cases (very high or very
low stiffness ratio), the behaviour of the 2DOF model seem to capture the behaviour
of the dominating beam quite well, while the behaviour of the remaining part needs
improvements both in terms of frequency and amplitude. For an intermediate case
(medium value of stiffness ratio), where no part of the structure clearly dominates in the
movement, this 2DOF model has problem describing either the upper or lower beam (in
terms of frequency and amplitude), and ameliorating measures can be taken.

4.4 Calibration of the 2DOF model - frequency

4.4.1 General notes

It was shown in Section 4.3, that the 2DOF model using traditional transformation factors
Knr; could be improved in order to better describe the behaviour of the whole structure,
not only part of it. This is especially the case for intermediate stiffness ratios, where
there is no distinctive domination in the movement between the respective parts of the
structure. In this section, the 2DOF model described in Section 4.3 is calibrated with
respect to frequencies.

4.4.2 Frequency domain and eigenmodes

It could be seen in the figures in Section 4.3, that the eigenfrequencies in the 2DOF
model do not always match (there is room for improvement) the frequencies of the
vibration of the model in FE analysis.

The model in ADINA has several degrees of freedom, which means that it will also have
several eigenfrequencies. Not all of them are of interest though, and not all of them play
significant role in the structure’s behaviour. In order to assess which modes are the most
important, a spectrum analysis was performed. The displacement function of both the
upper and lower beams - uy4 () and up4(r) were converted from the time domain into
the frequency domain. Such operation can be done by using Fast Fourier Transform
(FFT) algorithm in GNU Octave (function £ft), which results in a frequency spectrum.
In other words, if the movement of the structure is in reality a sum of all major and minor
vibrations at each eigenfrequency, the Fourier transform provides a way to evaluate the
influence of specific eigenfrequencies on the overall movement. More information about
the Fast Fourier Transform algorithm can be found in Duhamel and Vetterli (1990).

To illustrate, the Fourier transforms of the displacements (from FE response) for the case
in which beam no. 1 rests on beams no. 1, see Figure 4.5, is presented in Figure 4.8.
According to the frequency spectrum, the structure (or at least part of it) vibrates at
two distinct frequencies. In order to illustrate this, a modal analysis was performed in
ADINA for each studied case, and the eigenmodes corresponding to the frequencies
obtained from the spectrum analysis were picked out. The two eigenmodes that influence
the behaviour of the structure the most, are presented in Figure 4.9.
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Figure 4.8: Fourier transform of the displacements of upper (top) and lower beam
(bottom) - see Figure 4.5. Beam no. 1 resting on beams no. 1 according to
Table 4.1.

(a) Eigenmode for f =5.0 Hz (b) Eigenmode for f =11.75 Hz

Figure 4.9: Two main eigenmodes of the structure. Dotted line signifies the equilibrium
position.

In Figure 4.8, two distinct peaks can be seen for the upper beam, as well as for the
lower beam; one at 5.0 Hz and one at 11.75 Hz. This means that the movement of
the top beam is almost equally influenced by both of these two frequencies, while the
lower beam is influenced mainly by the lower frequency and not so much by the higher
one. Moreover, the magnitude of the movement of the upper beam and lower beam are
comparable, see Figure 4.5. To compare, the eigenfrequencies obtained by solving the
2DOF system (according to Section 2.5.3) were 5.2 Hz and 12.4 Hz. This difference in
eigenfrequencies is what causes the shift between the solutions. Hence, if the frequencies
used in the 2DOF model had been the same as in FE analysis, the shift would have been
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smaller.

In the modal analysis the eigenfrequencies and eigenvectors are obtained. In the case
of the FE model, each eigenvector has the same length as the number of degrees of
freedom in the model. By treating the eigenvector’s components as the translational and
rotational displacement of the structure, a modal shape can be plotted. In case of an
equivalent 2DOF system, eigenvectors are also obtained, however now they only have
two components. Nevertheless, some general consistency can be checked. The system
points of the structure are located in the mid-span of the upper and lower beam. For the
first eigenmode, the eigenvector’s components have the same sign, which means that
both of the masses (system points) move in the same direction. This also agrees with
the modal shape presented in Figure 4.9a. For the second eigenmode, the entries in the
eigenvector are of opposite sign. This means, that while the system point of the upper
beam moves upward (or downward), the other system point will move downward (or
upward). This relation can also be seen in Figure 4.9b.

Although there were many more modes in between those two, they were either antisym-
metric (which were deemed to be unable to capture the vibration energy, and therefore
were omitted) or of rather rotational nature (which is believed to be caused by insufficient
locking of the degrees of freedom in ADINA).

The Fourier transforms for the next case, see Figure 4.6, which is beam no. 11 resting on
beams no. 7 (with mass ratio of 4) can be seen in Figure 4.10.
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Figure 4.10: Fourier transform of the displacements of upper (top) and lower beam
(bottom) - see Figure 4.6. Beam no. 11 resting on beams no. 7 according to
Table 4.1. Note the difference in unit of vertical axis.
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By comparing Figure 4.10 with Figure 4.6, it can be seen that the upper beam indeed
vibrates at two distinct frequencies, and that their influence is comparable. On the other
hand, the lower beam vibrates mainly with the lower frequency, and the influence of
the higher eigenfrequency is very small. By comparing the amplitude, it can be seen
that the movement of the lower beam is much greater in magnitude. This concurs with
the conclusions drawn in Section 4.3.2. For this high stiffness ratio, the movement of
the upper beam more or less corresponds to rigid body motion, and not so much to
bending. The lower beams’ movement constitutes the most of the overall movement of
the structure.

For comparison, the eigenfrequencies obtained from the spectrum analysis are 6.0 Hz
and 43.3 Hz. It is worth to add, that those eigenfrequencies result in the same modal
shapes as presented earlier in Figure 4.9. At the same time, the eigenfrequencies obtained
from the equivalent 2DOF system are 6.6 Hz and 55.2 Hz. The lower frequencies are
close to each other, which results in better agreement (for the longer wave) in Figure 4.6.
However, the difference between the higher frequencies is greater, and therefore the
upper beam’s secondary oscillations are out of phase from those obtained in ADINA.

The Fourier transforms for the last case, see Figure 4.7, which is beam no. 1 placed on
beams no. 6 (with mass ratio of 0.25) are presented in Figure 4.11.
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Figure 4.11: Fourier transform of the displacements of upper (top) and lower beam
(bottom) - see Figure 4.7. Beam no. 1 resting on beams no. 6 according to
Table 4.1.

In this case the situation is reversed - it is the lower beam which is influenced more by

both frequencies. The eigenfrequencies of interest can be identified at 7.5 Hz and 12.9 Hz.
Similarly, the frequencies obtained from an equivalent 2DOF system were received as
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7.5 Hz and 13.5 Hz. The lower frequencies in FEM and 2DOF agree very well with each
other, and the result of it can be seen in Figure 4.7, where the displacements are very
much in phase. However, only the low frequency has significant influence on the upper
beam behaviour, which results in little (or close to none) secondary oscillations. At the
same time, those oscillations can be seen in the movement of the lower beam.

By looking at the amplitudes in Figure 4.11 , it can be seen that the majority of the
movement is coming from the upper beam, which is relatively much more flexible, and
therefore bends easier. Similarly in this case, the modal shapes from ADINA resemble
those presented in Figure 4.9. More more detailed comparison of eigenmodes, the reader
is referred to Chapter E.

To summarise, a few conclusions can be drawn from the Fourier transforms. Firstly, it
is the stiffer beam which is usually affected by the secondary oscillations at the higher
eigenfrequency. In the case of intermediate stiffness ratios, both beams are affected.
Secondly, for extreme stiffness ratios (where one of the beams dominates) the response of
an equivalent 2DOF system will always be a superposition of the two modes, whereas in
reality the higher frequency vibrations are of little importance on the stiffer element. This
may lead to slight disagreements between the motion of the structure and the equivalent
2DOF system. Lastly, the presented eigenmodes were recurring in the analyses, and
are believed to be the main modal shapes of the structure. The 2DOF system should be
adjusted to them.

4.4.3 Mass adjustment factors

In this section, the eigenfrequencies of the equivalent 2DOF system are adjusted to
match those from ADINA. As already shown in Section 2.5.3, the frequencies of a 2DOF
system depend both on the masses m, m; and on the stiffnesses ki, k». There are therfore
many ways to obtain the desired values. However, there are four unknown parameters
and only two equations for the frequencies, which means some of the parameters must
become fixed. It was decided that the stiffnesses k; and k, will be kept fixed, while the
masses m and my can vary. The eigenvalue problem of the system, from Equation (2.48)
states that

det(K—AM) =0 4.11)

After solving this equation, the vector of eigenvalues A is obtained. By expanding (and
disregarding for the moment the transformation factors x,r), we receive:

kl —k1 . mg1 0 .
’ {—kl kq —I—QIQ} A [ 0 my —|—2ma2:| =0 (4.12)

where m, and m,; are the adjusted masses. Let’s suppose that the desired eigenfrequen-
cies f1 and f, are known from the Fourier transform; they can be converted into the
eigenvalues as

M= (2nf) (4.13)
M= (2nf) (4.14)
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From there, the respective determinant for each eigenvalue can be calculated as

ki —ma1 Ay —ky

Tk kit 2k — 2mply | = 2Kk —kima Ay = 2kimap Ay — 2komar A+

+ 2ma1ma2/112
4.15)

k1 —mallz _kl

—ky ki +2ky —2mgphy =2kiky —kimar A — 2kiman 2y = 2kamar Ao+

+ zmalmaZ;le
(4.16)

Setting Equation (4.15) and Equation (4.16) equal to zero, the unknown masses m,; and
mg> can be solved, giving:

2ki1ko Ay — ky (kz)L] — \/k%llz — Zk%ll Ay + k%)tzz —2kiko A Ay + kz)Lz) +2k1krAp

Mal = kA A + 2k A Ay
4.17)
ki — \[I3A7 — 28200 + BAZ — 2k ko Ao + Ko
= 4.18
The mass adjustment ¥, and ¥,r, factors can then be expressed as
m
Vi, = —2 (4.19)
mj
m
Yoy = —2 (4.20)
my

where m and m; are the original masses of each beam.

During the calculations, it was discovered that if a faulty frequency f, was given as
input (wrong choice of eigenmode), the result of Equation (4.17) and Equation (4.18)
gave complex numbers. In the beginning, the eigenmodes were picked out directly from
the modal analysis in ADINA. However, due to aforementioned multitude of the modal
shapes, it was not always clear which one to choose. When performing the Fourier
transform on the displacement functions (as described in Section 4.4.2) and picking out
the second frequency from it, the resulting mass adjustment factors were real and positive
numbers. It was usually the second eigenfrequency that caused the problem, as it may be
quite high for some cases. The first eigenfrequency and modal shape from the Fourier
transform usually came as first or close to the first in the modal analysis in ADINA. As
already mentioned, both eigenfrequencies resulted in the modal shapes similar to those
presented in Figure 4.9 for each case of interest (see Appendix E for more information).

A total of 97 different analyses with various stiffness and mass ratios were run in ADINA.
The mass ratios of interest were m;/my = [0.25,0.5,1,2,4], while the stiffness ratios
usually varied from O to 36. For each case, both implicit dynamic analysis and modal
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analysis were carried out. On the displacement variations in time obtained in ADINA,
the Fourier transform was performed and the dominating eigenfrequencies were stored.
Next, for each case the two mass adjustment factors ¥,,r, and ¥%,r, were calculated. The
results were plotted in 5 different graphs, depending on the mass ratio, and are presented
in Figure 4.12 to Figure 4.16.
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Figure 4.12: Mass adjustment factors Yur, and Yur, for my /my = 0.25.
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Figure 4.13: Mass adjustment factors Y, and Yur, for my/my =0.5.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2015:86 65



Mass adjustment factor ¥,,r, [-]

1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4

0 25 5

| | |

| | | | | |

| |

5

| | |
10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35

Stiffness ratio, k1 /k»

Figure 4.14: Mass adjustment factors Yyr, and Ymr, for my/my = 1.
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Figure 4.15: Mass adjustment factors Yr, and Ymr, for my/my = 2.
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Figure 4.16: Mass adjustment factors Ypur, and Yur, for my /my = 4.
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4.4.4 Response of the 2DOF model calibrated with mass adjustment factors

Based on the results in Section 4.4.3, the system of differential equations can be now
expressed as

Yarmy O\l Nk k] [F ()
[ 0 2YszmJ L’Q]*[—kl k2| || =1 0 @4.21)

where ¥,r, and ¥,r, are previously derived mass adjustment factors (see Equation (4.19)
and Equation (4.20), respectively). For mass ratios lying in between those depicted in
Section 4.4.3, linear interpolation can be employed in order to obtain an estimate of the
mass adjustment factors. Such estimate was discovered to provide reasonable results.

The procedure of solution is now exactly the same as it was in Section 4.3, for the 2DOF
model with regular transformation factors x;,r. The system of equations (4.21) is solved
in GNU Octave using the Central Difference Method, and the functions of system points’
displacements in time are received as output. Those displacements are then converted
into the displacements of respective beams (as explained in Section 4.3.1). The only
thing that changes now is the incorporation of mass adjustment factors, ¥,r, and ¥, in
the place of the old transformation factors, K,r, and Kyf,.

The same cases as in Section 4.3 were solved, so that a direct comparison is possible.
Let’s start with the situation, when beam no. 1 is placed on beams no. 1. The resulting
stiffness ratio is in this case k; /k, = 1.6, while the mass ratio is kept at m; /my = 1.
The mass adjustment factors can be obtained from Figure 4.14, and are for this case
Ymr, = 0.851 and ¥,r, = 0.548. The response of the 2DOF model can be seen in
Figure 4.17.
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Figure 4.17: Relative deformation of the upper (top) and lower beam (bottom) over time.
Beam no. 1 resting on beams no. 1 according to Table 4.1. 2DOF model
with mass adjustment factors.

Comparing Figure 4.17 with Figure 4.5, one can see that the shift in eigenfrequencies is
no longer present, which was also intended. Apart from that, the shape of the upper beam
displacement agrees well for both of the models. However, the secondary oscillation
of the lower beam is still somewhat larger in the 2DOF model than in ADINA. This
is believed to be caused by low influence of the higher eigenfrequency on the lower
beam (see Figure 4.8). The amplitudes according to the 2DOF model are now too high
in comparison to the actual FE response. The difference varies with time, but ususally
a 20 -30 % greater displacement is obtained from the 2DOF system for both beams.
Since the magnitude of displacements is comparable for both beams (due to intermediate
stiffness ratio), this is considered a serious issue, and will be investigated and mitigated
later.
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The results for the next structure, namely beam no. 11 resting on beams no. 7 can be
seen in Figure 4.18. The stiffness ratio now is k; /k; = 22.76, while the mass ratio for
the structure is m; /m, = 4. For such a case, the mass adjustment factors can be read
from Figure 4.16, and are equal to ¥, = 0.763 and ¥, = 0.970.

By looking at the graphs, it can be seen that the frequencies agree very well with each
other, which was the intention. For the upper beam, the lower and higher frequencies
also agree well. This is the result of having two distinct frequencies in the spectrum
(see Figure 4.10), which the 2DOF model will capture. For the lower beam, the lower
frequency is dominating, but the secondary oscillations at the higher eigenfrequency
are also easily noticeable for the 2DOF model response. The FE response does not
possess such clear secondary vibrations, since the lower beam vibrates mainly at the
lower eigenfrequency.
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Figure 4.18: Relative deformation of the upper (top) and lower beam (bottom) over time.
Beam no. 11 resting on beams no. 7 according to Table 4.1. 2DOF model
with mass adjustment factors.

The other thing of interest here is the amplitude. Displacement of the lower beam, u;,
agrees quite well between the models, but the upper beam’s movement amplitude varies
considerably between 2DOF and FEM. However, it is on the safe side for both cases.
The large discrepancy in amplitude for the upper beam can reach up to 20-30 %, while
the difference for the lower beam is 5-10 %. Comparing Figure 4.18 and Figure 4.6, it
can be concluded that the responses are now in phase, but at the same time there is a
difference in amplitudes, and hence the model could be further refined.
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The last case studied here is the structure comprising beam no. 1 supported on beams
no. 6. This structure has a low stiffness ratio of k; /k, = 0.16, a mass ratio of m; /my =
0.25. For this kind of structure, the mass adjustment factor can be obtained from
Figure 4.12 and are equal to ¥;,, = 0.786 and ¥z, = 0.534. The results for both models
are presented in Figure 4.19.

When looking at the graphs, it can be seen that for the upper beam, which poses the
majority of the structure’s movement, the response of both models agree well when
it comes to frequency. The lower eigenfrequency is dominating for this beam (see
Figure 4.11). There are some differences in amplitude, approximately 10 % discrepancy
between the models. In contrast now, the response of the 2DOF model is on the unsafe
side, which is not favourable.
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Figure 4.19: Relative deformation of the upper (top) and lower beam (bottom) in time.
Beam no. 1 resting on beams no. 6 according to Table 4.1. 2DOF model
with adjusted mass adjustment factors.

For the lower beam, despite good agreement in frequencies between the model, the
amplitudes deviate even more. There is approx. 40-60 % between the models. This
time, the 2DOF response is on the safe side. The response of both models shows that
the beam vibrates at two distinct frequencies (according also to Figure 4.11), and the
2DOF model captures them both. It should be noted that the lower beam is much stiffer
in relation to the upper one, and therefore its movement does not play a big role in the
overall movement of the structure.

To conclude this part of the calibration of the 2DOF model, it can be said that it is
possible and simple to assure that the response agrees with the actual behaviour (FEM)
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in terms of the frequency. As long as the right frequencies are decided to be captured by
the 2DOF model, the mass adjustment factors result overall in better correlation between
the models. However, a new problem with amplitudes was created. It was shown that the
amplitudes deviate between the models. Moreover, it cannot be directly said in which
direction they will deviate (safe or unsafe side). Therefore, a way to calibrate the model
further with respect to amplitudes only is needed.

4.5 Calibration of the 2DOF model - amplitude

4.5.1 General notes

As it was shown in Section 4.4.4, the 2DOF model can be further calibrated, so that
not only the right frequency is captured, but also the right amplitude. Hence in this
section an optimisation procedure is carried out in order to find the best fit of the 2DOF
model response to the actural ADINA structural behaviour. There are many methods
of optimisation, but in this case unconstrained nonlinear optimisation was used. In
particular, the Nelder-Mead simplex algorithm was employed. Function fminsearch in
GNU Octave uses this method for finding a minimum of a function. For more information
about the Nelder-Mead method, the reader is referred to Lagarias et al. (1998). In this
section, the calibrated 2DOF model (with respect to the amplitudes) will be referred to
as the optimised 2DOF model.

4.5.2 Optimisation procedure and constraints

The goal in this section was to find such parameters that can be used in the differential
equation system (as in Equation (4.6) or Equation (4.21)), which result in the response
of the 2DOF system matching the actual FE response as close as possible. One type of
such adjusting parameters are the mass adjustment factors ¥,,r,, which were described in
Section 4.4.3. In that case, only the mass matrix entries were changed as a result. Now,
there is no such limitation. It means that there can be adjustment factors which pertain
to both mass and stiffness matrix, as well as to the force vector.

