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Ensemble model of Bidirectional Encoder Representation from Transformers for
Named Entity Recognition

Carl Jendle, Linus Schönbeck
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Named entity recognition (NER) has been widely modeled using Bidirectional En-
coder Representations from Transformers (BERT) in state of the art implementa-
tions since its appearance in 2018. Various configurations based on BERT models
currently hold 4 out of 5 top positions on the GLUE leaderboard, an acknowledged
benchmark for natural language processing and understanding. Relying on BERT
architecture, a range of NER model designs were investigated to predict entities in
a comparatively small set of medical press releases.
The performance of all investigated model designs proved to be boosted with transfer
learning using the publicly available datasets Conll2003 and BC5CDR early on in
the project. Transfer learning was therefore implemented in the best named entity
recognition system found, the separate submodel system under Section 6.3.6. This
final design consisted of two submodels, each classifying different entity subsets
independently. The Conll and BC5CDR datasets were used for transfer learning
in the respective submodels prior to the introduction of medical press release data.
The separate submodel system reached an F1-score of 0.79 (Conll model) and 0.78
(BC5CDR model).
The effect of pre-training a selection of publicly available BERT models on the
medical press releases was also investigated, but was given less emphasis due to
insufficient amounts of data.

Keywords: Transfer learning, natural language processing, named entity recognition,
BERT, conditional random field.
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1
Introduction

Finding experts within the field of medicine and health science is generally a tedious
task. Issues arise when a candidate needs to fulfil an array of criteria in order to be
considered for a task provided by a stakeholder. Typical criteria include knowledge
within a certain field of medicine, experience in leadership or research, geo-location,
previous collaborations and projects et cetera. Sifting through candidates has tradi-
tionally been taxing on resources and has generally required the aid of consultants
or professional connections. Monocl is actively working on the facilitation of find-
ing these candidates based on a stakeholder’s needs by navigating their internal
database.
Monocl’s internal database is based on information from several public biomedical
literature databases. One of the databases, PubMed, contains a vast knowledge base
regarding experts and research. Announcements and publications tied to medicine
and health science are uploaded to this platform at a staggering rate of more than a
million documents per year [2]. Key information from the articles is stored in meta
tags and is easily extracted and integrated to Monocl’s database today.
Monocl aims to expand the information flow into their platform by integrating more
information sources. Biomedical news articles offer time-critical news updates from
pharmaceutical companies, often communicated through their websites. Rapidly
extracting key information from these sources gives Monocl the opportunity to up-
date their customers with the broadcasts. Hence, biomedical news articles are one
information source of particular interest for Monocl. The lack of meta-tags and un-
structured text of the website articles are presently an impediment to the integration
of information. No biomedical news articles are integrated to the platform today
due to the fact that the key information must be extracted from the unstructured
text of the article.

1.1 Problem
The problem at hand lies in efficiently processing and extracting the information
deemed valuable for Monocl for integration with their database. Information of
interest can for instance be the names of the involved medical doctors, information
about a new drug that is being tested or the expected outcome of a clinical trial.
The occurrence of previously unseen diseases, drugs or medical doctors is likely in
text gathered from biomedical news articles. Thus, simply referring to an existing
database for string matching may omit information in an article that is unmistakably
relevant. A model that takes context into consideration is anticipated to perform

1



1. Introduction

better in such a case.
Given the continuous influx of biomedical news from a range of websites, manual
processing of documents is costly and requires qualified employees to handle. Finding
a way to automate this process could potentially have a profound impact on the
extraction of information, assuming that the automated approach generates accurate
results.

1.2 Goals and Challenges
The goal is, in essence, to create a transfer-learning based named entity recognition
model. The model will extract both general entities (names of medical doctors,
organisations and locations) as well as clinical entities (drugs and diseases). The
input is to be gathered from biomedical news articles, which contain information
about investigators, drugs, collaborations and expected outcomes.
The model needs to be as accurate as possible according to metrics defined later in
the document, while still being computationally feasible to implement. Seeing as
the resulting model is domain-specific and fine-tuned on similar text, the ambition
is to reach near state-of-the-art results for named entity recognition.
While semantically equal, a pair of written texts can be, and most often are, inher-
ently different. Extracting entities of notion, such as investigators, drugs etc. and
recognising them as such poses a problem if a high accuracy is to be achieved by a
suitable metric. The exponential growth complexity of generated text, the scarcity
of labelled data, the possibility of previously unknown entities makes any brute-force
approach impossible. Thus, more sophisticated methods are required to tackle the
matter at hand.
A core issue of this project consists of the scarcity of labelled or annotated data. This
poses a challenge as no conventional, supervised learning is achievable. Furthermore,
adding more entities such as drugs that are not pre-trained on a large data set in
the same manner as BERT can be problematic. Subsequent distinguishing between
entities that have traits in common and appear in the same context is at risk of
achieving a low accuracy if the pre-training is insufficient.

1.3 Ethical considerations
The biomedical news data used for training and evaluating as well as potential
future usage is gathered from publicly available sources and is accessible to any
actor. The only apparent ethical consideration to take into account is that of storing
text data that may contain personal information regarding out of scope individuals.
Individuals that are not experts in the field of medicine are of no interest to the
project or Monocl. It means that information regarding these individuals is never
stressed upon, used or abused in any way. Furthermore, in the event of personal
and sensitive information being present in the gathered text data it is anticipated to
make out only a negligible amount of the raw data used. The information is of no
use for the models performance and it’s presence is simply a consequence of being
infeasible to filter out.

2



1. Introduction

Storage of the aforementioned type of text data can be reliant on the GDPR reg-
ulations regarding legitimate interest, making it compliant with EU legislation [3].
Exceptions to this principle can be made if the information is considered to be
intrusive.
Monocl however is operating under a Swedish Publication License which allows for
the storage of the raw data as well as any information extracted from the target
public documents. This also applies to the database to which the information is to
be funnelled. Swedish constitutional laws regarding freedom of speech safeguard the
storage and handling of the information provided that it has been gathered from
public sources [4].

3
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2
Theory

This project is connected to Natural Language Processing (NLP) and is connected
to a specific branch of NLP called named entity recognition. This method aims to
locate and classify named entities in unstructured text. Given the nature of the
data to be processed, a good choice of model will be the Bidirectional Encoder
Representation from Transformers.

2.1 Bidirectional Encoder Representation from
Transformers

The Bidirectional Encoder Representation from Transformers (BERT) is pre-trained
on a large corpus of unlabelled text from Wikipedia as well as the Brown Corpus,
amounting to a total of approximately 3.3 billion words [5]. BERT is pre-trained on
two tasks: Masked Language Modeling and Next Sentence Prediction. Both tasks
are unsupervised, which makes it possible to pre-train BERT with unlabelled text.
In Masked Language Modeling BERT masks 15% of the tokens in the pre-training
data and predicts which token that hides behind each mask. See Figure 2.1 for
visualisation of the masking process. During Next Sentence Prediction BERT takes
two sentences from the pre-training data as input. These sentences can either be
a correct sequence or an incorrect sequence. In case of an incorrect sequence the
second sentence is randomly chosen from the training data. The training objective
is for BERT to predict whether the first sentence is followed by the second sentence
or not. The Next Sentence Prediction is visualised in Figure 2.2.

 These data showed that over 310,000 deaths

were associated with COVID-19, placing

it third among the leading causes of death

in 2020. According to the mathematicians,

there was enough distance between the number

 These data showed that over [MASK] [MASK]

were associated with COVID-19, placing

it third among the leading causes of [MASK]

in 2020. [MASK] to the mathematicians,

there was enough distance between the number

Figure 2.1: Masked language modeling visualised in a sample text from a medical
press release. 15% of the text has been masked out with the [MASK] token in the
text to the right.
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2. Theory

Figure 2.2: Next sentence prediction visualised with an example from a medical
press release. The two sentences in green are the actual, correct sequence of sen-
tences. The sentences in red are a false sequence of sentences. The second sentence
has been randomly chosen from the training data.

