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Depth estimation in multiple environments through an adaptive CNN and IR light
JONATAN NORDH
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Abstract
We have developed a complete depth sensor unit with a self-supervised neural net-
work and stereo camera. The sensor is both adaptive during usage and can work
in dark and low light environments with aid from IR spotlights. Disparity estima-
tion via stereo cameras has shown great performance in combination with neural
networks during recent years. The reason is because deep learning reduces the com-
putational effort considerably compared to previous methods. However, the existing
deep learning methods do not evaluate the depth measurements but rather the dis-
parity estimation accuracy on available benchmark datasets. In difference to earlier
work, this system has been evaluated with respect to depth measurement accuracy
and suitable evaluation metrics have been developed. If the stereo camera is to be
used as a reliable depth sensor the depth estimation quality needs to be ensured.
From the thesis contributions a high-functional depth sensor unit can be developed
with potential to surpass other sensors with respect to the amount of data obtained
per second.

Keywords: Artificial Neural Network (ANN), Convolutional Neural Network (CNN),deep
learning, self-supervised, machine learning, stereo vision, disparity estimation, night-
vision, Oriented FAST and Rotated BRIEF (ORB).
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1
Introduction

The demand for autonomous and remotely controlled vehicles is growing at a rapid
pace. Autonomous systems can both increase safety and reduce cost. If a human
driver can be replaced in a hazardous and inhospitable environment, that would
decrease both labor cost and injury risk of the driver. Areas where autonomous
systems can be applied are many such as: boat docking [1], garbage collection [2],
mining [3] and self-driving cars [4].
To be able to interpret the surroundings and make suitable decisions, the system of
an autonomous vehicle needs accurate and dependable sensors. Malfunctioning or
failure of such systems can lead to irreversible damage which consequently makes
them safety critical [5]. One of the most universal signal types that is used to
interpret the surrounding is the 3D depth measure whereby, producing a 3D grid
map nearby objects can be located and measured. One type of sensor that can
produce 3D depth estimation is the stereo camera. Here, by utilizing disparity be-
tween objects in two images, depth can be calculated. Disparity is defined as the
pixel coordinate difference between an object’s position in the left and right image
produced by a stereo camera. Stereo cameras can produce depth measurements
with higher resolution compared to LiDARs and provide color images. In addition,
the cameras are inexpensive which consequently makes them competitive as depth
sensors. However, current stereo cameras have a few drawbacks due to a variety
of real-world problems such as occlusions, large textureless areas, reflective surfaces
and insufficient light. To make accurate estimations the stereo cameras also need
initial and frequent calibration due to imperfect assembly or geometric deformation
from for example thermal changes. If these drawbacks were compensated for the
stereo camera could be a competitive sensor within the AD/ADAS industry where
a lot of data can be obtained from images in a variety of environments. The stereo
camera could also be combined with infrared (IR) light and other sensors which can
boost predictions during night and low light conditions.
It has been shown that by using four stereo cameras with different baselines, the
accuracy can be increased for a long range, but at the cost of high computational
demand [6]. Further, using deep learning the computational effort can be decreased
considerably [7]. Currently, state of art stereo methods on the KITTI stereo bench-
mark [8, 9] leaderboard is based on deep learning. However, most of these stereo
methods are using supervised learning which require ground truth data. The cum-
bersome labor of collecting ground truth data has here been solved by using self-
supervised learning. This is a solution that also enables network adaption to new
environments based on the images collected by the stereo camera during usage. In-
stead of developing new competitive network architectures the focus of this thesis

1



1. Introduction

work is to evaluate real-life performance of networks inspired by already existing
state-of-art network architectures. The performance must be evaluated in a trust-
worthy manner before it can be used as a depth sensor in safety-critical applications.
Evaluation on data gathered with other camera configurations in different environ-
ments will not provide a reliable evaluation. Therefore, the purpose of this thesis
is to present smart ways to evaluate real-world depth estimation accuracy on self-
collected data and to discuss areas where the camera sensor potentially could be
implemented.

1.1 Purpose

The purpose of this master’s thesis is to implement and evaluate existing state-
of-the-art CNN strategies for instantaneous disparity calculation using a binocular
stereo camera. With a focus on real life online performance an evaluation will be
done that evaluate to what extent the stereo camera can complement or replace cur-
rent depth sensors. Hence, the precision and robustness of depth estimations will
be examined in different environments and conditions. The aim is to address the
following objectives: i) Implementation of two or more state-of-art inspired CNN
architectures, ii) Combine CNN and stereo camera as a complete depth sensor unit,
iii) Evaluation of full-HD depth estimation, iiii) Evaluate night vision performance,
iiiii) Improve real life robustness and adaptability. This will be achieved by im-
plementing existing theory and research and then by examining the possibilities of
refining the estimation.

1.2 Objectives

The main objective of this thesis is to evaluate the stereo camera as a depth mea-
surement sensor. This includes implementation of state-of-the-art algorithms, collect
and evaluate depth data and test possible setups for usage on moving vehicles. Fur-
thermore, the objective is to evaluate the systems to find an effective and usable
system configuration.
The thesis will aim to answer the following questions:

• How can existing theory and research be implemented to design a depth esti-
mation sensor for real-life usage?

• How can depth accuracy be evaluated on collected data?
• What is the optimal baseline distance for the proposed depth estimation sen-

sor?
• What is the precision of estimated dense full-HD depth maps?
• How can self-supervised learning be used to enable an adaptive behavior?
• How can IR light be implemented to increase performance in low-light condi-

tions?

2



1. Introduction

1.3 Scope
The goal of this project is not to achieve good benchmark scores for any available
benchmark dataset. The project will focus its resources on evaluating the areas
related to depth measurements and practical implementations on board vehicles.
The thesis aims at showing the potential of stereo cameras to be used as sensors
and investigate the possible benefits and drawbacks of such a sensor. Therefore,
efforts will not be spent trying to reach the best publicly available benchmark scores.
Neither will time allow to try all network architectures such that state-of-the-art
predictions are obtained. Instead, the components of chosen neural networks will be
evaluated and enhanced with respect to obtaining as good dense depth estimations
as possible. Faster computational speed and more advanced algorithms will most
likely be presented in the future. However, this work will provide information of
how to make a stereo camera useful as a depth sensor.

1.4 Related work
In recent years significant improvements have been achieved within the area of stereo
vision due to the use of deep learning. The reason for this is that deep learning re-
duces the computational effort considerably compared to previous methods. In 2017,
Kendall et al. [7] proposed the Geometry and Context network (GC-Net) which is
an end-to-end disparity regression learning architecture. The network architecture
is based on a Siamese network which learns deep unary features through a number
of 2D convolutions. The deep unary features are then used to compute a stereo
matching cost by forming a 4D cost volume using 3D convolutions. The GC-net is a
state-of-art network and since it was released in 2017 many well performing networks
have been designed based on this architecture. PSMNet [10] is a more recent network
that further increases accuracy by introducing a stacked hourglass 3D convolution
architecture. The number of 3D convolutions can be increased considerably without
affecting computational cost due to frequent down and up-sampling. The PSMNet
later inspired the GA-Net [11] which is replacing the computationally costly and
memory-consuming 3D convolutions by introducing two new neural network layers.
Mayer et al. [12] proposed a network architecture called DispNet that applies the
optical flow estimation concept to disparity estimation using convolutional neural
networks.
The performance of these methods are state-of-art with impressive results on pop-
ular benchmark suites like KITTI Stereo 2012, 2015 [8, 9]. However, they are all
using supervised learning which require ground truth depth data. As is well known,
ground truth data is often expensive and time consuming to obtain, and thus self-
supervised learning is preferred.
Inspired by DispNet, Godard et al. [13] proposed a method to perform monocular
depth estimation as an image reconstruction problem. By implementing an im-
age reconstruction loss with a left-right consistency check the network can learn to
perform single image depth estimation, despite the absence of ground truth data.
They show that this method even outperforms supervised methods. Stereo match-
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1. Introduction

ing is closely related to monocular depth estimation and Zhong et al. [14] intro-
duced a self-supervised learning method for stereo matching. The network predicts
dense disparity maps directly from the stereo input which enables the network to be
self-improving and adaptive to new unseen imageries and different camera settings.
Reconstruction loss is the most common way to remove the dependency of depth
ground truth data but one drawback when reconstructing right input image from
left is that the network cannot handle occluded regions. Peng et al. [15] introduced
an occlusion aware self-supervised stereo method. By making use of geometry fea-
tures of the disparity maps in an iterative way occluded pixels can be detected and
added to an occlusion mask. The resulting occlusion mask is then used as a guid-
ance in either training or post processing. What is common for these state-of-art
depth estimation algorithms is that they often ignore limitations of GPU memory
space and power consumption. Gröndahl et al. [16] introduced the XCNN network
and shows that the speed, GPU memory and power consumption can be decreased
considerably by applying weight pruning but at the cost of network adaptability.
Gan et al. [17] propose a light-weight network for real-time adaptive stereo depth
estimation which is suitable for an embedded device such as NVIDIA Jetson TX2
[18].

4



2
Theory

In this chapter the theory specific for the thesis will be presented. Initially a brief
introduction to the stereo camera and the correlation between disparity and depth
is given. Thereafter theory related to the neural networks used in the project is
presented. Finally, IR light for night vision and the feature matching algorithm
ORB are introduced.

2.1 Binocular disparity
Humans perceive the world in three-dimensional coordinates although the human
eye can only extract information in two dimensions which is made possible using
binocular disparity. An object point in space appears at distinct positions for the
left and right eye. The difference is called a disparity and it is proportional to the
distance to the object. Objects located nearby give large disparities while objects
further away result in smaller disparities. With the use of two horizontally aligned
cameras a computer can estimate depths like humans do [19].