The simplex method finds the minimum of an objective function, which is a function
of the sought parameters. This function can be constructed in various ways, as well as
different constraints can be used to assure that boundary conditions are fulfilled.

The algorithm also needs an initial guess value, from which it starts the search. It is vital
that the initial guess values provide approximately good results, otherwise local minima
of the objective function can be found instead of the desired result. The more parameters
are involved in the optimisation procedure, the more important it is to use a proper guess
value.

The optimisation was performed for each of the studied cases (see Section 4.2.1), and the
results were then analysed and evaluated. A good fit between the curves was however not
achieved for every stiffness ratio k; /k, and mass ratio m; /m;. If the resultant adjustment
parameters were deemed unreasonable, another attempt with different objective function
or constraints was carried out. It was an iterative process, and a total of 5 attempts were
made.
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Attempt 1

For the first try, the components of the force vector were unconstrained, meaning they
can attain any value. Therefore two adjustment factors Y and ¥, could be computed.
At the same time, the mass adjustment factors 7, from section Section 4.4.3 were
applied to the mass matrix, and were constrained at these values. Also, the stiffness
matrix remained unchanged. The system of differential equation used in this attempt

was
Y 0 li] ki —k; :| |:Lt1} _ |:YF1F(I):| 4.22
[ 0 2Yszm2] {MJ * {_kl ki +2ky | |u2 Yr2F (1) (22

e Objective function: sum of the differences between maximum displacements (for
upper and lower beam) from ADINA and 2DOF.

L= (uppy" —ug™) + (ugs” —uf™) (4.23)
e Guess values: yr; = 1.0, yp2 = 0.2.
e Constraints: none

e Sought parameters: Yr1, ¥r2

e Results: Not so good visual fit between curves. Often negative value for Yp;.
Decided to go further to next iteration.

Attempt 2

In this attempt, the force vector was chosen to be constant. The sought parameters were
both for adjustment of mass and stiffness matrix. Starting value was set again from the
frequency calibrated 2DOF model. The system of equations in this case can be expressed

as
Yiny M1 0 i1 Y, k1 —Y k1 } {ul} _ [F(t)} 44
{ 0 2szm2} [“2} * {_Vklkl Yi k1 + 2%,k | |u2 0 (4.24)

e Objective function: sum of the squares of differences between displacement (for
upper and lower beam) from ADINA and 2DOF in each time step.

L=Y" ((ugn—u0)?+ (s —ur)?) (4.25)
t=0

o Guess values: ¥, = YmFs Ymy = YmFy> Yo = L, Y, = 1

e Constraints: none

e Sought parameters: Y, Yiny» Y » Yo

e Results: Better visual fit between curves, but still not good enough. Decided to go
further to next iteration.
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Attempt 3

The third attempt is very similar to the previous one. The only difference now is that the
second component of the force vector becomes unconstrained. The system of differential
equation takes the form:

|:%nlml 0 :| |f’”:| + |: Yklkl _Yklkl :| |:I/t1:| _ |:’}/F1F(Z):| (4.26)
0 2yu,ma| |iix Ve k1 Y k1 4+ 2%, ko | (un YraF (t) '

e Objective function: sum of the squares of differences between displacement (for
upper and lower beam) from ADINA and 2DOF in each time step.

Tend

L= ((uya—uv)*+ (ura —ur)?) (4.27)
t=0

o Guess values: ¥, = Yk Ymy = YmFps Yy = L Yo = 1, ¥r2 = 0.2

e Constraints: Y =1

e Sought parameters: Y, Yimy» Yiy» Yios YF2

e Results: Even better visual fit between curves, but for high k; /k, ratios, the
sought force factor yr» was unreasonably larger than ¥ = 1 (more than 103 times
greater). Decided to go further to next iteration.

Attempt 4

In this attempt, the sum of the components in the force vectors is chosen to be always
F(t) so that the overall force acting on the structure is preserved. Furthermore, the
objective function is normalized, so that the beam which has smaller displacement and
the beam with larger displacement both have significant influence on the end result. The
system of differential equation is in this case the same as in Equation (4.26).

|:Ym1m1 0 :| |:u1:| + |: Yklkl _Yklkl :| {u1:| _ {}/FIF(I>:| (4.28)
0 2Yu,mo| |iix Yo k1 Ykt + 2%k | (u2 YraF (1) '

e Objective function: sum of the squares of differences between displacement (for
upper and lower beam) from ADINA and 2DOF in each time step. Function is
normalized to the maximum displacement for each beam

tond 2 2

Uya —uy Ura —ur

L= Z ( umax ) + ( umax ) (429)
t=0 UA LA

o Guess values: ¥, = YmFs Yo = YmF> Y = L, Yo = L, ¥r1 = 0.8, ¥rp = 0.2. The
search is done in three steps, so that the most of the shape of the function is
captured. The end result of each step becomes the guess value of the next step.

e Constraints: Yr1 + Y2 =1

e Sought parameters: Y, Yinys Yiys Yeos Y1 YE2

e Results: Good visual fit. However, the resulting amplitudes have been differing up
to 20 % on the unsafe side from the actual ADINA displacements. Decided to go
further with next iteration.
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Attempt 5

The final attempt used the same idea as in attempt 4. The only thing that changed is
the definition of error. In order to force the 2DOF response to be even closer or at
least on the safe side, the displacement located at the unsafe side was weighted with an
additional factor 2. The system of the differential eqution of motion for the system is
kept unchanged, i.e

|:le1’111 0 :| |:I/t1:| + |: Yklkl _Yklkl :| |:u1:| _ |:’}/F1F(Z):| (4.30)
0 2yu,ma| i Ve k1 Y k1 4 2Y,ka | (un YraF (t) '

e Objective function: sum of the squares of differences between displacement (for

upper and lower beam) from ADINA and 2DOF in each time step. Function is
normalized to the maximum displacement for each beam. If the displacement lies
on the unsafe side, it is additionally weighted with factor 2 to force the result to be
on the safe side and so that is comes even closer to the real ADINA response.

W s —uy\? | (ua—u\’ juga| = luy] \ Juga| — | \*
L=Y () *\ =g ) 20— ) +2
t=0 LA

UA LA Uya
4.31)

Note: In order to distinguish safe and unsafe side, the Macaulay bracket function
is used here. This function is also called a ramp function, and is defined as:

) = {o ifx <0 W)

x ifx>0.

Guess values: Same as in attempt 4
Constraints: Yr1 + ¥ =1

Sought parameters: ¥u,, Vi, Yi;» Yio» YF15 YF2

Results: Very good visual fit. Results seem to agree very well between the models.
However, a divergence of up to 10 % on the unsafe side is present. Decided to stop
the iteration.

4.5.3 Optimisation factors

An example result of the final iterations - the optimisation factors ¥, Yim,> Yk;» Yky» YF1s
Yr2 is presented in Figure 4.20. The remaining results - optimisation factors for different
mass ratios along with tabulated values can be found in Figure D.1 - Figure D.5 and
Table D.1 - Table D.5 in Appendix D.
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4.6 Response of the optimised 2DOF model

4.6.1 General notes

With obtained optimisation factors from Section 4.5.3, the response of the equivalent
2DOF system can now be generated. If the structure of interest has a mass ratio that
lies in between the studied cases, it is advised to perform linear interpolation in order to
obtain an estimate of the factors. The system of differential equation, solving of which
results in the 2DOF response can be expressed as:

|:Ym1m1 0 :| |fﬂ:| + |: Yklkl _Yklkl :| [M1:| _ [’}/FIF(I)] (4 33)
0 2Yu,ma| i Y k1 Y ki 4+ 2Yko | (un Y2l (2) '
where ¥ are the optimisation factors.

The 2DOF model modified with the aforementioned optimisation factors is further
referred to as the optimised 2DOF model. Again, the same three structures were analysed
and the results of these analyses are presented for easy comparison.

4.6.2 Deformation

The structure consisting of beam no. 1 placed on beams no. 1 was studied first. Again,
the stiffness ratio for it is k; /k; = 1.6 and the mass ratio is m; /my = 1. The results can
be seen in Figure 4.21.
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Figure 4.21: Response of the upper (top) and lower beam (bottom) for both FE model
and optimised 2DOF model. The structure consists of beam no. 1 placed
on beams no. 1 according to Table 4.1.
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By looking at the graphs, a very good correlation between displacements can be seen,
for both the upper and the lower beam. Both frequencies and amplitudes seem to match
well. When looking at the maximum amplitudes, it can be said that for the lower
beam the 2DOF model underestimates the response by 5.9 %, while the lower beam’s
deformation is overestimated by 8.3 % at maximum. The error from the previous model
(in Section 4.4.4) has been reduced or converted into an overestimation, which is on
the safe side. This is a structure with an intermediate stiffness ratio, which means that
the movement of both beams has much influence on the overall motion of the structure.
Hence it is important to capture as much as possible of the deformation for both of the
beams.

For the next studied case, a structure built from beam no. 11 resting on beams no. 7
was chosen, where the lower beam was four times heavier than the upper one. The
resulting stiffness ratio is k; /ky = 22.76 and the mass ratio is m; /my = 4. The results
are presented in Figure 4.22.
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Figure 4.22: Response of the upper (top) and lower beam (bottom) for both FE model
and optimised 2DOF model. The structure consists of beam no. 11 placed
on beams no. 7 according to Table 4.1.

Both primary and secondary oscillations are well captured by the 2DOF model. No
visible shift in the frequencies can be noticed. For the upper beam, the 2DOF model
underestimated the response by 2.9 %, while the deformation of the lower beam is
overestimated by 3.0 %. To remind the reader, this is a structure with relatively high
stiffness ratio, which means that most of the movement will come from the lower beams.
Just as in the previous case shown in Figure 4.21, the optimised 2DOF model resulted in
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reduced difference in amplitudes (especially for the upper beam), and is believed overall
to provide a better description of the behaviour of this structure.

The last studied case encompassed a structure composed of beam no. 1 supported
on beams no. 6, which are four times heavier. This resulted in the stiffness ratio of
ki/ky = 0.16 and the mass ratio of m;/m; = 0.25. Plots of upper and lower beam’s
deformation are presented in Figure 4.23.
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Figure 4.23: Response of the upper (top) and lower beam (bottom) for both FE model
and optimised 2DOF model. The structure consists of beam no. 1 placed
on beams no. 6 according to Table 4.1.

This time, the correlation between the models is very good as well. The optimised 2DOF
model follows the FE response very well, capturing not only primary but also secondary
vibration in the lower beam. The amplitudes are also placed closed to each other now.
The maximum deformation of the upper beam is underestimatd by 5.7 % with the 2DOF
model, while the lower beam’s deflection is underestimated by 0.1 %. The optimisation
reduced the error and provided overall a better approximation of the structure behaviour.

4.6.3 Amplitude error

In order to show the accuracy of the model, the discrepancy between the 2DOF and
ADINA displacement was be examined. For each studied case, the ratio between the
maximum displacement in the optimised 2DOF system and the corresponding ADINA
solution was calculated. The results are presented in Figure 4.24 and Figure 4.25.
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Figure 4.24: Difference between the optimised 2DOF model response and the actual FE
solution.
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Figure 4.25: Difference between the optimised 2DOF model response and the actual FE
solution.

It can be noticed by studying the graphs, that the displacement of the lower beam is
often somewhat overestimated, especially for low stiffness ratios, where there can be up
to 12-13 % overestimation. On the other hand, the upper beam tends to be somewhat
underestimated by the 2DOF model, however not by more than 10 %.

To summarise, the optimisation of the 2DOF model resulted in better fitting. The response
is closer to the actual FE solution for both parts of the structure. The discrepancy between
displacements present in both the 2DOF model with traditional transformation factors
(Figure 4.5 - Figure 4.7) as well as in the frequency calibrated 2DOF model (Figure 4.17
- Figure 4.19) is now reduced. It is believed that the optimised 2DOF system is able
to describe the deformation of both parts of the real structure in a good way, and the
results should be close to the actual FE response. It should however be noted, that this
calibration and optimisation was developed only for the linear elastic material response.
Moreover, only one load case was tested, and it could be a topic of further research to
test the model for explosion loads of other duration, i.e. ones that do not resemble a
characteristic impulse load.
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4.6.4 Bending moment

It is also of interest to check how the optimised 2DOF model describes the internal forces
in both beams, as this is an important design parameter. In this section, the bending
moment and shear force will be analysed and compared to the actual FE response.

First, the bending moment in the mid-span is analysed. The procedure of obtaining the
moment-time function is exactly the same as for the SDOF system, see Carlsson and
Kristensson (2012) for reference. For the upper beam, the function can be expressed as

k t)-L
My(Ly/2,1) = % (4.34)
384E1
where k| = —31 and L, is the length of the upper beam.
1

For the lower beam, the function takes different form, since this beam is subjected to a

point load.
_ kzuL(t ) Ly

My(Ly/2.1) = == 72 (4.35)
. . . 48E1,
In this formula, the stiffness k; is equal to kp = T where the length of the lower
2

beam is denoted as L.

Because the moment, according to the 2DOF solution, is directly proportional to the
mid-span displacement, the shape of it in time is going to be the same as the shape of the
deformation. The moment distribution in time for the structure consisting of beam no.1
supported on beams no. 1 is presented in Figure 4.26.
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Figure 4.26: Beding moment in the mid-span of upper and lower beam as a function of
time.
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In this figure, the solid line depicts the bending moment received from the 2DOF model,
while the dashed line is the result from ADINA. It is clearly seen, that there are secondary
oscillations at higher frequencies for both beams, but the overall vibration at the lower
frequencies is preserved. In order to further investigate this phenomenon, a Fourier
transform of the bending moment for both beam was carried out, and the resulting
frequency spectrum can be seen in Figure 4.27.

The first two peaks signify the eigenfrequencies given by the 2DOF model. They
also have the largest impact on the final result. The later peaks also represent higher
eigenmodes. The secondary oscillations of the bending moments are caused by the
higher eigenfrequencies, and cannot be captured by the 2DOF model; more degrees of
freedom is needed for that purpose. This phenomenon was also shown by Carlsson and
Kristensson (2012) for a SDOF model. The oscillations were present also there, and it
was concluded that a higher number of eigenmodes influence the bending moment. The

modal shapes of the structure that correspond to eigenfrequencies f1 - f5 can be seen in
Figure 4.28.
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Figure 4.27: Frequency spectrum of the bending moment for upper (top) and lower beam
(bottom).
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Figure 4.28: Eigenmodes influencing the bending moment in the upper and lower beam.

System consisting of beam no.l resting on beams no.l according to Ta-
ble 4.1.

Another thing investigated here was the bending moment distribution along the beams.
Remembering that the equivalent static load is a load that results in the same deflection
as the dynamic load, it can easily be calculated for these beams since the maximum
deformations are known. From this equivalent static load, a moment distribution along
the beam can be obtained. It is presented for both beams in Figure 4.29.

Since the upper beam is subjected to a uniformly distributed load, the shape of the
moment envelope (from the 2DOF solution) is parabolic. The envelope can be obtained
directly from ADINA, by taking the maximum value of the bending moment in time
for each point along the beam, i.e. M(x) = max(M(x,t)). The ADINA response shows
that the shape of the bending moment is a combination of more than one mode shape.
A discrepancy between the models exists, with the largest difference in moments in
the mid-span. This was also the case for an equivalent SDOF model response, and has
also been shown elsewhere; e.g. Carlsson and Kristensson (2012) and Andersson and
Karlsson (2012). Therefore it is considered reasonable. The lower beam is subjected to a
point load in the mid-span, thus the expected moment distribution is triangular. Similarly,
the FE envelope is again a combination of several mode shapes. Overall, the correlation
between the models is considered to be reasonably well, even though a small difference
between the moments are still present and the equivalent static load provides results on
the unsafe side.
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Figure 4.29: Bending moment envelope for the upper (top) and lower beam (bottom).
System consists of beam no. 1 resting on beams no. 1 according to Table 4.1.

4.6.5 Shear force

For the shear force, the comparison is made at the contact point of the structural system,
i.e. the support point of the upper beam, which is also the mid-span point of the lower
beams. Shear is a more complex phenomenon than bending moment, and the description
of it by the equivalent SDOF model is also needed to be improved. For more reference
on this topic, the reader is referred to Andersson and Karlsson (2012).

The resulting shear distribution in time and its comparison is presented in Figure 4.30.
For the ADINA result, the shear force is taken directly at the end of the upper beam.
The 2DOF solution is obtained as the reaction at the support. According to Andersson
and Karlsson (2012), the dynamic reaction of a simply supported beam subjected to a

uniformly distributed load and under linear elastic material response can be expressed
as:

V(1) ~ 0.4R(t) +0.1F (¢) (4.36)
where R(7) is the internal resistance of the beam, i.e.
ky-uy(t
R(t) = %U() 4.37)

and F(t) is the external dynamic load, i.e. F(t) = ¢q(t) - L.
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Figure 4.30: Distribution of shear force over time at the contact point of the system.

The dynamic reaction reaches very high values (of the order of 10000 N) in the initial
phase of the response (first 2 ms - not presented explicitly in the graphs due to visual
reasons). This is caused by the magnitude of external loading. Moreover, the behaviour
of the shear force is very complex (FEM solution, upper graph), and cannot be easily
compared with the 2DOF solution. Therefore, the curve needed to be smoothened. In
order to achieve this, a moving average of 100 values before and after the sought point
was calculated for each time step, i.e. an average value within 20 ms was computed.
The resulting curve (called FEM modified) is shown as well in the figure. In order to
investigate the matter further, a Fourier transform of the shear force was carried out, and

is presented in Figure 4.31.
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It is easy to see, that more eigenmodes are needed if the shear force behaviour is needed to
be correctly captured. The first five eigenfrequencies correspond to the same modes, that
were presented in Figure 4.28. The remaining modal shapes can be seen in Figure 4.32.
Moreover, the influence of higher modes may be even higher than the influence of the
lower modes (e.g. mode 3 and 5 contribute more than mode 2 and 4).

fs =216.2 Hz fr = 367.4 Hz fs = 410.9 Hz

Figure 4.32: Remaining eigenmodes present in the frequency spectrum for the shear
force. System composed of beam no. 1 resting on beams no. 1 according to
Table 4.1.

Nevertheless, the 2DOF model can work with only two modes. The overall shape of the
shear force is preserved by the model, but it cannot be said that the correlation between
the models is very good, since the shear phenomenon is more complex in reality.

4.7 Influence of beam length and load case

4.7.1 Different lengths

Up until now, the structural system consisted of beams which had the same length.
The length of the beam influences its stiffness and mass, which results in a unique
stiffness and mass ratio for the system. The 2DOF system obtains its optimisation factors
depending on k; /k, and m; /my. Therefore, for a structural system consisting of beams
with different lengths, but with the same values of masses and stiffnesses as before (thus
stiffness and mass ratio are also the same), the response of the 2DOF system will be the
same.