The model was developed by Google engineers and implementation of this encoder
architecture helped in surpassing state-of-the-art performance in many NLP tasks.
Implementations using various types of BERT currently holds the top three positions
in the General Language Understanding Evaluation (GLUE) leaderboard, a test that
consists of nine diverse natural language understanding tasks [6]. Specifically, the
article [7] showcases how state-of-the-art results for named entity recognition, as
well as other tasks, were achieved with a fine-tuning approach on BERT. This was
evaluated on a biomedical language counterpart to GLUE, aptly named BLUE.
There are two types of BERT: BERTBASE that contains 109 million parameters
and BERTLARGE containing 340 million parameters. They are structurally equal
but BERTLARGE has larger feature vectors, more encoding blocks and more self-
attention layers. In this report we are describing the parameters for BERTBASE.

BERT is based on the concept of transformers, particularly the encoder part of the
transformer. As the name suggests, BERT operates in a bidirectional manner in
order to use the contextual information prior to and after any word token. This
means that instead of reading input in sequence from left-to-right (or right-to-left)
BERT takes a chunk of unstructured text as input directly. First off, the input text is
split into tokens in BERTs word vocabulary, consisting of roughly 30.000 elements.
This vocabulary contains a variety of different tokens such as whole words, sub-
words and single characters. The single characters include alphabetic characters of
different languages, integers and special characters.
Each token is then encoded to a feature vector in a high-dimensional vector space of
dimension d = 768. In terms of input length, BERT has a maximum capacity of 512
encoded tokens per calculation. Compared to simple context-free word embedding
methods like word2vec, BERT takes the position in the sentence and token type for
each token into account by integrating it into the input feature vector. The token
type is simply a vector that signifies whether the investigated word is in sentence
A or B, which is a crucial part for the Next Sentence Prediction pre-training. The
feature vectors are then used as input to the encoder part of the transformer. The
encoder consist of N = 12 encoder blocks stacked on top of each other. One encoder
block consists of a multi-headed self-attention mechanism, add & normalise layer, a
2-layer feed forward network and another add & normalise layer [8], see Figure 2.3.

6



2. Theory

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.
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Figure 2.3: Encoder part of a transformer. Source: [1]

The multi-headed self-attention layer computes refined embeddings (new updated
feature vectors) by means of weighted averages of all other feature vectors [1]. This
is described more in detail in Section 2.2. After the multi-headed self-attention layer
an add & normalise layer adds the input and output vectors from the multi-headed
self-attention layer and normalises the sum. A residual connection over the multi-
headed self-attention layer is necessary because it leads to stronger gradients and
better learning [8]. The normalisation reduces co-variate shift and makes higher
learning rates possible, leading to faster training. The feed-forward neural network
layer is a fully connected one-hidden layer applied individually to each feature vector.
This neural network has 768 input neurons, 3072 hidden neurons and 768 output
neurons [9] and thus it has the same input and output dimensions. The weights
and biases for the neural network are shared between different feature vectors. The
last part of the encoder block is another add & normalise layer. Overall BERT
is mapping input vectors of dimension d = 768 through N = 12 encoder blocks
to output vectors of the same dimension as the input vectors. It is possible to add
layers on these final output vectors and train them for fine-tuning BERT on different
Natural Language Processing tasks.

2.2 Attention in BERT
The multi-headed self-attention layer in BERT consists of h = 12 parallel self-
attention heads. Each self-attention head’s update process is independent and has
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it’s own parameters. The update steps in a self-attention head is described below:
[10]

First off, the Query, Keys and Values for all n feature vectors need to be calcu-
lated.
For all i ∈ {1, 2, . . . , n}:

Query: qi = WQxi (2.1)
Keys: ki = WKxi (2.2)

Values: vi = WV xi (2.3)

WQ,WK ,WV are matrices with trainable parameters. These matrices are of dimen-
sion [64, 768] and project the feature vectors of dimension 768 down to query, key
and value vectors of dimension 64. Now, to find weights to update feature vector
xi, use Query qi and the Keys kj for all feature vectors:
For all i, j ∈ {1, 2, . . . , n}:

Zji = kTj qi/
√
d (2.4)

d above is the dimension of the query/key vectors. Next, calculate the weights for
xi and update the feature vector xi −→ yi.
For all i ∈ {1, 2, . . . , n}:

Weights: [W1i,W2i, ...,Wni] = softmax(Z1i, Z2i, ..., Zni) (2.5)
New embedding: yi =

∑
j

Wjivj (2.6)

Observe in Equation 2.5 that the weights are calculated by softmax and therefore
also are summed to unity. Observe also in Equation 2.6 that the new feature vector
yi is a weighted average of the Values vj and NOT the feature vectors xj. Thus,
one self-attention layer maps feature vectors xi of dimension 768 to refined feature
vectors yi of dimension 64. The multi-headed self-attention layer produces h =
12 new vector representations yi of the feature vector xi. These representations
are different because the parameters for WQ,WK ,WV vary between different self-
attention layers. All 12 feature vectors yi from different layers are then concatenated
by stacking them on top of each other. This generates larger feature vectors of
dimension d = 12 · 64 = 768. These vectors are then stacked in a matrix Ỹ , one
column for every feature vector. Ỹ is then multiplied with a matrix of dimension
[768, 768], W0:

Y = W0Ỹ (2.7)

The matrix W0 contains trainable parameters. In this way information from all
h = 12 layers are gathered in the matrix Y and the multi-headed self-attention layer
has input and output vectors of the same dimension.

8
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2.2.1 Interpretation of the weights in BERT’s self-attention
layers

The update weights for every token i, W1i,W2i, ...,Wni, in every self-attention layer
have a logical interpretation. The tokens with large weights for an update of feature
vector xi are likely tokens that have a linguistic connection to the investigated token
i. For example, consider the sentence "Simon is ill and he is going to test himself for
covid-19 today.". In Figure 2.4 the weights for the word "himself" are investigated
in the example sentence for both BERT-base-uncased and Clinical BERT.
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Figure 2.4: Averaged weights over all 12 self-attention heads for every self-attention
layer. Comparison of weights between BERT-base-cased and Clinical BERT for the
word "himself" in the example sentence stated above. Notice also that the two models
have different vocabularies and hence also different tokenizations of the sentence.

It can be seen in Figure 2.4 that both BERT base uncased and Clinical BERT have
large weights for the tokens corresponding to the words "Simon", "test", "himself"
and "for". Arguably also the word "he" in BERT base uncased. These words are all
of linguistic importance to the word "himself" in the sentence. The words "test" and
"for" are the neighbouring words to "himself" and describe the context. Of course the
weight of the investigated word "himself" is large. "himself" is referring to "Simon"
and both models capture this relation by assigning a large weight.

2.3 Transfer Learning
for named entity recognition

There are a variety of machine- and deep-learning methods and the intention is to
use transfer learning by proceeding from an already pre-trained BERT model. Since
BERT was introduced in 2018, several further pre-trained open source BERT models
have appeared on Github. It is of particular interest to proceed from a BERT model
that has been pre-trained in the medical domain in order to get the best possible
starting-point with a high language understanding from the beginning. Choosing
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the model with the most similar domain to the biomedical news articles will not
only increase the performance of the model, but also decrease the pre-training time.
The specific BERT models are discussed in Section 2.7.

