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Abstract

This masters thesis discusses some aspects of four dimensional super-
symmetric gauge theories. More specifically, it discusses a method to
break supersymmetry spontaneously in certain gauge theories in a way
that bypasses some phenomenological problems.

We start by giving a short introduction to supersymmetry and spon-
taneous supersymmetry breaking. We then discuss a supersymmetric
version of QCD and the phenomenon of Seiberg duality. Using these
tools we show, following K. Intriligator, N. Seiberg and D. Shih, that
supersymmetric QCD has a supersymmetry breaking metastable vac-
uum for certain number of flavors. We conclude by showing that this
metastable vacuum can be made parametrically long lived.
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1
Introduction

With the Large Hadron Collider going online one of the most fasci-
nating discoveries would be that of a symmetry called supersymmetry.
Supersymmetry has many intriguing qualities. Besides being the only
reasonable expansion to the Poincaré group, solving the so called hi-
erarchy problem and giving a candidate to the dark matter, its sheer
beauty should not be forgotten. One of the properties of supersymmet-
ric theories is that each fermion/boson should have an equally heavy
bosonic/fermionic partner. When we look at the real world, we see that
this is not the case. If supersymmetry exists at higher energies it must
therefore be spontaneously broken.

By looking at the superalgebra it is easy to show that unbroken su-
persymmetry is equivalent to having vanishing vacuum energy. Most
effort to build a theory that breaks supersymmetry spontaneously for
low energies has therefore been directed towards building theories with-
out vacua with vanishing vacuum energy. This puts strong constraints on
the possible theories. One is related to a chiral global symmetry called
R-symmetry. The rule of thumb is that if a theory does not have R-
symmetry then it generically has a supersymmetric vacuum. For super-
symmetry to be spontaneously broken we therefore want the Lagrangian
to have R-symmetry. One inconvenient property of R-symmetry is that
the fermionic partner of the vector gauge boson must have charge +1.
Because a charged fermion can not get a Majorana mass the gaugino
must be massless. Since no massless superpartners of the vector bosons
corresponding to unbroken gauge symmetries are observed in nature, the
R-symmetry seems to be broken in the low energy theory. However, if
R-symmetry breaks spontaneously the theory gets a massless goldstone
boson, which is not observed. Although this problem might be solvable
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2 Chapter 1 Introduction

it illustrates how problematic it can be to require that the theory does
not have any supersymmetric vacuum. By permitting the theory to have
supersymmetric vacua as long as it also has a parametrically long lived
meta stable supersymmetry breaking vacuum, new candidates for high
energy theories become available [1].

One of these is SQCD, which is the supersymmetrized version of QCD.
If the theory has NC colors and NF flavors it is asymptotically free for
NF < 3NC . Although the low energy theory is not weakly coupled, the
constraints supersymmetry imposes make it possible to describe the low
energy degrees of freedom in a simple manifestly supersymmetric manner.
For NF > NC +1 it turns out that there exists a duality relation between
the high energy theory, often called the electric theory, and a low energy
theory with gauge group SU(NF −NC), called the magnetic theory. This
duality is called Seiberg duality. ForNF ≤ 3

2
NC the magnetic theory is IR

free and Seiberg duality offers a simple way to study the low energy dy-
namics. Although massive SQCD is known to have NC supersymmetric
vacua, these are not visible classically in the magnetic theory. Taking the
perturbative correction to the potential into account one finds a compact
manifold of supersymmetry breaking ground states in a region of field
space where the coupling constant is small. Also taking nonperturbative
effects into account resurrects the supersymmetric vacua of the electric
theory, making the previous vacuum only metastable. These true super-
symmetric vacua are however far from the false supersymmetry breaking
metastable one and one can show that, by choosing the parameters in
an appropriate way, the false vacuum can be made parametrically long
lived. Although this particular theory clearly is not phenomenologically
viable it is also clear that the prejudice that supersymmetry breaking
forbids a theory form having any supersymmetric vacua is unnecessarily
restrictive.

1.1 Outline

In the second chapter, we give a short introduction to supersymmetry.
We start by writing down the superalgebra and look at how it can be
represented using superspace. We then write down the invariants that
can be used in a Lagrangian, first using chiral superfields and then using
vector superfields. From here we go on to write down the Lagrangian
of a general supersymmetrized Yang-Mills theory. We end the chapter
by deriving the mass matrix and stating some results regarding loop
corrections.

In the third chapter, we begin by discussing the correspondence be-
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tween unbroken supersymmetry and vanishing vacuum energy. After
showing why the classical moduli can not be lifted by perturbative cor-
rections we give some examples of how supersymmetry can be broken.
We then show why a spontaneously broken global R-symmetry indicates
that supersymmetry is broken. After discussing some of the implications
of this fact, we finish the chapter by giving some examples.

The fourth chapter begins with some general remarks regarding SQCD.
We then give a more detailed description of SQCD theories with an in-
creasing number of flavors, starting with zero. For each number of flavors
we introduce a low energy theory describing the low energy degrees of
freedom. We test these theories by going to weakly coupled limits, check-
ing decoupling properties, anomaly matching etc.

In chapter five, we begin by studying the classical flat directions of
the magnetic dual of massive SQCD with NC +1 < NC ≤ 3

2
NC . We then

calculate the masses of all fields as a function of these flat directions. Us-
ing these masses we calculate the one loop correction to the potential and
conclude that some of these flat directions (the non-compact ones, called
pseudo moduli) are lifted and one is left with a compact vacuum man-
ifold spanned by the Goldstone bosons. Taking nonperturbative effects
into account we then show how supersymmetry is restored for certain
large fields. We conclude the chapter by showing that even though the
vacuum found earlier is only metastable, it is parametrically long lived.
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2
Supersymmetry

If one wants to extend the Poincaré algebra and also wants the S-matrix
and mass spectrum to behave in a reasonable way, it has been shown,
see [2], that the only option is a class of algebras called superpoincaré
algebras. These algebras are labeled by the number of fermionic gen-
erators added (the supercharges). The simplest is called N = 1 and is
the one we will focus on. Many extensions of the standard model have
been proposed using this symmetry. The simplest one is the Minimal Su-
persymmetric Standard Model, MSSM. This theory has many intriguing
properties. First of all, it explains why the higgs mass is so much smaller
than the energy scale of some unifying theory. Secondly, looking at how
the coupling constants runs with increasing energy one sees that they
coincide at a certain point, perhaps signaling some kind of unification.
Lastly, MSSM introduces many new particles, some of which might be
candidates to explain dark matter. With LHC going online soon, the
possibility to discover supersymmetry is bigger than ever!

2.1 The Superalgebra and the Superspace

The Lie algebra of the N = 1 superpoincaré group consists of the
Poincaré algebra and the two new generators Qα and Q̄α̇, where α and
α̇ are Weyl spinor indices [3, 4]. These new generators obey, using the
metric ηµν ∼ (−1, 1, 1, 1),

{

Qα, Q̄α̇

}

= 2σµαα̇Pµ , {Qα, Qβ} =
{

Q̄α̇, Q̄β̇

}

= 0 (2.1)

and transform as spinors under the Poincaré algebra. In particular, Qα

and Q̄α̇ commute with the momentum operator Pµ. This means that

5



6 Chapter 2 Supersymmetry

all states in a supersymmetry representation must have the same mass.
Another interesting property of supersymmetric theories is that they con-
tain equally many bosonic and fermionic degrees of freedom. One way
to show this is to define an operator (−1)NF which has eigenvalue +1
when acting on a bosonic state and eigenvalue −1 when acting on a
fermionic one. Since Qα and Q̄α̇ change a bosonic/fermionic state to a
fermionic/bosonic, (−1)NF must satisfy

(−1)NFQα = −Qα(−1)NF . (2.2)

Choosing a particular momentum vector and using the cyclicity of the
trace gives

2σµαα̇Pµ
∑

〈ψ| (−1)NF |ψ〉 =
∑

〈ψ| (−1)NF 2σµαα̇Pµ |ψ〉 =

=
∑

〈ψ| (−1)NF
(

QαQ̄α̇ + Q̄α̇Qα

)

|ψ〉 =

=
∑

〈ψ| −Qα(−1)NF Q̄α̇ +Qα(−1)NF Q̄α̇ |ψ〉 = 0 , (2.3)

where the sums run over all states |ψ〉 in a multiplet. This means that
∑ 〈ψ| (−1)NF |ψ〉 = 0 and hence that the multiplet contains equally
many fermionic and bosonic states.

Our goal in this chapter is to find a way to write expressions that are
manifestly invariant under supersymmetry. One good way to do this is
to use what is called the superspace. This is an extension of the ordinary
space and is parameterized by the usual four spatial coordinates xµ and
two new complex Grassmann coordinates θα and θ̄α̇ = (θα)∗, [5, 6, 7]. θα

and θ̄α̇ transform as Weyl spinors. A field that lives in superspace is called
a superfield. The Poincaré subgroup acts on the spatial coordinates in
the usual way. To get the generators of translations in the field space
representation we use the fact that

Φ(x+ a, θα, θ̄α̇) = e−ia
µPµΦ(x, θα, θ̄α̇)eia

µPµ , (2.4)

where P is the generator of the translation in the coordinate space. By
Taylor expanding both sides to first order in aµ and using that the relation
must be valid for any aµ we get

[

P,Φ(x, θα, θ̄α̇)
]

= i∂µΦ(x, θα, θ̄α̇) . (2.5)

The operator that generates translation in field space can therefore be
represented as Pµ = i∂µ. How do we then interpret Qα and Q̄α̇? In a
similar way that −iaµPµ generated xµ → xµ + aµ we let ξαQα and ξα̇Q̄α̇
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generate

θα → θα + ξα

θ̄α̇ → θ̄α̇ + ξ̄α̇

xµ → xµ + iθσµξ̄ − iξσµθ̄ . (2.6)

In terms of superfields this can be written as

Φ(xµ + iθσµξ̄ − iξσµθ̄, θα + ξα, θ̄α̇ + ξ̄α̇) =

ei(ξ
αQα+ξα̇Q̄α̇)Φ(xµ, ξα, ξ̄α̇)e−i(ξ

αQα+ξα̇Q̄α̇) . (2.7)

By Taylor expanding to first order as before we get

[Qα,Φ] = (∂α − iσµαα̇θ̄
α̇∂µ)Φ = QαΦ,

[

Q̄α̇,Φ
]

= (∂α̇ − iθασµαα̇∂µ)Φ = Q̄α̇Φ, (2.8)

where Qα and Q̄α̇ are the generating operators in field space and we have
assumed that Φ is bosonic. These operators satisfy

{

Qα, Q̄α̇

}

= 2iσµαα̇∂µ, (2.9)

which, using Pµ = i∂µ, is identical to (2.1). This means that we indeed
have a representation. Because Qα and Q̄α̇ only induce a translation
in θα and θ̄α̇ and an x independent shift in xµ, the determinant of the
transformation is 1. Thus

∫

d4xd2θd2θ̄Φ (2.10)

is manifestly invariant under supersymmetry transformations. If we Tay-
lor expand Φ we get

Φ(xµ, θα, θ̄α̇) =φ(x) + θψ + θ̄χ̄+ θθm(x) + θ̄θ̄n(x)+

θσµθ̄vµ(x) + θθθ̄λ̄(x) + θ̄θ̄θη(x) + θθθ̄θ̄d(x), (2.11)

where φ, m, n, vµ and d are complex bosons and ψ, χ, λ and η are spinors.
Contracted spinor indices are omitted. Because Grassmann numbers an-
ticommute, all higher powers in θ and θ̄ vanish. Under supersymmetry
transformations these fields transform among themselves. The represen-
tation is however reducible. To get an irreducible representation we have
to impose some suitable constraint on the superfield. The two kinds of
superfields we will use are called chiral and vector superfields.
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2.1.1 Chiral Superfields

The chiral superfields use the fact that the operators

Dα = ∂α + iσµαα̇θ̄
α̇∂µ , D̄α̇ = −∂α̇ − iθασµαα̇∂µ (2.12)

obey
{

Dα, D̄α̇

}

= −2iσµαα̇∂µ . (2.13)

and anticommute with all other Dα, D̄α̇, Qα, Q̄α̇. If a superfield obeys
the constraint D̄Φ = 0, the fact that D̄ anticommutes with the super-
symmetry generators insures that the constraint is still fulfilled after a
supersymmetry transformation. It is therefore a suitable constraint to
impose in order to reduce the supersymmetry representation. These fields
are called chiral superfields and it has been shown that they in fact form
an irreducible representation. The constraint is especially simple in the
coordinate system

{

yµ = xµ + iθσµθ̄ , θα , θ̄α̇
}

: D̄α̇ = −∂α̇. In this base
the chiral superfield must therefore be independent of θ̄α̇ and can thus
be written as

Φ =φ(y) +
√

2θψ(y) + θθF (y) = φ(x) + iθσµθ̄∂µφ(x) +
1

4
θθθ̄θ̄�φ(x)

+
√

2θψ(x) − i√
2
θθ∂µψ(x)σµθ̄ + θθF (x) .

(2.14)

Since ψ has mass dimension 3/2, θ must have mass dimension −1/2. The
component fields φ ,ψ and F transform under (2.6) as

φ→ φ+
√

2ξψ

ψ → ψ + i
√

2σµξ̄∂µφ+
√

2ξF

F → F + i
√

2ξ̄σ̄µ∂µψ . (2.15)

Two important invariants that we will use are built by chiral superfields.
The first is, by using integration by part,

∫

d4xd2θd2θ̄Φ†Φ =

∫

d4xF ∗F − ∂µφ
∗∂µφ− iψ̄σ̄µ∂µψ . (2.16)

The φ terms in the expression above will later work as kinetic terms for
the scalar field and the ψ terms will do the same job for the fermions.
These terms can more generally be written as

∫

d4xd2θd2θ̄K(Φ, Φ̄) where
K(Φ, Φ̄) is called the Kähler potential.

The second invariant uses the fact that any holomorphic function of a
chiral superfield W (Φ) is itself a chiral superfield. Since chiral superfields
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are independent of θ̄α̇ when written in terms of yµ, integrals of the type
above will vanish. If we instead only integrate over yµ and θα we get a
non vanishing integral:

∫

d4yd2θW (Φ(y, θ)) =

∫

d4y

(

∂W

∂φ
F +

1

2

∂2W

∂φ2
ψψ

)

, (2.17)

where the derivatives act on the scalar part of the superpotential. This
is invariant because yµ transforms as yµ → yµ + 2iθσµξ̄, which is still
independent of θ̄α̇. The terms coming from the expression above contain
no derivatives and usually act as a kind of potentials in supersymmetric
Lagrangians. The function W is called the superpotential. Since θα has
mass dimension −1/2 the integral above is only dimensionless if W has
mass dimension 3. If we want the theory to be renormalizable and all
coupling constants to have non negative mass dimension, W must be at
most a polynomial of degree 3 in Φ.