However, it is not obvious if the Finite Element Method responses of such systems are
the same, since there might be some unforeseen factors influencing the behaviour. In
order to investigate that, a couple of analyses were carried out in ADINA.

The main focus was to alter the lengths of the beams, but keeping their stiffness and
mass the same as before. Hence, the cross section dimensions had to be changed in
order to reflect the desired change in length. For example, if a beam was needed to be 2
times longer, the cross section area, A, needs to be reduced twice if the mass is to remain
unchanged. Knowing the old value of the stiffness, k, and the new length, L, the new
moment of inertia, /, can be found. Knowing both the cross section and the moment of
inertia, the height /# and width b of the new cross section can be calculated. As a result,
a new beam with the same properties (stiffness and mass) is generated, but its length
is now different. The appearance of the structural system is altered, but its descriptive
parameters remain the same.
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Three new structural systems were studied. The first one stems from the structure
consisting of beam no. 1 resting on beams no. 1. The length of the lower beam was kept
at 4 m, while the upper beam’s length was increased twice; to 8 m. The cross section
dimensions of the upper beam were adjusted so that the beam had the same stiffness
and mass as before, and therefore the stiffness and mass ratios remained unchanged, i.e.
ki /ky = 1.6 and m; /my = 1. The line load was reduced by half (to 12.5 kN/m), therefore
keeping the total impulse load unchanged. The response of the new and old system’s
upper and lower beam according to ADINA can be seen in Figure 4.33.
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Figure 4.33: FE response of the old system (L1 = L, = 4 m) and the new system (L =
2L2 =8 m)

It can be noticed that the two systems behave in the same way, i.e. the correlation
between the deformations is very good. This means that for this structure, changing the
length of the lower beam does not induce any unforeseen phenomena. The behaviour of
the system can be described only with stiffness and masses of the respective members.

For the next case, a system originating from a structure consisting of beam no. 11
supported on beams no. 7 was analysed. That system had a stiffness ratio of k; /ky =
22.76 and the mass ratio of m; /my = 4. This time the length of the lower beam was
increased from 4 m to 8 m, while the upper beam’s span was kept at 4 m. New
cross section dimensions were found for the lower beam, so that its mass and stiffness
corresponds to the mass and stiffness of beam no. 11. Therefore the stiffness and mass
ratios did not change. The relative deformation for the new and old structural system are
presented in Figure 4.34.
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Figure 4.34: FE response of the old system (L1 = L, =4 m) and the new system (L =
0.5L2 =4 m)

Like in the previous case, see Figure 4.33, the behaviour of both systems is the same. In
the deformations of the lower beam, which is the dominating member in these structures,
no visible discrepancy can be seen between the responses. Some minor differences can
be perceived for the upper beam (later in time), but the movement of this member is
not of big interest if the whole structure is considered. The conclusion drawn for the
previous system obtains. It is possible also for this structure to describe its behaviour
only with the stiffness and mass of the members.

The last studied case originates from a structural system consisting of beam no. 1 resting
on beams no. 6. The original system was described by the stiffness and mass ratios
of ki /k, =0.16 and m /m = 0.25. The length of the upper beam is increased 3 times
- from 4 to 12 m, while the length of the lower beam is kept unchanged at 4 m. New
cross section dimension were found for the upper beam, so that the stiffness and mass
were kept at the same values. Therefore the mass and stiffness ratios of the new system
correspond to the ones stated above. The relative deformation of upper and lower beam
can be seen in Figure 4.35.
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Figure 4.35: FE response of the old system (L1 = L, =4 m) and the new system (L =
3L2 =12 m)

By looking at the graphs, it can be seen that the deformations coincide with each other
for both systems, and no visible discrepancy is present. Even though the response
of the optimised 2DOF system was not plotted, it corresponds to the one plotted in
Figure 4.21 - Figure 4.23, since the stiffness and the mass of both parts of the structure is
the same. This means that the stiffness and mass ratios are also the same, and therefore
the optimisation factors do not change. Hence, the response of the 2DOF system cannot
differ if no parameter in Equation (4.33) is changed.

To conclude, it can be stated that no unforeseen phenomena are taking place in the
structure when the lengths of its constitutive members are altered. Varying the length
does not seem to result in any secondary repercussions other than changing the stiffness
and mass of the member. Based on the results of the analyses carried out it this section,
it is believed that the optimised 2DOF system developed in Section 4.5 is capable of
describing structural systems consisting of beams of various lengths.
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4.7.2 Different load cases

Up until now, the only load case that was used in the study was a triangular impulse
with a duration of 2 ms, see Figure 4.3 for the time function used in specification of
load in ADINA. Since it is a very short impulse, it can be said that it corresponds to a
characteristic impulse. This is advantageous when hand calculations are to be used, since
the formulas there are derived from the energy conservation principles, which are valid
for the characteristic impulse. However, explosions lasting longer also occur, and it is of
interest to be able to describe the response of a body subjected to a load with a longer
duration. In order to check if the optimised 2DOF system is capable of analysing the
system subjected to a load with longer duration, three cases were studied, see Table 4.3
for details.

The key parameter used in this study is the impulse duration, #;. The time function used
in ADINA when specifying the load has for each load case the same initial inclination,
so that numerical errors are avoided. The function can be seen in Figure 4.36.

Table 4.3: Parameters for the study.

Beam case BlonBl | BllonB7 | Bl on B6
Stiffness ratio, k; /k» [-] 1.6 22.76 0.16
Mass ratio, mj /my [-] 1 4 0.25
Impulse duration, #; [ms] 4 20 50
T/t [-] 50 8.33 2.67
Correction factor, y; [-] 1.0 1.02 1.17
ft) A

t [ms]

0.2 ti
Figure 4.36: Time function for the load used in ADINA.

For each load case, the structure was first solved in ADINA, and then the optimised
2DOF system was solved in Octave by using the Central Difference Method. Both
deformations were then recalculated to relative deformations, so that the influence of
each part of the structure on the overall movement can be easily noticed. For the first
case, a structure consisting of beam no. 1 supported on beams no. 1 (with the mass
ratio m; /mp = 1) was studied. The explosion load corresponded to an impulse load with
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duration of 4 ms, which is twice the duration used earlier. Results for both parts of the
structure can be seen in Figure 4.37.
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Figure 4.37: Relative deformation of the upper and lower beam over time. Duration of
the impulse - 4 ms. Structure consisting of beam no. 1 resting on beams no.

1.

When looking at the figure, a good correlation between the models can be noticed. This
is an intermediate stiffness ratio case, thus the movement of both members plays a big
role on the resultant behaviour of the structure. The 2DOF model is a bit on the safe side
for the lower beam. However, the upper beam’s deformation is slightly underestimated
by it. Both frequencies seem to be captured, and no visible shift in time between the
models can be noticed. It can be stated, that twice longer duration of the impulse is
described well by the 2DOF model, and no unforeseen phenomena related to the duration
of the load occur in the FE model.

For the next case, a structure consisting of beam no. 11 resting on beams no. 7 (with
the mass ratio m; /my = 4) was analysed. The initial duration of the impulse (2 ms)
was increased 10 times, i.e. an impulse load lasting 20 ms was applied on the structure.
It should be noted, that this impulse does not really correspond to the characteristic
impulse, and if hand calculations need to be used, it must be transformed in to the
characteristic impulse with correction factor y; (see Table 2.2). The results are presented
in Figure 4.38.
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Figure 4.38: Relative deformation of the upper and lower beam over time. Duration of
the impulse - 20 ms. Structure consisting of beam no. 11 resting on beams
no. 7.

Good accordance between the models can be noticed when looking at the graphs. This is
a high stiffness ratio case, thus the movement of the lower beam dominated in the overall
behaviour of the structure. The 2DOF model seem to fit the ADINA response even better
than in the previous case, i.e. for impulse duration of 4 ms. No visible overestimation or
underestimation can be noticed. The optimised 2DOF model was able to describe the
behaviour under load with ten times longer duration, which is a good indication.

The last analysed case was a structure consisting of beam no. 1 supported on beams no. 6
with the mass ratio of m; /my = 0.25. The duration of the impulse used in this study was
50 ms. As in the previous case, it needs to be transformed into a characteristic impulse,
if the use of hand calculations is desired. In this case, the impulse can hardly correspond
to a characteristic one. The relative deformations of the upper and lower beam according
to FE analysis and numerical 2DOF solution are presented in Figure 4.39.
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Figure 4.39: Relative deformation of the upper and lower beam over time. Duration of
the impulse - 50 ms. Structure consisting of beam no. 1 resting on beams
no. 6.

No distinctive discrepancy between the responses can be noticed for either upper or
lower beam. This is a low stiffness ratio case, meaning that the movement of the upper
part of the structure will dominate.

To sum up, by looking at Figure 4.37 - Figure 4.39 some conclusions can be drawn.
According to the results of these analyses, it can be said that the optimised 2DOF model
works well when describing the behaviour of a structural system subjected to a longer
impulse. Moreover, it is possible to see that the longer the impulse, the better the
agreement between the model’s response and the behaviour in ADINA.
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4.8 Response of a structural system - calculation exam-
ple
4.8.1 Introduction

In this section, an arbitrary structural system consisting of a beam supported on two
beams is solved step by step in order to show the procedure explicitly. The example
encompasses the creation of the optimised 2DOF system, comparison with ADINA
results and quick comparison with a SDOF solution (only hand calculation). Only
displacements of the upper and lower beams are of interest, and only the linear elastic
material behaviour is studied.

The chosen structure consists of two types of reinforced concrete beams, see Figure 4.40.
The upper beam has a rectangular cross-section with 660 mm of height and 300 mm of
width. The length of this beam is 3 m. The lower beams have a square cross-section with
the width (height) of 500 mm, while their length is 4 m for each beam.

by = 500 mm

hoy = 500 mm

(

¥ q(t)
Py VLl L]
Lo=4m /4 Li=3m

h1 = 660 mm

Lo=4m

b1 = 300 mm

Figure 4.40: The analysed structural system.

The load coming from the explosion is assumed to act only on the upper beam as a
uniformly distributed line load. The magnitude of this load is 2500 kN/m and it has a
triangular shape in time. After 2 ms there is no more load. As for material parameters,
the density of concrete is p = 2400 kg/m?>, and the Young’s modulus is E = 33 GPa.

4.8.2 Stiffness and mass ratios

First, the stiffness and mass ratios are calculated. In order to do that, moments of inertia
of both cross-sections are to be determined.

_ biky

I = I = 7.187-103 m* (4.38)
byh3
L= % —5208-10"3 m* (4.39)
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Keeping in mind that the upper beam is subjected to a uniformly distributed load, while
the lower beam is subjected to a point load only, the stiffnesses of the beams can be
computed. Masses of the beams can as well be determined.

384EI; 384-33 GPa-7.8178-1073 m* N
b =t L T _6.75.108 = (4.40)

: .5.208-1073 m* N
k2:48E12:48 33 GPa mt o N @.41)
L (4 m)4 m
my = byhLip =0.3m-0.66 m-3 m-2400 kg/m> = 1426 kg (4.42)
my = byhoLop = 0.5m-0.5 m-4 m-2400 kg/m> = 2400 kg (4.43)

Having all these quantities, the stiffness and mass ratio of the structure can be calculated.

k

k, = -1 =50234 (4.44)
ko

m, =" — 0,594 (4.45)
np

4.8.3 Creation of the optimised 2DOF model

The system of differential equations for the optimised 2DOF model can be expressed as:

Y 1 0 73] Yklkl _Yklkl :| |:I/t1:| _ [YFIF(Z)] 4.46
[ 0 2Ym2m2:| {uz} + {—’}’klkl Yi k1 + 2V, ko | |u2 YraF (1) (4.46)

where the optimisation factors ¥ must be obtained either from Figure D.1 to Figure D.5
or from Table D.1 to Table D.5.

The factors can be interpolated for intermediate mass ratios, which is clearly this case.
For the stiffness ratio of 5.234 and the mass ratio of 0.5, they are equal to:

Yy 05 = 0.802
Yy 0s = 0.990
Yy os = 0.595
Yiny o5 = 0.595
Yr os = 0.742

VB 05 = 1-— YR = 0.258
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For the stiffness ratio of 5.234 and the mass ratio of 1, the resulting factors are:

Y, = 0.960
Yey, = 0.980
Yy, = 0.805
Yy, = 0.555
Y, = 0.907

’}/Fz_1 =1- ’}/Fl =0.093

Having the factors for the two nearest mass ratios, the optimisation factors for the actual
mass ratio of 0.594 can be interpolated. Here, a linear interpolation is carried out.

Yirn — Ve,
Yer = Yiros + w -(m, —0.5) = 0.832
Yoo = Yipgs + T2t " Haws () 0.5y = 0.988
: 1-05
Yoy = Yony s - 2L Tis (1 0.5) = 0.634
0 1-05
Yy = Y5 + MI%O%’;”‘ (my—0.5) =0.227
Yr, — YA
Vi = Yrips T+ ‘11_—(”1“ -(m,—0.5) =0.773

YR = 1-— Yr = 0.227

The last component, which is to be calculated before the equation system from Equa-
tion (4.46) can be solved, is the value of the point force F(¢). This one is easily received,
as it is just the line load converted into a point load. Therefore

kN
F(t) =2500 — -3 m = 7500 kN (4.47)
m

With this value obtained, every component of the differential equation system is now
known, and the Central Difference Method can be employed to solve it.

4.8.4 Deformation

The optimised 2DOF model was solved for displacements. The resulting u;(¢) and uy(7)
were used to get the resulting displacement ug () (upper beam) and uy () (lower beam)
in the mid-spans, according to the expressions:

uU(t):ul(t)—uz(t) (4.48)

uL(t) = U (t) (4-49)

The structure was then modelled in ADINA following the procedure described in Sec-
tion 4.2.2. It was then solved with the dynamic implicit procedure, taking 4500 time
steps, each one 0.2 ms long. The output of the analysis was chosen to be the absolute
displacement of the mid-span of the upper beam (114 (¢)) and the absolute displacement
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of the mid-span of the lower components of the structure (u24(¢)). Those can be further
converted into the relative beams’ displacements (14 (f) and up4(t)), expressed as

uUA(t) = ulA(t) — M2A<t) (4.50)

ura(t) = una(t) (4.51)

The results are presented in Figure 4.41.

10.00 +
=y 5-00 1 / 2 :"\‘ o ) lr‘\ 'h‘ N in ’,'\| " - ',"\‘ l"l 2DOF
g ’\| ,' 'l ' ‘l 1 ‘| "I : \ " ‘l l’\ [ \l 1 “ " “ " “ "o ,' |l
1 v
E 000 yf it b e e AL o
5 VRV YRR AR R A Rt R R AR FRE ----FEM
I Y N A Y St R Y R R AR IR R AR
I Iy Y 1 P U Mo \Y L) \
-5.00 - ¥4 \‘, ‘\/ \U vy L ‘\,' \
-10.00 -
0.00 0.02 0.04 0.06 0.08 0.10 B660x300 on
Time, ¢ [s] B500x500
k
= 5.234
15.00 - nf
1
— = 0.594
10.00 - . N R m,
5.00 - TN\ A T AN
E‘ I’ \\ ' \ 1’ “ ,/’ N
E‘ 000 \\ I[ T \‘ I, T \\ I/l \ T ] N o
<-5.00 1 \ 7 \ i v A
S . \\ /I \_\\/l \\ I/ s\\’/
-10.00 - z .
-15.00 - @
0.00 0.02 0.04 0.06 0.08 0.10

Time, ¢ [s]

Figure 4.41: Deformation of the mid-span of the upper and lower beam from optimised
2DOF system and the FE solution.

By looking at the graphs, it can be said that the response for both the upper and lower
beam agrees very well in the beginning, but later a slight shift in time is noticeable. This
is believed to be caused by the linear interpolation of the optimisation factors used in
the 2DOF model. Other types of interpolation might provide better results, but this was
not checked. Another conspicuous thing is the very high frequency of the upper beam’s
secondary oscillations, which causes the slight frequency shift to be more noticeable. In
order to assess the severity of the shift, the eigenfrequencies can be obtained from the
2DOF model and compared with the spectrum analysis of the structure. However, due to
the nature of this example it was not done here.

As far as the amplitudes are concerned, one might notice good agreement between the
models. For both parts of the structure the 2DOF response is on the safe side, but this
is believed to be more of a coincidence than a tendency. The upper beam’s maximum
deformation predicted by the 2DOF model is 2 % higher than the one in ADINA. For
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the lower beam the same direction of the error is present, however now the difference
between the models is at around 4 % at the maximum.

The analysed structure had an intermediate stiffness ratio (k; /k, = 5.234), which means
that no part of the structure was definitely dominating in the motion. This can also be
assessed by looking at the magnitude of the deformation for both beams and noticing
that they are of similar size.

4.8.5 Hand calculations according to SDOF model

To further illustrate the difference between the behaviour of a structural system and its
individual parts, simplified hand calculations were carried out. The upper and lower
beams are now treated separately with the SDOF model approach. The goal of the
calculations is the maximum elastic deformation for both beams.

Upper beam

g = 2500 kN/m
I I
%/— L1:3m %

k.
1

Figure 4.42: Schematic of the upper beam.

The eigenfrequency of the beam can be calculated as:

ki 6.75-108 N/m
Vo — 688 rad 452
o= \/ 1426 kg rad/s (352

As already stated in Section 2.4.2, the fundamental period can be determined as

2n 2r -3

Keeping in mind that the duration of the impulse load is #; = 2 ms and its shape can be
described with parameter n = 1 according to Figure 2.22, the ratio T} /1, is:

7y 9.133-103s
= " 4567 4.54
f 2.103s (4.54)

For this value, a load correction factor 9 can be interpolated by using the values from
Table 2.2.

1.1-1.05

_ 1054 L2100
=105+ 25—

(4.567 —5.86) = 1.089 (4.55)
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The characteristic impulse can be calculated as the area under the force-time graph. It
must be corrected with the load correction factor 7.

0.5-2500 kN/m-3 m-2 ms
1.089

Iy = = 6887 Ns (4.56)

Finally, the elastic deformation can be calculated (note: the transformation factor K,r
for a simply supported beam subjected to uniformly distributed load must be used).

I 6887 Ns
tell = emi@  0.788- 1426 kg - 688 rad/s mm (457)

The ratio between the displacement of the upper beam treated as a part of a structure
(from ADINA solution) and the displacement of the same beam treated separately is

then:
6.52 mm

=0.7 4.58
8.9 mm 33 ( )

In other words, the influence of the rest of the structure on the upper beam results in a
deformation, which is 73 % of the deformation this beam would reach when treated as a
separate structure.

Lower beam
The lower beam is loaded by a point force, coming from a reaction of the upper beam
under impulse loading. The magnitude of the force is

_ 2500 kN/m-3 m
B 2

= 3750 kN (4.59)

and the beam can schematically be seen in Figure 4.43.

P =3750kN

'
é%; L2:4m %

k I
1 i

Figure 4.43: Schematic of the lower beam.