2.4 Conditional Random Field
A standard prediction process in a classification problem is to individually predict
a class for every feature. In that case no consideration is taken into the sequence
of entities. In order for the model to take the sequence of entities into account
a Conditional Random Field (CRF) is used in the classifier - more specifically a
Linear Chain CRF. By using Linear Chain CRF the loss function is not the regular
Cross-entropy loss, as an additional transition part is added to the loss function, L:

loss, L = − log(p(y|X)) (2.8)

p(y|X) = exp
 K∑
k=1

a(L+1) (xk)yk︸ ︷︷ ︸
Emission part

+
K−1∑
k=1

Vyk,yk+1︸ ︷︷ ︸
Transition part

 /Z(X)︸ ︷︷ ︸
Partition
function

(2.9)

Z(X) =
∑
y1

∑
y2

· · ·
∑
yK

exp
 K∑
k=1

a(L+1) (xk)yk
+

K−1∑
k=1

Vyk,yk+1

 (2.10)

The emission part is derived from calculating the probability of the correct entity
yk given the input token xk for every token k = 1, 2, ..., K in the K tokens long
sequence. a(L+1) (xk) is the activation function for the input xk. Thus, in our case,
this is the emission scores received from the feed-forward layer after BERT. Hence
a(L+1) (xk)yk

is the emission score for the correct entity yk. This is just like in regular
Cross-entropy loss.
The transition part of the loss function is a measurement of how likely it is that the
entity yk is followed by entity yk+1. Vyk,yk+1 is a K × K matrix containing values
for every transition yk −→ yk+1. The transition part is making the model consider
predictions of sequences of entities and not just individual predictions of entities.
The partition function is a normalization constant for the likelihood p(y|X). By
looking at Equation 2.10 we see that the normalizing constant is just the sum over
all possible sequences of entities for the numerator. It is also mathematically possible
to find a sequence of entities y given the emission scores X that minimizes the loss
function in Equation 2.8. This sequence is of interest because it is the most probable
sequence of entities given a sequence of tokens. The sequence can finally be found
by the Viterbi algorithm. [11]

2.5 Uniform Manifold Approximation and Pro-
jection

In order to visualize the high dimensional, contextualized tokens in the BERT model,
Uniform Manifold Approximation and Projection (UMAP) is used. This can be ap-
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plied to UMAP builds a high-dimensional graph representation of a dataset and
subsequently creates a lower dimensional graph to be as structurally similar as pos-
sible.

Two UMAP parameters used for creating the high dimensional graph are are of k,
the number of nearest neighbours and rmax, the max radius.

In constructing the high-dimensional graph, radii around each data vertex expands
until they intersect with k other radii, adding weighted, directed edges between
vertices at each intersection.

Setting a small rmax leads to more isolated simplices whereas a high rmax may lead
to a too high connectivity between clusters. As the radius growth of each vertex
depends on the number of intersections with other radii being less than k, the value
of k also has an impact on connectivity.
Each vertex considers its own k nearest neighbours based on outgoing edges and
calculates values for ρi = min{‖xi − xij‖2|1 ≤ j ≤ k} where xij is the j:th nearest
neighbour for vertex xi and σi such that log2(k) = ∑k

j=1 exp(−
‖xi−xij‖2−ρi

σi
)

The σi and ρi values help defining the weight function w for outgoing edges, w(xi, xij) =
exp(−‖xi−xij‖2

2−ρi

σi
). These weights are viewed as probabilities of membership connec-

tion between two vertices and the nearest neighbour xij is guaranteed to be locally
connected to the origin xi.

ViewingX as the set of high-dimensional data points, a directed graph ~G = (V,E,w)
can be created where the vertices V refer to the points in X and the edges E with
respective weights w are derived from the radius intersections.

Figure 2.5: 2D construction representation of high-dimensional graph for an in-
creasing maximum distance and nearest neighbours k = 2.
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Figure 2.6: 2D construction representation of high-dimensional graph for an in-
creasing maximum distance and nearest neighbours k = 2. The central node stops
expanding as it reaches 2 nearest neighbours and the final edges added are directed.

By letting A be the weighted adjacency matrix of the directed, acyclic graph ~G, the
symmetric matrix B is considered

B = A+ AT − A · AT (2.11)

The resulting symmetrical matrix B is the weighted adjacency matrix for the undi-
rected UMAP graph G.
While there are a number of methods for reducing the dimension of a graph, UMAP
relies on a force directed graph layout algorithm in low-dimensional space. The
forces ~Fr and ~Fa denote a repulsive and an attractive force between each vertex pair
(yi, yj) where yi, yj ∈ Rd and d is the target dimension.

~Fa = −2ab‖yi − yj‖2(b−1)
2

1 + ‖yj‖2
2

w(xi, xj)(yi − yj) (2.12)

~Fr = 2b
((ε+ ‖yi − yj‖2

2)(1 + a‖yi − yj‖2b
2 ))(1− w(xi, xj))(yi − yj) (2.13)

a and b are hyperparameters and ε is a small constant used for numerical stabil-
ity. The system stabilizes as a force equilibrium is reached, at which point the
weighted graph H constituted by the points {yi}i=1...N approximates the original,
high-dimensional graph G as well as the method allows. [12] [13]

2.6 Named Entities
A named entity in named entity recognition corresponds to a physical or abstract
real-world object and carries semantic significance. An instance of a named entity
has, apart from it’s entity adhesion, a name string. In terms of entity classifica-
tion, a variety of entities can be divided into separate classes. In order to extract
correct entity-string pairs, entities must first be properly classified. As previously
mentioned, each entity has an adhering name. Determining string boundaries for
these names can be more or less problematic and matching is divided into the exact
and partial categories. In the case of discontinuous entity names, a string boundary
has an exact matching if the name is fully encapsulated. For instance, extracting
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only a first name of a medical doctor and leaving out the surname or extracting
"Biopharma" from "Hansa Biopharma" would yield a partial boundary matching.
Working with the IOB-format is a common practice in named entity recognition,
where text is annotated into three categories - beginning of entity, inside entity and
other. This format allows entities that consist of more than one word to be mapped
to a single entity for future extraction.

Figure 2.7: IOB-annotation of an arbitrary sentence. Two separate disease entities
are tagged as well as the omitted entities.

In general text, a majority of the entities will always be classified as omitted, or
"other". Viewing named entity recognition as a classification problem means that
there is an imbalance of annotated data between labels. This can be addressed by
weighting the cost function based on the observed inverse frequency of each label
during the training.

2.7 Related Work
Several publications have been made regarding clinical named entity recognition,
i.e. research that has been done to classify medical terms as drugs, diseases, symp-
toms etc. These articles mainly revolve around text from Electronic Health Records,
for instance in the study "Incorporating dictionaries into deep neural networks for
the Chinese clinical named entity recognition" [14]. Some research has focused on
named entity recognition for publications from PubMed. Examples include articles
where documents from PubMed have been examined for names of diseases or chem-
icals [15][16]. However, we can not find research specified on clinical named entity
recognition for press releases or any other biomedical news sources. Neither have
we found research that is trying to capture the overall picture of a clinical trial text
by identifying several entities such as scientists/medical doctors, drugs, names of
hospitals/research facilities, expected outcome of the trial etc. The difference lies
in that most research seems to focus on finding specific entities such as the names
of diseases and chemicals. BERT is also a somewhat new (2018) word embedding
model and it is interesting to see how well it can perform in this area. BERT
has been specialized in the biomedical domain by pre-training it unsupervised on
PubMed abstracts (4.5B words) and PubMed articles (13.5B words) in the article
[17]. BERT has also been specialized in the clinical domain by starting with BERT
and the pre-trained BioBERT model in [17] and pre-train these two models further
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on 2 million MIMIC (Medical Information Mart for Intensive Care) notes in the
Clinical BERT study [18]. Another notable flavor of BERT in the biomedical do-
main is the BlueBERT model, which differs from the Clinical BERT model only in
the sense that the Wikipedia and Brown corpora are excluded from the pre-training
[7].

14



3
Methods

Named Entity Recognition is interchangeable with a multi-class classification prob-
lem and an array of designs for the task is conceivable. Based on the available an-
notated data, the aim is to derive an ensemble model of low dimensional classifiers
with BERT models as a key component. The methods described below are reliant
on the pre-existing BERT architecture and corresponding libraries for pre-training
and pre-processing.

