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Abstract
In the range of detectable sounds inside a car coupe interior noise and vibration
induced by the A/C system is present. As engines become more efficient and hybrid
cars more common this source gets more prominent. The current study has inves-
tigated unwanted resonance in the A/C-system. Previous studies has shown that
the noise inside the coupe correlates to measured vibrations at the end of the A/C
system. Based on these studies a section for the vibration the transfer path, between
the compressor and the thermal expansion valve, was considered during this project.
The objective of the study was to numerically simulate the structural vibration be-
havior in the structure. To do so a FE model was built, validated and calibrated to
experimental data obtained from modal analysis on the physical system. The pro-
cedure of testing with methods of both pre-test planning and post analysis of the
measurement is presented. FE modelling was done in ANSA and a normal modes
analysis was conducted using Nastran. Post processing of test results was done in
Matlab. Validation of results obtained from numerical simulation and experimental
modal analysis was performed. The percental deviation between the correspond-
ing eigenfrequencies were calculated and the eigenmodes were evaluated using the
modal assurance criterion. A parametrization of the FE model was performed for
material- and part properties. The model was then calibrated, using FEMcali, to fit
better to the experimental test data. The results showed that the numerical model
could predict the eigenmodes with better accuracy after the calibration. Numerical
results had a mean deviation to the test of less than ten percent for eigenmodes
below 500 Hz.
Finally, an investigation was conducted on how two different added mounting points
to the car chassis could influence the resonance in the system. The methodology of
correlating numerical results to physical testing introduces sources of error during
the validation process and the signification of performing it in an iterative manner
is discussed.

Keywords: Nastran, Normal Modes Analysis, ANSA, FE modelling, LMS, Experi-
mental modal analysis, Modal Assurance Criterion, FEMcali.
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En undersökning av strukturdynamiken i ett fordons A/C-system
Examensarbete inom Tillämpad Mekanik
MÅRTEN AGNESSON, NIKLAS KARLSSON
Institutionen för Tillämpad Mekanik
Avdelningen för Dynamik
Chalmers Tekniska Högskola

Sammanfatnning
Till de detekterbara ljud och vibrationer i ett förarutrymme hör de som inducer-
ats av A/C-systemet. Allt eftersom motorer blir mer effektiva och hybridmotorer
allt vanligare leder det till att denna källa är mer framträdande. Den aktuella stu-
dien kommer att undersöka en oönskad ressonans med ursprung från A/C:n som
detekterats i coupén. Tidigare studier har visat att detta oljud är korrelerat till
uppmätta vibrationer vid änden av A/C-systemet. Baserat på dessa studier har en
del av systemet mellan kompressor och TXV undersökts i detta projekt. Syftet med
studien var att numeriskt simulera det strukturella vibrationsbeteendet i systemet.
För att göra detta byggdes en FE modell som validerades och kalibrerades mot
resultat från en fysisk modalanalys på systemet. Proceduren för testningen med
de metoder som använts i både testplanering och efteranalys av mätningen pre-
senteras. FE-modelleringen gjordes i ANSA och en egenmodsanalys genomfördes
i Nastran. Bearbetning av testresultat från testning gjordes i Matlab. Validering
av resultat från numerisk simulering och experimentell modalanalys utfördes och
den procentuella avvikelsen mellan motsvarande egenfrekvenser beräknades. En
parametrisering av FE modellen gjordes där material- och komponentegenskaper
parametriserades. Modellen kalibrerades med hjälp av FEMcali i Matlab för att bät-
tre korrelera med de experimentella testdata. Resultaten visade att den numeriska
modellen kunde förutse egenmoder med bättre noggrannhet efter kalibreringen. Nu-
meriska resultat hade en genomsnittlig avvikelse mot test på mindre än tio procent,
för egenmoder under 500 Hz.
Slutligen genomfördes en undersökning av hur två olika sätt att ytterligare fästa
strukturen i chassit hade en inverkan på egenmoderna. Metodiken att korrelera nu-
meriska resultat med fysiska tester introducerar felkällor under valideringsprocessen
och innebörden av att utföra arbetet i en iterativ process dras som slutsatser.

Nyckelord: Nastran, Egenmodsanalys, ANSA, FE modellering, LMS, Experimentell
modal analys, Modal Assurance Criterion, FEMcali.
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1
Introduction

1.1 Background

In the modern automotive industry car engines become more and more efficient
at the same time as hybrid and fully electrical cars become common. Therefore a
change in car dynamics is a fact. Large and loud engines are not any longer desired
in today’s cars. Less noise and vibrations are emitted from the engine room which
makes the driver comfort, in terms of coupe environment, more sensitive to other
sources of noise and vibration. This is an important aspect to cope with in the
competitive market among premium range car developers.
Volvo Cars Group (VCG) is a Swedish car manufacturer with its headquarter in
Gothenburg. Since 1927 VCG has designed and manufactured automobiles with
high standards. With a new line of cars VCG has taken a step into the premium
segment and need to seriously address the problem. Safety and comfort have been
key factors behind their success during these decades which have set high demands
on the product. Large resources within research and development are spent on
passenger comfort.
Due to less sources and lower overall noise inside the coupe other sounds/noise be-
come more prominent. One of these sources that transmits vibrations into the coupe
is the air condition (A/C) system. From past investigations consisting of experimen-
tal testings a tonal dissonance is detected in the interior sound spectra origin from
the A/C system. From subjective ratings of the interior sound environment this
dissonance is interfering with the engine induced sounds in an unfavorable manner.
Serious work of physical testing and experiments has been conducted in order to
find the origin of the dissonance.
However, the solution has not been transferable between different car models. The
complexity of the system in terms of interaction of structural and fluid dynamics
make the problem hard to analyze by experiments. Also the fact that sounds/noise
is of subjective character adds to the request to find reliable and repeatable data
when analyzing the problem. Not yet has any numerical model of the system been
created and used to numerically simulate the case.

1



1. Introduction

1.2 Structural Vibrations in an Automotive A/C
System

An automotive A/C system operates to change the condition of the air inside the
coupe by regulating the temperature, humidity and the air flow. The refrigeration
cycle contains different stages where several thermodynamic processes take place.
Both fluid-, thermal- and structural dynamics is to be considered during the process.
The A/C that is mounted into a Volvo XC90 can be seen in Figure 1.1. The
compressor is belt-driven by the engine and compresses the refrigerant fluid. The
fluid is transferred trough, at first, a braided rubber hose (2) and further through
one of the two aluminum pipes. At the middle of the aluminum pipe system (4)
the two pipes interact with each other in purpose of heat exchange. Refrigerant gas
flowing from the compressor to the thermal expansion valve (TXV) (5) is flowing
in the pipe covering the one that is bringing cold liquid back to the cooling unit
(not present in Figure 1.1) through the low pressure hose (7). A correlation between
measured vibrations at the TXV and experienced noise inside the coupe have been
found during pre-studies.

Figure 1.1: The complete A/C system.

1.2.1 Noise
The origin of the problem itself can be described as a undesired sound inside the
coupe which is caused by vibrations inside the A/C system. Results from previous
work and experiments a tonal dissonance origin from the A/C system is perceived
as a noise inside the driver compartment. When discussing noise it is important to
notice that it is a subjective measure. The sound transmitted from the A/C system is
by automotive standards not to a desired sound in the coupe. The measurements in
the coupe have shown an unwanted concurrence between the engine and compressor
induced vibrations. Engine induced vibrations are to some extent defined as wanted
and the compressor induced are defined as undesired noise.
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1.2.2 Compressor orders
Tests and experiments of interior sound levels has shown a relation between com-
pressor orders and high resonances in the coupe. A tonal noise follows the orders
of vibration created by the compressor. These orders are related to the mechanism
of the compressor and its corresponding forces and moments. Unbalanced forces
corresponding to the movements of the pistons and the geometrical arrangement of
them relates to the vibrating frequency the compressor emits [1]. In this case where
a six cylinder compressor is used the result is 6 strokes per revolution, thus of order
6. Every order is related to the compressor’s shaft rate of revolution. Also, from
theory[1] the frequency at which rate of revolution the order six is occurring can be
calculated by Equation (1.1).

RPM rev

minute
× 1 minute

60 seconds × 1.54× 6 = 0.154 [Hz] (1.1)

Equation 1.1 calculates the frequency from rotating the compressor at different
revs per minute (RPM) on the engine. A gearing factor of 1.54 is introduced in
the equation and is multiplied to the engine rate of revolution in order to get the
rotating speed of the compressor. Different rotating frequencies at different RPM’s
is presented in Table 1.1.

Engine RPM Order 6 (Hz)
1000 154
1500 231
2000 308
2500 385
3000 462

Table 1.1: Engine RPM and corresponding frequency order.

1.2.3 Transfer path
Given that the compressor and evaporator are components in the A/C system not
to be modified the parts and structures adjustable are the parts connecting them
two together. These are the focus of this study. As mentioned before the compressor
should be considered as the input and the evaporator as the output of a transfer
path of vibrations. Also, to conclude from the previously mentioned discussion of
sounds/noise the problem is that vibrations created by the compressor are trans-
ferred through the system into the coupe. An undesirable interaction between the
compressor and the pipes and hoses occurs which results in resonance in the sys-
tem. An ideal case would be a system that does not let any vibrations through
to the evaporator, hence no sound/noise from the compressor would be present in
the coupe. However, not all frequencies nor magnitudes of vibrations are perceived
which permits some vibrations through. At first only frequencies laying in the hear-
ing range need to be considered and secondly only sound of magnitude great enough
to be detected by a human. From the experiments where the sound levels in the
coupe has been measured it can also be seen that vibrations at certain frequencies
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have much higher amplitude than others. Conclusions that have been drawn are
that the vibration transfer path either have a positive or negative impact on the vi-
brations. Hence, resonance occurs in the system. Either the system damps a certain
frequency or it forces the system to oscillate with greater amplitude. The ultimate
goal is to investigate in what manner the transfer path influences frequencies that
origin from the compressor and transfers into the coupe. Resonances created in the
pipes needs to be detected and a work method of how to investigate this phenomena
will be conducted in this project. Modifying the A/C system and performing a full
scale interior sound test is a time consuming and complex work, thus being able to
numerically test and analyze the system would be beneficial in many ways. Having
a source of validated numerical results will permit a higher complexity of analysis
performed on the system. The cost of performing analysis on the system is much
lower when performing numerical simulations compared to physical experiments.
Also the time required to conduct such a test is far less by numerical analysis.

1.3 Strategy to Investigate a Structural Vibration
Behavior

The work of studying a structural dynamics behavior in a complex system is a wide
definition consisting of a large range of aspects. As mentioned in the background
previous work has been put into by physical testing trying to collect supporting data
to point towards problems in different A/C system configurations. This effort has
not yet resulted in a method to locate the origin of the problem in a reliable and
repeatable manner. The purpose of this thesis is to study the structural vibrations
in a particular A/C pipe through experimental and numerical analyses in order to
develop a model-based approach to evaluate the transfer path of vibrations. The
final goal is to evaluate how further work to reduce noise and vibration induced by
the system should be conducted.
In terms of understanding the specific character of the problem an extended ap-
proach is to consider the task as an ‘Eigenvalue Problem’. This is due to the fact
that the solutions are uniquely defined by a set of system configurations such as res-
onance and damping. A central part in this project is to find a way to numerically
simulate the behavior of the structural system. Thereby, an important part during
the project will be to perform ‘Modal Testing’ on the system in order to experimen-
tally map the dynamic behaviour of the system. This method of characterization
of structural vibrations through physical testing and measurements is a way to de-
termine mode shapes (eigenvectors) and eigenvalues of the system. If being able to
successfully perform modal testing on a physical system the resulting eigenvalues
and eigenvectors should function as target values for numerical simulations.
It is assumed that the system is linear while performing modal testing and ana-
lyzing the problem by numerical simulations. Thereby, only the parts between the
connection block and the TXV is to be considered in this project, see Figure 1.2.
The rubber hose does not show a linear behaviour in the pre-studies performed
and is therefore discarded in the following analysis, the pre-studies are presented in
Appendix A.
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Low pressure pipe

High pressure pipe

Connection block

Bracket

Heat exchanger

TXVTXV block

Figure 1.2: Point and section of low pressure pipe attached to chassis.

To ensure that the numerical analysis of the system is reliable and corresponds to
the real case a validation of the model should take place. Thereby, the work of
modal testing is an essential part in the validation process to ensure that a reliable
source of normal frequencies and modes are compared with the numerical results.
Hence, a validated FE model will be constructed. Results from these simulations as
frequency response functions (FRFs), a quantitative measure of output in response
to the defined input, will be analyzed. A schematic visualisation over the FRF
concept can be seen in Figure 1.3.

Figure 1.3: FRF calculation

The numerical analysis will be performed in MSC Nastran1 where a Normal Mode
Analysis (SOL103) will be performed in order to extract eigenfrequencies and eigen-
vectors from the FE model. As for the testing the frequency responses will be cap-
tured in a vibration test. The response can then be used for calculating resonance
frequencies and their corresponding mode shapes. The system will be freely sup-
ported meaning that it will be hanging in very flexible strings that give supporting
resonance frequencies below 5 Hz.

1Nastran is registered trademark from MSC Software
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2
Theory

In the following sections governing theory behind analysis methods used in the thesis
is introduced with its corresponding equations.

2.1 Normal Modes Analysis
A normal modes analysis is a method to calculate at what frequencies a system
can experience resonance. