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Multipath mitigation of carrier-phase GPS position estimates from the Helheim glacier:
using new reduced sidereal filtering approach
Master’s Thesis in Radio and Space Science
JOHAN NILSSON
Department of Earth and Space Sciences
Division of Space Geodesy and Geodynamics
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Abstract

The Greenland ice sheet contains a vast volume of water frozen over millennia,
which have in recent decades come under investigation, motivated by the possible
effects of global warming. Recent observations have shown that outlet glaciers on
the edges of Greenland’s ice sheet is melting (retracting) at a unexpected rate, not
perviously seen. So it is of vital importance that we understand the dynamics of the
outlet glaciers on Greenland, such as Helheim, because they play a crucial part in
the predictions of sea-level rise. Because resent investigations have seen an increase
in glacier speed, calving rates, and glacial earthquakes. From this it is clear that
the understanding of the dynamics and the link between these events are still poorly
understood.

On the Helheim glacier we know that glacial earthquakes, calving and glacier
speed up all happen close in time with respect to each other, but due to the multitude
of noise and other signals, the specific earthquake time is hard to resolve. Sidereal
filtering is an effective way to remove and reduce noise (which consists mostly of
multipath) which has periodic behavior that repeats itself from day to day in the
position estimates for high rate GPS. This technique has been uses primarily for
earthquake deformation studies where the sites involved have been assumed to be
stationary relative to each other before the earthquake. But in an environment of an
outlet glacier like Helheim on Greenland this generalization does not hold. There is
not only large motions in the flow of ice (∼30 m/day), there are also significant tidal
and diurnal motions associated with insolation and hydrology.

The purpose of this thesis is to extended the sidereal filtering approach to a glacial
environment with the goal to remove high levels of noise. At the same time the goal
is to preserve the dynamics of interesting periodic signals inherent in the data which
are usually removed by the regular sidereal filtering.

I found that it is possible to extend the sidereal filtering technique to this kind of
a highly variable environment. And that it’s also possible to preserve the dynamics
of periodic signals using this technique.

When applying this new extended technique preserving periodic behavior (re-
duced sidereal filtering) a reduction in noise in the range of 30 − 70 %, a signal
degradation of 18− 20 % and a reduction in variability of 4− 20 %. For the ordinary
sidereal filtering we found a noise reduction range of 45− 90 % and signal degrada-
tion of 75 − 100 % and a reduction in variability between −28 − 85 %. Further I
also found that correlation is a good overall description for repeatability and filter
performance of the sidereal filtering technique in this environment. I also discovered
that the reduction in noise for the reduced sidereal filter also strongly depends of the
stations velocity profile.

Keywords: sidereal filtering, repeatability, correlation, multipath noise, noise reduction,
signal degradation.
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1 Introduction

The Greenland ice sheet contains a vast volume of water frozen over millennia, which have
in recent decades come under investigation, motivated by the possible effects of global
warming. Recent observations have shown that outlet glaciers on the edges of Greenland’s
ice sheet is melting (retracting) at a unexpected rate, not previously seen. So it is of vital
importance that we understand the dynamics of the outlet glaciers on Greenland, such as
the Helheim glacier, because they play a crucial part in the predictions of sea-level rise.

Recent investigations show short-time scale variations in glacier flow speed, a increasing
number of glacial earthquakes and increased calving rates at Greenland’s outlet glaciers.
This suggests that the dynamics behind these events are still poorly understood. So in
2007 an investigation was launched at Helheim glacier (Greenland’s third largest and most
glacial earthquake intense outlet glacier) to better understand the connection between
glacier speed, calving front behavior, and glacial earthquakes [5].

In this cross disciplinary experiment a network of twelve GPS receivers where continu-
ously operating on the Helheim glacier to recored glacier flow speed, and other dynamics
inherent to the glacier. Other sensors where also used, such as water pressure gauges, a
broad band seismometer, and satellite imagery. In order to record calving front behavior,
glacial earthquakes, and to measure the position of the calving front.

-38.7˚ -38.6˚ -38.5˚ -38.4˚ -38.3˚ -38.2˚ -38.1˚ -38˚

66.3˚

66.35˚

66.4˚
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66.6˚

10 m/day
reference sites
ice sites
relocated ice sites

Helheim GPS network, 2007

Figure 1.1: Network of GPS stations on the Helheim glacier, where yellow vectors indicate
average GPS station velocity, red dots are rock-based reference stations and black dotted
lines shows the position of the calving front of the years 2001 and 2007. (Courtesy of M.
Nettles at Lamont-Doherty Earth Observatory of Columbia University)

On the Helheim glacier we know that glacial earthquakes, calving and glacier speed up,
all happen close in time with respect to each other, but due to the multitude of noise and
other signals (periodic and non-periodic) the specific earthquake time is hard to resolve.
This makes it hard to distinguish between what causes what, thus the only thing that can
be said is that they occur close in time to each other.

Sidereal filtering is an effective way to remove and reduce noise (mostly multipath)
which have periodic behavior that repeats itself from day to day in the position estimates
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for high rate GPS. So extending the sidereal filtering technique to glacial environments
would be very useful in the sense that multiple signals and high noise levels makes accurate
timing difficult.

This technique has been uses primarily for earthquake deformation studies where the
sites used have been assumed to be stationary with respect to each other before the earth-
quake. However in an environment of an outlet glacier like Helheim this generalization does
not hold. There is not only large motions in the flow of ice (∼ 30 meter per day), there
are also significant tidal and diurnal motions associated with insolation and hydrology af-
fecting the position estimates. What makes sidereal filtering so effective in reducing noise
also gives it an inherent draw back. This approach is not only good at reducing noise, it is
also good at reducing all other common mode signals in the data (mostly periodic). This
posses a problem for the glacial environment which contains a lot of periodic (repeating)
signals that are of interest for the investigation.

Writing GPS processing software that can detect and remove outliers and cycle slips
is in general not easy. If for example a outlier detection script is to harsh it can reduce
and remove the dynamic structures in the data. Further cycle slips are not always perfect
integers or they may also be real jumps in the data misinterpreted by the cycle slip detector.
So the best detector is still the human brain which can intelligently and rationally interpret
data. Therefore in order to visually determine what is an outlier or a cycle slip there is
a need to build software packages that can give the user the opportunity to easily browse
through and edit large data sets.

1.1 Purpose

The goal of this thesis is first to investigate if it is possible to extend the sidereal filtering
technique to a highly dynamic and kinetic environment such as an outlet glacier. But also
to go a step further and try to preserve the dynamics of the periodic signals in the geodetic
time-series, usually filtered away by the regular sidereal filtering. we will characterize the
filter performance by:

• modeling the reduction of the standard deviation (RMS) to determine governing
parameters.

• reduction of multipath noise.

• degradation of geodetic signals.

The second goal of this thesis is to develop a graphical user interface in MATLAB for
GPS data editing, called GRASP (GPS residual AnalysiS Program). The purpose is to help
the user to detect and remove outliers and cycle slips from the position estimate residuals
from BAKAR, see chapter 7. A program developed for GPS kinematic positioning of
single-frequency carrier-phase GPS data, written by James. L. Davis and Pedro. Elosegui.

1.2 Limitations

This study will be limited to the dual frequency position estimates from one specific site on
Helheim glacier, which are converted into along flow position, see [5]. Data were collected
with a 15 s sampling interval in 2007 from (GPS-days) 186 – 205 (21 day time series). The
baseline was formed using kinematic relative positioning, see [5], using the IS22 site (based
on the glacier) which was differenced against a rock bases reference station. Ionospheric
and other baseline-related effects are assumed to be negligible due to short baseline, less
than 30 km [3].

2 , Earth and Space Sciences, Master’s Thesis 2011:08



For this investigation only one sidereal time shift was considered when designing the
sidereal filter.

1.3 Approach

The outline of this thesis can be divided up into two parts. Part one includes software
and processing script development and part two entails using and applying the developed
scripts and software on geodetic time-series and analyzing the results.

The initial and first step of this thesis is going to be the design of the graphical user
interface in MATLAB, called GRASP. When this is achieved scripts and functions in
MATLAB will be written to make it possible to implement the sidereal reduced sidereal
filter to geodetic time-series.

The approach to extend the sidereal filter (SDF) to form the reduced sidereal filter
(RSDF). This will be done in the following manner: First the data sets will be de-trended
to remove all rates (∼ 20 – 30 per day). After this is done the sidereal filter will be
constructed from two consecutive days of data, with a specific sidereal time shift. Then a
digital filter will be designed to remove specific frequency bands in the sidereal filter. The
digital filter is then applied to the sidereal filter. And this filtered sidereal filter (reduced
sidereal filter) is then applied to the original data.

To estimate and predict filter performance models for both the SDF and RSDF are
developed to determine the reduction in RMS. Then the reduction model will be com-
pared with the observed reduction in RMS, this to validate and help characterize filter
performance.

Then the observed results form the RSDF-approach and SDF-approach will be analyzed
to determine the effects on noise reduction, signal degradation and reduction in the RMS
of the time series.

2 Global Positioning System

2.1 Introduction

GPS started to be developed in the late 1960 by the US Department of Defense in collab-
oration with the US Navy and Air Force and was approved in 1973. The first satellite was
launched in 1978 and the GPS system was considered operational in 1994.

The GPS system consists of a satellite constellation of 24+ satellites in Medium Earth
Orbit (MEO) around the Earth, at an altitude of 20 000 m, an inclination of 55 degrees and
a orbital period of 12 hours. The satellite constellation is divided into six orbital planes
with a maximum of four satellites in every plane. The satellite constellation is configured
so there always will be four satellites above the horizon at an elevation angle of at least 5
degrees which will give a total real time coverage of 99.9 %

The fundamental navigation principle is to measure what is called pseudo-ranges, be-
tween the user and the GPS satellites. To be able to solve for the coordinates of an receiver
there must be at least four satellites above the horizon to triangulate the position. Using
the coordinate reference frame called WGS 84 and known satellite coordinates the user
position on the earth can be determined. The GPS satellites broadcast two carrier fre-
quencies in the L-band (L1 = 1575.42 MHz and L2 = 1227.60 MHz). Modulated on these
two frequencies are the navigation signals and navigation and system data. The signals
are modulated with the so called pseudo-random noise sequence or the PRN where the
navigations signals are separated into two codes (signals), the P-code and C/A-code. The
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P-code is more precise than is the C/A code and are modulated on both frequencies in-
stead of the C/A code which is only modulated on the L1 frequency. GPS satellites can
be distinguished by their PRN carriers, every satellite has its own unique PRN number,
between 1 – 37. Each satellite has four atomic clocks to be able to keep the high frequency
standards that are needed to have a precise time base, with an accuracy of 1 · 10−12 to
1 · 10−13 [1].

The life time for GPS satellites are set by the U.S. Air Force to be around 6 – 10
years. The satellites are controlled by the control segment which task is to monitor the
GPS system, determine the satellites trajectories, and clock parameters, upload data to
satellites and if needed to do orbital maneuvers. This is done by five ground stations spread
evenly around the equator that are in 24 h contact with the satellites that are above the
station’s horizon. The data are then linked to the main facility in Colorado Springs, USA.
Where all the orbital and clock parameters are solved and predicted for the near future an
then uploaded again to the satellites. These updates have the function of synchronizing
the atomic clocks within a few nanoseconds on every satellite and to adjust the internal
orbital model of each satellite.