2.1.2 Vector Superfields

Vector superfields are defined by the constraint V † = V . If expanded in
θ and θ̄ the general vectorfield can be written as

V (x, θ, θ̄) =C(x) + iθχ(x) − iθ̄χ̄(x) +
i

2
θθ [M(x) + iN(x)]

− i

2
θ̄θ̄ [M(x) − iN(x)] − θσµθ̄vµ(x)

+ iθθ̄θ̄

[

λ̄(x) +
i

2
σ̄µ∂µχ(x)

]

− iθ̄θ̄θ

[

λ(x) +
i

2
σµ∂µχ̄(x)

]

+
1

2
θθθ̄θ̄

[

D(x) +
1

2
�C(x)

]

, (2.18)

where the bosonic functions are real. Vector superfields are often used
as gauge fields in supersymmetric theories. The gauge transformation is
then parameterized by a chiral field Λ and acts as V → V + Λ + Λ† + ... .
By making an appropriate gauge choice it is always possible to put C, χ,
M and N to zero. This is the so called Wess-Zumino(WZ) gauge. There
is then only one real gauge parameter left: vµ → vµ − i∂µ(A − A∗). In
WZ-gauge, the vector superfield can be written as

V = −θσµθ̄vµ(x) + iθθθ̄λ̄(x) − iθ̄θ̄θλ(x) +
1

2
θθθ̄θ̄D(x) . (2.19)

Supersymmetry transformations will not keep vector superfields in the
WZ-gauge. However, one can always make a new gauge transformation
and get back into WZ gauge. Supersymmetry is therefore closed up to a
gauge transformation.
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2.2 Supersymmetric Gauge Theories

One strength of superspace is that Yang-Mills Lagrangians are generated
in a simple and compact way, [8,9]. Assume that we want to build a Yang-
Mills theory with a gauge group G having dimension D. As indicated in
the previous section, a multiplet of chiral superfields transforms as

Φ → e−iΛ
ATAΦ , (2.20)

where ΛA are chiral superfields and TA are the generators of some repre-
sentation R with dimension d. The superpotential is constructed in the
same way as for any other symmetry. The condition on the superpoten-
tial to be gauge invariant can be written as

∂W

∂φa
(TAφ)a = 0 , (2.21)

where the a is summed over. Since chiral fields are not real there is no
easy way to make a gauge invariant kinetic term:

Φ†Φ → Φ†ei(Λ
A†−ΛA)TAΦ . (2.22)

However, if we introduce a vectorfield VA that is defined to transforms as

eV
ATA → e−iΛ

A†TAeV
ATAeΛ

ATA , (2.23)

the combination Φ†eV
ATAΦ is invariant under gauge transformations. V A

here has the same function as the connection in ordinary Yang-Mills
theories. The first terms in the expansion of (2.23) are

V A → V A + i(Λ − Λ†) + ... (2.24)

which is the same as the transformation discussed in the previous section.
Doing the θα and θ̄α̇ integrals explicitly gives
∫

d4xd2θd2θ̄Φ†eV
ATAΦ =

∫

d4x
(

−(Dµφ)†Dµφ− iψ̄σ̄µDµψ

+F ∗F +
√

2i(φ̄TAψλ
A − ψTAφχλ̄

A) + φ̄TAφD
A
)

, (2.25)

where D is the usual covariant derivative. Again, a more general ki-
netic term can be constructed by replacing Φ†eV

ATAΦ with some gauge
invariant Kähler function K(Φ†, eV

ATAΦ) in the integral above.
What about kinetic terms for the gauge fields? A chiral field can be

constructed from the gauge field:

Wα = −1

4
D̄D̄e−V

ATADαe
V ATA . (2.26)
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The field above transforms as Wα → e−ΛATAWαe
ΛATA. If the gauge group

representation obeys TrTATB = 1
2
δAB, a gauge invariant supersymmetric

kinetic term for the vector gauge field can be written as

−iτ
16π

∫

d4xd2θTrWαWα + c.c. =

∫

d4x

[

1

g2

(

−1

4
F µν
A FA

µν − iλ̄Aσ̄µDµλ
A +

1

2
D2
A

)

+
θ

32π2
F̃ µν
A FA

µν

]

(2.27)

where

τ =

(

θ

2π
+ i

4π

g2

)

(2.28)

and F µν
A FA

µν is the usual kinetic term for the gauge field in Yang-Mills
theories. The full Yang-Mills action is then the sum of (2.17), (2.25) and
(2.27):

L =
−iτ
16π

∫

d4xd2θTrWαWα + c.c.+

∫

d4xd2θd2θ̄Φ†eV
ATAΦ

+

∫

d4yd2θW (Φ(y, θ)) + c.c. (2.29)

The equations of motion can be solved for the auxiliary fields:

F̄a = −∂W
∂φa

= −Wa and DA = −g2φ†TAφ . (2.30)

These fields can then be put back into (2.29) and one gets the Lagrangian

L =
1

g2

[

−1

4
F µν
A FA

µν − iλ̄Aσ̄µDµλ
A

]

+
θ

32π2
F̃ µν
A FA

µν − (Dµφ)†Dµφ

− iψ̄σ̄µD/µψ +
√

2i(φ̄TAψλ
A − φTAχ̄λ̄

A) +
1

2
Wabψaψb +

1

2
W̄ abψ̄aψ̄b

− VF − VD ,

(2.31)

where VF = WaW̄
a, VD = g2

2
(φ†TAφ)2, Wa...b = ∂nW

∂φa...∂φb
and W̄ a...b =

∂nW̄
∂φ̄a...∂φ̄b

2.2.1 The Mass Matrix

Since the theory must have the same vacuum expectation value in any
inertial system, all non scalar fields must have vanishing vacuum ex-
pectation value. The vacuum expectation value of φ is determined by
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minimizing the potentials above. Assume the minima is at φ0. If we
expand the scalar field as φ = φ0 + δφ, what is then the mass matrix?
The kinetic term of the scalar field decomposes as

−(Dµφ)†(Dµφ) = −(Dµδφ)†(Dµδφ)+2Im
[

∂µδφT (TAφ0)
∗] vAµ

− (φ†
0TATBφ0)v

A
µ v

Bµ . (2.32)

The second term is a potential problem. However, as we wrote above,
we still have one free gauge parameter, ImA, after choosing WZ-gauge.
By using this freedom we can go to the so called unitary gauge. In this
gauge the fields satisfy

Im
[

φ†(TAφ0)
]

= 0, (2.33)

and the second term in (2.32) vanishes. This is the usual Higgs mecha-
nism where a scalar field is ’eaten’ by a vector field making it massive.
The third term gives the vector bosons, after symmetrization, the squared
mass matrix

M2
1 = g2

(

φ†
0 {TA, TB}φ0

)

. (2.34)

To get the mass matrix for the scalar fields it is useful to expand the
potentials as

VF =
1

2
WabcW̄

cδφaδφb +
1

2
WcW̄

abcδφ̄aδφ̄b +WacW̄
bcδφaδφ̄b

VD =
∑

A

(

(φ0 + δφ)†TA(φ0 + δφ)
) (

(φ0 + δφ)†TA(φ0 + δφ)
)

. (2.35)

The linear terms disappear since we are at a minimum. The quadratic
terms can be written in a matrix form as

M2
0 =

(

W̄ acWcb + A + gDA0TA
a
b W̄ abcWc + B

WabcW̄
c + B∗ WacW̄

cb + A∗ + gDA0TA
b
a

)

,

(2.36)
where A =

∑

A g
2(TAφ0)(TAφ0)

†, B =
∑

A g
2(TAφ0)(TAφ0)

T and DA0 is
the D-term for the vacuum. The terms giving a mass to the fermions are√

2iφ̄0TAψλ
A + 1

2
Wabψaψb + c.c., which on matrix form is

M1/2 =

(

Wab

√
2i(TBφ0)

∗
a√

2i(TAφ0)
∗
b 0

)

. (2.37)

When we square this matrix we get terms of the type −
√

2iWab(TBφo)
b.

By using the derivative of (2.21) we can write these terms as
√

2iWcTA
c
b

and the squared fermion mass matrix is

M2
1/2 =

(

W †acWcb + 2g2
∑

A

(

TAφ0

)a (
TAφ0

)∗
b

ig
√

2W †cTA
a
c

−ig
√

2WcTB
c
b 2φ†

0 {TA, TB}φ0

)

.

(2.38)
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2.3 Loop Corrections

When studying the quantum effects of the theory it is important to know
how the coupling constant runs. From [10] we know that for an arbitrary
(non supersymmetric) gauge theory the one loop coupling constant in
terms of the dimensional parameter Λ is

αS =
g2

4π
=

2π

b0log
√
s

Λ

(2.39)

and that

b0 =
11

3
C2(Adj) −

∑

reps.

(

2

3
C(ψi) +

1

6
C(φi)

)

, (2.40)

where C2(Adj) is the Casimir contribution coming from the gauge vector
field, C(ψi) is the index of the irreducible representation that the i’th
Weyl spinor transforms in and C(φ) refers to the index of the i’th real
field. In a supersymmetric gauge theory the gauge vector superfield is
composed of one vector, which is the same as the vector gauge field in
regular Yang-Mills theories, and one Weyl spinor, both transforming in
the adjoint representation. Each chiral fields contains one Weyl spinor
and one complex (two real) field. Because SU(N) has

C(adj) = C2(adj) = N, (2.41)

one gets

b0 = 3N −
∑

reps.

C(φi). (2.42)

for SU(N).
The formula for the one loop contribution to the effective potential is

V
(1)
eff =

1

64π2
STrM4log

M2

Λ2
, (2.43)

where the supertrace, STr, is the same as ordinary trace but for a minus
sign for fermionic degrees of freedom. This formula is called the Coleman-
Weinberg potential [11]. Since a multiplet contains equally many bosonic
and fermionic degrees of freedom we have Str1 = 0. Because supersym-
metry might be spontaneously broken there is nothing that guarantees
that the low energy fermionic and bosonic degrees of freedom are equally
heavy. However, taking the supertrace of the mass matrices of the previ-
ous section (keeping in mind that the fermions have two degrees of free-
dom and that the vector particles have three) shows that even if there
is no low energy supersymmetry we still have STrM2 = 0. Although
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Equation (2.43) might require some work to derive, given that we must
use STr instead of Tr, it is not surprising that it is not more divergent.
This is because both possible terms, Λ4STr1 and Λ2STrM2, vanish by
the properties discussed above.



3
Spontaneous Supersymmetry

Breaking

As we saw in the previous chapter, in theories with unbroken super-
symmetry each fermionic/bosonic particle must have an equally heavy
bosonic/fermionic partner. Looking at the nature we see that this is not
the case. This means that if nature is supersymmetric, supersymmetry
must be spontaneously broken.

In this chapter we start by discussing and giving examples of the con-
nection between supersymmetry breaking and vanishing vacuum energy.
We then discuss the relation between supersymmetry breaking and R-
symmetry. We also give some examples to illustrate different types of
supersymmetry breaking.

3.1 F- and D-flatness

When studying the low energy properties of a theory, it is useful to
split the superfields into a vacuum part and a perturbative part: Φ =
Φvacuum + δΦ. For the low energy theory (which is written in terms of
δΦ) to have an unbroken supersymmetry, Φ and δΦ must have the same
transformation properties. For this to be the case the vacuum part of the
fields must be invariant under supersymmetry. It is therefore crucial to
know how the vacuum transforms under supersymmetry transformations.
A key observation is that by contracting the non trivial anticommutation
relation for the supersymmetry generators with σ̄0 one gets

− {Q1, Q̄1̇} − {Q2, Q2̇} = {Qα, Qβ̇}σ̄0β̇α = 2σµ
αβ̇
Pµσ̄

0β̇α = −4P0 . (3.1)

15
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Since P0 is the energy, we can write the Hamiltonian as

H =
1

4

(

Q1Q̄1̇ + Q̄1̇Q1 +Q2Q̄2̇ + Q̄2̇Q2

)

. (3.2)

The expectation value of the vacuum energy can thus be written as

〈Ω|H|Ω〉 =
1

4

[

|Q1 |Ω〉|2 +
∣

∣Q̄1̇ |Ω〉
∣

∣

2
+ |Q2 |Ω〉|2 +

∣

∣Q̄2̇ |Ω〉
∣

∣

2
]

≥ 0 , (3.3)

where |Ω〉 is the vacuum state. This is greater or equal to zero, equality
holding when Q1 |Ω〉 = Q̄1̇ |Ω〉 = Q2 |Ω〉 = Q̄2̇ |Ω〉 = 0. But this is also
the condition for the vacuum state to be invariant under supersymmetry
transformations. This means that a necessary and sufficient condition
for the vacuum to be supersymmetric is for it to have vanishing energy.
In terms of the Lagrangian (2.31), the vanishing of the vacuum energy
can be written as VF + VD = 0 which implies

Fa = − ∂W̄

∂φ̄a
= 0

DA = − g2φ†TAφ = 0. (3.4)

These conditions are called F-flatness and D-flatness conditions respec-
tively. Note that the first condition is complex whereas the second is
real. The fact that F must be zero could also have been seen from (2.15)
- in order for a chiral field to be invariant, ψ and F must be zero and
φ must be constant. If one works out the transformation properties of
the vector superfield one sees that the same is true for D. By looking at
(2.36) and (2.38) one sees that the F-flatness condition is necessary to
put the mass matrices on block diagonal form. If one also puts D to zero
the mass matrix becomes supersymmetric.

Since (3.4) imposes 2d+D real constraints, where d is the dimension
of the representation and D is the dimension of the group, on 2d real
scalar fields, one might be led to think that most theories do not have a
supersymmetric vacuum and that spontaneous supersymmetry breaking
is elementary. However, since the superpotential must be invariant under
the gauge transformations, Equation (2.21) has to be obeyed. Assume for
simplicity that a generic point in field space completely breaks the gauge
symmetry. Equation (2.21) then makes 2D of the real F-flatness condi-
tions redundant. We therefore have 2d−D independent real constraints
on 2d real scalar fields. Such equation systems generically have D dimen-
sional solutions. However, because the gauge symmetry was completely
broken, the D dimensions corresponds to gauge degrees of freedom. The
degeneracy can thus be removed by making an appropriate choice of
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Figure 3.1: A typical two loop diagram. All vacuum diagrams with more
than one loop must have one or more interactions.

gauge. To sum up, a generic superpotential has a supersymmetric vac-
uum.

One very interesting property of supersymmetric theories is that if the
vacuum is supersymmetric at tree level, no higher loop corrections can
break supersymmetry. A simple proof of this property is given in [12].
As we showed in the previous chapter, an unbroken supersymmetry guar-
antees that each bosonic degree of freedom has a corresponding equally
heavy fermionic partner. The supertrace in the one loop effective po-
tential (2.43) therefore vanishes. Higher loop corrections to the vacuum
energy have one or more vertices and will be of the type in Figure 3.1,
where the lines are some kind of propagators of the superfields. Even
though we do not specify the exact form of the propagators, because of
supersymmetry we know that the final expression will be some contrac-
tion of them and an integral d4xd2θd2θ̄ over each vertex. If we integrate
out all but one vertex we will have an expression on the form

∫

d4xd2θd2θ̄f(x, θ, θ̄), (3.5)

where f(x, θ, θ̄) is some unknown function. Since superspace is homoge-
nous and all points are equivalent, f(x, θ, θ̄) can only be a constant.
However, integrals of constant functions over Grassmann numbers van-
ish and the diagrams give no contribution to the vacuum energy.

If a vacuum has a non vanishing vacuum energy the argument above
does not apply. If we have a classical manifold of vacua, some direc-
tions might correspond to Goldstone bosons. These are protected from
perturbative corrections. The directions that are not protected by global
symmetries are called pseudo-moduli. In general, peturbative corrections
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make these directions massive or tachyonic.
Supersymmetry breaking introduces a massless particle in a way anal-

ogous to the ordinary Goldstone bosons. Goldstone bosons are particles
corresponding to the shift δφ introduced by a global symmetry trans-
formation; φ → φ + δφ. Since the two states are equivalent and have
the same energy the shift relating them must be massless. In a similar
way, if we have a vacuum with F 6= 0 the supersymmetry transformation
(2.15) will shift the fermion part of the chiral field by

√
2ξF . Because the

new state has the same energy as the original ones, the shift must corre-
spond to a massless fermion. Since this massless fermion originates from
a spontaneously broken global symmetry in a similar way as Goldstone
bosons, it is called a Goldstino. It is possible to show that nonpertur-
bative corrections can not give the Goldstino a mass. This might seem
problematic since no such particle has been observed. However, it turns
out that when supergravity is taken into account the Goldstino is eaten
by the gravitino in a similar way as scalar fields are eaten by the vector
bosons in the higgs mechanism.

3.1.1 Example: W = cΦ

One of the simplest ways to break supersymmetry is to have an ungauged
theory with the superpotential W = cΦ. The equation of motion for the
auxiliary field gives F = −c∗ which obviously can not be put to zero.
The potential, VF = |c|2, is constant and the field is massless. 〈X〉 is
therefore a pseudo-moduli.

3.1.2 Example: The Basic O’Raifeartaigh Model

O’Raifeartaigh models are a group of ungauged theories in which the F-
flatness conditions are over-constrained and hence have no solution [13].
The basic O’Raifeartaigh model has the three superfields X, Φ1 and Φ2

and the superpotential

W =
1

2
hXΦ2

1 + µΦ1Φ2 + fX, (3.6)

where h, µ and f can be chosen to be real numbers. The F -terms are
then

− F̄X =
1

2
hφ2

1 + f , − F̄Φ1 = hXφ1 + µφ2 and − F̄Φ2 = µφ1 . (3.7)

Here FX and FΦ2 can not simultaneously be put to zero and supersym-
metry is thus broken. FΦ1 can however be put to zero for every φ1. The
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solution is 〈φ2〉 = −h
µ
〈Xφ1〉 with X arbitrary. To find the pseudo moduli

we have to minimize

|FX |2 + |FΦ2 |2 = f 2 +
h2

4
|φ1|4 + |φ1|2 +

hf

2
(φ2

1 + φ∗2
1 ) . (3.8)

The only terms which can be negative are the last two. They are the
most negative, compared to their absolute value, if φ1 is purely imaginary.
We therefore put φ1 = iφ′, where φ′ is real, and the potential becomes
f 2 + h2

4
φ′4 + (µ2 − hf)φ′2. If y ≡ hf

µ2 < 1 the potential has a minimum
at φ1 = 0, which also puts φ2 to zero. X is still arbitrary and spans the
pseudo-moduli space. It is therefore massless at the classical level. As y
grows and becomes larger than one, the potential is bent down on both

sides of the real axis and two new vacua appears at φ1 = ±i
√

2f
h

(1 − 1/y).

