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Abstract
Patrolling with unbalanced frequencies (PUF) involves scheduling mobile robots that
continuously visit a finite number of fixed stations, with known individual maximal
waiting times, placed on a line. Recent work demonstrates that PUF is a remarkably
challenging problem. To advance current research in the best-known solution, we
searched for critical instances of the integer patrolling problem (IntPUF). A solvable
instance is critical if it becomes impossible to schedule the visits when any station’s
waiting time is decremented.

Formulating IntPUF as a specific graph problem enabled several algorithms and
heuristics to be developed, mainly for solving any instance of IntPUF and searching
for critical instances. The algorithms were proved to be correct and implemented in
a Java program to collect the critical instances. Benchmarking the implementation
shows that solving instances work well when the number of stations is relatively
small while searching for critical instances turned out to be extremely difficult.
However, numerous critical instances were found, which reveal interesting patterns
that may be further analyzed and utilized to improve the search for additional
critical instances.

Keywords: Patrolling with unbalanced frequencies, scheduling, robots, graph, algo-
rithms, heuristics, Java.
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1
Introduction

Patrolling problems involve scheduling mobile robots such that they visit points
repeatedly with known minimal frequencies [1]. These problems are interesting for
a variety of applications, such as maintenance, monitoring and fetching resources.
Previously, various cases and aspects of patrolling problems have been studied. Some
examples include patrolling when points have to be visited with the same frequency,
robots having different speeds and where all points have equal pairwise distances
[2, 3]. More recently, these problems gained new attention because of an observation
that different individual frequencies, i.e., when certain points have to be visited more
often than others, makes the problems difficult [4].

In this project we deal with basic research on combinatorial and algorithmic aspects
of patrolling problems with different individual frequencies. Immediate applications
of the problem is out of scope for this project.

1.1 Background
In this section the project’s background and relevant work is introduced. In Section
1.1.1 we cover the specific patrolling problem studied in this project. Finally, in
Section 1.1.2, a similar problem is presented, which has been studied previously,
and compared with the problem studied in this project.

1.1.1 Patrolling with Unbalanced Frequencies
The problem called Patrolling with Unbalanced Frequencies (PUF) considers m + 1
stations deployed at fixed points si, for i ∈ {0, ..., m}, placed on the real line L [1].
Every station i allows a maximal waiting time ti and the problem is to construct a
patrolling schedule, such that the time between two consecutive visits of a station
never exceeds its maximal waiting time. Figure 1.1 illustrates an instance of the
problem with four stations.

Patrolling with different time constraints on every station seems natural and ob-
servable in practice [4]. For instance, [4] has observed this in continuous testing of
virtual machines in cloud systems. In such systems, the frequency of testing vir-
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1. Introduction

s0

t0 = 6
s1

t1 = 4
s2

t2 = 4
s3

t3 = 6

Figure 1.1: Example of a PUF instance with four stations at fixed points si, for
i ∈ {0, 1, 2, 3}, on the line. Each station i has a maximal waiting time ti.

tual machines for undesirable symptoms may vary depending on the importance of
dedicated cloud operational mechanisms. Another example is that network adminis-
trators can apply patrolling to detect network failures or to discover web pages that
need to be indexed by search engines [2]. Networks and web pages may also have
different importance and must therefore be patrolled with different frequencies.

The problem of PUF was recently studied; for the case of one robot patrolling on
the line, PUF is easily solvable in linear time [4]. However, the study shows that
PUF is surprisingly hard to solve when increasing the number of robots. Already
for two robots, the complexity status is open. To solve the problem with two robots,
several approximation algorithms are provided in [4]. Until recently, one of them
was the best known solution - a

√
3-approximation algorithm. In this context, a

c-approximation means that for every station i and c ≥ 1, the time between two
consecutive visits never exceed cti, where ti is the maximal waiting time of station
i. Moreover, this means that PUF can be defined as an optimization problem with
the goal of finding a schedule with minimum c.

Damaschke [1] presents a state-of-the-art solution to PUF with two robots. The
solution is a polynomial-time approximation scheme (PTAS). A PTAS is a type
of approximation algorithm that, given an optimization problem and a parameter
ε > 0, produces, in polynomial time, a solution that is within a factor 1 + ε of being
optimal. This means that the PTAS enables a (1 + ε)-approximation algorithm to
solve PUF with two robots. The solution is further discussed in section 1.3.

1.1.2 Boundary Patrolling / Fence Patrolling
Czyzowicz et al. [2] has studied a problem similar to PUF. With a slightly refor-
mulated description, the problem known as boundary patrolling or fence patrolling
considers k mobile robots, each with a predefined maximal speed. The robots are
supposed to endlessly protect points in a given environment from an adversary which
attempts to intrude a point. The adversary needs a given time interval of length τ
to accomplish the intrusion. This means that, to avoid a point from being intruded,
no point can remain unprotected by a robot for a time period greater than or equal
to τ .

The problem is to schedule the robots such that an intrusion is prevented, which
may be solved by designing an algorithm that minimizes the idle time I, i.e., the
longest time interval that a point remains unprotected by some robot. This means
that there is an obvious goal of achieving I < τ . Czyzowicz et al. [2] presents two

2



1. Introduction

algorithms that are optimal in some cases.

The key difference, compared to PUF, is that no station remains unprotected for
longer than a given time period τ . This means that the stations in this problem
have equal waiting times, as opposed to PUF where stations have individual time
constraints. As shown in [4], finding schedules to satisfy the requirements for PUF,
or even deciding on their existence for two robots, turns out to be a highly intricate
problem.

1.2 Notations
The following notations and their definitions are used consistently throughout the
report, unless stated otherwise:

• The variable m refers to the last index of points indexed 0, 1, ..., m.

• The variable i is defined as an index ranging over {0, 1, ..., m}.

• The variable r refers to the roof value for Search, see Section 3.3.

• The variables a and b refer to the intersection of ranges [a, b] = ⋂
i[ai, bi], see

Section 3.2.1.

• s→ ...→ t denotes a path from a position s = (sx, sy) to a position t = (tx, ty),
that may include visiting other intermediate positions. We may also denote
the path as a sequence of positions: (sx, sy)...(tx, ty).

• For two sets S and T , S → ...→ T denotes any s→ ...→ t path where s ∈ S
and t ∈ T .

• Solve refers to the approach for solving an instance of the patrolling problem,
first described in section 3.2.

• Search refers to the approach for searching for critical instances (see section
1.3.2), first described in section 3.3.

1.3 Problem Statement
Damaschke [1] proposes an approach for solving PUF with two patrolling robots on
a line. By using insights from the integer version of PUF (section 1.3.1) a PTAS can
be constructed. However, the PTAS is not yet practical. In the following sections
we present the integer version of PUF and important insights that contribute to the
practicality of the PTAS.

3



1. Introduction

1.3.1 The Integer Version of PUF

The integer version of PUF, called IntPUF, is a variant of PUF [1]. It is defined
precisely as PUF (see section 1.1) but with the following additional demands:

• All maximal waiting times ti are integer and ti > 0.

• All si, i.e., the position of stations, are integers.

• Every robot either stays at some point with integer coordinate or moves at
unit speed.

• Every robot can change its speed or its moving direction only at integer times
and at integer points.

1.3.2 Critical Instances

It is important to note that the PTAS in [1] is not yet practical. To achieve practi-
cality, we must efficiently solve IntPUF instances up to some number of points. An
important insight is that we can efficiently solve IntPUF instances once we know
all critical instances of IntPUF for a fixed m [1, Lemma 2]. Critical instances are
instances that are solvable but become infeasible when some waiting time is further
reduced. For instance, using one robot, figure 1.1 illustrates the only critical in-
stance of IntPUF with four stations [1, Theorem 2]. The optimal schedule for the
robot is to “zigzag”, i.e., to perpetually move from the left-most to the right-most
station and back. Any instance, where all waiting times are greater than or equal
to the waiting times of a critical instance, must also be solvable. This insight allows
for an efficient method of solving an instance of IntPUF, see section 1.3.3.

1.3.3 Usage of Critical Instances

Suppose we know all critical instances of IntPUF and their solutions up to a fixed
m. We can then solve an instance with n + 1 stations and waiting times t0, ..., tn

using one of the following methods:

1. If n ≤ m: For all critical instances with n + 1 stations and for i = 0, ..., n,
compare each waiting time ti with the waiting time ui of the critical instance.
If there exists a critical instance, where ti ≥ ui for all i, then the instance is
solvable, otherwise not.

2. If n > m: The instance must first be approximated and then solved using
method 1. The approximation error will be smaller the larger m is.

4
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1.4 Contribution
As discussed in section 1.3.2 and 1.3.3, one may use critical instances to efficiently
solve an instance of IntPUF. However, this relies on the knowledge of all critical
instances for a given m. Identifying critical instances appears to be a highly non-
trivial task. Manual work suggests a combinatorial explosion as m increases. More
specifically, for m > 6. In this project we aim at identifying and collecting the critical
instances of IntPUF with two patrolling robots, together with the solutions to them,
up to a fixed m, as large as possible. This will be achieved by developing search
heuristics and implementing them in a computer program with the help of ideas
from [1, 5]. By collecting the critical instances with our computer program, we will
enable further progress with the best known solution of PUF, i.e., the PTAS from
[1]. The critical instances are a necessity for solving IntPUF instances efficiently,
and thus making the PTAS practical. Furthermore, our hope is that the critical
instances may also improve the understanding of the general structure of patrolling
schedules. Some surprising patterns may emerge here.

1.5 Research Questions
In this project, we seek to answer the following questions:

1. Can we collect all critical instances and their solutions for m = 7, m = 8, etc
(m as large as possible)?

2. Can we display solutions to critical instances in a comprehensible way for
further research?

3. How does the search time scale with m?

4. For every given m, can we search for all critical instances without limiting the
search using an upper bound on the waiting times of an instance, i.e., a roof
value?

1.6 Limitations
This project deals with basic research on combinatorial and algorithmic aspects of
PUF. For this reason, immediate applications of the problem is out of scope for this
project. Furthermore, The project will not consider the usage of critical instances
to solve arbitrary instances. The reason is twofold: method 1 in section 1.3.3 is
a trivial comparison of waiting times and method 2 has already been treated by
Damaschke [1].

Since identifying critical instances manually suggests a combinatorial explosion as
m increases, we expect success only for rather small m during the limited project
time. Currently, it is unknown how many critical instances exist for a given m.

5
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2
The Patrolling Problem

This chapter introduces a generic formulation of the patrolling problem with indi-
vidual waiting times. This formulation will serve as an important foundation for
the rest of this report, since our contributions are heavily based on it. Everything
that is introduced in this chapter has been contributed by Damaschke [5].

2.1 The Position Graph
An instance of the patrolling problem consists of a position graph. The position
graph is an undirected finite graph G = (V, E), where V is the set of vertices and E
is the set of edges. The vertices of V are called positions. Furthermore, the instance
also consists of properties, which are m + 1 subsets Pi ⊂ V . Every property Pi has a
waiting time ti. If a position v ∈ Pi, we may say that the position has the property
Pi.

A path in the position graph is defined as a sequence

v1 → ...→ vk

of positions vj ∈ V , such that there exists an edge between vj and vj+1 for

j ∈ {1, ..., k − 1}.

A cycle C in the position graph G is defined precisely as a path but with an additional
criteria; a cycle has an edge between vk and v1 in order to form the cycle. Note
that positions may appear several times in a cycle. Moreover, the starting position
is immaterial, i.e., any cyclic shift

vj+1 → ...→ vk → v1 → ...→ vj

is considered to be the same cycle.

Given an instance as described above, the patrolling problem is to find a solution
cycle C in the position graph that satisfies the following for every property Pi: When
we walk C, we always encounter the next position with property Pi after traversing
at most ti edges. Intuitively, one can imagine a robot patrolling the position graph.

7



2. The Patrolling Problem

However, note that this formulation is also suitable for the case of r > 1 robots in a
position graph H that must perpetually visit every property Pi with waiting time at
most ti. This multi-robot version can simply be reduced to the generic formulation
presented above: We define a position graph G whose positions are the r-tuples
of positions of H, indicating all robots’ positions. There is an edge between two
positions (u1, ..., ur) 6= (v1, ..., vr) in G if and only if, for all j, positions uj and vj

are identical or there is an edge between them in H. A position in G has exactly all
properties of its r entries. Now, one robot in G represents r robots in H.

2.1.1 Distances

Let d(x, y) denote the distance from some position x to some position y in the
position graph. The distance is the length of a shortest x→ ...→ y path. Note that
d(x, y) = d(y, x) since the position graph is undirected. For two subsets X, Y ⊂ V ,
the distance of X and Y is naturally defined as the length of a shortest X → ...→ Y
path:

d(X, Y ) = min{d(x, y) | x ∈ X, y ∈ Y }.

We may also write d(x, Y ) for d({x}, Y ).

2.2 Vectors of Waiting Times

Given a position graph with a set of m + 1 properties we may represent the waiting
times as an integer vector

(t0, ..., tm).

An instance of the patrolling problem may simply be identified using this integer
vector of waiting times. For any two vectors V and W of the same length we write
V ≤ W if V is component-wise smaller than or equal to W . We write V < W if
V ≤ W and at least one component of V is strictly smaller than its counterpart
in W . We then say that V is smaller than W . For example, (1, 1, ..., 1) is smaller
than (2, 1, 1, ..., 1). Note that some instances are incomparable, e.g., (2, 1, 1, .., 1)
and (1, 2, 1, 1, .., 1).

We call an instance I with the integer vector T of waiting times feasible if the pa-
trolling problem has a solution cycle with waiting time at most ti for every property
Pi. If a vector T is feasible and no instance with vector T ′ < T is feasible, we call
T and I critical.