2.2 Signal Structure

There are two types of signals transmitted from the GPS system, the C/A-code (Coarse/Ac-
quisition) and the P-code (Precision). The P-code is not transmitted, instead its cross-
correlated with an encryption code W and becomes the Y code. It’s the Y-code that is
transmitted from the satellite, this is called the P(Y)-code. The P(Y) code is not available
for civilian users. Its open only for the US military and it’s allies. For civilian users only
the C/A code is available and used for positioning.

Table 2.1: GPS carrier frequencies, where 10.23 MHz is the fundamental frequency of the
atomic clocks [1]

L1 = 1575.42 MHz 154 × 10.23 MHz
L2 = 1227.6 MHz 120 × 10.23 MHz

The receiver can distinguish between the different signals from the satellites because
GPS uses code division multiple access (CDMA) techniques where a low bit rate message
is encoded with with a high rate pseudo random sequence (PRN) that is different for every
satellite. The PRN is generated from 1-37 where 1-32 are the different and unique codes
for every satellite and the rest are reserved for ground transmission.

The P-code is generated at a rate of 10.23 Mb/s and each satellite is assigned a portion
of this code. The portion of this code repeats itself every 7 days and the total code is
37 weeks long, after 37 weeks it is renewed. All satellites transmit there own portion of
the P-code on the two same frequencies this means that the receiver has to identify each
satellite. This is solved by, as said before, assigning each satellite with its own particular
week of the 37 week code. The receiver now knows which satellite has the different week
and can recognize it by the navigation message and the particular GPS week which has to
be very accurate, but this is usually found in the C/A code.

The C/A code is generated with a rate of 1.023 Mb/s, thus 10 times slower then the
P-code, but the identification of the C/A-code is much simpler than the P-code and easier
to acquire due to that it repeats every millisecond. Every satellite broadcasts its own
unique PRN code which is 1023 bits long and which repeats every millisecond.

4 , Earth and Space Sciences, Master’s Thesis 2011:08



The GPS navigation message is transmitted at a frequency of 50 Hz and contains a
master frame of 25 frames, each frame is 1500 bits long and divided into five subframes,
which are comprised of 10 words. Each word is 30 bits long which makes the whole
navigation message 37500 bits long and at a bit rate of 50 bps it takes 12.5 min to transmit
and receive.

Table 2.2: GPS-codes [1]

Parameters C/A-code P-code Navigation Message
Code rate 1.023 Mb/s 10.23 Mb/s 50bps
Code length ≈ 300 m ≈ 30 m ≈ 6000 m
Repetition 1 ms 1 week N/A
Code type 37 unique codes 37 unique week segments N/A
Properties easy to aquire more accurate time ephemeris

Below is the full signal structure of the GPS-satellite signal, where P (t) is the P-code,
C(t) is the C/A code, W(t) is the encryption code and D(t) is the navigational message,
modulated on the two carrier frequencies L1 and L2 [1].

L1(t) = a1P (t)W (t)D(t)cos(f1t) + a1C(t)D(t)sin(f1t) (2.1)

L2(t) = a2P (t)W (t)D(t)cos(f2t) (2.2)

The navigation message contains five subframes that all contains different information.
Information in subframe 1 – 3 never change but 4 – 5 does. Subframes 1 – 3 contains all
the information about the satellite such as clock corrections, orbit parameters and such.
Subframes 4 – 5 contain atmospheric corrections for troposphere and ionosphere. The
satellite almanac contains all the information about the other satellites in orbit and their
navigation messages.

To be able to calculate the position of the user the receiver acquire and track the
satellites using their C/A and P-codes (using their unique PNR code). To do this the
receiver generates its own copy of the codes for the different PRN’s internally and then
uses the auto correlation to find and lock on to the satellites that are currently available
over the horizon.

When the receiver finds that full correlation is achieved the receiver locks on to the
signal and starts to measure the time delay between the received and generated code
segment. The code is time stamped when it leaves the satellite with the satellite clocks
own time. Then the difference is compared to the receivers clock, which makes it possible
to find the pseudo-range.

Table 2.3: GPS satellites transmitted codes and carriers

Category Observable
Carrier L1, L2
Codes P1, P2, C1 and C2
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2.3 GPS Observables

GPS positioning is based on a very simple relation which is used in every day life. To
find the position we only need to calculate the distance (slant range) between the receiver
and the satellite and use several satellites to triangulate the position. Distance from the
satellite is calculated using the simple relation:

Distance = speed of light · travel time

This is a simple assumption and in real life we will have to correct for propagation delays
of the signal due to the atmosphere, orbits and geometry. These will be further explained
and introduced in the following sections.

The pseudo-range and carrier-phase observables will now be presented.

2.3.1 Pseudo-range Observable

Pseudo range measurement is described by the following simplified model where the ob-
servation to satellite S can be written as [3]:

P S = (T − T s)c (2.3)

where t is the time in the receiver and T is the satellite transmission time and c is the speed
of light in vacuum. This is not the true measure of distance, to model the true distance
in the simplified case we have to take into account errors in accuracy both in the receiver
clock and in the satellite clock.

T = τ + dt (2.4)

T s = τ s + dts (2.5)

where τ is the true time and dt is the introduced clock bias for both the receiver and the
satellite clock. Now substitution gives the pseudo-range as a function of true time and
clock bias.

P (t)S = ρ(t, tS)S + c(dt− dts) (2.6)

where ρ(t, tS)S is, the true distance/range from the receiver at the specific epoch t compared
to the satellites transmit time. To compute ρ we can use basic geometry and calculate
the euclidian distance using a known satellite position in cartesian coordinates (x, y, z)
in an Earth centered reference system. Excluding all other propagation errors and the
uncertainty in the satellite orbit coordinates. We get the following relation [3]:

ρS =
�

(x− xS)2 + (y − yS)2 + (z − zS)2 (2.7)

Here the time dependence have been excluded for easier notation. This system contains
four unknowns (x, y, z, τ). This means that we have to use four satellites to solve the
system of equations.

Before we have only taken into account clock bias in the model now we have to expand
it to contain atmospheric propagation delays and observational noise. This is done by
introducing delays due to the troposphere Z, ionosphere I errors due to multipath εm and
receiver noise εp.

P (t)S = ρ(t, tS)S + c(dt− dts) + I + Z + εp + εm (2.8)
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Now we want to generalize the notation to be able to handle multiple satellites and
receivers. This is done by introducing the subscript k and j, where k is the receiver and
j is the satellite, excluding the time dependence we get the following final expression for
the pseudo-range:

P j
k = ρjk + c(dtk − dtj) + Ijk + Zj

k + εp + εm (2.9)

2.3.2 Carrier-Phase Observable

Carrier phase measurements is when we use the carrier phase of the signal to measure the
range. This is done by measuring the number of received cycles received by the receiver
from the satellite. The measurement relation is based on the difference in phase cycles
generated by the replica in the receiver and the actual received number of cycles from the
satellite. This difference is usually called the carrier beat phase or just carrier phase [3].

φB = φreplica − φsignal (2.10)

This model is not fully complete because we can always add a arbitrary (integer) number
of cycles to the carrier beat phase and construct exactly the same signal.Thus we can
construct the following relation to describe the received phase [3]:

Φ+N = φreplica − φsignal (2.11)

where Φ is the recorded actual phase and N is the number of added integers. N is usually
called the phase ambiguity and is an unknown constant that have to be solved for. If the
receiver should lose count of the number phase changes we have what is called a cycle
slip, which is similar to the phase ambiguity. However a cycle slip is not a constant for all
measurements. It is introduced as an integer jump at a specific epoch (time).

Thus a new relation can be written to describe the observable, that includes the phase
ambiguity [3]:

Φ(T )S = φ(T )− φ(T )S −NS (2.12)

where Φ(T )S is the observed phase from the satellite and φ(T ) is the replicated phase and
φ(T )S is the incoming phase from the satellite. We can rewrite this with the following
relation to relate clock time to phase φ, nominal phase φ0, the fundamental frequency f0
and the time T :

f0T = φ− φ0 (2.13)

Thus with this we can now substitute and rewrite the phase terms with clock times, to
later determine the range.

φ(T ) = f0T + φ0 (2.14)

φS(T S) = f0T
S + φ0 (2.15)

This forms the following new phase observable [3]:

ΦS(T ) = f0(T − T S) + φ0 + φS
0 −NS (2.16)

By generalizing the observational model we use the following notation:

Φj
k(T ) = f0(Tk − T j) + φk,0 + φj

0 −N j
k (2.17)

Then a conversion from cycles into range has to be done. This is done by multiplying
with the carrier wavelength λ0 and constructing a range measurement L(T ) [3].
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Lj
k = λ0Φ

j
k (2.18)

Lj
k = ρjk + c(dtk − dtj) + Zj

k − Ijk + λ0N
j
k (2.19)

Notice here the (−) sign in front of the ionospheric term. It means that there is actually
a phase advance instead of a delay.

2.4 Single Differencing

The purpose of the single differencing technique is to eliminate the satellite clock bias.
Doing this the accuracy if the observation can be improved. Consider two receivers A and
B observing one satellite j using the carrier phase observations [3].

Lj
A = ρjA + c(dtA − dtj) + Zj

A − IjA + λ0N
j
A (2.20)

Lj
B = ρjB + c(dtB − dtj) + Zj

B − IjB + λ0N
j
B (2.21)

By taking the difference between the two phases we will get the single difference phase
∆Lj

A.
∆Lj

AB = Lj
A − Lj

B (2.22)

∆L(t)jAB = ∆ρ(t)jAB + c∆dt(t)AB +∆Z(t)jAB −∆I(t)jAB +∆λ0N(t)jAB (2.23)

It is seen that the satellite clock error term is removed and that all other terms in the
observational equation have been differenced and are therefore smaller. For short baselines
between receivers both the ionospheric term and the tropospheric term can be considered
equal and will cancel out. This can be applied for baseline lengths for less than 30 km
(troposphere) and between 1 – 30 km (ionosphere), depending on ionospheric conditions.
[3] This makes it possible for us to reduce the equation to:

∆L(t)jAB = ∆ρ(t)jAB + c∆dt(t)AB +∆λ0N(t)jAB (2.24)

From this it can be seen that many error sources have been mitigated or reduced, but
to the cost that when taking the difference between the two receivers only their position
relative to each other can be estimated.

2.5 Double Differencing

The purpose of double differencing is to eliminate aslo the receiver clock bias. This is done
by differencing two single differenced observables, using A and B as index for two receivers
and j and k as observed satellites [3]:

∆Lj
AB = ∆ρjAB + c∆dtAB +∆Zj

AB −∆IjAB +∆λ0N
j
AB (2.25)

∆Lk
AB = ∆ρkAB + c∆dtAB +∆Zk

AB −∆IkAB +∆λ0N
k
AB (2.26)

Then the double differencing is performed by taking the difference of the two single
difference observables, which gives the following double difference phase [3]:

∇∆Ljk
AB = ∆Lj

AB −∆Lk
AB (2.27)

∇∆L(t)jkAB = ∇∆ρ(t)jkAB +∇∆Zjk
AB −∇∆IjkAB +∇∆λ0N(t)jkAB (2.28)
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Where the super-script (jk) identifies that two satellites has been differenced and ∇
emphasizes that a double difference of two point in the sky has been performed i.e two
different satellites [3].

Using double difference has both positive and negative effects: In general compared to
single differencing, modeled atmospheric errors are generally increased by a factor of 40
% [3]. Random errors due to multipath and measurement noise is also increased by using
this technique. The gain of this technique outweigh these factors, because the size of the
clock bias, that we remove, is a much larger errors than these negative increase in the other
errors.

2.6 Error Sources

Understanding and correcting for error sources in GPS is important in order to increase
the accuracy of the derived results. The following section will describe the different error
sources and how they affect the measurements and how they may be eliminated or reduced.

2.6.1 Relativistic effects

Einstein’s theory of relativity both general and special will affect the clock of the satellite,
due to the satellites velocity in orbit, the change in gravitational potential which is tied to
the slight eccentricity in orbit.

To compensate for relativistic effects the satellite’s clock frequency is generated slightly
lower, this to ensure that the received frequency at the receiver will be the true frequency.
The change in eccentricity of the satellite orbit can be compensated for in the receiver by
using orbit parameters from the navigational message [1].

10.23 · 106 · 4.567 · 10−9 = 10.22999999545MHz (2.29)

There is also another relativistic effect that affects the accuracy of the position, this
is the Sagnac effect, which is induced by the rotation of the earth during the time of the
signal transmission. When the receiver solves for the position it solves for a position with
a slight offset from the true position due to extra or smaller propagation time. This can
induce errors up to 30 m, and is usually compensated for by different techniques. The
most common is techniques is that receiver access the time of transmission and subtracts
the pseudo range divided by the speed of light from the receivers time marker for the
measurement (this after the clock corrections are done). After this the positions from all
satellites are calculated and rotation compensated for, by a rotational matrix.

2.6.2 Satellite Clock Errors

All GPS satellites contain four atomic clocks that control everything from signal generation
to time stamping the signal. These clocks are highly stable and independent from each
other, but they will drift over time due to there inherent structure (nothing is perfect) and
age. An offset of just 1ms translates into a accuracy error of about 300 km. The clock
errors contains both error in clock drift, relativistic effects, frequency drift clock bias.

The clock error is predicted and overseen by the ground control. They download these
clock parameters and tries to predict them, the corrections are then uploaded again to the
satellite so they can be transmitted via the navigational message to the receiver that can
use them to compensate for the clock errors. This is not prefect, clocks can be modeled
with white noise which is inherent extremely hard to predict, so there will always be a
residual error in the time measurements from the satellite, this has an affect on accuracy
of about 0.3 – 4 m depending on age of the data and type of atomic clocks that are used.
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2.6.3 Satellite Orbital Errors

Satellites are positioned accurately in orbit but due to gravitational affects from the sun,
moon, solar radiation pressure and orbital maneuvers a slight shift in orbit occurs. This
slight change in orbit affects the orbital parameters that determines the orbit and thus its
position in relation to the receiver (range). If uncompensated for this will give rise to an
error in accuracy. This is compensated for by regularly checking the satellites orbits and
sending up corrections to the satellite which transmits them in the navigational message
down to the receiver.

This correction is usually computed using a method called kalman filtering, which
calculates the satellites future position using its old position, the resulting error is in the
range of 2 meter.

2.6.4 Multipath Effects

Multipath affects both the pseudo-range and the carrier phase measurements. This effect
comes from the fact that the GPS signal may travels multiple paths to the receiver due to
reflections from other structures or natural geometry. When the reflected signals reach the
receiver they can cause faults or incorrect correlation peaks in the receiver.

Multipath effects both P and C/A code and produces cycle slips in the data set when
the phase lock is lost. The multipath effects on P-code is about a factor of two larger than
on C/A - code observations [4]. Multipath influence on carrier phase observations produces
a phase shift in the signal and introduces a periodic bias of several centimeters into range
observations [4]. This can be modeled roughly as:

AD = A cos(ΦD) (2.30)

AR = αA cos(ΦD + Φ) (2.31)

Where AD and AR are the amplitudes of the direct and the reflected signals, α is a damp-
ening factor (0 < α < 1) and finally ΦD and Φ is the phase position of the reflected signal
and phase shift with respect to the direct signal.

Using superposition we can write these two signals as one signal.

Asignal = AD + AR = A cos(ΦD) + αA cos(ΦD + Φ) = βA cos(ΦD +Θ) (2.32)

This by using AD,max = A and AR,max = αA and where Θ is the multipath error in the in
the carrier-phase observations.

Θ = arctan

�
α sin(Φ)

1 + α cos(Φ)

�
(2.33)

The signal amplitude is described as follows:

B = βA = A
�
1 + α2 + 2α cos(Φ) (2.34)

By analyzing these equations we can find that the maximum error when using single
frequency measurements, L1, is about 5 cm. For linear combinations (L1-L2) this can be
larger or smaller due to changing satellite geometry.

Multipath can be reduced by knowing certain aspects of the signal characteristics. For
example the reflected signals are much weaker in power when they reach the receiver than
the signal that have travelled directly and can thus be filtered away by the receiver. Also
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the GPS-signal is right-hand-polarized, the multipath reflections often becomes mainly
left-hand-polarized when reflected from surfaces and can also thus be surpressed. An other
possibility to reduce the effect is to chose the right geometry of the receiving antenna, such
as introducing a ground plane or use a co-centric receiving antenna.

2.6.5 Ionospheric Effects

When a signal propagates through the ionosphere both the modulation of the signal and
the carrier is affected, which will introduce a phase advance (negative delay) and a code
delay in the signal which affects the measured range from the satellite to the receiver.

The magnitude of the delay is proportional to the electron density in the ionosphere.
The electron density changes with the number of dispersed electrons released when gas
ionizes due to solar radiation. This density is often integrated in order to obtain the total
electron content (TEC).

The ionosphere changes daily and yearly depending on the sun’s activity, which ionizes
molecules and releases electrons into the atmosphere. This also changes the accuracy of
the GPS range measurements which will be further discussed later on in this section.

The satellites elevation angle seen from the receiver is also important for the measure-
ments. If the satellite is at a low elevation angle the signal has to propagate further through
the ionosphere and will be more affected by it.

The ionosphere has a property that helps us combat it. It is frequency dependent
(dispersive). This means that it will affect different frequencies by introducing different
delays, which also means that the code and carrier phase measurement will be affected
differently at the two carriers L1 and L2. The carriers phase will be advanced and the code
modulation will be delayed.

To sum up the ionosphere affects higher frequencies less than lower frequencies. This
gives us the tools to eliminate or reduce it, by using linear combinations of the two fre-
quencies, which will reduce the influence by the ionosphere by 99.9 % [1]. This is done in
the following way [1]:

Ijk =
40.3

cf 2
TEC (2.35)

where ∆L is the delay of the ionosphere due to its total electron count and frequency.

L1 = L3 +∆L1 ; L2 = L3 +∆L2 (2.36)

f 2
L1 × L1 − f 2

L2 × L2 = (f 2
L1 − f 2

L2)× L3 (2.37)

Using linear combinations we can rewrite the equation and solve for L3, which has almost
no ionospheric influence [1].

L3 =
f 2

L1

(f 2
L1 − f 2

L2)
L1 −

f 2
L2

(f 2
L1 − f 2

L2)
L2 = 2.5L1 − 1.5L2 (2.38)

2.6.6 Tropospheric Effect

The troposphere is the lower part of the atmosphere. The troposphere is a non-dispersive
media which means that it has no frequency dependence. This means that the troposphere
will affect both the code and the carrier phase measurement in the same way by delaying
them the same amount.

The delay in the troposphere is a function of the refractive index which depended on
local conditions such as temperature, pressure and relative humidity. If not compensated
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for this will induce an error of about 2.4 m in the zenith direction. Thus it can be expressed
by integrating over the signal path through the troposphere. [1]

Z =

�
(n− 1)ds = 10−6

�
N tropds (2.39)

where n is the refractive index and N trop = 10−6(n− 1) is the refractivity.
The refractive index is often modeled as dry and wet components (hydrostatic, non-

hydrostatic) or ZHD and ZWD. The ZHD component stands for about 90 % of the total
delay in the troposphere. ZWD arises from the water vapor in the atmosphere, this is
usually more complicated to model due to the fact that the amount of water vapor in
the atmosphere varies locally. But this can be expressed using the Hopfield model (1969),
where the dry and wet contribution are separated accordingly [7].

N trop = N trop
zhd +N trop

zwd (2.40)

This can then be expanded into the following model, introducing both a vertical height
dependance and a elevation dependent mapping functions. [7]

Z =
10−6

5
[N trop

zhd,0hzhdmzhd(ε) +N trop
zwd,0hzwdmzwd(ε)] (2.41)

where h is the height in meters and m(ε) is the elevation dependent mapping function.
The mapping functions have a geometric interpretation, depending on the zenith angel of
the signal, as follows [7].

mzhd(ε) =
1

sin
√
ε2 + 6.25

(2.42)

mzwd(ε) =
1

sin
√
ε2 + 2.25

(2.43)

where ε is the elevation angle of the line of sight path.

2.6.7 Satellite Geometry

The satellite geometry is often refereed to as the dilution of precision which is a value
describing the satellite geometry. Because the satellite geometry is a very important factor
for the accuracy for the position derived from the pseudo-range observations. This comes
form that the geometry changes with time due to the relative motion of the satellites in
orbit. The satellite geometry can be described using what are called DOP-factors which
are simple linear function obtain from the diagonal elements of the co-factor matrix of the
adjusted position parameters from the position solution.

So the accuracy of the GPS measurements can be summarized into these two points:

• Accuracy of single pseudo-range measurement, expressed by the standard deviation.

• The geometric distribution of the satellites in use.

The observed pseudo-range accuracy is related to the accuracy of the final observations by
the scalar DOP factor. Where a good geometry should be mirrored by a low DOP value.

σ = DOP · σobs (2.44)
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The different DOP factors can be computed using the co-factor matrix, which is built
from the design matrix of the position adjustment solution, accordingly:

QX = (ATA)−1 =





σ2
xx σxy σxz σxt

σyx σ2
yy σyz σyt

σzx σzy σ2
zz σzt

σtx σty σtz σ2
tt





where X = {xk, yk, zk, tk}. There are different types of DOP-factors which describes ac-
curacy in different dimensions. They are taken accordingly from the diagonal elements of
the co-factor matrix:

Table 2.4: Different DOP-factors for different dimensions.

GDOP =
�

σ2
xx + σ2

yy + σ2
zz + σ2

tt Geometric dilution of precision

PDOP =
�

σ2
xx + σ2

yy + σ2
zz Position dilution of precision

TDOP =
�
σ2
tt Time dilution of precision

2.6.8 Receiver Noise and Clock Error

There is an error in the receiver clock that generates the replica signal. This error varies
with the receiver quality and with the frequency standard, but can be compensated for
using the differencing technique. The receiver also have internal noise the comes from the
electronics. They are quite small, in the range of, for code measurement about 1 % of the
wavelength and for carrier phase measurement an error of about 1 mm.

2.7 Geophysical Model and Reference System

In the satellite positioning systems we have two kinds of coordinates systems, the first one
being an inertial system, the second a rotational system. To understand the navigation
problem we have to define coordinate systems so we can uniquely define positions in spacial
coordinates where both the state of satellite and the receiver can be represented.