The eigenfrequency of the beam can be calculated as:

k2 1.29-108 N/m
,/ =232 4.
\/ 2200 ke 32 rad/s (4.60)

As already stated in Section 2.4.2, the fundamental period can be determined as

2n 2n
n="=_ "  _571.107? 4.61
27 @~ 231756 rad/s > “-6D)
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Keeping in mind that the duration of the impulse load is #; = 2 ms and its shape can be
described with parameter n = 1 according to Figure 2.22, the ratio 73/ is:

T, 27.1-1073s

= =13.556 4.62
| 2-1073s (4.62)

According to Table 2.2, no load correction is needed for this time ratio. Hence

v =10 (4.63)

The characteristic impulse can then be computed as

0.5-3750 kN -2
I = - 2 3750 Ns (4.64)

Finally, the elastic deformation can be determined (note: the transformation factor, K, r,
for a simply supported beam subjected to point load in the mid-span must be used).

Ik2 . 3750 N-s
Knrmo@y  0.486-2400 kg - 232 rad/s

Uy = =13.9 mm (4.65)

The ratio between the displacement of the lower beam treated as a part of a structure
(from ADINA solution) and the displacement of the same beam treated separately is
then:

9.1 mm
Bomm 0.65 (4.66)

In other words, the influence of the rest of the structure on the lower beam results in a
deformation, which is 65 % of the deformation this beam would reach when treated as a
separate structure.

It can be seen that treating the elements as a part of a larger structure can have significant
effects, namely smaller deformation than it would have been if the elements had been
treated separately. Those values are however approximate, as the hand calculations were
used.

4.9 Discussion and conclusions

4.9.1 Two degrees of freedom model

In this chapter it was shown that the optimised 2DOF model is capable of describing
the behaviour of a structural system consisting of a beam simply supported on two
beams, with arbitrary stiffness and mass ratio. The produced response might not be
absolutely correct, but it is believed to be reasonably good, since the predicted maximum
displacements are located close to those obtained in ADINA. Even though a slight
shift in frequency might still exist for structures with mass ratios lying in between the
analysed cases, the initial response (first few sways) is captured quite well. In reality,
every structure has a certain damping, which will reduce the amplitudes with time, and
therefore the initial response is of particular interest. However, it should be noted that
this model was validated only for linear elastic material response, which might be far
from reality if the structure develops plastic response.
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4.9.2 Comparison with SDOF models

It was already mentioned in Section 4.8.5 that the response of a structural system is
different than the response of its separate elements. It was therefore decided to investigate
this matter further, in order to come up with an idea, for which structures the reduction
or appreciation in displacements is the largest.

To do so, new analyses were carried out. Along with the structural systems consisting
of the parametric beams described in Section 4.2.1, the same beams were studied in
ADINA, but this time as separate structures. The upper beams were loaded by a uniformly
distributed load, while the lower beams were loaded by a point force (following the
procedure shown in Section 4.8.5). The output of the analyses were the mid-span
displacements. Next, the maximum displacements were compared with the deformation
of the examined structural beam-on-beams systems. The ratio between the upper (or
lower) beam displacement when it was a part of a structure and the displacement of a
separate beam was calculated for each studied case. It is believed that such ratio is a
function of the stiffness and mass ratio, hence the results were gathered, plotted and
extrapolated for intermediate values of stiffness and mass ratios.

The resulting contour plots for the upper beam can be seen in Figure 4.44. Both plots
present the same data, however the scale of the horizontal axis is different, due to high
congestion of data for low stiffness ratios. From the plots, it can be seen that for very low
stiffness ratios (less than 0.5) and high mass ratios it is even possible to gain deformation
when analysing the upper beam as a part of a structure. However, apart from this extreme
case, it is conspicuous that the deformation is usually smaller if the beam is treated
as a component, not a separate entity. Hence, there is much to be saved (in terms of
deformation) especially for high stiffness ratios, which was also pointed out in Chapter 3.

100
90

Mass ratio, mj /my [-]
o
T
100
Q
|
Mass ratio, mj /my [-]

90

0.0 0.5 1.0 1.5 2.0 2 5 10 15 20 25 30 35
Stiffness ratio, ki /kp [-] Stiffness ratio, k1 /k» [-]

Figure 4.44: Quotient of the maximum elastic deformation (in %) of the upper beam
treated as a part of the structure, and the upper beam’s maximum deforma-
tion when the beam is treated separately.
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The contour plots for the lower beam are presented in Figure 4.45. Like previously, the
same data is presented at both of them, however the scale of horizontal axis is different
due to a concentration of curves. For this beam, it is possible to gain relative deformation
when analysed as a component for low mass ratios and intermediate stiffness ratios (0.25
- 2). Apart from this extreme case, it can be seen that usually the deformation is much
overestimated if the lower beam is calculated as a separate structure.

4 4
g 31 : T§ 3| 2\ o S PN
= =
S S
S 2f y S 2/ 9 |
2 g <
= 1 90 = I 70

100 \\ ®
10 ;\\ 8 20
| | | | | | |
0.0 0. 1.0 1.5 2.0 25 10 15 20 25 30 35

Stiffness ratio, ky /kp [-]

Stiffness ratio, k1 /k; [-]

Figure 4.45: Quotient of the maximum elastic deformation (in %) of the lower beam
treated as a part of the structure, and the lower beam’s maximum deforma-
tion when the beam is treated separately.

When studying the example from Section 4.8, it turned out that the relative displacement
of the upper beam (component vs separate structure) was 73 %, while for the lower beam
the value was 65 %. For the corresponding stiffness ratio of 5.234 and the mass ratio of
0.594, it can be seen that these values do not agree with the contour plots, which say that
the reduction should be at around 80 %. The reason of this discrepancy is not known,
but it is believed that the eigenfrequency of individual beams might play a role here.
All of the examined parametric beams had low eigenfrequencies, up to 28 Hz at most.
The beams used in the example had much higher eigenfrequencies (109 Hz and 37 Hz).
Those matters can be concluded later, as a part of a further studies in the subject.
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S Enhanced SDOF systems

5.1 Introduction

In Chapter 4 it was shown that the response of a structural system consisting of a beam
supported on beams can be analysed numerically with the help of an optimised 2DOF
system. Even though it produces reasonable result, the process of its construction and
solution with Central Difference Method may be considered lengthy and laborious.
Moreover, the 2DOF system cannot be easily analysed with hand calculations to get the
maximum deformation, as is the case for SDOF systems. Therefore, it was desired to
modify the existing SDOF system for the upper and lower beam in order to construct
reasonable systems. These systems would be able to describe the behaviour (in terms of
the largest deformation) of the respective constitutive elements of the structure, at least
within a limited range of the spectrum.

The concept of the transformation can be seen in Figure 5.1. The two systems are
considered independent of each other. One of them is describing the movement of the
upper beam, while the other treats the lower beam.

q(t) l F(t) l Fa(t)
my mo

NN

Figure 5.1: The concept of transformation into two independent SDOF systems.

Since a SDOF system vibrates with only one frequency, it is evident that it will not
describe well the actual behaviour of a structure vibrating in more eigenfrequencies, i.e.
a system in which both elements dominate the motion. Therefore it can be stated that
the behaviour of structures in intermediate stiffness ratios will not be reflected well by
SDOF systems.

Furthermore, even if the movement of one element dominates the movement of the
whole structure, there is also a slight influence of higher eigenmodes, which will not be
captured by a SDOF system. However, the reason behind developing new SDOF systems
is to facilitate and expedite getting estimated results for the deformation. Therefore it
is assumed, that the shape of the motion is not of great importance, but rather that the
maximum deformation is of secondary relevance.

In this chapter, a method of estimating the maximum deformation of each constitutive
element of the structure with simplified SDOF systems is presented, as well as the
approximate range of the application of those systems.
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5.2 Lower beam

5.2.1 Simply supported beam

The first option is to consider the lower beam as an ordinary simply supported beam,
which can be seen in Figure 5.2.

_q()L
l F(t)= =3 1
T

-
-

Figure 5.2: Simply supported beam subjected to point load.

The beam has stiffness k> and mass m, - the reader is referred to Section 4.2.1 for more
information about these parameters. The transformation factor x;,r for this beam can be
obtained directly from Table 2.4, and in this case it is equal to

Kmr = 0.486 5.1

The angular frequency of this system can be expressed as

k
o= 2 (5.2)
Kinpmy
And finally, the maximum deformation of the beam can be calculated as
Iy
= 5.3
Umax,SDOF P (5.3)

where [} is the characteristic impulse corresponding to the load F (). For more informa-
tion, the reader is referred to Section 2.4.2.

When solving this SDOF system with the Central Difference Method, a sine curve
with the amplitude w4 spor and the angular frequency ® is obtained. The result was
computed for each of the studied cases (from Chapter 4). If the maximum deformation
of the lower beam obtained from ADINA, max(ur, ), is denoted as uz, max ApINA, then an
accuracy factor 1) can be calculated, i.e.

_ Umax,SDOF (5.4)

Umax ADINA

If the accuracy factor is 1, then the response of the SDOF system is the same as in ADINA
(in terms of deformation), which is desired. If the factor is higher than 1, the system
overestimates the deformation. Subsequently, when 1 < 1, the system underestimates
the deformation of the lower beam. The resultant 1) for the whole spectrum of analysed
structures can be seen in Figure 5.3.
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Umax,SDOF
UL max,ADINA
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Figure 5.3: Accuracy of the SDOF model for the lower beam. Beam treated as a simply
supported beam.

It can be seen in the graph, that the deformation of the lower beam is largely overestimated
with this SDOF model. The beginning of each curve is not very important, since the
response of a structural system with a low stiffness ratio is mainly governed by the
oscillation of the upper beam. Therefore it will not be described well by a simple SDOF
system. On the other hand, the response of the system with a high stiffness ratio is
mainly due to the motion of the lower beam, and it should be possible to describe it
approximately by a simple SDOF model. For the low mass ratios (i.e. up to m;/my = 1)
the deformation is overestimated, but still within a reasonable range. For higher mass
ratios, the overestimation grows unreasonably, and therefore it is concluded that this
model is insufficient to describe the movement of the lower beam.

5.2.2 Simply supported beam with a point mass

Another option is to take into consideration, that there is some mass of the upper beam
which may influence the behaviour of the lower beam. Therefore, a beam with a point
mass in the mid-span can be constructed, see Figure 5.4. The beam has the stiffness &,
mass my and the point mass in the mid-span, m ;.

Figure 5.4: Simply supported beam with a point mass in mid-span subjected to point
load.
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The transformation factor k is still equal to 1, since the structure is subjected to a point
force in the system point.

KF mod = 1 (55)

However, the transformation factor k;,, will change now, since an additional mass 12,
is present at the system point. The overall mass of the structure is denoted m and is the
sum of the mass of the beam m; and the point mass #1,;,;. If the beam’s mass per length
is constant (i.e. m}(x) = my) and the transformation factor for a beam without point
mass is denoted as K;;, then the new transformation factor «;,, ,,,4 can be calculated as

2 L, 2
m u(x) 1 [my(x)u(x
Kmmod——/ 2 / pomt2 dx+—/ 1t )2()dx
u; T m u; m u;
0 0
Ly
m . . u —_—
1 pomt 2 1 1 1 Mpoint +my Ky
- > +—myKy, = —Mpoint * 1+ —MmKy=——"""
m us m m m Mpoint + M2
(5.6)
After calculating K;,, the transformation factor k;,,r can be obtained as before, i.e.
K-m,mad
KmFmod = — (57)
Kr

The value of the point mass was assumed to be half of the weight of the upper beam, so
mi
Mpoint = 7 (5.8)

The angular frequency and the maximum deformation of the structure can be now
computed as:

o= k2 (5.9)

my
KinF,mod <I’I12—|— 5 )

I
mj
KmF.mod <m2 + 7) w

Umax,SDOF = (5 10)

The SDOF system was solved for each analysed case, and the accuracy coefficient n
was calculated. The results can be seen in Figure 5.5.
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Figure 5.5: Accuracy of the SDOF model for the lower beam. Beam treated as a simply
supported beam with a point mass in the mid-span.

The discrepancy between structures with different mass ratio cannot be seen now. The
response of the SDOF model tends to 11 = 1 as the stiffness ratio increases. The results
for low stiffness ratios are not of interest, since the lower beams hardly move in such
structures. The model gives results on the unsafe side, underestimating the response by
10-20 % in the tentative range of application (which is assumed to be when k; /k, > 8).
This is because there is no influence of higher eigenmodes in this simplified model. To
conclude, the deformation of the lower beam can easily be estimated with reasonable
accuracy with the SDOF model created from a simply supported beam with a point mass
in the mid-span. However, the obtained results will be somewhat non-conservative.

5.3 Upper beam

5.3.1 Simply supported beam

The easiest alternative is to consider the upper beam as an ordinary simply supported
beam subjected to a uniformly distributed load, which can be seen in Figure 5.6

q(t)
Y v v v oy
& 2

k
4

=

Figure 5.6: Simply supported beam subjected to a uniformly distributed load.

The beam has stiffness k; and mass m; - the reader is referred to Section 4.2.1 for more
information about these parameters. The transformation factor K, for this beam can be
obtained directly from Table 2.5, and in this case it is equal to

Kmr = 0.788 (5.11)
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The angular frequency of this system can be expressed as

ki

0= (5.12)
KmFm|
And finally, the maximum deformation of the beam can be calculated as
I
== 5.13
Umax,SDOF K 111 ( )

where I is the characteristic impulse corresponding to the load F(¢) = ¢(¢)L,. For more
information, the reader is referred to Section 2.4.2.

The maximum deformation received from this SDOF system is denoted 1,4, spor. From
the FE solution, the maximum deformation of the upper beam, max(uy, ) is referred to
as uy max,ADINA- The accuracy coeffient, 17, can be computed for each studied case, i.e.

_ Umax,SDOF (5.14)
Umax ADINA

The resultant accuracy of the system is presented in Figure 5.7.
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Figure 5.7: Accuracy of the SDOF model for the upper beam. Beam is treated as a
simply supported beam subjected to a uniformly distributed load.

The behaviour of a structural system with a low stiffness ratio will be dominated by the
vibration of the upper beam. Therefore it can be anticipated, that if this SDOF model
gave good results, it would be in the range of the low stiffness ratios, hence the graph was
shown in logarithmic scale. It can be seen that this model overestimates the deformation
in virtually every case. The higher the mass ratio, the higher the overestimation, which
can reach up to 80 % on the safe side for a structure with both high stiffness and mass
ratio. The range of acceptable results can be deemed until the stiffness ratio k; /ky = 1.
This is clearly not a good SDOF model, and should be improved.
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5.3.2 Beam on spring supports

Another alternative is to realise that the beam in reality is resting on another beam - thus
the stiffness of the support is not infinite. Therefore a model consisting of a beam on
spring supports can be adopted to reflect the flexibility of the lower beams. A schematic
layout of such model is shown in Figure 5.8.

Figure 5.8: Beam on spring supports subjected to a uniformly distributed load.

The stiffness of the spring supports was chosen to be k; in order to reflect the flexibility
of the lower beams. The springs are massless, while the mass of the beam is m;. The
transformation factors for this beam can be calculated according to Section 3.3. The
creation of the SDOF system can be performed according to Section 3.4. The equivalent
stiffness of the structure can be calculated as:

2k1ko

= 5.15
‘= otk (5.15)
The angular frequency is obtained as
k
0= ¢ (5.16)
Kmpmi

where K, = k(k1,k>) is the modified transformation factor for a beam on spring supports
subjected to a uniformly distributed load, see Figure 3.6.

The maximum deformation of this SDOF system is then

I
Umax SDOF = ——————— (5.17)
KmF,mod"1 @

It should be noted that this is the deformation of the beam along with the contraction/e-
longation of the spring supports. As already derived in Section 3.4, the pure beam
deformation can be expressed as

2k>
2ky +ky

UU max,SDOF = Umax,SDOF * (5.18)

The accuracy coefficient, 1, was calculated for each studied case, and the results are
presented in Figure 5.9.
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Figure 5.9: Accuracy of the SDOF model for the upper beam. Beam treated as beam on
spring supports subjected to a uniformly distributed load.

The graph is shown in logarithmic scale, since it is the low stiffness ratio region that can
be expected to give good results. The model behaves now in the opposite way compared
to the system in Section 5.3.1, giving results on the unsafe side for the whole spectrum of
structures. The results lie in the vicinity of 1 in approximately the same range as before
(Figure 5.7). The model gives reasonable estimates of deformation up to 20 % on the
unsafe side, if the stiffness ratio kj /ky < 1.0. However, its performance is still rather
poor, and the model could possibly be improved, so that the range of application widens.

5.3.3 Optimised SDOF model for the upper beam

An alternative approach to the simplified SDOF model for the upper beam was tried.
This time, an optimisation procedure was employed to create a SDOF model, which can
describe the response of the upper beam in terms of the maximum deformation and the
first eigenfrequency. The basis for this model was a beam on spring supports (presented
in Figure 5.10), but now some adjusting parameters depending on stiffnesses and masses
of the constitutive elements are also present. The optimisation procedure is described in

Appendix F.

q(t)
v v v v 3

kzmz% krmi %kz,mz

L
L ! b

1 g

Figure 5.10: Beam on spring supports subjected to a uniformly distributed load.
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The differential equation of motion for this optimised SDOF system has the form:

YmnMeliy + Yikeuy = F (1) (5.19)

The system uses equivalent mass and stiffness, which can be expressed with following
equations.

m, = mj +2my (5.20)
2k1ky
= 5.21
¢ 2ky + ky ( )

Furthermore, these properties are adjusted with adjustment factors, ¥, and ¥, so that
they reflect the behaviour of the upper beam within a longer range than before. Moreover,
they were optimised in such a way, that the angular frequency of the SDOF system
matches the first eigenfrequency of the structural system. The angular frequency can be
calculated as

Ykke
YmnMe

Wspor = (5.22)

where the adjustment factors, ¥, and ¥, can be computed as

2
k
Yo = <0.0288 1+0.1697 <@> ~0.0233 (@) ) : (—1 n 1.3023) (5.23)
my my k2

k
% = 0.9961 + <0.1767 +0.18531n (Z—;)) : é (5.24)

For a detailed procedure of how those expressions were obtained, the reader is referred
to Appendix F.

The maximum deformation of the upper beam according to this model can be computed

as ;
k
Uy max,SDOF = —————— (5.25)
YmiMe WSDOF

where I}, is he characteristic impulse.

To check how well the model works for different stiffness ratios, the accuracy coefficient,
n, can be calculated for each studied case. The definition of this coefficient remains as
before, i.e. it is the ratio of the maximum deformation of the upper beam obtained from
the SDOF model and the maximum deformation of the upper beam taken from ADINA.

UU ;max,SDOF

n= (5.26)

UU max, ADINA

For each studied case the accuracy coefficient was calculated, and the results can be seen
in Figure 5.11.
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Figure 5.11: Accuracy of the optimised SDOF model for the upper beam.