We will concentrate on the case y < 1.
Since X is a pseudo moduli, quantum corrections will induce a mass

for it. To calculate such a mass we need to know how the masses of the
components in Φ1 and Φ2 depend on the vacuum expectation value 〈X〉.
The mass matrix for the scalar bosons is

M2
0 =









µ2 + |hX|2 µhX fh 0
µhX∗ µ2 0 0
fh 0 µ2 + |hX|2 µhX∗

0 0 µhX µ2









φ1

φ2

φ∗
1

φ∗
2

(3.9)

which has the eigenvalues

m2
0 =

1

2

(

νfh+ h2|X|2 + 2µ2 ± h
√

f 2 + 2νfh|X|2 + h2|X|2 + 4|X|4µ2
)

,

(3.10)
where ν = ±1. Similarly, the mass matrix for the fermions is

M2
1/2 =

(

µ2 + |hX|2 µhX
µhX µ2

)

ψΦ1

ψΦ2

(3.11)

which has the eigenvalues

m2
1/2 =

1

2

(

h2|X|2 + 2µ2 ±
√

h2|X|2 + 4µ2
)

. (3.12)

Plugging the masses into the expression for the one loop effective poten-
tial (2.43) gives

V
(1)
eff = V0 +M2

XX
2 (3.13)

where

V0 =
µ2

64π2

(

−2 log
µ2

Λ
+ (1 − y)2 log

1 − y

Λ
+ (1 + y)2 log

1 + y

Λ

)

(3.14)
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and

M2
X =

h2µ2

32π2y

(

−2y − (1 − y)2 log(1 − y) + (1 + y)2 log(1 + y)
)

. (3.15)

The terms containing log Λ canceled in M2
X . In V0, the log Λ terms can

be absorbed into a running coupling constant but we are not interested
in the exact result. The interesting result is that M2

X is positive. For

small y we have M2
X ≃ h2µ2

48π2 y
2.

3.2 R Symmetry

When analyzing supersymmetry breaking it is important to consider a
possible global U(1)R symmetry called ’R symmetry’. The formulation of
manifestly supersymmetric Lagrangians using superspace suggests that
the action could be invariant under rotations of the Grassmann coor-
dinates in the complex plane: θ → e−iαθ, θ̄ → eiαθ̄. For super fields,
R symmetry transformations are made up by the transformations above
combined with a chiral rotation:

Φ(xµ, θα, θ̄α̇) → einαΦ(xµ, e−iαθα, eiαθ̄α̇) . (3.16)

The kinetic terms for the chiral fields (2.25) are invariant under these
transformations for any n if the vector gauge fields have n = 0. In terms
of the components this means that

φ→ einαφ
ψ → ei(n−1)αψ
F → ei(n−2)αF

and
DA → DA

λA → eiαλA

vA → vA
. (3.17)

The potential term for the chiral fields comes from

Lpotential =

∫

d4xd2θW + c.c. =

(

coefficient of θθ in

∫

d4xW

)

.

(3.18)
For this to be invariant, W must transform as W → e2iαW , i.e. have
n = 2. The kinetic term of the vector gauge fields is also a integral
of chiral fields, this time Wα. A short calculation shows that Wα has
n = 1. This means that the integrand in (2.27) has n = 2 and therefore
is invariant. The Lagrangian thus has R-symmetry if and only if one
can assign R charges to each irreducible representation such that the
superpotential has charge 2 and the symmetry is anomaly free.

As discussed in the beginning of this chapter, after choice of gauge,
the F- and D- flatness conditions put 2d−D constraints on the 2d−D
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real scalar fields in the theory. Let us for simplicity consider an ungauged
theory. For a generic superpotential W this equation system should have
a solution and therefore a supersymmetric vacuum. To break supersym-
metry some degrees of freedom must be over-constrained. Is there an
easy way to get an indication of whether this is the case? A regular
global U(1) symmetry makes it possible to write the superpotential in
terms of invariants:

W = f(Φn2
1 /Φ

n1
2 , ... ,Φ

nd
1 /Φ

n1

d ). (3.19)

Here the number of complex unknowns is reduced to d−1. However, since
the number of independent complex equations also is reduced to d − 1
we still generically do not have any degree of freedom over constrained.
This global U(1) does not do the job.

If we have a spontaneously broken R-symmetry the theory can be
formulated with a field Φ1 with n1 6= 0 and 〈φ1〉 6= 0 and superpotential

W = Φ
2/n1

1 f

(

Φ2

Φ
n2/n1

1

, . . . ,
Φd

Φ
nd/n1

1

)

, (3.20)

see [14]. Solving the F-flatness conditions puts d conditions on the d −
1 unknowns in f and we have in general an over constrained system.
This suggests that if there is a spontaneously broken R-symmetry the
supersymmetry is also spontaneously broken. This is not a universal rule
but more of a rule of thumb.

One example of when the rule might not work is when W contains a
factor Φp

i , p > 1. In this case just having Φi = 0 puts all F terms to zero
without constraining the other fields. If some charged unconstrained field
then gets a vacuum expectation value the R-symmetry is spontaneously
broken but supersymmetry is not. This is the case for the superpotential
W = Φ1Φ

2
2 +Φ3

2. Here the F-terms put φ2 to zero. Since φ1 can take any
value and since it has R charge +2/3, R-symmetry is generically broken.

As we have seen above, if a theory has a R-symmetry the gauginos
have charge +1. The only way a gaugino can get a mass without breaking
gauge invariance is trough a Majorana mass. Such a term has R-charge 2
and is thus forbidden by R-symmetry. If the gauge symmetry is broken,
the gaugino mixes with a quark and gets a Dirac mass. However, since
we have low energy unbroken gauge symmetries all gauginos can not get
a mass in this way and the situation looks problematic. One solution is
of course that the R-symmetry is spontaneously broken. This is however
also problematic since we then get a massless Golstone boson, referred to
as a R-axion, from the symmetry breaking. Although all this might be
solvable, it indicates how problematic it is to find a phenomenologically
acceptable model of supersymmetry breaking.
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3.2.1 Example: W = cΦ continued

As we saw in the first example in this chapter, in a theory with the
superpotential W = cΦ the supersymmetry is spontaneously broken. By
giving Φ the charge 2 we see that this theory indeed has a R symmetry
that is spontaneously broken at 〈φ〉 6= 0 and behaves as expected. One
way to break the R symmetry explicitly is to add a term 1

2
ǫΦ2 to the

superpotential. The F flatness condition is then c + ǫφ = 0, which has
a zero at φ = −c/ǫ. This means that as ǫ increases and R symmetry
is more and more broken, a supersymmetric vacuum approaches from
infinity.

3.2.2 Example: The Basic O‘Raifeartaigh Model cont.

The superpotential in (3.6) respects R symmetry if nX = 2, nΦ1 = 0 and
nΦ2 = 2. Since the model spontaneously breaks supersymmetry this is
just what we expect. The R symmetry is explicitly broken if we add a
term proportional to Φ2

2 to the superpotential;

W =
1

2
hXΦ2

1 + µΦ1Φ2 + fX +
1

2
ǫµΦ2

2 . (3.21)

The F terms

−F̄X =
1

2
hφ2

1+f , −F̄φ1 = hXφ1+µφ2 and −F̄φ2 = µφ1+ǫµφ2 (3.22)

can now all simultaneously be put to zero and we have a supersymmetric
vacuum at

φ1 = ±
√

−2f

h
, φ2 = ∓1

ǫ

√

−2f

h
and X =

µ

hǫ
. (3.23)

In the same way as in the previous example, as ǫ grows, a vacuum ap-
proaches from infinity. Once again, the connection between supersym-
metry breaking and R symmetry holds. If y < 1, ǫ≪ 1 and we study the
potential close to the origin (in particular, we take φ2 to be small) we do
not expect the new term to give a big contribution to the physics of the
old pseudo moduli. Calculating the masses as a function of the vacuum
expectation value of X gives the boson masses

m2
0 =

1

2

(

νfh+ h2|X|2 + (2 + ǫ2)µ2

±
√

h2(h|X|2 + νf)2 + 4|hµX + ǫµ2|2 + ǫ2µ2(ǫ2µ2 − 2h2|X|2 − 2νhf)
)

,

(3.24)
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where ν = ±1, and fermion masses

m2
1/2 =

1

2

(

h2|X|2 + (2 + ǫ2)µ2

±
√

h4|X|4 + 4 |hµX + ǫµ2|2 + ǫ2µ2 (µ2ǫ2 − 2h2|X|2)
)

.

(3.25)

Putting these masses into (2.43) and Taylor expanding gives

V
(1)
eff = V0(ǫ) + V1ǫReX +M2

X |X|2 +O(X4−nǫn) = V ′
0(ǫ)

+M2
X

∣

∣

∣

∣

X +
V1

2M2
X

ǫ

∣

∣

∣

∣

2

+O(X4−nǫn) , (3.26)

where M2
X is the same as for the supersymmetric case,

V1 =
µ3h

16π2y
(−2y + (1 − y) log(1 − y) + (1 + y) log(1 + y)) , (3.27)

and V0(ǫ) and V ′
0(ǫ) are some non zero second order polynomials that we

won’t specify. Although the position of the minima is shifted as ǫ grows,
the mass, and hence the stability, of the X field remains unchanged to
lowest orders.

This is very interesting. It shows that although the supersymmetric
vacua always are the stable points with the lowest energy it is sometimes
possible to construct a theory that also has a metastable supersymmetry
breaking vacuum. In order for this to be an acceptable way of breaking
supersymmetry the lifetime of the metastable vacua has to be parametri-
cally long. This way of breaking supersymmetry sidesteps the limitations
R-symmetry and Witten index impose on model building.
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4
Supersymmetric QCD and the

Seiberg Duality

Supersymmetric QCD is a very interesting group of theories. It is a
supersymmetric generalization of usual QCD and is, for sufficiently small
numbers of flavors, asymptotically free. One fascinating property is that
the strongly coupled low energy theory can be described in a simple and
explicitly supersymmetric fashion.

We begin the chapter with some general remarks and then system-
atically work our way trough increasing number of flavors, starting with
zero. For each numbers of flavors we introduce a low energy theory which
we test using different methods, such as decoupling, weakly coupling lim-
its and anomaly matching.

4.1 Supersymmetric QCD

SQCD has, not surprisingly, SU(NC) as its gauge group. The vector
gauge fields of ordinary QCD have in SQCD been promoted to vector
superfields, still transforming in the adjoint representation of the gauge
group [15]. In a similar way, the NF left and right handed quarks of
ordinary QCD are promoted to chiral superfields, Q and Q̃, transforming
in the fundamental and anti fundamental representations. In terms of
superfields, the lagrangian can be written as

L =
−i
16π

∫

d2θτWαaWa
α + c.c.+

∫

d2θd2θ̄Tr
[

Q†eiTaV
a

Q
]

+

∫

d2θd2θ̄Tr
[

Q̃†eiT̃aV
a

Q̃
]

+

∫

d2θW (Q, Q̃) + c.c.(4.1)

25
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where T̃ = −T ∗. If W = 0 this theory has the symmetries

SU(NC) SU(NF )L SU(NF )R U(1)B U(1)R U(1)A
Q � � 1 1 1 − NC

NF
1

Q̃ �̄ 1 �̄ -1 1 − NC
NF

1

,

(4.2)
where the R-charges have been chosen such that U(1)R is anomaly free.
The R-charges above give ψQ and ψQ̃ R-charge −NC/NF and since C(�) =

C(�̄) = 1
2

the anomaly coefficient coming from the quarks is

(2NF )(2C(�))

(

−NC

NF

)

= −2NC . (4.3)

This exactly cancels the 2C(Adj) = 2NC coming from the gauginos. In
the table above, U(1)A is the only anomalous symmetry.

Using (2.42) and the values of the Casimir operators above gives b0 =
3NC −NF . The theory is thus asymptotically free for NF < 3NC . If NF

is between 3
2
NC and 3NC , it turns out that, although the theory is weakly

coupled at high energies, the theory does not get strongly coupled at low
but instead approaches a fixed point [16, 17]. If NF is less than or equal
to 3

2
NC the theory gets strongly coupled at low energies. We might thus

expect the theory to behave in a similar confining way as QCD. This will
turn out to be true in some cases. It has also been shown that massive
SQCD has Witten index NC [18]. This means that the low energy theory
has supersymmetric vacua and it will therefore be possible to describe it
in a supersymmetric way. In particular, since the effective superpotential
has to be holomorphic, it will be practically available to computations.

4.2 NF = 0

If the theory does not have any matter fields (NF = 0) it is called pure
super Yang-Mills(SYM). The Lagrangian is then especially simple:

L = − 1

4g2
(F a

µν)
2 − 1

g2
λ̄aiD/λa +

θ

32π2
F a
µνF̃

aµν . (4.4)

This is very similar to ordinary QCD. The only difference is that the
fermions transform in the adjoint representation instead of the funda-
mental and anti fundamental. For this theory, b0 = 3NC and the coupling
constant runs as

e2πiτeff = e−8π2/g2(E)+iθ =

(

Λ

E

)3NC

. (4.5)



4.2 NF = 0 27

What is then the effective superpotential when the gauge fields and
gauginos have been integrated out? The only thing the low energy su-
perpotential can depend on is the effective coupling constant τeff at
some energy M (or equivalently Λ). In many applications this coupling
constant will depend on the vacuum expectation value of some chiral su-
perfield Φ. It might thus be appropriate to also look at τeff as a chiral
superfield. This is the context in which we later will use these calcula-
tions. Since the low energy potential depends on a chiral superfield and
since we are interested in the physics around a supersymmetric vacuum,
the effective potential can be written (off shell) as

Γ =

∫

d2θWeff (τeff) + c.c. , (4.6)

where Weff is a holomorphic function of τeff . Our goal is thus to find
Weff .

Because the theory have supersymmetric vacua we do not expect the
theory to have R-symmetry. However, we will be able to use a modifi-
cation of the R-symmetry to find the Weff . Since there are no quarks
in the theory we can not use their charges to make the R-symmetry
anomaly free. Because λa has charge 1 the anomal R-current is ∂µJ

µ =
C(Adj)
16π2 F

a
µνF

aµν = NC
16π2F

a
µνF

aµν . This means that if λ→ λeiα we have

L → L− α∂µJ
µ → L− 2NCα

1

32π2
F a
µνF̃

aµν . (4.7)

When we calculate

eiΓ(τ) =

∫

DvaDλaei
∫

d4xL(τ), (4.8)

the instanton sector with
∫

d4xF a
µνF̃

µν
a 6= 0 will therefore not be invariant

under R transformations. However, if we combine the anomalous R-
symmetry transformations with the shift θ → θ + 2NCα, or equivalently
τ → τ + 2NC

2π
α, we find a symmetry of the effective theory. By using (4.6)

one sees that Weff must have charge 2 with respect to this modified
R-symmetry.

Equation (4.5) makes it possible to write the modified R-symmetry
as Λ(τeff ,M)3NC → Λ(τeff ,M)3NCei2NCα. Since the effective potential
can only depend on τeff and M , or equivalently Λ, the only possible
superpotential with R-charge 2 and mass dimension 3 is

Weff = aM3e2πiτ/NC = aΛ(τeff,M)3, (4.9)

where a is some number. Using instanton calculations it has been shown
that a is NC [19].
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Does SQCD have a gaugino condensate in a similar ways as the quarks
condense in QCD? This can be answered by calculating 〈λαaλaα〉. A key
observation is that the lower component of Wαa in the WZ gauge is
−iλαa. This means that the scalar part of 〈−WαaWαa〉 is identical to
the vacuum expectation value of the fermion bilinear we are looking for.
Treating the coupling constant of the microscopic theory, τ , as a chiral
superfield makes it possible to get the vacuum expectation value of the
gaugino bilinear by a simple derivation:

〈λαaλaα〉 = −16π
∂

∂Fτ
logZ were Z =

∫

DvaDλaei
∫

L. (4.10)

When we calculated the effective action we obtained it as a function of τeff
and not of τ . However, using Equation (4.5) it is easy to show that the
two coupling constants are related to each other by an additive constant
only depending on energy difference. Now using

logZ = iΓ = i

∫

d2θWeff (τeff ) + c.c. (4.11)

the gaugino condensate can be calculated in terms of the effective super-
potential:

〈λαaλaα〉 = −16πi
∂Fτeff
∂Fτ

∂

∂Fτeff

∫

d2θWeff(τeff)

= −16πi
∂

∂Fτeff

[

Fτeff
∂Weff

∂τeff
+ ψ2

τeff

∂2Weff

∂τ 2
eff

]

− = 16πi
∂Weff

∂τeff
= 32π2Λ3 . (4.12)

The gauginos therefore condensate in similar fashion as the quarks in
QCD.

If α is equal to a multiple of 2π/2NC the anomalous R-symmetry
induces a 2π shift in θ. This has no effect on a Yang-Mills theory and
hence, for these α, the R-symmetry is unbroken. This means that a Z2NC

subgroup of U(1)R must survive in the effective superpotential. By look-
ing at (4.9) we see that this is the case. Is this symmetry spontaneously
broken when the gauginos get a vacuum expectation value? Under the
Z2NC subgroup of the anomalous R-symmetry, the gaugino bilinear trans-
forms as λaαλaα → λaαλaαe

i2πm/NC , where m is an integer. Z2NC is thus
spontaneously broken down to Z2 and we have NC different vacua, just
as the Witten index indicated.

One application of the effective superpotential above is in the study
of pure SYM as a low energy limit of massive SQCD with NF 6= 0 and
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energy scale Λ. This can be done by adding a mass term to the chiral
fields:

Wtree = Trmi
jM

j
i = Trmi

jQ
c
iQ̃

j
c, (4.13)

where we have defined M i
j to be the gauge invariant one gets when the

gauge indices of Q and Q̃ are contracted. For generic m this gives a mass
to all fields in the chiral multiplets. If the mass scale is much larger than
Λ, the massive quarks decouple when the theory is still weakly coupled.
If we integrate them out we are thus left with the pure SYM theory we
studied above. We call the energy scale of this theory ΛL. Because the
coupling constants of the high and low energy theory must be identical at
decoupling, Λ and ΛL can be related. If all masses are approximately the
same, decoupling happens at energy (detm)1/NF . Since the high energy
theory has b0 = 3NC −NF and the low energy theory has b0 = 3NC the
matching condition is

(

ΛL

(detm)1/NF

)3NC

=

(

Λ

(detm)1/NF

)3NC−NF
, (4.14)

which can be simplified to Λ3NC
L = Λ3NC−NF detm. Expressing the effec-

tive superpotential of the low energy theory in terms of Λ and m gives

Weff = NC

(

Λ3NC−NF detm
)1/NC . (4.15)

In a similar way as derivation ofWeff with respect to τeff gave 〈−λαaλaα〉,
derivation with respect to mi

j gives
〈

M j
i

〉

=
〈

Qi · Q̃j
〉

. Working this out,

see [20], gives

〈M〉 =
(

Λ3NC−NF detm
)1/NC m−1. (4.16)

4.3 0 < NF < NC

One useful property of SYM is that the solution to the D-flatness con-
ditions can be parameterized by the gauge invariant polynomials of the
theory [21]. Hence, at the classical level, the moduli space of the the-
ory can be parameterized by Mij which contains N2

F complex degrees of
freedom. Classically we therefore have N2

F massless bosonic fields.
Another way to see this is to note that by using gauge and flavor

transformations it is always possible to put Q into the form

〈Qik〉 =













a1 0 . . .
a2 0

...
aNF−1 0

aNF 0 . . .













, (4.17)
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where k denotes gauge index. Inserting this into the D-flatness condition

Da = Tr
(

QT aQ† − Q̃∗T aQ̃T
)

= 0 (4.18)

gives 〈Q〉 = ±
〈

Q̃∗
〉

. The general vacuum (up to gauge transformations)

can then be constructed by choosing NF complex scalars ai and acting
on the vacuum with two flavor SU(NF ) transformations. However, the
flavor rotations corresponding to diagonal generators TA generate trans-
formations that are equivalent to choosing new ai and therefore do not
introduce any new degrees of freedom. This leaves us with a subgroup
generated by 2NF (NF − 1) generators. For generic diagonal elements,
gauge transformations ca not cancel the off diagonal flavor transforma-
tions. The vacua therefore have NF + 1

2
(2NF (NF − 1)) = N2

F complex
dimensions.

A third way to reach this result is to note that if the Da are zero, the
only effect VD has on the mass matrix is the A and B terms in (2.36).
These terms only affect bosons corresponding to broken gauge symme-
tries. As we will see later, this part of the mass matrix splits the affected
complex scalar bosons into one massless part and one massive. The
massless part is eaten in the higgs mechanism. Each broken gauge sym-
metry therefore reduces the number of complex massless bosons by one.
By looking at (4.17) one sees that a generic vacuum breaks SU(NC) →
SU(NC −NF ). Since the number of broken symmetries is just the differ-
ence between the two groups, (N2

C−1)−((NC−NF )2−1) = 2NFNC−N2
F ,

and since we originally had 2NCNF massless complex fields, we end up
with our good old N2

F .

What do quantum effects do to the classical moduli? For NF < NC

it turns out that the low energy theory can be described in terms of
the gauge invariant M . This means that when the theory gets strongly
coupled, the two quarks combine into a gauge invariant meson in a similar
way as for QCD. If we are in a supersymmetric vacuum, the theory will
be supersymmetric and we can describe the mesons in terms of chiral
superfields. Although the strongly coupled behavior is extremely hard
to calculate explicitly there is a number of ways to check if the picture is
consistent. However, the first thing we have to do is to get an expression
for the effective potential.

In the last section we assigned a charge to Λ to compensate for the
anomaly introduced by the R-symmetry. In this case U(1)R is non
anomalous. However, the U(1)A symmetry is anomalous. Using the
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usual technique to ’handle’ it using Λ gives

SU(NC) SU(NF )L SU(NF )R U(1)B U(1)R U(1)A
Λ3NC−NF 1 1 1 0 0 2NF

M 1 � �̄ 0 2 − 2NC
NF

2

m 1 �̄ � 0 2NC
NF

-2

.

(4.19)
We also listed the transformation properties ofM and the transformation
properties a matrix m must have in order to make the tree level superpo-
tential Wtree = mM , which we will use later, invariant. Since Λ and M
are the only quantities that can appear in the effective superpotential, all
we have to do is to find out what combinations of these that have charge
2 with respect to the modified U(1)R and are invariant with respect to
the other symmetries. Because only M is R charged and because only
the determinant is invariant under SU(NF )L × SU(NF )R we must have
a factor (detM)1/(NF−NC) in Weff . After taking U(1)A into account the
only possible effective superpotential is

Weff = CNF ,NC

(

Λ(3NC−NF )

detM

)1/(NC−NF )

. (4.20)

This is the so called Affleck-Dine-Seiberg superpotential, see [19]. Be-
cause M has mass dimension 2, Weff has mass dimension 3, exactly as
it should.

The F-flatness conditions of this superpotential have no solutions.
However, the potential energy goes to zero as 〈M〉 goes to infinity. The
interpretation is that the theory does not have a stable ground state.

Is this superpotential sensible? One check is to give one of the flavors
a big mass and integrate it out. In the original high energy theory it was
clear that this would give us an SQCD theory with NF − 1 flavors and
an energy scale related to the original one in the usual way. In order for
the low energy theory to be consistent it must behave in the same way.
The NF ’th flavor becomes massive if we use the tree level superpotential

Wtree = mQc
NF
Q̃NF
c = mMNF

NF
. (4.21)

Note that this mass term breaks the global symmetry down to

SU(NF − 1)L × SU(NF − 1)R × U(1)B × U(1)R × U(1)A. (4.22)

It is possible to show that the only effective low energy superpotential
that is consistent when letting Λ and m go to zero in different ways is

Weff = CNC ,NF

(

Λ(3NC−NF )

detM

)1/(NC−NF )

+mMNFNF . (4.23)
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As Qc
NF

and Q̃NF
c become very heavy and we integrate them out, we

have to solve the corresponding F-flatness conditions. Since M i
NF

and

MNF
i contain massive quarks, these composite fields become massive and

can also be integrated out. Although the reason is not as obvious as
in the high energy case, we still have to solve the F-flatness conditions
corresponding to the degrees of freedom we integrate out. The F-terms
for the meson fields are

−F †
M i
j

= − CNC ,NF
NC −NF

(

Λ(3NC−NF )

detM

)1/(NC−NF )

M−1i
j +mδiNF δ

NF
j . (4.24)

Putting FM i
NF

and F
M
NF
i

, i < NF , to zero makes M−1, and hence M ,

block diagonal. In particular this means that M−1NF
NF

= 1/MNF
NF

and that

detM = MNF
NF

detM ′, where M ′ is the block corresponding to the NF − 1
first flavors. Solving F

M
NF
NF

= 0 gives

MNF
NF

=

(

CNC ,NF
m(NC −NF )

(

Λ3NC−NF

detM ′

)
1

NF−NC

)

NC−NF
NC−NF+1

(4.25)

which, when put back into (4.23), yields

W = C ′
(

Λ′3NC−NF+1

detM ′

)
1

NC−NF+1

where Λ′3NC−NF+1 = mΛ3NC−NF

and C ′ =
(

CNC−NF
NC ,NF

(NF −NC)
)

1
NC−NF+1 +

(

CNC ,NF
NC −NF

)

NC−NF
NC−NF+1

.

(4.26)

This is the effective potential for NF − 1 flavor. If CNC ,NF = NC − NF

we get C ′ = NC −NF + 1. Note that the new energy scale is consistent
with coupling constant matching at energy m:

(

ΛNF

m

)3NC−NF
=

(

ΛNF−1

m

)3NC−NF+1

. (4.27)

This shows that the effective potential is consistent, at least when it
comes to reducing the number of flavors.

For NF = NC − 1, giving all ai in (4.17) a big vacuum expectation
value breaks the SU(NC) gauge symmetry completely and the coupling
constant does not become large for small energies. This makes it possible
to calculate the effective superpotential exactly using instantons. Affleck,
Dine and Seiberg did this and showed that CNC ,NF = NC −NF .
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A last illustrative check is to make all quarks massive by using the
tree level superpotential W = mi

jM
j
i , where m is a non singular matrix.

This term breaks the R-symmetry explicitly and we therefore expect
to find a supersymmetric vacuum. The effective superpotential of this

theory is Weff = (NC −NF )
(

Λ(3NC−NF )

detM

)1/(NC−NF )

+ mj
iM

i
j , which has

the F-flatness conditions

− F †
M i
j

= −
(

Λ3NC−NF

detM

)1/(NC−NF )
(

M−1
)j

i
+mj

i = 0 . (4.28)

These equations have the solution M i
j =

(

detmΛ3NC−NF
)1/NC (m−1)

i
j ,

which exactly coincides with (4.16). This vacuum expectation value be-
haves in a similar way those in the last two examples of Chapter 3: as
the R-symmetry breaking term m grows, a supersymmetric vacuum ap-
proaches from infinity.

4.4 NF = NC

To solve the D-flatness condition for NF ≥ NC it is convenient to use
gauge and flavor symmetries to put Q on diagonal form and Q̃ on upper
triangular form. The D-flatness conditions corresponding to off diagonal
generators put the off diagonal part of Q̃T Q̃∗ to zero. Since Q̃ is upper
triangular this implies that Q̃ is diagonal. Solving the D-flatness condi-
tions corresponding to diagonal generators gives us Q†Q − Q̃T Q̃∗ = c1,
for some constant c. The vacua can therefore be written as

Q =













a1

a2

...
aNC













and Q̃ =













b1
b2

...
bNC













(4.29)

with |ai|2 −|bi|2 = c for some constant c which is independent of i. Since
the vacuum completely breaks the SU(NC) gauge symmetry, N2

C − 1
massless complex fields are eaten. This leaves us with 2NFNC−(N2

C−1)
complex dimensions. For NF = NC the moduli space thus has N2

F + 1
complex dimensions. M is therefore not enough to parameterize the
moduli and the theory must have some new gauge invariant. As it turns
out, the theory does not have one new invariant but two:

B =
1

n!
ǫi1...iNC ǫ

n1...nNCQi1
nNC

...Q
iNC
nNC

= detQ

B̃ =
1

n!
ǫi1...iNC ǫn1...nNC

Q̃
nNC
i1

...Q̄
nNC
iNC

= detQ̃ , (4.30)
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where the i’s are gauge indices and the n’s are flavor indices. These quan-
tities are, however, not independent of Mm

n . By using the determinant
product rule one gets

detM = detQQ̃ = detQdetQ̃ = BB̃ . (4.31)

and the number of independent invariants matches the complex dimen-
sion of the moduli space. Can the low energy strongly coupled theory be
described in terms of these gauge invariants in a similar way as in the
previous case? What form can the effective superpotential have? The
U(1)A symmetry is anomalous. This can be ’handled’ in the usual way
by giving Λ2NC charge 2NC . By looking at Equation (4.2) one sees that
Q and Q̃ have charge zero under the anomaly free R symmetry. Since
the symmetry is anomaly free, Λ is also uncharged. This means that it is
impossible to construct a superpotential with charge 2 from the available
invariants.

One way to check whether the quantum moduli space is identical
to the classical one is to use the tree level superpotential Wtree = mM
and study the vacuum expectation values as m goes to zero. Using
Equation (4.16) one sees that 〈detM〉 = Λ2NC for NF = NC . By looking
at Equation (4.19) we deuce that it’s impossible to construct a non zero
expression with B-charge NC using Λ and m and we therefore have 〈B〉 =
〈

B̃
〉

= 0. This point in field space is not a part of the classical moduli

space. There is however no symmetry preventing us from modifying
Equation (4.31) to

detM − BB̃ = Λ2NC , (4.32)

see [22].
If we give Q and Q̃ the vacuum expectation value ai = bi = v, the

entire gauge symmetry is broken. The D-term potential VD =
∑

(DA)2

will then give a mass of order v2 to the higgs bosons, their fermionic
superpartners and the vector bosons. At energies below v we therefore
have a theory consisting of the massless ungauged fields living on the
moduli while we at energies above v have the original theory. Since the
theory is asymptotically free, a big vacuum expectation value of Q and
Q̃ forces the gauge part to decouple at high energy where it is weakly
coupled. We should therefore not expect big nonperturbative quantum
modifications to the moduli in this region. For theories with NF ≥ NC

this gives us one new important consistency check: does the moduli space
of the low energy effective theory reduce to the classical moduli space
when the quarks are given big vacuum expectation values? For this to
be the case, the classical algebraic relations between the gauge invariants
must be imposed in this limit. Looking at (4.32) we see that when M ,
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B and B̃ are very large (compared to Λ) we effectively have the classical
relation (4.31).

One way to impose the constraint (4.32) is to introduce a Lagrange
multiplier in the superpotential

W = X
(

detM −BB̃ − Λ2NC
)

. (4.33)

This superpotential is not the real Wilsonian superpotential but only a
way to enforce the constraint. Adding a mass term for QNF and Q̃NF

yields

W = X
(

detM − BB̃ − Λ2NC
)

+mMNF
NF
. (4.34)

Solving the F-flatness conditions for M i
NF

makes M block diagonal in the

same way as for NF < NC (we call the blocks M ′ and t = MNF
NF

). Solving
the other F-term conditions gives

− F †
B = 0 ⇒ XB̃ = 0 −F †

M
NF
NF

= 0 ⇒ X = − m

detM ′ (4.35)

− F †
B̃

= 0 ⇒ XB = 0 −F †
X = 0 ⇒ detM ′t−BB̃ − Λ2NC = 0. (4.36)

Inserting these conditions into the effective superpotential gives

W =
mΛ2NC

detM ′ , (4.37)

which is the Affleck-Dine-Seiberg superpotential for NF = NC − 1 if we
use the usual relation to relate the energy scales.

The calculations above suggest that the low energy degrees of free-
doms are the mesons, composite particles consisting of combination of a
quark and a antiquark, and the baryons, composite particles consisting
of an antisymmetric combination of quarks. Since the low energy theory
is supersymmetric, each massless boson must have a massless fermion
partner. One criteria that such fermionic low energy degrees of freedom
must fulfill is the ’t Hooft anomaly matching condition [23].

The condition can be stated in the following way. Assume that the
low energy theory has the anomaly free global symmetry group G and
that these symmetries have the associated currents Jaµ , J

b
µ and Jcµ. These

currents are then contracted into a triangle diagram. The matching con-
dition states that one must get the same anomaly coefficients when cal-
culating these triangle diagrams in terms of the low energy composite
fermions and when calculating them in terms of the high energy quarks.
At most points on the moduli space the global symmetry group is bro-
ken down to U(1)R and the constraint is weaker. However, at certain
points a bigger symmetry group survives and here the ’t Hooft anomaly



36 Chapter 4 Supersymmetric QCD and the Seiberg Duality

matching condition is stronger. One such point fulfilling the quantum
moduli constraint is M i

j = Λ2δij , B = 0, B̃ = 0. The meson field breaks
the flavor symmetry down to the diagonal subgroup:

SU(NF )L × SU(NF )R × U(1)R × U(1)B

→ SU(NF )diag × U(1)R × U(1)B . (4.38)

One important result from representation theory is that �⊗�̄ = Adj⊕1

for SU(N). Around this point, the meson field can be expanded as
M = Λ2

1 + δM = Λ2
1 + δM ′ + 1

NF
TrδM1, where δM ′ is the traceless

part. TrδM is the invariant in the decomposition above. Expanding
detM to first order gives detM = Λ2NF + Λ2(NF−1)TrδM . After inserting
this into the quantum moduli constraint and solving for TrδM we are
left with the independent fields δM ′, B and B̃. The relevant fermions
for the anomaly matching thus transform as

SU(NF ) U(1)B U(1)R
ψB 1 NF −1
ψB̃ 1 −NF −1
ψδM ′ Adj 0 −1
ψQ � 1 −1
ψQ̃ �̄ −1 −1
λA 1 0 1

. (4.39)

The anomaly coefficients of the possible triangle diagrams are

composite elementary
SU(NF )3 A(Adj) = 0 A(�) + A(�̄) = 0

SU(NF )2U(1)R 0 0
SU(NF )2U(1)B −C(Adj) = −NF NC

(

C(�) + C(�̄)
)

(−1) = −NF

SU(NF )1... 0 0
U(1)2

BU(1)R −2N2
F −2N2

F

U(1)BU(1)2
R 0 0

U(1)3
B 0 0

U(1)3
R −(N2

F + 1) −(N2
F + 1)

TrU(1)B 0 0
TrU(1)R −(N2

F + 1) −(N2
F + 1)

,

(4.40)
where SU(NF )1... summarize all diagram containing only one SU(NF )-
current and where we in the two last rows have calculated the coefficients
for the gravitational anomaly. As one can see, all coefficients match.

Another point with a large unbroken global symmetry is M = 0,
B = −B̃ = ΛNC . This vacuum expectation value induces the symmetry
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breaking

SU(NF )L × SU(NF )R×U(1)R × U(1)B

→ SU(NF )L × SU(NF )R × U(1)R. (4.41)

By expanding B and B̃ and solving the moduli condition one can elimi-
nate δB̃. The relevant fermions then transform as

SU(NF )L SU(NF )R U(1)R
ψδB 1 1 −1
ψM � �̄ −1
ψQ � 1 −1
ψQ̃ 1 �̄ −1

λA 1 1 1

(4.42)

The anomaly coefficients of the triangle diagrams are, up to SU(NF )L ↔
SU(NF )R,

composite elementary
SU(NF )3 NFA(�) NFA(�)

SU(NF )2U(1)R −NF/2 −NF/2
SU(NF )1... 0 0
U(1)3

R −(N2
F + 1) −(N2

F + 1)
TrU(1)R −(N2

F + 1) −(N2
F + 1)

(4.43)

Once again the anomalies match. All this strengthen our earlier assertion
that the degrees of freedom of the low energy theory are M , B and B̃
subjected to detM − BB̃ = Λ2NC .

4.5 NF = NC + 1

For NF = NC + 1, the gauge invariants are

M i
j = Qc

jQ̃
i
c , Bi =

1

NC !
ǫij1...jNC ǫc1...cNCQ

c1
j1
...Q

cNC
jNC

and B̃i =
1

NC !
ǫij1...jNC ǫ

c1...cNC Q̃j1
c1
...Q̃

jNC
cNC

, (4.44)

where Bi transforms in (�̄, 1) and B̃j transforms in (1,�) with respect
to the flavor symmetries SU(NF )L×SU(NF )R. Since NF > NC , we have
that BiQc

i = BjQ̃
j
c = 0 by antisymmetry. This implies that the classical

moduli must fulfill M i
jB

j = M i
jB̃i = 0. One way to look at Bi and

B̃i is as (up to a sign) the determinant of the square matrices one gets
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when eliminating the i’th flavor from Q and Q̃ respectively. By using
the determinant product rule one sees that BiB̃j is the determinant of
Qc
kQ̃

l
c = (−1)l+kM l

k with the i’th row and the j’th column eliminated.
This is also known as the minor of M . Using that the inverse of a

matrix can be written as (M−1)
i
j =

(minorM)ij
detM

, the classical moduli space
conditions can be summed up as

BiB̃j = detM(M−1)ij and M i
jB

j = M i
jB̃i = 0. (4.45)

Since the second constraint says that M has a null-vector, the deter-
minant of M is zero. The mathematically well defined way to look at
detM(M−1)ij is thus as the minor of M .

Using the result regarding the complex dimension of the moduli space
from the previous section, we know that there must be N2

F independent
complex gauge invariants. To fulfill the second constraint the deter-
minant of M must be zero. This means that, only taking the second
constraint into consideration, M has N2

F −1 complex degrees of freedom.
A generic matrix M with zero determinant only has one null vector (the
same is true for MT ). Hence B and B̃ are determined by the second and
third constraint up to one complex normalization constant each. If we
only had the second and third condition we would therefore have N2

F +1
independent complex invariants.

The first constraint is more tricky to impose. A generic matrix can
be expanded in terms of its eigenvectors: M =

∑

i λiv
T
i v̂i, where λi

are the eigenvalues, vi are the eigenvectors and v̂i are the covectors to
the eigenvectors. In the same language, the inverse can be written as
M−1 =

∑

i
1
λi
vTi v̂i. If λ0 goes to zero, the corresponding term in this sum

goes to infinity. This can be fixed by multiplying with the determinant.
All terms corresponding to non zero eigenvalues then vanish and we have

detM(M−1) =
(

∏

i6=0 λi

)

v0v̂0. Since B and B̃ are the eigenvector and

the coeigenvector for the zero eigenvalue, the only thing (4.45) does is
to normalize BB̃. Hence, one complex degree of freedom is removed and
there are N2

F independent gauge invariants. This exactly matches the
complex dimension of the moduli space.

What about quantum modifications to the theory? By once again
using (4.16) and NF = NC + 1 we see that 〈detMM−1〉 = Λ2NC−1m,
which vanishes as m goes to zero. Using the transformation properties

in (4.19) gives 〈B〉 =
〈

B̃
〉

= 0. This point in field space belongs to

the classical moduli space and we therefore do not expect any quantum
modifications to the moduli space. It turns out, see [22], that the effective
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superpotential is

Weff =
1

Λ2NC−1

(

M i
jB

jB̃i − detM
)

. (4.46)

This superpotential has R charge 2 and correct mass dimension. Note
that the quotient between the two terms is totaly invariant and has mass
dimension zero. This means that symmetry arguments alone are not
sufficient to say that this is the only form the superpotential can have.
Also note that F-flatness conditions are

−F †
Bj

=
1

Λ2NC−1
M i

jB̃i = 0 − F †
Bi

=
1

Λ2NC−1
M i

jB
j = 0 (4.47)

−F †
M i
j

=
1

Λ2NC−1

(

BjB̃i − detM
(

M−1
)j

i

)

= 0, (4.48)

which indeed give the expected moduli space. In the limit where M ,
B and B̃ are big, the quantum description must reduce to the weakly
coupled theory with the classical algebraic relations between the fields.
This turns out to be the case, since, for big vacuum expectation val-
ues (or equivalently small Λ) fields corresponding to non pseudo moduli
directions becomes heavy and can be integrated out.

Another check of the quantum picture is to add a mass to the NF ’th
flavor in the usual way. Combining the two F-flatness conditions

− F †
B̃j

=
1

Λ2NC−1
M j

i B
i = 0, j < NC and (4.49)

− F †
M
NF
i

=
1

Λ2NC−1

(

BiB̃NF − detM
(

M−1
)i

NF

)

−mδiNF = 0, i ≤ NF

(4.50)

gives M j
NF

= 0 for j < NF . By using −F †
Bi = 0 and −F †

M i
NF

= 0 instead

we get MNF
i = 0 for i < NF . Once again the meson matrix is reduced

to block diagonal form. In a similar way, a short calculation shows that
Bi = B̃i = 0 for i < NF . The condition −F †

M
NF
NF

= 0 is then

1

Λ2NC−1

(

BNF B̃NF − detM ′
)

−m = 0, (4.51)

which, if the scale Λ decouples in the usual way, exactly is the quantum
moduli constraint for NF = NC (4.32). We see that none of the F-flatness
conditions constrain MNF

NF
and that it therefore in some sense still is free.

Putting the results back into the effective action yields

W =
MNF

NF

Λ2NC−1

(

BNF B̃NF − detM ′ +mΛ2NC−1
)

, (4.52)
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which, if we treat MNF
NF

as a Lagrange multiplier, is equivalent to (4.33).

In a similar way as for NF < NC , we can also check the effective
theory by adding a mass to all quarks: Wtree = mi

jM
j
i , where mi

j is a
non singular matrix. This gives the effective superpotential

Weff =
1

Λ2NC−1

(

M i
jB

jB̃i − detM
)

+mi
jM

j
i . (4.53)

The F-flatness conditions for this superpotential are (4.47) and

− F †
M i
j

=
1

Λ2NC−1

(

BjB̃i − detM
(

M−1
)j

i

)

+mj
i = 0 . (4.54)

Using that m is non singular one finds the solution Bi = B̃i = 0 and

M i
j =

(

Λ(2NC−1)detm
)1/(NF−1)

(m−1)
i
j, which agrees with (4.16).

A last way to check if the low energy degrees of freedom and the ef-
fective potential make sense is trough ’t Hooft anomaly matching. This
time, the point M = B = B̃ = 0 belongs to the quantum moduli space.
The global symmetry is unbroken at this point. Note that this is an
example of a theory displaying confinement without chiral symmetry
breaking. Since the remaining global symmetry group is big, the match-
ing condition is extra restrictive. At this point in field space, the first
order expansion of (4.45) is zero and can not be used to eliminate any
field. The relevant fermions thus transform as

SU(NF )L SU(NF )R U(1)R U(1)B
ψM � �̄ −1 + 2/NF 0
ψB �̄ 1 −1/NF NF − 1
ψB̃ 1 � −1/NF −NF + 1
ψQ � 1 −1 + 1/NF 1
ψQ̃ 1 �̄ −1 + 1/NF −1
λA 1 1 1 0

. (4.55)

Up to the interchange SU(NF )L ↔ SU(NF )R, the anomaly coefficients
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of the triangle diagrams are

composite elementary

(SU(NF )L)
3 NFA(�) + A(�̄) = NCA(�) NCA(�)

(SU(NF )L)
2 U(1)B NCC(�) NCC(�)

(SU(NF )L)
2 U(1)R (−1 + 1/NF )C(�) (−1 + 1/NF )C(�)

SU(NC)L... 0 0

(U(1)R)3 −2/N2
F − (NF−2)3

NF
−2/N2

F − (NF−2)3

NF

(U(1)R)2 U(1)B 0 0

U(1)R (U(1)B)2 −2(NF − 1)2 −2(NF − 1)2

(U(1)B)3 0 0
trU(1)R −N2

F + 2NF − 2 −N2
F + 2NF − 2

trU(1)B 0 0

,

(4.56)
which match perfectly. If one is not convinced by the matching at this
point, one can look atB = B̃ = 0 andM = diag(0, ..., 0, 1, ..., 1)Λ2, where
there are n non zero elements, NF − n > 2. This breaks the symmetry
to

SU(NF )L × SU(NF )R × U(1)R × U(1)B

→ SU(NF − n)L × SU(NF − n)R × SU(n)diag × U(1)B, (4.57)

where SU(NF−n) affects the NF−n first elements in the flavor multiplet
and SU(n)diag is the diagonal subgroup affecting the last n. Expanding
the (4.45) to first order yields Bi = B̃i = 0 for i ≥ NF − n. Using the
decompositions

M =

(

M1 M2

M3 M4

)

, B =

(

B1

0

)

, B̃ =

(

B̃1

0

)

,

Q =

(

Q1

Q2

)

and Q̃ =

(

Q̃1

Q̃2

)

, (4.58)
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the sub-blocks transform as

SU(NF − n)L SU(NF − n)R SU(n)diag U(1)B
ψM1 � �̄ 1 0
ψM2 � 1 �̄ 0
ψM3 1 �̄ � 0
ψM4 1 1 �⊗ �̄ = Adj ⊕ 1 0
ψB1 �̄ 1 1 1
ψB̃1

1 � 1 −1
ψQ1 � 1 1 1
ψQ2 1 1 � 1
ψQ̃1

1 �̄ 1 −1

ψQ̃2
1 1 �̄ −1

(4.59)
and the anomaly coefficients are

composite elementary

(SU(NF − n)L)3 (NF − 1)A(�) (NF − 1)A(�)

(SU(NF − n)L)
2 U(1)B (NF − 1)C(�̄) (NF − 1)C(�)

(SU(n)diag)
3 0 0

(SU(n)diag)
2 U(1)B 0 0

(U(1)B)3 0 0
TrU(1)B 0 0

. (4.60)

All this together strongly suggests that the low energy theory is described
by the baryons Bi and Bj and the mesons M i

j .

4.6 NF > NC + 1 and the Seiberg Duality

For NF > NC + 1 the picture is not, at least initially, as pretty as in the
previous cases. The invariants are

M j
i = Qc

iQ̃
j
c , B

j1..jn =
1

NC !
ǫj1..jni1..iNC ǫc1..cNCQ

c1
i1
..Q

cNC
iNC

and

B̃j1..jn =
1

NC !
ǫj1..jni1..iNC ǫ

c1..cNC Q̃i1
c1 ..Q̃

iNC
cNC

, (4.61)

where n = NF−NC . B transforms in
¯
.
.
.

of SU(NF )L and B̃ transforms

in .
.
.

, of SU(NF )R. The classical moduli conditions are similar to the
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ones of the previous section:

M j
i1
Bi1...in = 0 , M i1

j B̃i1...in = 0 and

Bi1...inB̃j1...jn = minorM i1...in
j1...jn

=
∂ndetM

∂M i1
j1
...∂M in

jn

, (4.62)

where the ”minor” is (up to a sign) the determinant of M with the
rows i1, ..., in and columns j1, ..., jn removed. Two flavor invariants are

1
Λb0

detM and 1
Λb0
Bi1...inM i1

j1
...M in

jn B̃j1...jn. Both have R charge 2(NF −
NC). Since the quotient between these is invariant under the entire sym-
metry group, symmetry arguments are not sufficient to determine the
effective superpotential. In the spirit of the previous section one might
guess that the effective superpotential is something similar to

W ∼ 1

Λb0

(

detM − 1

n
Bi1...inM i1

j1
...M in

jn
B̃j1...jn

)

. (4.63)

However, one immediately realizes that this does not work. The above
superpotential has the F-flatness conditions

− F †
M i
j

=
1

Λb0

(

∂detM

∂M i
j

−Bji2...inM j2
i2
...M jn

in
B̃ij2...jn

)

= 0

− F †
Bi1...in

=
1

nΛb0
M j1

i1
...M jn

in
B̃j1...jn = 0

− F †
B̃j1...jn

=
1

nΛb0
Bi1...inM j1

i1
...M jn

in
= 0. (4.64)

These conditions are not the same as the classical. This is not surprising

since the last of the classical moduli conditions transforms in
¯
.
.
.
× .

.

.

and no F-terms, regardless of superpotential, transform in that repre-
sentation. One might argue that a more cleaver choice of superpotential
might give F-flatness conditions that are mathematically equivalent to
(4.62), although not in the same representation.

By once again using (4.16) and (4.19) we see that 〈M〉 ∼ Λ
3−NF

NCm
NF
NC

−1
,

which vanishes as m goes to zero, and 〈B〉 =
〈

B̃
〉

= 0. It is therefore

reasonable to check if the anomalies match at this point in field space.
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The relevant fermions transform as

SU(NF )L SU(NF )R U(1)R U(1)B
ψM i

j
� �̄ 1 − 2NC

NF
0

ψBi1...in
¯
.
.
.

1 NC − 1 − N2
C

NF
NC

ψB̃i1...in
1 .

.

.
NC − 1 − N2

C

NF
−NC

ψQ � 1 −NC
NF

1

ψQ̃ 1 �̄ −NC
NF

−1

λ 1 1 1 0

. (4.65)

Using this we calculate the anomaly coefficients to be

composite elementary

(SU(NF )L)
3 NCa NCA(�)

(SU(NF )L)
2 U(1)R cRψB −NFC(�)RψM NCC(�)RψQ

(SU(NF )L)
2 U(1)B cNC NCC(�)

SU(NF )L... 0 0

(U(1)R)3 2d1R
3
Bψ

+N2
FR

3
ψM

d2 − 2NFNCR
3
ψQ

(U(1)R)2 U(1)B 0 0

U(1)R (U(1)B)2 2d1RBψN
2
C 2NFNCRψQ

(U(1)B)3 0 0
TrU(1)R 2d1RBψ +N2

FRψM d2 − 2NFNCRψQ

TrU(1)B 0 0

. (4.66)

where

c = C

(

.

.

.

)

, d1 = dim

(

.

.

.

)

= NF !
n!(NF−n)!

,

d2 = dimAdj = (N2
C − 1), a = A

(

.

.

.

)

= (NF−3)!(NF−2n)
(NF−n−1)!(n−1)

,

(4.67)

RBψ = NC − 1 − N2
C

NF
, RψQ =

(

−NC
NF

)

and RψM =
(

1 − 2NF
NF

)

. The

anomalies clearly does not match. Looking at the whole picture, the
situation for NF > NC +1 is clearly not as simple as in previous sections.

In fact, the solution to the problem is something even more inter-
esting - the so called Seiberg duality [16]. The idea is that the baryons
Bi1...iNF−NC and B̃i1...iNF−NC

and the mesons M i
j are the gauge invariants

of quarks in a dual theory with gauge group SU(N), N = NF −NC . The
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dual theory has NF flavors of the quarks ϕic and ϕ̃ci , NF ×NF uncharged
fields Mm

i
j, the superpotential

W = ϕfcMm
h
f ϕ̃

c
h (4.68)

and the characteristic scale Λ̃. The original theory is usually called the
electric theory whereas the dual is called the magnetic theory. The gauge
invariants of the electric and magnetic theory are related by

ǫc1...cNC ǫ
j1...jN i1...iNCQc1

i1
...Q

cNC
iNC

= Cǫc1...cNϕj1c1...ϕ
jN
cN

where C =

√

−(−Λ̂)NC−NFΛ3NC−NF , (4.69)

and similar for Q̃ and ϕ̃. We also have the relation Mm
i
j = 1

Λ̂
Qc
jQ̃

i
c where

Λ̂ is some scale that fixes the dimension. The scales Λ, Λ̃ and Λ̂ are
related trough

Λ3NC−NF Λ̃3(NF−NC)−NF = (−1)NF−NC Λ̂NF . (4.70)

Let us consider the coupling constant of the electric theory. As we
mentioned in the beginning of the chapter, SQCD is IR free for NF ≥
3NC . This means that as long as we are below the Landau pole at Λ
the theory behaves nicely and can be described by perturbation theory.
For NF < 3NC the theory is asymptotically free. One might expect that
the theory gets strongly coupled at energies close to Λ. This turns out
to be true for NF ≤ 3

2
NC . However, for 3

2
NC < NF < 3NC the two

loop contribution to the running of the coupling constant is big enough
to stop the running and stabilize the low energy coupling constant at a
fixed point [16].

The magnetic theory behaves in an analog way but reversed: forNF ≤
3
2
NC (or equivalently NF ≥ 3N) the theory is IR free, for 3

2
NC < NF <

3NC (or equivalently 3
2
N < NC < 3N) the theory is asymptotically free

with an IR fixed point and for NF ≥ 3NC (or equivalently NF ≤ 3
2
N) the

theory is asymptotically free and strongly coupled for low energies. The
fixed points for the electric and magnetic theory have been calculated and
for the superpotential above they match, indicating that the magnetic
theory indeed is a dual way of describing the same physics.

If the magnetic theory is IR-free, the Kähler potential is

K =
1

β

(

ϕ†ϕ+ ϕ̃†ϕ̃
)

+
1

α |Λ|2
M †M =

1

β

(

ϕ†ϕ+ ϕ̃†ϕ̃
)

+
|Λ̂|2
α |Λ|2

Mm
†Mm,

(4.71)
where the Λ is needed for dimensional reasons and α and β are unknown
numbers of order one. One property of the duality is that one is allowed
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to rescale ϕ and ϕ̃ if one changes Λ̃ and Λ̂ in an appropriate way. This
rescaling can be used to put β = 1. Alternatively it could have been used
to put C = 1, but this is not the normalization we will use here. The α
can not be put to one in this way. We can, however, write our theory

in terms of the field Φi
j = |Λ̂|√

α|Λ|Mm. Using this notation, the Kähler

potential and superpotential are

K = Tr
(

ϕ†ϕ+ ϕ̃†ϕ̃
)

+ TrΦ†Φ, W = hϕicΦ
j
i ϕ̃

c
i , h =

√
α|Λ|
|Λ̂|

. (4.72)

If Seiberg duality is to be an actual duality, performing it twice should
give the original theory. We start with the usual theory consisting of Q,
Q̃, W = 0, energy scale Λ and gauge group SU(NC). Seiberg duality then
gives a theory consisting of the quarks ϕ and ϕ̃ transforming in the gauge

group SU(NF − NC), the neutral field Mm = QQ̃

Λ̂
, the superpotential

W = ϕMmϕ̃ and the energy scale Λ̃. Λ̃ is related to Λ and Λ̂ by (4.70)
and we have put β = 1. Performing the duality transformation again
gives a theory with the original gauge group SU(NC), the quarks d and d̃,
uncharged fields Mm and N = ϕϕ̃

Λ̂′
, energy scale Λ̄ and the superpotential

W = TrϕMmϕ̃+ TrdNd̃ = TrN(Λ̂Mm + d̃d). (4.73)

The new energy scale Λ̄ can be put equal to Λ if we choose Λ̂′ = −Λ̂.
Choosing the energy scales in this way, it is not obvious that β ′ of the
new theory is equal to one. The first term in the superpotential above
gives a mass to the uncharged chiral fields N and Mm. Integrating them
out and solving the F-flatness conditions gives

− F †
N = α′(−Λ̂′Mm + dd̃) = 0 and − F †

Mm
= −αΛ̂′N = 0, (4.74)

where α and α′ are the coefficients of the uncharged fields in the Kähler
potential. The first condition tells us that the quarks d and d̃ are identical
to Q and Q̃. By imposing the conditions (4.74), the superpotential is
put to zero and we are left with the same theory we started with. Note
that the minus sign in the energy scale relation (4.70) turned out to be
necessary for the duality to work.

The magnetic theory has the global symmetries

SU(NF )L SU(NF )R U(1)B U(1)R U(1)A
ϕ �̄ 1

NC
N

1 − N
NF

1

ϕ̃ 1 � −NC
N

1 − N
NF

1

Mm � �̄ 0 2 N
NF

−2

Λ̃3N−NF 1 1 0 0 2NF

(4.75)
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which is the same global symmetry group as in the electric theory. Here
U(1)A is anomalous and has been ’fixed’ in the usual way. Using the
relations between the electric and magnetic fields we see that the sym-
metry transformations above are the ones corresponding to the global
symmetry transformations in the electric theory. For the U(1)A in the
two theories to correspond to each other, we must give Λ̂ charge 4.

As usual, we check the theory by adding a mass to the NF ’th flavor
and look at how it decouples. In the magnetic theory, this gives the
effective superpotential

W = hϕfcΦ
h
f ϕ̃

c
h + hmΛ̂ΦNF

NF
= hϕfcΦ

h
f ϕ̃

c
h − hµ2ΦNF

NF
, µ2 ≡ −mΛ̂. (4.76)

Since ΦNF
i and Φi

NF
contain one massive quark each, they become mas-

sive. Solving their F-flatness conditions yields

ϕNFc ϕ̃cNF − µ2 = 0, ϕicϕ̃
c
NF

= 0, i < NF . (4.77)

Here ϕNFc receives a vacuum expectation value and breaks the gauge
symmetry down to SU(N − 1). The higgs mechanism then gives a mass
to the NF ’th quark flavor and they can be integrated out. Solving their
F-flatness condition, ϕicΦ

NF
i = Φi

NF
ϕci = 0 for i ≤ NF , leads to Φi

NF
=

ΦNF
i = 0. Putting all this back into the superpotential gives the dual

theory for NF−1 flavors, which is just what we needed. For NF = NC+2
Equation (4.77) breaks the gauge symmetry completely and the instanton
contribution can be calculated. This has been done and the result is the
effective potential for NF = NC + 1 flavors.

What about ’t Hooft anomaly matching? Clearly ϕ = ϕ̃ = Φ = 0 is
a part of the moduli space. The relevant fermions then transform as

SU(NF )L SU(NF )R U(1)B U(1)R
ψϕ �̄ 1

NC
NF−NC −1 + NC

NF

ψϕ̃ 1 � − NC
NF−NC −1 + NC

NF

ψΦ � �̄ 0 1 − 2NC
NF

λ̃ 1 1 0 1

ψQ � 1 1 −NC
NF

ψQ̃ 1 �̄ −1 −NC
NF

λ 1 1 0 1

(4.78)
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Using these representations one gets the anomaly coefficients

electric magnetic

(SU(NF )L)
3 NCA(�) NCA(�)

(SU(NF )L)
2 U(1)B C(�)NC C(�)NC

(SU(NF )L)
2 U(1)R −N2

C

NF
C(�) −N2

C

NF
C(�)

SU(NF )L... 0 0

(U(1)R)3 −1 +N2
C − 2N4

C

N2
F

−1 +N2
C − 2N4

C

N2
F

(U(1)R)2 U(1)B 0 0

U(1)R (U(1)B)2 −2N2
C −2N2

C

(U(1)B)3 0 0
TrU(1)R −1 −N2

C −1 −N2
C

TrU(1)B 0 0

, (4.79)

which match perfectly, offering a far from trivial test of Seiberg duality.



5
The Metastable Vacuum of the

Magnetic Theory

As we saw in the previous section, for NC + 1 < NF ≤ 3
2
NC (or equiva-

lently 3 < 3N ≤ NF ) the magnetic theory is IR free. This means that
we have a way to handle the strongly coupled low energy dynamics of
the electric theory. We start this chapter by studying the pseudo mod-
uli space of the magnetic theory with an added mass term. It turns out
that the magnetic theory not only has Goldstone bosons, but also pseudo
flat directions. We then calculate the masses of all fields as a function
of the pseudo flat directions. Using these masses, we calculate the one
loop effective potential and show that the one loop masses of the pseudo
moduli are positive [1]. We then study how supersymmetry is restored in
some parts of the field space, thus making the supersymmetry breaking
vacuum only meta stable.

5.1 The Massive Magnetic Dual

If we add an equal mass m to all quarks in the electric theory, the super-
potential becomes

W (ϕ, ϕ̃,Φ) = hTrϕTΦϕ̃− hµ2TrΦ (5.1)

in the magnetic theory, where µ2 = −mΛ̂. For sake of simplicity, we
will take µ to be real. Since the only energy scale in the superpotential
is µ, the tree level masses must be of the same order of magnitude. h
(together with the gauge coupling constant g) is an overall dimensionless
coupling constant. The tree level masses will contain one power of one of

49
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these coupling constants whereas the one loop masses will contain two.
A last important dimensionless constant is ǫ = µ

Λ̃
, where Λ̃ is the energy

scale of the magnetic theory. This quantity will parameterize how strong
the perturpative dynamics is compared to the non perturbative.

The mass term explicitly breaks the U(1)A symmetry and we are left
with the global symmetry group

SU(NF ) × U(1)B × U(1)R , (5.2)

where the R-symmetry is anomalous, and the gauge group SU(N). The
fields transform as

SU(N) SU(NF ) U(1)B U(1)R
Φ 1 �× �̄ 0 2
ϕ � �̄ 1 0
ϕ̃ �̄ � -1 0

. (5.3)

Since the R-symmetry is classically unbroken we do not expect to find
a tree level supersymmetric vacuum. This might seem strange since the
full electric theory has Witten index NC . However, in the end of the
chapter we will see that non-peturbative effects restore supersymmetry
at certain points in field space.

The F-terms are

− F †
Φ = h(ϕϕ̃T − µ2

1NF ) ,−F †
ϕ̃ = hΦTϕ and − F †

ϕ = hΦϕ̃ . (5.4)

Since ϕϕ̃T at most can have rank N and 1NF has rank NF > N , all
F -terms can not simultaneously be put to zero and supersymmetry is
indeed spontaneously broken at tree level. To find the minima of VF , it
is convenient to note that, by using the flavor and gauge symmetries, an
arbitrary field configuration can always be transformed into

φ0 =

{

ϕ0 =

(

ϕ1

0

)

, ϕ̃0 =

(

ϕ̃1

0

)

,Φ0 =

(

Φ11 Φ12

Φ21 Φ22

)}

, (5.5)

where ϕ̃1 is an N ×N diagonal matrix, ϕ1 is an N ×N upper triangular
matrix, Φ11 is an N ×N matrix, Φ21 and ΦT

12 are (NF −N)×N matrices
and Φ22 is an (NF −N)× (NF −N) matrix. Using this, the F-terms can
be rewritten as

−F †
Φ = h

(

ϕ1ϕ̃
T
1 − µ2

1N 0
0 −µ2

1NF−N

)

,−F †
ϕ̃ = h

(

ΦT
11ϕ1

ΦT
12ϕ1

)

,

− F †
ϕ = h

(

Φ11ϕ̃1

Φ21ϕ̃1

)

. (5.6)
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First of all, it is possible to put all F-terms, except those in −F †
Φ22

, to

zero. Doing so corresponds to finding the vacuum. Putting −F †
Φ11

to
zero implies ϕ1ϕ̃

T
1 = µ2

1N , which, since ϕ̃1 is diagonal, implies that ϕ1

also is diagonal. ϕ1 and ϕ̃1 therefore have maximum rank. Because
of this, the conditions Φ11ϕ̃1 = 0, Φ21ϕ̃1 = 0 and ΦT

12ϕ1 = 0 imply
that Φ11 = Φ21 = Φ12 = 0. A generic vacuum state can therefore be
reached by choosing a matrix Φ22 and two matrices ϕ and ϕ̃ fulfilling
the constraint above and performing the appropriate flavor and gauge
transformations. In the minima, the potential energy (coming from the
F-terms) is

Vmin = h2µ4(NF −N) . (5.7)

We will focus on the maximally symmetric vacuum

φ0 =

{

ϕ0 =

(

µ1N
0

)

, ϕ̃0 =

(

µ1N
0

)

,Φ0 =

(

0 0
0 0

)}

. (5.8)

This vacuum has some interesting properties. First of all, it is invariant
under the global symmetry SU(N)diag × SU(NF −N)×U(1)B′ ×U(1)R
as well as under interchange of ϕ and ϕ̃. Again, the U(1)R is anomalous.
Here the SU(NF ) flavor symmetry has first been broken down to one
SU(N) acting on the N first components in the flavor multiplets and
one SU(NF − N) acting on the last NF − N ones. The flavor SU(N)
and its gauge counterpart have then been broken down to their diagonal
subgroup, denoted by SU(N)diag above. The U(1)B has been modified
so it only acts on the NF − N last components in the flavor multiplet,
denoted above by U(1)B′ . Note that this is a combination of U(1)B
and some flavor transformation. When studying the physics around this
vacuum we will parameterize the perturbations with

δφ =

{

δϕ =

(

χ
ρ

)

, δϕ̃ =

(

χ̃
ρ̃

)

, δΦ =

(

Y ZT

Z̃ Φ̂

)}

. (5.9)

The transformation properties of these fields under the unbroken global
symmetry group of the vacuum are

SU(N)diag SU(NF −N) U(1)B′

Y �× �̄ 1 0
Z � �̄ −1

Z̃ �̄ � 1

Φ̂ 1 �× �̄ 0
χ �̄×� 1 0
χ̃ �× �̄ 1 0
ρ � �̄ 1
ρ̃ �̄ � −1

. (5.10)
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What about the D-terms? The gauge generators act on φ0 as

TAφ0 =
{

ϕ0t
T
A, ϕ̃0(−tA),Φ

}

=

{(

µtTA
0

)

,

(

−µtA
0

)

, 0

}

, (5.11)

where φ0 again denotes the entire matter multiplet (c.f.r. (5.5) and (5.8))
and tA are the generators of the fundamental representation of SU(N).
This means that the D-terms, DA0 = −g2φ†

0TAφ0, are traces of the gen-
erators. Because the generators are traceless, the D-terms vanish and
the vacuum studied is indeed (to tree level) the point in field space with
lowest energy.

What goldstone bosons are coming from the symmetry breaking in
this particular vacuum? One expression for the goldstone bosons is
(T

SU(NF )
a φ0)

†δφ − (T
SU(NF )∗
a φ∗

0)
†δφ∗, where T

SU(NF )
a are the generators

for the flavor symmetry transformations of φ. T
SU(NF )
a acts on φ0 as

T SU(NF )
a φ0 =

{

−tSU(NF )T
a ϕ0 , t

SU(NF )
a ϕ̃0 , t

SU(NF )
a Φ0 − Φ0t

SU(NF )T
a

}

.
(5.12)

It is now convenient to split the generators of the fundamental represen-
tation into the blocks

tSU(NF )
a =

(

t11a t21†a

t21a t22a

)

. (5.13)

Since Φ0 = 0, the Goldstone bosons can be written as

Tr
[

(

−tSU(NF )T
a ϕ0

)†
δϕ+

(

tSU(NF )
a ϕ̃0

)†
δϕ̃
]

− Tr

[

(

(−tSU(NF )T

a )∗ϕ∗
0

)†
δϕ∗ +

(

tSU(NF )∗
a ϕ̃∗

0

)†
δϕ̃∗
]

= µTr
[

−t11†a

(

χT − χ̃
)

+ t11a
(

χ∗ − χ̃†)

+ t21a (ρ∗ + ρ̃) − t21∗a (ρ+ ρ̃∗)
]

. (5.14)

Let us first turn to t11a . This generator can either be an SU(N) generator
or proportional to the identity matrix (coming from U(1)B). Using that
any matrix can be written as

∑

cata + cd1, for some complex constants
c, one sees that the Goldstone bosons coming from t11a are the complex
fields

(χ− χ̃T ) − h.c. (5.15)

The generators t21a can be chosen to have at most one non zero el-
ement. This element can either be 1 or i and can be anywhere in the
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matrix by choosing an appropriate a. The real Goldstone bosons corre-
sponding to the real and the imaginary generators can thus be combined
to

ρ+ ρ̃∗ ∈ C . (5.16)

Because the vacuum is an invariant under SU(NF )diag, the traceless Gold-
stone bosons derived above will be eaten in the Higgs mechanism.

Does the theory have pseudo moduli? The fact that we stay in the
vacuum for arbitrary Φ22 makes Φ̂ massless. Since Φ̂ is not the Gold-
stone boson of any broken symmetry it spans a pseudo moduli space.
The constraint ϕ1ϕ̃

T
1 = µ2

1N is not only unaffected under SU(N) trans-
formations (in which the generators are made up by N × N hermitian
traceless matrices) but also under transformations generated antihermi-
tian matrices. These generators give rise to the massless fields

χ̂ = (χ− χ̃T ) + h.c. . (5.17)

The super Higgs mechanism will give the off diagonal part of χ̂ a mass
but Trχ̂ will be massless at tree level.

Because neither Φ̂ nor Trχ̂ are protected by Goldstone’s theorem and
because the vacuum is not supersymmetric, both fields are expected to
acquire a mass to one loop. To calculate this mass we have to parameter-
ize the pseudo moduli space around the maximally symmetric vacuum.
Since Trχ̂ = 2TrRe [χ− χ̃], a good parametrization of this massless di-
rection is ϕ1 = µeθ = 1N and ϕ̃1 = µe−θ1N , where θ is a real number.
The Φ̂ direction is parameterized by Φ22 = X01NF−N , where also X0 is
chosen to be a real number for simplicity. One then gets the φ expansion

φ = φ0 + δφ =

{

Φ =

(

Y ZT

Z̃ X01NF−N + Φ̂

)

,

ϕ =

(

µeθ1N + χ
ρ

)

, ϕ̃ =

(

µe−θ1N + χ̃
ρ̃

)}

. (5.18)

When these fields are put into the superpotential (5.1) one gets

W =hTr
[

µeθY χ̃+ µeθZT ρ̃+ µe−θχTY + χTY χ̃+ χTZT ρ̃

+µe−θρT Z̃ + χTZT ρ̃+ ρT (X01 + Φ̂)ρ̃
]

− hµ2TrΦ̂ . (5.19)

The only way in which superpotential terms involving three fields could
occur in the mass matrices is, if Wc is non zero, in W †abcWc. But, because
the only linear term in W is hµ2TrΦ̂, the terms χTZT ρ̃, χTZT ρ̃, χTY χ̃
and ρT (X01 + Φ̂)Off diagρ̃ give no contribution to the mass matrices and
can be discarded from the superpotential without affecting the masses.
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One easily sees that the remaining superpotential can be split in two
parts: one part containing the fields Φ̂, ρ, ρ̃, Z and Z̃,

WΦ̂ρρ̃ZZ̃ = hTr
[

µeθρ̃ZT + µe−θZ̃ρT + (X01 + Φ̂)diagρ̃ρ
T
]

− hµ2TrΦ̂diag,

(5.20)
and one part containing χ, χ̃, Y and Ỹ ,

Wχχ̃Y = hTr
[

µeθY χ̃ + µe−θχTY
]

. (5.21)

What about the contributions to the mass matrices due to the gauge
couplings? First of all, because DA0 is zero, the term

∑

ADA0TA in (2.36)
gives no contribution to the boson mass matrix. Secondly, W c is only
non zero for Φ̂. Because Φ̂ is uncharged under the gauge group, this
means that the term WcTA

c
b in (2.38) is zero, implying that the gauginos

do not mix with the matter fermions. Finally, TAφ0 only has components
corresponding to χ and χ̃. In particular, the fields Φ̂, ρ, ρ̃, Z and Z̃ are
not affected by the gauge contributions of the form

∑

(TAφ0) (TAφ0)
†.

This, together with the fact that they do not mix with the other fields in
the superpotential, makes it possible to put the mass matrix in a block
diagonal form with the mentioned field in one block and χ, χ̃ and Y in
the other.

5.2 Masses of Φ̂, ρ,ρ̃, Z and Z̃

A key observation is that the superpotential can be rewritten as

WΦ̂ρρ̃ZZ̃ = h

NF−N
∑

f=1

(

(

X01 + Φ̂
)

ff

(

ρ̃ρT
)

ff
+ µeθ

(

ρ̃ZT
)

ff

+µe−θ
(

Z̃ρT
)

− µ2
(

X0 + Φ̂ff

))

. (5.22)

Because the terms with different f do not interact, the superpotential
above can be seen as NF −N models of the form

W ′
f = h

(

Xφ1 · φ2 + µe−θφ1 · φ3 + µeθφ2 · φ4

)

+ µ2X , (5.23)

where φ1i = ρfi, φ2i = ρ̃fi, φ3i = Z̃fi, φ4i = Zfi, X = X0+Φ̂ff , 〈X〉 = X0

and i = 1...N .

5.2.1 Scalar Bosons

The boson mass matrix for the fields studied in this section is

M2
0 =

(

W †acWcb W †abcWc

WabcW
†c WacW

†cb

)

=

(

M11 M12

M21 M22

)

, (5.24)
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where M11 = M †
11 = M∗

22 and M21 = MT
21 = M∗

12. Looking at W ′ one sees
that fields with different i’s do not couple to each other. This decoupling,
combined with the one in previous section, means that the mass matrix
has been block diagonalized all the way down to the individual compo-
nents in fields ρ, ρ̃ Z and Z̃. This is not surprising since these fields have
the unbroken flavor symmetry SU(NF − N) × U(1)B′ = U(NF − N).
Using this gives the mass matrices

M11 = h2µ2















(e−2θ + X0

µ2

2
) 0 0 X0

µ
eθ 0

0 (e2θ + X0

µ2

2
) X0

µ
e−θ 0 0

0 X0

µ
e−θ e−2θ 0 0

X0

µ
eθ 0 0 e2θ 0

0 0 0 0 0















(5.25)

and

M21 = h2













0 −µ2 0 0 0
−µ2 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













, (5.26)

where the rows correspond to ρfi, ρ̃fi Z̃fi, Zfi and Xff respectively. First

of all, one sees that Xff is massless. Because Φ̂off diag does not appear in

WΦ̂ρρ̃ZZ̃ , the off diagonal part is also massless. Hence, the entire field Φ̂

is massless. This is exactly what we expect since arbitrary Φ̂ belongs to
the pseudo moduli space.

Secondly, because the fields making up an eigenvector must trans-
form in the same representation, M2

0 must become block diagonal if we
permute the rows and columns into groups of fields transforming in the
same representation. By looking at table (5.10) one sees that the only
such combinations are (ρ, ρ̃∗, Z, Z̃∗) and (ρ∗, ρ̃, Z∗, Z̃). The block of the
first combination is

h2









µ2e−2θ +X2
0 X0µe

θ −µ2 0
X0µe

θ µ2e2θ 0 0
−µ2 0 µ2e2θ +X2

0 X0µe
−θ

0 0 X0µe
−θ µ2e−2θ









ρ
Z
ρ̃∗

Z̃∗

. (5.27)

The eigenvalues and eigenvectors of this matrix can be calculated ex-
actly. A factor

√

X4
0 + 4θ2µ4 in the eigenvalues makes Taylor expansions

around X0 = θ = 0 ill defined. Taking this into account and expanding
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to second order gives the masses

m2
1 = 0 , m2

2 = 2h2
(

X2
0 + µ2(1 + 2θ2)

)

,

m2
3,4 = h2

(

(1 + 2θ2)µ2 ±
√

X4
0 + 4θ2µ4

)

(5.28)

and eigenvectors (unnormalized for simplicity)

v1 =









(1 + θ)µ
−X0

(1 − θ)µ
−X0









, v2 =









−(1 + θ)µ
−X0(1 + 4θ)

(1 + 3θ)µ
X0









,

v3,4 =













0

2θ(X2
0 + µ2) ±

√

X4
0 + 4θµ4

X0

(

2θµ+

√
X4

0+4θ2µ4

µ

)

X2
0













. (5.29)

By calculating the block in the mass matrix corresponding to ρ∗, ρ̃, Z∗

and Z̃, one sees that it is almost identical to the first one (up to an
exchange θ → −θ). This does not affect the masses since θ appears
quadratically and means that, for θ = 0, the eigenvectors can be com-
bined into complex fields. In particular, for θ = X0 = 0, the first eigen-
vector can be written as ρ+ ρ̃∗, which exactly is the Goldstone boson in
equation (5.16).

5.2.2 Fermions

As we mentioned earlier, the matter fermions do not couple to the gaug-
inos, implying that the fermion mass matrix is equal to M11 in Equation
(5.25). The fermions ψΦ̂ are massless for the same reason as for the

bosons Φ̂. Because the only non zero F-terms are in the diagonal part of
FΦ̂, TrψΦ̂ corresponds to the Goldstino. By once again looking at Table
(5.10) we see that by permuting the fields into the pairs (ψρ, ψZ) and
(ψρ̃, ψZ̃) we get the remaining matrix into a block diagonal form:

h2









µ2e−2θ +X2
0 X0µe

θ 0 0
X0µe

θ µ2e2θ 0 0
0 0 µ2e2θ +X2

0 X0µe
−θ

0 0 X0µe
−θ µ2e−2θ









ψρ
ψZ
ψρ̃
ψZ̃

. (5.30)
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This matrix has the eigenvalues

m2
1,2 = h2

(

µ2 +
X2

0

2
+ 2θ2µ2 −

√

X2
0 + 4θ2µ2

)

m2
3,4 = h2

(

µ2 +
X2

0

2
+ 2θ2µ2 +

√

X2
0 + 4θ2µ2

)

(5.31)

and eigenvectors

v1,3 =









X2
0 − 4θµ2 ∓ 2µ

√

X2
0 + 4θ2µ2

2X0µ(1 + θ)
0
0









,

v2,4 =









0
0

X2
0 + 4θµ2 ∓ 2µ

√

X2
0 + 4θ2µ2

2X0µ(1 − θ)









. (5.32)

5.3 The Masses of χ, χ̃ and Y

5.3.1 Scalar Bosons

By looking at Equation (5.21) one sees that W †abcWc is zero and that

W †acWcb = h2





µ2e−2θ
1 µ2

1 0
µ2

1 µ2e2θ1 0
0 0 µ2

(

e2θ + e−2θ
)

1





χ
χ̃T

Y
. (5.33)

Since Y is not charged with respect to the gauge symmetry, it will not
get a contribution from the gauge part of the mass matrix. This means
that

Y ∈ C with m2 = 2h2µ2cosh[2θ] . (5.34)

The situation for χ and χ̃ is slightly more complicated. This is be-
cause M11 and M21 receive D-term contributions such as g2

∑

A(TAφ0)×
(TAφ0)

†. By looking at (5.10) we see that χ, χ†, χ̃∗ and χ̃T transform
under the �̄×�-representation of SU(N) flavor symmetry. From repre-
sentation theory we know that this representation can be split into the
adjoint and the trivial representation, where the trivial representation
corresponds to χ and χ̃ being proportional to 1. When we calculated
the D-term for φ0, we saw that the contribution to VD from this kind
of fields vanishes. It thus makes sense to choose a basis where the two
representations are seen explicitly. One convenient decomposition is

χT = χ′ +
1√
N

Trχ√
N

1 =
∑

A

√
2tAχA +

1√
N
χD1 (5.35)
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and

χ̃ =
∑

A

√
2tAχ̃A +

1√
N
χ̃D1 , (5.36)

where χD = Trχ/
√
N and similar for χ̃D. This change of coordinates is

unitary since TrtAtB = 1
2
δAB, TrtA = 0 and Tr1 = N .

One way to see what the gauge contribution to M11 looks like in the
new basis is to write out the mass term

g2
∑

A

δφ†(TAφ0)(TAφ0)
†δφ =

= g2
∑

A

(

µeθTr
[

χ†tTA
]

+ µe−θTr
[

χ̃†(−t†A)
])

×
(

µeθTr [t∗Aχ] + µe−θTr [(−tA)χ̃]
)

= g2
∑

A

µ2

2

(

eθχ∗
A − e−θχ̃∗

A

) (

eθχA − e−θχ̃A
)

, (5.37)

where we used a generalization of (5.11) for the pseudo moduli. Because
the coordinate transformation is unitary and because W †acWcb is diago-
nal, the superpotential contribution to M11 is not affected by the change
of basis. M11 can therefore be written as

M11 = µ2h2













(

e−2θ + 1
2
g2

h2e
2θ
)

1

(

1 − 1
2
g2

h2

)

1 0 0
(

1 − 1
2
g2

h2

)

1

(

e2θ + 1
2
g2

h2e
−2θ
)

1 0 0

0 0 e−2θ 1
0 0 1 e2θ













χA
χ̃A
χD
χ̃D

(5.38)
in the new basis.

Since χD and χ̃D are not affected by the D-term potential, their mass
matrix will be block diagonal. This means that the fields will be complex
and that the only thing we have to do is to find the eigenvalues and
eigenvectors of the trace block in M11. This gives

eθχD − e−θχ̃D√
e2θ + e−2θ

∈ C with m2 = 0

e−θχD + eθχ̃D√
e2θ + e−2θ

∈ C with m2 = 2h2µ2cos[2θ] . (5.39)

The imaginary part of the massless field is a Goldstone boson corre-
sponding to the trace of (5.15). The real part corresponds to the tree
level massless field Trχ̂ of (5.17). This is one of the pseudo moduli fields
who’s one loop mass we are calculating.
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Let us now turn to M21 = g2
∑

A(TAφ0)
∗(TAφ0)

†. In the new basis,
this matrix will be the same as the VD-contribution toM11. The complete
mass matrix for the fields transforming in the adjoint representation is
thus

M2
A = µ2h2











e−2θ + g2e2θ

2h2 1 − 1
2
g2

h2
1
2
g2

h2 e
2θ −1

2
g2

h2

1 − 1
2
g2

h2 e2θ + g2e−2θ

2h2 −1
2
g2

h2
1
2
g2

h2 e
2θ

1
2
g2

h2 e
2θ −1

2
g2

h2 e−2θ + g2e2θ

2h2 1 − 1
2
g2

h2

−1
2
g2

h2
1
2
g2

h2e
−2θ 1 − 1

2
g2

h2 e2θ + g2e−2θ

2h2











,

(5.40)
where the rows correspond to χA, χ̃A, χ∗

A and χ̃∗
A respectively. This

matrix has the eigenvectors and eigenvalues

√
2Im

[

eθχA − e−θχ̃A
]

√
e2θ + e−2θ

∈ R with m2
1 = 0

√
2Re

[

eθχA − e−θχ̃A
]

√
e2θ + e−2θ

∈ R with m2
2 = 2g2µ2cosh[2θ]

e−θχA + eθχ̃A√
e2θ + e−2θ

∈ C with m2
3 = 2h2µ2cosh[2θ] . (5.41)

A couple of points are to be made here. First of all, the traceless
part of the Goldstone boson in Equation (5.15) can, when µ → µeθ, be
written as

eθχ′ − e−θχ̃′ − h.c. =
∑

A

√
2tTAIm

[

eθχA − e−θχ̃A
]

, (5.42)

where χ′ and χ̃′ are the traceless parts of corresponding fields. This
coincides with the massless field above.

Secondly, from Equation (2.33) we see that the unitary gauge condi-
tion can be written as:

0 =
∑

n

Im
[

(φ0 + δφ)†(TAφ0)
]

=

=
√

2µ
∑

B

Im
[

eθχ∗
BTr

[

tTBt
T
A

]

+ e−θχ̃∗
BTr [−tAtB]

]

=

=
µ√
2
Im
[

eθχA − e−θχ̃A
]

, (5.43)

which corresponds to setting the Goldstone boson discussed above to
zero. This is nothing other than the usual Higgs mechanism. Thirdly,
the second field in Equation (5.41) corresponds to the traceless part of
(5.17).
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Lastly, because the last field in (5.39) and the last field in (5.41)
have the same mass and the same dependence on χ and χ̃, they can be
combined back into the original matrix field:

e−θχ+ eθχ̃T√
e2θ + e−2θ

∈ C with m2
3 = 2h2µ2cosh[2θ] . (5.44)

This might seem strange since there is no unbroken global U(N) sym-
metry that forces fields in the two irreducible representations to have
the same mass. However, the superpotential (5.21) has a ’fake’ global
U(N)×U(N) symmetry. This is not a real global symmetry since it only
appeared after we discarded the higher order interaction terms that did
not affect the mass matrix. Note that this symmetry does not guarantee
the gauge masses to behave nicely, something χ̂ bitterly experienced.

5.3.2 Fermions

The square mass matrix for the fermions is (5.38) with g2/2 → g2, see
(2.38). This matrix has eigenvectors and masses

eθψχD − e−θψχ̃D√
e2θ + e−2θ

with m2 = 0

eθψχA − e−θψχ̃A√
e2θ + e−2θ

with m2 = 2g2µ2cosh[2θ]

e−θψχ + eθψχ̃√
e2θ + e−2θ

with m2 = 2h2µ2cosh[2θ], (5.45)

where the last field has been recombined for the same reason as in the
previous section. We also have

ψY with m2 = 2h2µ2cosh[2θ] (5.46)

5.4 Gauge Fields

As one can see in (2.38), the gauge fermions (gauginos) have the diagonal
mass matrix

M2
1/2(gauge) = 2g2 (TAφ0)

† (TBφ0) = g2µ2
(

e2θ + e−2θ
)

δAB

= 2g2µ2cosh[2θ]δAB. (5.47)

The gauge vector bosons have the mass matrix

M2
1(gauge) = g2φ†

0 {TA, TB}φ0 = 2g2µ2cosh[2θ]δAB . (5.48)

All fields that acquire a mass trough gauge interactions are equally heavy
and their contribution to the one loop potential will vanish.
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5.5 One Loop Effective Potential

Now that we have all the masses, calculating the one loop effective po-
tential is a simple thing. A summary of the masses and the number of
scalar, spinor and vector degrees of freedom can be found in Table 5.5.
One might argue that assuming µ and X0 to be real is not very natural.
Redoing the calculations for complex variables is not much harder but
it will give expressions for the eigenvectors that are more complicated.
However, it is not hard to convince oneself that all characteristic polyno-
mials will only contain |µ|2 and |X0|2. Hence, the more general masses are
obtained by doing the substitution µ2 → |µ|2 and X2

0 → |X0|2. When
these masses are put into (2.43) and the potential is taylor expand to
second order in X0 and θ one gets the mass term

V
(1)
eff =

h4 |µ|2N(NF −N)(log4 − 1)

8π2

(

|X0|2 + 2θ2 |µ|2
)

. (5.49)

Note the important point that V (1)eff > 0, indicating the absence of
a tachyonic instability. Up until now we have calculated the potential
for the background ϕ1 = µeθ1, ϕ̃1 = µe−θ1 and Φ22 = X01. Since the
kinetic terms for the pseudo moduli fields are written in terms of χ̂D and
Φ̂, we have to translate the effective potential above into these variables.

To translate θ we must split the background into one vacuum part,
ϕ1 = µ1 and ϕ̃1 = µ1, and one perturbation part, χ0 = µ(eθ − 1)1 and
χ̃0 = µ(e−θ − 1)1. Doing the usual unitary change of basis gives

χ̂D =
Tr [χ0 − χ̃0 + χ∗

0 − χ̃∗
0]

2
√
N

= 2µ
√
Nθ +O(θ2) (5.50)

and also O(θ2) contributions to some of the other orthogonal fields. This
means that we can the let θ2 → χ̂2

D/4 |µ|2N in (5.49).
Since the superpotential WΦ̂ρρ̃ZZ̃ decouple to NF − N independent

terms (for which the background can be chosen independently) and since
we have an unbroken SU(NF − N) global symmetry, the only possible
mass for Φ̂ term is of the type TrΦ̂†Φ̂. Using

TrΦ̂†Φ̂ = (NF −N)X2
0 (5.51)

we can write the final one loop potential as

V
(1)
eff =

h4 |µ|2 (log4 − 1)

8π2

[

NTrΦ̂†Φ̂ +
(NF −N)χ̂2

D

2

]

. (5.52)

This means that the pseudo moduli space is lifted to one loop. Since
the only massless fields are the Goldstone bosons, the vacuum space is
compact.
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Mass Bosonic DOF Fermionic DOF Vector DOF
0 2NF (NF −N) + 2 2 + 2(NF −N)2

2h2 (X2
0 + µ(1 + 2θ2)) 2N(NF −N)

h2
(

µ2(1 + 2θ2) +
√

X4
0 + 4µ4θ2

)

2N(NF −N)

h2
(

µ2(1 + 2θ2) −
√

X4
0 + 4µ4θ2

)

2N(NF −N)

h2
(

µ2(1 + 2θ2) +
X2

0

2
+
√

µ2X2
0 + 4µ4θ2

)

4N(NF −N)

h2
(

µ2(1 + 2θ2) +
X2

0

2
−
√

µ2X2
0 + 4µ4θ2

)

4N(NF −N)

2h2µ2cosh[2θ] 4N2 4N2

2g2µ2cosh[2θ] (N2 − 1) 4(N2 − 1) 3(N2 − 1)

Table 5.1: Table summarizing the masses and number of bosonic, fermion and vector degrees of freedom. Notice that
the number of bosonic and fermionic degrees of freedom match.
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5.6 Dynamical Supersymmetry Restoration

In the magnetic theory we have NF quarks in the �-representation of
the gauge group and NF quarks in the �̄-representation. For this matter
content we have b0 = 3N −NF and the coupling constant

e−8π2/g2(E)+iθ =

(

E

Λ̃

)NF−3N

. (5.53)

As we have discussed earlier, the magnetic theory is IR-free. Let us
study this theory further by giving the meson matrix a big vacuum ex-
pectation value with eigenvalues of the same order of magnitude. The
term hTrϕTΦϕ̃ in the superpotential will then give ϕ and ϕ̃ a mass of
order hΦ. If we integrate out these fields and the energy is below hΦ, all
propagators are of order 1/(hΦ)2 and their contribution to the effective
theory is negligible. After the quarks have been integrated out we have
a theory consisting of a pure super Yang-Mills theory and an uncharged
meson field. The coupling constant of this low energy theory runs as

e−8π2/g2(E)+iθ =

(

E

ΛL

)−3N

, (5.54)

where ΛL is the characteristic scale for the low energy theory. Matching
the two expressions for the coupling constants at energy hΦ, which can
be written in a SU(NF ) invariant way as ENF

match = hNF detΦ, gives

(

h (detΦ)1/NF

ΛL

)−3N

=

(

h (detΦ)1/NF

Λ̃

)NF−3N

⇒ Λ3N
L = hNF (detΦ) Λ̃−(NF−3N). (5.55)

What is then the effective potential? As we saw in the beginning of
Chapter 4, the gauginos condense in the strongly coupled low energy
region. Using the effective potential for the pure Yang-Mills theory (4.9)
together with the remaining term in the superpotential gives

Weff = NΛ3
L − hµ2TrΦ = N

(

hNF (detΦ)Λ̃−(NF−3N)
)1/N

− hµ2TrΦ .

(5.56)
Since the first term in the effective superpotential has R-charge 2NF/N ,
R-symmetry is explicitly broken. We therefore expect to find a solution
to the F-flatness conditions. Where is this vacuum? Since Φ transforms
under �×�̄, it is possible to transform Φ into an upper triangular matrix.
This is because in this representation a flavor transformation corresponds
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to a change of basis and by using the Gram-Schmidt method it is possible
(if the matrix can be decomposed into a sum of eigenvectors) to choose a
base in which Φ is upper triangular. The superpotential is then simplified
to

Weff = N
(

hNF (Φ11Φ22...ΦNFNF )Λ̃−(NF−3N)
)1/N

− hµ2 (Φ11 + ...+ ΦNFNF ) . (5.57)

Calculating the F terms and putting all of them to zero gives

Φ11 = ... = ΦNFNF =
1

h
µ

1
(

µ

Λ̃

)

NF−3N

NF−N

. (5.58)

Since we were able to put all F terms to zero and since we have no D
terms to worry about, this is a supersymmetric vacuum. Because this
new vacuum has vanishing vacuum energy, the supersymmetry breaking
’vacuum’ found earlier is only metastable. This is very interesting. As
we saw in the previous chapter, massive SQCD has no R-symmetry and
has supersymmetric vacua. Naively, SQCD is not a good model to break
supersymmetry spontaneously. However, this metastable vacuum totally
sidesteps the limitations R-symmetry and Witten index impose and give
us a new way to break supersymmetry.

The supersymmetric vacuum can also be written as

〈hΦ〉 = µ
1

ǫ
NF−3N

NF−N

= Λ̃ǫ
2N

NF−N , (5.59)

showing that the supersymmetric vacuum is far below the Landau pole
and far from the scale of the metastable supersymmetry breaking vac-
uum. Equation (5.59) is exactly the same as one gets using Equation
(4.16) with µ2 = −mΛ̂, hΦ = M/Λ̂ and the relation between the differ-
ent scales in Equation (4.70). The duality therefore survives another non
trivial test. From the electric theory we knew that the theory had NC su-
persymmetric vacua. These are not visible in the magnetic theory using
only perturbation theory but appear only when taking non-perturbative
effects into account. As pointed out earlier, the U(1)R symmetry is
anomalous. It should therefore not be surprising that supersymmetry
is restored by non-perturbative effects.

At this point it is important to check whether the physics at scales
above Λ̃ (where the magnetic theory becomes strongly coupled) can al-
ter our conclusions. Typically, the biggest effects will be in the Kähler
potential and have the form (omitting the traces for ease of notation)

K = ϕ†ϕ+ ϕ̃†ϕ̃ + Φ†Φ +
c

|Λ̃|2
(

Φ†Φ
)2

+ ... , (5.60)
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where c is some unknown constant. After integrating the Kähler potential
over the Grassmann coordinates, the Lagrangian gets a factor of the form
(

1 + cΦ†Φ
|Λ̃|2

)

in front of the ordinary kinetic terms (omitting higher order

terms in Φ†Φ/|Λ̃|2). This factor then, trough the F-terms, changes the
effective potential. Omitting higher powers, the change can schematically
be written as

V  V

(

1 − c
Φ†Φ

|Λ̃|2
)

∼ V0 + V
(1)
eff −

cV0

|Λ̃|2
Φ†Φ ∼ V0 + V

(1)
eff − c|µ2ǫ2|Φ†Φ,

(5.61)
where we have used that V0 is of order |µ|4. As one can see, the change
in masses due to high energy effects is of order |µ2ǫ2|, which, by choosing
a sufficiently small ǫ, can be made much smaller than the one loop mass
derived above. We therefore do not have to worry about high energy
corrections making the masses tachyonic.

What about the nonperturbative effective superpotential derived above?
Does not the Λ̃ in (5.57) signal high energy physics at work? The answer
is no. The Λ̃ entered as a way to describe the running of the coupling
constant at energies of order 〈hΦ〉. Since this is much smaller than Λ̃, the
appearance of Λ̃ does not have anything to do with high energy dynamics.
Can the contribution due to the Kähler potential invalidate the conclu-
sions regarding dynamical supersymmetry restoration? Calculating the
potential from (5.56) gives

V ∼ |µ2|2 + |µ|2 Φ
NF−N

N

Λ̃
NF−3N

N

. (5.62)

We see that the contributions are equally big (or tiny, δV ∼ µ4ǫ
4N

NF−3N )

when Φ ∼ Λ̃ǫ
2N

NF−3N ≪ 〈Φ〉SUSY . This means that in the region of dy-
namical supersymmetry restoration, the contribution coming from high
energy effects is negligible and our conclusions stand unaltered.

5.7 Lifetime of the Metastable Vacuum

In order for the metastable vacuum found earlier in this chapter to be
phenomenologically acceptable it is important that its lifetime can be
made arbitrary large by choosing ǫ sufficiently small. It is therefore
important to calculate how the lifetime depends on ǫ.

From ordinary quantum mechanics we know that a particle mov-
ing in a one dimensional potential V (x) can tunnel trough a classi-
cally inaccessible region with a probability proportional to e−B, where
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B = 2
∫

dx
√

2V (x) and where the integration runs over the classically
inaccessible region. A similar expression is used for a multidimensional
potential. The subtlety is that the integral now runs along the specific
path minimizing B. The path corresponding to the minimal B must
fulfill the Euler-Lagrange equations derived from the expression δB = 0.
By massaging these expressions it has been shown [24] that one can write
B as

B =

∫ ∞

−∞
dτ

(

1

2

d~q

dτ
· d~q
dτ

+ V (~q)

)

, (5.63)

which is equal to the action of a classical particle rolling in the ’up side
down’ potential from the entering point to the exit point and back (τ
here has the function of time). B is therefore called the bounce action.
The equation of motion coming from B is related to their classical coun-
terparts trough τ = it.

Let us now consider a scalar quantum field with the Lagrangian
L = 1

2
∂µφ∂

µφ−V (φ). This can be seen as an infinite dimensional gener-

alization of the previous case with the potential V (φ)+(~∇φ)2 and where
the scalar product has been replaced with a integration over space. The
scalar field generalization of the bounce action is therefore

B =

∫

d3xdτ

(

1

2

(

dφ

dτ

)2

+
1

2

(

~∇φ
)2

+ V (φ)

)

. (5.64)

For a generic potential V (φ), it turns out that finding the minimal B
is a hard task. However, we are not interested in the exact value of B
but only care about how it depends on ǫ. A qualitative version of the
effective potential is therefore sufficient for our purposes.

As discussed earlier, the supersymmetry breaking metastable vacuum
is at Φ = ϕ2 = ϕ̃2 = 0 and ϕ1 = ϕ̃1 = µ1N and has the vacuum energy
Vmeta = h2(NF−N)µ4. The supersymmetric vacuum is at ϕ = ϕ̃ = 0 and

Φ = µ/hǫ
NF−3N

NF−N . To find the path with minimal bounce action between
these points we have to take a look at the classical potential (we omit the
one loop correction calculated earlier since it is small and only applies
around the metastable vacuum):

Vcl =
∣

∣h
(

ϕϕ̃− µ2
1NF

)∣

∣

2
+
∣

∣hΦTϕ
∣

∣+ |hΦϕ̃|2 (5.65)

We see that the last two terms become large for large Φ if we do not have
ϕ = ϕ̃ = 0. We should therefore decrease ϕ and ϕ̃ before Φ becomes
too large. However, we are not allowed to decrease ϕ and ϕ̃ too much
because of the first term. The path of minimal potential turns out to be
approximately ϕ = ϕ̃ =

√

µ2 − 2Φ2 for Φ2 < µ2/2. This path has its
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Figure 5.1: Top: A qualitative figure showing how the potential varies
during the path with minimal potential. Bottom: A qualitative figure of
the approximative path with minimal potential in the ϕ-Φ-plane.

peak value at ϕ = ϕ̃ = 0 and Φ = µ2/2 where Vpeak = h2NFµ
4. From

this point the potential slowly decreases because of the non-perturbative
effects until it finally reaches the supersymmetric vacuum. A schematic
picture of the potential and the path can be seen in Figure 5.1.

It is convenient to approximate the barrier with a triangle since the
analytic expression for the bouncing action is known for this case, see [25].
The triangular barrier is characterized by the initial energy (V+) and field
(φ+), the final energy (V−) and field (φ−) and the peak energy (VT ) and
field (φT ). If

√

∆V−
∆V+

≥ 2∆φ−
∆φ− − ∆φ+

, (5.66)

where ∆φ± = ±(φT − φ±) and ∆V± = VT − V±, the bounce action is

B(1) =
32π2

3

1 + c
(√

1 + c− 1
)4

∆φ4
+

∆V+
, (5.67)
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where c = ∆V−∆φ+

∆V+∆φ−
. If the inequality is not satisfied, the bounce action is

B(2) =
1

96
π2λ2

+R
3
T

(

−β3
+ + 3cβ2

+β− + 3cβ+β
2
− − c2β3

−
)

, (5.68)

where λ± = ∆V±/∆φ±, β± =
√

8∆φ±/λ± and RT = 1
2

(

β2
++cβ2

−

cβ−−β+

)

. In

our case we have ∆V+ = h2µ4N , ∆V− = h2µ4NF , ∆φ+ = µ and ∆φ− =

µ/hǫ
NF−3N

NF−N . The condition (5.66) can, for small ǫ, be simplified to
√

NF
N

≥
2. Since we only know that NF > 3NC we have to compute both bounce
actions. These turn out to be

B(1) =
512π2N3

3N4
Fh

6ǫ
4
NF−3N

NF−N

and B(2) =
2π2

3h6ǫ
4
NF−3N

NF−N

3
√
N −√

NF
(√

NF −
√
N
)3 . (5.69)

Although these quantities differ with some numerical factor, they are

both proportional to 1/ǫ
4
NF−3N

NF−N . This means that the tunneling probabil-

ity goes as Exp

(

−A
/

ǫ
4
NF−3N

NF−N

)

for some constant A. The metastable

vacuum can hence be made arbitrarily long lived by choosing a sufficiently
small ǫ.



6
Conclusions

In Chapter 3 we discussed spontaneous supersymmetry breaking and
some of the phenomenological difficulties tied to it. In particular, we
discussed the way the absence of a spontaneously broken R-symmetry
generically signals the existence of a supersymmetric vacuum. Given
that massive SQCD does not have an anomaly free R-symmetry (not
to mention the fact that it has a non zero Witten index), it is not, at
least at first glance, an attractive candidate for supersymmetry breaking.
However, using the dual theory we showed that, in addition to the super-
symmetric vacua, the theory has a parametrically long-lived metastable
supersymmetry breaking vacuum.

This clearly opens the door to a new family of supersymmetric gauge
theories. In fact, in [26] Intriligator et. al. argue that metastable su-
persymmetry breaking is inevitable. The argument can be summarized
by the following. If gravitational effects are not sufficient to give the
R-axion a sufficiently big mass, a small explicit R-symmetry breaking
term of order ǫ has to be added to the superpotential. Since such terms
tend to restore supersymmetry for field strengthes proportional to ǫ−1,
the supersymmetry breaking state is now only metastable at best. This
would indeed be an intriguing development.

Does this way of breaking supersymmetry solve the phenomenological
problems associated with the R-symmetry? Because no R-symmetry is
broken, there are no R-axions. Are then some gauginos forced to be
massless? Since the gauge degrees of freedom are integrated out, there
are no gauginos for which the mass problem can occur. The situation
is therefore rather similar to the basic O’Raifeartaigh model, which to
one loop did not have neither R-axions nor gauginos. Nevertheless, the
metastable supersymmetry breaking theory has the advantage that the

69
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R-symmetry is anomalous. If further gauge symmetries are introduced,
we might therefore be in a better situation with regard to the gaugino
masses.

This method is used in certain types of supersymmetry breaking. In
supersymmetry breaking by direct mediation the theory has one super-
symmetry breaking sector and one sector corresponding to the minimal
supersymmetric standard model. A subgroup of the global symmetry
group of the supersymmetry breaking sector is then gauged and identi-
fied with (a subgroup of) the standard model gauge group. It would very
interesting to study this further. Another interesting topic to study is
whether the metastable vacuum is favored in the early rapidly expanding
universe [27, 28, 29].

It should be stressed that the model studied in this thesis is just
a toy model and that a great deal of work is needed in order to (pos-
sibly) construct a phenomenologically acceptable model. Nevertheless,
metastable supersymmetry breaking offers a new much needed method
of spontaneous supersymmetry breaking.
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