For the satellite an inertial frame of reference is the best. This frame is called the
Earth Centered Inertial coordinate system or ECI. The system describes the motion of the
satellit in relation to the Earth, where the horizontal-plane coincides with the equatorial
plane and the x-axis in a specific direction in the celestial sphere. The z-axis is taken to be
the normal to the horizontal-plane (the xy-plane) thus in the direction of the north pole,
the y-axis is taken in order to form a right handed coordinate system. This system is not
totally inertial, due to the sun’s and the moon’s gravitational pull and because of the earth
rotation our planet is not a prefect sphere, it is an ellipsoid. So the system wobbles in
relation to the x and z-axis definitions of direction. This can be corrected by introducing a
direction in time, which means that in our case the x-axis is defined to point at the vernal
equinox at a precise instant in time or epoch, which is 12:00 hours UTC or the 1:st of
January 2000.
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For the receiver it is more convenient to use a coordinate system that rotates with the
earth, this makes it easier to calculate the latitude, longitude, and height parameters. This
is called the Earth Centered Earth Fixed coordinate system, or ECEF. In this system the
(x, y, z) axis rotates with the earth and are no longer fixed in an inertial frame. The axes are
defined almost as before, horizontal-plane in the equatorial plane, +x-axis at the 0 degree
longitude, +y-axis at the 90 longitude, and the z-axis as the normal to the horizontal-
plane, thus in the direction of the geographical north pole. The geophysical model used
for GPS is called the World Geodetic System 1984 (WGS 84).This model contains detailed
information about the Earth’s gravitational irregularities. It is based on the fact the the
Earth is an ellipsoid and modeled after that. However there are many models that describe
the gravitational field of the Earth, WGS 84 is just one of them. The newest model is the
International Terrestrial Reference Frame (ITRF). This model includes atmospheric and
oceanic loading and it models all the earth mass, not just the bedrock. It also has the
feature of no-net-rotation. Which means that all the tectonic plates are moving but when
compared to the whole picture they have a no net rotation.

To transform between the inertial and the rotational frame a rotation matrix is applied,
that compensates for the different factors between the two coordinated systems.

xi = P ·N · S ·W · xt (2.45)

The parameter P is the Precession, N the nutation, S the spin, and W the polar motion.
In general it is always necessary to transform the position that is solved from the GPS

observations into a local or national reference system. There are not just international
reference systems. There are also national ones differing from each other by centimeters to
decimeters. For the usual GPS applications this do not introduce a problem. The different
system are connected to each other, many looking very much alike. The WGS 84 reference
frame is for example connected to the ITRF system.

2.8 Point Positioning using Pseudo-range

To solve the point position problem we start by linearising the pseudo-range observable.
We use the least square approach to solve for the point position. We start to define the
actual observations as a model with added noise as follows [3]:

Pobserved = Pmodel + v (2.46)

Once this is done we linearise the model using a Taylor expansion, ignoring all higher order
terms [3].

P (x, y, z, τ) = P (x0, t0, z0, τ0) +∆x
δP

δx
+∆y

δP

δy
+∆z

δP

δz
+∆τ

δP

δτ
(2.47)

where ∆(x0, y0, z0, τ0) are provisional parameters. [3]

∆x = x− x0 (2.48)

∆y = y − y0 (2.49)

∆z = z − z0 (2.50)

∆τ = τ − τ 0 (2.51)

From this we can define the residual observations ∆P to be the difference between the
measured observables and the computed observables from the model [3].
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∆P = Pobservable − Pcomputes (2.52)

or

∆P = ∆x
δP

δx
+∆y

δP

δy
+∆z

δP

δz
+∆τ

δP

δτ
+ v (2.53)

This linearised system can then be generalized for multiple observations using matrix
notation, as follows [3]:

b = Ax+ v (2.54)

where b is the residual observations, A is the linear design matrix, containing the partial
derivatives with respect to each parameter, x is the unknown correction parameters that
we want to solve for, and v is the noise terms.

To solve this linear system we introduce the least square concept. The estimated resid-
uals are defined as the difference between the observed residuals and computed residuals
from the model. Then we can write the linearised observation equations for the estimated
residuals as:

v̂ = b̂−Ax̂ (2.55)

The least square solution can be computed by varying the value of x̂ until the function
of the squared residuals is minimized [3]:

J(x̂) =
m�

i=1

v2 = (b−Ax)T (b−Ax) (2.56)

The solution is obtained when when J(x̂) becomes stationary when varying x̂, since
the derivative of the function should be zero. Rewriting this function we can obtain the
system of the so called ”normal equations” and the solution of the normal equations is as
follows [3]:

x̂ = (ATA)−1AT b (2.57)

2.9 Relative Positioning using carrie phase

The objective of relative positioning is to determine the coordinates of a unknown point
with respect to a known point. This is done by forming what is called a baseline vector
between the two points.

�XA = �XB + �BAB (2.58)

Thus the baseline vector becomes:

�BAB =




XB −XA

YB − YA

ZB − ZA



 =




∆XAB

∆YAB

∆ZAB
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2.9.1 Kinematic relative position

In this type of relative positioning we keep one of the stations fixed while the other one
moves and its position has to be determined at different epochs. This concept is built
around the notion that the geometric distance is changing with the motion of the sta-
tions/receivers and can be described by the same true range description formulated in the
pseudo-range and carrier phase sections [1].

ρjB =
�

(Xj(t)−XB(t))2 + (Y j(t)− YB(t))2 + (Zj(t)− ZB(t))2 (2.59)

The kinematic case can be described by the the following true range description where
a time dependence due to motion has has been introduced in the coordinates. Where the
j is the satellite and k = B is the station point.

2.10 Linear dependence of observations

We have in previous sections described single and double difference (SD and DD) techniques
of observations to reduce the impact of inherent error sources in the observations. However,
these techniques give rise to some considerations themselves. One of these are linear
dependence of observations which comes from that there are more possible ways to combine
the observations than there are actual observations.

We can form many of these double difference combinations by just differencing other
double difference pairs. This can be demonstrated by using three satellites and two receivers
(j,k,l and A,B) which forms the following DD-pairs [3]:

Ljk
AB = (Lj

A − Lj
B)(L

k
B − Lk

B) (2.60)

Ljl
AB = (Lj

A − Lj
B)(L

l
B − Ll

B) (2.61)

Llk
AB = (Ll

A − Ll
B)(L

k
B − Lk

B) (2.62)

Form these three DD-pairs we can form the following DD-observations by linear com-
bination [3]:

Ljk
AB = Ljl

AB − Llk
AB (2.63)

Ljl
AB = Ljk

AB − Llk
AB (2.64)

Llk
AB = Ljk

AB − Ljl
AB (2.65)

This can be generalized into one equation, when double difference observations (pairs)
are used:

NLC =
1

2
·NDD · (NDD − 1) (2.66)

where NLC is the number of linear combinations created from the total number of double
difference pairs NDD. To solve the ”normal equations” using the least square approach
we need to have linearly independent set of SD or DD-pairs otherwise the least square
approach will not give a unique solution.

3 Time Series Analysis

In this chapter we will introduce the theory that will help us analyze an treat time series
both in the time and frequency domain. We will focus on statistical and spectral analysis
and introduce ways to characterize the results
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3.1 Statistical Analysis

In this section we will present statistical tools to be used in the thesis to estimate charac-
teristics of time series and the information they contain.

3.1.1 Arithmetic Mean

The arithmetic mean of a set of numbers tell us what the central tendency of a set of
numbers (sample space) are. If we have a sample space of {x1, ....., xN} then the following
arithmetic mean is computes as follows [6]:

µx =
1

N

N�

i=1

xi (3.1)

where N is the number of samples. The arithmetic mean or sample mean is usually a
very good choice to explore a central tendency in a set of samples. However, it may be
influenced by outliers, that may be removed before the µx is computed, to give a accurate
description of the central tendency.

A second measure of central location of a random variable is the median. If the random
variable is continuous the median is the halfway point. Let {x1, x2 ...... xn} be samples
of observations arranged in the order from the smallest to the largest. Then the sample
median is the middle observation of n, if n is odd, if n is even the sample median is the
mean value of the two middle observations.

In this thesis we will use the symbol µ̃x and the center location will be described by
the following relation:

center location =
n+ 1

2
(3.2)

3.1.2 Variance and Standard Deviation

The variance is a measure of how far numbers or points a spread out from a mean value
[6].

σ2 =
1

N − 1

N�

i=1

(xi − µx)
2 (3.3)

Variance has no unit and is thus unit less. We introduce also the standard deviation which
is defined as the square-root of the variance [9]:

σ =
�
V ar(x) =

√
σ2 (3.4)

The standard deviation is here a measure of variability. It is a positive number and has
the advantage that it has the same unit as the original data. A high standard deviation
indicates a high unstability or spread of data points, and makes it hard to predict (high
variability). An low standard deviation is an indication of stability and small spread of
data points [9].

Minimizing the variance is often the main focus of many processing techniques to reduce
noise in data. Because if the variance is minimized the spread of data about the mean value
is lower, thus a better description is made of the data.
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3.1.3 Root Mean Square (RMS)

Root mean square is also known as the quadratic mean and is a measure of magnitude of
a changing variable. The RMS can be expressed as the variation around a average value
as follows:

RMS =
�
µ2 + σ2 (3.5)

where µ is the arithmetic average and σ is the standard deviation. From this relation it
is clear that the RMS is always equal to or larger than the mean. For many physical
applications the mean is usually removed just because sometimes it is more valuable to
see the change around a fitted model or line. This reduces the RMS to be equal to the
standard deviation.

RMS = σ (3.6)

3.1.4 Correlation

Correlation, or in this case the correlation coefficient, is a measure of the linear dependence
of two variables x and y. The correlation coefficient tells us how strong the linear depen-
dence is between the variables. One way to determine the correlation coefficient is to use
the ”Pearson coefficient of correlation” [9]. It is defined as follows: Let x and y be random
variables with mean µx and µy and standard deviations σx and σy. The correlation ρxy
between x an the y is then given by [9]:

ρxy =
Cov(x, y)

σxσy
(3.7)

where Cov(x,y) is the covariance and E is the expectation of the product of the two
parameters minus the mean.

Cov(x, y) = E[(x− µx)(y − µy)] (3.8)

The correlation coefficient ranges from −1 to 1. Where the value 1 indicates that a
linear function fits the relationship between X and Y perfectly. A positive correlation
coefficient indicates that data points on or around a linear function gives a increase in
both X and Y . While a negative correlation coefficient implies that data points around
or on the negative linear function gives a decrease in Y when X increases. A correlation
coefficient of 0 indicates no linear correlation between the two parameters. Note that 0
correlation does not mean that the variables are unrelated. It only means that there is no
linear dependence between two variables [9].

3.1.5 Linear Regression and Residuals

Linear regression attempts to model the relationship between two variables, one scalar
variable and one dependent variable, by fitting a linear function to observed data. In a
simple linear regression data is fitted using a least square estimator where the residuals
of the linear function that is fitted so that the sum of the square residuals are minimized.
This approach is used when there is non-stationarity in data with a linear dependence to
either estimate the trend in the data set or to remove it, by removing the the linear model
from the observed data points (usually called de-trending).

First we assume that we have a set of data points {yi, xi} (i=1,2,.....,n) to which we
want to fit the following linear function:

y = β0 + β1x (3.9)
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where β0 is the intercept point and β1 is the slope of the linear function.
To provide the best fit for this function to the observed data set we use a least square

estimate to find the best estimate of the intercept point and slope. This is done by mini-
mizing the sum of the squared residuals, usually called SSE (sum of square errors), in this
paper we are going to use the same notation as in 2.48, where SSE(β0, β1) = J(β0,β1).

J(β0, β1) =
n�

i=1

e2i =
n�

i=1

(yi − β0 − β1x)
2 (3.10)

By differentiating J(β0,β1) with respect to both parameters β0, β1 and then setting the
partial derivatives to zero we get the following:

∂J

∂β0
=

n�

i=1

yi (3.11)

∂J

∂β1
=

n�

i=1

xiyi (3.12)

These are called the normal equations and where the estimates of β0 and β1 becomes:

β1 =
n
�n

i=1 xiyi − (
�n

i=1 xi) (
�n

i=1 xi)

n
�n

i=1 x
2
i − (

�n
i=1 xi)

2 (3.13)

β0 = ȳ − β0x̄ (3.14)

where the bars over the variables is the sample mean (arithmetic mean). Now we can set
up a relation for the residual or de-trended time series as follows:

ei = yi − (β0 + β1x̄) (3.15)

ei = yi − ȳ (3.16)

To summarize we will talk about the properties of the least square estimators and the
model assumptions.

Table 3.1: Model assumptions for simple linear regression

– yi is a linear independent random variable with a normal distribution.
– The mean of yi is (β0 + β1x).
– The variance of yi is σ2.

Then model assumptions for a simple linear regression can be described from 3.1 in this
form.

yi ∼ N(β0 + β1x, σ
2) (3.17)

Thus the residuals properties can be described from 3.2 in the following form

ei ∼ N(0, σ2) (3.18)
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Table 3.2: Properties of residuals least square estimates

– Sum of squared residuals are zero
– The mean of the residuals are zero
– ei are assumed to have normal distribution
– Variance of ei is σ2

3.1.6 Histogram

A histogram is a statistical representation of the inherent distribution of a data set and is
usually used to estimate the probability density function of the underlying variable. In a
histogram we can illustrate the following properties of a distribution:

• center location of data

• standard deviation (spread)

• outliers

• multiple modes

By defining a functionmi that counts the number of observations that fall into a specific
range, called bins, we can form the following mathematical representation of a histogram.

n =
k�

i=1

mi (3.19)

where n is the number of observations and k is total number of bins.
To estimate the bin width k there are number of different approaches, we will only use

one them here. The bin width of a histogram can by rule of thumb be estimated using
approximately by:

k =

�
max(x)−min(x)

h

�
(3.20)

where [ ] indicates the ceiling function, h is the suggested bin width, max(x) − min(x)
gives the range of the data. Calculating the bin width we use the following approximation:

h =
3.5σ

n1/3
(3.21)

where n is the number of samples or data points and σ is the standard deviation.

3.2 Spectral Analysis

In this section we will present tools to estimate spectral properties of the time series and
to characterize the signals contained in the time series.

3.2.1 Power Spectral Density

The main reason for spectral estimation is to find and study the distribution of power
contained in a signal or sample data set over specific frequencies. Where the signal has
a finite length. This is generally done by estimating the ”Discrete Fourier transform” or
DFT of the signal, the DFT is usually computed using a ”Fast Fourier transform” (FFT).
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This spectral estimate is usually called the periodogram or the power spectral density
(PSD).

First we we estimate the DFT of the finite length signal:

X(w) =
∞�

n=−∞
x[n]ejωn (3.22)

This can be expressed in a physical frequency by using the relation:

ω =
2nf

fs
(3.23)

where fs is the sampling frequency.

X(f) =
∞�

n=−∞
x[n]ej2πnf/fs (3.24)

To estimate the PSD the magnitude of the DFT is computed and then squared. Com-
puting the magnitude squared (power) makes the PSD a positive entity this is called the
one-sided PSD. The estimated power is then scaled with the length N and the sampling
frequency fs and multiplied by a factor of 2. This to correct for the power contained in
the negative frequencies [8].

Pxx(f) =
2

fsN
|X(f)|2 (3.25)

One of the properties of the power spectral density is that the variance can be estimated
from integration over the whole range of the PSD.

σ2 =

� f

0

Pxx(f)df (3.26)

This is stated from Parseval’s theorem which says that the power estimated in the time
domain must be equal the power in the frequency domain, thus also the variance.

The frequency resolution of the power spectral density estimate is proportional to the
number of samples N . The frequency resolution δf for the discrete case is calculated as
follows.

δf =
fs
N

(3.27)

where fs is the sampling frequency and N is the number of samples.

3.2.2 Integrated Power

The total power in the time-series using a one-sided the power spectral density is estimated
by using Parseval’s Theorem. It states that the total power contained in a PSD is the
integrated are under the PSD function.

Ptot =

� f

0

Pxx(f)df (3.28)

The power contained in different frequency bands can be estimated by integrating over
the specific frequencies in power spectral density estimate.
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�Pij(fij) =

� fj

fi

Pxx(f)df (3.29)

where i, j are frequency indicies ranging from {0,1.....N}, where N is the number of sam-
ples. The frequency resolution of the integrated power in the different frequency bands
(frequency bins) is δf = fj - fi, which is equal the bin width fij. It is important to note that
the frequency bins have to be of the same size, in order to estimate the correct integrated
power.

3.2.3 Trapezoidal Numerical Integration

One of the methods of integration that can be used is the trapezoid numerical integration
method, which is defined as follows.

F (x) =

� a

b

f(x)dx = (b− a) ·
�
f(a) + f(b)

2

�
(3.30)

Substituting the trapezoidal numerical integration method instead for the integral we get
the following relation for P :

Pavg = (f2 − f1) ·
�
Pxx(f1) + Pxx(f2)

2

�
(3.31)

The trapezoidal rule for numerical integration is a technique for approximating a definite
integral. It works by approximating the the area under the graph of the function as
trapezoid. The trapezoidal integration method is especially accurate and converge fast
for periodic functions, when integrated over there whole period. This due to the inherent
symmetry of periodic functions which makes errors to cancel out.

3.2.4 Noise and Signal Power Estimation

We want to define some way to identify and estimate noise power in our time series, this
accomplished by choosing what signal components, that we want to keep. By analyzing the
PSD estimate we can get a sense of where our signals are located in the frequency spectrum.
By choosing a frequency band that we define as our signal bandwidth, everything outside
this band can be considered noise. We also want to define the same way to determine
signal power in our time-series, this is done in same way as for noise power, by defining a
signal band (SB).

This is done by defining the signal frequency bandwidth as fSB and then defining the
frequency noise band. The noise frequency band, for our application, can be defined by
two sub-bands fSN1 and fSN2.






fSB = {f1, f2}
fSN1 = {f0, f1}
fSN2 = {f2, fn}

(3.32)

Pnoise =

� f1

f0

Pxx(f)df +

� fn

f2

Pxx(f)df (3.33)

Psignal =

� f2

f1

Pxx(f)df (3.34)
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We can also define a measure off reduction in noise by applying the noise estimation
procedure on for example filtered and unfiltered data by the following relation:

χnoise = 100 ·
�
1− Pnoise,1

Pnoise,2

�
(3.35)

where Pnoise,1 is a filtered time series and Pnoise,2 is the original time series. The answer
will then be presented in percent (0–100 %) where 0 % indicates no reduction in noise.

The same can be done for the signal band as follows with the same properties as for
the noise band.

χsignal = 100 ·
�
1− Psignal,1

Psignal,2

�
(3.36)

A way to measure the the influence of wanted and unwanted signals is the ”Signal-to-
Noise Ratio” or the ”SNR”, which is defined as the ratio between the power of the signal
and the background noise in the time-series.

SNR =
Psignal

Pnoise
(3.37)

where a ratio higher than one indicates more signal than noise. Which means more concrete
that the signal can is stronger than the noise and can be easily distinguish from the noise.
Due to the fact that the dynamical range of frequencies can be large the SNR is usually
described in a logarithmic scale, in the form of decibels.

SNR = 10 log10

�
Psignal

Pnoise

�
(3.38)

4 Time Domain Filtering

In this section we will introduce the ordinary sidereal filtering approach and how it works
and then move on to the reduced sidereal filter which was developed for this thesis. Further
we will present model that will be used to theoretically determine the change of standard
deviation or the RMS in the geodetic time-series. When the two filtering approaches are
applied.

4.1 Sidereal Filtering

The sidereal filtering technique uses the fact that the geometry between the GPS satellite
and the receiver on the ground repeats itself roughly every sidereal day ( 23 h 56 m 04 s).
The repeating geometry means that common mode signals are introduced into the time
series which has a corresponding sidereal repeating period as the geometry of the GPS
satellites. This repeatability can be used to mitigate the common mode signals or induced
errors (such as signal multipath).

This roughly means that one epoch is approximately the same as the epoch shifted by
one sidereal period/day away. Described as follows:

X(t) ∼= X(t+ τ) (4.1)

where τ = 23 h 56 m 04 s, which will be called the sidereal time shift, and X(t) is the
position estimate at a specific epoch. From this we can construct a sidereal filter by using
a minimum of two days to form the following time domain filters:

F1,2 =
1

2
· [X1(t) +X2(t+ τ)] (4.2)
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This can be generalized to the following equation:

Fk,k+n =
1

2
· [Xk(t) +Xk+n(t+ τ)] (4.3)

Then applying this to the days of the time series we get the filtered observations:

XF
k (t) = Xk(t)− Fk,k+n(t) (4.4)

where XF
k (t) are the filtered observations of Xk(t).

4.2 Reduced Sidereal Filtering

In the original sidereal filtering approach noise and signals are mapped (it is a smoothed
copy of the unfiltered day) into the filter when it is constructed. This approach has when
applied onto the original time series a mitigating affect on both high and low frequency
components. This means that it reduces both the power of the signals in the time series
as well as the noise (which we want to remove). This can be showed by setting up the
following signal structure:

y(t) = x(t) + v(t) (4.5)

ysdf (t) = a[x(t) + v(t)] (4.6)

where ∆y(t) = y(t)− ysdf (t), v(t) is the noise term and x(t) is the signal of interest.

∆y(t) = (1− a)[x(t) + v(t)] (4.7)

Regular sidereal filtering affects, as can be seen in 4.7, both the signal and the noise with
the same amount. In most applications we want to preserve the signal and reduce noise.
This obstacle can be overcome by removing, in the sidereal filter, the frequency components
containing the signal. This by applying a digital filter to the sidereal filter. Doing so
will preserve the signal in the time series when the time domain filtering (differencing
of X(t) − F (f)) is applied. This can be mathematical shown as follows, by noting the
following signal structure:

y(t)sdf = x(t) + v(t) (4.8)

By setting y(t)sdf
��
x(t)=0

(removing the signal components) we get the following relation.

ysdf (t) = a · v(t) (4.9)

∆y(t) = x(t) + (1− a)v(t) (4.10)

From this it can be seen that the original signal x(t) is kept unaffected and the noise is
reduced by a factor of (1−a). By transforming the sidereal filter into the frequency domain
we can write an expression for the reduced sidereal filter:

F (t) → {F(F (t))} → F (jω) (4.11)

where ω stands for the angular frequency, H(jω) is the filter implementation to the sidereal
filter and F is the Fourier transform. Now we can write the equation for the reduced sidereal
filter as follows in the frequency domain:

F F
k (jω) = H(jω)Fk,k+n(jω) (4.12)
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5 Frequency Domain Filtering

In this chapter we will present basic digital filter theory of the notch filter and how it’s
designed and realized.

5.1 IIR Filter Design

Frequency domain filtering can be described by using the concept of linear systems where
a input signal is affected by a frequency selective filter. The output signal is then reshaped
by the digital filter according to specifications. The system response can be described in
the frequency domain.

Y (z) = H(z)X(z) (5.1)

where Y (z) is the output signal, X(z) is the input signal and H(z) is the filter.
The filter H(z) is usually described by the generic transfer function [2].

H(z) =
Y (z)

X(z)
=

�
b0 + b1z−1 + ..........+ bmz−m

1 + a1z−1 + ..........+ anz−n

�
(5.2)

Frequency domain terminology gives a simple description of the frequency selective bands
and filter characteristics. There are three main bands in general, called the stop-band,
passband and transitionband. The stopband is the frequency range where frequencies are
attenuated. The passband the range of frequencies where the signal is passed without any,
or with small, attenuation. Further characteristics of the filter is the filter order. Which
controls the rolloff characteristics, describing the change between the stop and pass band.
This controls the size of the transition band. The transition band describes the range of
frequencies that are unwittingly affected by the filter. Now we want to find the relations
of magnitude response M(w) ,phase response φ(w), and group delay τg(w). They can be
calculated as follows [2]:

M(w) = −20 · log(|H(jω)|) (5.3)

φ(w) = −arg[|H(jω)|] (5.4)

τg(w) =
∂φ(ω)

∂ω
(5.5)

M(w) is the magnitude response of the filter which measures the size/magnitude of the
signal as function of frequency. φ(w) is the phase response of the filter and measure of the
phase of the signal changes over frequency, and τg is the rate of change of phase over angular
frequency. Thus this can be used as a measure of signal distortion introduced by the filter.
This comes from the fact that the propagation velocity changes with frequency. Therefore
group velocity tends to peak near the cutoff frequency resulting in phase distortion.

5.1.1 Notch Filter Design by Pole-Zero Placement

The notch filter is a frequency selective filter specialized in removing a of a single or narrow
band of frequencies. It can be seen as a special case of the bandstop filter where the
stopband goes to zero. Notch filtering has the desire to remove a specific center frequency
called f0 also called the notch frequency [10]. The frequency response an ideal notch filter
can be described as follows.

Hnotch(f) = 1− δ0(f − f0) (5.6)

where δ0 is the unit impulse response and (0 < f < fs/2).
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The design of the notch filter is done by placing a zero on the unit circle on the point
corresponding to the notch frequency f0. The angle associated with this point can be
computed and makes f varies between 0 and fs/2.

Φo =
2πf0
fs

(5.7)

where fs is the sampling frequency.
By placing a zero at z = ej2πf0 will ensure thatHnotch(f0) = 0. To control the bandwidth

of the notch filters stop-band we place a pole at Φ0 inside the unit circle, thus r < 1, where
r is, if ∆f << f0 (∆f is the filter bandwidth), the pole radius is:

r ≈ 1− ∆fπ

fs
(5.8)

Using this and that poles an zeros must be in complex-conjugate pairs, will give the
following transfer function for the notch filter.

Hnotch(z) =
b0[z − ejΦo ][z − e−jΦ0 ]

[z − rejΦ0 ][z − re−jΦ0 ]
(5.9)

and by using Euler’s identity we can reduce the transfer function down to

Hnotch(z) =
b0(z2 − 2 cos(Φ0)z + 1)

(z2 − 2r cos(Φ0)z + r2)
(5.10)

where the two control parameters to be determine are the gain b0 and the pole radius r.

5.1.2 Analog to Digital Conversion

To convert a analog filter into a digital filter (from a continuous-time filter to a discrete-
time filter) a bilinear transformation is done. This transformation preserves the stability
of the analog filer and maps every point in frequency response in the analog filter into a
corresponding point in the frequency response of the digital filter (1:1 mapping). This with
only a very small frequency shift [11].

ω� =
2

T
· tan

�
ωT

2

�
(5.11)

Applying this bilinear transformation by replacing ω with ω� we get the following digital
filter:

H(jω�)D = H

�
j
2

T
· tan

�
ωT

2

��

A

(5.12)

5.2 IIR Filter Realization

The IIR filter is characterized by a rational fractional transfer function based on zeros and
poles, using the z-transform. With the generic transfer function of n:th order [10]:

H(z) =

�
b0 + b1z−1 + ..........+ bmz−m

1 + a1z−1 + ..........+ anz−n

�
(5.13)

where m = n to give the transfer function the same polynomial degree both in the
denominator and numerator. There are a number of ways to realize this transfer function
and one of these methods will be presented in the following sections.
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5.2.1 Direct Form I

The simplest realization of H(z) is based on factoring the transfer function into autore-
gressive moving average parts [10] as follows:

H(z) =

�
1

1 + a1z−1 + ..........+ anz−n

��
b0 + b1z−1 + ..........+ bmz−m

1

�
(5.14)

and renaming them as:
H(z) = Har(z)Hma(z) (5.15)

where Hma(z) is the moving average part and Har(z) is the autoregressive part. These can
then be written as substitution variables V (z)(output from moving average system) and
Y (z) (output from autoregressive system), with the following substitution [10]:

V (z) = Hma(z)X(z) (5.16)

Y (z) = Har(z)V (z) (5.17)

where X(z) is the input signal and Y (z) is the output signal. Then taking the inverse
z-transform we can go back to the time domain realization and get the following pair of
difference equations [10].

v(k) =
n�

i=0

bix(k − i) (5.18)

y(k) = v(k)−
n�

i=1

aiy(k − i) (5.19)

From this we can see that we can obtain the filter coefficients directly from the transfer
function, thus a direct representation and thereof its name ”Direct Form I”.

5.2.2 Direct Form II

”Direct Form II” is almost the same as ”Direct Form I” but with a small change that
gives it an advantage. This alternative form of the direct realization is obtained by just
rearranging the auto-regressive part with a moving average part in 5.14.

H(z) =

�
b0 + b1z−1 + ..........+ bmz−m

1

��
1

1 + a1z−1 + ..........+ anz−n

�
(5.20)

thus
H(z) = Hma(z)Har(z) (5.21)

Then the interchange affects the substitution variables as follows:

V (z) = Har(z)X(z) (5.22)

Y (z) = Hma(z)V (z) (5.23)

which gives the following time domain representation

v(k) = x(k)−
n�

i=1

aix(k − i) (5.24)

y(k) =
n�

i=0

biv(k − i) (5.25)

By comparing the flow graphs of these two different realizations it can be seen that the
Direct Form II has the advantage of taking up less computing memory than Direct Form
I for the delay elements. This is also usually called the canonic representation.
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Table 5.1: Number of required storage elements

Realization type Number of storage elements (N)
Direct Form I 2N
Direct Form II N

5.3 Filter Stability

We can write the transfer function of a IIR digital filter as a ratio of two polynomials of
the z-transform as shown before in section 5.13, with the zeros B(z) and poles A(z) and
thus form the following transfer function:

H(z) =
B(z)

A(z)
(5.26)

where A(z) is the polynomial in the denominator containing the filter poles.

A(z) = 1 + a1z
−1 + ..........+ anz

−n (5.27)

From the theory of continuous-time-systems we know that for stable filters all the poles
have to lie in the left half part of the Re{z}. In order to apply this to digital filters we
have first to map the poles into the z-plane and in order to get a stable filter all the poles
have to lie inside the unit circle. This gives a constriction on the possible values that the
poles can have, the criteria being that they can not have a magnitude larger than one.

Thus for a stable system the following condition has to be met

|ak| ≤ 1 (1< k < n) (5.28)

6 Variance Propagation and Reduction Models

The agreement of consecutively daily time series depends strongly on the correlation be-
tween them. So in this section we will derive a model for the propagation of variance in
the sidereal filter and the reduction in RMS, called Γ. We will then extend this model to
the reduced sidereal filter by modeling and adding a scaling factor to the sidereal filter.

6.1 Sidereal Filter Model

To compute how the variance (or standard deviation) changes when sidereal filtering is
applied, we first begin with setting up the sidereal filtering equation.

XF
1 = X1 −

1

2
(X1 +X2) (6.1)

where X1 and X2 are two random variables describing the time series for two consecutive
days. Then by taking the expected value of the SDF equation we can set up an expression
for the variance of the two variables [9].

E[(XF
1 )

2] = E[(X1 −
1

2
(X1 +X2))

2] (6.2)

To find the expression for the variance we compute the covariance of the two independent
variables scaled by their standard deviation, by using 3.7 and 3.8.
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Cov(X1, X1) = σ2
1 (6.3)

Cov(X1, X2) = σ1σ2ρ (6.4)

Cov(X2, X2) = σ2
2 (6.5)

By substituting these 6.2, we can formulate the following variance model for the sidereal
filter.

σ2
F =

1

4
(σ2

1 − 2σ1σ2ρ+ σ2
2) (6.6)

where σ2
F is the variance after filtering is applied, σ2

1 and σ2
2 is the different variance from

day 1 and day 2, and ρ is the correlation coefficient between day 1 and day 2. To simplify
this expression we use the assumption that the variance from day to day is approximately
equal by letting σ1 = σ2 = σX , then the expression for the model becomes:

σ2
F =

1

2
σ2
X(1− ρ) (6.7)

We now have a model to describe the propagation of variance in the filtered time series, we
will now define the root-mean-square ratio to model the reduction in RMS when sidereal
filtering is applied. This is done by defining a expression for the reduction in RMS as
followed,

Γsdf ≡ σF

σX
≡

�
1

2
(1− ρ) (6.8)

where Γ is the ratio between the original RMS and the filtered RMS. By combining Eq6.7
and 6.8 we get the following model for the reduction in RMS in percent.

Γsdf = 100 ·
�
1− σF

σX

�
= 100 ·

�
1−

�
1

2
(1− ρ)

�
(6.9)

Worth noting is that the model only depends on one input parameter, the correlation
between the two variables X1 and X2. Thus the reduction of RMS is only a function of
the correlation coefficient.

6.2 Reduced Sidereal Filter Model

To be able to model the reduction of RMS (or variance) in the reduced sidereal filter we
extend the SDF-model by making the following model assumption. The reduction in RMS
(or variance) is proportional to the signal amplitude.

σ2 ∝ Asignal (6.10)

This assumption comes from that the variance in the time-domain must be dependent
on the signal amplitude and thus also to the signal power from the in the frequency do-
main. Assuming a deterministic sinusoidal periodic signal, we can write the amplitude as
a function of signal power:

A =
√
2P (6.11)

Solving for the amplitude we can find a expression to define a scaling factor to be used to
model the reduction of RMS in the RSDF by extending the SDF-model by multiplying it
with α.
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Figure 6.1: Showing the modeled reduction in RMS, Γsdf , as function of the inherent
correlation, ρ, between the time-series of the sidereal filter design days, described by Eq.
6.9

.

Γrsdf ≡ α · Γsdf (6.12)

By using the relations described in Eq. 6.11 and the peak to peak amplitude, we can
define α as follows:

α ≡ 2
�
2Psignal (6.13)

This can be understood in the following way: we know that removing power from the
time series will affect the variance (from Parseval’s theorem). Thus the power in the RSDF
approach and the SDF approach can expressed as follows:

P F
rsdf = Ptot − Psignal (6.14)

P F
sdf = Ptot (6.15)

where P F
filter describes the total power contained in the two different filter. By definition

the RSDF always has to contain less power than the SDF.

(P F
rsdf < P F

sdf ) (6.16)

By applying the two different filters to the time series the following power relations are
obtained.

Prsdf = Ptot − P F
rsdf (6.17)

Psdf = Ptot − P F
sdf (6.18)

From this we then finally note that the power in the RSDF filtered time series is always
larger than in the SDF approach, thus the reduction in RMS is always smaller in RSDF
than in the SDF case.

(Prsdf > Psdf ) → (Γrsdf < Γsdf ) (6.19)

From this it can be seen that to model the RSDF we not only have to know one
parameter (ρ) we also have to have knowledge about the power/amplitude in the signal
band. To model the reduced sidereal filter we need to know both α and ρ, then the
reduction in RMS for the RSDF is a function of two parameters Γrsdf (α, ρ).
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7 GRASP Software Description

GRASP is abbreviation for ”GPS Residual AnalysiS Program” and is a graphical user
interface (GUI) program developed in MATLAB for GPS data editing, by Johan Nilsson.
GRASP is a program for visual editing of GPS carrier-phase position estimate residuals
from the program BAKAR.

BAKAR is a program for GPS kinematic relative positioning (described in 2.9) of single-
frequency carrier-phase GPS data. It uses the double difference technique (described in
2.5) to process single baseline data position estimate data. The program requires two
RINEX files for each day of data, GPS orbit information and the program also assumes
that the stations are close by to cancel out ionospheric and other baseline related effects
(see section 2.6). BAKAR was developed by James L. Davis and Pedro Elosegui.

GRASP is developed to visually detect and remove outliers and cycle slips in the double
differenced residuals (estimated from the mean site position). These edited data points are
then saved into a log file and marked with their corresponding timeepochs. This log file
is then used as input to BAKAR for re-processing of the raw observed position where the
marked epochs in the log file are corrected for in the raw data. This will then give a more
accurate solution and this procedure is repeated until satisfactory residuals are obtained.

Figure 7.1: Showing desktop layout of GRASP software and indicators (1 - 8) of different
GRASP visualization windows and tools/functions
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Table 7.1: Function description for GRASP

Number Description
1 : Shows all available residuals of the different PRN DD-pairs.
2 : Shows available data overlap for different epochs in loaded batch.
3 : Dynamic plot of chosen PRN-pairs (reference satellite concept).
4 : Adding PRN-reference.

Select PRN-Pairs.
Plot selected pairs in (3).
Update Data Viewer: Updates (1) after changes are made in (3).

5 : Write Logfile: Writes a log of edited epochs (done last!).
Exit: Exit program.

6 : Available Zoom and Info options that can be applied to data.
7 : Point Edit: Editing single data point.

Block Edit: Editing multiple points.
Delete Data Points: Deletes the selected data points.
Remove Cycle Slip: Indicate and remove cycle slips, with specific integer.

8 : Load File: Select and load residual data file.
Save: Saves changed data as .txt file to be opened again for further editing.
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Figure 7.2: Flowchart for the processing strategy of the BAKAR–GRASP data processing.
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RINEX is short for (Receiver Independent Exchange Format) and is a interchangeable
format for raw satellite navigation data which allows the user to perform off-line post
processing to produce an improved position solution.The format stores the observables of
pseudo-range and carrier-phase measurements, described in section 2.3. For BAKAR two
RINEX files is needed to calculate the baseline between two stations (one for each station).

Clock and Orbit files are the improved estimates of the satellites orbit and clock solution,
this makes it possible in the post-processing to remove, by the differencing techniques
(described in section 2) errors due to clocks and orbit. Which greatly improves position
accuracy. The site position file contains previously known locations for the receiver. This
helps to speed up the processing scheme by less iterations to estimate a new accurate
position.

The elevation cut-off angle is important due to the fact that observations at low eleva-
tions angles are more affected by the atmosphere (mostly troposphere, see 2.6.6). So by
excluding observations lower than a specific elevation will help to reduce the level of noise
in the position estimates. Usually an angle between 10–20 degrees is considered to be the
rule of thumb for GPS data processing.

The sampling time of the RINEX file determines the temporal resolution.

8 Data Processing and Methodology

In this section the data processing strategy and the methodology used will be presented.
The goal is to estimate the unknown parameters and to determine optimum implementation
techniques for the different filtering approaches.

8.1 Processing Strategy

We will introduce the processing strategy used to construct the reduced sidereal filter and
show the major different steps in the process.

To construct the sidereal filter one needs a minimum of two consecutive days of data
(Xi and Xj) which are merged into a common time series.

This time series has then to be de-trended to be able to evaluate the geodetic signals
and noise inherent within the data structure. Then the sidereal filter can be found by
identifying and averaging the corresponding epochs shifted by the sidereal time shift τ .

To be able to detect and evaluate the periodic signals, when using the sidereal filtering
approach a digital filter has to be applied to the SDF-filter. This by identifying the
signal and noise band and then choosing a digital filter which fulfills the desired spectral
specifications.

Finally when the RSDF filter is constructed (after applying a digital filter to the SDF)
we apply it to the original time series, using time domain filtering. This will preserve the
periodic or common mode behavior in the data. Ordinarily filtered away by the SDF-filter.
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Figure 8.1: Flowchart for the processing strategy for reduced sidereal filter implementation.
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8.2 Implementation & Parameter Estimation of Sidereal Filter

The sidereal filter foundation lies in the agreement of the day to day time series from which
the filter is constructed from. Where the agreement is measured by the correlation. To
construct the filter we use two consecutive days and a sidereal time shift based from 15 s
sampling time. The time shift used was 23h 56m 00s (ordinary sidereal repeat time 23h
56h 04s).The sidereal time shift was cut to fit the sampling time.

Next we find the optimum way to construct and implement the sidereal filter. There
are two methods to do this. In the first method we define the static filter approach. Where
the filter is built from day one and two F12. Then this filter is applied to the rest of the
time series XF

i =Xi − F12. The second method we define as the moving filter approach.
Where the filter is re-built when moving through the time series and applied only on the
day which they are constructed for as follows, Fij where (j = i+1) and applied as follows
XF

i = Xi − Fij.
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Figure 8.2: Showing the de-correlation of the time series of the static (top figure) and the
moving (bottom figure) sidereal filtering. Green vertical lines indicates days where glacier
earthquakes occured. Further i is the day number and j = i+ 1.

In order to obtain the best filter performance high agreement (i.e high correlation) is
required. By investigating the correlation of the time-series for the different design and
filter implementation we can find which of theses that gives the highest average correlation.

From Figure 8.2 we find that the highest average correlation is achieved by the moving
filter implementation approach (Fij, from ρij). Thus this is the filter implementation chosen
for this thesis.
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8.3 Implementation & Parameter Estimation of Digital Filter

To be able to apply our digital filter to the sidereal filter and form the reduced (extended)
sidereal filter we have to define the signal and noise band. This is done by investigating
the spectral content of the sidereal filter and locate the signal components.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Frequency [cpd]

P
S

D
 E

st
im

a
te

 [
m

2
 /

 c
p

d
]

Figure 8.3: Periodogram of high resolution (δf = 0.05 cpd) PSD-estimate of de-trended
along track glacier flow. Where the tidal band lies between 0.35 – 3 cpd.
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Figure 8.4: Periodogram of high resolution (δf = 0.05 cpd) PSD-estimate, in logarithmic
scale, of de-trended along track glacier flow. Where the tidal band lies between 0.35 – 3
cpd.

From Figure 8.3 and 8.4 we can see that the signal band is located in the range of 0.35
– 3 cpd which contains most of the power, see Figure 8.5. In this thesis we consider all
spectral components outside this band as noise.
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Figure 8.5: Distribution of integrated average power in the original time series of 21 days.
With a frequency resolution of δf = 0.01 cpd.

Then a trial and error approach was used to determine the optimum digital filter type
and parameters. Since the tidal band is in the low frequency range (1 – 3 cpd) theses
frequencies lies in the first 10 – 20 samples. In this sample range the filter transient play a
large roll when choosing the filter order and the type of filter. We do not want to introduce
a transient behavior, such as ghost signals or over estimation of the signal (due to signal
amplification from transient responses). To overcome this four cascaded notch filters was
used centered around Fc = 1, 2, 2.5 and 3 cpd, with corresponding bandwidths of 13, 8, 3
and 1 cpd and a filter order of N = 2.

The notch filter was chosen due to that the bandstop filter with N > 2 introduced
transient behavior. And N = 2 did not give a sharp enough roll off to remove signal band
frequency components without affecting adjacent frequencies at an unacceptable level.

The constructed digital filter gave the following filter frequency magnitude response.
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Figure 8.6: Digital notch filter frequency response, in the form of magnitude

Further the phase and group delay response for the digital filter.
From Figure 8.6 we can see that the specification in the filter frequency response to

filter out the signal band in the sidereal filter have been fulfilled to a satisfactory extent.
There is some reduction in adjacent frequencies up to around 10 cpd, but the reduction is
minor and can be accepted. The phase and group delay of the filter is of minor interest
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Figure 8.7: Digital notch filter frequency response, in the form of phase and group delay

due to the fact we take the absolute value squared when computing the power spectral
density, the effect of the group delay seems to be small.

Finally we need to investigate if our digital filter is stable, by plotting its poles and
zeros.
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Figure 8.8: Showing poles and zeros of digital filter to determine filter stability using the
unit circle.

From Figure 8.8 we can determine that the filter is stable due to the fact that all the
poles are inside the unit circle.
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9 Results

The processing of the 21 day time series gave 20 days filtered time-series after the reduced
and ordinary sidereal filtering was applied to the data set. With the processing parameters
described in Section 8.

For the IS22 station, a station velocity of 19.7 m/day was observed before the detected
glacial earthquake on day 4 (189) and 5 (190) and an observed station velocity of 22.8
m/day after the glacial earthquake.

9.1 Filter Performance

From Figure 9.1 we see an improvement in in the time series filtered with the RSDF-filter
in the form of a decrease in higher frequency noise and that the periodic signal dynamics
are largely preserved. For the SDF-filtered time series we see a high reduction in variability
(i.e periodic signals) and a large reduction in higher frequency noise. Further observed in
the SDF filtered time series is an increase in amplitude (transient signal), starting on day
2 (187), which seems to corresponds the rapid change in glacier surface area, observed by
[5]. This transient signal can be identified both in the original and the RSDF-filtered data
set, but they are more hidden behind periodic signals.

The observed standard deviation (RMS) for the original, RSDF and SDF are 43.5 mm,
39 mm and 17 mm. Which corresponds to a reduction in variability of 10% and 61%
respectively compared to the original standard deviation.
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In Figure 9.2 we observe that the filter values for the SDF-filter closely resembles the
original time series with the periodic variations mostly caused by diurnal and semi-diurnal
tidal signals, located at 1 and 2 cpd in Figure 8.3 (which are the dominant periodic signals
in the defined signal band). For the RSDF-filter we observe that the notch filters (digital
filter implementation) have largely succeeded in removing the signal band from the filter
values (periodic signals including diurnal and semi-diurnal components). Left in the filter
values is mostly noise (predominantly multipath, due to GPS data processing), with some
lingering period behavior that the digital filter was not able to remove. They are located
between day 6 – 9 and day 15 – 16 and are mostly tidal signal components. The following
standard deviations observed for SDF was 39.5 mm and for RSDF 16.8 mm, which gives
a decrease in variability with a factor of 2.35.
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Figure 9.3: Histograms of the original 20 day
time series.
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Figure 9.4: Histogram of observations fil-
tered with the SDF approach.
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Figure 9.5: Histogram of observations fil-
tered with the RSDF approach.

