

Synchronization and memory consistency
on Intel Single-chip Cloud Computer
Master of Science Thesis in Programme Computer Systems and Networks

Ivan Walulya

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden, June 2013

The Author grants to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example
a publisher or a company), acknowledge the third party about this agreement. If the
Author has signed a copyright agreement with a third party regarding the Work, the
Author warrants hereby that he/she has obtained any necessary permission from this
third party to let Chalmers University of Technology and University of Gothenburg store
the Work electronically and make it accessible on the Internet.

Synchronization and memory consistency on Intel Single-chip Cloud Computer

Ivan Walulya

c©Ivan Walulya, June 2013.

Examiner: Philippas Tsigas

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

[Cover: Image of the SCC wafer showing outlines of multiple tiles placed on the wafer.
source: http://communities.intel.com/community/marc]

Department of Computer Science and Engineering
Göteborg, Sweden June 2013

Abstract

The Single-chip Cloud Computer (SCC) is an experimental multicore processor cre-
ated by Intel Labs for the many-core research community. The chip is built to study
many-core processors, their programmability and scalability while utilising message-
passing as a communication model. The chip has a distributed memory architecture that
combines fast-access on-chip memory with large amounts of off-chip private and shared
memory. Additionally, its design is meant to favour message-passing over the traditional
shared-memory programming as is the norm for distributed memory systems. To this
effect, the platform deliberately provides neither hardware supported cache-coherence,
nor atomic memory read/write operations across cores and the on-chip memory, also
known as message passing buffer is quite small.

The SCC provides support for very fast communications among the cores with re-
duced latency. This allows for the creation of very efficient message-passing protocols and
support for message-passing programming model. This design employs explicit exchange
of messages among different processors, implicitly avoiding data consistency issues aris-
ing from concurrent data access and merges both communication and synchronization.

However, due to the limited size of the message passing buffers, the message-passing is
ideal for transfer of small amounts of data, but not very efficient for large data transfers.
In addition, replicating all datasets and exchanging them as messages is less efficient
and more wasteful than using the data directly in shared memory. In some cases, the
message data read from the main memory, is passed through the message passing buffers
and eventually written back to the same memory modules. Besides, the chip provides
access to shared memory allowing the cores to share data without necessarily copying it
among the cores over the on-chip network.

In this thesis, we develop procedures for sharing data among multiple cores; concur-
rently coordinated by message-passing on the Single-chip Cloud Computer. We further
make and investigate a proposition that, for architectures that combine message-passing
with shared-memory, the message-passing is not necessarily essential for data-transfer
but for coordinating shared-memory access and synchronization of operations on the
different cores.

Acknowledgements

I would like to express my sincere gratitude to my project supervisors Ioannis Niko-
lakopoulos and Daniel Cederman for all the support, guidance and encouragement they
availed. Most of all the time they took off their busy schedules to discuss my progress
throughout the project. I would also like to thank my examiner Philippas Tsigas, first
all for giving me an opportunity to perform my research with the Distributed Computing
and Systems group, then for his guidance and working tirelessly with me on this thesis
project.

My study in Sweden was fully funded by the Swedish Institute, and I want to pass
on a token of appreciation to all the staff at Swedish Institute for making it all possible.

Finally I’d like to thank my family for their love, support, and encouragement all
through my academic life.

Ivan Walulya
Göteborg, July 2013

Contents

1.0 Introduction . 1
1.1 Problem Statement . 2
1.2 Justification . 3
1.3 Methodology . 3
1.4 Literature review . 3

2.0 Single-chip Cloud Computer - SCC . 5
2.1 Memory architecture and access modes 6

2.1.1 Memory Access . 7
2.2 SCC Configuration Registers . 9

2.2.1 FPGA and Global Registers 9
2.2.2 Global Interrupt Controllers 9
2.2.3 Out-of-band notifications 10

3.0 Shared Data Structures . 12
3.1 Safety . 12
3.2 Liveness . 13
3.3 Hardware support for concurrent data structures 13
3.4 FIFO Queues on SCC . 14
3.5 Double-lock Queue . 15

3.5.1 Queue Methods . 15
3.6 Message-passing based queues . 18

3.6.1 Queue Methods . 19
3.6.2 Message-passing with Acknowledgments 22

4.0 Correctness . 25
4.1 Safety . 25
4.2 Liveness . 25
4.3 Proof of Safety . 26

4.3.1 Lock-based algorithms . 26
4.3.2 Message-passing based algorithms 27

4.4 Liveness . 28
4.4.1 Message-passing based algorithm 29

i

CONTENTS

4.4.2 Message-passing based algorithm with acknowledgments . 31
5.0 Performance . 32
6.0 Conclusion . 40

6.1 Future work . 40

Bibliography 44

ii

List of Figures

1 SCC Architecture overview[1] . 5
2 Memory access mechanisms on SCC [2] 8
3 Lock implementation using a memory mapped test&set register 15
4 enqueue and dequeue methods of the two-lock concurrent queue 16
5 Two-lock concurrent queue operations . 17
6 Client Operations . 20
7 Server operations . 21
8 Client Operations with acknowledgements 23
9 Server operations with acknowledgements 24
10 Algorithm throughput and fairness . 33
11 Algorithmsṕerformance low contention . 34
12 System performance high contention . 36
13 System performance low contention . 37
14 Core level throughput high contention . 38
15 Core level throughput low contention . 39

iii

1.0. INTRODUCTION

1.0 Introduction

M
any-core or multicore processors are processors with many cores on a sin-
gle chip. The trend to many core architectural design was a response to
diminishing performance gains achieved by increasing the speed of a single
processor. This decrease in gains is mainly a result of memory access latency

brought about by the differences in processor and memory speeds. Additionally, the ex-
ponential increase in power dissipation with increase in processor operating frequency
has also created a power wall for processor manufactures.

To mitigate the increasing power demands and continue to achieve significant per-
formance boosts without increasing the clock rate, chip manufacturers decided to add
multiple lower clock speed cores on a single chip. These multi-core processors can also
significantly reduce overall system power dissipation by utilizing dynamic frequency/-
voltage scaling techniques. These techniques exploit program behavior to reduce power
dissipation and are usually employed at core level. Some examples of existing many-
core chips are the Tilera with 100 cores [3], the IMB Cyclops64 with 160 thread engine
[4], and the Single-Chip cloud computer with 48 single ISA, X86 architecture cores with
Linux loaded on each core [5].

However, as the number of cores per chip is increased, the complexity of scaling hard-
ware supported cache coherence across cores becomes of great concern in architecture
designs [5]. The overhead incurred in maintaining cache coherency across cores may
surpass the performance improvements gained through addition of cores.

This has compelled some processor designers to eliminate hardware supported cache
coherency so as to increase the core count on the chip. With the elimination of hardware
coherence, application developers are left with two alternatives. One is software managed
cache coherence, and the other is shifting to the message-passing programming model
(viewing the cores as a cluster of computers connected by a mesh network).

The Single-chip Cloud Computer (SCC) is a 48-core homogeneous experimental pro-
cessor created by Intel Labs for the many-core research community. The chip is built
with three main objectives; one is to study many-core processors, their programmability
and scalability while utilizing message-passing as a communication model. Second, ex-
plore the performance and energy consumption characteristics of on-die 2D mesh fabric.
And finally, investigate the benefits and challenges of fine-grained dynamic voltage and
frequency scaling at application level.

The design of the processor prototype is meant to favor message-passing over shared-
memory programming. To this effect, the platform deliberately provides neither hard-
ware supported cache-coherence, nor atomic memory read/write operations across cores.
The cores communicate using a message passing architecture that permits very fast data
sharing with low latency through the on-die mesh network. Hence, the platform is ex-
plored by application developers as a cluster-on-chip or a distributed system with cores
connected through a Network-on-Chip(NoC).

Traditionally we implement concurrent data structures in shared-memory to coordi-
nate the execution of various threads. Different threads call the object methods to access

1

1.1 Problem Statement

the shared objects. Access to the shared object may require synchronization to avoid
race conditions. A race condition arises when the output of a concurrent execution is
dependent on the sequence or relative ordering of the method calls. To overcome pitfalls
that arise due to race conditions, concurrent executions are synchronized using atomicity
or mutual exclusion in critical sections.

Mutual exclusion can trivially be achieved using locks guarding a critical section. A
thread requiring access to shared memory must acquire a lock, and releases the lock af-
terwards. However lock synchronization has many pitfalls; these include blocking, dead-
locks, convoying effects, priority inversions on multithreaded machines, among others[6].
Non-blocking data structures have been constructed to overcome these hazards. ”Non-
blocking” as used in this context, is a guarantee that system progress cannot be indefi-
nitely blocked by a slow or halted process.

Developing non-blocking concurrent data structures is nontrivial, and correct im-
plementations of these data structures is a demanding task for application developers.
However; over time researchers have developed very efficient implementations of non-
blocking data structures [7, 8, 9, 10, 11, 12, 13].

In literature several progress conditions for these non-blocking data structures have
been defined such as wait-free and lock-free [14]. A wait-free concurrent object has each
concurrent operation finishing in a finite number of its steps, despite other concurrent
operations. A lock-free object guarantees that at least some method call will complete
within a finite number of its steps.

Nonetheless, most of the non-blocking data structures we have found in literature
are suited for shared-memory programming with hardware supported cache coherency
and universal atomic instructions. This raises the question that: “How can we develop
similar data structures for message-passing programming model or new many-core mul-
tiprocessor systems, analyse these structures theoretically (prove linearizability) and
empirically (performance measurements)?” On the new many-core architectures; com-
munication overhead, core locality on the chip and memory layout all have an influence
on system performance and scalability of developed data structures .

Concurrent First-in-first-out (FIFO) queue is one such data structure that has be-
come fundamental to applications in shared memory multiprocessors. In this thesis we
develop and study various implementations of a statically allocated FIFO queue ported
to the single-chip cloud computer.

1.1 Problem Statement

Message-passing is very ideal for transferring small amounts of data, but not efficient
for large data transfers among cores. Hence, while a lot of research done into fast
efficient message passing protocols for sharing data among cores. We propose that, for
architectures that combine message-passing with shared-memory, the message-passing
may not necessarily be essential for data-transfer, but for coordinating shared-memory
access and synchronization of operations on the different cores. The SCC being a hybrid
system (provides both shared and private memory), avails shared memory that can be
used for the shared data structures. The data in shared off-chip memory can be used

2

1.2 Justification

in place, contrary to incurring overhead while passing data among cores or the space
misuse associated with replicating data on all cores.

The primary aim of this thesis project is to develop concurrent data structures co-
ordinated by message-passing on the single-chip cloud computer.

1.2 Justification

The study will form a first phase of research into concurrent data structures on many-core
or multicore systems. This ultimately aims to provide readily available data structures
and synchronization constructs to application developers on these platforms. It will also
provide a body of information to both the student researcher and the research group on
these nascent research platforms.