2.1.1 The stereo camera
A stereo camera consists of two or more pinhole cameras with different field of
perception. In Figure 2.1 there is a representation of the pinhole camera. The light
reflected from objects pass through a small aperture and projects an upside-down
image on the opposite side of the box, called the image plane.

Figure 2.1: The pinhole camera.
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2. Theory

The distance between the aperture and respective image plane is called a focal length,
denoted as f . The focal lengths in the x and y directions are different, fx and fy,
since the shape of individual pixels in a camera often are non-square. Furthermore,
the possible offset between the optical axis, also called principal point, and the
center of an image are expressed with the two variables cx and cy. Where cx is
the horizontal offset and cy is the vertical offset to the true image middle point.
From the real world-point P = [X, Y, Z]T the camera coordinates, x and y, can be
calculated with the following equations:

x = fx
X

Z
+ cx (2.1)

y = fy
Y

Z
+ cy (2.2)

These relations can be expressed as a 3x3 matrix that maps between real-world
coordinates and camera coordinates and is called the intrinsic matrix, denoted as
M . The transformation is written asxy

z

 = M

XY
Z

 =

fx 0 cx

0 fy cy

0 0 1


XY
Z

 (2.3)

In many applications it is useful to transform camera coordinates to a real world
coordinate system which can be achieved with linear transformation using the ex-
trinsic parameters. They consist of a rotational 3x3 matrix R and a 3x1 translation
vector t. The mapping between world and camera coordinates is

P camera = R(P world − t) (2.4)

Image distortion is a common effect for all cameras with a lens and there exist two
common types of distortions. Firstly, radial distortion, which is an effect of having
a convex lens that bend light more at the edges than in the center, resulting in a
"Fish-Eye" effect. A phenomenon that can be compensated for with the following
equation:

xcorrected = x(1 + k1r
2 + k2r

4 + k3r
6) (2.5)

ycorrected = y(1 + k1r
2 + k2r

4 + k3r
6) (2.6)

The second most common lens distortion is tangential distortion as an effect of the
lens not being parallel to the imaging plane. This can also be compensated for with
use of these equations:

xcorrected = x+ 2p1xy + p2(r2 + 2x2) (2.7)
ycorrected = y + p1(r2 + 2y2) + 2p2xy (2.8)

Here, r =
√
x2 + y2 is the pixel coordinate distance to the origin. The radial dis-

tortion coefficients k1, k2 and k3 as well as the tangential distortion coefficients p1
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and p2 are also considered intrinsic parameters. Even though these two distortions
have the largest impact there exist other types of distortions with less impact that
usually can be neglected.

2.1.2 Stereo calibration
Stereo calibration is essential for disparity calculations. A horizontal miss-alignment
will contradict the assumption that matching points from the left and right camera
will appear on the same horizontal line. Factors for a miss-alignment are camera and
lens displacement. Either as a translation shift internal in the camera or external
between cameras, such a shift is most probably quite small. However, rotational shift
has a larger impact and is more difficult to notice. A small pitch-angle offset can
give a large image offset in pixel-distance. It has been shown that the errors corrupt
the depth estimation but there are ways to compensate for these imperfections [20].
One way to simplify the depth estimation is by calibrating the cameras. A single
camera calibration makes use of the intrinsic parameters to compensate for the
possible distortions. However, for a stereo pair to be identical in all aspects except
the horizontal shift a stereo calibration is necessary. With the use of a known point
in space visible to both cameras a relationship between the cameras in space can
be calculated. The calibration is done by calculating the rotational matrix and
translation vector between two cameras, calculated as:

R = RrRl
T (2.9)

t = tr −Rtl (2.10)

where R and t denotes the rotation and translation to move the right camera co-
ordinate system into the left one. To transform a point from the left to the right
camera Equation 2.4 can be used with P L instead of P camera.

2.1.3 Disparity and depth calculations
Once a binocular camera is stereo calibrated there is a known relation between the
left and right view. A world point P should be located at the same horizontal
line in both views such that they have the same y-coordinate. In opposite, the
x-coordinate should have different values for the two views where the disparity is
linearly related to the distance of the point P . As illustrated in Figure 2.2 the world
point P results in the image points pL = [xL, yL] and pR = [xR, yR] in the left and
right image, respectively. As an effect of the horizontal displacement, also known as
the baseline B, the image coordinates are not identical. If perfectly stereo calibrated
the vertical coordinates are the same, yL = yR, while the horizontal coordinates are
not, xL 6= xR, except for points extremely far away from the camera. The disparity
d is the horizontal coordinate difference of where the point P appear in respective
camera, d(pL) = xL− xR. The geometric relation of a pinhole camera gives a linear
relationship between disparity and depth as

Z = Bf

d(pL) (2.11)
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Figure 2.2: Illustration of the camera setup and disparity to depth relation in a
three-dimensional space.

where the baseline B [millimeters], focal length f [pixels] and d(pL) [pixels] give the
distance Z to point P in millimeters.
There exist multiple algorithms for stereo depth estimation with the common blocks:

• Matching cost computations
• Cost aggregation
• Disparity computation and optimization

The traditional matching cost algorithms are computationally heavy and/or depen-
dent on exact stereo calibration. Since two points must be matched the size of the
search area will decide the computational cost. Two of these algorithms are semi-
global matching and mutual information series (SGM and SGBM) [21]. It has been
proven that with the use of neural networks dense disparity-maps can be estimated
faster and less dependent on perfect calibration [7].

2.2 Artificial neural networks
Artificial neural networks have shown impressive performance for the disparity es-
timation task. The theory and specific functions used will be presented in this
section.

2.2.1 Network architecture
Different tasks need different network structures and sizes. In general, a larg-
er/deeper network can learn more complex patterns but at the cost of being more
computationally heavy. A popular network architecture is the U-net with convolu-
tional layers down-sampling the input to a latent space and then use up-sampling
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with transposed convolutional layers to the original input size [22]. The down-
sampling part is called an encoder while the up-sampling part is known as a decoder.
A way to not lose information while going deep into the network is by introducing
residual connections [23]. These connections feed forward information from layers
in the encoder to layers in the decoder adding a contribution in addition to the
previous layer in the decoder. For a layer LD

N in the decoder the contribution can
be written as LD

N = LD
N−1 + wLE

N where w is a weight constant and LE
N is a layer

output from the encoder. For these connections to work the layer output sizes of
the decoder and added encoder layer need matching height, width and number of
channels. Lastly, to extract information with respect to the difference of two input
images cross-connections have proven useful. Consider two identical networks with
different input data. In each layer information from the other identical network is
added making it possible for the network to do comparisons between both inputs.
The addition makes every layer in the left and right lane dependent and in that
way forced to share trainable weights. A structure commonly known as the Siamese
network architecture [24].

2.2.2 Training the network
There are two main approaches of training a neural network: supervised and self-
supervised training. Supervised training use annotated data containing the ground
truth of what the network tries to learn. For disparity estimation the ground truth
data is the true disparity/depth map obtained from for example a LiDAR. The
goal is to create a network capable of estimating disparity from a stereo pair it has
never seen before. While supervised training needs a lot of manual prepossessing
the self-supervised fashion is less demanding. A calibrated stereo pair of images as
input is all the network need in order to learn. Instead, the complexity lies in the
loss-function. Rather than minimizing a simple mean square error (MSE) between
the ground truth and network output a more sophisticated loss must be defined.

2.2.3 Loss-function
All neural networks have an objective function which they try to minimize or max-
imize. It is the loss function that control how well the network is performing and
give information about what changes that are most effective to get closer to the
objective. This is done by backpropagation [25] that computes the gradient of the
loss function with respect to the weights and provide a direction of change most
optimal for the current state. How the loss-function is defined will therefore have
significant impact on the learning and outcome of neural network training.

2.2.3.1 Supervised loss

The supervised loss can be expressed as the MSE of the predicted and ground truth
disparity.

Ls = 1
NM

M∑
i

N∑
j

(dL(i, j)− d̂L(i, j))2 (2.12)
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for images with a shape of [N×M×3], predicted left disparity dL and ground truth
d̂L. With the objective to minimize a MSE loss-function the network will learn how
to create the ground truth from the provided input. Hence, the quality of ground
truth data become important as bad data will result in a poor training. The network
will never perform better than the quality of the ground truth data.

2.2.3.2 Self-supervised loss

The self-supervised loss is not dependent on ground truth data to indicate perfor-
mance and direction for a network. Instead, the input data can be processed in
a way such that deficient performance increases the loss and superior performance
result in lower loss. For disparity estimation the advantage of having a stereo image
pair is utilized. The network processes the left and right input images and predict
a disparity map that equals the pixel distances between the two images used to
move pixels from one image to the other. For a pixel coordinate [u, v] the left image
has a pixel intensity value IR(u, v) = [RL, GL, BL] for a three-dimensional image.
The network estimates a disparity at the same position as dL(u, v) = d̃ after having
processed the stereo pair. Then the pixel value from the left image is copied to
the position [u + d̃, v] in a new image. The pixel value is compared with the same
position of the right image to see if the pixel value IR was moved correctly, called a
warping-loss or reconstruction error.
The warping-loss is defined as

LW = |IR(u, v)− IL(u+ d̃, v)| (2.13)

Ltot = LW + LSSIM + LReg (2.14)

describing the image intensity difference between the matched points of the left and
right image. As the disparity is not perfect some pixels will be moved too little or
too much causing both empty gaps and positions with two contributions from the
left image.

2.2.3.3 Linear interpolation

As the predicted disparity values d(x, y) are float values and the positions must
be integers the values must be rounded. To simply round the value to the nearest
location can lead to loss of information. Instead of using the intensity value of the
closest pixel an interpolation method can be applied which interpolates the intensity
of pixels around the predicted float value. These values are weighted by the difference
of the disparity float value and the integer real positions where respective intensity
is taken from. For example, a position equal [u + dx, y] = [10 + 15.5, 20] would
calculate the pixel intensity as IL(25, 20) ∗ (25.5− 25) + IL(26, 20) ∗ (26− 25.5) for a
linear interpolation. It can also be done for two variables such as the two coordinates
(x,y) and is then called bilinear interpolation [26] which can be useful when both
coordinates have float values.
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Figure 2.3: Image warp example. To the left is the original right image and to
the right is the warped image filled with the real right image according to the mask
values.