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

500

1000

1500

2000

2500

3000

3500

N
u

m
b

e
r 

o
f 

O
b

s
e

rv
a

ti
o

n
s

Bins

Filter values of SDF

Figure 9.6: Histogram of the filter values of
the SDF-filter.
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Figure 9.7: Histogram of the filter values of
the RSDF-filter.
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Figures 9.3, 9.5 and 9.4 show the histograms of the filtered time-series compared to the
original. We observe that the SDF shows the largest change, where the width and flanks
of the distribution (largely gaussian) have clearly been reduced compared the original data
set. This indicating a reduction in both the variability and in the noise. In the RSDF
histogram we observe that the overall shape of the distribution is kept intact. However
the flanks of the sides have been retracted and the slope of the sides (vertically) of the
distribution is now sharper and the width (of the shape) is smaller. This points to a noise
reduction and a approximately equal variability from before and after RSDF filtering.

Figure 9.6 shows the filter values form the SDF filter and observed here is that the
overall shape of the distribution is preserved compared to Figure 9.3. But the absence of
the tails indicates a reduction i noise, due to a smoothing effect when constructing the
filter from averaging. In Figure 9.7 which shows the filter values from the RSDF filter we
observe a clear gaussian distribution. Corresponding to gaussian white noise. This due to
removal of the all signals in the signal band leaving mostly (multipath) noise.

We can observe that both the filtered RMS, the signal and the noise power character-
istics varies with the moving correlation for the different days, seen in figures ?? – ??. A
drop in the correlation is consistent with an increase in the filtered RMS and an increase
of both the noise and the signal power (applies to both the SDF and the RSDF results).
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Figure 9.8: Signal degradation and noise reduction for the reduced and ordinary sidereal
filter. Green vertical line indicates days with glacial earthquakes.

In Figure 9.8 we see a sharp drop in noise reduction for the SDF and RSDF filter,
starting at day 2 (187). For the SDF filter the decrease in noise reduction is consistent
with the rapid change in glacier surface area, noticed in [5], pre-dating the earthquake
epoch with one day. The decrease in noise reduction observed in the RSDF filtered data
is also consistent with the change in glacier surface area, but also with a sharp increase in
station velocity at day 4 (189), also seen in [5]. Investigating the noise reduction curve for
the RSDF-filtered data we observe a increasing trend in noise reduction, approximately
∼ 1.6% per day. This increase seem consistent with the stations velocity profile, from day
epoch 2 – 20 (189 – 205), observed by [5].

The median and standard deviation of noise reduction and signal degradation is sum-
marized in Table 9.1.
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Table 9.1: Summary of signal degradation and noise power reduction statistics

χ Band µ̃x [%] σ [%] min [%] max [%]
RSDF Noise 41.5 12 29 73

Signal 19.0 1.7 15 20
SDF Noise 86.0 9.4 44 89

Signal 81.0 1.7 75 99
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Figure 9.9: Signal to noise ratio (SNR) for the reduced and ordinary sidereal filter. Green
vertical lines indicate days glacial earthquakes.

The SNR observed in Figure 9.9 shows that the signal to noise ratio is considerably
higher for the RSDF filtered data than the SDF-filtered data.

Table 9.2: Summary of SNR statistics

SNR µx [dB] σ [dB] min [dB] max [dB]
RSDF 7.7 2.1 7 14
SDF 5.4 1.6 2 6.5
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Figure 9.10: Reduction of RMS for the RSDF and the SDF approach. Green vertical lines
indicates days with glacial earthquake.

In Figure 9.10 we observe that the reduction in Γsdf have a close relationship to the
change in correlation of the time series. With a significant drop in Γsdf pre-dating the
glacial earthquake epoch with one day, consistent with a rapid reduction of glacier surface
area. Γrsdf reduction in RMS follows the original RMS (then also correlation) of the data
set and where the change in surface area is not noticed. The observed reduction in RMS
in 9.10 is consistently smaller in the RSDF than the SDF approach, consistent with the
removed power from the RSDF filter, described in theory.
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Figure 9.11: Deviations in the filter performance for the processed data for the RSDF and
the SDF approach.

Table 9.3: Summary of RMS reduction statistics for RSDF and SDF

Γrms [%] µ̃x [%] σ [%] min [%] max [%]
RSDF 12 8.2 3.2 34
SDF 73 24 −28 84.5
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9.2 Validation of Model

Figure 9.12 depicts the agreement between observed and modeled reduction of 99.0 % for
the SDF-model, And an agreement for the RSDF-model of 81%. With the corresponding
standard deviations of 0.63 % and 0.97 % receptively (agreement determined using median
reduction).
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Figure 9.12: Agreement between RMS-models and observed data for Γ. The agreement
index is defined as: (Γmodel/Γdata).

Figure 9.13 depicts model deviations. With some values that lies outside of the norm
and can be considered outliers for both the SDF and RSDF model compared to real ob-
servations. Other values larger deviations would be consistent with de-correlation.
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Figure 9.13: Deviations of observed reductions in RMS compared to the modeled reductions
in RMS.

From Figure 9.12 and 9.13 we observe that the developed models for the reduction in
RMS fit the observed values well. This indicates that the correlation of the time series well
describes the dynamics of sidereal filter. Further including the signal amplitude into the
reduced sidereal filtering model gives adequate agreement to describe the filter dynamics.
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10 Discussion

In general the correlation of the time series seems to give a good description of agreement
of the day to day behavior of the time series. And to also characterize the filter perfor-
mance. Due to the fact that correlation is only a description of the linear dependence of
two variables it does not give a full description of the different dynamics affecting filtering
performance. We have seen that roughly rapid (linear) behaviors can be seen in the corre-
lation such as the change of surface area (see [5]).However, it does not seem to encompass
the change in station velocity (velocity profile, see [5]) to a full extent (only rapid linear
changes). This means that we also have to take into account the station station velocity
profile when determining filter capability for the reduction of noise. The degradation of
signal for the RSDF and SDF filtering approach on the other hand seems stable for both
the SDF and the RSDF. This is likely due to that they are highly correlated in time. Why
there is a large difference in noise reduction for the two approaches (they are very alike) is
not yet understood and need to be investigated further. There might be a string of contri-
butions to this, such a induced effect due to the application of the digital filter, inherent
signal and noise structures or other factors. Longer time-series, to see if this pattern is
consistent, would be of great interest to further investigate this phenomena.

The hypothesis regarding what governs the performance of noise reduction (∆A and
∆v) is that the change in glacier surface are is proportional to the multipath reflective area
(number of reflection points) which means that a rapid change in surface area will change
the total number of reflected multipath signals (power), thus de-correlating the noise in
the time-series over time. This can be seen in 9.1 for the SDF filter on day 3 (188), where
a sharp drop in noise reduction is observed to happen at the same epoch as a sharp drop
in glacier surface area, see [5], once the area stabilizes, noise reduction returns to previous
levels, see [5]. Further can be argued that the change in station velocity or it’s profile is
connected to the surface topology (roughness). Where the change in surface topology will
change the distribution of multipath power (spread it in space), this assuming constant
glacier surface area. This means that the velocity profile (station acceleration) rapidly
takes the station through different surface structures over time, changing reflective power
distributions and thus de-correlating the received noise in the time-series over time.

The models developed for the thesis have been built to find and characterize the reduc-
tion in variability and thus also understand the underlying governing dynamics controlling
filter performance. The developed models which uses the correlation and amplitude as
governing factors shows good agreement with observed reduction in variability, even with
the simple model assumptions made (σ1 = σ2 and A = 2

√
2P ). From the model and

data agreement we can clearly state that the correlation of the time series is the main
factor controlling the dynamics (easiest seen in the SDF), but also on the maximum signal
strength (RSDF). The reduction in variability does not give the full insight into the re-
duction in noise. Mostly only to the reduction of the common-mode and periodic signals.
Still by using the fact that if we know the correlation of the data set we also know to some
extent the correlation of noise. This means that you will get a indirect insight into noise
reduction when you measure the reduction in variability (degradation of signal). Measur-
ing the reduction in variability can be the first step to see if the sidereal filtering approach
is applicable to the specific data set and the general filtering performance.

The SNR measured for the two different approaches give us insight that the RSDF
approach has a much better result in preserving the dynamics of the signals in the data
set, whilst still giving a good noise reduction capabilities. The SDF approach on the other
hand have a larger/better noise reduction capabilities but with the tradeoff that common
mode signals are also removed. But for the SDF case we can also argue that this is a good
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trait if we are interested in only transient signals. Which for the RSDF is harder to see
due to that they are usually hidden in the other periodic signals.

11 Conclusion

We have found that its possible to extend the sidereal filtering technique to a highly
dynamic and kinetic environment such as the Helheim glacier. It is further possible to
extend sidereal filtering to encompass the evaluation of periodic signals in general in this
environment. Doing so with a high level of reduction in multipath noise and acceptable
geodetic signal degradation (for RSDF only).

By investigating the SNR of the for the different filtering approaches we found that
the RSDF approach consistently gave a higher signal to noise ratio than the ordinary
sidereal filtering which makes it overall a better instrument to investigate geodetic signals.
The SDF approach is however better at evaluating transient signals and still has higher
noise reduction capabilities than the RSDF approach, with the trade-off that it does not
encompass periodic behavior.

We further conclude that the reduced sidereal filtering is sensitive, especially the noise
reduction, to the station velocity profile and change in the glacier surface area (its reflective
properties). While the ordinary sidereal filtering seems to only be affected by the change
in glacier surface area.

We also found that the correlation of the time series is a good measure of the agreement
of the day to day time series and well describes the filter performance. However it does
not give full insight into the noise and signal dynamics in the data (due to the fact that its
a measure of linearity). It encompasses changes in glacier surface area but not the station
velocity profile.

12 Future Work

Future work for this thesis would be to improve the implementation of the digital filter.
The current processing strategy has a draw back. This draw back is that the frequency
resolution in the data is to low in the current processing strategy. The implication being
that the frequency components of interest is contained in the first samples of the data set.
This region is heavily affected by the filter transient and the digital filter and its filter
order has to be chosen properly to be able to handle this. This makes it difficult to get
the desired effect from the filter without affecting the data in a negative way.

A solution to this problem would be to reverse the processing strategy accordingly:

1. Merge the day to day time series into one N -day time series.

2. Construct sidereal filter using N -day time series. Filter length is then: FN−1 =
XN − 1.

3. Apply digital filter to FN−1 (improved frequency resolution).

4. Cut XN−1 into daily time series and perform signal and noise analysis.

Another strategy would be to apply zero padding (adding N zeros) to the time series.
Then apply the digital filter to the zero padded time series.

These two strategies would increase the frequency resolution of the data set (δf = 1/T )
when the digital filter is applied. Pushing the relevant frequency information out of the
filter transient region. Thus making it possible to use higher filter order and other possible
digital filters.
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