1.3 Methodology

Study the single-chip cloud computer, its architecture capabilities, trade-offs and hard-
ware constraints. Design and develop message-passing protocols to synchronize memory
access and concurrent data structures using the C-programming language. Undoubtedly,
all this will require as the first step a comprehensive literature review of concurrent data
structures themselves.

1.4 Literature review

The FIFO queue is studied widely as a concurrent data structure for both statically
[7, 10] and dynamically allocated memory [8, 9, 10, 11, 12, 13]. A queue is classically a
sequence of typed items, with the enqueue operation adding an item to the end of the
sequence and the dequeue operation returning the item at the front and removes it from
the sequence. A concurrent queue is usually desired to be a linearizable implementation
of a classical sequential queue. Where linearizability is a correctness property that each
method call appears to take effect atomically at some point between the invocation and
response, and that the ordering of non-concurrent operations should be preserved [15].

In recent years, many researchers have developed efficient algorithms for concurrent
FIFO queues. Michael and Scott [16] present a two-lock algorithm that performs better
than a single coarse-grained lock. In their implementation, two locks a maintained
one for the head and the other for the tail, allowing one enqueue and one dequeue
proceed concurrently. The authors suggested this implementation as the best option
for hardware architectures with non-universal atomic primitives e.g. test&set. They
also present a linearizable lock-free queue based on Compare-and-Swap (CAS) atomic
hardware instructions, which allows for operations at both ends of the queue to proceed
concurrently. They used modification counters for each pointer to overcome the ABA
problem.

Gottlieb et al. [8] present blocking algorithms based on a ”replace-add” primitive
which seems universal. They do not use locks, but the algorithm can suffer from starva-
tion. A slow thread can indefinitely halt the progress of faster threads or the system as

3

1.4 Literature review

a whole.
Stone [9] presents a Compare-and-Swap queue algorithm which allows for an arbi-

trary number of concurrent enqueue and dequeue operations. However, this algorithm
is not linearizable and not non-blocking as a faulty or slow enqueuer could block all the
dequeuers.

Tsigas and Zhang [7] present a simple non-blocking, linearizable queue based a
static circular array. They lower contention on key variables by allowing the tail/-
head pointer to lag at most m positions behind the actual tail/head of the queue, thus
allowing only one in every m operations to update the tail/head pointers using a com-
pare&swap. This is because, contention to shared-variables degrades performance and
generates a lot of traffic on the interconnection network. They also introduce a mech-
anism to deal with pointer recycling or A-B-A problem which results from algorithms
using thecompare&swap primitive. This is simply done by designing the queue as a
circular array, with the circular array acting as a counter.

Prakash, Lee, and Johnson [13] present a simple efficient non-blocking algorithm that
uses compare&swap instruction for synchronisation. The algorithm is non-blocking. This
property is achieved by utilizing a helper mechanism, where a process can complete an
operation started by another process. Another property of this data structure is that
both enqueue and dequeue operations are independent of queue size. To overcome the
A-B-A difficulty of compare&swap constructions, the algorithm uses a singly linked list
with double sized pointers. One half is the actual pointer while the other half is the
counter. The counter is then further divided into a mark-bit and the counter value; with
the mark bit indicating whether the node object is to be dequeued.

Valois [11] presents a lock-free singly-linked list that allows concurrent traversal,
insertion, and deletion by multiple processors. This algorithm uses a sentinel node
at the head of the list to avoid problems that arise due to empty lists or single-item
lists. The algorithm has a drawback; it allows the tail pointer to lag behind the head
pointer; making freeing or reusing of dequeued nodes unsafe. Not reusing or freeing
memory would make the algorithm not very efficient on space and thus unacceptable.
The author thus suggests a mechanism to allocate and free-memory based on reference
counting. Thus, a node is only freed when its reference count goes to zero.

Virtually all the algorithms above are reliant on the availability of the compare&swap
hardware primitive and are suited for the shared memory programming model. As
its been noted [17], designing non-blocking implementations for many simple sequen-
tial data structures is not possible using classical non-universal synchronization primi-
tives (test&set, read, write, fetch&add and swap). Therefore, non-blocking implemen-
tations cannot be easily ported to distributed memory systems or architectures that do
not readily avail universal atomic operations like compare&swap or load-linked/store-
conditional.

4

2.0. SINGLE-CHIP CLOUD COMPUTER - SCC

2.0 Single-chip Cloud Computer - SCC

S
ingle-chip Cloud Computer (SCC) is an experimental multicore processor
created by Intel Labs intended for the many core research community [5]. The
chip consists of a 6x4 mesh of dual-core tiles, with each tile having two cores.
Each core is x86 architecture, hence can support compilers and operating sys-

tems require for full application development. The chip supports dynamic frequency
and voltage scaling for application-level fine-grained power and clock management. It is
divided into multiple voltage and frequency domains, some are configurable at start-up,
while others may be varied by applications during runtime.

The die has four on-chip memory controllers as shown in figure 1, making it capable
of addressing upto a maximum of 64GB off-chip memory in addition to a small chunk of
fast, low latency buffers located on each tile. The fast local memory or on-die memory
is mainly utilized to facilitate message-passing communication on the chip.

Figure 1: SCC Architecture overview[1]

The off-chip memory is divided into segments private to each core and segments that
can be mapped as shared by user applications and accessible to all cores. However, the
default configuration is that, each core has a private memory region on off-chip memory
and shared-access to the local on-chip memory buffers (Message Passing Buffers).

The cores on the chip boot Linux operating system by default, and provide a pro-
gramming environment with various APIs to application programmers. Some researchers
choose to use the chip without loading an operating system (bare-metal), while others
boot custom operating systems suited for multicore systems similar to the SCC [18].

A board management microcontroller (BMC) controls the entire system; it initializes
and shuts down critical system functions. A 64-bit PC running Linux operating system

5

2.1 Memory architecture and access modes

(Management Console MCPC) manages the SCC board over a PCI-e bus using software
provided by Intel Labs. This software enables developers to load Linux images on any
single core or a set of cores, manipulate configuration registers and load/run applications
on the cores. Applications to configure the SCC platform can also be written and run
on the Management Console.

2.1 Memory architecture and access modes

The tiles on the chip are sectioned into 4 memory regions. A memory controller is
assigned to each region, and is capable of accessing a maximum capacity of 16GB DDR3
memory. The default boot-up configuration is that, memory at each controller is divided
evenly to the nearest MB among the 12 cores in memory region as private memory.
While, the surplus memory is allocated as shared memory.

Cores belonging to the same memory region access their private memory only through
the controller assigned to the region. However, when accessing the shared memory
regions, a core may go through any of the four memory controllers, whichever is closest
to the block of shared memory that the core is trying to access. Routing to the destination
memory-controller is through the on-chip 2D-mesh.

Divisions between the shared and private memory spaces are programmable and
configurable using entries in the lookup table and the page-tables of the core. Therefore,
the memory can also be mapped as either ”totally shared” or ”totally private”.

Shared memory can be exploited for exchanging data among cores and hosting shared
data structures e.g. concurrent lists, graphs among others. It can be mapped either as
non-cacheable or cacheable with software managed coherency among multiple caches.
To take advantage of the new write combine buffers and cache invalidation, the off-
chip shared memory can also be mapped onto a core as Message Passing Buffer Type
(MPBT).

SRAM, also referred to as the message-passing buffer is added to each tile and is
capable of fast read/write operations. 16KB of SRAM on each tile, making up the
equivalent of 384KB of on-chip memory. These 24 on-die message buffers are accessible
by any core or through the system interface. Cores located at different locations on the
chip experience considerable disparity in access latency while accessing the same buffer.
Furthermore, access to these buffers is typically internal to a message-passing model or
protocol.

L1 instruction and data caches are 16KB each, and a write combine buffer was
added to facilitate and coalesce memory write operations. The SCC core also has a new
cache memory type, the Message Passing Buffer Type (MPBT) and a new instruction
(CL1INVMB) to aid software managed cache coherence.

Cache lines can be modified with the status bit MPBT. This bit differentiates message-
passing data from regular memory data in the L1 cache. And the instrunction, CL1INVMB,
invalidates all cache lines marked with MPBT in one clock cycle.

The 256KB L2 cache is private to each core with its associated controller. The

6

2.1 Memory architecture and access modes

L2 cache is write-back1 only, no-write allocate2 and has no hardware cache coherency.
There is no mechanism to invalidate data in the L2 cache, unlike the L1 cache; thus the
CL1INVMB does not affect data in the L2 cache.

A core can have only a single pending request for memory and will stall until data
is returned. On a missed write, the processor continues operation until another read
or write miss occurs. On completion of the pending write request, the core continues
normal operation. Therefore, with these blocking reads and non-blocking memory write
transactions, message-exchange models should make use local reads and remote writes.

Each tile is connected to the mesh via a Mesh Interface Unit (MIU), which intercepts
cache misses and translates the address from core virtual address to system physical
address using the LUT. The MIU then adds the request to the appropriate queue which
could be a DDR3 request, a Message Passing Buffer access or a local configuration
register access queue. For traffic destined for the tile, the MIU forwards the data to the
appropriate destination on the tile.

The cores being 32-bit, and yet the system memory controllers address up to 34 bits
main memory address space each. Look up tables (LUTS) are added to translate core-
physical addresses to system-physical addresses. The Local lookup table (LUT) contains
configuration registers used to determine the destination and the access mode of memory
requests.

2.1.1 Memory Access

As shown in Figure 2; normal private memory access goes through the L1 and L2 caches,
then to the disk memory if there are cache misses. Data in shared memory may be
configured to bypass L2 cache and go to L1 cache or bypass both caches as uncached
shared memory. With the memory data type MPBT, data read from this memory is
cached only in the L1 cache. The new CL1INVMB instruction invalidates all such lines
in the L1 cache. The following reads or writes to these invalid MPBT cache lines are
bound to miss, and cause data to be fetched or written to memory.

A Write combine buffer (WCB) was added to the core because it supports only
one outstanding write request. The write combine buffer allows the cache to proceed
and process other requests without stalling waiting for data to be written to memory.
When data and corresponding address are added to the write combine buffer, the write
operation is complete from the core’s perspective; the write buffer proceeds to add the
data to memory. The WCB is active for all memory mapped as MPBT irrespective of
the actual destination memory type.

The write buffer combines data to a block of memory and fills up a cache line before
writing data to the destination memory location. This write-merge optimization allows
more efficient use of the L1 caches and limits the number of memory writes.

1write-back: data is written temporarily only to the cache, memory write is delayed until the data
block is about to be modified or replaced

2No-write allocate: on a missed write, data is written directly into memory and not fetched into the
cache

7

2.1 Memory architecture and access modes

Figure 2: Memory access mechanisms on SCC [2]

However, the merging of memory writes can be a source of read-after-write inconsis-
tencies. A read from a core to a previously written memory address may return stale
data values, as the write buffer holds the updated value. Similarly, writes by one core to
MPB memory may not be observed by other cores reading from the same memory. One
possible solution is to flush the buffer to ensure that data is written to the destination
by performing dummy writes to non contiguous memory locations.