2.2.3.4 Reconstruction mask

Other sources of warping-loss error are large texture-less regions and occluded re-
gions. Texture-less regions are areas where the pixel intensities are so similar that it
is difficult for a network to find matching features at the correct location. Occluded
regions are areas only visible to one of the two cameras. As the network must see
two pixels to perform a match this usually causes an error around the areas of edges
to objects. A way to tackle the problem is to apply a mask that only give loss contri-
butions from areas visible in both images and with enough texture to match pixels
with. In that way the network is never punished for errors out of its control. By
warping the left image and removing the pixels according to a calculated mask there
will be blank spaces. If filled with the correct right image pixels the reconstruction
task is eased of these tricky points. An example of how the combination of warped
left image filled with true right image pixels can be seen in Figure 2.3.

2.2.3.5 Structural similarity between images

Image similarity loss is not always best compared with a MSE loss where a loss
calculated with the SSIM values can be more accurate. The structural similarity
index measure (SSIM) is a good complement to the MSE as it compares the similarity
for a larger area and with a different method. It calculates the similarity of the
luminance, contrast and structure between two images. The SSIM equation is as
follows:

SSIM(x, y) = (2µxµy + C1)(2σxy + C2)
(µ2

x + µ2
y + C1)(σ2

x + σ2
y + C2) (2.15)

where σ is the mean pixel intensity, µ is the variation and C1, C2 are constants
to ensure computational stability. The mean and variation are calculated for each
position a kernel is shifted over. The size of the kernel is one important parameter for
the similarity measurement which decides how large area that is to be compared. As
shifting all pixels one step could yield a large "warping-loss" from the MSE function
the SSIM-loss will still be quite small since it focuses more on patterns and the
overall kernel similarity [27].
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2.2.3.6 Regularization loss

A way to increase network segmentation of the disparity map is to include a regu-
larization loss in the loss-function. The regularization loss is defined as:

LReg = 1
N

∑
i∈N

(|∆2
xdi|e−|∆

2
xIi| + |∆2

ydi|e−|∆
2
yIi|) (2.16)

where N is the number of pixels, di is the disparity value at position i and Ii is the
image pixel intensity at position i. The disparity gradients ∆2

xdi are weighted by the
image gradients ∆2

xIi such that sharp edges in both the image and disparity map
do not result in a high loss. However, intermediate areas with low image gradients
will give higher weight and hence large loss if the disparity gradient would be high
in the same location. The effect is a smaller variation of disparities for connected
areas such that an object normally is given less variation of disparity values.

2.2.4 IR night vision
Night vision is the ability to see in low-light conditions. One way to enable vision in
dark environments is to use IR LEDs that emits electromagnetic radiation. IR light
is defined as rays with wavelengths in the spectrum 700 nm to 1 mm [28] which are
not visible to the human eye. Various kinds of IR LEDs produce light with different
wavelengths and effects. By using a camera that can create images from reflected
IR radiation night vision can be enabled. Two common IR night vision technologies
that are used on the market today are far-infrared (FIR) and near-infrared (NIR)
systems [29]. FIR cameras are used to detect thermal heat with the wavelength
of around 8-12 µm. Warm objects will emit more radiation and will thus be more
visible in the image. NIR cameras use near-infrared LEDs that emit radiation with
a wavelength of 800 nm that the NIR camera can detect. The main advantage of
NIR is the lower cost while FIR offer superior range.

2.2.5 Oriented FAST and Rotated BRIEF (ORB)
Oriented FAST and Rotated BRIEF (ORB) is an algorithm which describe and
detect local features in images that was published in 2011 by Rublee et al. [30].
The algorithm is an efficient alternative to SIFT [31] and SURF [32] which is often
used in computer vision applications like object recognition, image stitching and
video tracking. ORB builds on the well-known FAST [33] key-point detector and
the BRIEF [34] descriptor.
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3
Methods

In this chapter the methods and performed experiments are presented. The hardware
and software setups that were used during the project are first presented and elab-
orated on. Thereafter the data collection and network architectures are explained
as well as the loss function. Lastly the methods used to evaluate performance and
obtain results from are presented.

3.1 Hardware setup
In the project a single stereo camera rig was used to gather data and test the online
performance with. The TX2 is built around a GPU NVIDIA Pascal™ with 256
NVIDIA CUDA® cores and a total RAM of 8 GB. The camera rig consists of four
cameras mounted on a distance 14 cm apart. The cameras are from Leopard Imaging
Inc [35]. They can capture images in full-HD at 60 fps, have a focal length of 5 mm
and a pixel size of 3.75 µm. With the use of a cut-off filter the cameras can capture
images in daylight with the filter and in total darkness without the filter if infrared
(IR) light is used. Two 50 W IR LEDs are mounted to enable camera vision in the
dark. The rig is equipped with one point laser rangefinder, LiDAR, that measure
distances between 0 and 100 meters [36]. A photograph of the camera rig can be
seen in Figure 3.1

Figure 3.1: Camera rig used in the project. From left to right are a camera, a 50
W IR LED, a camera, a laser rangefinder, a camera, another 50 W IR LED and a
fourth camera. At the back, a Jetson TX2 is mounted and connected to the units.
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In addition to the TX2 a stationary computer with a GeForce RTX3090 GPU [37]
was used for training the neural networks. The GPU have 24 GB of G6X-memory
and 10,496 CUDA cores.

3.2 Dataset Collection

Training self-supervised neural networks require plenty of qualitative image data.
The data need to consist of stereo image pairs from cameras with known baseline
and focal length. In this project most training data were gathered with the camera
rig in different environments. Furthermore, the famous KITTI stereo 2015 dataset
was used.

3.2.1 KITTI Stereo 2015

KITTI vision benchmark suite is a project that was introduced by Karlsruhe Insti-
tute of Technology and Toyota Technological Institute in Chicago [38]. The purpose
of the project is to offer challenging real-world computer vision benchmarks for dif-
ferent tasks like stereo disparity estimation, optical flow, visual odometry, 3D object
detection and 3D tracking. The stereo dataset consists of rectified stereo image pairs
with a resolution of approximately 1242x375 pixels. The dataset contains 8400 image
pairs where only 200 of them have ground truth disparities. The ground truth data
have been collected with LiDAR. The KITTI benchmark was used to verify that
the proposed evaluation methods are accurate enough and to compare the network
performance to other published networks. An example stereo image pair together
with the ground truth disparity map can be seen in Figure 3.2.

(a) Left input image. (b) Right input image.

(c) Ground truth disparity map.

Figure 3.2: (a) Left input image of stereo pair. (b) Right input image of stereo
pair. (c) Ground truth disparity map.
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3.2.2 Collecting new data
The stereo camera presented in Section 3.1 was mounted on moving vehicles and in
static positions for different environments. Stereo calibrated images with a resolution
of 1080x1920x3 were saved with a frequency of 1 FPS. The calibration was performed
using Matlab’s Stereo Camera Calibration App [39]. When a new dataset was
collected the following tasks were performed:

1. Synchronized images were captured with the cameras
2. Images were stereo rectified with the calibration parameters
3. Images were labeled and saved on the disk

To test performance in different environments data were gathered in three ways.
One dataset was gathered indoor to test the performance of an indoor light scenario.
Another dataset was collected from a car with the camera mounted on top of the
hover while driving around the city. To test the performance in low-light conditions
one dataset was collected in a dark warehouse of 600 m2. In this setup the cameras
have a static position capturing scenes of moving objects and persons. Night vision
was enabled during the gathering of data with use of the IR LEDs and cameras
without cut-off filter.

3.2.3 Calibration
Calibration is necessary because of distortions and misalignment of the stereo cam-
era. Distortions are created by the camera design since small angles and convexity
of lenses affect the captured images. Small angular shifts between the stereo camera
pair can also appear due to imperfect mounting. Offline stereo calibration compen-
sates for most errors that are built into the camera rig. However, during usage the
cameras are exposed to changes in temperature, pressure and outer forces which
can cause physical changes that need to be compensated for. Then an online cal-
ibration strategy can become handy since it can be used to calibrate the cameras
continuously during usage.

3.2.3.1 Offline stereo calibration

The cameras need to be calibrated to compensate for distortions as well as for an-
gular and translational differences between the camera pairs. Offline calibration
is performed by first calibrating the individual cameras separately and then stereo
calibrate them together. During single camera calibration the intrinsic and extrinsic
parameters are estimated individually for each camera. During stereo calibration
the transformation (rotation and translation) between the two camera planes is es-
timated. The calibration was performed with the Matlab’s Stereo Camera Calibrate
App [39]. Multiple images of a chessboard with known dimensions were captured
with all four cameras. The images were used as input to the calibration tool app
whereby the intrinsic and extrinsic parameters were calculated. An example of an
uncalibrated and calibrated image pair can be seen in Figure 3.3. The red channel
represents the right image and the two other channels belong to the left image.
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Figure 3.3: To the left is an uncalibrated image pair where red color channel
represent the right image and the other channels represent the left image. To the
right is the same image but calibrated.

3.2.3.2 Online stereo calibration

A way to avoid frequent offline calibration is by using automatic online calibration.
By using the ORB algorithm corresponding key-points in the left and right images
were found and the y-coordinates of the key-points were extracted. The difference
between the y-coordinates of the two images were then used to determine how the
images should be vertically shifted to match better. The following equation was
used to decide the number of pixels to shift the images.