It can be seen, that the model provides reasonable results up to the stiffness ratio of
3, which is a notable improvement compared to that obtained in Section 5.3.1 and
Section 5.3.2. and The results start to diverge after that, e.g. for the lowest mass ratio
an overestimation of the deformation is received, while for all the other mass ratios
the model is underestimating the deformation. The reason behind it is unclear, but
it is believed, that this is caused by the numerical nature of the optimisation process.
Moreover, for a structural system with a high stiffness ratio, the movement of the
upper beam is rather small in comparison to the lower elements, and therefore it can be
accepted.

Even though this optimised SDOF model is capable of approximating the deformation
of the upper beam up to the stiffness ratio of 3, it should be noted that for structures with
this ratio, the lower beam’s movement can also pose a considerable role in the vibration
of the total structure.

5.4 Discussion and conclusions

5.4.1 Alternative approach to the upper beam

From the beginning, the upper beam was intended to be simplified in another way.
Namely, a beam on spring supports and point masses at the ends subjected to a uniformly
distributed load was believed to reflect the behaviour of this part of the structure in the
best way. Such a beam is presented in Figure 5.12.

Am Am
Ak% ki %Ak

Figure 5.12: Beam on spring supports with point masses at ends.
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The simple model of a beam on spring supports with the stiffness of the supports being
equal to the stiffness of the lower beam did not give good results, see Section 5.3.2.
Therefore it was suspected that the support’s stiffness has a different value, depending on
the structural properties of one or even both of the constitutive elements of the structure.
Therefore it was chosen to use a support with a flexibility of Ak, which can be a function
of the properties of both elements. A similar approach was reasoned for the point
masses at the ends, Am. It was believed that during the vibrations, the upper beam might
"receive" a part of the mass from the lower supporting elements and vice versa.

This beam was studied extensively in order to find the relations and expressions for Ak
and Am, but the survey was not successful. When modelled numerically, such a structure
vibrates with two distinctive frequencies, therefore it has two clear eigenmodes. One
in which the beam bends upwards (downwards) and the springs elongate (contract),
and one with an opposite behaviour - namely the beam bends downwards (upwards)
accompanied by the elongation (contraction) of the springs. Efforts were put to adopt
such point masses and spring supports, so that the eigenfrequencies correspond to the
eigenfrequencies of the structure, and the amplitudes for the respective modes reflect
the amplitudes received in the FE analysis. Unfortunately, this search did not provide
good results. For instance, negative masses, Am, were received, and the flexibilities, Ak,
did not follow any reasonable trend. Moreover, it was not clear how the transformation
factors K should be treated in this case. In the end this approach was abandoned.

5.4.2 Lower beam with point mass and the optimised SDOF system for the upper
beam

The response of the constitutive elements of a beam-on-beams structural system can
be obtained approximately by using the modified SDOF systems. For describing the
behaviour of the lower beam, the SDOF model based on a simply supported beam with
a point mass in the middle can be recommended, see Section 5.2.2. However, it was
shown that this model describes the displacement of the lower beam on the unsafe side,
increasing the accuracy as the stiffness ratio of the structure, k; /k,, increases. It is hard
to set a definite limit, as to when the system is successful, but it is believed that for
structures with stiffness ratio higher than 8, the behaviour of the lower beam can be
estimated by this model with 80-90 % accuracy. Since the model underestimates the
actual response, it is advisable to use a safety factor in design taking this deviation into
account.

For describing the behaviour of the upper beam, an optimised SDOF system based on a
beam on spring supports can be used, see Section 5.3.3. This system was adjusted so that
the response of the simplified beam and the actual FE response are similar. Nevertheless,
some inaccuracy exists, and should be accounted for in the design of such beams. It is
believed that the limit of application for this model is a structure with a stiffness ratio,
ki /kp < 3. In this range, the model can describe the movement of the upper beam with
the accuracy of 80-90 %. It cannot be clearly said whether the model underestimates or
overestimates the response, hence a safety factor should be used in design.
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It should be noted, that for a beam-on-beams structural system with a stiffness ratio
in the range of 1 to 3, the movement of the upper beam is no longer dominating the
total motion of the structure. As it was shown in Chapter 4, even for a structure with
a stiffness ratio of 1.6, the lower beam’s movement can constitute even 50 % of the
total amplitude of vibration. It is therefore advised to check the behaviour of the lower
beam as well for the structures in the intermediate stiffness ratio region (1 < k; /k, < 8).
However, no simplified SDOF system was developed for this purpose.
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6 Discussion

6.1 General discussion

This thesis project consists of three main sub-studies, namely the study of beam on spring
supports, the study of an equivalent 2DOF system, and finally a modification of existing
SDOF models in order to estimate the response of a compound structure. Detailed
discussions for each sub-part are included in the respective chapters. Nevertheless, some
general remarks which summarise the whole project are presented in this chapter.

In terms of accuracy of the results, some primary assumptions and limitations should
be reminded. First of all, all studies were limited to linear elastic response. Therefore
the resultant response of the structure might be misleading. As far as the FE model is
concerned, the boundary conditions used are also a simplification of reality. Namely,
the connection between the upper and lower beams is simplified to a simple support.
Since the considered structural system is just a simplification of a continuous beam grid,
there exists some kind of restrain between the two elements, and it should also be taken
into account when judging the credibility of the analysis. The results of the Fast Fourier
Transform depend greatly on the sampling time; the longer the time of the recorded
response, the better the accuracy of the received amplitudes and eigenfrequencies. In
order to save computational time, the sampling time was not considered to be a very
important output, therefore the results of the FFT may be also slightly misleading.

Nevertheless, the outcomes of the sub-studies solve the research problems stated in the
beginning of this thesis; a beam-on-beams structural system can be transformed into a
2DOF system, and the sought deformations, and eigenfrequencies can be obtained. If
the procedure is considered too complicated, and the structure has a stiffness ratio in
certain limits, the response of one of its elements can be estimated with easier SDOF
models and even hand calculations.

6.2 Limitations of the 2DOF system

Apart from the limitations stated in Section 1.3 and in the respective discussion chapters,
a concluding survey was done to show why the optimisation factors could not be received
for all stiffness and mass ratios in the same limits. It was pointed out, that the angular
frequency ratio might have a large influence on the response of individual members of
the structure. Therefore, for all studied cases, the results of the Fast Fourier Transform
were analysed once more. Namely, the amplitude of respective eigenmode was related to
the maximum amplitude of the structure’s vibration. The angular frequencies of separate
members were calculated as:

ki

0] =/ — (6.1)
mi
k

Wy =)= (6.2)
my

Thus, the resultant angular frequency ratio can be computed as:

(0]} ki mo
B (6.3)
(0)) ky my
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When presenting the results with respect to the varying angular frequency ratio, @; /;,
an interesting pattern can be seen. The results related to the upper beam for the whole
spectrum of studied structures can be seen in Figure 6.1, while the results belonging to

the lower beam can be seen in Figure 6.2.
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Figure 6.1: Influence of the eigenmodes on the total amplitude of the upper beam’s
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Figure 6.2: Influence of the eigenmodes on the total amplitude of the lower beam’s
deformation.

As far as the upper beam’s behaviour is concerned, for low frequency ratios the first
eigenmode dominates the total movement, while the second eigenmode has very little in-
fluence. This relation changes as the ratio increases. Once the ratio passes approximately
1.5, the amplitude of the second eigenmode starts to dominate in the movement of the
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upper beam. For high angular frequency ratios, the third mode starts to play a big role,
and this is the reason that not all the structures were able to be successfully analysed
with a simple 2DOF system. It is still possible to analyse the structural system with a
2DOF system, but other eigenfrequencies must be used in the calibration process. In
this thesis, only the first two eigenfrequencies were used, and from Figure 6.1 it can be
seen that with those two, the 2DOF system can be successful up to the frequency ratio
of approximately 6-7. After that, the influence of the third eigenmode will noticeably
affect the result. This is believed to be the reason why complex numbers were sometimes
received in the calibration process, and why the optimisation factors for a structure with
a low mass ratio and high stiffness ratio could not be obtained. High stiffness ratio and
low mass ratio result in a high angular frequency ratio, and therefore for those ratios the
model should be calibrated to the second and third eigenfrequency, rather than to the first
and the second, as it was done for the whole spectrum.

As far as the lower beam is concerned, the prevalence of the first eigenmode can be seen
almost throughout the whole spectrum. However, for low frequency ratios the influence
of second eigenmode can be high. With increasing angular frequency ratio the influence
of third eigenmode increases as well, although it is still of minor magnitude (about 10 %).
Overall, it can be seen that the behaviour of the lower beam is not affected as much as
the behaviour of the upper beam by higher eigenmodes. Therefore it can be deemed that
the 2DOF model could describe the lower beam’s motion even for high ®; /@, ratios.

To summarise, the 2DOF system developed and presented in this thesis project can be
used as long as the first two eigenmodes play a dominant role, i.e. up to the frequency
ratio being approximately 6-7. Above that, the calibration process must be repeated,
taking other eigenfrequencies, and possibly using other optimisation factors.

6.3 Summary of results

6.3.1 Response of a structural system

The structural system consisting of beam supported on beams was thoroughly studied in
this master’s thesis. An optimised 2DOF system was developed in order to be able to
describe the response of such a system.

For a structure low stiffness ratio, k; /k;, the response of the structure will be governed
by the movement of the upper beam, since the lower beams are much stiffer and act
nearly as ideal supports. On the other hand, for a structure with high stiffness ratio,
ki /ky, the response of the system will be governed by the movement of the lower beams.
Since the upper beam is much stiffer and will undergo movement resembling rigid body
motion, meaning that it will hardly bend.

Having in mind the limitations presented in Section 6.2, it can be stated that the optimised
2DOF model can be used to describe the behaviour of the structural system within a
wide spectrum of structural properties.

Furthermore, simplified SDOF models were created as well in order to estimate the
response in a quick way. The response of the upper beam in a low stiffness ratio structure
can be described by the optimised SDOF system which uses adjustment factors ¥, and
% and a beam on spring supports. This model proved to give reasonable results up to the
stiffness ratio of 3.
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On the other hand, the response of the lower beam can be described by a SDOF model
which uses a simply supported beam with a point mass in the mid-span. This model
proved to give reasonable results from the stifness ratio k| /k; = 8 onwards. A summary
of all the models suitable for describing the reponse of the structural system along with
their ranges of application is shown in Figure 6.3.
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Figure 6.3: Ranges of application of the developed systems.

6.3.2 Influence of the surrounding structure

Another objective in this master’s thesis was to investigate the effect the surrounding
structure has on the response of its individual elements. In order to examine that, each
structural system was divided into two parts. Those two simply supported beams were
subjected to the same load (either uniformly distributed load or a point load) as the
structural systems before. After dynamic analyses, the maximum deformation for each
element was stored and compared with the maximum deformation of the same element in
the system consisting of beam on beams. In the end the quotient of the two deformations
was computed for each case. The results can be seen in the contour plots in Figure 6.4
and Figure 6.5.
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Figure 6.5: Quotient of the maximum elastic deformation (in %) of the lower beam
treated as a part of the structure, and the lower beam’s maximum deformation
when the beam is treated separately.

For the upper beam, it can be seen that treating the beam as a separate structure usually
overestimates its maximum deformation. For high mass and stiffness ratios, the reduction
may be up to 40-50 %. However, for some cases with high mass ratios and low stiffness
ratio, treating the upper beam as a separate structure can underestimate its maximum
deformation.

Similar conclusions can be drawn by analysing the results for the lower beam. If the
beam is treated as a separate structure, its maximum deformation is usually overestimated.
For high mass and stiffness ratios as much as 50-60 % in terms of lower deformation can
be gained if the surrounding structure is considered. However, for some extreme cases
(very low mass ratio and low stiffness ratio) the maximum deformation of the lower
beam can be underestimated if the beam is treated separately.
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To sum up, it is recommended and worthwhile to consider the influence of the surrounding
structure in design of impulse loaded elements.

6.4 Examples of application

The first and most natural example of application of the developed 2DOF model for this
structural system is a grid of beams, of which the beam-on-beams system is a repeating
representation. Hopefully, it could also be applied in some extent to a floor structure,
which is supported on beams. It does not need to be a concrete floor, which is often a
slab supported on walls and/or columns. The model works for every elastic material.

The same approach can be applied to roofs. One example of this could be a roof
structure, which consists of a concrete slab supported on concrete beams. Even though
the analysis of the behaviour of slabs was not carried out in this master’s thesis, the slab
can be simplified to a strip model, which in turn can be modelled with beams. This
results ultimately in the beam-on-beam structural system, which can be analysed with an
equivalent 2DOF model.

Roofs of warehouse building can also be assigned to this category. A warehouse building
usually consist of main girders supported on columns, placed within a distance to each
other. Roof elements span the distance between the girders, with or without purlins. A
variety of structural elements can be chosen for roofing. For instance, prefabricated slabs
can be laid in between the girders to ensure a stiff roofing. The slabs can be simplified in
analysis to simply supported beams which are resting on the girder beams. Therefore,
such part of the overall structure can be analysed and designed against explosion with
the 2DOF simplification.

Another example of application can be the analysis of multi-storey buildings. This can
be construed on different structural levels. First, the wall panels of the building can be
subjected to explosion load, as shown in Figure 6.6.
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Figure 6.6: Analysis of the wall panel-floor response in a multi-storey building.
The wall panels are connected with the floor and roof elements. Therefore, when

looking from the side and simplifying the panel to an equivalent beam, the analogy of
beam-on-beams structure can still be used.
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When considering the building at a higher structural level, the shear walls can be included,
see Figure 6.7.

—————————————————————————
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Figure 6.7: Analysis of the floor-shear wall response in a multi-storey building.

In this example, the shear walls are considered to be fixed at their base. Therefore,
the shear walls and the floor structure can be simplified to a beam-on-beams structural
system subjected to explosion. It should be noted, that the stiffness of the floors can be
different at different heights of the building, due to the fact that they are connected with
the load-bearing structure. The load-bearing structure can resemble a cantilever beam,
and therefore its resistance can change with the height; the higher up the load-bearing
structure, the less stiffness one could expect. The major difference now are the boundary
conditions of the shear walls, which are regarded as cantilever beams instead of simply
supported beams. A survey on structural systems with different boundary condition can
be regarded as a future research problem.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2015:86 121



7 Conclusions

7.1 Response of a structural system

To summarise this thesis project, some final remarks are presented in this chapter.
The behaviour of a structural system comprising a beam, simply supported on beams,
subjected to an explosion load, will depend on the properties of all members involved.
Namely, the stiffness and mass ratios of the individual elements making up the system
have great significance. The angular frequency ratio is also of importance. Based on the
studies carried out in this thesis, the following conclusions can be drawn:

e For structures with a low stiffness ratio, k1 /k», the response will consist mainly of
the movement of the upper beam.

e For structures with a high stiffness ratio the response will consist mainly of the
movement of the lower beams.

e The behaviour of a beam-on-beams structural system can be described with the
equivalent 2DOF mass-spring system. However, for a structure with high frequency
ratio the created 2DOF model might not work, since it is calibrated for other
eigenmodes than the ones which are usually predominant for such structures.

e Within certain range of stiffness ratios, it is not necessary to apply a 2DOF model;
the response can quickly be estimated with modified SDOF models.

e For a structure with a stiffness ratio lower than 3, the deformation of the upper beam
and the first eigenfrequency of the structure can be estimated with an optimised
beam-on-springs SDOF model. It should however be kept in mind, that for a
structure with a stiffness ratio in the intermediate range (1-3) the movement of the
lower beam can also constitute a large part of the total oscillation of the structure.

e For a structure with a stiffness ratio larger than 8, the maximum deformation of the
lower beam can be estimated with a SDOF model based on a beam with a point
mass in the middle (half of the mass of the upper beam).

7.2 Influence of the surrounding structure

The following conclusions about the influence of the surrounding structure on the
response of the individual member can be drawn:

e The surrounding structure has significant influence on the response of its individual
elements.

e In the studied stiffness and mass ratios spectrum, the maximum elastic deformation
of the upper beam can be reduced by up to 40-50 % if the surrounding structure is
considered. However, the magnitude of the reduction is case sensitive and varies
for different structures.
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e The maximum elastic deformation of the lower beam in the studied spectrum
can be reduced by up to 50-60 % if the influence of the surrounding structure
is included in the analysis. The actual reduction is case sensitive and varies for
different structures.

e For some rare cases (low stiffness ratio and high mass ratio), the maximum elastic
deformation of the upper beam can be underestimated when treating the beam as a
separate structure.

e For some rare cases (very low mass ratio and a low stiffness ratio), the maximum
elastic deformation of the lower beam can be underestimated if the beam is treated
as an individual structure.

e Nevertheless, it is recommended and worthwhile to consider the influence of the
surrounding structure in design of impulse loaded elements.

7.3 Improvements and further research

To improve the results obtained in this thesis project, several measures could be taken.
First of all, a mode superposition analysis could be carried out on the whole spectrum of
structures in order to attain a deeper knowledge on the influence of the eigenmodes on
the total behaviour of the structural system.

Secondly, the mentioned high frequency ratio structures could be analysed once more in
the 2DOF system’s calibration process. However, it should be noted that such structures
can usually be associated with high stiffness ratio, which means that it is mainly the
lower beam which will experience high-amplitude vibrations. Therefore, even if the
2DOF system cannot describe the behaviour of such structures, their behaviour can still
be easily approximated with a modified SDOF model for the lower beam, if only its
maximum deformation is of interest.

For the further research, there remain many unattended matters. First of all, other
material types should be studied, especially an elastoplastic response of the structure,
since it is deemed to be much closer to the real response of for example a reinforced
concrete structure. The 2DOF system (and possibly the modified SDOF systems) could
possibly be modified to reflect the behaviour of the structure for the elastoplastic case.

Another thing would be to develop a simplified hand calculation model for the 2DOF
system. The 2DOF model can describe the structure in the whole spectrum of stiffness
and mass ratios. Provided that the hand calculation model is sufficiently easy and concise,
it could replace the modified SDOF models in estimation of the structure’s response.

In this thesis, only the structural system consisting of a beam, simply supported on two
beams, was studied. Other structural systems should also be studied, to confirm that
the developed 2DOF model is case-sensitive. Perhaps a general 2DOF transformation
procedure valid for a variety of structural systems could be found. So far, only the
response of a beam was transformed into a 2DOF system. It should be investigated, if
similar transformation is valid also for other types of structured, e.g. a slab supported on
two beams.
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Appendix A Central Difference Method

A.1 General Notes

Direct integration methods (also called time step methods) are often used to study the
response of initial condition problems described by a system of second-order differential
equations. Such equation systems can be written in matrix form, i.e.

Mii+ Cu+Ku=F (A.1)

where M is the system mass matrix, C is the system damping matrix, K is the system
stiffness matrix, and F is the force vector. The displacement vector is denoted u, the
velocity vector is denoted 1, and the acceleration vector is denoted ii.

The total duration of the response of the system can be divided into a finite number of
time steps, which length is denoted A¢. Hence, the displacement field at time ¢ = nAt¢ is
denoted u,. The direct integration methods used in solutions of the dynamic problems
can be either explicit or implicit. The Central Difference Method is an explicit integration
scheme. Explicit methods are usually conditionally stable, and they express the displace-
ment fields at later times u,, in the displacement, velocity and acceleration fields at
previous time and at the time step before that, i.e. u,11 = f (0, 0y,, i, 0,1, 0,_1,l,_1).