The uncached shared memory access mode is also available. Data read from this
memory skips the caches and read/write requests are delivered directly to the MIU.
As mentioned earlier, there is no cache coherence and the SCC provides no snooping,
snarfing or any mechanisms for cache coherence; consequently the programmer explicitly
manages data coherence among cores.

Message routing on the mesh employs Virtual Cut-Through[19, 20] switching with
X-Y routing. The X-Y routing by Wang et al.[21] is a deterministic distributed routing
algorithm. Packets consist of flits which may include header, body and tail flits and
routers are identified by coordinates (x, y). Packets from the source core to the destina-
tion core first move along the X direction and then along the Y direction (i.e. packets are
routed first horizontally and then vertically to the destination). With this deterministic
routing, messages from one tile to another always take the same route and messages
exchanged between the two tiles take different paths i.e messages from A to B will take

8

2.2 SCC Configuration Registers

a different path from messages from B to A.
To achieve flow control and avoid deadlocks, the SCC routers use multiple credits

with virtual cut-through. Credits are assigned to each link from one router to another.
A router only sends a packet to another router if it has credit from that router and when
a router forwards a packet, it sends back the credit to the sender.

2.2 SCC Configuration Registers

Configuration registers are available to allow applications control the operating modes of
various hardware components of the SCC. The registers are always initialized with de-
fault values, and they control core startup configuration, clock divider settings, interrupt
handling, and cache configuration. The configuration registers are in the control register
buffer (CRB) of the MIU, and they can all be memory mapped by an application.

Each core’s L2 cache controller has a configuration register writable by any other core
or through the system interface. The L2 cache configuration register is used to enable
or disable the core’s L2 cache. The Global Clock Unit (GCU) configuration register is
used to configure the tile frequency for the predefined router and memory clocks.

Each core is assigned a test-and-set register. This register is used to build locks
instrumental in constructing synchronization or communication protocols. Reading from
the register returns a 0 if the register was not previously read and not reset while a write
resets the register. This register is also memory-mapped and can be accessed by all
cores.

2.2.1 FPGA and Global Registers

The Rocky Lake system FPGA bridges the MCPC to the SCC silicon via the chip’s
system interface (SIF). It allows users to set up the chip environment, control applications
executing on the SCC and develop MCPC applications that communicate with the SCC
chip. Additionally, the FPGA provides I/O capabilities to the chip, allowing software
applications to directly access or communicate with servers via the internet. It can also
use external storage such as SATA disk drives for fast local storage.

Application level registers have been added to the system FPGA. These registers
can be accessed through read/write requests from the MCPC or the chip cores. The
registers are in three categories; a global timestamp counter, atomic increment counters,
and global interrupt registers. The registers are memory mapped, and access to them is
through the Look Up table. The Global Timestamp Counter provides a common time
base to all cores. Although each core has its own timestamp counter, these core local
timestamp counters are not synchronized.

2.2.2 Global Interrupt Controllers

The SCC FPGA has 48 interrupt registers for each of the categories; status registers,
mask registers, reset registers and request registers, one of each type for each core.

9

2.2 SCC Configuration Registers

A core can interrupt any other core by setting the destination core’s corresponding
bit in the source core’s interrupt register. Therefore, the requesting core should write to
its request register, setting the bit corresponding to interrupted core.

If the destination core Interrupt Mask-bit corresponding to the source core is unset,
the interrupt notification is triggered. The interrupted core calls its interrupt handler
and checks its status register values to determine the source core of the interrupt request.
After handling the interrupt; the interrupted core must clear the local interrupt bit and
set the reset register bit corresponding to the source core in the FPGA to force the
controller clear the matching status bit, thus allowing the core to receive new incoming
interrupts.

To experiment with the interrupt registers provided by the FPGA, we implemented
inter-core interrupts as out-of-band message notifications.

2.2.3 Out-of-band notifications

To utilise the message-passing capabilities of the chip, various APIs have been developed.
RCCE was developed as a light weight message passing infrastructure suited for the SCC
processor [22]. The API was developed to run on the cores without an operating system,
thus each core is considered as a single unit of execution.

RCCE employs a symmetric namespace memory model; operations to allocate or
deallocate memory are run as collective operations on all active cores. This allows
the cores to have a homogeneous view of memory at any state during computation.
The environment is best suited for Single Instruction Multiple Data (SIMD) model of
programming, with all cores starting at the same logical time and finishing after the
application is completed on all cores.

With a single unit of execution per core, all communications are blocking, and this is
a significant limitation of the API. Another limitation is that, the environment can not
transfer messages larger than 8KB in size from a core. If the messages are larger, they
are tokenized into smaller chunks then transferred.

RCCE was extended to iRCCE, adding non-blocking point-to-point communication
capabilities [23]. iRCCE employs request handlers to monitor the progress of a commu-
nication and ensure that it is not stuck. iRCCE also introduces pipelining to increase
the bandwidth of the communications while still utilizing the limited 8 KB MPB.

iRCCE is non-blocking but introduces polling, or repeatedly checking on the progress
of the communication, these CPU cycles could be used to carry out other operations as
a core waits for a communication to complete.

The cores have the capability to interrupt each other, and this could be exploited to
notify cores on completion of a communication. We subsequently decided to investigate
exploiting inter-core interrupts to implement non-blocking message passing.

One obvious challenge was how to deliver kernel level interrupts to processes running
in userspace. We implemented a kernel module, which registers a kernel handler for
hardware interrupts, and signals processes in the userspace about the occurrence of the
interrupt.

10

2.2 SCC Configuration Registers

This notification mechanism enables a process running on a core to alert processes
running on other cores about the occurrence of an event e.g. arrival of a message, freeing
up of memory, writing a value to a memory location. Each process running on a core
registers its pid with the kernel driver at the start of execution. When a process requires
to notify another on a different core about an event, it triggers an interrupt on the
destination core. On receiving the interrupt; the interrupt handler on the destination
core sends a UNIX signal to all registered processes. This signaling allows the kernel
mode driver to signal user mode processes about hardware interrupts and thus forwarding
the message from another core to any process on the destination core.

We implemented the mentioned procedures, developing a kernel module to handle
interrupts and user mode APIs to respond to the kernel signaling. However, the delays
were significantly high on the interrupt handling as the FPGA has a much lower clock
speed than the cores.

Another drawback was that the network driver on the cores uses the same interrupt
pin which increases the number interrupt notifications and causes delays. Therefore, we
left this open for future investigation when the FPGA is faster on the SCC. However,
we propose it as a viable option for non-blocking message passing on the platform.

11

3.0. SHARED DATA STRUCTURES

3.0 Shared Data Structures

In multiprocessor computing, concurrent shared data structures are typically used to
organize data and synchronize access to this data by multiple units of computation i.e.
threads, processes, cores. These data structures are associated with liveness properties
and safety properties that are provided by their method specifications. To achieve live-
ness and safety properties, the data structure should provide for threads simultaneously
accessing the same data object to reach consensus as to which thread makes progress.
The consensus can be achieved using synchronization primitives.

3.1 Safety

Safety of a concurrent data structure is a property that ensures that, despite the var-
ious possible interleavings of concurrent executions, the state of the data structure is
correct. Safety properties determine the state of the data structure considering various
interleavings of method calls by different processes. Several safety properties are sug-
gested in literature [6] (sequential consistency, linearizability, and quiescent consistency),
which may be used to argue the correctness of an implementation by mapping concurrent
executions to sequential equivalents.

Mutual exclusion is normally used to synchronize concurrent access to elements of
the data structure and allow consistent interleaving of method calls. Mutual exclusion
is commonly achieved by using locks to create critical sections in which operations that
change the state of the data structured are called. However, all mutual exclusion mech-
anisms lead to the key question; what to do after failing to get a lock already held by
another thread or process.

In a multithreaded environment, the only efficient alternative is to yield the processor
to another thread, that may not require the lock. This is often referred to as blocking.
Context switching is expensive, thus blocking is only efficient if the expected lock delay
is long.

In a multiprocessor environment, a process may keep trying to acquire the lock, this
is called spinning or busy waiting, and the lock is called a spin lock. Spinning normally
results into high contention for the lock and degrades performance of the data structure.
Various implementations have been devised to lower contention on the lock, and these
are dependent on the construction of the lock.

Locks constructed using test&set registers have been improved upon using test-test-
and-set register alternatives. With the test-test-and-set lock, the process only tries to set
the lock only after it is observed to be free. This is most useful on the cache-coherent, bus
architecture multiprocessors, where the test-and-set is broadcast on the bus. Spinning
by repeatedly calling test-and-set causes delays on the bus, and also forces cache updates
on all processors owning a cached copy of the lock.

On the contrary, with the test-test-and-set, repeated tests/reads on the lock could
use the cached value and reduce bus traffic. When the lock is eventually released, the
cached copies are invalid, and a cache miss will occur, thus forcing the processor to read
the new value of the lock.

12

3.2 Liveness

Another improvement to the test-and-set lock, is to have a test-test-and-set with
exponential back-off. If on observing the lock as free on the first test; a process fails
to acquire the lock on the second step, this is a clear indication of high contention. It
would thus be more efficient for the process to back-off, and reduce the contention for
the lock.

Apart from high memory contention and sequential bottlenecks, locking has many
other drawbacks, mainly in multithreaded environments. Priority inversion, when a
lower priority threaded delays a high priority thread. Deadlocks also occur when locks
to the same data structure are acquired in different orders.

One critical draw back to implementations dependent on locks is that, a slow or
delayed thread can delay faster threads.This is at times referred to as convoying, and
occurs when, a process holding the lock is interrupted. All other threads are delayed
until the interrupted thread releases the lock. In other cases, the thread holding the
lock is halted or crashes, then other threads are delayed indefinitely. Therefore, these
algorithms are generally classified as blocking.

Effects of memory contention and sequential bottlenecks can be reduced using fine-
grained synchronization. Multiple locks are used to synchronize portions of the object
independently, with method calls only interfering when they access the same portion of
the object at the same time. This allows multiple operations to execute concurrently if
they access different portions of the data structure.

An alternative to mutual exclusion or locking, is to develop non-blocking algorithms.
Non-blocking in this context defines the requirement that indefinite delay or failure of a
process or thread should not prevent other threads from making progress.

3.2 Liveness

Liveness is a property of concurrent data structures, that as long as there are non-halted
processes, there will be system-wide progress. Progress conditions for non-blocking data
structures have been classified as wait-free and lock-free. Lock-freedom ensures system
wide progress, while wait-freedom guarantees thread level progress.

A lock-free algorithm guarantees that at least one method call will finish within a
finite number of its steps. A wait-free concurrent object has each concurrent operation
finishing in a finite number of its steps, despite other concurrent operations. Therefore
a wait-free implementation is also lock-free, but with the stronger guarantee that there
will be no starvation.