8



2. The Patrolling Problem

2.3 The Valid Position Graph
Let R denote any set of vertices of which we know that vertices outside R cannot
appear in a solution cycle. We may then restrict the patrolling problem to the valid
position graph G[R], which is an induced subgraph of G [6]. G[R] is the subgraph
whose vertex set is R and whose edge set is the set of those edges in G that connect
two vertices in R.

We define the range of a property Pi to be the set of nodes

Ri := {v ∈ V | ∃u ∈ Pi : d(u, v) ≤ bti/2c}.

Informally, Ri is the set of nodes such that the distance from a node u having
property Pi to any node v is at most bti/2c. Another way to say it is that the
range Ri of a property Pi will be the subset of vertices in the position graph that
the robots can visit in order to fulfill the waiting time of property Pi. Visiting a
vertex outside of Ri would violate the waiting time of Pi. An important observation
is that any solution cycle C cannot contain vertices that are not in Ri. The reason
is that sometimes C visits Pi, and it will visit Pj before and after the visit of Pi.
Any subpath Pj → ... → Pi → ... → Pj of C, where Pi does not appear elsewhere
in the path, must be of length at most ti, otherwise C is not a solution cycle by
definition. Thus, if d(Pj, Pi) = d(Pi, Pj) > bti/2c, the total length of the subpath
would be greater than ti. Since this holds for every property, it is safe to initially
define

R :=
⋂
i

Ri.

Similarly, we define R′ to be the set of edges of which we know that only these edges
can be traversed by a solution cycle. It is safe to initially define R′ to be the edge
set of the valid position graph G[R].

Lemma 2.1. Consider an integer t > 0. For every property Pi and Pj where i 6= j,
every solution cycle C such that ti ≤ 2t + 1 must contain either a Pi → ... → Pj

path of length at most t, or a Pj → ...→ Pi path of length at most t. Furthermore,
C cannot visit any vertex v with d(v, Pi) ≥ t + 1.

Proof. When traversing C, both Pi and Pj must be visited at some point, and Pi

will be visited before and after the visit of Pj. The total length of the subpath
Pi → ... → Pj → ... → Pi, where Pi does not appear elsewhere in the path, is
at most 2t + 1, otherwise ti is violated. Hence, one of the paths, Pi → ... → Pj

or Pj → ... → Pi, has a length at most t. The last assertion is shown similarly:
when traversing C, Pi is visited before and after some assumed visit of v. Since
d(v, Pi) ≥ t + 1, the length of the path from Pi → ... → v → ... → Pi, where Pi

does not appear elsewhere in the path, would be at least 2t + 2, hence, violating
ti ≤ 2t + 1. �

Some immediate consequences of Lemma 2.1 for any properties Pi and Pj are: ti ≥
2d(Pi, Pj). Hence, ti ≥ 2maxjd(Pi, Pj) and any solution cycle for ti ≤ 2d(Pi, Pj) + 1

9



2. The Patrolling Problem

must traverse some shortest Pi → ... → Pj path. Rephrasing the first conse-
quence: every feasible vector T satisfies T ≥ D, where D has the components
ti := 2maxjd(Pi, Pj) for i = 0, ..., m. In the case that D itself is feasible, it follows
that D is the only critical vector.

2.4 Paths in the Valid Position Graph
Consider a path p in the valid position graph. Let s and f denote the first and last
vertex, respectively, of p. Let si and fi denote the first and last vertex, respectively,
of p that has property Pi. We define the path p to be valid if, for every Pi, it satisfies
one of the two following conditions:

• If no vertex of p has property Pi, then the sum of the following three lengths
must be at most ti:

– The length of the shortest Pi → ...→ s path.

– The length of path p.

– The length of the shortest f → ...→ Pi path.

• If some vertices of p have property Pi, then each of the following lengths must
be at most ti:

– The length of the shortest Pi → ...→ s path + the length of the subpath
s→ ...→ si of p.

– The length of every path between two consecutive Pi-vertices on p.

– The length of the subpath fi → ...→ f of p + the length of the shortest
f → ...→ Pi path.

10



3
Basic Approach

This chapter presents a basic approach for collecting all critical instances of IntPUF
for a given m. Section 3.1 introduces how to represent an instance of IntPUF as
an instance of the patrolling problem. This is necessary in order to understand
the following sections. Section 3.2 presents an approach for solving an instance of
the problem. Finally, Section 3.3 presents a search algorithm for finding all critical
instances of IntPUF for a given m by solving instances systematically.

3.1 Representation of IntPUF Instances
This section adopts contributions by Damaschke [5]. The problem IntPUF, as de-
fined in Section 1.3.1, can be reduced to an instance of the patrolling problem
(Chapter 2). We consider the problem with two robots rx and ry. The vertex set
of the position graph may then consist of all points with integer coordinates (x, y),
where 0 ≤ x ≤ m and 0 ≤ y ≤ m. The vertices can be thought of as points in a
Cartesian coordinate system, where the x-axis represents the position of robot rx

and the y-axis the position of robot ry. Since we consider the position (x, y) to be
equivalent to position (y, x) we restrict the vertex set to consist only of positions
where x ≥ y. This forms a triangle graph instead of a square grid graph, see figure
3.1. An edge is created from a position (x1, y1) to a position (x2, y2) if robot rx can
reach x2 from x1 in one time unit and robot ry can reach y2 from y1 in one time
unit. It follows that a position (a, b) can have up to eight neighbours. These are
exactly the positions (x, y) such that a − 1 ≤ x ≤ a + 1, b − 1 ≤ y ≤ b + 1 and
(x, y) 6= (a, b).

Each property Pi is a subset of positions that has property Pi. A position (x, y) has
the property Pi if x = i or y = i, i.e., if some robot visits station i. Figure 3.2 shows
all properties for m = 3. We define ai := i−bti/2c and bi := i+bti/2c. Remembering
the definition of the range Ri from section 2.3 we may also define Ri of property Pi

to be the set of all vertices in the triangle graph satisfying ai ≤ x ≤ bi∨ ai ≤ y ≤ bi.

A solution cycle C in the position graph corresponds to a schedule for the two robots
patrolling the line. Thus, if a solution cycle for a given instance of the patrolling
problem is found, we have also found a solution for the IntPUF problem.

11
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(a) Square grid graph
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(b) Triangle graph

Figure 3.1: Two position graphs for m = 3. The x-axis represents the position of
robot rx and the y-axis the position of robot ry.
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(a) Property P0.
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(b) Property P1.
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(c) Property P2.
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(d) Property P3.

Figure 3.2: Properties of the position graph for m = 3. The filled vertices indicate
the positions that has a property.
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3.2 Solving an Instance of the Patrolling Problem

Instances of the patrolling problem can be solved by constructing solution cycles
in the position graph, or showing infeasibility. This section present Solve, a basic
approach for constructing solution cycles to any instance.

3.2.1 Scenarios
This section is based on contributions by Damaschke [5]. For two robots patrolling
on the line, we consider two scenarios for the solution cycles:

Scenario 1: The empty intersection ⋂
i[ai, bi] = ∅.

Scenario 2: The non-empty intersection ⋂
i[ai, bi] 6= ∅.

Intuitively, Scenario 1 means that the two robots need to visit separate properties
independently of each other. Therefore, this scenario is equivalent to solving the
patrolling problem with one robot on two separate parts of the line. Scenario 2
means that both robots can visit some properties in order to fulfill the waiting
times. Figure 3.3a illustrates an example of scenario 1 where the filled dots highlight
the stations that each robot is scheduled to visit. The two robots rx and ry must
independently patrol separate parts of the line to fulfill the given waiting times.
Figure 3.3b illustrates an example of Scenario 2. The two robots have to share
station s2 to fulfill the given waiting times.

s0

t0 = 2
s1

t1 = 2
s2

t2 = 4
s3

t3 = 2
s4

t4 = 4

rx

ry

(a) Scenario 1: ⋂
i[ai, bi] = ∅

s0

t0 = 6
s1

t1 = 4
s2

t2 = 1
s3

t3 = 4
s4

t4 = 6

rx

ry

(b) Scenario 2: ⋂
i[ai, bi] = {2}

Figure 3.3: Instances that illustrate the two scenarios. The filled dots highlight
the stations that each robot is scheduled to visit. The corresponding solution cycles
are available in Appendix A.2.
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Figure 3.4: The solid line illustrates the BB path in [2, 4] × [0, 1] (filled vertices)
for the critical instance (2, 2, 4, 2, 4) with demarcation point d = 1.

The simple case of Scenario 1 has already been solved in [1, 4]: The two robots zigzag
independently in the intervals [0, d] and [d+1, m] for some demarcation point d. For
example, in Figure 3.3a the two robots zigzag independently using the demarcation
point d = 1. An equivalent notion for this type of solution is defined as a Billiard
Ball Path, or BB Path for short, which always follows a straight line with slope +1
or −1 until it reaches a side or corner of R where it is reflected. Figure 3.4 illustrates
an example of a BB Path.

All critical instances of Scenario 1 is given by Proposition 3.1, which is a reformu-
lation of results from [1] and [4].

Proposition 3.1. For m ≥ 4, all critical vectors with ⋂
i[ai, bi] = ∅ are given by

ti = max{1, 2 ·max{i, d−i}} for all i ≤ d, and tj = max{1, 2 ·max{j−d−1, m−j}}
for all j ≥ d + 1, where d is any fixed integer with 0 ≤ d ≤ m − 1. Moreover, the
corresponding solution cycles are exactly the BB Paths in [d + 1, m]× [0, d].

For Scenario 2 we have ⋂
i[ai, bi] 6= ∅, which we now denote as [a, b] unless stated

otherwise. Let a′ := maxi ai and b′ := mini bi. Then, a = max{a′, 0} and b =
min{b′, m}. For example, in Figure 3.3b we have [a, b] = [2, 2].

3.2.2 Constructing Solution Cycles
Now that the preliminaries have been described, we can introduce our contributions.
We have developed an algorithm for constructing solution cycles for any given in-
stance vector. The algorithm distinguishes between the two scenarios in 3.2.1 by
using the values of a and b.

An instance v that corresponds to Scenario 1 in Section 3.2.1 has a > b. Such
instances can be solved using the critical instances from Proposition 3.1. Let C
be the set of critical instances from Proposition 3.1. We only need to look for the
critical instance c ∈ C such that c ≤ v and return the BB path of c. However, it
may be that v < c for every c ∈ C. In that case, v is infeasible.
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For Scenario 2 we proceed as follows: intuitively, the algorithm begins with an initial
set of valid paths of length 1. This set may simply be all edges in the valid position
graph G[R], see Section 2.1.1. These edges are equivalent to all possible paths of
length 1 in G[R]. Next, the algorithm will extend these initial paths to create new
paths of length 2. Extending a path means to add a neighbour of the last position
at the end of the path. These new paths must be checked to be valid, see section
2.4. From now on, we refer to this process as validating a path. If a path of length
2 is valid, it will be extended to paths of length 3. Once all paths of length 2 have
been validated and extended, the process is repeated with paths of length 3 and
so on, up to a length x. The length x depends on when a solution cycle is found
for a feasible instance or when all paths become invalid for an infeasible instance.
Algorithm 1 describes how to construct solution cycles in more detail.

Algorithm 1 Algorithm for solving an instance vector v = (t0, ..., tm)
1: P := set of valid paths to extend

2: function solveInstance(v):
3: if a > b then
4: return BB path or infeasible
5: initialize P with valid paths of length 1
6: while P not empty do
7: p← remove a path from P with shortest length
8: for each vertex q adjacent to last vertex in path p do
9: if path p→ q is valid then

10: if path p→ q is a solution cycle then
11: return path p→ q
12: else
13: append path p→ q to P

14: return v infeasible

Proposition 3.2. Algorithm 1 will return a solution cycle and terminate if an
instance v = (t0, ..., tm) is feasible. If v is infeasible, the algorithm will eventually
terminate.

Proof. The algorithm terminates if and only if a solution cycle is found or P is
empty. Let us consider the case when v is feasible. If an infinitely long valid path p
exists in the valid position graph of v, we can divide p in epochs [5]. An epoch is a
subpath of p with length t := maxi ti. Note that an epoch visits all properties since
it is a valid path and has the length t, see Section 2.4. The valid position graph
G[R] has |R| vertices so there are at most |R|t unique epochs since each of the t
places in an epoch can have one out of |R| vertices. This means that among |R|t + 1
consecutive epochs in the infinite path p, there must appear at least two identical
epochs. Hence, p has a subpath c of length at most t|R|t, and the epoch that follows
c on p must be identical to some epoch of c, i.e., p has the subpath c → c1, where
c1 is an epoch of c. Now the last position of c can be connected to the first position
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of c, in order to form a cycle. Walking this cycle is a valid solution: let c′ be the
subpath of c after c1. We know that c → c1 is a valid path, which is equivalent to
c1 → c′ → c1. Hence, we know that c1 can be followed by c′ and therefore the path
c1 → c′ → c1 → c′ is also a valid path, which is equivalent to walking the cycle c.
Conversely, any cycle can be winded up to an infinite valid path. This shows that
if v is feasible, there exists a solution cycle with length at most t|R|t. Since the
algorithm validates paths of length x before paths of length x + 1, it will identify
and return a solution cycle c of length at most t|R|t before extending and generating
a valid path d of length t|R|t + 1. Thus, the algorithm will identify and return a
solution cycle c if v is feasible. If v is infeasible, it will not have an infinitely long
valid path p. Therefore, the algorithm will eventually invalidate all paths of some
finite length x ≤ t|R|t where none of them can be further extended to a valid path of
length x + 1. Thus, P will eventually become empty and the algorithm terminates.
�

3.3 Searching for Critical Instances
This section presents Search, which is an approach for finding all critical instances
for a given m. The approach is based on solving instances using Algorithm 1. If
an instance is infeasible, we know that at least one of the waiting times need to
be incremented in order to become feasible. Furthermore, we know that a critical
instance is defined to be an instance such that decreasing any of the waiting times
makes the instance infeasible. By using these facts, we may search for critical
instances by searching “upwards”: begin with an infeasible lower bound instance
and work upwards by incrementing each of the waiting times by 1, creating m + 1
new instances. A trivial infeasible lower bound instance for m > 1 is the vector
(1, ..., 1). The upwards search is done one level at a time. An instance is at level x
if it has been incremented x times from the lower bound instance (1, 1, ..., 1). The
level x of an instance is exactly ∑

i(ti − 1). Figure 3.5 shows an example of the
search tree up to level 2 for m = 3. To prevent incrementing to infinity, the waiting
times are not incremented beyond a roof value r. It follows that (r, ..., r) is the last
instance that can be generated in the search algorithm.