A.2 Method

An arbitrary displacement-time function is presented in Figure A.1. Three different points
can be observed in the figure. The displacement u,_; at time #,_; and the displacement
u, at time t, are considered to be known. The unknown displacement u,, | at time #,,; |
is sought. The time steps, Af used in the method are constant.

U A

Un+1 |

Up }

Unp—1 1

v

th—1 tn tn+1 t
At At

Figure A.1: An arbitrary displacement-time function. From Carlsson and Kristensson

(2012).

The velocity of the body is a derivative of its displacement with respect to time. Therefore,
at the time ¢,, the velocity can be expressed as

~ Uyt — Uy

~ A2
n AL (A.2)

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2015:86 125



which corresponds to the tangent of the displacement function at point #, if the time step
is sufficiently small.

The acceleration in the Central Difference Method is defined as the derivative of the
velocity function with respect to time. However, to derive the acceleration at the time #,,
the difference of mid interval velocities is used (circles in Figure A.1).

. , (Wpp1 —ws) (W —uy )
i o127 Unr12 At At _ Upp — 2 Uy
" At At (Ar)?

(A.3)

By inserting Equation (A.3) and Equation (A.2) into Equation (A.1), a system of equa-
tions of motion at time #, can be expressed as

M

Uy _2un —Up—1 Uyl —Up—1
C Ku, =F, A4
)2 + sa T Kun (A.4)

where F,, u, and u,_; are the force vector at the present time, displacement at the
present time and the displacement at earlier time respectively. Moreover, those values

are assumed to be known. By rewriting Equation (A.4), the following time scheme can
be obtained.

(W_I_Z_Al‘) U1+ (K_W) u, + (W—TN) u, =F, (A.5)

This relation is also often expressed as

ku, =F, (A.6)
where A M C
k= W + AL (A.7)
and . 2M M C
F,=F,— (K_W) u, — (W_E> ;| (A.8)

From this, the sought displacement u,, | can be calculated as
F
L f (A.9)

Equation (A.5) is in the beginning solved for u; using initial conditions in the form
of u(0) =g and u#(0) = Wp. In this thesis project, the system is assumed to start from
rest, therefore #(0) = #(0) = 0. However, in order to obtain uj, the displacement at
earlier time, u_ is still needed. This displacement can be obtained from Taylor series
expansion and can be expressed as

At)?
u_ :llo—Atl'l()—l-%ﬁo (A.10)
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where the unknown acceleration, iip can be obtained from Equation (A.1) as

iig =M~ ! (Fy — Cay — Kug) (A.11)

In the end, it should be noted that the above derivation is valid only for linear elastic
material response. However, the Central Difference Method can be easily modified to
include plastic or elastoplasitc type of material response.

A.3 Stability and accuracy

As already mentioned, the Central Difference Method is an explicit method, which is
conditionally stable. It means that the method will provide credible results as long as the
value of the time step, At is less than the critical time step Az.,;;, expressed as

2

max

Atprip = (A.12)
where @y, 1 the highest eigenfrequency of the anlysed system. If the period correspond-
ing to the highest eigenfrequency is denoted as 7, (it is the shortest vibration period), the
stability condition for the Central Difference Method can be given as
Ar 1
— < — (A.13)
T, «w
In other words, the Central Difference Mehtod is stable as long, as the the wave infor-
mation does not propagate across more than one element in one time step. It should
be noted, that for explosions this is seldom a problem, since very small time steps are
usually used to capture the behaviour under very short impulse load.

The accuracy aspect also influences the end result. For stable systems, the amplitude error
is present. This is caused by numerical damping, which results in certain amplitude decay
over time. This is not always a negative phenomenon, since a certain amount of numerical
damping will suppress oscillations from inaccurate high frequencies. Apart from the
amplitude error, a frequency error also occurs. In this case it can be either contraction
or elongation of the period. The Central Difference Method usually experiences period
contraction.
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Appendix B Results - beam on spring supports
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Figure B.1: Relative vertical displacement as a function of time. Beam subjected to
uniformly distributed load. Stiffness ratio ky /k, = 0.25.
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Figure B.2: Relative vertical displacement as a function of time. Beam subjected to
uniformly distributed load. Stiffness ratio ky /ky = 0.5.
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Figure B.3: Relative vertical displacement as a function of time. Beam subjected to
uniformly distributed load. Stiffness ratio ky /ky = 1.
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Figure B.4: Relative vertical displacement as a function of time. Beam subjected to
uniformly distributed load. Stiffness ratio ky /ky = 1.5.
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Figure B.5: Relative vertical displacement as a function of time. Beam subjected to
uniformly distributed load. Stiffness ratio ky /ky = 2.
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Figure B.6: Relative vertical displacement as a function of time. Beam subjected to
uniformly distributed load. Stiffness ratio ky /ky = 4.
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Figure B.7: Relative vertical displacement as a function of time. Beam subjected to

uniformly distributed load. Stiffness ratio ky /ky = 6.
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Figure B.8: Relative vertical displacement as a function of time. Beam subjected to
uniformly distributed load. Stiffness ratio ky /ky = 8.
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Figure B.9: Relative vertical displacement as a function of time. Beam subjected to
uniformly distributed load. Stiffness ratio ky [k, = 24.
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Appendix C Octave code for solving 2DOF sys-
tem

WETTEITEITIIIIIEISe Central difference method for solving
WTISTIISTITTISTIEISTe 2DOF sy stem with various material models
cle

close all

clear all

ml=3.21; % Mass #I
m2=2.35; % Mass #2

% Specify parameters in different directions
% k — stiffness , r — resistance, ¢ — damping
k1=[40 20] ; % [k—compression k—tension]
k2=[20 18] ; % [k—compression k—tension]
r1=[3 —0.8] ; % [r—compression r—tension ]
r2=[3 —0.8] ; % [r—compression r—tension]
c1=0.00%xk1(1);% [damping]

¢c2=0.00%k2(1);% [damping]

h=0.001; % Time increment

TO=0 ; % Time for the first time step

T_end=6; % Time for the last time step

t_peak=0.001 ;% Time for peak load (triangular load—time)
t1=0.01 ; % Time when the load ends

F_peak = 400 ;% Peak load on 2DOF

% Time dependent force for both bodies.

%[ part—on—mass—1 ; part—on—mass—2]

p=@(t) [1;0]*((t/t_peak)*(t<=t_peak )+ ...
(I1—t/(tl—t_peak))x(t_peak<t & t<tl))xF_peak ;

% Building the needed stiffness matrices

Ki(:,:,1)=[1 —1;—1 1]xkl1(1); % positive spring load
Ki(:,:,2)=[1 —1;—1 1]xk1(2); % negative spring load
K2(:,:,1)=[0 0 ;0 k2(1)]; % positive spring load
K2(:,:,2)=[0 0 ;0 k2(2)]; % negative spring load

% Building the needed mass matrix
M=[ml 0;0 m2] ;

% Building the needed damping matrix
C=[1 —1;—1 1]*cl+[0 0;0 c2] ;

% Calculate the two vibration periods, using stiffness
% for positive phase and no damping
[~,lambda]=eig (KI(:,:,1)+K2(:,:,1) M) ;
p_timel=2xpi/sqrt(lambda(1l));
p_time2=2xpi/sqrt(lambda(4));

% Calculate number of needed time steps and a time—vector
n_step=ceil ((T_end-TO)/h)+1 ;
T=TO:h:(TO+n_stepxh—h) ;

% Setting initial conditions and

% "previous" displacement (only: du=0,u=0)
uO0=zeros (2,1) ;

duO=zeros (2,1) ;

ddu0=M\p (0) ;

u_ml=u0-h*du0+h”2/2%ddu0 ;

u=ul ;

% Preallocate
u_plastic=zeros(2,1) ;
U=zeros(2,n_step) ;
U_plastic=zeros(2,n_step) ;
R=zeros(2,n_step);

tic
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% Elastic—Plastic
% Loop for every time step except the last
% Calculating the u for "next" time step.
for i=1:(n_step—1)

t=T(i);

% Elastic part for this step

ue =u— [1 1;0 1]xu_plastic ;

kl_d = (1+(([1 —1]xu_e)<0)) ;

% l=spring force +, 2=spring force —
k2_d = (1+(([0 1]xu_e)<0)) ;

% Total displacement for next step

K=KI1(:,:,kl_d)+K2(:,:,k2_d);

u_pl = M/h"2+C/2/h)\(p(t) — Kxu_e + 2/h"2s«Mxu —
(M/h”"2—C/2/h)*u_ml) ;

% Yield criteria, yielding positive direction fi_t=1,

%yielding negative direction fi_t=2
% #1 spring—slider

fi_tl=1*(([1 —1]xu_pl—u_plastic (1)) > (r1(1)/kl(kl_d)))+
2%(([1 —1]xu_pl—u_plastic (1)) < (r1(2)/kl(kl_d)));
% #2 spring—slider

fi_t2=1x((u_pl(2)—u_plastic(2)) > (r2(1)/k2(k2_d)))+
2x((u_pl(2)—u_plastic (2)) < (r2(2)/k2(k2_d)));

fi=1x(fi_tl ~=0)+2x(fi_t2~=0);
% O=no yield 1=#1 yields 2=#2 yields 3=both yields

if fi==1 % rl plastic, r2 elastic
u_plastic (1)=[1 —1]xu_pl — r1(fi_tl)/kl(kl_d) ;
elseif fi==2 % rl elastic, 2 plastic
u_plastic (2)= u_pl(2) — r2(fi_t2)/k2(k2_d) ;
elseif fi==3 % rl and r2 plastic
u_plastic(1)= [1 —I]xu_pl — rl(fi_tl)/kl(kl_d) ;
u_plastic(2)= u_pl(2) — r2(fi_t2)/k2(k2_d) ;
end
% Store data and prepare for next time step
R(:,1+i)=[kl(kl_d) —k1(kl_d);0 k2(k2_d)]*u_e;
u_ml=u ;
u=u_pl ;
U(:,i+1)=u ;
U_plastic (:,i+1)=u_plastic ;
end
toc

U_1_2=U(1,:)-U(2,:); % Elongation of spring/slider #I
y_range_ep=[min(min(U)) max(max(U))];
y_range_sp=[min(min(R)) max(max(R))];

figure (1)

plot(T,[U;U_1_2;U_plastic]) ;hold on

% plot(p_timelx[1 1],y_range_ep,’k’)

% plot(p_time2x[1 1],y_range_ep,’'k’)

plot ([TO T_end],[0 O],’k’)

legend (’u_1’,’u_2’,’u_l1—u_2’,’u_l—u_2_plastic’,’u_2_plastic’)
xlabel (’Time_[s]’)

ylabel (’Displacement_[m] )

hold off

figure (2)

plot(T,R) ;hold on

plot ([TO T_end],[r1 (1) r1(2);r1 (1) r1(2)],7:b")
plot ([TO T_end],[r2(1) r2(2);r2(1) r2(2)],’:","
% plot(p_timelx[1 1],y_range_sp, k’)

% plot(p_time2x[1 1],y_range_sp, 'k’)

plot ([TO T_end],[0 O], :k’)

legend ('R_{springl}’,’R_{spring2}’)

xlabel (’Time_[s]’)

ylabel (’Reaction_force_[N]’)

color’ ,[0 .5 0])
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hold off

figure (3)
subplot(1.,2,1)
plot(U_1_2,R(1,:)) ;hold on

plot ([min(U_1_2) max(U_1_2)],[0 0],’k”)

legend ('R_{springl}_vs_(u_l1—u_2)’)
xlabel (’Displacement_[m] )

ylabel (" Reaction_force _[N]’)

hold off

subplot(1,2,2)
plot (U(2,:),R(2,:)) ;hold on

plot ([min(U(2,:)) max(U(2,:))],[0 0],’k”)

legend ('R_{spring2}_vs_u_2")
xlabel (’Displacement,_[m] )
ylabel (’Reaction_force_[N]’)
hold off
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Appendix D The optimization factors

Mass factor, ¥, [-] Stiffness factor, ¥, [-]

Force factor, ¥z [-]
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Figure D.1: Optimisation factors as a function of stiffness ratio ki /ky. Valid for mass

136

ratio of my /my = 0.25
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Table D.1: Optimization factors for a mass ratio of my /my = 0.25.

ki /ka Y, Y, Yimy Yiny ) Y5

0.50 0.9350 0.9825 0.7550 0.5000 0.8900 0.1100
1.00 0.8350 0.9750 0.6300 0.5350 0.7850 0.2150
1.50 0.7950 0.9900 0.6025 0.5400 0.7625 0.2375
2.00 0.7700 0.9900 0.5850 0.5450 0.7400 0.2600
2.50 0.7475 0.9900 0.5675 0.5500 0.7175 0.2825
3.00 0.7350 0.9900 0.5550 0.5500 0.7050 0.2950
3.50 0.7188 0.9900 0.5425 0.5500 0.6888 0.3113
4.00 0.7000 0.9900 0.5300 0.5500 0.6700 0.3300
4.50 0.6813 0.9900 0.5175 0.5500 0.6513 0.3488
5.00 0.6600 0.9917 0.5033 0.5517 0.6317 0.3683
5.50 0.6350 0.9958 0.4867 0.5558 0.6108 0.3892
6.00 0.6100 1.0000 0.4700 0.5600 0.5900 0.4100
6.50 0.5938 1.0000 0.4550 0.5600 0.5738 0.4263
7.00 0.5625 1.0000 0.4300 0.5600 0.5425 0.4575
7.50 0.5350 0.9988 0.4088 0.5613 0.5150 0.4850
8.00 0.5100 0.9967 0.3900 0.5633 0.4900 0.5100
8.50 0.4850 0.9946 0.3713 0.5654 0.4650 0.5350
9.00 0.4600 0.9925 0.3525 0.5675 0.4400 0.5600
9.50 0.4350 0.9904 0.3338 0.5696 0.4150 0.5850
10.00 0.4050 0.9888 0.3113 0.5725 0.3863 0.6138
10.50 0.3738 0.9872 0.2878 0.5756 0.3566 0.6434
11.00 0.3425 0.9856 0.2644 0.5788 0.3269 0.6731
11.50 0.3113 0.9841 0.2409 0.5819 0.2972 0.7028
12.00 0.2800 0.9825 0.2175 0.5850 0.2675 0.7325
12.50 0.2488 0.9809 0.1941 0.5881 0.2378 0.7622
13.00 0.2156 0.9800 0.1688 0.5906 0.2063 0.7938
13.50 0.1797 0.9800 0.1406 0.5922 0.1719 0.8281
14.00 0.1438 0.9800 0.1125 0.5938 0.1375 0.8625
14.50 0.1078 0.9800 0.0844 0.5953 0.1031 0.8969
15.00 0.0719 0.9800 0.0563 0.5969 0.0688 0.9313
15.50 0.0359 0.9800 0.0281 0.5984 0.0344 0.9656
16.00 0.0000 0.9800 0.0000 0.6000 0.0000 1.0000
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Mass factor, Yy, [-] Stiffness factor, ¥, [-]

Force factor, ¥ [-]
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Figure D.2: Optimisation factors as a function of stiffness ratio ki /ky. Valid for mass
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Table D.2: Optimization factors for a mass ratio of my /my = 0.5.

ki/ka

13

Yer

’}/m 1

%712

VF, 1

sz

0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
7.00
7.50
8.00
8.50
9.00
9.50
10.00
10.50
11.00
11.50
12.00
12.50
13.00
13.50
14.00
14.50
15.00
15.50
16.00
16.50
17.00
17.50
18.00
18.50
19.00
19.50
20.00
20.50
21.00
21.50
22.00
22.50
23.00
23.50
24.00
24.50
25.00
25.50
26.00
26.50
27.00
27.50
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0.8550
0.9450
0.9525
0.9250
0.8938
0.8625
0.8425
0.8300
0.8175
0.8062
0.7968
0.7874
0.7773
0.7648
0.7524
0.7400
0.7275
0.7150
0.7025
0.6917
0.6813
0.6708
0.6604
0.6500
0.6375
0.6250
0.6125
0.6000
0.5869
0.5713
0.5556
0.5400
0.5244
0.5088
0.4931
0.4775
0.4619
0.4463
0.4302
0.4138
0.3973
0.3809
0.3645
0.3481
0.3317
0.3153
0.2989
0.2825
0.2661
0.2497
0.2333
0.2156
0.1977
0.1797
0.1617

0.9975
0.9750
0.9675
0.9725
0.9756
0.9788
0.9838
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9917
0.9938
0.9958
0.9979
1.0000
1.0000
1.0000
1.0000
1.0000
0.9998
0.9988
0.9977
0.9967
0.9956
0.9946
0.9935
0.9925
0.9915
0.9904
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9894
0.9886
0.9878
0.9870

0.7150
0.7800
0.7400
0.7050
0.6738
0.6425
0.6225
0.6100
0.6038
0.5975
0.5912
0.5849
0.5780
0.5686
0.5593
0.5500
0.5406
0.5313
0.5219
0.5150
0.5088
0.5025
0.4963
0.4900
0.4775
0.4675
0.4613
0.4550
0.4477
0.4363
0.4248
0.4133
0.4019
0.3904
0.3790
0.3675
0.3560
0.3446
0.3325
0.3200
0.3075
0.2950
0.2825
0.2700
0.2575
0.2450
0.2325
0.2200
0.2075
0.1950
0.1825
0.1688
0.1547
0.1406
0.1266

0.5075
0.5100
0.5350
0.5500
0.5625
0.5750
0.5838
0.5900
0.5900
0.5913
0.5944
0.5975
0.6000
0.6000
0.6000
0.6000
0.6031
0.6063
0.6094
0.6117
0.6138
0.6158
0.6179
0.6200
0.6200
0.6213
0.6244
0.6275
0.6304
0.6325
0.6346
0.6367
0.6388
0.6408
0.6429
0.6450
0.6471
0.6492
0.6519
0.6550
0.6581
0.6613
0.6644
0.6675
0.6706
0.6738
0.6769
0.6800
0.6831
0.6863
0.6894
0.6925
0.6956
0.6988
0.7019

0.8500
0.9000
0.8750
0.8475
0.8194
0.7913
0.7763
0.7700
0.7575
0.7462
0.7368
0.7274
0.7180
0.7086
0.6993
0.6900
0.6775
0.6650
0.6525
0.6417
0.6313
0.6208
0.6104
0.6000
0.5875
0.5763
0.5669
0.5575
0.5471
0.5325
0.5179
0.5033
0.4888
0.4742
0.4596
0.4450
0.4304
0.4158
0.4006
0.3850
0.3694
0.3538
0.3381
0.3225
0.3069
0.2913
0.2756
0.2600
0.2444
0.2288
0.2131
0.1969
0.1805
0.1641
0.1477