3.3 Hardware support for concurrent data structures

Herlihy [17] observed that designing non-blocking implementations for many simple se-
quential data structures is not possible using classical non-universal synchronization
primitives (test&set, read, write, fetch&add and swap). Therefore, lock-free or wait-
free implementations can only be constructed using hardware operations that atomically
combine a load and a store operation. The most popular of these operations are compare
& swap (CAS) and load-linkedstore-conditional.

13

3.4 FIFO Queues on SCC

Traditionally, concurrent shared data structures are constructed for shared memory
programming, with a uniform address space and all threads having a uniform view
of memory. Additionally, most non-blocking implementations of these data structures
are developed for modern processors that provide atomic (load&store) synchronization
instructions. However hardware that supports shared memory models does not scale
very well with an increasing number of cores, and traditional cache-coherence is hard to
achieve on new many-core architectures.

Consequently, from a hardware perspective, it is preferable to have a message-passing
model, despite shared-memory programming being more desirable and very convenient
at the software level. This in addition to other factors mentioned, motivated us to
develop shared-memory constructs on hardware with very low latency message-passing
support like the SCC.

A good starting point for developing shared data structures on SCC is the slogan,
”Do not communicate by sharing memory; instead share memory by communicating”,
taken from the GO programming language. To this effect, we develop data structures
to which concurrent access is explicitly coordinated by message passing.

3.4 FIFO Queues on SCC

A FIFO queue is a collections data structure that offers first-in-first-out fairness. This
data structure provides an enqueue operation which adds an item to the end of the queue
or the tail and a dequeue operation that removes and returns the item at the front of
the queue, also referred to as the head. A concurrent queue should have enqueue and
dequeue operations whose execution history maintains the FIFO ordering of the data
structure. Thus, a concurrent queue is desired to be linearizable to a sequential execution
with the same method calls.

In this thesis, we developed three implementations of a FIFO queue on the SCC
inspired by ideas from shared-memory programming and distributed data structures.
One is an implementation of the blocking two-lock algorithm by Michael and Scott [16]
which provides fine-grained synchronization by using a distinct lock for the head and for
the tail pointers of the queue. The other two algorithms are developed with ideas taken
from distributed data structures, having the data structure owned by one node and all
other nodes requesting exclusive ownership to an item of the data structure at a time.

We utilize the shared off-chip memory as statically mapped memory. This is because
it is mapped by each executing process into its address space and not allocated by
the operating system. This memory is mapped to different virtual addresses for each
process. Therefore, we use memory offsets instead of actual virtual-memory addresses
when passing pointers to an address in memory from one core to another.

On receiving the offset; the core has to add the offset to the base address of its
mapping so as to calculate the actual location of the object in consideration. This
technique is adopted from cluster-programming because although the SCC has shared
memory, it does not support the shared memory model with a uniform virtual address
space across all cores.

14

3.5 Double-lock Queue

3.5 Double-lock Queue

For the Lock based queue, we implement the MCS two-lock queue as a static memory
linked-list or array stored in shared off-chip memory. We store pointers to tail and head
indexes in the fast access message-passing buffer. The algorithm uses two separate locks
for the head, and tail, thus allowing one enqueue operation to proceed in parallel with a
dequeue operation.

We implemented the locks using test&set registers; the SCC has 48 test&set registers
with each core having one of the registers. We memory map the registers as non cacheable
memory and use the semantics of the register to create a spin lock. Reading the register
returns a zero if no process has previously read and not reset the register, otherwise
a one is returned. A register write by any core causes it to reset. Figure 3 shows
implementations for acquiring and releasing the lock built using a memory mapped
test&set register.

Figure 3: Lock implementation using a memory mapped test&set register

int l o ck (lockaddr) {
while (! ((∗ (lockaddr)) & 0x01)) ;
return 0 ;

}
(a) acquire lock

int unlock (lockaddr) {
∗(lockaddr) = 0x0 ;
return 0 ;

}
(b) release lock

The cores experience different latencies when accessing on-chip MPB or off-chip mem-
ory. With this in mind, we sought to increase parallelism by limiting the work inside
the critical section to updating head and tail pointers. The thread holds the lock only
for the duration of updating the respective pointer, then releases the lock. This is
achievable because statically allocated memory holds the data structure. The statically
allocated memory improves performance by reducing the number of memory allocations,
and avoiding consistency issues that may be incurred while reclaiming dynamically al-
located memory.

Consequently, the algorithm may be blocking and not lock-free, but it allows for
multiple concurrent memory reads/writes in the high latency off-chip shared memory,
thus having multiple enqueuers and dequeuers make progress at the same time. We also
observed that; as the platform does not support cache coherence, the spin locks bear no
additional cost typically associated with cache-coherence protocols.

3.5.1 Queue Methods

Figure 5 presents commented pseudo-code of the two-lock queue and its methods. To
enqueue an item to the list, a process/core acquires the enqueue lock or tail lock and
reads the current tail pointer. In this algorithm, the tail pointer holds the offset of the
next empty index in the array and not the last added item; thus it refers to a place holder
in the queue. The enqueuer increments the tail pointer and writes back the new value

15

3.5 Double-lock Queue

Figure 4: enqueue() and dequeue() methods of the two-lock queue. The enqueue() method
acquires the enqueue lock in step 1, reads and updates the tail pointer to the next offset
index (step 2), then releases the lock. The enqueuer proceeds to add the node to the
memory pointed to by the offset (step 4). To dequeue a node from the list, a node acquires
the dequeue node (step 5). On acquiring the lock, the node reads the head pointer (step 6),
checks that it does not point to the same location as the tail. The dequeuer, then updates
the head pointer and releases the lock (step 7). In step 8, the dequeuer spins on the node
flag to confirm that the node has been enqueured before dequeueing it.

of the pointer to the Message-Passing Buffers (MPB). Then releases the lock; allowing
other processes to proceed and contend for the enqueue lock. After releasing the lock,
the enqueuer proceeds to add the data item to the address location read in step 2 of
Figure 4 to the shared off-chip memory. To calculate the virtual address in the core’s
virtual memory, the offset read is added to the starting address of the off-chip memory
as mapped on the enqueueing core.

16

3.5 Double-lock Queue

struct node t { value: type t; flag: uint; };
struct queue t { head offset: uint; tail offset: uint;};

init_queue(queue t* Q)
Q->head offset = Q->tail offset= NULL
write to mpb(Q) # Store queue pointers in MPB

enqueue lock = dequeue lock = FREE

void enqueue(queue t* Q, data type value)

E1: acquire lock(enqueue lock) # Acquire enqueue lock to read tail offset

E2: Q = read from mpb() # Fetch queue pointers from MPB

E3: mem offset = Q->tail offset # Read current tail offset

E4: Q->tail offset += LINE SIZE
E5: write to mpb(Q->tail offset)
E6: release lock(enqueue lock); # Release lock

E7: node shm = (node t*) (shm startaddr+mem offset) # Locate virtual address location using tail-offset

E8: node shm->value = value; # Add enqueued value to memory

E9: node shm->flagset = SET; # Set flag to indicate completed enqueue

E10: end

data type dequeue(queue t* Q)

D1: acquire lock(dequeue lock) # Acquire dequeue lock to read Head offset

D2: Q = read from mpb()
D3: if (Q->head offset == Q->tail offset) then # Is the queue empty?

D4: release lock(dequeue lock) # Release dequeue lock

D5: return NULL # Return queue was empty

D6: endif
D7: mem offset = Q->head offset # Read Head offset

D8: Q->head offset += LINE SIZE;
D9: write to mpb(Q->head offset)
D10: release lock(dequeue lock); # Release dequeue lock

D11: node shm = (node t*) (shm startaddr+mem offset)
D12:
D13: while (node shm->flagset!= SET) do

;
end

Wait for completion of enqueue operation

D14:
D15: value = node shm->value # Read node value

D16: node shm->flagset = NOP # Clear memory for reuse

D17: return value # Successful, return value

Figure 5: Two-lock concurrent queue operations

17

3.6 Message-passing based queues

When designing the algorithm, we realized that updating the pointer without adding
the data item to memory could lead to a situation where a dequeuer reads a null value
from a node that is yet to be added to the list. An item is logically added to the list as
soon as the tail pointer position is incremented and written back, albeit the data item
not having been added to the shared off-chip memory. To prevent this from happening,
we added a flag bit to the data item to indicate that the data item has absolutely been
enqueued to the list.

To dequeue a data item; a process acquires the dequeue lock, reads the queue t
pointer, and checks if the head offset is equal to the tail offset. If so, then the queue is
momentarily empty, and the dequeuer releases the lock returning a -1 to the caller which
indicates an empty queue. On the other hand, if the queue is not empty, the dequeuer
reads the current queue’s head offset. Then increments the head offset pointer, writes
the new value back to MPB and releases the dequeue lock. After releasing the lock,
proceeds to check the node’s dirty flag to confirm that the dequeued data item has been
enqueued previously. In case the flag is not set, the dequeueing processes spins on the
flag until its set. When the node’s flag is set, the dequeuer can proceed and read the
value of the node, returning this value as the dequeued item.

This spinning on the dirty flag during a dequeue operation adds more blocking to an
already blocking data structure, and a delay or failure of an enqueueing processes could
lead to indefinite spinning of a dequeueing process.

3.6 Message-passing based queues

To avoid the use of blocking synchronization primitives like locks, we created a queue
where message-passing controls concurrent access. In this abstraction, one node (the
server) owns the data structure, and all other nodes (the clients) request exclusive own-
ership to elements of the data structure at a given time.

The queue data structure resides in off-chip shared-memory, with the server holding
pointers to the head and tail of the queue in its private memory. If a core wishes to
add an item to the queue, it must request for the position of the queue tail from the
server. A node wishing to remove an item from the list also acquires the head position
in a similar procedure. The server handles Enqueue/Dequeue requests in a round-robin
fashion, and correspondingly updates to the queue pointers as only this core has write
access to these pointers.

We implemented the message-passing mechanism utilizing receiver side placement
(i.e. the sender writes the data to the receiver’s local MPB buffers) and notification
flags to perform flow control. The flow control is necessary to prevent a core from
processing an already processed message or overwriting unread messages on the receiver
end.

We use notification flags and polling to discover arrival of new messages and also
enable reuse of memory after processing a message. Receiver side placement of the
messages also makes polling more efficient, because all the cores spin on local memory
and reduce network traffic while polling for incoming messages. We also realized that,
with one server handling requests from multiple clients, this arrangement results in a

18

3.6 Message-passing based queues

gather pattern [2]. Therefore, the server’s sequential polling is faster on local memory;
as the clients execute requests in parallel. This in essence also supports the decision to
implement receiver side placement model of message-passing.

To manage the message-passing buffers, the server allocates slots in its local MPB
memory, one for each of the participating cores. Therefore, each client core can have
only one outstanding request at a time. The server also requires a slot on the client
core’s local MPB memory for writing responses for the requesting core.

On initialization, each core maps the shared memory into its address space in non-
cached (NCM) mode. The cores map the memory to different virtual addresses, making
the exchange of address pointers impossible. Instead, different cores exchange offsets
from the starting address of the shared memory.