1,1,1,1

1,1,1,2

1,1,1,31,1,2,21,2,1,22,1,1,2

1,1,2,1

1,1,2,21,1,3,11,2,2,12,1,2,1

1,2,1,1

1,2,1,21,2,2,11,3,1,12,2,1,1

2,1,1,1

2,1,1,22,1,2,12,2,1,13,1,1,1

Figure 3.5: Generated instances up to level 2 of the search algorithm for m = 3.

The search algorithm continuously keeps track of two sets C and U . The set C
contains all currently known critical instances. The set U contains the current
maximal instances that are known to be infeasible. Initially, C contains all the
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critical instances from Proposition 3.1. These correspond to critical instances of
Scenario 1. U is initialized to contain the lower bound instance (1, 1, ..., 1). After
initializing the two sets, we need to search for all critical instances of Scenario 2.
Algorithm 2 is a full description of our search algorithm.

Algorithm 2 Search algorithm for finding all critical instances for a given m

1: U ← Set of infeasible instances
2: C ← Set of known critical instances

3: function searchForCriticalInstances(m):
4: add critical instances from Proposition 3.1 to C
5: add lower bound instance [1, ..., 1] to U
6: while U not empty do
7: u← remove an instance from U with lowest level
8: V ← empty set of incremented instances
9: for i = 0, ..., m do

10: v ← copy of u
11: if vi ≥ r then
12: continue
13: vi ← vi + 1
14: if @c ∈ C(c ≤ v) then
15: add v to V
16: for each instance v in V do
17: if v feasible then
18: add v to C
19: else
20: add v to U
21: return C

Proposition 3.3. When algorithm 2 terminates, the set C will only contain all
critical instances for m bounded by r.

Proof. The only time an instance is inserted in C is when some v ∈ V is feasible.
Let f be a feasible, but not critical, instance. Assume f ∈ V . Since f is not critical,
there exists a critical instance e < f . It follows that e /∈ C since f ∈ V and V has
the property that for any instance v ∈ V , there does not exist a critical instance
c ∈ C such that c ≤ v. The search algorithm starts with an infeasible lower bound
vector and works upward one level at a time. Since e < f , e must have a lower level
than f . Thus, e must have been visited before f and inserted in C, i.e., e ∈ C which
is a contradiction. Hence, f /∈ V . This shows that feasible instances in V must
be critical and thus only critical instances are inserted in C. Furthermore, every
possible instance w ≤ (r, ..., r) is generated and inserted in V unless there exists a
c ∈ C such that c ≤ w. Also, from the definition of the roof value r, we can conclude
that there can not exist a critical instance s > (r, ..., r). Hence, all critical instances
will be present in C when the algorithm terminates. �
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Note that, in order to find all critical instances for a given m, the roof value r needs
to be an upper bound on the waiting times such that no critical instance has a
waiting time greater than r. Unfortunately, a theoretical upper bound is currently
unknown.
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4
Improving Solve

This chapter introduces improvements made to the basic approach of constructing
solution cycles, see Section 3.2.

4.1 Reducing the Number of Paths
When solving an instance using Algorithm 1, every iteration will check if a path
p of length |p| is valid. If p is valid, up to eight new paths of length |p| + 1 may
be generated, one for each neighbour of the last position in p, see figure 4.1. The
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2

3

4

Figure 4.1: Position (4, 1) (blue) in the position graph with all its eight neighbours
(red).

maximum number of paths of length x is nx−1v when the initial set of valid paths
contain v paths and a path can generate up to n new paths. Algorithm 1 will first
generate paths of length 1, then of length 2, and so on, up to a length t. The length t
depends on when the algorithm terminates, i.e., when it finds a solution cycle or can
not produce more valid paths. The number of paths that Algorithm 1 will generate
in the worst case is shown in Equation 4.1.

t∑
x=1

8x−1v = v

8

t∑
x=1

8x = v

8
8
7(8t − 1) = v

7(8t − 1) = O(v8t) (4.1)

19



4. Improving Solve

In Section 3.2.2, the initial set of valid paths for algorithm 1 was set to contain all
edges of the valid position graph when solving an instance.

Lemma 4.1. The valid position graph of an instance has O(m2) edges.

The proof of Lemma 4.1 has been omitted since it is trivial. Using Lemma 4.1 and
Equation 4.1, we can conclude that, in the worst case, the number of generated
paths with our basic approach is O(m28t).

4.1.1 The Loneliest Starting Property
Every property must be visited at least once in a solution cycle and the starting
position of a solution cycle is immaterial, see Section 2.1. Thus, instead of having
all edges of the valid position graph in our initial set of valid paths, we may restrict
the set significantly in order to decrease v in equation 4.1. We only need to consider
one starting property Pi, and the paths of length 1 in the valid position graph such
that the starting position of the path has Pi. Figure 4.2 illustrates all possible paths
of length 1 when P0 is the starting property.

0 1 2 3
0

4

1

2

3

4

Figure 4.2: All possible paths of length 1 (solid edges) when P0 is the starting
property.

The choice of a starting property also affects the initial number of valid paths. The
reason is that, for each property Pi, there are a different number of paths that start
in property Pi. We want to choose the property with fewest such paths in order to
minimize the initial set of valid paths. We call such a property the loneliest starting
property.

Lemma 4.2. The loneliest starting property is always P0 or Pm. Furthermore, the
number of paths of length 1 that start in the loneliest starting property is O(m).

The proof of Lemma 4.2 has been omitted since it is trivial. Using Lemma 4.2, the
number of generated paths for Algorithm 1 in the worst case can be reduced from
O(m28t) to O(m8t). However, note that the loneliest starting property does not
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guarantee the minimum number of paths generated. Starting at another property
with a larger initial set of valid paths may in the end generate fewer number of
paths.

4.1.2 Reversed Initial Paths
The set of initial valid paths may include a path and its reversal. For example, using
the loneliest starting property P0, both paths (0, 0)→ (1, 0) and (1, 0)→ (0, 0) will
be considered since they start in P0, see Figure 4.2. However, only one of these
paths need to be considered in the initial set of valid paths.

Proposition 4.1. Consider a path and its reversal. Only one of them needs to be
considered in the initial set of valid paths.

Proof. Let P be the initial set of valid paths. Consider that s → t ∈ P and
t → s /∈ P . This means that the path s → t would be extended as a new path
s→ t→ ..., while the path t→ s would not be extended as a new path t→ s→ ....
However, if t → s → ... → t is a solution cycle it will be generated from the initial
path s→ t, since a cycle is immaterial and can be traversed in either direction, see
Section 2.1. �

4.1.3 Hypotenuse
We may reduce the vertex set R of the valid position graph G[R] by removing
vertices on the hypotenuse H of the position graph, i.e, the set of vertices of the
form (i, i). Proposition 4.2 and its proof is based on contributions by Damaschke
[5].

Proposition 4.2. Vertices in H are never needed in a solution cycle C.

Proof. Consider the case when C contains a position (i, i) and its two neighbours
in C are not in H. These two neighbours are either identical or adjacent since they
must be one of (i, i− 1), (i + 1, i− 1) or (i + 1, i). If the two neighbours are (i, i− 1)
or (i+1, i), we can simply remove (i, i) from C since both neighbours visit Pi. If the
two neighbours are (i, i−1) and (i+1, i−1), the position (i, i) can be replaced with
(i + 1, i). One can proceed similarly in the symmetric case or if both neighbours
are (i + 1, i− 1). Now we consider the case when C contains a path of two or more
consecutive positions in H. Let (i− 1, i− 1)→ (i, i) be the end of this path. Hence,
the next position in C is (i + 1, i), (i + 1, i− 1) or (i, i− 1). In either case, (i, i) may
simply be removed or replaced with (i, i − 1) in C. Thus, all vertices in H can be
successively removed and the triangle graph is reduced to the positions (x, y) with
x > y. �

By using Proposition 4.2, the number of generated paths will be reduced. The reason
is simply that the vertex and edge set of the valid position graph will be reduced,
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effectively reducing the number of possible paths that can be generated. Figure 4.3
illustrates a triangle graph with the hypotenuse excluded.

0 1 2 3
0

1

2

3

Figure 4.3: A triangle position graph for m = 3 with the hypotenuse excluded.

4.1.4 Redundant Paths
Consider a valid path p in the valid position graph and a subpath q1 of p that starts
at position s and ends at position t. If q1 in p can be replaced by another path q2 that
starts at s and ends at t, and p is still valid, then one of q1 or q2 can be considered
a redundant path. If the valid position graph contains k redundant paths of length
x, and these are further extended up to some length y > x, then using Equation 4.1
we can conclude that there exists at most k8y−x paths that are extended from the k
redundant paths. These must also be redundant and we may therefore reduce the
total number of generated paths of length y in Algorithm 1 with k8y−x paths.

Fingerprints A general case when two valid paths are redundant is when they
have the same fingerprint. The fingerprint of a path p is defined as the vector

(s, t, l(s, s0), ..., l(s, sm), l(t0, t), ..., l(tm, t))

where s and t is the first and last position of p, respectively, si and ti is the first and
last position of p that has property i, respectively, and l(u, v) is the length of the
subpath from position u to position v in p. If two valid paths p1 and p2 have the same
fingerprint, then one of p1 and p2 can be considered a redundant path. Note that
if a path is valid, its fingerprint only depends on the first and last wmax positions
of the path, respectively, where wmax is the maximum waiting time of the instance.
The reason is that if any of the lengths l(s, si) or l(ti, t) is greater than wmax, then
the waiting time of property i is violated and the path can not be valid. It follows
that many valid paths can have the same fingerprint since the inner positions of a
path that are not considered in the fingerprint can differ in many ways, hence two
paths can have equal fingerprints regardless of their lengths.

There are special cases where two paths with unequal fingerprints may still be re-
dundant paths. For the following cases, we consider p, q1 and q2 as defined in the
beginning of this section. The arguments for all of the following paths also hold
similarly for any symmetric case.
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Diagonal Consider the subpath q1 = (x, y)(x+1, y)(x+1, y+1). The intermediate
position (x + 1, y) can simply be removed since the first and last position in q1
visit the same properties in fewer steps. Thus, q1 may be replaced by the path
q2 = (x, y)(x+1, y +1). Figure 4.4a illustrates an example where the dashed arrows
correspond to q1 and the solid line corresponds to q2. Generally, we may say that a
path a→ b→ c is redundant if |ax − cx| = 1 ∧ |ay − cy| = 1 since the path may be
reduced to a→ c given the same argument as previously.

Square Diamond Consider the subpath q1 = (x, y)(x + 1, y)(x + 2, y). This path
may be replaced by q2 = (x, y)(x+1, y+1)(x+2, y) if (x+1, y+1) is a valid position,
or by q′

2 = (x, y)(x + 1, y− 1)(x + 2, y) if (x + 1, y− 1) is a valid position. This holds
since q2 and q′

2 still fulfill the properties x, x + 1 and x + 2 at the same time units
as q1 but with the addition of also visiting property y + 1 or y − 1 in between the
visits of property y. The property y would only be violated if its waiting time is 1,
but then the positions (x + 1, y + 1) and (x + 1, y− 1) would not be valid because of
the range of property y. Figure 4.4b illustrates an example where the dashed arrows
correspond to q1 and the solid arrows illustrate q2 and q′

2.

Parallelogram Consider the subpath q1 = (x, y)(x + 1, y + 1)(x + 2, y + 1). This
path may be replaced by the path q2 = (x, y)(x+1, y)(x+2, y+1) if the intermediate
position (x + 1, y + 1) of q1 was not the last chance to visit property y + 1. The
two paths visit the same properties at the same time unit, except that q2 delays the
visit of property y + 1 by one time unit by staying on property y an extra time unit.
Staying at property y an extra time unit is not harmful, but delaying the visit of
property y + 1 may be harmful; p may become invalid, or an extension of p that
contains q2 and is a cycle may not be valid when traversing the cycle, while the
same extension of p containing q1 instead of q2 is valid because property y +1 can be
fulfilled one time unit earlier. Hence, if q1 is replaced by q2 and one knows that the
intermediate position (x + 1, y + 1) of q1 was not the last chance to visit property
y + 1, then q1 is a redundant path. Figure 4.4c illustrates an example where the
dashed arrows correspond to q1 and the solid line corresponds to q2. Note that the
previous arguments only hold when replacing q1 by q2 and not vice versa. This is
because leaving property y one time unit earlier may be harmful; it might be that
p is still valid when replacing q2 by q1, but an extension of p containing q1 is not
valid while the same extension of p containing q2 instead of q1 is valid. Hence, if q2
is replaced by q1 and one knows that it is not harmful to leave property y one time
unit earlier, then q2 is a redundant path.