3.1 BERT Model
All of the BERT-base models, BioBERT and Clinical BERT are open source models
available at Huggingface [19]. They all have the same structure, which includes 12
encoding blocks, all with 12 parallel self-attention layers and a feed-forward network
described in section 2.1. Each self-attention layer has matrices for querys, keys and
values. The model also includes three matrices for encoding tokens, these are for
word embedding, position embedding and token embedding. As mentioned in 2.1,
BERT does not simply encode each token based on the token itself, but also the
token position in the sentence and which sentence the token is part of. All of the
109 million parameters, including the ones mentioned above, are reachable in the
model and can be gauged. It is a huge advantage that BERT’s parameters are
non-proprietary components. For example the analysis of how the word embedding
vectors are altered during pre-training and how the self-attention layers weights are
divided for an input sentence would not be possible without it.

3.2 Intended Workflow
As the intention is to develop an ensemble model of separate BERT classifiers, each
separate model will be specialized in extracting a subset of the target entities. The
reasoning behind this is based on the quality of the data available and is discussed in
detail in Section 4. First off, we are using BERT Base provided by Google Research
as well as BioBERT and Clinical BERT, two separate model checkpoints that are
further trained on biomedical data [17] [18]. These models are to be pre-trained
unsupervised on a corpus consisting of biomedical news articles to make the BERT
models domain specific. The reason for this further stage of training is due to the text
structure in the news articles being different from the text structure in the training
data the BERT models have previously been trained on. The pre-training consists
of two tasks - Masked Language Modelling and Next Sentence Prediction and are
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performed by using scripts provided by Google Research. The resulting models
are subsequently ported from Tensorflow to PyTorch via the Transformer library
provided by HuggingFace [20]. For this extra pre-training step the unstructured
text needs to be split into smaller parts, since BERT has a maximum input length
of 512 tokens. Tokenization of the input strings and encoding to input vectors makes
the text ready for training. To verify that the pre-training is heading in the right
direction it is important to evaluate the training continuously. Metrics, such as
loss function and accuracy, are calculated at given checkpoints for the pre-training
evaluation set and logged in Tensorboard. Fine-tuning BERT for named entity
recognition requires annotated training data with relevant entities. The entities this
project has settled to include:

• Person
• Organisation
• Geo-locations
• Chemicals
• Diseases

External annotated data sets discussed in Section 4.2 are pre-processed and used
to fine-tune BERT. In this way BERT is able to classify every token. Following
fine-tuning, the model will finally be evaluated on the manually annotated set of
news articles.

3.3 Initializing CRF transitions
Some transitions are logically impossible and as the model is trained, the penalty
for illegal transitions increases. If such transitions are known beforehand, a common
practice is to initialize low values for these specific transitions. Empirical studies
and those of our own suggest that this step speeds up convergence and improves
overall accuracy - especially if a shortage of data is an issue.
When working with annotated data on an IOB-format, the transitions below are
logically impossible

Transition from Transition to
O I − Entityi
I − Entityi I − Entityj
B − Entityi I − Entityj

Table 3.1: Illegal transitions for the conditional random field for all i 6= j.

As the Viterbi algorithm is used to decode the final sequence, these transitions are
initialized to low values.

3.4 Evaluation
Following training, the generated output is to consist of a collection of extracted
entity-string pairs. The extracted entity-string pairs are stored separately in an
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annotation file which denotes the entity ID, character off-sets in the file, type of
entity and the string found in between the character off-sets. This standard is
commonly referred to as brat standoff format [21]. These string-entity pairs need to
be extracted and parsed for future integration into the Monocl database.
Due to the negative impact of false positives and false negatives, the evaluation
metric has to penalise these occurrences. Furthermore, partially correct output
must be considered better than fully incorrect output.
Results can be divided into the following categories when compared to a gold stan-
dard annotation:

• COR - Correct, entity-string matches golden standard annotation
• INC - Incorrect, no match in system output and golden standard annotation
• MIS - Missing, entity-string pair in golden standard annotation not recognized

by the system
• PAR - Partial, the string in system output is not fully captured
• SPU - Spurious, inferred by the system but not present in the golden standard

annotation
Here, the golden standard annotation signifies the manual annotation made by an
expert and are assumed to be correct. Based on these categories, evaluation can
be done via recall, precision and F1-score, taking the following measurements into
account:

• Strict - correctness of both entity type and string boundary
• Exact - boundary matching for string regardless of type
• Partial - partial boundary matching for string regardless of type
• Type - type match for entity, some overlap of string boundary required

The number of gold standard annotations contributing to the final score are referred
to as "possible" (POS),

POS = COR + INC + PAR +MIS = TP + FN (3.1)

and the number of annotations produced by the named entity recognition system is
referred to as "actual" (ACT),

ACT = COR + INC + PAR + SPU = TP + FP (3.2)

When considering the strict evaluation, the precision (P) and recall (R) are calcu-
lated through

Pstrict = COR

ACT
= TP

TP + FP
(3.3)

Rstrict = COR

POS
= TP

TP + FN
(3.4)

and for the partial counterpart

Ppartial = COR + 0.5 · PAR
ACT

(3.5)

Rpartial = COR + 0.5 · PAR
POS

(3.6)
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F1strict = 2Pstrict ·Rstrict

Pstrict +Rstrict

(3.7)

F1partial = 2 · Ppartial ·Rpartial

Ppartial +Rpartial

(3.8)

Furthermore, assuming a small evaluation set, the robustness of scores must be anal-
ysed for a range of elements used in the evaluation set.

The importance of recall and precision is generally task dependent. A generalized
version of the F1 score is the Fβ score:

Fβ = (1 + β2) · P ·R
(β2 · P +R) (3.9)

With this modification, recall is considered β times as important as precision in Fβ
score. Higher values of β promote a high recall at the expense of a lower precision.

3.5 Recall over Precision
Precision is more important than recall if the cost of false positives is high - for
instance if you are to defuse an MBV-78-A1 anti-personell mine. Wrongfully classi-
fying a wire as safe to cut will have devastating results and the alternative to simply
avoid it altogether might be more appealing.
Recall on the other hand is more important if the cost of false negatives is high.
In testing a patient for a treatable, deadly disease, the consequences of sending a
diseased patient away are direr than investigating a false positive further.
In this task, the recall is considered to be of greater importance as the model output
is to be filtered after its generation. Omitted entities can not be added with ease,
but posterior filtering mitigates the negative effect of false positives. By modifying
the weights in the cross-entropy loss for a linear feedforward network, the recall
for an entity or class increases as its loss weight goes up. The trade off between
precision and recall is asymptotical to the worst score, 0, as either approaches the
perfect score 1.

3.6 Baseline comparison
As various BERT model implementations are widely occurring in the GLUE leader
board, suitable baseline comparisons are best centered around similar designs. A
simple baseline comparison can be done by comparing a single BERT-model to the
proposed ensemble model. Another baseline comparison can be done by using the
RoBERTA based named entity recognition training pipeline provided by spaCy.

3.7 Limitations
In order to pre-train the BERT-model properly, the amount of unstructured or
non-annotated test data needs to be of sufficient size. In the project the sparcity of
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biomedical press releases may restrict the pre-training step. If no performance boost
is achieved from pre-training the model, the pre-training step can be abandoned for
other tasks.

The number of entities considered will be restricted, not only in order to promote
overall accuracy but also to leverage publicly available datasets. This helps in avoid-
ing unnecessary complexity to the model while still extracting the most relevant
entities.

The required computation time for downstream tasks is not negligible and the tun-
ing of hyperparameters must be done strategically as any exhaustive search will
be too time- and resource consuming. Consulting related works for approximate
hyperparameters will help minimizing the time put into this step.
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Data

To make full usage of the BERT architecture for named entity recognition, one
can either rely solely on annotated data or a combination of a small amount of
annotated data and a greater portion of unstructured text. These datasets, both
stemming from the same area of expertise and having semantic similarity, are used
for two separate tasks - the pre-training and the downstream task.

4.1 Unstructured Dataset
Pre-training a BERT model prior to a downstream task is heavily dependent on vast
amounts of unstructured text data.
As the annotated data consists of text scraped from various medical news outlets,
the unstructured text used for the pre-training is gathered from the same sources in
order to maximize semantic similarity and relevance.
A significant change in performance is not anticipated in our case. Comparing our
current volume of training data to that of other articles suggests that we have way to
few press releases for pre-training. Therefore, a careful choice of model checkpoint
is deemed more important as stated in Section 2.3.

4.2 Annotated Datasets
Generating a sufficient amount of text data for our model is costly as it requires both
text retrieval and manual annotation by a qualified person. However, subsets of the
entities are found in a collection of publicly available datasets. Leveraging these
datasets could help minimizing the amount of work put into generating a dataset.
Another benefit of using well studied datasets is the possibility to compare model
performance to pre-existing benchmarks.
The publicly available datasets considered and their respective annotations are the
BC5CDR (disease and chemical dataset, 3 MB [22]) and the Conll2003 (person,
location and organisation dataset, 4.5 MB [23]). These datasets are already splitted
into training, validation and test set. Hence, this enables a standard for a fair
international state-of-the-art competition between different named entity recognition
models.
A custom dataset, Monocl2021, has also been tagged and contains 1.5 MB worth
of annotations for persons, locations, organisations, diseases and chemicals. The
text is gathered from publicly available sources for biomedical news and has been
annotated by Monocl and is used for evaluation of the finalized ensemble model.
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The datasets vary in terms of volume as well as raw count of annotations.
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Figure 4.1: Raw entity count of the considered datasets.

4.3 Entity density in datasets
In terms of target classes or entities, the data is imbalanced with the ’Other’ class
being more frequent. Comparing the entity density in the considered public datasets
to the Monocl data, it is evident that the medical press releases are more sparse in
terms of target entities.

Person Location Organisation Disease Chemical
Conll2003 0.062 0.058 0.058 0 0
BC5CDR 0 0 0 0.046 0.058
Monocl 0.014 0.004 0.008 0.016 0.008

Table 4.1: Table of entity density in the datasets based on total word count.

4.4 Conflicting data
A shortcoming of using separate datasets in the model is the potential occurrence of
non-annotated entities in the public datasets. Seeing as locations and organisations
are out of scope for the NCBI dataset, these entities are simply left unannotated.
The severity of this fact can be measured by simply using all available data in a
naive manner, making no adjustments to the model to handle the ambiguous data.

4.5 Pre-processing
The input shape needed for pre-training and fine-tuning differs as the methods are
unsupervised and supervised respectively. Both methods need full sentences as input
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and the fine-tuning input needs annotations for each word.

4.5.1 Pre-training
In order to transform raw text to data suitable for the pre-training of the BERT-
model, the text needs to be segmented into sentences. These sentences are used for
the unsupervised next sentence prediction (NSP) as well as the masked language
modelling (MLM). This step is facilitated by the spaCy library which provides flex-
ible pipelines for sentence segmentation [24]. Following this, the sentences are cast
to tensorflow examples and used for the NSP and MLM tasks.

4.5.2 Fine-tuning
The pre-processing from training data to eligible input to BERT is handled via
the tokenisation method described in 2.1. The tokenisation process varies with an
upper- or lower-cased argument as the vocabulary is case sensitive. On one hand,
countries, names etc. are generally upper cased and a lower cased representation
of them may not be present in the vocabulary. On the other hand, words that
are positioned in the beginning of a sentence and thus upper cased are at also at
risk of not being present in the vocabulary, despite the presence of a lower cased
counterpart. Depending on the entities to be extracted, this may have an impact as
pre-trained word embeddings are likely to be better than the piecewise tokenisation.
Choosing separate casings for two different parts of the ensemble model may provide
an overall increase in performance score. However, the length of a tokenised string
can differ based on the casing.
To showcase this behaviour, consider the following sentence tokenized by BERT with
and without lower-casing:

Figure 4.2: Example string tokenised with lower and upper case settings.

This disparity of token lengths must also be addressed if ensemble models are to be
used as the output of each model must be mapped together.
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Model

In order to circumvent the issue of contradictory data, an ensemble model of three
separate BERT-based classifiers is proposed. Each model is responsible for clas-
sifying a subset of the entities considered based on the annotated datasets. The
individual models are merged in a unifying classifier in order to achieve an ensemble
model.

5.1 Individual Models

Each individual model consist of a BERT encoder and a simple feed-forward network
which reduces the dimension of the encoder output to the number of true entity
labels in the subset. These models are trained in a vacuum and use different pre-
trained BERT models. The choice of BERT model is based on the performance on
each subset of the entity recognition task. In Figure 5.1 the three separate BERT-
based models are listed. The starting BERT models are selected as BERT-base
cased, BioBERT and Clinical BERT. Notable also is that the different feed-forward
networks maps down to different dimensions, depending on the number of entities
in the subset. The output is mapped to the label dimension 2 · nentities + 1.

Conll
Monocl

BERT 
Base FF

CRF

Softmax

BC5CDR
Monocl BioBERT FF

CRF

Softmax

Monocl Cl. BERT FF

CRF

Softmax

Figure 5.1: The three individual models. Each model is trained and operates
individually. Text data is tokenized and each contextualized word embedding is
reduced from 768 to the number of target labels, followed by softmax classification
or further processing in the CRF.
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5.2 Classification with unconnected individual mod-
els

In order to leverage the pre-trained BERT models available and circumvent out of
scope entities present in the public datasets, multiple models can work in parallel.

If the target entities for the models are disjoint, a rule-based classifier can be used
in order to lower model complexity. This method generates double output and each
model has precedence over the other when classifying a singular token as one of its
own entities.

In order for this method to prove effective, the contextualized tokens must be easily
separable on entity level. In the fringe case of a singular token being classified
as a relevant entity by both models, cruder methods such as maximum score or a
frequency based classifier can be used if a lower complexity is to be retained.

Denoting the subset of entities for two models as S1 and S2, the following rule based
reduction can be applied:

Final classification method
Model 1 output Model 2 output Output result
O O O
E1 ∈ S1 O E1
O E2 ∈ S2 E2
E1 ∈ S1 E2 ∈ S2 ω(E1, E2)

Table 5.1: Rule based logic for reducing aggregated output from submodels. Each
submodel has classification precedence if one of its entities is predicted. In the case
of conflicting output, the binary, frequency based function ω(E1, E2) is used.

Intending the model to consider linguistic dependency, the predictions will be made
as sequences of entities and not just individual independent entities. This is accom-
plished by implementing a Linear Chain Conditional Random Field module lastly in
the classifier. An advantage with the CRF module is that it comprehends if an entity
transition is reasonable or not, based on the frequency this transition has occurred
in the training data. This means that sequences containing forbidden transitions,
for example ’B-disease’ to ’I-chemical’, will never be predicted by the CRF module.
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Broad-
casted 
text data

BERT 
Base FF CRF

BioBERT FF CRF

Reduction 
and 

prediction

Figure 5.2: The complete model implementing submodels and rule based reduc-
tion. The submodels are trained independently on their respective subsets of entities
and work in parallell. Their output is reduced for final predictions based on the logic
in 5.1.

5.3 Connected Ensemble Model

In order to generate singular classifications for all words, the separate models can be
unified by concatenating their outputs and add a final classification layer. This can
for instance be done with a feed-forward network followed by a conditional random
field module. The encoder-decoder pairs from different models are subsequently put
together into an ensemble model. Concretely, every input sequence is individually
and independently given to each individual model. The output vectors from each
model are concatenated with each other, in order to get a concatenated vector
with the information from every individual model. The concatenated vector are fed
through the feed-forward network. This feed-forward layer maps the concatenated
vectors down to entity vectors. An entity vector has one element for each entity of
interest. In this way every token of the tokenized sentence has an emission score
for every possible entity. The point in training the feed-forward layer is to find
weights and biases that combines the information from the individual models in
the best possible way in order to get a reliable ensemble model. The training of
the feed-forward network is performed after the training of the individual models.
The individual models parameters are kept fixed during this training. In order to
include all the relevant entities the training is performed on the Monocl dataset.
The output from the feedforward network is subsequently processed in a CRF layer
and predictions are made.
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Figure 5.3: The complete Ensemble model. Outputs are concatenated and fed
into the CRF in order to generate the best scoring sequence.
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6
Results

6.1 Data visualization of high-dimensional token
vectors

Sentence and word representations for the BERT CLS tokens and separate word
tokens visualized using the UMAP method described in Section 2.5.

6.1.1 Sentence embeddings

The BERT CLS tokens prepended to all sentence examples were evaluated using
the UMAP method to visualize sentence similarities or dissimilarities between the
datasets. The comparison is depicted in Figure 6.1 below.

2.5 5.0 7.5 10.0 12.5 15.0 17.5

0

1

2

3

4

5

6

7

UMAP plot of BERT sentence embeddings.

BC5CDR

Monocl

Conll

Figure 6.1: UMAP plot of BERT CLS-tokens for sentences. Sentences from the
Conll and BC5CDR datasets are fairly disjoint while sentences from the Monocl
dataset is distributed across the BC5CDR and Conll datasets.
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6.1.2 Word embeddings

To visualize entity separability, entity token embeddings were plotted using the
UMAP reduction and is presented in Figure 6.2. All ’Other’ tokens were excluded
in these measurements.
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Figure 6.2: UMAP plot of contextualized word embeddings with original labels.
Most B/I entity pairs are clearly separable.

A heterogeneous region was identified within the organisation cluster with chemicals
and diseases present. This may impact inter-model misclassifications if no extra
complexity is introduced to the model.
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Figure 6.3: Zoom view of the B/I organisation cluster. Some chemical and disease
word embeddings are also mapped to this region.

6.2 Pre-training of the BERT model
Following pre-training on the biomedical press releases, the training and validation
loss functions of the next sentence prediction (NSP) and masked language modelling
(MLM) were gauged. The total pre-training loss function is the next sentence pre-
diction loss function added with the masked language modelling loss function. One
interesting approach was to see if Clinical BERT or BioBERT performed best for
the pre-traning tasks. The results are visualised below.
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Figure 6.4: Training and validation loss for pre-training Clinical BERT and
BioBERT on the biomedical news articles.

To get a more detailed picture of the pre-training, the different pre-training tasks are

31



6. Results

visualised separately. Figure 6.5 visualises the loss functions as well as the accuracy
of the next sentence prediction and masked language modelling for Clinical BERT.
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Figure 6.5: Loss function and accuracy for masked language modelling and next
sentence prediction for Clinical BERT during pre-training.

Another interesting approach is to see how BERT’s word embeddings are changing
during pre-training. The PCA comparison of word embeddings between the pre-
trained model and the original checkpoint, for Clinical BERT, is presented in Figure
6.6. As the embedded dimension from each word is reduced from 768 to 2 dimensions,
some information is lost.
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Figure 6.6: PCA plot of arbitrary word embeddings before and after pre-training.
A slight shift is visible for each word.

The impact of the pre-training on attention was measured and visualized with
heatmaps. See Section 2.2.1 for theory. Three BERT models were used - the BERT
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Base Cased, Clinical BERT and the model pre-trained from the Clinical BERT
checkpoint. The sentence "The patient had pneumonia, but the doctor prescribed
him some medicine", with attention spanning to and from "prescribed" is depicted
below.
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Figure 6.7: Heatmaps of the 2 first attention heads, all layers, for three separate
models.
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Figure 6.8: Mean of all 12 attention heads for each BERT model.

33



6. Results

0 1 2 3 4 5 6 7 8 9 10 11
layers

The
patient

had
pneumonia

,
but
the

doctor
prescribed

him
some

medicine
.

Heatmap difference 
 Clinical BERT vs. Pre-trained Clinical BERT

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.9: Heatmap visualization of mean attention difference between Clinical
BERT and the pre-trained Clinical BERT model.

6.3 Named Entity Recognition Performance
In order to get the best performance from every BERT submodel each data set
mentioned in 4.2 are investigated separately. Table 6.1 visualises the best measured
results for every data set. Though, the Conll2003 data set contains entities ’Times’
and ’Quantity’ in addition to ’Person’, ’Organisation’ and ’Location’. Uninterested in
entities outside the scope, all entities except ’Person’, ’Organisation’ and ’Location’
are treated as the ’Other’ entity in this data set. Hence, because of exclusion of
entities, the comparison against the state of the art results for the Conll2003 data
set can be a bit misleading.
During the pre-training, Figure 6.4 indicated Clinical BERT to be better than
BioBERT for the pre-training tasks. Hence, the intention was to use Clinical BERT
for the named entity recognition. However, during the named entity recognition
training, BioBERT had a better performance than Clinical BERT for the BC5CDR
dataset. As a result, BioBERT was the preferred model.

Dataset SOTA F1-score spaCy score F1-score Models used
Conll2003 0.94 0.93 0.92 BERT Base Cased + CRF
BC5CDR 0.89 0.90 0.91 BioBERT + CRF
Monocl - 0.71 0.76 BERT Base Cased + CRF

Table 6.1: Table over the best measured F1-scores for the test set. Different BERT
models were used to increase performance for the different data sets. The BC5CDR
state of the art score refers to the best result of 2019. The simulations resulting in
this Table are visualized in Figures 6.10-6.12.

Table 6.1 visualises the best results for each dataset, without any transfer learning.
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Section 6.3.6 deals with the model system with the best overall results (F1-score) on
the Monocl dataset. Section 6.3.7 is about the more recall favoured model system,
which is of special interest for Monocl.
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Figure 6.10: Loss function and F1-score for the BC5CDR data set.
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Figure 6.11: Loss function and F1-score for the Conll2003 data set.

6.3.1 Best performing model design
The highest F1 score was achieved using a design of unconnected, individual models
per the description of Section 5.2 and the results are covered in Section .

6.3.2 Information about the simulations
Mentioned in Section 4.2, Conll2003 and BC5CDR are already splitted into training,
validation and test set. The Monocl dataset at the other hand, are pre-processed
into one file. The dataset are too small to fix a sufficiently amount of data for an
evaluation set and test set that guarantees a generalized and functional evaluation
and testing. All data that are included in the evaluation and test set, are data that
could be a part of the training set. The intention is to use as much data as possible
for training, but still has a reasonable validation and test set. Hence, the split
70% for training set, 15% for evaluation set and the remaining 15% for test set were
chosen for all simulations when the Monocl dataset were used for training, evaluation

35



6. Results

and test set. The actual splitting process of the data included a stochastic process,
where 15% of the articles where randomly chosen as evaluation set and 15% for
test set. Bias between the different sets were avoided by not letting examples from
the same medical press release end up in different sets. 15% of the Monocl dataset
for an evaluation/test set are in reality data from 36 medical press releases. This
is somewhat small. As a fact the model’s results are highly dependent on which
articles that were chosen for the evaluation and test set. In order to counteract
inaccurate results several (ten as default) iterations were made for every simulation.
The results presented are the averaged results over the iterations. Throughout the
simulations, the test set are evaluated on the model that performed the lowest result
on the loss function for the evaluation set.

6.3.3 Monocl BERT model

A natural first investigation, would be to measure the performance of an individual
BERT model trained, evaluated and tested on the Monocl data set. Information
about the simulation can be found in Section 6.3.2. The results are visualised in
Figure 6.12 and Table 6.2.
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Figure 6.12: Loss function and F1-score for the Monocl data set. This plot is for
one of the iterations of the Monocl BERT model.

Precision Recall F1-Score
Person 0.9042 0.9195 0.9104
Organisation 0.6809 0.7175 0.6969
Location 0.7455 0.7675 0.7555
Disease 0.7553 0.7693 0.7601
Chemical 0.7397 0.7268 0.7309
Overall 0.7566 0.7659 0.7605

Table 6.2: Average performance of the 10 iterations on the test set.
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6.3.4 Single model naive approach
The results of using all available data from the Conll- and BC5CDR datasets in con-
junction with the Monocl dataset is depicted below in table 6.3. The measurement
was done by using a single Clinical BERT model without addressing the lack of out
of scope annotations for the public datasets.

Precision Recall F1-Score
Person 0.6625 0.8977 0.7499
Organisation 0.6058 0.4848 0.5386
Location 0.6556 0.5735 0.6118
Disease 0.6724 0.7669 0.7165
Chemical 0.6961 0.7709 0.7316
Overall 0.6625 0.7097 0.6853

Table 6.3: Average performance of the naive approach. The results are averaged
over 10 iterations on the test set.

6.3.5 Performance of Conll- and BC5CDR model on the
Monocl data set

Table 6.1 and Figures 6.10-6.11 shows great results for the BC5CDR and Conll
datasets. One interesting investigation would be to evaluate the performance of
these models on the Monocl dataset. The evaluation were done for the FULL Monocl
dataset in Tables 6.4-6.5.

Precision Recall F1-Score
Person 0.8380 0.9081 0.8717
Organisation 0.5287 0.7524 0.6210
Location 0.6831 0.8767 0.7679
Overall 0.6289 0.8177 0.7109

Table 6.4: Table over the evaluation of the Conll2003 model on the Monocl data
set for the entities person, location and organisation.

Precision Recall F1-Score
Disease 0.5429 0.4873 0.5136
Chemical 0.7113 0.7847 0.7462
Overall 0.6194 0.6075 0.6134

Table 6.5: Table over the evaluation of the BC5CDR model on the Monocl data
set for the entities disease and chemical.

Comparison between the measured F1-score of 0.919 in Table 6.1 with the F1-score
of 0.7109 from Table 6.6 concludes that there is a large difference in performance
between evaluating on the Conll2003 or Monocl data set. A similar conclusion can
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be drawn by comparing the measured F1-score of 0.908 in Table 6.1 for the BC5CDR
data set with the F1-score of 0.6134 from Table 6.7 for the Monocl data set.

6.3.6 Training the Conll- and BC5CDR model on the Mon-
ocl data set

In order to increase the performance, the primal idea was to use the Conll2003 and
BC5CDR datasets for transfer learning. This is due to the small size of the Monocl
dataset. Concretely, instead of training a plain BERT model on the Monocl data
set from scratch, proceeding from the Conll- and BC5CDR model might improve
the results. The Conll model was trained on the Monocl dataset for the entities
person, organisation and location. BC5CDR likewise, but for the entities chemical
and disease. Information about the simulation can be found in Section 6.3.2. The
results are visualised in Tables 6.6-6.7.

Precision Recall F1-Score
Person 0.9047 0.9449 0.9238
Organisation 0.7275 0.7107 0.7184
Location 0.7855 0.7937 0.7889
Overall 0.7861 0.7870 0.7863

Table 6.6: Table over the results on the test set for the Conll model trained on the
Monocl data set. The results are averaged over 10 iterations.

Precision Recall F1-Score
Disease 0.7723 0.7800 0.7747
Chemical 0.7755 0.7811 0.7734
Overall 0.7739 0.7805 0.7772

Table 6.7: Table over the results on the test set of the BC5CDR model trained on
the Monocl data set. The results are averaged over 10 iterations.

6.3.7 Recall Favoured Monocl model
According to the preference of recall over precision, discussed in Section 3.5, a model
focused on F2-score was trained. The simulation are made just as in Section 6.3.6,
proceeding from the Conll- or BC5CDR model, but now with focus on F2-score for
all of the training. The results are visualised in Tables 6.8-6.9.

Precision Recall F1-Score F2-score
Person 0.8694 0.9625 0.9131 0.9423
Organisation 0.5904 0.8037 0.6794 0.7495
Location 0.6634 0.8612 0.7483 0.8127
Overall 0.6735 0.8593 0.7545 0.8144

Table 6.8: Table over the results on the test set for the Conll recall model trained
on the Monocl data set. The results are averaged over 10 iterations.
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Precision Recall F1-Score F2-Score
Disease 0.6280 0.8723 0.7262 0.8093
Chemical 0.7474 0.8990 0.8147 0.8640
Overall 0.6730 0.8834 0.7618 0.8314

Table 6.9: Table over the results on the test set of the BC5CDR recall model
trained on the Monocl data set. The results are averaged over 10 iterations.

6.3.8 Connected Ensemble Model

The best performing BC5CDR and Conll models were used as submodels and con-
catenating their output scores to a feed-forward layer and CRF classifier. The results
of these measurements are listed below in Table 6.10.

Precision Recall F1-Score
Disease 0.7233 0.7441 0.7336
Chemical 0.7685 0.7565 0.7624
Person 0.8645 0.8845 0.8744
Location 0.6139 0.6278 0.6208
Organisation 0.6770 0.6233 0.6490
Overall 0.7305 0.7252 0.7278

Table 6.10: Table of the ensemble model results on the withheld test set. The
results are averaged over 10 iterations.

6.3.9 Impact of transfer learning

The results from Sections 6.3.3 and 6.3.6 imply that transfer learning actually in-
creases the performance of the model. In order to confirm the impact of transfer
learning, a more detailed investigation between models starting from scratch and
models using transfer learning is necessary. Concretely, a Monocl model (without
transfer learning) are compared against the separate model system (started from
the Conll/BC5CDR models). This investigation is carried out just as the ones in
Sections 6.3.3 and 6.3.6, but with one difference. The difference is that only a sub-
set of the training set is used for training here, the remaining part is unused. The
percentage of the training set used varies during the investigation. The results are
visualised in Figure 6.13. Notice that the Figure does not contain a measurement for
the Monocl model and no data. Without training on any data at all, the results are
just dependent on the randomized initial parameters for the BERT model. Hence,
this is not interesting to include in Figure 6.13.
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Figure 6.13: Performance of the Monocl model and the separate model system.
Both models plotted towards the percentage of data in the training set that was
actually used. The results of the separate models are combined into one graph.

6.3.10 Classifications
Analysing both submodels classification errors are crucial to get a deeper under-
standing of their limitations. Moreover, the submodels are meant to complement
each other, and not have a conflict about the entity. Hence a comparison between
the two submodels and conflicting classifications are of great interest.

6.3.10.1 Classification errors for the individual submodels

The classifications for the submodels from Section 6.3.7 are visualized in Tables
6.11-6.12. The classifications are categorized by the metrics described in Section
3.4. Both submodels were evaluated on the full Monocl data set. Remember that
each submodel were trained for 70% of the Monocl data set, so there is a bias
between the model and a part of the data. The amount of misclassifications would
probably be higher for an unseen data set. Hence, this section is about investigating
the actual misclassifications of the model, rather than the performance of the model.
More types of misclassifications were discovered by evaluating on all data available.
The results are discussed in detail in Section 7.1.3.

Correct Partial Missing Spurious Incorrect Possible Actual
Person 1036 26 3 71 5 1070 1138
Organisation 1407 295 24 750 17 1743 2469
Location 535 97 3 88 16 651 736
Overall 2978 418 30 909 38 3464 4343

Table 6.11: Table over the Conll recall models classifications. The evaluation is
over the full Monocl data set.
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Correct Partial Missing Spurious Incorrect Possible Actual
Disease 1731 224 435 510 19 2409 2484
Chemical 774 83 252 143 6 1115 1006
Overall 2505 307 687 653 25 3524 3490

Table 6.12: Table over the BC5CDR recall models classifications. The evaluation
is over the full Monocl data set.

6.3.10.2 System-wide classification errors

The goal with the separate submodel approach is a classification that works inde-
pendently with high performance for each model, but also without conflict between
the submodels. Hence, an investigation regarding conflicting classifications are nec-
essary. The investigation included both internal classification errors and external
classification errors (between the submodels). Figure 6.14 visualises all classifica-
tion errors for the Monocl dataset. A partial matching is enough to be registered as
a classification in the investigation, since most of the misclassifications are partial
matches. The results are discussed under Section 7.1.3.

Person Organisation Location Disease Chemical
Label

Person

Organisation

Location

Disease

Chemical

Pr
ed

ict
io

n

1.1e+03 5 0 5 2

3 1.7e+03 2 40 36

0 10 6.5e+02 0 1

0 46 0 2e+03 0

0 9 0 1 8.7e+02

Classification errors between entities

Figure 6.14: Classification errors for the individual submodels and between the
submodels. The predicted entity is on the y-axis and the correct entity on the x-
axis. NOTE: The coloring in the figure is NOT proporitonal to the number in every
box. Instead, internal submodel classification errors are colored in red and external
(between the submodels) are colored in white.
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7.1 Discussion

7.1.1 Transfer Learning with Conll and BC5CDR
The best results were achieved by leveraging the separate, specialized BERT models
and training the models with the Conll and BC5CDR datasets prior to the final
fine-tuning.
In terms of Monocl data volume, the difference in performance between using the
public datasets for transfer learning and omitting them is higher for lower amounts
of Monocl data used for training. While these results are less surprising, what is
more interesting is that the performance is also boosted when the entire Monocl
dataset is used, as seen in Figure 6.13. Despite sentence level differences between
datasets in the text data, visualized in Figure 6.1, using the public datasets increases
the performance for all measured amounts of high quality data.
Whether or not this approach is beneficial given an even greater amount of high
quality data is however hard to infer from the results.

7.1.2 Pre-training
The pre-training step of the BERT model does not yield a clear performance boost
for the named entity recognition and any model. Still, the results in Section 6.2
are proving that the model parameters are changing during pre-training. The lack
of performance boost is most likely due to the size of our available amount of un-
structured text data reaching 10 MB where the data size of the text used to train
the original BERT model amounted to 16 GB - a factor 1.6 · 103 higher. Because of
this lack of data, the project resources was redirected early on to the named entity
recognition.

7.1.3 Misclassifications
Several interesting discoveries were made from the investigation leading up to the
results in Section 6.3.10.1. First off, the partial matches varies in quality. The best
partial match differs with one or a few tokens. Classifying "The U.S. Department of
Veterans Affairs" instead of "U.S. Department of Veterans Affairs" or "lung cancer"
instead of "non-small cell lung cancer" are of such type. This classifications are
informative and not far from correct. Many of these classification can be matched to
an organisation, disease etc in Monocl’s platform. However, not all partial matches
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live up to this quality. Occasionally crucial information were missed and the partial
matches became too weak. Barely identifying disease tokens "##hil" and "##ia"
in "severe hemophilia" are not informative. From this partial match it is impossible
to identify a disease, and hence this classification is useless. Secondly, incorrect
annotated tokens appeared investigating the spurious misclassifications. The tokens
were classified correct by the submodels, but their corresponding label was incorrect.
The problem were tracked down to the annotation of the medical press releases.
Annotating more than two hundreds of medical press releases manually takes days.
Making mistakes along the way are natural. Some specific entities were missed in
the text and therefore marked with the ’Other’ label in the dataset. Still, this is
something that has to be analysed, but accepted in the project. Besides, the upside
is that the model actually makes a correct prediction in these cases, even if they are
declared as spurious classifications in the statistics.
Regarding the system-wide classification investigation a couple of interesting re-
peated classification errors were observed. One common disagreement in classifica-
tion between the submodels are when an entity string hides inside a longer entity
string. If the two entities are of types handled by different submodels, this leads to
a disagreement between the submodels. "National Comprehensive Cancer Network"
is an organisation, but "cancer" is a disease itself. Several medical organisations in-
cludes a name of a disease or a chemical in their company name, which can explain
the confusion between organisation and disease/chemical in Figure 6.14. Further-
more, it appeared that the submodels also had disagreements regarding the afore-
mentioned entities when the string boundary was correctly identified by both sub-
models. Organisation names can easily be mistaken for chemical/disease names and
vice-versa. Specially abbreviations are hard to classify. "COVAX" and "Breyanzi"
are potential names of both organisations and chemicals, and "HCC" can be an ab-
breviation of anything. The context of the word has to determine the correct label.
Nevertheless, the correct model in the conflict varies. For clarification: "COVAX"
is an organisation, "Breyanzi" is a chemical and "HCC" stands for Hepatocellular
carcinoma and is a type of liver cancer.
For the downstream task, the two conflicts between submodels just mentioned are
not critical. The "entity string inside a longer entity string" case does not have to
be a disadvantage. Quite the opposite! If the system identifies "National Compre-
hensive Cancer Network" as well as "Cancer", it picks up two entities. Organisations
with names including a disease/chemical are presumably working with this dis-
ease/chemical. If the "National Comprehensive Cancer Network" is mentioned in a
medical press release, it is hard to not relate to the disease cancer itself. Hence,
identifying both entities are not considered a problem in this case. In the case re-
garding models disagreeing about the same text string, the easiest solution for the
downstream task is to identify the text string as both entities to Monocl. This is
done despite the knowledge that one of the classifications are wrong. There is a
logical explanation for this. Monocl will only integrate a text string from the model
to their platform if they find an organisation, disease etc with that name. If no
match is found in the platform the information is discarded. Hence, the intention is
that the incorrect classification is not going to be matched into Monocl’s platform
and therefore discarded.
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7.1.4 Connected Ensemble Model
The primary idea with the Ensemble model was that the extra layer should handle
classification errors between the different submodels, without losing anything in per-
formance. During the project the question arised if the classification errors between
the submodels was of such importance, that an Ensemble model approach would
outrival a separate submodel approach. Hence, the investigation of the conflicting
classifications in Section 6.3.10.2 and the related discussion in Section 7.1.3 was of
great importance. Also, the clear performance drop between the separate submodels
in Sections 6.3.6 and the Ensemble model in Section 6.3.8 was taken into account.
In total, it was concluded that the extent and severity of the classification errors
between the separate models, would not justify the performance drop that comes
with the Ensemble model. Hence, the separate model approach was chosen over the
Ensemble model.

7.2 Conclusion
The best results were generated by using a BioBERT and BERT base model sep-
arately and relying on transfer learning with public datasets prior to introducing
the target data. The separate models reached F1-scores of 0.79 and 0.78 as well as
F2-scores of 0.81 and 0.83 for the recall centered approach. The final reduction from
the sporadic, conflicting output was simply handled by selecting the entity with the
highest frequency in order to comply with the CRF model. This design outperforms
not only the proposed ensemble model and the single BERT encoder design, but
also the independent spaCy baseline which was on par with the achieved results for
the public datasets. The impact of the transfer learning diminishes as the amount
of high quality data increases, but the final result proves to benefit from the transfer
learning aswell.

Further unsupervised pre-training of the BERT models yielded little to no improve-
ment, likely due to insufficient volumes of unstructured text data. The difference in
attention heatmaps posterior to pre-training is almost indiscernible and no boost in
performance was noticeable in the measurements. As mentioned in the discussion,
the sheer scale of data used pales in comparison to the amount of text data used to
derive the BioBERT, Clinical and Base BERT models.

There is a noticable difference in performance between entities, with the person
entity being the easiest and the organisation entity being the hardest to classify.
Inter-model misclassifications, when occuring, typically consisted of the organisa-
tion entity being wrongfully predicted as a disease/chemical or vice versa.
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