3.6.1 Queue Methods

Figures 6 and 7 present commented pseudo-code for the server and client operations of
the data structure. In this implementation, the server/manager core allocates message
slots in its MPB, one for each client core. Each core has fixed message slots; therefore a
core writes request messages to the server into the allocated slot. The server polls on the
slot flags for incoming requests. The server also initializes the queue in shared memory
by clearing the allocated memory and creating queue pointers to the data structure. The
server stores these pointers in its private memory and no other core performs updates
on these pointers. It allocates a separate set of slots in the local MPB on each client
core, and these slots used to write responses from the server to the client cores. After
each request, the client core proceeds to spin on this receive buffer for a response from
the server.

A core wishing to enqueue an item to the list, sends a request for the queue head-
offset to the server, as illustrated in Figure 6 (EC 3). After request, the core spins on a
slot in its local MPB for a response from the server. On receiving the enqueue request
message(Figure 6), the server updates the queue tail pointer and returns the previous
offset to the requesting core. In this implementation, the tail-offset always refers to
the next empty slot in the shared memory. Statically allocated memory is the main
motivation for this use of the tail pointers.

After a response message from the server, the enqueueing client node proceeds to
add the data to the memory location pointed to by the returned offset. To complete the
enqueue operation, the process sets the flag on the memory slot to true.

To dequeue a data item, the core requests for the head offset instead of the tail
offset as above. If the queue is empty, the server returns a negative offset to notify the
dequeuer of an empty queue. Else; if the queue is not empty, the server responds with
the current head offset and updates the head pointer accordingly. However, as noted
in the two-lock implementation, in this mechanism we also run into a situation where
a memory slot assigned to the dequeuer is yet to be filled added by the enqueuer. We
maintain the use of dirty flags to indicate that the enqueuer has successfully added the
data item to memory

19

3.6 Message-passing based queues

struct node t { value: type t; flag: uint; };
struct queue t { head offset: uint; tail offset: uint;};
struct request t { memsize: size t; CMD: uint; };
struct response t { mem offset: uint; CMD: uint; memsize: size t;};

init_queue()
request addr = map memory(); # Request slots

response addr = map memory(); # Response slots

void enqueue(request t* REQ, data type value, request addr)

EC1: REQ->memsize = sizeof(int)
EC2: REQ->cmd = ENQ

EC3: write to mpb(request addr, REQ) # Send request to server

EC4: wait for response(response addr, response t* RES)
poll server for response

EC5:

EC6: node shm = (node t*) (shm startaddr+RES->mem offset)
Use offset in response to find assigned memory slot

EC7: node shm->value = value;
EC8: node shm->flagset = SET; # Set flag to indicate completed Enqueue operation

EC9: clear memory(response addr)
EC10: end

data type dequeue(request t* REQ, request addr)

DC1: REQ->memsize = sizeof(int)
DC2: REQ->cmd = DEQ
DC3: write to mpb(request addr, REQ)
DC4: wait for response(response addr, response t* RES)
DC5: if (RES->mem offset == NULL) then
DC6: return NULL # Queue is empty

DC7: endif
DC8: node shm = (node t*) (shm startaddr+mem offset)
DC9: while (node shm->flagset!= SET) do

;
end

Wait for completed Enqueue operation

DC10:
DC11: value = node shm->value
DC12: node shm->flagset = NOP
DC13: clear memory(response addr) # Clear message buffers

DC14: return value # Return dequeued value

Figure 6: Client Operations

20

3.6 Message-passing based queues

If the server responds with the the head-offset, the dequeuer spins until the dirty flag
on the memory slot is true, and the data item can be dequeued from the list. However,
the process should clear the response message buffer so that it does not read stale data
upon issuing another request before returning from this method call.

init_queue(queue t* Q)
Q->head offset = Q->tail offset= NULL # Initialize queue pointers

client response addrs[No of cores]

Map client core-local MPB slots for passing responses

for (core=0;core<No of cores; core++)
do
client response addrs[core] = map response addr(core)
end

req startaddr = map memory(); # Map client request memory buffers

void server(queue t* Q)

S1: while (i<No of cores) do
S2: core req addr = req startaddr+(i*sizeof(request t))

Core i request location

S3: read from mpb(core req addr,REQ) # Fetch request from MPB slot

S4:

S5: if (REQ->cmd == ENQ) then # Enqueue Request

S6: RES->mem offset = Q->tail offset; # Add tailoffset to response message

S7: RES->memsize = LINE SIZE;
S8: Q->tail offset ← (Q->tail offset + LINE SIZE)

Advance tail pointer

S9: RES->cmd = OK;

S10: write to mpb(client response addrs[i], RES);

Return response message to core

S11: clear memory(core req addr)
S12: else if (REQ->cmd == DEQ) then
S13: if (Q->head offset == Q->tail offset) then
S14: RES->mem offset = NULL;
S15: else # Queue not empty

S16: RES->mem offset = Q->head offset;
S17: Q->head offset ← (Q->head offset + LINE SIZE)
S18: endif
S19: RES->cmd = OK;
S20: write to mpb(client response addrs[i], RES);
S21: clear memory(core req addr)
S22: endif
S23: i← (i + 1)%No of cores # Poll message buffers

S24: end

Figure 7: Server operations

21

3.6 Message-passing based queues

The use of flags to indicate completion of an enqueue process may result in blocking
of the dequeue method. This blocking could be indefinite if an enqueue-ing process fails
before performing the addition of a node to the allocated memory location.

We eliminate this use of flags by having the enqueuer notify the server after writing
the data item to shared memory. We add an acknowledgement step to the enqueue
procedure, hence the dequeue operation is executed only on nodes successfully appended
to the data structure.

3.6.2 Message-passing with Acknowledgments

Figures 8 and 9 show the pseudocode for the client and server operations with an added
acknowledgment phase on enqueueing an item to the data structure. In this procedure,
the server maintains a private queue of pointers to locations in the shared memory. This
queue stores pointers to memory slots successfully enqueued with data nodes and the
server notified of the completion of the enqueue process. The ordering of pointers in this
private queue constructs the FIFO ordering of the data structure implemented in this
algorithm.

The server also maintains a pointer to the next empty array index in the shared
off-chip memory; however the head of the queue data structure could lag behind this
pointer.

Adding of an item to the queue proceeds as follows; a client requests for a pointer to
the tail of the data structure in shared memory. When the server receives this request,
it returns the head-offset to the requesting core and updates the pointer to next empty
array index. If allocated a slot in memory, the enqueuer writes the data to memory and
sends an acknowledgement to the server to notify the server about the completion of
the enqueue process. The server adds the memory offset carried in the acknowledgment
message to the private queue of memory.

When a dequeuer requests for the head offset, the server dequeues the head of its pri-
vate logical queue of pointers to shared memory and returns this pointer to the dequeuer.
As this private queue holds pointers to memory locations to which enqueue operations
were completed and acknowledged by the enqueueing cores, the dequeuer can proceed
and dequeue the data item from shared memory without blocking. This implementation
adds an extra message exchange phase, but it solves problems arising from failed client
processes during an enqueue method call.

22

3.6 Message-passing based queues

struct node t { value: type t; flag: uint; };
struct queue t { head offset: uint; tail offset: uint;};
struct request t { memsize: size t; CMD: uint; };
struct response t { mem offset: uint; CMD: uint; memsize: size t;};

init_queue()
request addr = map memory();
response addr = map memory();

void enqueue(request t* REQ, data type value, request addr)

C1: REQ->memsize = sizeof(int)
C2: REQ->cmd = ENQ
C3: write to mpb(request addr, REQ)
C4: wait for response(response addr, response t* RES)
C5: node shm = (node t*) (shm startaddr+RES->mem offset)
C6: node shm->value = value;
C7: node shm->flagset = SET;

C8: REQ->cmd = ACK # Send notification of completed enqueue operation

C9: REQ->mem offset = RES->mem offset # Location of enqueued node

C10: write to mpb(request addr, REQ)
C11: clear memory(response addr) # Clear message response buffers

C12: end

data type dequeue(request t* REQ, request addr)

DA1: REQ->memsize = sizeof(int)
DA2: REQ->cmd = DEQ
DA3: write to mpb(request addr, REQ)
DA4: wait for response(response addr, response t* RES)
DA5: if (RES->mem offset == NULL) then
DA6: return NULL # Queue is empty

DA7: endif
DA8: node shm = (node t*) (shm startaddr+mem offset)
DA9: value = node shm->value
DA10: node shm->flagset = NOP
DA11: clear memory(response addr)

DA12: return value #

Figure 8: Client Operations with acknowledgements

23

3.6 Message-passing based queues

init_queue(queue t* Q,queue t* local queue)
Q->head offset = Q->tail offset= NULL

Queue of pointers to enqueued nodes

local queue->head̄local queue->tail = NULL client response addrs[No of cores]
for (core=0;core<No of cores; core++)
do
client response addrs[core] = map response addr(core)
end
req startaddr = map memory()

void SERVER(queue t* Q, queue t* local queue)

S1: while (i<No of cores) do
S2: core req addr = req startaddr+(i*sizeof(request t))
S3:
S4: read from mpb(core req addr,REQ)
S5: if (REQ->cmd == ENQ) then
S6: RES->mem offset = Q->tail offset
S7: RES->memsize = LINE SIZE
S8: Q->tail offset ← (Q->tail offset + LINE SIZE)
S9: RES->cmd = OK
S10: write to mpb(client response addrs[i], RES)
S11: clear memory(core req addr)
S12:
S13: else if (REQ->cmd == DEQ) then

S14: if (local queue->head == NULL) then # Queue empty

S15: RES->mem offset = NULL
S16: else
S17: qnode t *temp = local queue->head
S18: RES->mem offset = local queue->head->shm offset
S19: local queue->head = local queue->head->next
S20: free(temp)
S21: endif
S22: RES->cmd = OK;
S23: write to mpb(client response addrs[i], RES);
S24: clear memory(core req addr)
S25:

S26: else if (REQ->cmd == ACK) then
S27: qnode t* queue node = new node() # Add entry to queue of pointers to filled memory slots

S28: queue node->next = NULL;
S29: queue node->shm offset = REQ->mem offset;
S30: if (local queue->tail == NULL) then
S31: local queue->tail = local queue->head = queue node;
S32: else
S33: local queue->tail->next = queue node;
S34: local queue->tail = queue node;
S35: endif
S36: clear memory(core req addr)
S37: endif
S38: i← (i + 1)%No of cores
S39: end

Figure 9: Server operations with acknowledgements

24

4.0. CORRECTNESS

4.0 Correctness

In this section, we show that implemented algorithms are correct by providing proofs
that they satisfy desired safety and liveliness properties of a linearizable FIFO queue.
Safety properties ensure that the algorithms maintain correct queue semantics while the
liveliness property guarantee that in case of concurrent enqueue or dequeue method calls;
one call will make progress in finite time. Therefore by definition, safety is guaranteed
by conditions for consistency or correctness while liveness is determined by the progress
in finite time.

4.1 Safety

Correctness of a concurrent object is usually evaluated by its equivalence to a sequential
implementation of the same object[6]. Linearizability is a correctness condition that;
for all interleaved operations of a concurrent execution, there is a correct equivalent
sequential execution of the same method calls that preserves the real-time ordering of
all method calls.

Linearizability is formally defined as a correctness condition that every method call
appears to execute atomically at some point between its invocation and the response.
The requirement that real-time ordering of all operations is preserved relies on the notion
that operations are ordered in time. In the formal definition of linearizability, concurrent
executions are modeled as a history of invocations and responses. The history asserts a
partial ordering <H or ”happened-before” relation on operations, the invocation always
precedes the response. The partial ordering also applies to ”real-time” ordering of oper-
ations in the history. Concurrent operations cannot be expressed with totality (a <H b
or b <H a); thus operations are modeled using partial ordering of events.

For linearizabilty of concurrent executions, however, the history should be extended
to achieve total ordering of different operations. Identifying linearization points for each
method call is one way of showing that an implementation of a concurrent object is
linearizable. A linearization point is the single moment in time where the method call
seems to ”take effect” [24] and the effect is evident to other concurrent method calls
on the same object. Adding linearization points to a history of a concurrent execution
allows us to model the execution as a sequential execution of the same operations. This
is normally termed as linearization of a concurrent execution.

4.2 Liveness

Liveness is a measure of the progress guarantee that an implementation provides in
finite time. Concurrent data structures are categorized as either blocking, where a slow
or delayed thread can delay others indefinitely, or non-blocking, where at least one thread
is guaranteed to make progress despite delayed or slow processes operating on a shared
data structure. Non-blocking implementations are further classified as either Lock-free
or Wait-free.

25

4.3 Proof of Safety

A lock-free implementation of a method guarantees that, in finite time, at least one
method call completes its execution in a finite number of its steps. On the other hand,
an implementation is wait-free if it guarantees that every method call finishes execution
in a finite number of its own steps. Wait-free implementations are lock-free, but often
result in reduced performance and are certainly more difficult to implement correctly.
Accordingly, implementations often offer lock-free progress guarantees instead of wait-
free.

4.3 Proof of Safety

FIFO queue algorithms are correct if they satisfy the following requirements:

• If a dequeue method call returns an item x, then it was previously enqueued, thus
Enqueue(x)→ 3Dequeue(x).

• If an item x is enqueued at a node, then there is only one dequeue method call
that returns x and removes the node from the queue.

We use the correctness proof base on induction described in the MS-Queue [16] to
prove that the algorithms maintain the following safety properties:

1. The queue is a list of nodes that are always connected.

2. New items are only added to the end of the list.

3. Items are only removed from the beginning of the list

4. Tail always points to the next empty slot in the list.

5. Head always points to the first element in the list.

4.3.1 Lock-based algorithms

Property 1. The queue is a list of nodes that are always connected.

In the algorithms presented, we assume that the queue is an array of contiguous
statically allocated memory slots. We allocate shared off-chip memory as static memory
with consecutive memory blocks forming array elements. Thus, the queue items are
always connected, and we can use increasing indexes to traverse from the beginning of
the array to the end.

Property 2. New items are only added to the end of the list.

Items are only inserted at the index pointed to by the tail pointer. This pointer
references the next empty position at the tail end of the queue and is protected by the
tail lock. There, enqueue method calls add items only to the end of the list.

3 total order or happened before relation of events

26

4.3 Proof of Safety

Property 3. Items are only removed from the beginning of the list.

Only nodes referenced by the head pointer are dequeued from the list. As from
Property 4, the head always points to the first item in the list. Therefore, items are only
removed from the beginning of the queue.

Property 4. Head always points to the first node in the list.

The head-offset is only updated by the process holding a lock. On dequeuing, the
head is advanced to refer to the next item in the list, and the previously indexed element
removed from the list. The queue is empty when the head points to NULL address.

Property 5. Tail always points to the next empty slot in the list.

As with the head pointer, the tail is also only updated by an enqueuer holding the
enqueue lock. However, we chose to have the tail pointer reference the next empty index
because we have a statically allocated list of entries. On using up an empty list entry;
the enqueuer advances the tail pointer to refer to the next empty slot that can be used
by another enqueue method call.

4.3.2 Message-passing based algorithms

Property 1. The queue is a list of nodes that are always connected.

The queue items are always connected as in property 1 for lock-based implementation.

Property 2. New items are only added to the end of the list.

Only the server advances the tail pointer which always refers to the next empty slot
at the tail end of the queue (property 5). The server allocates the index of the empty
slot to a requesting client and advances the tail pointer.

Property 3. Items are only removed from the beginning of the list.

Nodes are only deleted if pointed to by the head returned by the server. The server
returns the position of the element at the beginning of the list, and only the server
advances this pointer.

Property 4. Head always points to the first item in the list.

The server advances the head pointer after responding to a dequeue request, ensuring
that it points to the next node in the list. The node pointed to is considered the first
item in the list because the previous item is removed by the dequeuer.

Property 5. Tail always points to the next empty slot in the list.

The tail always points to the next empty slot because its only advanced on using up
a list node. The server ensures that the tail never lags the end and that it never points
to a node that is being deleted by another process.

27

4.4 Liveness

Lemma 1. If a dequeue method call returns an item x, then it was previously enqueued,
thus Enqueue(x)→ Dequeue(x).

Proof. The head always lags the tail, and an array of contiguously stored elements makes
up the queue. Therefore, if a dequeue method call returns an item, then the item was
previously enqueued. In implementations that use a flag to indicate completion of an
enqueue operation, the dequeue method call only returns a value if another process or
method call successfully set the element’s flag as enqueued.

Lemma 2. If an item x is enqueued at a node, then there is only one dequeue method
call that returns x and removes the node from the queue.

Proof. In the lock-based algorithm, a dequeue operation only succeeds to remove an item
from the list after exclusively holding the dequeue lock and thus ensuring that no other
dequeuer removes the same item.

In the message-passing based algorithms, dequeue operations are all coordinated by
the server. The server allocates which array index is to be dequeued, and only the server
advances the head pointer after each dequeue method call.

Theorem 1. The presented FIFO queues are linearizable.

Proof. For the FIFO queue, if by ordering the concurrent method calls by their lin-
earization points we achieve a correct sequential execution of the same method calls,
hen the queue implementation is linearizable to an abstract sequential FIFO queue. The
implemented algorithms are linearizable as we can identify linearization points during
each method call.

For the two-lock implementation, the locks create critical sections, which serve as
linearization points for the method calls. For the implementations that are based on
message-passing, the server serializes the method calls. This occurs because the server
handles requests in a round-robin manner thus they appear sequential in nature.

Properties listed in section 4.3 show that queue pointers reflect a stable state of
the queue. From Lemmas 1 and 2, the enqueue method of an item always precedes its
dequeue and the order in which items are dequeued is identical to the order in which
items are dequeued. Therefore, the concurrent FIFO queues are linearizable to abstract
sequential queues.

4.4 Liveness

In this section, we discuss the liveness properties of the concurrent queue implementa-
tions presented. Liveness properties are guarantees that there will be progress at system
level or even better at per process level within a finite time. One popular model of
proving system progress is to show that, there are no indefinite delays resulting from
a halted or delayed process, and that all loops within the implementation terminate
infinitely often.

28

4.4 Liveness

The message-passing based queue algorithms utilize a Server-Client model of inter-
action. In this model, all client progress is dependent on the server, because of the
request-response interactions to ascertain the values of the head and tail pointers. This
dependence of all clients on the server implies that any system progress is also reliant on
the server. Therefore, we discuss liveness properties with a stringent assumption that,
the server process can not be halted or indefinitely interrupted by system scheduler or
other processes running on the server core i.e. fault-free server.

Communication between the server and clients can be modeled using LogPmodel by
Culler et.al [25]. This model summarizes a ServerClient communication pattern using
a few parameters; these are, the send overhead Os, receive overhead Or and the server
processing time S. The send overhead Os is the time required to assemble the message
and write the request to the message-passing buffers. Because of the implemented a
remote write, local-read pattern of message passing, the write overhead dependent on
the distance from the destination. The receive overhead Os denotes the waiting time
from when a read request is issued until data is returned from the buffers. This overhead
also includes cost of disassembling the message. Receives are local operations, therefore
independent of the distance from the server.

Server processing time St describes the waiting time before the server handles a
client request plus the cost of handling the request. The server handles requests in a
round-robin fashion, thus St is a function of the number of participating cores O

(
n
)
.

Lemma 3. Server responds to every client request in finite time.

Proof. Each client can have only one outstanding request to the server. The latency of
each request is the time for a client to assemble the request, send the request to the server,
plus the delay for server to process the request and return a response to the client. This
latency also includes the time the client takes to disassemble the response message. The
roundtrip time for a single request to the server is approximately Treq = St +2(Os +Or).
All the parameters in the expression for Treq are bounded in time, therefore a fault-free
server responds to every client request in finite time.

4.4.1 Message-passing based algorithm

The enqueue method call of the message-passing based algorithm loops on line EC4
(figure 6) while it polls for a memory slot allocation from the server. The arbitration
of multiple requests on the server is round-robin. Therefore, the number of steps an
enqueue operation loops is dependent on the number of requests processed by the server.
With the specified assumption that the server is never halted, a delay in the loop that
is greater than the ’send-receive’ message passing overhead is a result of the server
processing requests from other processes. If there is significant delay inside the loop,
then other processes complete operations during the same duration. From Lemma 3,
it is guaranteed that a response is eventually returned by the server in finite time, and

29

4.4 Liveness

the loop is exited. Therefore, the enqueue method call terminates in finite despite other
enqueue operations that are also dependent on the server.

The dequeue operation also loops in step DC4 (figure 6) polling the server for the
position of the queue head. As mentioned above, round-robin arbitration is the only
additional source of delay for the execution of this loop. If the server is never halted or
indefinitely interrupted, this loop is bound to exit in finite time.

However, in this implementation we use flags to notify about successful enqueue
operations. The dequeue method call loops again after receiving the pointer to the queue
head. The loop at line DC9, is for the dequeuer to check that an item was successfully
enqueued to the assigned slot, before reading the nodes value. The dequeue method call
only fails to terminate this loop, if the enqueue failed to successfully add data items to
the allocated slot. Consequently, the dequeue operation is blocked with respect to the
corresponding enqueue operation. Other operations will succeed despite the possibility
of having blocked dequeue operations. More specifically, this implementation can have
a slow enqueuer delay a fast dequeuer and the dequeuer can be delayed indefinitely in
case the enqueue fails to complete. But this blocking is only at enqueue-dequeue process
pair level and does not deter progress of other processes i.e. system progress.

To the best of our knowledge, there is no term to describe this phenomenon where an
operation is blocking with respect to a single operation. We coined the term ”pairwise
blocking” to describe this behavior.