0.1500
0.1000
0.1250
0.1525
0.1806
0.2088
0.2238
0.2300
0.2425
0.2538
0.2632
0.2726
0.2820
0.2914
0.3007
0.3100
0.3225
0.3350
0.3475
0.3583
0.3688
0.3792
0.3896
0.4000
0.4125
0.4238
0.4331
0.4425
0.4529
0.4675
0.4821
0.4967
0.5113
0.5258
0.5404
0.5550
0.5696
0.5842
0.5994
0.6150
0.6306
0.6463
0.6619
0.6775
0.6931
0.7088
0.7244
0.7400
0.7556
0.7713
0.7869
0.8031
0.8195
0.8359
0.8523
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Table D.2: Optimization factors for a mass ratio of my /my = 0.5.

kifka Y Yey Yy YViny ) 1

28.00 0.1438 0.9863 0.1125 0.7050 0.1313 0.8688
28.50 0.1258 0.9855 0.0984 0.7081 0.1148 0.8852
29.00 0.1078 0.9847 0.0844 0.7113 0.0984 0.9016
29.50 0.0898 0.9839 0.0703 0.7144 0.0820 0.9180
30.00 0.0719 0.9831 0.0563 0.7175 0.0656 0.9344
30.50 0.0539 0.9823 0.0422 0.7206 0.0492 0.9508
31.00 0.0359 0.9816 0.0281 0.7238 0.0328 0.9672
31.50 0.0180 0.9808 0.0141 0.7269 0.0164 0.9836
32.00 0.0000 0.9800 0.0000 0.7300 0.0000 1.0000
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Figure D.3: Optimisation factors as a function of stiffness ratio ki /ky. Valid for mass
ratio of my /my = 1
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Table D.3: Optimization factors for a mass ratio of my /my = 1.

kifka Y Yey Yy YViny ) 1

0.50  0.8077 0.9977 0.6754 0.5523 0.8177 0.1823
1.00  0.8448 1.0000 0.7422 0.5326 0.8548 0.1452
1.50  0.8926 0.9900 0.7926 0.5237 0.8926 0.1074
2.00 0.9200 0.9850 0.8100 0.5250 0.9050 0.0950
2.50  0.9413 0.9800 0.8200 0.5300 0.9113 0.0888
3.00 0.9475 0.9800 0.8200 0.5300 0.9175 0.0825
3.50 09519 0.9800 0.8181 0.5338 0.9181 0.0819
4.00 0.9550 0.9800 0.8150 0.5400 0.9150 0.0850
450 0.9581 0.9800 0.8119 0.5463 09119 0.0881
5.00 0.9600 0.9800 0.8075 0.5525 0.9088 0.0913
5.50  0.9600 0.9800 0.8013 0.5588 0.9056 0.0944
6.00 0.9600 0.9800 0.7950 0.5650 0.9025 0.0975
6.50  0.9587 0.9800 0.7875 0.5719 0.8981 0.1019
7.00 0.9525 0.9800 0.7749 0.5813 0.8887 0.1113
7.50  0.9462 0.9800 0.7623 0.5908 0.8792 0.1208
8.00 0.9399 0.9800 0.7499 0.6001 0.8699 0.1301
850 09368 0.9800 0.7468 0.6032 0.8636 0.1364
9.00 0.9337 0.9800 0.7437 0.6063 0.8574 0.1426
9.50 0.9306 0.9800 0.7406 0.6094 0.8511 0.1489
10.00 0.9250 0.9813 0.7262 0.6125 0.8450 0.1550
10.50 09187 0.9828 0.7215 0.6156 0.8387 0.1613
11.00 0.9124 0.9844 0.7168 0.6188 0.8324 0.1676
11.50 0.9062 0.9860 0.7121 0.6219 0.8262 0.1738
12.00 0.8999 0.9875 0.7074 0.6250 0.8199 0.1801
1250 0.8936 0.9891 0.7027 0.6282 0.8136 0.1864
13.00 0.8880 0.9900 0.6987 0.6307 0.8087 0.1913
13.50 0.8834 0.9900 0.6956 0.6322 0.8056 0.1944
14.00 0.8787 0.9900 0.6925 0.6338 0.8025 0.1975
1450 0.8740 0.9900 0.6893 0.6353 0.7993 0.2007
15.00 0.8693 0.9900 0.6862 0.6369 0.7962 0.2038
1550 0.8647 0.9900 0.6831 0.6384 0.7931 0.2069
16.00 0.8600 0.9900 0.6800 0.6400 0.7900 0.2100
16.50 0.8538 0.9900 0.6753 0.6431 0.7838 0.2163
17.00 0.8475 0.9900 0.6706 0.6463 0.7775 0.2225
17.50 0.8413 0.9900 0.6659 0.6494 0.7713 0.2288
18.00 0.8350 0.9900 0.6613 0.6525 0.7650 0.2350
18.50 0.8288 0.9900 0.6566 0.6556 0.7588 0.2413
19.00 0.8225 0.9900 0.6519 0.6588 0.7525 0.2475
19.50 0.8172 0.9900 0.6481 0.6609 0.7472 0.2528
20.00 0.8125 0.9900 0.6450 0.6625 0.7425 0.2575
20.50 0.8078 0.9900 0.6419 0.6641 0.7378 0.2622
21.00 0.8031 0.9900 0.6388 0.6656 0.7331 0.2669
21.50 0.7984 0.9900 0.6356 0.6672 0.7284 0.2716
22.00 0.7938 0.9900 0.6325 0.6688 0.7238 0.2763
22.50 0.7891 0.9900 0.6294 0.6703 0.7191 0.2809
23.00 0.7844 0.9900 0.6263 0.6719 0.7144 0.2856
23.50 0.7797 0.9900 0.6231 0.6734 0.7097 0.2903
24.00 0.7750 0.9900 0.6200 0.6750 0.7050 0.2950
2450 0.7703 0.9900 0.6169 0.6766 0.7003 0.2997
25.00 0.7656 0.9900 0.6138 0.6781 0.6956 0.3044
25.50 0.7609 0.9900 0.6106 0.6797 0.6909 0.3091
26.00 0.7538 0.9900 0.6050 0.6825 0.6838 0.3163
26.50 0.7459 0.9900 0.5988 0.6856 0.6759 0.3241
27.00 0.7381 0.9900 0.5925 0.6888 0.6681 0.3319
27.50 0.7303 0.9900 0.5863 0.6919 0.6603 0.3397
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Table D.3: Optimization factors for a mass ratio of my /mp = 1.

ki/ka

13

Yer

’}/ml

%712

VF, 1

sz

28.00
28.50
29.00
29.50
30.00
30.50
31.00
31.50
32.00
32.50
33.00
33.50
34.00
34.50
35.00
35.50
36.00

0.7225
0.7147
0.7069
0.6991
0.6913
0.6834
0.6756
0.6678
0.6600
0.6522
0.6444
0.6366
0.6288
0.6209
0.6131
0.6053
0.5975

0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900

0.5800
0.5738
0.5675
0.5613
0.5550
0.5488
0.5425
0.5363
0.5300
0.5238
0.5175
0.5113
0.5050
0.4988
0.4925
0.4863
0.4800

0.6950
0.6981
0.7013
0.7044
0.7075
0.7106
0.7138
0.7169
0.7200
0.7231
0.7263
0.7294
0.7325
0.7356
0.7388
0.7419
0.7450

0.6525
0.6447
0.6373
0.6305
0.6238
0.6170
0.6102
0.6034
0.5967
0.5899
0.5831
0.5764
0.5696
0.5628
0.5560
0.5493
0.5425

0.3475
0.3553
0.3627
0.3695
0.3763
0.3830
0.3898
0.3966
0.4033
0.4101
0.4169
0.4236
0.4304
0.4372
0.4440
0.4507
0.4575
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Figure D.4: Optimisation factors as a function of stiffness ratio ki /ky. Valid for mass
ratio of my /my = 2
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Table D.4: Optimization factors for a mass ratio of my /my = 2.

ki/ka

13

Yer

’}/m 1

%712

VF, 1

sz

0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
7.00
7.50
8.00
8.50
9.00
9.50
10.00
10.50
11.00
11.50
12.00
12.50
13.00
13.50
14.00
14.50
15.00
15.50
16.00
16.50
17.00
17.50
18.00
18.50
19.00
19.50
20.00
20.50
21.00
21.50
22.00
22.50
23.00
23.50
24.00
24.50
25.00
25.50
26.00
26.50
27.00
27.50
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0.8029
0.8201
0.8370
0.8477
0.8569
0.8660
0.8743
0.8819
0.8895
0.8947
0.8961
0.8975
0.8987
0.8994
0.9001
0.9008
0.9014
0.9021
0.9028
0.9026
0.9022
0.9018
0.9014
0.9010
0.9005
0.9000
0.8993
0.8986
0.8978
0.8971
0.8964
0.8957
0.8944
0.8931
0.8918
0.8905
0.8892
0.8880
0.8867
0.8854
0.8841
0.8828
0.8816
0.8803
0.8790
0.8777
0.8764
0.8751
0.8739
0.8726
0.8713
0.8697
0.8680
0.8663
0.8646

0.9810
0.9953
0.9978
0.9958
0.9932
0.9905
0.9892
0.9888
0.9884
0.9877
0.9864
0.9851
0.9841
0.9842
0.9842
0.9843
0.9843
0.9843
0.9844
0.9845
0.9845
0.9846
0.9847
0.9848
0.9849
0.9850
0.9853
0.9855
0.9858
0.9860
0.9863
0.9865
0.9865
0.9865
0.9865
0.9865
0.9865
0.9865
0.9865
0.9865
0.9865
0.9865
0.9865
0.9865
0.9865
0.9865
0.9865
0.9865
0.9865
0.9865
0.9865
0.9866
0.9867
0.9868
0.9869

0.6659
0.7091
0.7449
0.7656
0.7829
0.8002
0.8120
0.8201
0.8281
0.8339
0.8361
0.8383
0.8404
0.8418
0.8432
0.8447
0.8461
0.8475
0.8489
0.8494
0.8497
0.8500
0.8503
0.8506
0.8508
0.8509
0.8508
0.8506
0.8505
0.8503
0.8502
0.8500
0.8487
0.8474
0.8461
0.8448
0.8436
0.8423
0.8410
0.8397
0.8385
0.8372
0.8359
0.8346
0.8334
0.8321
0.8308
0.8295
0.8282
0.8270
0.8257
0.8245
0.8234
0.8222
0.8211

0.6427
0.6252
0.6099
0.6009
0.5933
0.5857
0.5828
0.5830
0.5831
0.5831
0.5829
0.5827
0.5828
0.5836
0.5845
0.5853
0.5861
0.5870
0.5878
0.5888
0.5898
0.5908
0.5918
0.5928
0.5938
0.5948
0.5959
0.5970
0.5980
0.5991
0.6002
0.6013
0.6029
0.6046
0.6063
0.6079
0.6096
0.6113
0.6130
0.6146
0.6163
0.6180
0.6197
0.6213
0.6230
0.6247
0.6264
0.6280
0.6297
0.6314
0.6331
0.6346
0.6362
0.6377
0.6392

0.8133
0.8282
0.8464
0.8587
0.8697
0.8807
0.8876
0.8917
0.8958
0.8991
0.9009
0.9028
0.9045
0.9052
0.9059
0.9067
0.9074
0.9081
0.9089
0.9090
0.9090
0.9090
0.9089
0.9089
0.9089
0.9087
0.9084
0.9080
0.9076
0.9072
0.9069
0.9065
0.9051
0.9037
0.9024
0.9010
0.8996
0.8983
0.8969
0.8955
0.8942
0.8928
0.8914
0.8901
0.8887
0.8873
0.8860
0.8846
0.8832
0.8819
0.8805
0.8789
0.8773
0.8757
0.8741

0.1867
0.1718
0.1536
0.1413
0.1303
0.1193
0.1124
0.1083
0.1042
0.1009
0.0991
0.0972
0.0955
0.0948
0.0941
0.0933
0.0926
0.0919
0.0911
0.0910
0.0910
0.0910
0.0911
0.0911
0.0911
0.0913
0.0916
0.0920
0.0924
0.0928
0.0931
0.0935
0.0949
0.0963
0.0976
0.0990
0.1004
0.1017
0.1031
0.1045
0.1058
0.1072
0.1086
0.1099
0.1113
0.1127
0.1140
0.1154
0.1168
0.1181
0.1195
0.1211
0.1227
0.1243
0.1259
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Table D.4: Optimization factors for a mass ratio of my /mp = 2.

kifka Y Yey Yy YViny ) 1

28.00 0.8629 0.9871 0.8200 0.6408 0.8725 0.1275
28.50 0.8613 0.9872 0.8188 0.6423 0.8709 0.1291
29.00 0.8596 0.9873 0.8177 0.6439 0.8693 0.1307
29.50 0.8579 0.9874 0.8165 0.6454 0.8677 0.1323
30.00 0.8562 0.9875 0.8154 0.6469 0.8660 0.1340
30.50 0.8545 0.9876 0.8142 0.6485 0.8644 0.1356
31.00 0.8529 0.9878 0.8131 0.6500 0.8628 0.1372
31.50 0.8512 0.9879 0.8119 0.6516 0.8612 0.1388
32.00 0.8495 0.9880 0.8108 0.6531 0.8596 0.1404
32.50 0.8474 0.9881 0.8096 0.6546 0.8576 0.1424
33.00 0.8454 0.9882 0.8084 0.6561 0.8556 0.1444
33.50 0.8433 0.9883 0.8071 0.6576 0.8536 0.1464
34.00 0.8412 0.9884 0.8059 0.6591 0.8516 0.1484
3450 0.8391 0.9885 0.8047 0.6606 0.8496 0.1504
35.00 0.8371 0.9886 0.8035 0.6621 0.8476 0.1524
35.50 0.8350 0.9887 0.8023 0.6635 0.8457 0.1543
36.00 0.8329 0.9888 0.8011 0.6650 0.8437 0.1563
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Figure D.5: Optimisation factors as a function of stiffness ratio ki /ky. Valid for mass
ratio of my /my = 4
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Table D.5: Optimization factors for a mass ratio of my /my = 4.

kifka Y Yey Yy YViny ) 1

0.50  0.7987 0.9630 0.6574 0.8370 0.8043 0.1957
1.00  0.8100 0.9800 0.6948 0.8052 0.8174 0.1826
1.50  0.8181 0.9881 0.7243 0.7838 0.8281 0.1719
2.00 0.8275 0.9975 0.7451 0.7725 0.8375 0.1625
2.50  0.8335 1.0000 0.7604 0.7631 0.8435 0.1565
3.00 0.8381 1.0000 0.7744 0.7537 0.8481 0.1519
3.50  0.8419 0.9981 0.7838 0.7463 0.8538 0.1463
4.00 0.8450 0.9950 0.7900 0.7400 0.8600 0.1400
450 0.8481 0.9919 0.7963 0.7338 0.8663 0.1338
5.00 0.8500 0.9900 0.8025 0.7288 0.8700 0.1300
5.50  0.8500 0.9900 0.8088 0.7256 0.8700 0.1300
6.00  0.8500 0.9900 0.8150 0.7225 0.8700 0.1300
6.50  0.8500 0.9900 0.8208 0.7200 0.8708 0.1292
7.00  0.8500 0.9900 0.8247 0.7200 0.8747 0.1253
7.50  0.8500 0.9900 0.8286 0.7200 0.8786 0.1214
8.00 0.8500 0.9900 0.8317 0.7200 0.8800 0.1200
850 0.8500 0.9900 0.8343 0.7200 0.8800 0.1200
9.00 0.8500 0.9900 0.8369 0.7200 0.8800 0.1200
9.50  0.8500 0.9900 0.8395 0.7200 0.8800 0.1200
10.00 0.8513 0.9900 0.8400 0.7200 0.8813 0.1187
10.50 0.8528 0.9900 0.8400 0.7200 0.8828 0.1172
11.00 0.8544 0.9900 0.8400 0.7200 0.8844 0.1156
11.50 0.8560 0.9900 0.8400 0.7200 0.8860 0.1140
12.00 0.8575 0.9900 0.8400 0.7200 0.8875 0.1125
12.50 0.8591 0.9900 0.8400 0.7200 0.8891 0.1109
13.00 0.8600 0.9900 0.8407 0.7200 0.8900 0.1100
13.50 0.8600 0.9900 0.8422 0.7200 0.8900 0.1100
14.00 0.8600 0.9900 0.8438 0.7200 0.8900 0.1100
14.50 0.8600 0.9900 0.8453 0.7200 0.8900 0.1100
15.00 0.8600 0.9900 0.8469 0.7200 0.8900 0.1100
1550 0.8600 0.9900 0.8484 0.7200 0.8900 0.1100
16.00 0.8600 0.9900 0.8500 0.7200 0.8900 0.1100
16.50 0.8600 0.9900 0.8500 0.7216 0.8900 0.1100
17.00 0.8600 0.9900 0.8500 0.7231 0.8900 0.1100
17.50 0.8600 0.9900 0.8500 0.7247 0.8900 0.1100
18.00 0.8600 0.9900 0.8500 0.7263 0.8900 0.1100
18.50 0.8600 0.9900 0.8500 0.7278 0.8900 0.1100
19.00 0.8600 0.9900 0.8500 0.7294 0.8900 0.1100
19.50 0.8592 0.9900 0.8500 0.7308 0.8900 0.1100
20.00 0.8578 0.9900 0.8500 0.7322 0.8900 0.1100
20.50 0.8563 0.9900 0.8500 0.7337 0.8900 0.1100
21.00 0.8549 0.9900 0.8500 0.7351 0.8900 0.1100
21.50 0.8535 0.9900 0.8500 0.7365 0.8900 0.1100
22.00 0.8521 0.9900 0.8500 0.7379 0.8900 0.1100
22.50 0.8507 0.9900 0.8500 0.7393 0.8900 0.1100
23.00 0.8500 0.9900 0.8500 0.7400 0.8900 0.1100
23.50 0.8500 0.9900 0.8500 0.7400 0.8900 0.1100
24.00 0.8500 0.9900 0.8500 0.7400 0.8900 0.1100
24.50 0.8500 0.9900 0.8500 0.7400 0.8900 0.1100
25.00 0.8500 0.9900 0.8500 0.7400 0.8900 0.1100
25.50 0.8500 0.9900 0.8500 0.7400 0.8900 0.1100
26.00 0.8500 0.9900 0.8500 0.7400 0.8900 0.1100
26.50 0.8500 0.9900 0.8500 0.7400 0.8900 0.1100
27.00 0.8500 0.9900 0.8500 0.7400 0.8900 0.1100
27.50 0.8500 0.9900 0.8500 0.7408 0.8900 0.1100
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Table D.5: Optimization factors for a mass ratio of my /m, = 4.

ki/ka

13

Yer

’}/ml

%712

VF, 1

sz

28.00
28.50
29.00
29.50
30.00
30.50
31.00
31.50
32.00
32.50
33.00
33.50
34.00
34.50
35.00
35.50
36.00

0.8500
0.8500
0.8500
0.8500
0.8500
0.8500
0.8500
0.8500
0.8499
0.8475
0.8452
0.8429
0.8406
0.8391
0.8380
0.8368
0.8356

0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900
0.9900

0.8500
0.8500
0.8500
0.8500
0.8500
0.8500
0.8500
0.8500
0.8499
0.8475
0.8452
0.8429
0.8406
0.8400
0.8400
0.8400
0.8400

0.7430
0.7451
0.7473
0.7494
0.7515
0.7537
0.7558
0.7580
0.7600
0.7600
0.7600
0.7600
0.7600
0.7600
0.7600
0.7600
0.7600

0.8900
0.8900
0.8900
0.8900
0.8900
0.8900
0.8900
0.8900
0.8899
0.8875
0.8852
0.8829
0.8806
0.8800
0.8800
0.8800
0.8800

0.1100
0.1100
0.1100
0.1100
0.1100
0.1100
0.1100
0.1100
0.1101
0.1125
0.1148
0.1171
0.1194
0.1200
0.1200
0.1200
0.1200
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Appendix E Results - response of a structural
system

E.1 Spectrum of analysis

Out of the parametric beams described in Section 4.2.1, a total of 97 structures were
constructed and analysed in ADINA. Within this range, a variety of stiffness and mass
ratios was obtained. The spectrum of the analysed structures can be seen in Figure E.1.
Some representative cases are also marked with circles in the figure, for further analysis
and showing the results.

mq
ma

4 @ ..@. e 0 o000 .....@

1 [ ] @.O ..@.. .........@

0.25 @ L] L] 0@0. 00 ®0 O 000 .0@

i t i >
0.25 1.6 38.4 2

Figure E.1: Spectrum of the analysis. Circles indicate representative cases.