Voffset = 1
N

∑
i∈N

yL(i)− yR(i) (3.1)

The left image was moved Voffset pixels to align better with the right image. This
technique works well to horizontally align the images but unfortunately the dispari-
ties make it impossible to use the same technique to align the cameras with respect
to the x-coordinate. An example of an online calibrated image can be seen in Fig-
ure 3.4. In addition, more advanced methods have proven capable of continuously
estimating the stereo camera calibrations despite large initial errors and varying
extrinsic parameters [40]. This is considered out of scope and will not be evaluated
in the thesis.

3.3 Network architectures

Two different network architectures were investigated and implemented. The SH-Net
inspired by GA-Net [11] and the XCNN [16] architecture that is a lightweight and
simple architecture with promising performance. The networks were implemented in
Tensorflow [41] and trained on benchmark datasets as well as on the data collected
with the camera rig. A single loss function was developed and implemented for both
networks such that the only difference was the network architecture.
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Figure 3.4: Online self-adapting horizontal alignment using ORB. The red channel
is from the right image while the green and blue channels come from the left image.
To the left is the image pair before calibration, right image is shifted 15 pixels up. In
the right image calibration has been performed and the image pair are horizontally
aligned.

3.3.1 SH-Net

The Stacked Hourglass Network (SH-Net) was designed with inspiration from the
feature extracting part of the GA-Net [11] that use a stacked hourglass architecture.
The hourglass architecture consists of two down-sample parts with convolutional
layers and two up-sample parts with transposed convolutional layers as can be seen
in Figure 3.5. The down-sampling parts, called encoders, and the up-sampling parts,
called decoders, compress the input to a latent space and then scale up to the input
dimension again. To maintain information in the network residual connections,
also known as skip-connections, are introduced between the encoders and decoders.
These are represented in the figure as the yellow blocks and black arrows. This
is a Siamese architecture which enables shared weights between the two identical
networks and has proven effective for the stereo disparity estimation task [24]. There
is also a rectified linear unit (ReLU) activation function in between every layer to
normalize the values and ensure speed and stability in training. The last layer has
a hyperbolic tangent activation function that set the output values between -1 and
1.

The two identical networks are fed with the left and right camera images with a
width and height evenly dividable by 32 to keep consistent dimensions. The shared
weights give a connection between the information of the left and right image such
that, much like humans, the network can compare differences and estimate the
disparity. The network can output one left and one right 2D disparity map with
the same height and width as the input images. This network contains 4, 336, 658
trainable parameters. A detailed table with all layers of the SH-Net can be found
in Appendix A.
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Figure 3.5: Siamese network architecture of the SH-Net with inspiration from GA-
Net. Red layers are convolutional, blue are transposed convolutional and the yellow
are adding layers connecting the encoder and decoder parts of the network. The two
identical networks share weights through cross-connections (gray arrows) and have
skip connections (black arrows) between the encoder and decoder parts.

3.3.2 XCNN
In earlier work another cross-connected network architecture was developed called
XCNN [16]. Instead of the stacked hourglass architecture this network only has one
encoder and one decoder but with similar structure and input/output dimensions.
This network contains an encoder with 15 convolutional layers followed by a decoder
with 11 transposed convolutional layers. The XCNN architecture can be seen in
Figure 3.6. In difference to SH-Net this network has layers specific for the left
and right network such that the weights are not shared for some of the layers. The
outputs of those layers are instead combined such that contributions from respective
side are added in a cross-connected way (black arrows in the figure). However, there
are still shared weights for some of the layers and residual connections exist as well.
With only one hourglass part and fewer channels for each layer this architecture
became more light-weight then the SH-Net. The number of trainable parameters
is less, 544, 913, such that the amount of graphic memory is decreased. A detailed
table with all layers of the XCNN can be found in Appendix B.

3.3.3 Loss function
To train the networks with the stereo images an unsupervised loss function was
constructed. By minimizing this loss, the networks improved their ability to make
disparity estimations. The predicted disparity map is used to warp the left image
pixels horizontally to reconstruct the right image. If the disparity map is perfect
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Figure 3.6: XCNN network architecture with skipping and cross connections vi-
sualized. The red layers are convolutional building up the encoder while the blue
blocks represent the transposed convolutional layers that defines the decoder.

the warped left image equals the right image. However, an imperfect disparity map
can be used for defining a loss. The imperfections of the disparity map cause a
warped image with inaccurate pixel values. Such a warped image has gaps where no
pixels were moved to and positions where multiple pixel values have been moved to.
By using a reconstruction mask and bilinear sampling these imperfections could be
handled. The gaps were filled with the nearest neighbor values and positions with
multiple contributions were removed from the loss. The warped image and the right
image were compared with respect to the pixel intensity difference. Both the raw
difference from MSE and the more contextual SSIM difference. The warping loss
was defined as:

Lwarp = W1LMSE +W2LSSIM (3.2)

W1 and W2 are weights that can be tuned to make the training more effective. A
regularization loss, introduced in Equation 2.16, was added to the loss to make
the disparity map more segmented. The regularization loss makes the disparity
map smoother where the image gradient is small which results in a more segmented
disparity map. The total loss was defined as a detail loss, Lwarp, and a regularization
loss, Lreg. Experiments show that a too high regularization loss can make the
disparity map consistent for example, only filled with zeros [16]. On the other hand,
without a regularization loss the image contrasts caused by details at the same
distance from the camera give wrong disparity values. This causes an error in depth
estimation and a balance in loss-weights must be found. The total loss function is
expressed as:

L = W1LMSE +W2LSSIM +W3Lreg (3.3)
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The parameters that can be tuned are the three weights, W1, W2, W3 and other
specific loss parameters such as the kernel size of the SSIM filter.
Moreover, the loss function is necessary while training the networks but can be
removed once the networks are fully trained. The prediction time during usage can
then be lowered by removing the loss function of the trained networks.

3.3.4 FOV and optimized disparity zone
The horizontal field of view (FOV) is the open observable area that the cameras can
see, and it can be calculated with:

FOVHorizontal = 2arctan
(
width

2f

)
(3.4)

The cameras had a width of 1920 pixels and focal length of f = 1333.3 [pixels]
which gave a horizontal FOV equal 71.51o. Given a baseline B this result in a
closest common visible distance to the camera equal Z = tan(54.25o)∗B/2. B is the
baseline between the cameras and the angle is given by the geometry. For a baseline
of 42 cm the closest common visible point is 29.3 cm from the cameras. Depending
on the distance of an object there will be differently large dark zones at the edges of
the disparity map. These zones are the areas only visible to one of the two cameras
and hence difficult to obtain good disparities from. To increase computational speed
and the percentage of accurate disparity estimations the edges can be cut off from
both sides of the images. With the smallest depth measure of 3 meter the maximum
disparity allowed was set to 189 [pixels]. This create dark zones of the same size at
each side of the images which were cut off before input to the network. Furthermore,
as interesting objects are usually located in the middle of the images the stereo image
pair were cut with 200 pixels from the top and bottom, removing a lot of sky and
road in the GBG traffic dataset. In Figure 3.7 the FOV for respective camera and
possible occluded areas are presented. The idea was to cut of the dark zones that do
not contribute to any qualitative information. In this way the need for memory and
computational speed decreases. After trimming the images, they contain a size of
1542×680×3, to fit the network dimensions had to be evenly dividable by 32. With
this in mind, the true input size of the images was 1536 × 672 × 3. By decreasing
the image size in this way, the amount of input values was decreased from 6220800
pixels to 3096576 which is 50.2% less input values. Trimming the images was one
way to increase the speed but performance was evaluated on full-HD images.

3.3.4.1 Optimal baseline

Theoretically, wider baselines yield better depth estimations for all visible ranges
compared to shorter baselines. For example, if the network predicts a disparity map
with one pixel offset it will yield larger distance errors for shorter baselines because
of higher percentile errors compared to the same situation with larger baselines.
Drawbacks of using a large baseline is that it yields larger occluded areas than short
baselines and the minimum distance that can be estimated increases. In Figure 3.8
the disparity to depth relationship as well as the depth error caused by a pixel offset
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Figure 3.7: Field of view visualisation of visible and occluded areas for a stereo
par. The dark zones at the edges as well as regions occluded by objects are marked
with colors. Blue for areas not visible to camera 2 and the orange areas are not
visible to camera 1. In this example there is a person visible to both cameras and a
car only visible to camera 2 as the house occlude the car.

can be seen. The baselines are 14, 28 and 42 cm which are the possible baselines
with the camera rig. The presented theoretical depth error is caused by a 3-pixel
positive offset such that the error was calculated with the following equation,

E(dL) = depth(dL)− depth(dL + 3) (3.5)

where dL is the disparity value and depth is a function converting disparity to depth
measurement similar to Equation 2.11. The positive shift resulted in an error relative
to the baseline such that larger baseline yield less error for the same disparity offset
of 3 pixels.
To strengthen the theory an experiment was performed comparing the depth error
from predicted disparities with two baselines of 14 cm and 42 cm. The camera rig
was placed in a corridor gathering images with a person that walked in front of the
camera back and forth in the corridor. More than 200 images were captured with
depth information from the one-point laser. The stereo images were stereo rectified
for the two baselines with the Matlab stereo calibration toolbox. Then the SH-Net
was fine-tuned on the images with pre-trained weights that had more than 100 hours
of training on the KITTI dataset with a baseline of 54 cm. After 10 epochs of fine
tuning the depth error between the network and laser measurements were evaluated.
The same procedure was applied for both baselines. In Figure 3.9 the left image
and predicted disparity for the shorter baseline of 14 cm is presented. The predicted
distance is 3.44 meter, the laser measured distance was 5.92 meter resulting in an
error of -2.48 meter.
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Figure 3.8: Disparity to depth relationship to the left and depth error caused by
3-pixel positive disparity error to the right. The lines show three different baselines
that are possible with the given camera rig.