Pair-wise blocking
The behavior that an operation is blocking with respect to at most one other
operation and the progress of other operations is not affected. In the context of a
queue data structure, an algorithm is pair-wise blocking if an enqueue operation
can block the corresponding dequeue operation without blocking the progress of
other enqueue or dequeue operations.

Theorem 2. Message-passing based algorithm is pairwise-blocking.

Proof. In this algorithm, a data item is logically added to the list as soon as the server
advances the head pointer and returns a response to an enqueue request. The server
proceeds to handle other requests as the previous enqueuer adds data the the assigned
node of the list. On receiving a dequeue request, the server responds with the header
position without prior knowledge as to whether the enqueue at the header position
succeeded.

The dequeue process reads flags (line DC9) at the memory location to confirm that
the item was successfully added to the list. It continuously polls the flags waiting for
the the enqueue method call to terminate. If the enqueuer is slow, it delays a fast
dequeuer and it case it fails, the dequeuer is delayed indefinitely. This has been specified
as pairwise blocking. Therefore, we appropriately classified this algorithm as pairwise
blocking.

30

4.4 Liveness

4.4.2 Message-passing based algorithm with acknowledgments

To eliminate the possibility of infinitely blocked operations like the dequeue mentioned
previously, we added acknowledgments after successful enqueue operations. In message-
passing with acknowlegments, the enqueue method call on lines C8 − C10 (Figure 8),
notifies the server about a successfully adding a node to the data structure. A node
is logically added to the data structure, if the enqeueur sends an acknowledgement to
the server. In this way, the server maintains record of added nodes, and only allocates
successfully enqueued memory slots to a dequeuer.

Theorem 3. Message-passing based algorithm with acknowledgements is non-blocking.

Proof. From Lemma 3, the loops in this algorithm are only dependent on the server
and are non-blocking with respect to other operations. Adding acknowledgments to
the enqueue procedure provides a solution to the blocking of dequeue operations that
is dependent on the corresponding enqueue operation. Therefore, the message-passing
based queue algorithm with acknowledgments is non-blocking.

31

5.0. PERFORMANCE

5.0 Performance

To investigate the performance, fairness and scalability of the algorithms described in
3.4; we implemented the algorithms on the Intel SCC. An SCC system running cores at
533MHz, mesh routers at 800MHz and 800MHz DDR3 memory was used to perform the
experiments. All algorithms and testing code are written in C and compiled with the icc
targeted for the P54C architecture. The version of icc only validated for GCC version
3.4.0 was used, and experimental Linux version 3.1.4scc Image loaded on each of the 48
the cores. In the experiments, we treat each core as a single unit of execution and have
only one application thread/process running per core.

In order to synchronize the execution of program code on different cores and be able
to model contention conditions, we implemented a barrier to run at the start of every
execution. The barrier implementation forces the cores to start executing the algorithms
at roughly the same time after initialization of memory buffers and configuration regis-
ters. We use atomic increment counters in the FPGA to construct an increment barrier.
Each counter has a pair of registers; initialization counter register and the atomic counter
register. Before the start of the program, the counter is initialized to 0. Every running
process reads the atomic counter register to increment the counter. Then, the process
spins on the initialization counter register until the value is equal to the number of
executing cores.

We run the algorithms for 600ms per execution to measure throughput on each core.
Each executing core chooses randomly an enqueue or a dequeue operation with equal
probability. To achieve this random selection of operations, we assigned a string of
randomly generated bits with a probability of 0.5 to each core. During execution, the
core reads the string bit by bit, and the read bit determines which operation is performed
by the core. We maintain the same bit string per core across the execution of different
algorithms and changing system configuration.

Each execution was replicated 12 times and the resulting throughput values analyzed
to have a α = 0.05 level of significance (Student’s t-test). The averages of the replicated
performance figures are what we present as the results.

We varied contention levels by adding ”other work” or ”dummy executions” to the
experiments. The dummy executions consist of 1000 or 2000 increment operations.
Adding dummy work to the experiment serves a purpose of giving a more realistic view
of method calls to a queue by an application. We also randomized the execution and
duration of the dummy work on the different cores, as we compared the algorithms
under different contention levels. To randomize the execution time of dummy work,
we generated a string of numbers (0,1,2), varying the distribution of the numbers in the
string. Depending on the value read from the string, a core decides on how much dummy
work to perform after an enqueue or dequeue operation.

We measured system throughput as the number of successful enqueue and dequeue
operations per millisecond. While, fairness as introduced in [26] was used to analyze how
well various cores perform in relation to the system as a whole and other participating
cores. This in turn, helped to understand the level of starvation-freedom that can be

32

5.0. PERFORMANCE

achieved by the different algorithm implementations. We calculate fairness using the
formal definition [26]:

fairness∆t = min

{
N.min (ni∆t)∑

i ni∆t

,

∑
i ni∆t

N.max (ni∆t)

}
(1)

where ni∆t is the throughput (operations performed in interval ∆t) of a core i and N
is the number of participating cores. Fairness values approximating 1 indicate fair system
behavior while values close to 0 indicate favored performance by some cores relative to
others. Fairness value of 0 indicates starvation4 of one or more cores.

(a) System throughput

(b) System fairness

Figure 10: Throughput and fairness at high contention

Figure 10 presents the system throughput and the fairness of the different algorithms.
For comparison of the presented approach to two-lock queue data structure, we also
implemented the original MS two-lock concurrent queue [16] on the SCC.

4Starvation - A core fails to complete any operation during a run of the experiment.

33

5.0. PERFORMANCE

Figure 10(a) shows the system performance for the various algorithms. From this
figure, we observe that the new implementation of the MS two-lock concurrent data
structure with early release of the lock achieves higher system throughput than the
original implementation at high contention. The figures also show that message-passing
based algorithms achieve much less system throughput, however, with very high level of
fairness to all participating cores. From figure 10(b), fairness of the lock-based algorithms
drops as we increase the number of cores due to increasing contention for the head and
tail pointers. This observation led us to investigate the performance and fairness of the
system as we vary the placement of the locks on the chip. We present the results of this
experimentation later in this section.

Figure 11:

Performance with an increasing number of cores at low contention

Figure 11 plots the system throughput under low contention conditions. Under these
conditions, all algorithms give a linear system performance improvement with increasing
number cores. One key observation is that the lock-based algorithms give almost identical
performance figures.

In figure 10(b), we observed a significant drop in system fairness for the 2-lock algo-
rithm as we increased the number of executing cores. We further investigated the per-
formance of the system as a function of lock placement on the chip. In this experiment,
we selected 5 cores scattered evenly around the chip. Then observed the performance of
these cores as we increase the number of participating cores, with an additional 5 cores
per run. The additional cores were also scattered uniformly around the chip so as to
spread the traffic almost evenly on the mesh network. When running the experiments,
we activated a single core on each tile until all the tiles become active, after this step,
we started activating the second core on every tile.

34

5.0. PERFORMANCE

Additionally, we changed the positions of the lock and then repeated experiment, so as
to investigate how the performance of the system varies with lock placement in the grid.
XY routing as used on the SCC motivated the decision to perform these experiments
because it does not evenly spread traffic over the whole network. It normally causes the
highest load in the middle of the chip. This creates the need to find an optimal location
for the locks, such that the performance of the system does not degrade greatly as we
increase the number of executing cores.

We plot the results in figure 12. Evidently, the performance starts to drops after
activating more than 25 cores (i.e. all tiles active). The degradation of performance varies
with the location of the locks, with the highest performance degradation experienced
when we place the lock at tile (x=3, y=2).

When the lock was placed in the middle of the chip, tile (x=3,y=2), the high con-
tention for the lock created very high traffic load in the middle of the chip which degraded
performance to almost a halt. This stalling of the system was initially unexpected. We
expected the data structure to allow at least one enqueueing and one dequeuing core
to make progress at each moment in time. However on further analysis of the system
configurations, we realized that as we increase contention for the lock, thereby increas-
ing the traffic load on the system, the mesh network gets overloaded. With the network
overloaded, the number of cores that make progress reduces tremendously. The core
holding the lock delays to release the lock due to the high congestion on the network
as a result of cores spinning to acquire the lock. The contending cores for the lock can
not acquire it. This creates situation where the lock is not used, and thus no progress
achieved by the system. This deterioration in system throughput is evident in 12(a),
and it is worst when we placed the lock in the middle of the mesh.

The poor performance of the locks with many participating cores at high contention
led us to investigate their performance under low contention. The results of these tests
are presented in figure 13, illustrating that, under low contention, congestion does not
impact lock acquisition and release and we have a linear performance improvement with
the increase in participating cores. One interesting result is that the system performance
is identical irrespective of the location of the locks. Furthermore, we can observe that,
placing the locks in the middle of the chip, we still achieve very good performance even
with all 48 cores running. This confirmed the earlier hypothesis that network congestion
delays release of the lock thus deteriorating system performance.

We also analyzed the throughput of each core relative to its distance from the locks.
For this analysis, we plot the throughput of each core against the number of executing
cores. This allows us to observe how increasing contention affects the core’s throughput
with regards to its location and distance from the locks. Figure 15 presents graphs of the
results from 5 cores and different lock placements as discussed previously. As the figure
shows, the performance of each core degrades with an increasing number of executing
cores.

It is also evident that, for a lower number of executing cores, the cores closer to
the locks have a higher throughput than those further from the lock. However as we
increase the number of cores, the throughput of these cores deteriorates, and in some

35

5.0. PERFORMANCE

(a) System throughput for different lock positions

(b) Fairness

Figure 12: System performance (a) and fairness (b) as a function of lock location under
high contention setting

cases (figure 15), it is worse than for cores further from the locks. This is due to the
congestion that builds up in the region of the chip that stores the lock, as the number
of cores that contend for the locks increases.

To reduce the congestion on a single area of the chip for the 2-lock algorithm, we
placed the locks in different locations on the chip. In this case, the cores achieved almost
identical performance as no single core has a much better latency advantage with regards
to the distance from both locks. This is evident in figure 14(d).

Overall, the results from the two-lock algorithm show that the position of the locks on
the chip does have a significant effect on the general performance of the system. This is

36

5.0. PERFORMANCE

(a) System throughput

(b) Fairness

Figure 13: System performance (a) and fairness (b) as a function of lock location under
low contention conditions

more evident as we increase the number of participating cores. As mentioned previously,
positioning the lock in the middle of the grid always offers the worst performance and
in some cases stalls the algorithms deteriorating performance to a halt. It has also been

37

5.0. PERFORMANCE

(a) Locks on tile (x=0, y=3) (b) Locks on tile (x=5,y=0)

(c) Locks on tile (x=3,y=2) (d) Separate tiles (x=0,y=3) and (x=5,y=0)

Figure 14: Core throughput with changes in lock location and an increasing number of
executing cores at high contention. The lines in the different graphs represent the same core,
thus show its throughput changes relative to the other cores, as its distance from the lock
changes in the various runs of the computation.

observed that the lock-based algorithms give a higher performance throughput than the
message-passing based algorithms, however, with a lot of bandwidth wasted in spinning
for the lock and creating congestion on the network.

The messaging-passing based data structure, the server core creates a bottleneck for
the execution of the algorithms as it serializes the requests for memory allocation. From
the assumptions of Amdahl’s law for multicore processors [27], we expected a perfor-
mance improvement, if we run the cores asymmetrically over the homogeneous/symmet-
ric system configuration. SCC provides for different tiles running at different frequencies,
consequently, we can enhance performance by running the server core at a higher fre-
quency than the rest of the cores on the chip. We performed experiments to test this
theory, but we could not get consistent results over multiple runs of the experiment. The

38

5.0. PERFORMANCE

(a) Locks on tile (x=0, y=3) (b) Locks on tile (x=0, y=3)

(c) Locks on tile (x=3,y=2)

Figure 15: Core throughput with changes in lock location and an increasing number of
executing cores at low contention

hardware gave erroneous values on reads from the message-passing buffers. These errors
were intermittent, we believe they resulted from running the core writing to the buffer
at a different frequency from the core reading from the buffer. We propose this as an
avenue for further work on our message-passing based algorithms.

39

6.0. CONCLUSION

6.0 Conclusion

In this thesis, we explored procedures for synchronization on a distributed memory
system. We presented a very fast and simple concurrent queue implementation based on
the two lock queue by Micheal Scott. This queue provides a separate lock for the head
and tail pointers, allowing one enqueue operation to proceed in parallel with a dequeue
operation. We ported this queue to a distributed memory system, storing the queue
in global shared memory, and using locks to synchronize the queue pointers stored in
very fast message-passing buffers. We further improved the throughput of the queue by
reducing the size of the critical sections in the algorithm. For hardware architectures
with simple atomic operations such as test & set, we recommend using this approach.
As the queue is very fast, and provides high throughput for a low number of concurrent
processors.

We also presented queue implementation based on message-passing. In this imple-
mentation, exclusivity is awarded by the owner of the data structure. We implemented
the data structure as owned by one processors, and other processors request exclusive
access to the head or tail end of the data structure. This queue implementation can
be exploited to exchange large amounts of data among processors in a cluster. The im-
plementation incurs a lot of overhead, and should only be used for data structures that
carry a large amount of data in the nodes of the queue.

6.1 Future work

The use of flags to indicate completion of the enqueue method increases bandwidth
usage and memory access to the lock-based data structure. This added spinning on
the dequeue process adds more blocking to an already blocking data structure. One
avenue for further research is reducing the critical section size without relying on flags
for correctness. Thus, release enqueue lock early, but also ensure that nodes are not
dequeued before they are completely added to the data structure by the enqueuer.

All programs executing on the cores share the same locks, including the Unix oper-
ating system loaded on the cores. This usually leads to unanticipated behavior. A lock
acquired by one process could be released by the operating system or any other program
executing a write on the register used for the lock. This could best be addressed by
designers of the hardware, probably by providing additional Test&Set registers to the
hardware.

For the messaging-passing based procedures, the server handles requests in a round-
robin fashion, thus requests are not handled in the order they are issued by the cores.
We could also investigate further how to handle requests while maintaining the order in
which they are issued by the cores. However this results into a queueing problem, which
essentially we are trying to solve.

More research could also be done in the area of optimizing the performance of the
messaging-passing based data structures. An interesting comparison would be attained
by building these structures using the message-passing APIs available on the SCC instead
of directly accessing the message-passing buffers.

40

6.1 Future work

Another area for further research is exploiting the inter-core interrupts to implement
non-blocking message-passing protocols that do not require polling. The cores have the
capability to interrupt each other, and this could be exploited for notification of other
cores on completion of an event.

41

Bibliography

[1] ”SCC External Architecture Specification (EAS)”, Intel Cooporation (November
2010).

[2] R. Rotta, On efficient message passing on the intel scc, in: MARC Symposium,
2011, pp. 53–58.

[3] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mattina,
C.-C. Miao, J. Brown, A. Agarwal, On-chip interconnection architecture of the tile
processor, Micro, IEEE 27 (5) (2007) 15–31.

[4] Y. P. Zhang, T. Jeong, F. Chen, H. Wu, R. Nitzsche, G. Gao, A study of the on-chip
interconnection network for the ibm cyclops64 multi-core architecture, in: Paral-
lel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th International,
2006, pp. 10 pp.–.

[5] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H. Wil-
son, N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella, P. Sali-
hundam, V. Erraguntla, M. Konow, M. Riepen, G. Droege, J. Lindemann, M. Gries,
T. Apel, K. Henriss, T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. Van der Wi-
jngaart, T. Mattson, A 48-core ia-32 message-passing processor with dvfs in 45nm
cmos, in: Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010
IEEE International, 2010, pp. 108–109.

[6] M. Herlihy, N. Shavit, The Art of Multiprocessor Programming, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2008.

[7] P. Tsigas, Y. Zhang, A simple, fast and scalable non-blocking concurrent fifo queue
for shared memory multiprocessor systems, in: Proceedings of the thirteenth annual
ACM symposium on Parallel algorithms and architectures, SPAA ’01, ACM, 2001,
pp. 134–143.

[8] A. Gottlieb, B. Lubachevsky, L. Rudolph, Basic techniques for the efficient coordi-
nation of very large numbers of cooperating sequential processors (1981).

42

BIBLIOGRAPHY

[9] J. M. Stone, A simple and correct shared-queue algorithm using compare-and-swap,
in: Supercomputing ’90., Proceedings of, 1990, pp. 495–504.

[10] J. D. Valois, Implementing lock-free queues, in: In Proceedings of the Seventh In-
ternational Conference on Parallel and Distributed Computing Systems, Las Vegas,
NV, 1994, pp. 64–69.

[11] J. D. Valois, Lock-free linked lists using compare-and-swap, in: Proceedings of the
fourteenth annual ACM symposium on Principles of distributed computing, PODC
’95, ACM, 1995, pp. 214–222.

[12] E. Ladan-mozes, N. Shavit, An optimistic approach to lock-free fifo queues, in: In
Proceedings of the 18th International Symposium on Distributed Computing, LNCS
3274, Springer, 2004, pp. 117–131.

[13] S. Prakash, Y. H. Lee, T. Johnson, A nonblocking algorithm for shared queues using
compare-and-swap, IEEE Trans. Comput. 43 (5) (1994) 548–559.

[14] M. Herlihy, Wait-free synchronization, ACM Trans. Program. Lang. Syst. 13 (1)
(1991) 124–149.

[15] M. P. Herlihy, J. M. Wing, Linearizability: a correctness condition for concurrent
objects, ACM Trans. Program. Lang. Syst. 12 (3) (1990) 463–492.

[16] M. M. Michael, M. L. Scott, Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms, in: Proceedings of the fifteenth annual ACM sympo-
sium on Principles of distributed computing, PODC ’96, ACM, 1996, pp. 267–275.

[17] M. P. Herlihy, Impossibility and universality results for wait-free synchronization,
in: Proceedings of the seventh annual ACM Symposium on Principles of distributed
computing, PODC ’88, ACM, New York, NY, USA, 1988, pp. 276–290.

[18] S. Peter, A. Schupbach, D. Menzi, T. Roscoe, Early experience with the barrelfish
os and the single-chip cloud computer.

[19] D. D. Kandlur, K. G. Shin, Traffic routing for multicomputer networks with virtual
cut-through capability, IEEE Trans. Comput. 41 (10) (1992) 1257–1270.

[20] P. Kermani, L. Kleinrock, Virtual cut-through: a new computer communication
switching technique, Computer Networks 3 (1979) 267–286.

[21] W. Zhang, L. Hou, J. Wang, S. Geng, W. Wu, Comparison research between xy and
odd-even routing algorithm of a 2-dimension 3x3 mesh topology network-on-chip,
in: Intelligent Systems, 2009. GCIS ’09. WRI Global Congress on, Vol. 3, 2009, pp.
329–333.

[22] T. Mattson, R. van der Wijngaart, ”RCCE: a Small Library for Many-Core Com-
munication”, Intel Cooporation (May 2010).

43

BIBLIOGRAPHY

[23] C. Clauss, S. Lankes, P. Reble, T. Bemmerl, Evaluation and improvements of pro-
gramming models for the intel scc many-core processor, in: High Performance Com-
puting and Simulation (HPCS), 2011 International Conference on, 2011, pp. 525–
532.

[24] M. P. Herlihy, J. M. Wing, Linearizability: a correctness condition for concurrent
objects, ACM Transactions on Programming Languages and Systems 12 (1990)
463–492.

[25] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subra-
monian, T. von Eicken, Logp: towards a realistic model of parallel computation,
SIGPLAN Not. 28 (7) (1993) 1–12.

[26] D. Cederman, B. Chatterjee, N. Nguyen, Y. Nikolakopoulos, M. Papatriantafilou,
P. Tsigas, A study of the behavior of synchronization methods in commonly used
languages and systems, in: Parallel Distributed Processing (IPDPS), 2013 IEEE
27th International Symposium on, 2013, pp. 1309–1320.

[27] M. Hill, M. Marty, Amdahl’s law in the multicore era, Computer 41 (7) (2008)
33–38.

[28] R. Kumar, D. Tullsen, N. Jouppi, P. Ranganathan, Heterogeneous chip multipro-
cessors, Computer 38 (11) (2005) 32–38.

[29] D. Cederman, P. Tsigas, Supporting lock-free composition of concurrent data
objects: Moving data between containers, IEEE Transactions on Computers
99 (PrePrints) (2012) 1.

[30] D. Pham, S. Asano, M. Bolliger, M. Day, H. Hofstee, C. Johns, J. Kahle,
A. Kameyama, J. Keaty, Y. Masubuchi, M. Riley, D. Shippy, D. Stasiak, M. Suzuoki,
M. Wang, J. Warnock, S. Weitzel, D. Wendel, T. Yamazaki, K. Yazawa, The de-
sign and implementation of a first-generation cell processor - a multi-core soc, in:
Integrated Circuit Design and Technology, 2005. ICICDT 2005. 2005 International
Conference on, 2005, pp. 49–52.

[31] H. Massalin, C. Pu, A lock-free multiprocessor os kernel (1991).

44

	Introduction
	Problem Statement
	Justification
	Methodology
	Literature review

	Single-chip Cloud Computer - SCC
	Memory architecture and access modes
	Memory Access

	SCC Configuration Registers
	FPGA and Global Registers
	Global Interrupt Controllers
	Out-of-band notifications

	Shared Data Structures
	Safety
	Liveness
	Hardware support for concurrent data structures
	FIFO Queues on SCC
	Double-lock Queue
	Queue Methods

	Message-passing based queues
	Queue Methods
	Message-passing with Acknowledgments

	Correctness
	Safety
	Liveness
	Proof of Safety
	Lock-based algorithms
	Message-passing based algorithms

	Liveness
	Message-passing based algorithm
	Message-passing based algorithm with acknowledgments

	Performance
	Conclusion
	Future work

	 Bibliography