E.2 Eigenmodes

For the selected cases, the first two eigenmodes are shown in Figure E.2 and Figure E.3.
The first frequency calibration of the 2DOF model was made so that the eigenfrequencies
of the model correspond to those eigenmodes. Although as stated in Section 4.4.2, the
general shape of all the modes is similar, there exist some discrepancies between them,
visible at closer look.

For the first eigenmode, the higher the stiffness ratio, the more resemblance between the
lower beam deformation and a half sine wave is present. At the same time, the upper
beam remains more straight with increasing stiffness ratio. For the low stiffness ratio, a
reverse case can be observed. The lower beams remain almost straight, and the upper
beams’ deflection shape resembles a half sine wave.
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Figure E.2: Eigenmode 1 for several structures throughout the analysed sprectrum.

For the second eigenmode, the behaviour is more complex. Although all the eigenmode
shapes are similar at the first look, some inconsistencies can also be found. For low
stiffness ratios, the deflection shape of both parts of the structure resembles a half sine
wave. However, the higher the mass ratio, the steeper and straight close to supports the
deflection shape of the upper beam is. For intermediate stiffness ratios, the deformation
shape for both parts of the structure resembles a half sine wave. For high stiffness ratio
some differences are present. Even though the deflection shape of the upper beam can
still be described with a half sine wave, the lower beams show a different behaviour. It
cannot be described with a half sine wave any more, but rather with a superposition of
a half sine wave and one-and-a-half sine wave. One-and-a-half sine wave represents
a higher eigenmode of a simply supported beam. This tendency becomes clearer with
decreasing mass ratio. A structure with a high stiffness ratio and a low mass ratio has a
high angular frequncy ratio, which was already shown and discussed in Section 6.2. An
equivalent 2DOF model might not give good results when analysing structures with such
parameters.
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Figure E.3: Eigenmode 2 for several structures throughout the analysed sprectrum.

E.3 Response of the upper and lower beam

To better understand the behaviour of the beam-on-beams structural system with various
stiffness and mass ratios, several results of the analyses made in ADINA are shown in
Figure E.4 - Figure E.12. The representative cases correspond to those for which the
eigenmodes were shown in Figure E.2 and Figure E.3. For clarity, only the response
obtained from ADINA is shown. The equivalent 2DOF model response was not shown
here, since the model was calibrated to those results and will agree with them well.
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Figure E.4: Response of the structural system consisting of beam no. 5 supported on
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Figure E.5: Response of the structural system consisting of beam no. 5 supported on
beams no. 1. Stiffness ratio, ki /ky = 0.27, mass ratio, my /my = 1.
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Figure E.6: Response of the structural system consisting of beam no. 1 supported on

beams no. 6. Stiffness ratio, ki /ky = 0.16, mass ratio, m /my = 0.25.
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Figure E.7: Response of the structural system consisting of beam no. 3 supported on
beams no. 1. Stiffness ratio, ky /ky = 1.6, mass ratio, m; /my = 4.
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Figure E.8: Response of the structural system consisting of beam no. 1 supported on
beams no. 1. Stiffness ratio, ky [ky = 1.6, mass ratio, my /my = 1.
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Figure E.9: Response of the structural system consisting of beam no. 1 supported on
beams no. 3. Stiffness ratio, ky /ky = 1.6, mass ratio, m; /my = 0.25.
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Figure E.10: Response of the structural system consisting of beam no. 1 supported on

Relative deformation, 1 [-]

1.0

0.5

—1.0
0

beams no. 5. Stiffness ratio, ki /ky = 38.4, mass ratio, m /my = 4.

T T -

PN Upper beam
--- Lower beam | |

| | |

| |
0.4 0.5
Time, ¢

0.3

Figure E.11: Response of the structural system consisting of beam no. 2 supported on
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Figure E.12: Response of the structural system consisting of beam no. 13 supported on
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Appendix F  Optimisation of the upper beam’s
model

F.1 Optimisation of the upper beam’s model

F.1.1 General notes

The two SDOF systems presented in Section 5.3 and Section 5.3.2 are able to approxi-
mately describe the behaviour of the upper beam within a limited range - up until the
stiffness ratio k /k, = 1, which may symbolise the domination of the upper beam in
the total motion of the structural system. After that, the structure enters the range of
intermediate stiffness, and the properties of both members have notable influence on the
behaviour of the structure. Nevertheless, it is desired to further develop a model for the
upper beam, which can describe its response in a wider range, i.e. kj /ky > 1. Therefore
an optimisation process of the beam-on-springs was carried out in this section in order to
create a model which can describe the behaviour of the upper beam in structures with
the stiffness ratio up to 2.5 - 3.

F.1.2 Adjusted mass and stiffness

Although the response of a SDOF model equivalent to the beam on springs includes
the movements of the spring supports (hence the beam deformation must be computed
subsequently), the optimised model considers the SDOF system to pertain to the beam
only. Therefore it is adjusted in such a way, that the maximum deformation of the
mass-spring system corresponds directly to the beam’s deformation. This is done to
simplify and expedite hand calculations.

The numerical data from the case studies carried out in ADINA in Chapter 4 contains
the maximum upper beam’s deformation, uy maxapina, and the eigenfrequencies of the
structural system, ®; s4p;na. An additional facilitation of an optimised system would be
to give a correct lowest eigenfrequency of the system, since they usually differ from the
eigenfrequencies of separate elements.

In order to obtain those results analytically, the adjusted mass, m,, and the adjusted
stiffness, k, are defined. The known displacement and eigenfrequency can be expressed
as:

Iy

U max ADINA = ——————— (E.1)
mg (01 ADINA
kq

D1ADINA = \[ = (E2)

a

From Equation (F.1), the adjusted mass can be calculated.

I
my = (F.3)
UU ,max,ADINA D1 ADINA

And after that, the adjusted stiffness can be computed from Equation (F.2).
ka = Ma®F apina (F4)
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Parameters defining the properties of the system are defined as:
2k1ky

¢~ 2ky + kq
me = my +2my (F.6)

(ES5)

Finally, the properties can be linked with the adjusted mass and stiffness with optimisation
factors 7.

mg
Yn = — (E7)
me
kq
= = F.8
=1 (F.8)

Those factors were computed for all different mass ratios and the stiffness ratios up to
2.5. The results can be seen in Figure F.1 and Figure F.2.

1.25 ‘ ‘ ‘ :
——my/my =0.25
—— ml/m2:0.5
1.00 | . my /my =1
— ml/m2:2
— m1/m2:4 N

0.75

0.50 |- i

0.25 | /H/_/-//:A./'/‘ ]
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Stiffness ratio, k; /k,

Mass adjustment factor, ¥,

Figure F.1: Mass adjustment factor, Y, as a function of the stiffness ratio, ki /ky for
various mass ratios.
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Figure E.2: Stiffness adjustment factor, Y, as a function of the stiffness ratio, ki [k for
various mass ratios.

F.1.3 Empirical model fitting

By looking at the graphs in Figure F.1 and Figure E.2, it can be seen that the curves
resemble straight lines, and an empirical model describing all of them could be developed.
If the results were extrapolated, it could be found that the line representing %, intersect
with the x axis in the vicinity of the point (-1,0). On the other hand, extrapolation of
the lines representing ¥, shows that they intersect with the y axis at approximately (1,0).
Those points were assumed to be the origins of the lines, and the unknown slope of the
line is believed to be dependent on the mass ratio, i.e ¢;(m;/my). Hence the tentative
equations can be expressed in the slope-intercept form:

ki m m k

Yo v ) =ou (= ) - (2 +B (F.9)
k2 my my k2
ki m k

Y (k—l—l) — (ﬂ) 4B (F.10)
2 mp my ) kp

The slopes, «;, were computed using the least squares fitting method. After that, various
trend lines were tested, and the results can be seen in Figure F.3. For the slopes describing
curves related to 7y, a logarithmic relation was deemed to reflect the results in the best
way. Similarly, for the slopes describing the curves belonging to %;,, a polynomial trend
line was chosen.
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Figure E.3: Slopes of the curves, o as a function of the mass ratio, my /m;.

The credibility of the actual expressions for the trend lines is not very high, as there
are just a few points present. Nevertheless, the logarithmic and polynomial form of the
expression can be used in further optimisation of the model. Hence, the expressions for
the adjustment factors, ¥, and ;. can be expressed with the unknown parameters b; to

b4 and aq to a4 as:
m1 kl
Ymn=\b1+Db2- —+b3 — +by (F.11)
my ko

k
%= <a1+az-ln ("ﬂ)) SR (F.12)
my ko

The resultant angular frequency and maximum deformation of the beam can be solved
with the following equations:

’}/kke

WSpOF = - (F.13)
m e
I
UY max,SDOF = o — (F.14)
m e

For optimisation, the Nelder-Mead simplex algorithm was used. For more information
about the method, the reader is referred to Lagarias et al. (1998). The procedure is
the same as was presented in Section 4.5.1 and Section 4.5.2. The obtained trend line
coefficients were used as guess values. The most important factors in the objective
function was the maximum displacement. Moreover, results on the unsafe side are not
desired, so again corrective measures were implemented. Furthermore, the objective
function takes the resultant frequency into account as well, but it is not as important as
the maximum displacement. The function can be expressed as:

2 2
L 24( UmaxSDOF_1> +8<”U,max,ADINA_1> +(M) (F.15)

Uy . max, ADINA Uy max,SDOF M1 ADINA

where the angle brackets signify the Macaulay bracket function. The response of the
modified SDOF system, i.e. the maximum deformation and angular frequency of the
structure are calculated with Equation (F.13) and Equation (F.14).
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After optimisation, the following empirical expressions were obtained:

2
k
Yoo = (0.0288+0.1697 (@> —0.0233 (ﬂ) ) : (—1 n 1.3023)
my my k2

k
% = 0.9961 + (0.1767+0.1853ln (@» Sl
my k2

The differential equation of motion for the system takes the form:

Ymmetiy + Ykkqu = F(t)

(F.16)

(F.17)

(F.18)

160 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2015:86



Appendix G Stiffness transformation factor

G.1 General notes

Throughout the work, it has been attempted to find a quick hand calculation procedure
for the 2DOF system. The actual structure vibrates mainly with two eigenfrequencies
simultaneously, which are directly linked to the structure’s eigenmodes. Several attempts
have been made in order to ascertain if SDOF systems can efficiently describe the
respective modes. If such simplified systems could be found, it would be possible to
obtain the deformation of both bodies in a quick and simple way, therefore eliminating
the need of creating other calibrated SDOF systems (as it was done in Chapter 5).
However, such attempts were not successful.

In all previous models, the transformation factors are calculated from the deformation
shape under static loading. Even though it is a correct approach for separate elements,
such as beams or slabs, it was of interest if the same assumption are valid for a structural
system. As already shown in Figure E.2 and Figure E.3, the resultant eigenmodes can
sometimes differ greatly from the assumed deformation shape under static loading.

As already stated in Section 2.5.4, according to Biggs (1964), the stiffness tranformation
factor is equal to the force transformation factor, i.e.

Ky = Kr (G.1)

Now, it was decided to check if this correlation is true also for a structural system. Instead
of deformation shaped under static loading, the deformation shapes according to the
prevailing eigenmodes are used in calculation of the transformation factors k, i.e.

L
_(m(x)-9(x)?
0
L
_ [q(x)-¢(x)
K‘F—O/ e (G.3)
L 124
K = / M (x)'_i’ ™) 4 (G.4)
0 )

where ¢ (x) is the respective eigenmode shape.

G.2 First eigenmode

In order to calculate the transformation factors, a function describing the eigenmode
is needed first. Such function should be twice differentiable and continuous. Since
the shape of the first eigenmode resembles half sine functions for the upper beam (see
Figure E.2), a relevant function can be found. For the lower beam, a function consisting
of a half sine wave as well as one-and-a-half sine wave was used as the assumed mode.
It should be noted, that the results are known after the modal analyses in ADINA, and
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the fitting is done in order to validate the theory. Had the eigenmodes been unknown (as
they usually are in the initial phase of design), it would have not been possible.

oy (x) = sasin (%) (G.5)

Or(x) = sysin (%) + (1 —s1)sin (?) (G.6)

The parameters s; and s, are obtained with the least square fit method, so that the
functions simulate the eigenmode in the best possible way. In most cases, the deviation
between the adapted function and the actual eigenmode were very small. Having the
tentative deformation functions, it was possible to calculate the transformation factors.

For a case where the mass per length for both beams is constant, the length of both
beams is the same and the uniformly distributed load per length is constant. Following
relations were obtained:

L
T+ 25
_ = =17 G.7
/ 22+ 1) (G.7)
0
The stiffness of the structure can be expressed as
F
ke = — (G.8)
U
2k1ky

where the stiffness k; is the equivalent stiffness, i.e. k, = Therefore the stiffness

2ko + ki
transformation factor takes the form:

L L
M(x)- ¢”(x) 1 " 7,
o= [ = [ U 2B R (= . =
O ’ (G.9)

o (82E12s% — 162EDLs,

)

L3ke(S2 + 1)2

Finally the mass transformation factor can be calculated as:

1 +2my) u2 (my +2my)u?

L —¢L %(PU(X)2
S P L L
A m

B 471:m2s% —A4nmys) + nmls% + 8mysy + 2wmy + 2wmy
n 277:(1’)11 +ZM2)(S2—|—1)2

(G.10)

With this approach, the resultant stiffness and force transformation factor were no longer
equal. The eigenfrequency of this system can now be computed as:

K
0= | ke (G.11)

Kine
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where m, is the total mass of the structure, i.e. m, = mj +2m,. And the amplitude of
the eigenmode can be calculated with the expression for the maximum deformation of a
SDOF system, i.e.:
Krly
Kinm@

(G.12)

Umax,SDOF =

If the reasoning was correct, the obtained deformation would be equal to the amplitude
obtained from the FFT for the first eigenfrequency. However, the FFT analysis is not
accurate enough, because of the sampling time. Therefore to facilitate things, another
curve fitting procedure was made. Namely, a superposition of two sine functions was
used to reflect the actual deformation of the first system point, u14, present in ADINA. It
means that two sine functions were found, which were assumed to describe the respective
eigenmodes. Another option would be to rerun the analyses and use mode superposition
method to solve the displacement instead of an implicit integration method. Finally, the
quotient between the calculated deformation, . spor and the amplitude of the sine
function reflecting the first eigenmode was computed for each case. The results can be
seen in Figure G.1.
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Figure G.1: Relative amplitude of the system point in reference to the first eigenmode.

It can be seen that there is good correspondence within the whole spectrum, which means
that the first eigenmode can be successfully described with a SDOF system, but the
transformation factors must be redefined.

G.3 Second eigenmode

In order to describe the second eigenmode, virtually the same approach was used.
However, the shapes are now more complex, as can be seen in Figure E.3, where
nine representative eigenmodes were shown. The same functions were adopted for the
assumed modes, and all the formulas for the transformation factors remain unchanged.
The only thing that changed were the parameters s; and s; since they had to be adapted
to another shape now.
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With calculated transformation factors, the maximum deformation of the SDOF system,
Umax,spor can be computed for each studied case. These results were compared with the
amplitude of the second sine function obtained earlier in the curve fitting procedure. The
conformity of the result can be seen in Figure G.2.

The structures for which the second eigenmode deformation was lower than 5 % of the
first eigenmode deformation were discarded. This was done to assure more credibility to
the results, since very low numbers are sensitive to numerical errors and can therefore
result in considerable quotients which cannot be deemed representative and feasible.
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Figure G.2: Relative amplitude of the system point in reference to the second eigenmode.

The model shows good correspondence within the whole spectrum. It is believed that
the outcome could be improved if a better assumed mode shape was chosen, since there
is a big difference in how the second eigenmode will actually look like, depending on
the structural properties of the structural system.

It is worth to add, that the obtained deformation is the deformation of the first system
point - namely u#1. This means that having the functions describing the eigenmodes, the
deformation of an arbitrary point can easily be computed. To obtain the deformation of
the upper beam, the displacement of the second system point is needed first, and then a
simple subtraction will give the desired result.
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G.4 Final remarks

To conclude, it was shown that it is possible to describe both eigenmodes with separate
SDOF systems with reasonably high precision. This approach was tried when developing
modified SDOF systems in Chapter 5, but the results were unsuccessful. The idea was
to somehow create two SDOF systems, each one for respective eigenmode, and then
simply add the maximum deformations in order to obtain the total structural response.
The results were not promising, and even when they were reasonable, the accordance
was not achieved within the whole spectrum of studied structures.

This is believed to be caused by the ansatz, that the stiffness and force transformation
factors are the same, i.e. k; = k. They are the same (or at least very close to each other)
for simple structures such as beams, where only one eigenmode dominates the behaviour.
In a beam structure, there are higher modes as well present during its vibration, but their
influence is negligible. For a structural system, the response depends on the structural
properties of its constitutive elements, meaning that it may vibrate with more distinct
eigenfrequencies. For such strcutures, the stiffness transformation factor, ki, cannot be
assumed to be equal to the force transformation factor, K7, anymore.

Even though the study included in this chapter showed that it is possible to simplify
respective eigenmodes with equivalent SDOF systems (without any calibration or optimi-
sation), the shape of the eigenmodes was needed to compute the transformation factors.
Since this information is not known in the initial phase of the design, a new problem
arises. What makes the matter worse is the fact, that the shape of the second eigen-
mode varies for different structural properties of the elements. Perhaps some general
correspondence between the structural properties of a structural system and the shape
of its eigenmodes could be found, which would enable a quick and easy way to estimte
the response of the structural system with simple SDOF systems throughout the whole
spectrum of the structures. This is proposed as a matter of further reasearch.
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