Figure 3.9: Depth estimation from stereo camera with baseline of 14 cm in an
office corridor. The measurement value in red is the predicted distance, the laser
measured 5.92 meter giving an error of -2.48 meters for this image.
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3.3.5 Occlusion mask
One of the drawbacks of the stereo camera as a depth sensor is occluded regions.
The offset between the cameras lead to areas that are visible in the left camera but
not in the right and vice versa. It is difficult or even impossible for the network
to reconstruct pixels from one image to another if it is not visible in both images.
Consequently, calculating reconstruction loss on occluded pixels is noisy and will
have a negative impact on network performance. Previous work show that an oc-
clusion mask applied in the training result in less outliers for the predicted disparity
map [16]. A solution that locates occluded pixel regions and exclude them from the
calculated reconstruction loss. The occluded pixels were detected in the predicted
disparity map through an iterative process. A pixel was classified as an occluded
pixel if there existed another pixel in the left image that had been warped into the
same coordinates in the right image. The network should be able to correctly warp
all non-occluded pixels from the left image into the right. Furthermore, the network
has problems predicting disparities in large textureless areas since no distinctive
features can be extracted from these areas. False predictions in textureless areas
will also cause the network to warp multiple pixels to the same pixel coordinates
which will be highlighted by the occlusion mask.
In Figure 3.10, an example situation can be seen with an occlusion. In the top left
image, the blue car is almost completely visible and in the top right image the rear of
the blue car is not visible. The network fails to correctly reconstruct the left image
by warping the right input image. The rear of the blue car cannot be reconstructed
since the network was not able to match pixels in this area. Moreover, the dark
zones, only visible to the left camera, were removed according to the occlusion mask
as can be seen in the same figure (d)) where for example the left side was removed.
The occlusion mask can also be used post training to refine predictions in occluded
areas.

3.4 Evaluate depth accuracy
The depth measurement accuracy is one crucial evaluation parameter that was used
to compare performance and robustness of proposed methods. The depth accuracy
was evaluated in two ways. One method was to compare the measurements from the
stereo camera with the on-board one-point laser range finder value, another method
was to use the key-point matching algorithm ORB.

3.4.1 Depth evaluation using LiDAR
With the one-point laser range finder an accurate depth measurement was gathered
with each stereo image pair. The on-board laser measurements have an accuracy
of 0.1 m for a 70% reflective target at 200C. The laser was mounted in the middle
of the camera rig pointing in the same direction as the four cameras. On top of
a garage roof the camera was directed towards a small entrance where it captured
images and laser measurements from different distances between 3 and 80 m. A left
image, 20.84 meters from the stereo cameras, can be seen in Figure 3.11.
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(a) Left input image. (b) Right input image.

(c) Warped image from right to left. (d) Occlusion mask.

Figure 3.10: The image has been warped using bilinear sampling based on disparity
map predicted from left and right input images. The occlusion mask has highlighted
occluded regions which can be seen as the black regions in the mask.

Figure 3.11: Left stereo camera image that depth was predicted from. On top of
a garage roof with a distance of 20.84 m to the small entrance building according to
the laser measurement.
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The networks evaluated were the SH-Net and XCNN that were trained on the com-
plete KITTI dataset and the custom created GBG traffic dataset. The networks
were also fine-tuned on the evaluation images such that the specific environment
on top of the garage was learnt. This training was done until no further improve-
ments could be noted. Evaluation was performed such that the distance given from
a laser measurement was compared with the network predicted distance for a point
in the center of the garage entrance-building. The predicted distance measurement
was the mean value of 200 pixels belonging to the object. The absolute difference
of the predicted mean value and the laser point measurement was defined as the
measurement error.

3.4.2 Depth evaluation using ORB
Since no ground truth data exists on the datasets collected it was difficult to evaluate
network accuracy. One way to create ground truth data was to use ORB [30]. An
algorithm was implemented in Python that took a stereo image pair as input and
then returned pixel coordinates of matching features and their pixel disparities.
The ORB algorithm was utilized to find pixel coordinates of matching key-points
and descriptors. The ground truth disparity map was then computed by finding the
horizontal pixel difference between key-points in the left and right image. Often, the
algorithm produced a huge number of matching features but only a few matching
key-points were accurate enough to compute ground truth disparities from. The
algorithm sorted the matches in a list based on the certainty in ascending order
with higher certainty in the front. The designed algorithm had an input parameter
for the percentage of how many matching key-points that should be returned such
that only good matches were obtained. A trade-off was made between accuracy
and number of key-points when deciding the percentage of key-points to include as
ground truth disparities. Different percentages were tested and it was decided that
2% of the found key-points were accurate enough to be used as ground truth pixels.
The algorithm was evaluated to ensure that it could produce accurate ground truth
values. This evaluation was performed on the KITTI benchmark dataset where the
disparities from the ORB algorithm were compared with the corresponding LiDAR
ground truth values. Approximately 100 matching key-points were found in each
KITTI stereo image pair that could be used to compute disparities. However, the
KITTI ground truth disparity maps are sparse and many of the computed disparities
did not match a ground truth disparity value at that pixel coordinate. Due to
the sparsity approximately 22 computed disparities per image could be evaluated
against the ground truth data. In Figure 3.13a, 3.13b and 3.13c example image
pairs from different datasets can be seen together with the key-points ORB has
located in both images. The computed disparities that are evaluated against the
ground truth are located randomly in the image which gave a good indication of
the ORB algorithm performance. In Figure 3.12 the results can be seen from the
evaluation, indicating that the mean absolute error was 0.77 px, variance 0.67 px
and the standard deviation 0.82 px.
Even though ORB can estimate accurate disparities from stereo image pairs it is not
suitable in a depth sensor application. The algorithm is too slow and the amount of
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data that are retrieved per second are too sparse compared to the speed and amount
of data retrieved from CNNs.

Figure 3.12: Error distribution of the ORB estimations compared with KITTI
ground truth.

3.4.3 Depth evaluation in low-light conditions using IR light
For evaluation of the distance measurement with the cameras in low-light conditions
a dark warehouse was visited. In the dark environment the camera rig with an IR
LED of 50 W was aimed at an object that was moved between 2.5 and 22.5 meters
from the cameras while capturing images. The distance to the object was also
measured with the one-point laser such that ground truth values were saved. In
Figure 3.14 an example image taken with one of the cameras in the dark can be
seen. The networks used for depth evaluation were trained for more than 100 hours
on the KITTI and GBG traffic dataset. The networks were also fine-tuned for 20
epochs on 550 image pairs captured in the same way as Figure 3.14 with moving
objects in front of the camera.

3.5 Online self improving ability
With the self-supervised loss function that was used during training the networks
can be self-improving and adapt themselves to new unseen environments. The stereo
images taken by the camera can be used to predict a disparity map and simulta-
neously be used to calculate a reconstruction loss. The input images will serve as
pseudo ground truth which will enable the network to fine-tune its weight parame-
ters continuously during usage. An image from the GBG dataset was chosen to be
the model of the adaptive improvement. The untrained SH-Net predicted a disparity
map for the image, then it trained on 50 other images from the GBG dataset after
which another prediction was made on the same image. The adaptive behavior is
presented in Figure 4.7. The same procedure can be applied for a trained network
with lower learning rate enabling a fine-tuning variant of adaption. While running
the network in a self-improving mode the runtime is increased considerably since
many operations are calculated in the loss function. In contrast, for a trained net-
work without a loss function, only the operations of the network must be calculated
which lower the computational cost during predictions.
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(a)

(b)

(c)

Figure 3.13: (a) Image pair from Kitti benchmark dataset together with ORB
key-points. (b) Image pair from GBG dataset together with ORB key-points. (c)
Image pair from IR dataset together with ORB key-points.

Figure 3.14: Image captured with use of IR light in a dark warehouse.
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4
Result and discussion

The results obtained from experiments and measurements described in the previous
chapter will be presented and discussed here.

4.1 Optimal baseline

From the experiment presented in Section 3.3.4.1 the depth estimation accuracy of
a stereo camera with baseline 14 cm and 42 cm can be compared. The errors from
the depth predictions with SH-Net compared with ground truth laser measurements
for the two baselines are presented in Figure 4.1. The mean error is closer to zero
for the larger baseline and for short distances the maximum error is larger for a
baseline of 42 cm compared with 14 cm. On the other hand, for long distances the
opposite applies such that the shorter baseline gives larger error outliers. In Figure
4.2, the distribution of the errors calculated from the two baselines are presented.
Increasing the baseline from 14 cm to 42 cm seem to decrease both the mean error
and the error variation. With 14 cm between the cameras the mean error was -3.20
meter and the standard deviation was 1.84 meter. Increasing the baseline to 42 cm
results in a mean error of -0.47 meter and a standard deviation of 1.74 meter. These
results indicate that for distances between 3 and 22.5 meter a baseline of 42 cm have
better performance than a baseline of 14 cm.

Figure 4.1: Depth errors calculated for the two baselines of 14 and 42 cm. The
measured errors are plotted together with the mean value for both baselines at
distances between 2.5 and 22.5 meter.

29



4. Result and discussion

Figure 4.2: Distribution of the measured errors for the two baselines of 14 and 42
cm. The error measured with baseline equal 42 cm is closer to zero and less spread.

4.2 Numerical results
In this section the numerical results from the evaluation of the stereo camera as a
depth sensor are presented. The evaluation has been performed using the software
Keras [42] with a TensorFlow backend [41]. Two networks, SH-Net and XCNN,
have been implemented and evaluated separately. The performance of the networks
was first evaluated on KITTI 2015 benchmark to compare performance with state-
of-art network architectures. Thereafter the real-life depth estimation performance
of the networks combined with the binocular camera were evaluated. The real-life
performance was evaluated by training and evaluating the networks on self-collected
data captured with the binocular camera presented in Section 3.1. Ground truth
data were created by measuring distances to objects with a one-point laser range
finder and by using the ORB algorithm presented in Section 3.4.2.

4.2.1 KITTI benchmark
The two networks implemented were evaluated on the KITTI 2015 benchmark
dataset. The dataset contains 200 evaluation images with ground truth data that
has not been seen during training. The performance was evaluated by calculat-
ing "D1-all" which represents the percentage of outliers averaged over all the ground
truth pixels of the 200 test images. A pixel was classified as an outlier if the disparity
was falsely predicted with more than 3 pixels. The results from the evaluation can
be seen in Table 4.1 and are compared to LWA-Net which is one of the most recent
state-of-art self-supervised network architectures with an impressive runtime. The
runtimes have been calculated for predictions on the Jetson TX2 with 256 CUDA
cores. What can be observed from the results is that LWA-Net is the best perform-
ing network on this benchmark. XCNN has better accuracy than SH-Net but is the
slowest one.
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Table 4.1: Evaluation results on Kitti 2015 benchmark for different self-supervised
network architectures. Unavailable data are noted as -.

Network Parameters
(million)

D1-all
(%)

Average
Runtime

(s)

RMSE Input size
(pxl)

SH-Net 4.336 18.7 0.45 7.33 320x1216x3
XCNN 0.545 7.711 0.50 3.6 320x1216x3

LWA-Net 0.098 4.94 0.20 - 320x1216x3

4.2.2 Depth sensor evaluation
The networks were trained on a dataset collected with the outermost cameras with
baseline 42 cm on the stereo camera rig described in Section 3.1. The evaluation
was performed both in daylight and in low-light conditions where the datasets were
collected as described in Section 3.2.

4.2.2.1 Depth evaluation using ORB

The depth sensor was evaluated using ground truth depth computed with ORB. The
evaluation dataset contains 40 images captured during daylight that has not been
seen during training. Approximately 130 ground truth depth pixels were computed
per image in the evaluation dataset. To make a thorough evaluation of the networks
and understand their strengths and weaknesses the evaluation has been performed
on different distance intervals. During evaluation it was noted that sometimes the
networks made false predictions with several hundred meters for distances longer
than 80 meters. Therefore, the decision was made to not include predictions longer
than 80 meter in the result. The evaluation result for XCNN and SH-Net can be
seen in Table 4.2. The average runtimes are calculated on a GeForce RTX3090
with 10,496 CUDA cores and on the Jetson TX2 with 256 CUDA cores. In Figure
4.3a and 4.3b the error measurements are plotted for both networks. The depth
absolute mean error and standard deviation of SH-Net were 10.25 and 13.94 meter
respectively. The depth absolute mean error and standard deviation of XCNN were
11.37 and 17.9 meter. What can be noted from the plots and in the table is that the
prediction error increases with the distance which is not the case for the disparity
error that seems to decrease with the distance. Both networks have the best accuracy
for distances from 3 to 20 meter where SH-Net is slightly better.

4.2.2.2 Laser point evaluation

Table 4.3 presents the real and relative distance errors between predicted values
and measured distances with a laser rangefinder. The overall spread of errors for
this result is presented in Figure 4.4. For short distances the prediction consistently
overshot and for the distances longer than 20 meter the predicted distances mostly
undershot. The SH-Net has less outliers while XCNN tend to predict too long
distances and spread out the predictions more, especially for the longer distances.

31



4. Result and discussion

(a)

(b)

Figure 4.3: (a) Error distribution of predictions from SH-Net on GBG dataset.
(b) Error distribution of predictions from XCNN on GBG dataset.

Figure 4.4: Error depth calculated between predicted disparity estimation and
laser measurement. Images of a garage entrance building at distances between 3
and 73 meters were input to the SH-Net and XCNN network to estimate the depth.
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Table 4.2: Depth and disparity evaluation result from the two network predictions
compared with ground truth from the ORB algorithm on GBG dataset.

Network SH-Net XCNN
Input size [pxl] 1920x1056x3 1920x1056x3

Runtime on GeForce RTX3090 [s] 0.048 0.055
Runtime on Jetson TX2 [s] 1.78 2.24

Baseline [cm] 42 42
Disparity absolute mean error all [pxl] 6.73 7.61

Disparity absolute error standard deviation all [pxl] 9.55 13.5
Disparity absolute error mean 3 -> 20 meter [pxl] 9.73 9.31
Disparity absolute error mean 20 -> 40 meter [pxl] 6 5.53
Disparity absolute error mean 40 -> 60 meter [pxl] 4.87 5.37
Disparity absolute error mean 60 -> 80 meter [pxl] 4.12 4.12

Depth absolute mean error all [m] 10.25 11.37
Depth absolute error standard deviation all [m] 13.94 17.94
Depth absolute error mean 3 -> 20 meter [m] 3.26 4.09
Depth absolute error mean 20 -> 40 meter [m] 8.45 9.32
Depth absolute error mean 40 -> 60 meter [m] 13.39 15.57
Depth absolute error mean 60 -> 80 meter [m] 18.5 21.98

Network Error mean Error std Relative error mean Relative error std
SH-Net 8.79 3.51 62.80% 92.51%
XCNN 13.56 4.24 150.15% 152.36%

Table 4.3: Depth error of network predictions from images captured in daylight on
top of a garage roof. The error is defined from the predicted depth compared with
laser measurements for distances between 3 to 73 meters.

4.2.2.3 Performance in low light conditions using laser

The performance of the networks in low light conditions were evaluated in the same
way as the laser point measurement evaluation but in a dark warehouse and with
use of IR light. The resulting error distribution of distances between 2.5 and 22.5
meter can be seen in Table 4.4 and Figure 4.5. The network tends to estimate longer
distances than what the actual distances were. The SH-Net has a more consistent
error with uncertainty that grow with the distance. The mean error was 0.974 meter
in average, the standard deviation was 0.820 meter and the largest error was 4.31
meter. The XCNN was more inconsistent and had some predictions with larger
errors. The mean error was 3.649 meter and standard deviation was 2.152 meter
where 6 of the 65 predictions have the largest contribution. The largest error was
36.12 meter but except for the 6 outliers most predictions were as accurate for the
XCNN as they were for SH-Net. Apart from the outliers the XCNN depth errors
are more spread at longer distances but the relative error decreases as the distance
grow.
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Network Distances Error mean Error std Relative error mean Relative error std
SHNET 2 < x <22.5 0.974 0.820 10.03% 25.82%
XCNN 2 < x <22.5 3.649 2.152 25.63% 51.63%

Table 4.4: Depth error from SH-Net and XCNN network prediction compared with
laser measurements for distances between 2.5 to 22.5 m. Images were captured in a
dark warehouse with IR lights as the only source of light.

Figure 4.5: Depth errors from 65 image pairs collected in the dark with IR light as
only source of light. Distances between 2.5 and 22.5 meter were measured and the
error for the two networks, XCNN and SH-Net, were calculated as the difference of
predicted depth and measured depth using laser.

4.2.2.4 Performance in low light conditions using ORB

The performance of the networks was further evaluated in the dark warehouse using
ORB. Approximately 55 ground truth depth pixels were computed per image for
this evaluation dataset. The result from the evaluation of XCNN and SH-Net can
be seen in Table 4.5. In Figure 4.6 the error measurements are plotted for both
networks. The depth absolute mean error and standard deviation of SH-Net were
2.49 meter and 5.43 meter. The depth absolute mean error and standard deviation
of XCNN were 4.56 meter and 10.87 meter. What can be interpreted from the
table and plots is the same behavior as in daylight. The depth error increases with
distance while the disparity error decreases. It can also be noted that the depth
prediction accuracy seems to be better for images captured in IR light compared to
daylight.

Figure 4.6: IR depth estimation errors for distance 0-35 meter for IR dataset.
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Table 4.5: Depth and disparity evaluation result from the two network predictions
compared with ground truth from the ORB algorithm on IR dataset.

Network SH-Net XCNN
Input size [px] 1920x1056x3 1920x1056x3
Baseline [cm] 42 42

Disparity absolute mean error all [px] 5.46 9.35
Disparity absolute error standard deviation all [px] 8.03 17.65
Disparity absolute error mean 3 -> 20 meter [px] 5.85 10.71
Disparity absolute error mean 20 -> 40 meter [px] 4.65 6.13

Depth absolute mean error all[m] 2.49 4.56
Depth absolute error standard deviation all [m] 5.43 10.87
Depth absolute error mean 3 -> 20 meter [m] 0.6 1.57
Depth absolute error mean 20 -> 40 meter [m] 6.48 11.61

Figure 4.7: Example of SH-Net adapting to data through training on the GBG
traffic dataset. The network start with untrained weights and improve during 3000
training steps.

4.3 Adaptive performance

The networks can adapt to different environments by continuously updating the
weight parameters during usage as depth sensor. An improvement of the untrained
SH-Net while training on the GBG traffic dataset is presented in Figure 4.7. The
improvements are distinct for the first 450 training steps and then learning is slower.
For some steps there is no improvement or even a deterioration for the prediction
result. In this setup the learning rate was lr = 0.0005 and the training weights
introduced in Equation 3.3 were set to W1 = 0.5, W2 = 0.8 and W3 = 0.3. Further-
more, fine-tuning already trained weights was also done during the project and with
a balanced learning rate the network can adapt both fast and correct to new scenes.

4.4 Visual results

A visual evaluation of predicted disparity maps was performed to better understand
the strengths and weaknesses of the networks.
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4.4.1 GBG traffic dataset
In Figure 4.8b the best SH-Net prediction result from the GBG evaluation dataset
can be seen. The result of this prediction had a depth relative mean error of 10.3%
and depth error mean of 1.32 m. When observing the predicted disparity map the
prediction looks accurate where the car, trees, buildings and other relevant objects
have been given reasonable disparity values. In Figure 4.8d the worst SH-Net pre-
diction result from the GBG dataset can be seen. The result from this prediction
had a depth mean relative error of 137% and depth error mean of 28.65 m. When
observing the predicted disparity map, it seems like the network has captured the
car correctly but had problems with the fence and the houses in the background.
The horizontal subway wires also caused too high disparities in the sky leading to
large distance errors.

In Figure 4.9b the best prediction result from XCNN can be seen from the GBG
traffic dataset. The result of this prediction had a depth relative mean error of
12.9% and depth error mean of 1.85 m. When observing the predicted disparity
map it seems like the network captured the car in the middle correctly but had
some problems with the left and right car as well as the road. In Figure 4.9d the
worst prediction result can be seen from XCNN from the GBG dataset. The result
from this prediction had a depth relative mean error of 111% and depth error mean
of 36.6 meter. When observing the predicted disparity map, it seems like the image
did not contain any distinct object and the network had problems predicting the
road and the tress correctly.

4.4.2 IR dataset
In Figure 4.10b the best prediction result from SH-Net can be seen from the IR
evaluation dataset. The result of this prediction had a depth relative mean error
4.7% and depth error mean is 0.37 m. When observing the predicted disparity map
the prediction looks accurate, both persons and the trash bins were captured by
the network. In Figure 4.10d the worst prediction result can be seen from the IR
dataset. The result from this prediction had a mean relative error of 22% and depth
error mean of 6.75 m. When observing the predicted disparity map it seems like
the prediction is accurate, but the network had some problems with the area in the
lower left corner.

In Figure 4.11b the best prediction result from XCNN can be seen from the IR
evaluation dataset. The result of this prediction had a depth relative mean error of
5.9% and depth error mean of 0.32 m. When observing the predicted disparity map
the network has captured the persons and objects correctly. The contours of the
objects are sharper compared with the prediction from SH-Net. In Figure 4.11d the
worst XCNN prediction result for the IR dataset can be seen. The result from this
prediction had a depth mean relative error of 53% and depth mean error of 12.79
meter. When observing the predicted disparity map, it seems like the network have
captured the objects correctly but had some problems with the background.
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(a) Left input image of best prediction. (b) Best predicted disparity map.

(c) Left input image of worst prediction. (d) Worst predicted disparity map.

Figure 4.8: (a) Left input image that produced best prediction result from SH-Net.
(b) Best predicted disparity map from SH-Net, relative error mean 10.3%. (c) Left input
image that produced worst prediction result from SH-Net. (d) Worst predicted disparity
map from SH-Net, relative error mean 137%.
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(a) Left input image of best prediction. (b) Best predicted disparity map.

(c) Left input image of worst prediction. (d) Worst predicted disparity map.

Figure 4.9: (a) Left input image that produced best prediction result from XCNN.
(b) Best predicted disparity map from XCNN, relative error mean 12.9%. (c) Left input
image that produced worst prediction result from XCNN. (d) Worst predicted disparity
map from XCNN, relative mean error 111%.
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(a) Left input image. (b) Best predicted disparity map.

(c) Left input image. (d) Worst predicted disparity map.

Figure 4.10: (a) Left input image that produced best prediction result from SH-Net.
(b) Best predicted disparity map from SH-Net, relative error mean 4.7%. (c) Left input
image that produced worst prediction result from SH-Net. (d) Worst predicted disparity
map from SH-Net, relative error mean 22%.
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(a) Left input image. (b) Predicted disparity map.

(c) Left input image. (d) Predicted disparity map.

Figure 4.11: (a) Left input image that produced best prediction result from XCNN.
(b) Best predicted disparity map from XCNN, relative error mean 5.9 %. (c) Left input
image that produced worst prediction result from SH-Net. (d) Worst predicted disparity
map from SH-Net, relative error mean 53 %.
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Figure 4.12: Disparity to depth relation for two baselines with the distances 42 cm
and 252 cm. The corresponding disparity for 112 meter measurements are plotted
together with a 3-pixel positive offset. The offset causes an error in depth measure-
ment with more effect on the shorter baseline.

4.5 Discussion
In this section a discussion of the presented result will take place. With a focus on
why the result look like it does this part will connect the result and conclusion.

4.5.1 Optimal baseline
Previous work with stereo camera concludes that a short baseline is better at pre-
dicting depth at short distances while a larger baseline increase performance at
longer distances [43]. However, the theory and experiments performed in this work
indicate the opposite. With respect to depth measurement accuracy a wider baseline
is always more accurate and robust compared to a smaller baseline setup. The only
drawback of using wider baselines is the increased number of occluded regions and
that the shortest measurable distance increases. Instead of evaluating baselines less
than 42 cm it would be interesting to learn the accuracy and robustness of base-
lines up to several meters. The relation between disparity and depth, for baselines
with distances 42 cm and 252 cm, is presented in Figure 4.12. A positive 3-pixel
offset is plotted for the baselines as well as the resulting depth for such an error. At
112 meters the predicted depth is 31.8 meters more wrong for the 42 cm baseline
compared with the 252 cm baseline. A distance of 112 meters is therefore estimated
more robustly with the wider baseline. The result from this thesis indicates that
distances from 40 meter and more are difficult to predict reliable disparity maps for
with the current maximum baseline of 42 cm. However, as the performance between
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3 to 20 meter was much better, increasing the baseline should make the disparity
prediction more accurate and robust. For example, if a baseline of 252 cm would
be used this should give the same accuracy for distances from 18 to 120 meters as
the baseline of 42 cm gives for 3 to 20 meters. It should be possible to setup three
cameras such that one long and one short baseline are obtained and thus both short
and long distances can be measured more accurate and robust.

4.5.2 Quality of data
The quality of the training data is very important. If the data is ill calibrated, have
too little variance or other disturbances it will be more difficult for the networks to
learn disparity estimations. The quality of the KITTI dataset is probably better
than the data collected with the camera rig since it was a larger project with the only
focus of creating qualitative data. When gathering the GBG dataset small errors
can have corrupted the data. In that case it was most probably due to disturbances
during the capturing of stereo pairs or due to an imperfect camera calibration and
image rectification. If the images were not captured in perfect synchronization
objects might move during the time difference of capturing the right and left image.
Then the disparity map is no longer valid for the objects that moved. Likewise, if
any calibration parameter is wrong or the rectification is not perfect the disparity
input to the networks will be corrupted leading to bad predictions. It will also
affect the disparity to depth relationship since the focal length was calculated in the
calibration.

4.5.3 Network performance
The networks used in this project do not perform well on the KITTI benchmark
dataset compared with other networks. Even though the benchmark dataset perfor-
mance give an indication of how qualitative the disparity estimations are it does not
entail that the general depth measurements are equally good. Presented experiments
indicate that the quality of network depth predictions do not always align with the
performance on benchmark datasets. The XCNN network was much better than
SH-Net on the KITTI benchmark but for the depth measurements on data collected
with the camera the SH-Net had better performance. There are many possible rea-
sons why this is the case but since the loss-function, training parameters and data
are the same it is probably the network architecture that have the largest impact.
The two networks are very different and with respect to trainable parameters the
SH-Net is more than seven times larger. It is possible that SH-Net can learn more
complex features and patterns since there are more parameters to change. However,
the network could learn a too complex pattern such that unimportant details in
images have more effect on the disparity map. A less segmented and more noisy
disparity map are two of the possible negative consequences of this. XCNN have
layers that do not share weights between the parallel lanes, and this could affect
what intermediate features that are obtained. For example, an occluded region only
visible to one of the cameras could be processed in two different ways in the layers
that do not share weights in XCNN. This would be more complicated for SH-Net
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since all weights are shared and the left and right input image will therefore be
processed in more similar ways.
The relation between disparity and depth has a large impact on the performance and
the distance to objects in an image will therefore impact the accuracy that depth
is measured with. Another parameter affecting the quality of measurements are the
cameras. Imperfect lenses, sensors and calibration can impact how the images are
captured such that assumptions regarding focal length, pixel size, baseline and hor-
izontal alignment become invalid. With use of ground truth values obtained with
laser measurements and the ORB algorithm the accuracy of depth measurements
can be evaluated. By evaluating the depth rather than the disparity the true per-
formance of a stereo camera as a sensor can be evaluated. Most published projects
only measure the disparity accuracy for a given benchmark dataset. In order to
obtain information about the performance of a stereo camera as depth sensor we
propose that also the depth accuracy is evaluated. With use of LiDAR or matching
algorithms the performance can be evaluated numerically.

4.5.4 Adaptive performance
An adapting behavior can be beneficial for the network if the general performance
can be preserved. We show that it is possible to implement an adaptive depth sensor,
through self-supervised learning, but not how well such a system would perform in
real situations. In order to be useful, the time to adapt and quality obtained after
such an adaption must be evaluated further. The obtained result gives an indication
that adaptive training is both effective and useful for new unseen environments.

4.5.5 IR depth accuracy
Surprisingly the network performance with IR light in darkness was better than
outdoor in daylight. Exactly why this is the case is difficult to find out but one
major difference between the input data are the color channel intensities. In daylight
images the color channels intensities are more similar. For the IR images the green
color channel only contain low intensities while the blue and red channels are more
centered. An example of the color spectra for one daylight and one IR light image
can be seen in Figure 4.13. Another mayor difference is that for IR images the
camera rig was placed in a static location such that it could fit the network to the
environment during training. The daylight images from GBG traffic dataset are all
taken from different positions such that the background change on all images while
training. These two differences are the two most probable reasons for the result
obtained.

4.5.6 Visual performance in daylight
When comparing the visual performance of SH-Net and XCNN the SH-Net seems to
give better estimations of the background compared to XCNN. In Figure 4.14b the
worst prediction from XCNN can be seen compared to the prediction from SH-Net in
Figure 4.14c. What can be observed is that XCNN have trouble predicting the road
and the forest on the right side of the road. This is not the case for SH-Net which
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Figure 4.13: Color distribution for red, green and blue channels taken from two
example images. One image taken in daylight on a road and another image in a
dark warehouse with IR as light source.

(a) Left input image. (b) XCNN prediction. (c) SH-Net prediction.

Figure 4.14: Prediction comparison between XCNN and SH-Net for input image
without distinctive objects.

has captured the road and the trees correctly. Why SH-Net performs better than
XCNN for these kind of input images without distinctive objects is probably because
the SH-Net can learn more complex features due to its larger network architecture.

4.5.7 Visual performance with IR light
When comparing the visual performance of the networks in IR light both networks
seem to have the ability to detect objects from 3 to 35 meter accurately. When
comparing the predictions in Figure 4.15 it can be observed that the XCNN seem
to have captured the objects more detailed than SH-Net. When observing the
prediction of the person in the middle of the image XCNN have captured both arms
correctly while SH-Net has problems with the left arm. It also seems that the XCNN
handles occluded regions better since the objects have more sharp edges compared
to SH-Net predictions. It is hard to give an exact reason why the XCNN handles
occluded regions better than SH-Net. The most probable reason is the differences in
the network architecture where the XCNN has layers that are not cross connected
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(a) Left input image. (b) XCNN prediction. (c) SH-Net prediction.

Figure 4.15: Prediction comparison between XCNN and SH-Net for IR input
image.

which may improve predictions of pixels that are only visible in one of the cameras.

4.5.8 Evaluation using LiDAR and ORB
The biggest challenge of developing an accurate depth sensor using a CNN and a
stereo camera is to ensure the quality of the depth estimations. Even though the
CNN can be trained using self-supervised learning the network performance needs to
be evaluated on that specific camera configuration. Furthermore, to ensure quality
of the depth sensor ground truth data is needed. Collecting accurate ground truth
data can be laborsome and expensive which can be a major drawback of developing
a stereo camera depth sensor. How extensive the evaluation ground truth data needs
to be depends on the application and requirements of the depth sensor. If the stereo
camera is to be used in safety critical applications, the ground truth data need to
be dense and accurate which might be less important in for example a surveillance
application.
LiDAR and ORB is two proposed methods that can be used to design ground truth
for evaluation. The ground truth data created with these methods are accurate but
sparse. The laser range finder will produce an accurate measurement, but it requires
manual work to find which area in the image that is represented by the laser. Using
key-point matching algorithms like ORB to create ground truth data is fast and
accurate and does not require much manual labor. One drawback of using ORB is
that it cannot be controlled where the ground truth pixels are calculated. If a key-
point matching algorithm can be designed for this specific purpose this technique
has potential to simplify development of an accurate stereo camera depth sensor. As
mentioned earlier, even though ORB can compute accurate disparities the algorithm
is not fast enough, and the data are too sparse to compete with CNNs in a depth
sensor application.

4.5.9 Future work
The potential for a stereo camera and computing unit to be used as a depth sen-
sor have been evaluated. With the assumptions that better networks and hardware
setups exist or will be created in the future there are good possibilities to further
develop the proposed concept into a high-functional system. We propose that a
depth sensor unit is created with three cameras and a computing unit with simi-
lar performance as TX2 [18]. The cameras should be positioned such that both a
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short and long baseline can be obtained leading to a larger distance interval that
depth can be predicted in. Then the best available network with respect to depth
measurements, speed and memory can be trained self-supervised. Implementing
adaptive behavior and vision in dark with IR light are two other possibilities, both
with promising performance. Finally, the system should be evaluated with respect
to depth measurements and not only disparity measurements to gain information of
the true performance. The presented methods using LiDAR and a matching algo-
rithm (ORB) are two possibilities to use for evaluation of the depth sensor.
Areas where the proposed concept have good potential are auto-guided vehicles
where depth in combination with tracking can prevent accidents. This combination
could also enrich surveillance cameras with a third dimension such that world po-
sitions and velocities can be calculated in for example production facilities. Lastly,
the suggested concept could be used to create dense 3D scans of both light and dark
environments in a fast and detailed way. One possible implementation of this would
be to create a full-HD RGB-D scan of a mine or production facility both fast and
effective since two stereo images in full-HD as well as a depth map of 2 million depth
measurements can be obtained every second or faster.
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We have introduced a concept of using a stereo camera and computing unit as a
depth measurement sensor. This was done by implementing two neural network
architectures, SH-Net and XCNN, with a self-supervised loss-function and training
on data collected with a specific camera rig. Furthermore, an adaptive behavior
has been implemented making it possible for the system to be constantly improv-
ing while used as a depth sensor. Night vision through IR light have also been
implemented with promising results. With custom created evaluation methods, the
depth estimations have been evaluated and it was shown that low disparity errors
are not equivalent with low depth errors. Longer baselines are less sensitive to
disparity-errors but at the cost of the closest measurable distance. The suggestion
is to combine two or more baselines in order to obtain qualitative measurements for
a larger interval. Moreover, two evaluation metrics have been proposed that either
by using LiDAR measurements or with the use of a feature matching algorithm such
as ORB can verify the accuracy. These metrics as well as proposed hardware and
software setups can be used to evaluate a real product and guide the development
of such a system.
The proposed method can produce 2 million depth measurements from two full-HD
color images at 20 FPS with SH-Net and 18 FPS with XCNN on a GeForce RTX3090
with 10,496 CUDA cores. On the smaller Jetson TX2 platform the corresponding
frequencies are 0.50 FPS for SH-Net and 0.44 FPS for XCNN. For the optimal com-
bination of a 42 cm baseline and visible distances between 3 and 20 meters the
SH-Net reached an absolute mean error of 3.26 meter in daylight on board a moving
vehicle. For a static position and with IR as only source of light the SH-Net had
a mean error of 0.97 meter for the same distances. Therefore, both usage in static
positions in darkness and light as well as on moving vehicles are possible imple-
mentations with promising results. The depth measurement accuracy is lower than
already existing methods, for example LiDAR, but with the advantage of retrieving
much more data per second. We propose that future work develop more lightweight
and robust network architectures and combine with the proposed hardware setups.
Then a competitive sensor unit can be developed that produce much data in a fast
and accurate way. Future work should also focus on finding smart ways to construct
dense ground truth data for evaluation. If the accuracy of the depth sensor cannot
be verified the applications become limited.
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A
Appendix 1

The detailed network architecture for SH-Net can be found in Table A.1. Kernel
size, number of features, stride and dimensions can be read for each layer in the
networks.

Layer Description Output Dimensions
Input Images W, H, C
Encoder 1

1-3 [3 x 3, 5 x 5, 3 x 3] conv, 32 features, stride 1 W, H, 32
4-9 3 x 3 conv, [48, 64, 96, 128, 128, 128] features, stride 2 W/128, H/128, 128

Decoder 1
10 4 x 4 deconv, 128 features, stride 2 W/64, H/64, 128
11 3 x 3 conv, 128 features, stride 1 W/64, H/64, 128
12-22 repeat 10-11 with features [128, 128, 96, 64, 48, 32, 32] W/2, H/2, 32

Encoder 2
23 3 x 3 conv, 48 features, stride 2 W/4, H/4, 48
24 3 x 3 conv, 48 features, stride 1 W/4, H/4, 48
25-35 repeat 23-24 with features [64, 96,128, 128, 128] W/128, H/128, 128

Decoder 2
36 4 x 4 deconv, 128 features, stride 2 W/64, H/64, 128
37 3 x 3 conv, 128 features, stride 1 W/64, H/64, 128
38-49 repeat 36-37 with features [128, 128, 96, 64, 48, 32] W/2, H/2, 80

Output layer
50 5 x 5 deconv, 2 features, stride 2 W, H, 2

Table A.1: SH-Net network architecture in detail.
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B
Appendix 2

The detailed network architecture for XCNN can be found in Table B.1. Kernel
size, number of features, stride and dimensions can be read for each layer in the
networks.

Layer Description Output Dimensions
Input Images W, H, C
Convolutional layers

1 7 x 7 conv, 20 features, stride 2 W/2, H/2, 20
2-3 5 x 5 conv, 20 features, stride 1 W/2, H/2, 20
4 5 x 5 conv, 20 features, stride 2 W/4, H/4, 20
5-6 3 x 3 conv, 20 features, stride 1 W/4, H/4, 20
7 3 x 3 conv, 40 features, stride 2 W/8, H/8, 40
8-9 3 x 3 conv, 40 features, stride 1 W/8, H/8, 40
10 3 x 3 conv, 40 features, stride 2 W/16, H/16, 40
11-12 3 x 3 conv, 40 features, stride 1 W/16, H/16, 40
13 3 x 3 conv, 80 features, stride 1 W/32, H/32, 80
14-15 3 x 3 conv, 80 features, stride 1 W/32, H/32, 80

Deconvolutional Layers
16 3 x 3 deconv, 80 features, stride 1 W/32, H/32, 80
17 3 x 3 deconv, 80 features, stride 2 W/16, H/16, 80

residual connection layer 17 and 13
18 3 x 3 deconv, 40 features, stride 1 W/16, H/16, 40
19 3 x 3 deconv, 40 features, stride 2 W/8, H/8, 40
20 3 x 3 deconv, 40 features, stride 1 W/8, H/8, 40

residual connection layer 19 and 9
21 5 x 5 deconv, 20 features, stride 2 W/4, H/4, 20
22 3 x 3 deconv, 20 features, stride 1 W/4, H/4, 20
23 5 x 5 deconv, 20 features, stride 2 W/2, H/2, 20
24 3 x 3 deconv, 20 features, stride 1 W/2, H/2, 20
25 5 x 5 deconv, 20 features, stride 2 W, H, 20

Output layer
26 5 x 5 conv, 1 feature, stride 1 W, H, 1

Table B.1: XCNN network architecture in detail.
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