Hourglass Consider the subpath q1 = (x, y)(x+1, y +1)(x, y +1). This path may
be replaced by the path q2 = (x, y)(x + 1, y)(x, y + 1) if the intermediate position
(x + 1, y + 1) of q1 was not the last chance to visit property y + 1. The arguments
are similar to the case of Parallelogram. Figure 4.4d illustrates an example where
the dashed arrows correspond to q1 and the solid arrows correspond to q2.
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Figure 4.4: Paths with dashed arrows may be replaced by paths with solid arrows.

Wings Consider the subpath q1 = (x, y)(x + 1, y)(x + 2, y + 1)(x + 3, y + 1). This
path may be replaced by the path q2 = (x, y)(x + 1, y + 1)(x + 2, y)(x + 3, y + 1)
if (x + 1, y + 1) and (x + 2, y) are valid positions. This holds since the properties
x, x + 1, x + 2, x + 3 are still visited at the same time unit but with the difference
that property y + 1 is visited earlier while delaying the second visit of property y
by one time unit. Delaying the second visit of property y is only harmful if y has a
waiting time of 1. This is because property y is visited at the first position in both
q1 and q2. However, if y has a waiting time of 1 then q1 is not a valid path. Figure
4.5 illustrates an example where the dashed arrows correspond to q1 and the solid
arrows correspond to q2.

4.1.5 Babysitting
A feasible instance must have a solution cycle that visits the outermost stations at
some point. If there does not exist a valid path that visits one of the outermost
stations of an instance, the instance must be infeasible. Consider an instance I of
Scenario 2 with stations placed at s0, ..., sm. Recall that the position graph of I may
contain only positions where x > y, see Section 3.1 and 4.2. This means that robot
rx is always to the right of robot ry on the line. Hence, when scheduling the robots
to visit each station of I, robot rx must at some time visit sm and robot ry must at
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Figure 4.5: The path with dashed arrows may be replaced by the path with solid
arrows.

some time visit s0. Recall that the range [a, b] of I can be patrolled by both robots,
see Section 3.2.1. It follows that robot rx can patrol the range [a, m] and robot ry

can patrol the range [0, b]. If robot rx leaves the range [a, b] to visit sm, robot ry

must babysit its entire range [0, b] since rx can not assist in the range [a, b] during
this event. Similarly, rx must babysit the range [a, m] if ry traverses to s0. The
shortest paths that traverses to the outermost stations and back to the range [a, b]
are the two wild card paths

Wx = (b, ∗)(b + 1, ∗)...(m− 1, ∗)(m, ∗)(m− 1, ∗)...(b + 1, ∗)(b, ∗)
Wy = (∗, a)(∗, a− 1)...(∗, 1)(∗, 0)(∗, 1)...(∗, a− 1)(∗, a)

where (i, ∗) is any position in the valid position graph G[R] with x = i and similarly
for (∗, i).

Proposition 4.3. Consider an instance I of Scenario 2. If I is feasible, then there
exists a solution cycle containing Wx or Wy. Regarding their validity, if one of Wx

or Wy is invalid in the valid position graph G[R] of I, then I is infeasible.

Proof. In every solution cycle, every station is visited by at least one robot since
we do not consider infinite waiting times. Assume that I is feasible, which means
that there exists some solution cycle C. Consider any i ∈ [a, b]. If rx visits si in
C, then C contains some subpath (b, ∗)...(m, ∗)...(b, ∗) since rx must also visit sm at
some point. Wx is the shortest such path, thus, there exists a solution cycle Cx that
contains Wx, otherwise no solution cycle can exist where rx visits si. Similarly, if ry

visits si in C, then C contains some subpath (∗, a)...(∗, 0)...(∗, a). Wy is the shortest
such path, thus, there exists a solution cycle Cy that contains Wy. Since at least one
of rx or ry visits si in a solution cycle, then there exists a solution cycle containing
Wx or Wy if I is feasible. The last assertion is shown as follows: if Wx is invalid in
G[R], it simply means that the waiting time of some station in the range [0, m− 1]
can not be fulfilled by Wx. It can not be waiting time tm, otherwise tm < 2(m− b)
and a ≥ am = m − btm/2c > m − (m − b) = b, which means that I would have
been of Scenario 1. If the waiting time tj such that j ∈ [b + 1, m − 1] can not be
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fulfilled by Wx, then either tj < 2(j − b) or tj < 2(m− j); in the first case we have
a ≥ aj = j−btj/2c > j− (j− b) = b, hence I would have been of Scenario 1. In the
second case, there can not exist a solution cycle for I since rx can not visit both sj

and sm without violating tj. Finally, if the waiting time tj such that j ∈ [0, b] can
not be fulfilled by Wx, then ry can not babysit the range while rx visits sm and thus,
no solution cycle can exist. Hence, if I is of Scenario 2 and Wx is invalid in G[R],
no solution cycle can exist and I is infeasible. Similar arguments hold for Wy. �

Using Proposition 4.3, we can deem an instance as infeasible by finding the two
wild card paths instead of generating exponentially many paths up to an unknown
length that depends on how many valid paths exist in G[R]. Furthermore, we can
also utilize the wild card paths for Solve. For example, one may initialize the set
of valid paths to extend with the valid wild card paths.

4.2 Distances in the Valid Position Graph
Every time a path is validated, distances to every property are used, see Section 2.4.
Distances can be computed by finding shortest paths in the valid position graph
G[R]. There are several approaches available for finding shortest paths in a graph
but their time complexity varies. In Solve, exponentially many paths are validated.
Thus, it is crucial to choose the most efficient approach for our problem. Since the
position graph consists of Cartesian coordinates, simple distance heuristics can be
used to guide the search for the shortest path. Furthermore, the valid position graph
has a specific shape that makes it possible to use an efficient greedy algorithm to
find the shortest path.

4.2.1 Shape of the Valid Position Graph
This section is based on contributions by Damaschke [5]. For Scenario 2 in Section
3.2.1, the two numbers a and b are cornerstones in characterizing R, i.e., the vertex
set of the valid position graph G[R] (see Section 2.3). For x ≥ y, R contains all
positions where a ≤ x ≤ b and all positions where a ≤ y ≤ b. Equivalently,
we say that R contains the stripes a ≤ x ≤ b and a ≤ y ≤ b of the position
graph. Furthermore, R cannot contain positions with x < a or y > b since they
are out of range for some property. However, R may intersect the rectangle Q :=
[b + 1, m]× [0, a− 1] of the position graph. See Figure 4.6 for an illustration.

For any position (x, y) ∈ Q, the following conditions are equivalent:

(x, y) ∈ R⇐⇒ ∀i : (x, y) ∈ Ri ⇐⇒ ∀i : y ≥ ai ∨ x ≤ bi ⇐⇒ @i : y < ai ∧ x > bi

Geometrically, the conditions mean that the positions in Q∩R can be obtained from
Q. This is done by cutting out all positions (x, y) where y < ai ∧ x > bi, which is
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Figure 4.6: The position graph of an instance with a = b = 2. The rectangle Q
contains the unfilled positions. R must contain the filled positions but may also
intersect Q. R cannot contain the dashed positions.

equivalent to cutting out all quadrants in the position graph with upper left corner
of the form (bi +1, ai−1). Hence, Q∩R is the region above some increasing staircase
curve. The quadrants that intersect Q are characterized in Lemma 4.3.

Lemma 4.3. Q∩R is obtained from Q by cutting out all quadrants with upper left
corner of the form (bk + 1, ak − 1), for all k ∈ [a, b]. Furthermore, we have ai ≤ 0
for i < a, and bj ≥ m for j > b.

Proof. Consider any i /∈ [a, b] in a feasible instance, say i < a. From the definition
of ai and bi (Section 3.1) and from Lemma 2.1 we can conclude bi − ai + 1 ≥ ti ≥
2d(P0, Pi) = 2i. This equation holds since P0 and Pi are two lines that cross the
same stripe in R. Furthermore, we know bi−ai is even by definition. Thus, it follows
bi − ai ≥ 2i. Hence, ai ≤ 0 and the quadrant with upper left corner (bi + 1, ai − 1)
does not intersect Q. For j > b, we proceed similarly. �

Figure 4.7 illustrates examples of the valid position graph for several instances.

4.2.2 Greedy Shortest Path
The Euclidean distance, which is the smallest possible distance between two points
in the Cartesian coordinate system, may be used to estimate the shortest distance
between two positions in the valid position graph and guide the search for the
shortest path. Using this estimation, a greedy shortest path algorithm can be used
to find the shortest path. The shortest path from a position p1 to a position p2 is
simply calculated as follows:

1. Let the current position be p1.

2. For each neighbour of the current position, calculate its euclidean distance to
p2.
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3. Traverse to the neighbour with smallest euclidean distance and update the
current position.

4. Repeat task 2 until we reach p2.

5. The shortest path is then the traversed path.
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4

(a) Instance: (6, 4, 1, 4, 6)
0 1 2 3

0
4
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2
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(b) Instance: (4, 2, 2, 2, 4)
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4

1
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4

(c) Instance: (5, 8, 8, 2, 8)

Figure 4.7: The valid position graph G[R] of different feasible instances with
a = b = 2. R contains the filled vertices. The edge set of G[R] contains the solid
edges.

Proposition 4.4. The greedy shortest path algorithm from a position s ∈ R to a
position t ∈ R will eventually return a path from s to t. Furthermore, the returned
path is the shortest path from s to t in G[R].

Proof. Let e(s, t) denote the Euclidean distance from s to t. From Section 4.2.1,
we know that R can only contain the positions in the rectangle [a, m] × [0, b] but
may cut out some positions in Q = [b + 1, m] × [0, a − 1]. We define a position
(x, y) /∈ R to be a hole if (x − c1, y) ∈ R ∧ (x + c2, y) ∈ R for some c1, c2 > 0,
or (x, y − d1) ∈ R ∧ (x, y + d2) ∈ R for some d1, d2 > 0. From Lemma 4.3, we
know that if a position (x1, y1) is cut out from R, so is any position (x2, y2) where
x2 ≥ x1 ∧ y2 ≤ y1. Thus, the valid position graph G[R] can not contain any holes.
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We can conclude from the definition of R that there must exist a path between every
pair of positions in G[R]. The greedy algorithm from s to t will always choose the
neighbour n = (nx, ny) of the current position c = (cx, cy) with smallest Euclidean
distance to t. Since there are no holes in G[R], it means that c always has a neighbour
n with cx < nx < tx or cy < ny < ty, hence e(n, t) < e(c, t). Similarly, this holds for
the case tx < nx < cx or ty < ny < cy. Thus, the greedy algorithm will always find
a path from s to t. Furthermore, this path is of the form s → s1 → ... → sk → t
where e(s, t) > e(s1, t), e(si, t) > e(sj, t) for all 1 ≤ i < j ≤ k and e(sk, t) > e(t, t).
Due to this form, the shape of G[R] and the choice of n in every iteration of the
algorithm, the path is the shortest path between s and t in G[R]. �

We will always traverse towards the target horizontally, vertically or diagonally. In
the worst case we have to traverse the whole graph horizontally and then vertically,
never using the diagonal. The resulting path will then be of length m + m = O(m).
For every position in the traversed path we compare its 8 neighbours Euclidean
distance to the target. This is done in constant time. Thus, the time complexity for
this greedy shortest path algorithm is O(m).

4.3 Validating Paths in Parallel
In Algorithm 1, the inner part of the while-loop (row 7-13) operates on a path p from
the set of paths P . The operations done on a path p is independent of the operations
on other paths. Thus, one may simply process multiple paths p in parallel. Aside
from the initialization of the algorithm, the while-loop covers the entire execution
time. Consider that P contains x paths at some point. The operations of every
path in P can then be run in parallel instead of sequentially. At this specific time, a
theoretical speed-up of x can be achieved assuming that we have infinite parallelism.
Since the size of P changes dynamically depending on how many paths are further
extended, it is difficult to determine the theoretical speed-up for the entire algorithm.

4.4 Look-ahead

Some instances have a solution of the form P → q → P −1, where P is a sub-
path, P −1 is the reversal of P and q is a position. For example, the instance
v = (6, 4, 3, 3, 4, 6, 8) has the following solution cycle where P = (6, 3) → (5, 2) →
(4, 1)→ (3, 0) and q = (2, 0):

(6, 3)→ (5, 2)→ (4, 1)→ (3, 0)→ (2, 0)→ (3, 0)→ (4, 1)→ (5, 2)→ (6, 3)

In the worst case, the basic approach would generate all valid paths up to length 8
before finding this solution. If we instead, when a path P → q is valid, check if the
path P → q → P −1 is a solution cycle, we can eliminate exponentially many paths.
We call this operation look-ahead. When solving v we would identify the solution
cycle already after validating the path (6, 3) → (5, 2) → (4, 1) → (3, 0) → (2, 0)
since look-ahead will find the solution cycle by extending the path with (3, 0) →
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(4, 1)→ (5, 2)→ (6, 3). Thus, in the worst case, we only need to generate all valid
paths up to length 4 when solving v. When applicable, look-ahead will reduce the
maximum length of the generated paths by half. However, there is an additional
cost: every valid path will validate an additional path. Thus, for Equation 4.1, look-
ahead will reduce t by half but add a factor of 2 to the number of paths generated
for every t. For example, if we consider the instance v, look-ahead will generate at
most ∑4

x=1 2nx−1v paths instead of ∑8
x=1 nx−1v paths.

The problem with look-ahead is that, when not applicable, at most twice as many
paths will be generated. Hence, if look-ahead is not applicable to a significant
number of instances in Search, it will instead stall our search for critical instances.
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This chapter introduces improvements made to the basic approach when searching
for critical instances, see Section 3.3.

5.1 Lower Bound Instances

The search algorithm presented in Section 3.3 starts with the trivial lower-bound
instance (1, 1, ..., 1). Instead of starting with this instance, we may restrict the search
space by starting with stricter lower-bounds. Remembering the definition of [a, b]
from section 3.2.1, we can rephrase the last statement of Lemma 4.3 to immediately
get the useful lower bounds in Lemma 5.1 [5].

Lemma 5.1. In every feasible instance we have ti ≥ 2i and ti ≥ 2(b − i) for all
i < a, and similarly, tj ≥ 2(m− j) and tj ≥ 2(j − a) for all j > b.

For a given a and b, Lemma 5.1 yields lower bounds on the waiting times of stations
i < a and i > b. The waiting times of stations a ≤ i ≤ b can be derived from
the definition of ai and bi, see Section 3.1. Thus, a lower bound instance can be
generated for a given a and b. Let L be the set containing all these instances for
each a and b.

Since the instances in L are lower bounds for a given a and b, there may exist an
instance in L that is greater than or equal to another instance in L. Let L′ ⊆ L be
the subset of the smallest lower bound instances.

In Algorithm 2, the set C is initialized to the critical instances of Scenario 1, see
Section 3.3. There may exist an instance in L′ that is greater than or equal to a
critical instance in C. Let L′′ ⊆ L′ be the subset excluding such instances. What
remains in L′′ are infeasible or critical instances. The critical instances in L′′ can be
added to C before proceeding with the search. The set U in Algorithm 2 may then
be initialized with the infeasible instances in L′′.
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5.2 Visited Instances
In Algorithm 2, instances are generated and solved to check for feasibility. We
say that an instance has been visited after this. Due to the inherent symmetry of
the problem and the algorithm incrementing each waiting time of an instance, the
same instance may be visited repeatedly. For example, the instance (1, 1, t2, ..., tm)
will generate the instances (2, 1, t2, ..., tm) and (1, 2, t2, ..., tm). Next, if these two
instances are infeasible, both will generate (2, 2, t2, ..., tm) that will be visited twice.
This would create two equivalent subtrees in the search tree when it is sufficient
with one. Note that Solve is, in the worst case, an expensive operation that will
be executed on every visit. Instead, on the first visit of an instance, we may simply
mark it as visited and ignore it the next time it is generated. Furthermore, consider
any instance v = (t0, ..., tm) and its reversal vr = (tm, ..., t0). Both v and vr will
be visited in the algorithm. However, due to symmetry, anything that holds for v
also holds for vr. Thus, we only need to visit one of v or vr; when visiting one of
them, we may mark its reversal as visited. Figure 5.1 shows all the instances that
are visited when marking instances as visited. For example, note that the instance
(2, 2, 1, 1), including its reversal, would be visited four times at the second level if it
was not marked as visited.

1,1,1,1

1,1,1,2

1,1,1,31,1,2,21,2,1,22,1,1,2

1,1,2,1

1,1,2,21,1,3,11,2,2,12,1,2,1

1,2,1,1

1,2,1,21,2,2,11,3,1,12,2,1,1

2,1,1,1

2,1,1,22,1,2,12,2,1,13,1,1,1

Figure 5.1: Three levels of the search tree for m = 3. Instances marked with a
surrounding box illustrate the first visit to an instance when visiting instances level
by level, left to right. Instances that are not marked has already been visited. Note
that marked instances include its reversal as visited.

5.3 Maximal Infeasible Instances
In the basic approach, the upwards search has to check the feasibility of all incre-
mented instances, see Section 3.3. For example, consider the infeasible instances
I = [1, .., 1] and J = [r, ..., r, 1, 1], where r denotes the roof value, as discussed in
section 3.3. Starting at I, the upwards search will generate and solve exponentially
many instances K, such that K < J . However, we know that J is infeasible. Thus,
all K must also be infeasible.

We may systematically generate a set of instances that contains maximal infeasible
instances. These are instances that become feasible if any of the non-roof waiting
times is further incremented. A significant amount of infeasible instances can be
safely discarded by comparing an instance to instances in the set. An instance
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smaller than any instance in the set is infeasible.

An algorithm has been developed in order to create a set of maximal infeasible in-
stances. The algorithm continuously keeps track of two sets G and U . The set G
contains the currently known maximal infeasible instances. The set U contains in-
stances with unknown feasibility status. Initially, U may contain the vector (r, ..., r)
since this is the largest vector generated in Algorithm 2. Then, we iteratively choose
an instance u from U and proceed with one of the following phases based on the
feasibility status of u:

• Decrement Phase: If u is feasible, some waiting time has to be decremented
to become infeasible. In order to quickly make u infeasible, we set each of the
waiting times that is r to 1, creating one new instance for every r and inserting
them in U .

• Increment Phase: If u is infeasible it is a currently known maximal infeasible
instance unless there exists an instance g ∈ G such that u < g. If it is
a currently known maximal infeasible instance, u is inserted in G and any
smaller instance in G is removed. However, there might exist an infeasible
instance h > g. Therefore, we increment one of the waiting times in u that is
not r by 1, creating one new instance for every waiting time that was not r
and insert them in U .

Furthermore, we apply the idea of visited instances, as discussed in Section 5.2.
Algorithm 3 is a full description of how to generate maximal infeasible instances.
Figure 5.2 shows four levels of the search tree when searching for maximal infeasible
instances for m = 2.

4,4,4

4,4,1

4,1,1

4,1,24,2,1

1,4,1

1,4,22,4,1

4,1,4

4,1,1

4,1,24,2,1

1,1,4

1,2,42,1,4

1,4,4

1,4,1

1,4,22,4,1

1,1,4

1,2,42,1,4

Figure 5.2: Four levels of the search tree when searching for maximal infeasible
instances for m = 2. Instances marked with a surrounding box illustrate the first
visit to an instance when visiting instances level by level, left to right. Instances
that are not marked has already been visited. Note that marked instances include
its reversal as visited.
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Algorithm 3 Algorithm for generating maximal infeasible instances for m

1: U ← Set of instances with unknown feasibility status.
2: G← Set of known maximal infeasible instances
3: V ← Set of visited instances

4: function GenerateMaximalInfeasibleInstances(m):
5: add (r, ..., r) to U
6: while U not empty do
7: u← remove an instance from U
8: if u feasible then
9: for i = 0, ..., m do

10: if ui = r then
11: v ← copy of u
12: vi = 1
13: if v /∈ V then
14: add v to U
15: else
16: if ∃g ∈ G(u ≤ g) then
17: continue
18: else
19: remove all g ∈ G where u > g
20: add u to G
21: for i = 0, ..., m do
22: if ui 6= r then
23: v ← copy of u
24: vi = vi + 1
25: if v /∈ V then
26: add v to U
27: return G

Proposition 5.1. Algorithm 3 eventually returns a set G containing maximal in-
feasible instances.

Proof. An instance g is only inserted in G if g is infeasible. Hence, G will not
contain any feasible instances. Furthermore, if g is infeasible and there exists an
instance h ∈ G such that g ≤ h, the instance g is not inserted in G. For the case
when g is inserted in G, there might exist an instance f ∈ G such that f < g. Any
such instance f will be removed when inserting g in G. Thus, if the algorithm has
terminated, there does not exist a pair of instances g1, g2 ∈ G such that g1 < g2.
Assume that there exists a g ∈ G that is not a maximal infeasible instance, i.e., there
exists an infeasible instance h /∈ G such that one non-roof waiting time hi = gi+1 and
all other waiting times of g and h are equal. After g was inserted in G, the algorithm
generated h and inserted it in U . Since U is non-empty, the algorithm proceeds
and will eventually check the feasibility of h and insert it in G, thus removing g
from G. The algorithm proceeds similarly with h unless it is a maximal infeasible
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instance. If h is a maximal infeasible instance, it will never be removed from G.
Hence, if the algorithm terminates, any g ∈ G is a maximal infeasible instance. The
algorithm terminates if and only if U is empty. The only possible instances that can
be generated by the algorithm are instances between (1, ..., 1) and (r, ..., r). Thus,
there are only finitely many instances that can be generated and inserted in U . Since
we only insert instances in U if they have not been visited already, the algorithm
will visit finitely many instances and eventually terminate. �

5.4 Solving Instances in Parallel
Recall that Search works upward one level at a time. Furthermore, from the proof
of Proposition 2 we know that if a feasible instance is found at a level it is critical.
This means that there is no dependency between any two instances on the same
level. Therefore, for each level, we can process each instance in parallel. Assuming
that we have infinite parallelism and every instance takes equal amount of time
to process, we would get, at each level, a theoretical speedup of the number of
instances to process. However, processing an instance includes using Solve which
has an unpredictable running time given an instance.
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6
Implementation

This section introduces Patsch, which is a computer program that implements
Solve and Search, including the best improvements, as a Java 11 library. The
name Patsch is a portmanteau of the words Patrolling and Schedules. The com-
ponents of Patsch are presented in the following subsections, which are divided
in accordance with the implementation’s repository1. In these sections, the use of
the word instance may refer to an instance of the patrolling problem or a Java in-
stance. Therefore, unless stated otherwise, the word instance refers to an instance
of the patrolling problem. Furthermore, Patsch uses hash maps and hash sets
extensively and these are mentioned throughout this section. Unless stated other-
wise, they have been implemented using the HashMap and HashSet implementation
from java.util. Assuming the hash function of the elements is collision-resistant,
HashMap offers constant time performance for the basic operations get and put and
HashSet offers constant time performance for the basic operations add, remove,
contains and size [7, 8].

6.1 Models

The classes in this section model the fundamental components of the patrolling
problem.

Some of the classes are heavily used as elements in hash maps and hash sets. Such
classes must override two functions, equals and hashCode, to function properly
with the data structures [9, p. 37]. Furthermore, when overriding these functions,
their general contracts must be obeyed. For example, the equals function must be
reflexive, symmetric, transitive and consistent [10]. A typical method for producing
a good hash code is to compute an integer value based on the significant fields of a
class, which are further mentioned in each class that overrides the hashCode function
[9, p. 50-54].

1Available at: https://github.com/radjavi/patsch
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6.1.1 The Position class
The Position class models a position (x, y) in the position graph using two integer
variables; one for x and one for y. This class is heavily used with hash sets and
hash maps; the equals and hashCode function has been implemented using typical
methods for significant fields of primitive types, which in this class are the integers
x and y [9, p. 37-54].

6.1.2 The Range class
The Range class models the range of a property, see Section 2.3. The constructor of
the class takes as argument a Property instance. In the Range class, we represent
the range of a property i as two integers a and b, which correspond to the range
[ai, bi] explained in Section 3.1. Furthermore, a hash set of Position instances are
created that contains all positions of the position graph that are in the range [a, b],
i.e., the positions where a ≤ x ≤ b or a ≤ y ≤ b.

6.1.3 The Property class
The Property class models one property of an Instance class, which is presented
in Section 6.1.5. The constructor of the class takes as arguments an instance of
Instance and the property’s index i. Using these arguments, the constructor creates
a hash set containing Position instances, i.e., positions that has the property. As
discussed in section 3.1, the positions of a property i are all positions in the position
graph where x = i or y = i. Finally, the constructor creates a Range instance that
corresponds to the range of the property.

6.1.4 The PositionGraph class
The constructor of the class takes a set of Position instances and connects them
to form a position graph. The position graph has been implemented as a hash map
that maps a Position to its adjacency set. This approach offers constant time
performance for collecting the neighbours of a Position, which is beneficial since
Solve extensively operates on these. Figure 6.1a illustrates a position and its eight
neighbours, while figure 6.1b shows the corresponding mapping of this position to
its adjacency set.

6.1.5 The Instance class
The Instance class models an instance of the patrolling problem. The constructor of
the class takes as argument a list of m+1 integers int[] waitingTimes representing
an instance (t0, ..., tm) and creates a minimal version of an instance that can be used
for comparing instances. Creating a minimal version, that only contains the integer
waiting times, is important for reducing memory usage. This is explained further
after introducing the extended version of the class.

The extended version of the Instance class contains a list of Property instances
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(a) Position (4, 1) (blue) in the position
graph with all its eight neighbours (red).

(4,1) -> {(3,0), (4,0), (5,0),
(3,1), (5,1), (3,2), (4,2),
(5,2)}

(b) The corresponding hash map entry
for the position (4, 1).

Figure 6.1: The mapping of a position to its neighbours in the position graph for
m = 5.

that correspond to the m+1 properties. Furthermore, the instance contains the valid
position graph, which is an instance of the PositionGraph class. This valid graph is
simply computed by intersecting the set of positions from the Range instance of all
m + 1 Property instances, which is an O(m3) operation. Although this operation
has an expensive time complexity, it will not be a significant fraction of the overall
runtime of Search since the valid graph is only computed once for every instance
and m is rather small in our successful runs. Using all m + 1 Range instances, two
integers a and b are computed. These integers correspond to the definition of [a, b] of
Scenario 2 as explained in Section 3.2.1. Note that if a > b, an instance is of Scenario
1. An instance of the Instance class also contains an instance of DistanceStorage,
which is used for caching distances in the PositionGraph and is further explained
in Section 6.2.2. An Instance is solved using the function solve, which in turn
uses the InstanceSolver class explained in Section 6.2.1.

Constructing a minimal version of Instance is important since Search creates ex-
ponentially many Instance objects and only the minimal version is needed to, e.g.,
check if an Instance has already been visited before solving it (see Section 5.2). The
minimal version of an instance has a O(m) space complexity, while the extended
version has a worst-case space complexity of O(m3); the extended version contains
m + 1 properties, each having a range containing O(m2) positions in the worst case,
and the DistanceStorage instance may store at most O(m3) distances between
properties and positions.

The Instance class contains a generic function distance that takes two arguments,
from and to. Because of the function being generic, each argument can be an in-
stance of any class. However, the function has been restricted to instances of the
Position or Property class since only these are considered when computing dis-
tances. To be able to compute the distance between the two types of classes, the
arguments are converted to two sets of Position instances. Then, the distance be-
tween two sets of positions is computed in accordance with the definition of d(X, Y )
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explained in Section 2.1.1. To choose the pair of positions, one from each set, that
are closest to each other in the position graph, one can heuristically choose the pair
of positions with minimum Euclidean distance. Note that this is not the actual
distance in the position graph. However, the pair of positions with minimum Eu-
clidean distance must also have the minimum actual distance. The actual distance is
computed using a function shortestPath, which implements the greedy approach
explained in Section 4.2.2. The function shortestPath takes as arguments two
Position instances.

This class is extensively used in hash maps and hash sets; the implementation of
the equals and hashCode functions adopt typical methods for significant fields of
primitive types, which in this class are the m + 1 integer waiting times that solely
identifies an instance [9, p. 37-54]. Additionally, these functions have been slightly
modified to support that an instance and its reversal are considered equal. For the
equals function, this simply means an additional comparison with the reversal of
one of the operand’s waiting times. The general contract of the hashCode function
states that two equal Instance objects must produce the same hash code, which is
not the case when applying the typical method since an Instance and its reversal
would produce different hash codes. This can be fixed as follows. Consider the
instance I = (t0, ..., tm) and its reversal Ir = (tm, ..., t0). If Ir is lexicographically
larger than I, use Ir to produce the hash code of both I and Ir. Otherwise, use I
to produce the hash code of both I and Ir.

6.1.6 The Path class
The constructor of the Path class takes an instance of Instance since a path is
related to the position graph and properties of an instance. The path itself is
represented by a linked list of Position instances and two integer arrays si and
fi that contains the path index of the first and last position, respectively, that has
property i. A path can be extended by adding positions to the tail of the linked list.
Furthermore, when extending a path, all si and fi are computed for each property
i by iterating over the linked list.

The class contains a function valid that is used to validate a Path. The function
implements the approach exactly as explained in Section 2.4. To check if a Path is
a solution cycle, the class contains a convenient function isSolutionCycle. This
function checks that the path is a cycle, is valid and visits all properties. Moreover,
the length of the subpath fi → ... → f + the length of the subpath s → ... → si

must be at most ti for each property i. This corresponds to the path being valid
when traversing the cycle repeatedly. Finally, the class also contains the function
redundant that uses the wrapper RedundantPaths (Section 6.2.4) and a function
fingerprint that returns the fingerprint as a list, which corresponds to the vector
defined in Section 4.1.4.
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6.2 Wrappers
This section describes classes that implement functions and data structures used in
Patsch. These classes wrap their implementation to increase the abstraction level
when using them.

6.2.1 The InstanceSolver class
The wrapper InstanceSolver contains necessary functions needed when solving an
instance. The entry-point of InstanceSolver is a static function solve that takes
an instance of Instance as argument and solves it.

To solve an instance, the function first checks if the instance is of Scenario 1 or one
of the following holds for an instance of Scenario 2: [a, b] = [0, 0], [a, b] = [m, m]
or [a, b] = [0, m]. If this is the case, the robots can independently patrol the line
and the instance is trivially solved by comparing it to all critical instances from
Proposition 3.1.

For all other cases, the function proceeds by looking for the two types of babysitting
wildcard paths (Section 4.1.5). This is done by using the function findBabysitting-
Paths, which for each type of wildcard path, extends paths in the valid position
graph to the form of the wildcard path. Futhermore, a path is not extended if it is
redundant or a path with an equivalent fingerprint has already been extended. If
there are no valid paths of any type, the instance is deemed infeasible. However, if
there are valid paths of both types, we may initialize the paths to extend in Solve
with the valid wildcard paths in order to heuristically reduce the total number of
generated paths when further solving the instance in the next step. Note that we
may always initialize the paths to extend with babysitting paths, meaning that we
do not need to consider the improvements dealing with loneliest starting property
and reversed initial paths.

Using the function extendPath, solve proceeds by extending a path in the list of
valid paths to extend, until either the list becomes empty or a solution is found. The
list of valid paths to extend is implemented using a linked list. During the algorithm,
paths will be inserted in correct order, from shortest to longest. A linked list has
a time complexity of O(1) for insertion and removal of the first and last elements,
which means that removing the path with shortest length is done efficiently. The
function extendPath corresponds to the lines 8−13 in Algorithm 1. Additionally, a
path is not extended if it is redundant or a path with an equivalent fingerprint has
already been extended. The fingerprint of paths that have already been extended is
stored in a hash set.
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6.2.2 The DistanceStorage class
When validating a path, the distance between a property and a position is used
several times, see section 2.4. For example, the start node of a path is always the
same when extending the path. This means that, for every extension, the distance
Pi → s would be computed for every property i. Therefore, previously computed
distances are cached using the DistanceStorage class. The underlying storage is
implemented using a hash map, which maps a pair of property and position to the
distance between them. By storing previously computed distances for an instance,
the number of distance computations may be significantly reduced and an O(1)
lookup may be utilized for distances in the storage. The trade-off is an increased
space complexity; since only distances between m+1 properties and O(m2) positions
are needed, the space complexity is O(m3) in the worst case.

6.2.3 The SingleExecutor class
To utilize parallelism in Patsch, the ExecutorService class from the package
java.util.concurrent has been used. Executors are objects that encapsulate
thread management and creation, and the ExecutorService class is an interface
with features that help manage the life cycle, both of the threads’ individual tasks
and of the executor itself [11, 12].

The SingletonExecutor class is a singleton, which ensures that only one instance
of the ExecutorService class is created and provides a global point of access to
it via the static function getInstance [13]. A static function init must be used
in order to specify the level of parallelism when creating the single instance of
SingletonExecutor. The underlying ExecutorService uses a work stealing thread
pool that maintains enough threads to support the given parallelism level, and
may use multiple queues to reduce thread contention [14]. The single instance of
SingletonExecutor can then be used to submit tasks to the ExecutorService,
which will schedule the tasks to be run in parallel.

6.2.4 The RedundantPaths class
In the implementation of Solve, valid paths are extended if they are not redundant.
To check if an extended path p is redundant, only the last three or four positions need
to be considered depending on the type of the redundant path. This is because the
other positions in p will have already been checked to be redundant before extension.

The wrapper class RedundantPaths uses two functions length2 and length3. The
function length2 checks if the last three positions of p is of the form Diagonal or
Square Diamond, see figure 4.4. Note that we did not implement Parallelogram
nor Hourglass. This was due to the time limit of this project, which restricted us
from implementing these correctly. The function length3 checks if the last four
positions of p is of the form Wings, see figure 4.5. Since it is difficult to generalize
these forms, a function direction is used, which takes two adjacent positions of p
as arguments, pi and pj, and returns the cardinal or ordinal direction from pi to pj.

42



6. Implementation

Using direction, the form of the path’s tail can be identified and, using a switch-
case, we check if the path has the form of one of the redundant paths. For example,
if the subpath containing the last three positions of p moves in the directions “East
→ East”, then p is redundant and of the type Square Diamond.

6.2.5 The InstanceLevelBuckets class
Since it is important that Search removes instances with lowest level from U in Algo-
rithm 2, an efficient data structure has been implemented that stores instances sorted
by their level. The underlying implementation is a hash map that maps a level to the
set of instances on this level, which are called buckets. The class ConcurrentHashMap
from java.util.concurrent has been used in order to allow concurrent modifica-
tion and synchronization of the hash map when searching in parallel. When Search
adds an instance to U , the wrapper class InstanceLevelBuckets adds the instance
to the correct bucket given the level of the instance. Insertion in buckets, given
the level, has a time complexity of O(1) since insertion in a ConcurrentHashMap is
O(1). When Search proceeds to a higher level, the set of instances on this level is
collected from the class InstanceLevelBuckets with a time complexity of O(1).

6.3 The Search class
The Search class contains functions that are needed in order to search for critical
instances. The entry-point of Search is a function searchForCriticalInstances,
which takes as arguments the two integers m and r. If the SingletonExecutor has
been instantiated, a parallel version of Search will be used.

The first step when searching for critical instances is to initialize a hash map C of
currently known critical instances with the ones from Proposition 3.1. The hash
map maps a critical Instance to its solution cycle, which is an instance of Path.
The function criticalsWithEmptyIntersection collects all these critical instances,
which are then inserted in C.

The second step is to initialize a set U of current maximal instances that are known
to be infeasible with the infeasible lower bound instances in L, see Section 5.1. The
set U is implemented using the wrapper class InstanceLevelBuckets, see Section
6.2.5.

As a third step, a hash set M of maximal infeasible instances is initialized. The
set is initialized using the function generateMaximalInfeasible which implements
Algorithm 3 in order to generate all the maximal infeasible instances.

After initialization, the search proceeds upwards, level by level. A set W keeps track
of instances that have already been visited. The set W contains minimal versions of
the Instance class and is implemented as a Set backed by a ConcurrentHashMap
to allow concurrent modification and synchronization when searching in parallel.
On every new level, W may be cleared since instances on one level may only have
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been previously visited on the same level. Next, the set of instances Umin with the
currently smallest level is popped from U and the instances are then processed in
accordance with rows 8− 20 in Algorithm 2, except for some modifications:

1. The set M is iterated over and if there exists a maximal infeasible instance
m ∈M such that for u ∈ Umin it holds u ≤ m, then instead of incrementing all
waiting times of u, only the waiting times ui where mi < r are incremented.

2. After an incremented instance v is created, it is discarded if v ∈ W . Otherwise,
w is inserted in W and the algorithm proceeds.

If the parallel version of Search is used, the instances in Umin are processed in
parallel by submitting them as tasks to the ExecutorService contained in the
SingletonExecutor wrapper.

Finally, since a critical instance and its reversal are considered equal, the search only
finds one of them. Therefore, the function searchForCriticalInstances ends with
manually inserting reversed critical instances to C.
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7
Results

This chapter contains results of running Search and Solve using Patsch. Section
7.1 presents the impact of improvements to Solve and statistics about the execution
time and number of validated paths when solving instances. In Section 7.2, the
impact of improvements to Search is presented. Furthermore, the execution time
and number of instances solved when searching for critical instances for a given m
and r is also presented. Finally, Section 7.3 shows the number of critical instances
found for a given m and r.

7.1 Benchmarking Solve

The benchmarks in this section have been executed on a on a shared resource with
a Intel Xeon Gold 6126 (2.6 GHz) processor and 768 GB RAM.

7.1.1 Improvements
Here we present the results of improvements made to the basic approach of Solve.
Since there are many improvements to Solve, we have decided to combine them
into a few implementations that we compare:

• ImplSolveBasic: Implements the basic approach. Shortest paths in the valid
position graph are computed using the most widely known best-first search
called A* search, which is optimal using the Euclidean distance as a heuristic
function [15].

• ImplSolve2: Extension of ImplSolveBasic with the following improvement:
– Greedy shortest path (Section 4.2.2).

• ImplSolve3: Extension of ImplSolve2 with the following improvements:
– Loneliest Starting Property (Section 4.1.1).
– Reversed Initial Paths (Section 4.1.2).
– Hypotenuse (Section 4.1.3).
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• ImplSolve4: Extension of ImplSolve3 with the following improvement:
– Redundant paths excluding Parallelogram and Hourglass (Section 4.1.4).

• ImplSolveBest: Extension of ImplSolve4 with the following improvement:
– Babysitting (Section 4.1.5).

Since ImplSolveBasic is slow and each of the above improvements has an effect
on all types of instances, the implementations are only compared by solving two
instances of Scenario 2:

1. The infeasible instance I = (16, 16, 7, 16, 2, 16, 16, 16, 16).

2. The feasible instance F = (16, 16, 7, 16, 3, 16, 16, 16, 16).

For each of the two instances I and F , table 7.1 shows the execution time and the
number of validated paths for different implementations.

Table 7.1: The execution time and number of validated paths when solving I and
F using different implementations of Solve.

I F
Ex. Time (s) Validated Paths Ex. Time (s) Validated Paths

ImplSolveBasic 369 362,778,895 105 68,842,476
ImplSolve2 379 362,778,895 102 68,842,476
ImplSolve3 24.9 21,424,011 0.18 253,267
ImplSolve4 0.388 304,195 0.096 56,447
ImplSolveBest 0.00067 66 0.01 5,239

7.1.2 Solving Instances in Search using ImplSolveBest

Table 7.2 shows statistics about the execution time and number of validated paths
for instances of Scenario 2 that are solved in the best implementation of Search
using ImplSolveBest and a roof value of r = 2m.

7.1.3 Solving Random Instances using ImplSolveBest

Table 7.2 shows statistics that are representative for instances solved when searching
for critical instances in Search with a roof value of r = 2m. However, these instances
do not highlight statistics about instances with larger waiting times, i.e., larger than
2m. Instead of raising the roof value r, which leads to an explosion in the number of
instances, 1000 infeasible instances and 1000 feasible instances with larger waiting
times have been randomly generated, see Table 7.3 and Table 7.4. The waiting times
are randomly chosen in the range [1, 5m]. Every instance has been solved 11 times
and the median execution time was used for the statistics.
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Table 7.2: Statistics about the execution time and number of validated paths for
instances of Scenario 2 that are solved in the best implementation of Search using
ImplSolveBest and a roof value of r = 2m.

Execution Time Number of Validated Paths
No.

Instances
Mean
(ms)

Median
(ms)

Min
(ms)

Max
(ms)

STD
(ms) Mean Median Min Max STD

m=4
Infeasible 37 0.11 0.07 0.02 0.56 0.11 1.9 1 1 7 1.7
Feasible 30 0.68 0.42 0.14 4.3 0.79 36 25 6 124 34
m=5
Infeasible 108 0.11 0.09 0.02 0.56 0.08 5.9 2 1 23 6.7
Feasible 61 0.83 0.69 0.12 6.2 0.86 112 72 8 343 102
m=6
Infeasible 2,251 0.26 0.17 0.01 10 0.34 178 40 1 1,174 227
Feasible 117 1.1 0.87 0.07 7 1.0 346 274 10 2,114 384
m=7
Infeasible 144,620 0.96 0.78 0.01 29 0.92 1,126 857 1 9,742 1,235
Feasible 197 1.8 1.2 0.08 20 2.1 975 696 12 5,450 1,117
m=8
Infeasible 6,299,777 1.6 0.36 0.01 86 3.7 1,966 206 1 71,381 5,091
Feasible 298 5.6 2.3 0.11 138 14.6 3,363 1,395 14 73,626 8,618

Table 7.3: Statistics about the execution times and number of validated paths
when solving 1000 random infeasible instances of Scenario 2 using ImplSolveBest.

1000 Infeasible
Execution Time Number of Validated Paths

m Mean
(ms)

Median
(ms)

Min
(ms)

Max
(ms)

Std
(ms) Mean Median Min Max Std

7 0.07 0.01 0.001 2.2 0.18 68 20 1 1,830 159
8 0.12 0.02 0.001 2.9 0.32 118 32 1 2,149 271
9 0.28 0.03 0.001 6.9 0.83 243 44 1 5,243 640
10 0.89 0.08 0.001 33 3.5 664 95 1 19,634 2,377

Table 7.4: Statistics about the execution times and number of validated paths
when solving 1000 random feasible instances of Scenario 2 using ImplSolveBest.

1000 Feasible
Execution Time Number of Validated Paths

m Mean
(ms)

Median
(ms)

Min
(ms)

Max
(ms)

Std
(ms) Mean Median Min Max Std

7 4.8 2.0 0.01 49 7.8 3,804 1,543 12 37,755 6,244
8 47 7.0 0.02 889 112 33,595 5,337 14 581,070 77,292
9 126 17 0.02 3,618 358 80,286 12,302 16 1,786,972 204,609
10 1,826 65 0.03 56,148 5,738 849,659 41,503 18 23,009,282 2,510,683
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7.2 Benchmarking Search

In this section, the implementation of Search and its improvements are bench-
marked.

7.2.1 Improvements
Here we present the results of the improvements to the basic approach of Search.
The implementation of the basic approach has the addition of visited instances
(Section 5.2) because otherwise the search runs out of memory already for m =
4. Furthermore, all implementations use the ImplSolveBest implementation for
solving instances. The following implementations of Search are compared:

• ImplSearchBasic: Implements the basic approach with the addition of:
– Visited instances (Section 5.2).

• ImplSearch2: Extension of ImplSearchBasic with the addition of:
– Lower bound instances (Section 5.1).

• ImplSearch3: Extension of ImplSearch2 with the addition of:
– Maximal infeasible instances (Section 5.3).

The benchmarks have been executed on a shared resource with a Intel Xeon Gold
6126 (2.6 GHz) processor and 768 GB RAM. Figure 7.1 presents the execution time
and number of solved instances for the three implementations.
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Figure 7.1: Benchmark of different Search implementations with a roof value of
r = 2m.
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7.2.2 Parallel Search
ImplSearchBest is a parallel version of ImplSearch3. The speedup of ImplSearch-
Best has been benchmarked on a shared resource containing two compute nodes,
each with a AMD EPYC 7451 (2.9 GHz) processor with 24 cores and 48 threads,
and 512 GB RAM. Figure 7.2 shows the results for m = 7 and m = 8. Moreover,
the ideal speedup is also shown.

20 40 60 800

20

40

60

80

100

Threads

Sp
ee

du
p

Ideal
Actual

(a) m = 7

20 40 60 800

20

40

60

80

100

Threads

Sp
ee

du
p

Ideal
Actual

(b) m = 8

Figure 7.2: The speedup of ImplSearchBest using different number of threads
and r = 2m.

7.2.3 Increasing the roof value in ImplSearchBest

Figure 7.3 shows how the execution time and the number of instances of ImplSearch-
Best scales with increasing m for varying roof values r.
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Figure 7.3: Benchmarking roof values using ImplSearchBest with 64 threads.
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7.3 Critical Instances
Critical instances up to m = 9 have been successfully identified using ImplSearchBest
and varying roof values that are executable within a reasonable time limit. The crit-
ical instances are available in Appendix A. Figure 7.4 shows the number of critical
instances found for different roof values.
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Figure 7.4: The number of critical instances found for different roof values. For
m ≥ 6, larger roof values are omitted because of the execution time exploding.
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8
Discussion

The results presented in Chapter 7 are discussed and interpreted in this chapter
while highlighting the current strengths and weaknesses of Patsch.

8.1 Results for Solve

This section discusses and interprets the results from benchmarking Solve. First,
the improvements made to Solve are discussed in Section 8.1.1. Finally, the sections
8.1.2 and 8.1.3 discusses the difficulty of solving instances of different character.

8.1.1 Improvements
As can be seen in Table 7.1, our best implementation of Solve has been significantly
improved compared to the basic approach.

Comparing ImplSolveBasic with ImplSolve2, the implementations differ in the
shortest path algorithm used. Compared to the greedy shortest path algorithm,
the A* search algorithm additionally needs to store a cost of explored positions and
needs a priority queue to maintain positions to expand in sorted order based on their
cost [15]. Note that insertion and removal of elements in a priority queue, containing
n elements, is a O(log n) time operation [16]. Looking at the execution time of both
implementations, there is no significant difference, except for some small variations
that may occur from, e.g., garbage collection or the fact that the benchmarking was
done on a shared resource. We believe the reason that the difference is insignificant
is that the position graph is rather small for these instances. Because of this, both
algorithms find shortest paths just as quickly. Furthermore, distances are cached
and there are at most O(m3) distances to cache. The instances solved has m = 8,
which means that the number of shortest path computations is small and is an
insignificant proportion of the running time considering that millions of paths are
validated. Because of the size of the graph and cached distances, the difference in
time and space complexity of the two algorithms does not show. Nonetheless, we
chose to keep using the greedy algorithm as it is simpler, theoretically better in
terms of time and space complexity and has been proved to be optimal, see Section
4.2.2.
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The improvements added in ImplSolve3 mainly reduce the number of initial paths
to extend in Solve, which in turn reduces the number of validated paths. Moreover,
ImplSolve3 has a reduced set of positions in the valid position graph, which also
reduces the number of validated paths. As can be seen in Table 7.1, the execution
time is correlated to the number of validated paths. With these improvements, the
number of validated paths can at most be reduced by a factor linear in m.

The improvement of redundant paths added in ImplSolve4 reduces the number
of validated paths by an exponential factor since each discarded redundant path
discards exponentially many extended paths. Hence, the execution time is vastly
improved as expected. Using the two redundant paths, Hourglass and Parallelogram,
one can reduce the execution time even further.

Finally, ImplSolveBest uses babysitting, which turns out to be extremely powerful.
The main reason is that exponentially many paths are ignored when finding the two
valid babysitting wildcard paths, see Section 4.1.5. If any of them is not found,
the instance is quickly deemed infeasible and further valid paths do not need to be
extended. Hence, the number of validated paths is extremely small for I in Table
7.1. Furthermore, if both wildcard paths are found, Solve uses them as initial valid
paths to extend, i.e., ignoring the exponentially many paths of length up to the
length of the wildcard paths used. Note that this improvement makes the previous
improvements affecting the number of initial paths obsolete. It is also worth noting
that infeasible instances may have valid wildcard paths, meaning that valid paths
need to be further extended to deem the instances infeasible. For example, the
infeasible instance

(6, 14, 5, 4, 7, 12, 6, 12)

has valid wildcard paths and can not be deemed infeasible quickly using babysitting.
Interestingly, a large majority of such infeasible instances seem to have equal [a, b],
which tend to be a short interval in the middle of the line, e.g., [3, 3] for m = 7 or
[3, 4] for m = 8. This could be worth investigating further.

The improvement of look-ahead (Section 4.4) is not used in any of the implementa-
tions that we compare. The reason is that look-ahead only has an effect on specific
types of feasible instances while also adding an additional cost of validating the
look-ahead path when solving any instance. As can be seen in Table 7.2, most of
the instances solved in Search are infeasible, which look-ahead is not applicable
to, and the fraction between number of infeasible and feasible instances increases
with m. Therefore, we have chosen not to use look-ahead in our search for critical
instances.

The improvement of validating paths in parallel (Section 4.3) is also not used in any
of the implementations. The reason is that the sequential ImplSolveBest is gener-
ally fast and Search has instead been parallelised, which means that parallelising
Solve would not yield any further improvements since it is used within Search.
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8.1.2 Solving Instances in Search
Table 7.2 shows that, generally, solving instances generated in Search for m ≤ 8
is fast. The average execution time is up to a few milliseconds and the standard
deviations indicate that the variation in execution time is low, which means that the
majority of instances are easy to solve. The maximum execution time is only 138
milliseconds, which is fast. Furthermore, the average execution time does not seem
to increase by much for increasing m but the average number of validated paths is
increasing at a faster pace. The maximum number of validated paths for an instance
is close to the order of 105, which is a large number of paths. For larger m, this
will most likely increase and the execution time become slower so decreasing the
number of paths even further is an important and non-trivial task. However, the
average is significantly less than the maximum and the standard deviation is rather
low, meaning that for the majority of instances, the number of validated paths is
currently not a problem.

8.1.3 Solving Random Instances
Looking at the random infeasible instances in Table 7.3, one can clearly note that
these are solved extremely fast. Compared to the infeasible instances solved in
Search (Table 7.2), the 1000 random infeasible instances are solved faster on aver-
age. This shows that, for an instance, the character of the waiting times affects the
difficulty of solving the instance. The infeasible instances solved in Search gener-
ates instances upwards with waiting times in the range [1, 2m], while the random
instances have waiting times that are randomly chosen in the range [1, 5m], which
most likely gives the instances different character.

Solving random feasible instances with rather large waiting times is notably slower
than solving random infeasible instances, see Table 7.3 and 7.4. This is simply
because feasible instances need to extend paths up to the length of a solution cycle,
starting from babysitting wildcard paths, and when waiting times are large, many
valid paths may exist. Furthermore, extending paths is done breadth-first which
leads to exponentially many paths being validated before finding a long solution
cycle, even though the solution cycle might have a simple form. Also, some infeasible
instances may be quickly deemed infeasible using babysitting, while we currently do
not know of a similar approach for quickly deeming feasible instances as feasible.
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8.2 Results for Search

This section discusses and interprets the results from benchmarking Search. First,
the improvements made to Search are discussed in Section 8.2.1. Second, in Section
8.2.2 the parallel version of Search and its level of parallelism is discussed. Finally,
Section 8.2.3 discusses the impact of increasing the roof value in Search.

8.2.1 Improvements
The execution time of the search implementations is strictly correlated to the num-
ber of instances solved, as can be seen in Figure 7.1. The improvements made to the
basic approach of Search has made a big impact on reducing the number of instances
solved. The improvement of lower bound instances in ImplSearch2 has resulted in
an expected, considerable reduction in the number of instances solved compared
to ImplSearchBasic when increasing m. Compared to ImplSearch2, the imple-
mentation ImplSearch3 has the addition of a pre-processing step before searching,
i.e., generating maximal infeasible instances. This improvement is compelling, as it
solves some instances before-hand to extensively reduce the total number of instances
solved in the search. This can be seen in Figure 7.1b, which for ImplSearch3 includes
instances solved when generating maximal infeasible instances. A concluding remark
is that, while the improvements have made a significant impact, ImplSearch3 still
has a rapid growth in execution time and number of instances solved when increasing
m.

8.2.2 Parallel Search
Analysing Figure 7.2, it is apparent that the maximum speedup seems to be around
20 for both m = 7 and m = 8. From empirical profiling of ImplSearch3, the
proportion of the program that may be parallelized is roughly 98.6% and 99.9% for
m = 7 and m = 8, respectively. Using these proportions, Amdahl’s law gives an
attainable speedup of roughly 72 and 1000, respectively [17]. For 64 threads, which
on our hardware gave the best speedup, Amdahl’s law yields a theoretical speedup
of 34 and 60, respectively. We believe the difference between the actual speedup of
20 and the theoretical speedups depends on a few factors. Amdahl’s law assumes
that the parallel part of the program can be perfectly parallelized [17]. However, for
the implementation of parallel programs, many design decisions affect the execution
time. For example, synchronization, load balancing and the utilization of hardware
resources [17]. In our implementation, we believe one of the main issues is that the
execution time of solving instances is diverse, which can be seen in the results of
Solve in Section 7.1. This may lead to poor load balancing among the threads.
Moreover, the parallel search shares a set of visited instances between the threads
and it is synchronized to prevent multiple threads from solving the same instance.
This will lead to thread contention that may impact the execution time. Note that
the set of visited instances does not necessarily need to be synchronized; it does
not affect the results of Search if multiple threads solve the same instance because
of race conditions. However, it is unnecessary to solve the same instance multiple
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times and could be more harmful for the execution time than synchronization.

8.2.3 Increasing the roof value in ImplSearchBest

As expected, increasing the roof value leads to a rapid growth in the number of
instances solved and thus the execution time, see Figure 7.3. Once again we see how
the number of instances solved is fairly correlated to the execution time. The curve
of the execution time increases slightly faster, which may indicate that the execution
time of Solve slightly increases with m or external factors, such as garbage collection
and executing on a shared resource, may have an impact. However, the main factor
that impacts the execution time of Search seems to be the number of instances
solved. It is interesting to note that for m = 4 and m = 5, the results are equivalent
regardless of r. This is due to the improvement of maximal infeasible instances;
infeasible instances generated in the search are all comparable to some maximal
infeasible instance, meaning that infeasible instances are not incremented all the
way up to r. This is not the case for m > 5 since there are not enough maximal
infeasible instances generated. An interesting observation is that, for m = 4 and
m = 5, the results are equivalent also for r = ∞, or in Java, the maximum integer
value 231−1 [18]. Thus, a conjecture that the execution time of generating maximal
infeasible instances seems to only depend on m and not r. However, this requires
further investigation.

8.3 Critical Instances
As mentioned in Section 7.3, critical instances have been found up to m = 9. It
is worth noting that Patsch may be used to find critical instances for greater m
as well. However, due to a few factors we have decided not to try searching with
larger m. One reason is the accelerated growth in the execution time of Search
when increasing m and r. Secondly, we have been using a shared resource with a
time limit on executing tasks. Finally, due to the time limit of this project, we have
not been able to implement checkpoints in Patsch so that Search can be executed
at non-consecutive intervals.

For m ≤ 5, all critical instances have been found; increasing r further does not lead
to an increase in execution time. The reason is that the improvement of maximal
infeasible instances (Section 5.3) makes the search terminate at some level x, which
does not change when increasing r since no infeasible instances are generated with
a level greater than x, and thus, the search terminates. For m > 5, increasing r
leads to more infeasible instances being generated and the search continues to higher
levels. Analyzing Figure 7.4, the number of critical instances found for m ≤ 7 seems
to have converged for increasing r, while m = 8 seems to be converging. However,
it is important to note that it is currently unknown if there exists more critical
instances beyond the roof values that were tested for m ≥ 6. This requires further
investigation. Our conjecture is that it is unlikely for further critical instances to
appear for m ≤ 7 and higher roof values. For m = 8 it seems that the number of
critical instances will converge around 250.
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Looking at the waiting times of the critical instances found in more detail, an in-
teresting observation can be noted. A majority of critical instances with a large
maximum waiting time has the form

(..., 2, 3, ...)

or its reversal. For example, the instance

(30, 14, 4, 2, 3, 6, 8, 20)

which has a long and complicated solution cycle

(5, 3)(4, 2)(3, 1)(4, 0)(3, 1)(4, 2)(5, 3)(6, 4)(6, 3)(5, 2)(4, 3)(5, 2)−
(6, 3)(7, 4)(6, 3)(5, 2)(4, 3)(4, 2)(3, 1)(3, 2)(4, 3)(5, 2)(6, 3)(7, 4)−
(6, 3)(5, 2)(4, 3)(4, 2)(5, 3)(6, 4)(5, 3).

It is surprising that this instance is critical when it has such a large waiting time of
30. At first glance, one might think that the instance should still be feasible when
decreasing t0. This is also the case for the larger instance

(28, 8, 2, 3, 8, 6, 8, 10, 28)

also with a long and complicated solution cycle

(3, 2)(4, 1)(5, 2)(6, 3)(7, 2)(8, 3)(7, 2)(6, 3)(5, 2)(4, 1)(3, 2)(4, 1)−
(5, 2)(6, 3)(7, 2)(6, 2)(5, 3)(4, 2)(3, 1)(2, 0)(3, 1)(4, 2)(5, 2)(6, 3)−
(7, 2)(6, 3)(5, 2)(4, 1)(3, 2).

Another interesting observation is that some critical instances with x waiting times
are extensions of critical instances with y < x waiting times, for example:

m = 6 : (8, 6, 4, 3, 3, 4, 6)
m = 7 : (8, 6, 4, 3, 3, 4, 6, 8)

or:

m = 8 : (10, 8, 6, 6, 4, 4, 6, 6, 8)
m = 9 : (10, 8, 6, 6, 4, 4, 6, 6, 8, 10)

or:

m = 8 : (12, 10, 8, 6, 4, 4, 4, 6, 8)
m = 10 : (12, 10, 8, 6, 4, 4, 4, 6, 8, 10, 12)

This hints on the ability of using previously found critical instances to find new ones
for larger m.

Further analysis of the critical instances found has not been pursued in this project.
The reason is that the time constraint of this project has put our focus on the search
of critical instances, which we have shown to be a highly difficult task.

As a last remark, it was previously believed that all critical instances were found for
m ≤ 6 [5]. However, using Patsch, further critical instances were found.
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In this project, two algorithms Solve and Search, both with a proof of correctness,
have been developed, improved and implemented in a Java program that we call
Patsch in order to find critical instances of the integer version of the patrolling
problem (IntPUF). We may conclude that our best implementation of Solve is
generally fast at solving instances up to m = 10, but suffer from many paths being
validated for exceptional instances. Moreover, our best implementation of Search
works well for rather small m and r. It is highly parallel and benefits from the use
of multiple threads. However, the biggest issue for Search is the enormous amount
of instances solved.

This project has demonstrated that the search for critical instances is not an easy
task but given the correctness and results of Patsch, it may act as a foundation
for further research. It is worth noting that solving instances of IntPUF using
Patsch may currently be the best alternative, compared to using found critical
instances, since Solve has been easier to realize than Search. To conclude this
project, the research questions are answered in Section 9.1. Finally, Section 9.2
discusses opportunities for improvement for both Solve and Search.

9.1 Research Questions
This section is aimed for answering the research questions in Section 1.5.

1. Can we collect all critical instances and their solutions for m = 7,
m = 8, etc (m as large as possible)?

First of all, using Patsch, the discovery was made that more critical instances
exist for m ≤ 6 than was previously stated [5]. For m ≤ 5, all critical instances
have been found. For 6 ≤ m ≤ 9, it is currently unclear if all critical instances
have been found due to Search being limited by the roof value. However, our
conjecture is that all critical instances for m ≤ 7 have been found.
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2. Can we display solutions to critical instances in a comprehensible
way for further research?

As the task of searching for critical instances turned out to be highly intricate
and due to time limits, the focus has not been on visualizing solution cycles.
One suggestion contributed by Damaschke [5] is to visualize solution cycles
in the position graph by highlighting the edges that are traversed, as done in
Figure 3.4 for the solution cycle (2, 0)(3, 1)(4, 0)(3, 1)(2, 0).

3. How does the search time scale with m?

Currently, the search time of the best implementation ImplSearchBest clearly
scales rapidly for increasing m and r, see Section 7.2.3. However, the sample
size of the benchmarks is too small to accurately claim a time complexity.

4. For any given m, can we search for all critical instances without
limiting the search using an upper bound on the waiting times of an
instance, i.e., a roof value?

No. This is a non-trivial task that currently has not been solved. The difficulty
lies in that one must safely be able to stop the search without missing critical
instances. The roof value fulfills this condition if a safe roof value is known,
which currently is not the case. Future work regarding this task is further
discussed in Section 9.2.2.

9.2 Future Work
This section presents opportunities for improving Solve and Search, which have
not been further investigated due to the time constraint of this project. Finally, the
section ends with discussing how the critical instances found in this project may be
utilized.

9.2.1 Solve

As mentioned in Section 8.1.1 there is an opportunity to investigate the infeasible
instances that can not be deemed infeasible quickly using babysitting. There seems
to be a pattern that may be utilized to understand why instances are infeasible.

Extending valid paths in Solve is done breadth-first. This leads to exponentially
many paths being validated, especially for instances with long solution cycles. There
could be opportunities for adding some depth-first elements here. One example is
look-ahead (Section 4.4), which works well for some feasible instances.

The benchmarking results of Solve indicate that infeasible instances are easier than
feasible instances to solve on average. Therefore, the main focus for improving
Solve could lie on reducing the number of validated paths, especially for feasible
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instances. A straightforward idea, that builds on ideas presented in this project, is
to implement further redundant paths, see Section 4.1.4. The two redundant paths
Parallelogram and Hourglass were not implemented; it could be worth investigating
if these are easy to implement. Another is to use the idea of wildcard paths that
must exist in solution cycles, similar to the idea of babysitting (Section 4.1.5). Also,
an idea is to use a stricter but correct validation of paths that may reduce the
number of paths that are valid. A final idea, not as obvious, is to be able to use
informal decisions when solving instances, such as with good probability guessing
whether an instance is feasible or not before extending paths. This would enable
different approaches to be used depending on the guess.

9.2.2 Search

The main issues with Search are that a safe roof value is currently unknown and
the total number of instances solved is enormous already for rather small m. A safe
roof value needs to be further investigated to ensure that all critical instances have
been found using Patsch. To reduce the total number of instances solved, there
are a few ways to go about.

An observation is that, if an instance I = (t0, t1, ..., tm) is infeasible, then the ex-
tended instance I ′ = (t0, t1, ..., tm, tx) must also be infeasible. This holds no matter
the position of tx in I ′ since adding a station to the line can never help to make an in-
feasible instance feasible. Furthermore, some critical instances may be pre-computed
as extensions of previously found critical instances, as discussed in Section 8.3. One
could therefore use the search results from instances of length y < x when searching
for critical instances of length x.

Another approach for reducing the number of instances solved is to make informed
increments of waiting times. This means that, if knowledge exists about which
waiting times do not need to be incremented, then an extensive amount of instances
may be discarded. This is similar to the idea of maximal infeasible instances (Section
5.3) but instead of pre-processing, the knowledge is used during the search. For
example, when a path is deemed invalid it is invalid because it failed some condition.
This condition may inform on which waiting times do not need to be incremented.

Finally, an idea could be to change the way of searching for critical instances. Gen-
erating instances in order to find critical instances might not be the best approach.
Instead, there may be a possibility of generating cycles in the valid position graph
and from these, generate a minimal instance such that the cycle is valid.

9.2.3 Critical Instances
The critical instances and corresponding solution cycles found in this project should
be analyzed in order to find interesting patterns and understand their structure.
For example, as discussed in Section 8.3, a majority of critical instances containing
a large waiting time has a special form. From knowing patterns about the critical
instances, it may be possible to develop an approach for finding critical instances
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more effectively. The same goes for their solution cycles; there may be typical paths
that appear frequently and these could be utilized to effectively create solution
cycles.
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A
Critical Instances

This appendix contains all critical instances and their solution cycles for successful
m and r.

A.1 m = 4
For m = 4 and r = ∞, there are 8 critical instances. See table A.1 for all critical
instances and their solution cycles.

Table A.1: All 8 critical instances and their solution cycles for m = 4.

Instance Solution Cycle
[6,4,4,1,6] (4,3)(3,2)(3,1)(3,0)(3,1)(3,2)(4,3)
[6,1,4,4,6] (4,1)(3,1)(2,1)(1,0)(2,1)(3,1)(4,1)
[2,2,4,2,4] (2,0)(3,1)(4,0)(3,1)(2,0)
[1,6,4,4,6] (1,0)(2,0)(3,0)(4,0)(3,0)(2,0)(1,0)
[4,2,2,2,4] (4,2)(3,1)(2,0)(3,1)(4,2)
[4,2,4,2,2] (3,0)(4,1)(3,2)(4,1)(3,0)
[6,4,4,6,1] (4,0)(4,1)(4,2)(4,3)(4,2)(4,1)(4,0)
[6,4,1,4,6] (4,2)(3,2)(2,1)(2,0)(2,1)(3,2)(4,2)

A.2 m = 5
For m = 5 and r = ∞, there are 14 critical instances. See table A.2 for all critical
instances and their solution cycles.
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Table A.2: All 14 critical instances and their solution cycles for m = 5.

Instance Solution Cycle
[6,2,2,4,4,6] (5,1)(4,2)(3,1)(2,0)(3,1)(4,2)(5,1)
[1,8,6,4,6,8] (1,0)(2,0)(3,0)(4,0)(5,0)(4,0)(3,0)(2,0)(1,0)
[8,6,1,4,6,8] (5,2)(4,2)(3,2)(2,1)(2,0)(2,1)(3,2)(4,2)(5,2)
[8,1,6,4,6,8] (5,1)(4,1)(3,1)(2,1)(1,0)(2,1)(3,1)(4,1)(5,1)
[8,6,4,6,1,8] (5,4)(4,3)(4,2)(4,1)(4,0)(4,1)(4,2)(4,3)(5,4)
[2,2,6,4,4,6] (2,0)(3,1)(4,0)(5,1)(4,0)(3,1)(2,0)
[4,2,3,4,4,6] (5,2)(4,1)(3,0)(2,1)(3,0)(4,1)(5,2)
[4,2,4,4,2,4] (3,0)(4,1)(5,2)(4,1)(3,0)
[8,6,4,6,8,1] (5,0)(5,1)(5,2)(5,3)(5,4)(5,3)(5,2)(5,1)(5,0)
[6,4,4,2,2,6] (5,3)(4,2)(3,1)(4,0)(3,1)(4,2)(5,3)
[6,4,4,6,2,2] (4,0)(5,1)(4,2)(5,3)(4,2)(5,1)(4,0)
[6,4,2,2,4,6] (5,3)(4,2)(3,1)(2,0)(3,1)(4,2)(5,3)
[6,4,4,3,2,4] (5,2)(4,1)(3,0)(4,1)(5,2)(4,3)(5,2)
[8,6,4,1,6,8] (5,3)(4,3)(3,2)(3,1)(3,0)(3,1)(3,2)(4,3)(5,3)

A.3 m = 6
For m = 6 and r = 7m, there are 48 critical instances1.

A.4 m = 7
For m = 7 and r = 6m, there are 131 critical instances1.

A.5 m = 8
For m = 8 and r = 28, there are 204 critical instances1.

A.6 m = 9
For m = 9 and r = 16, there are 134 critical instances1.

1Available at: https://github.com/radjavi/patsch/tree/main/critical-instances
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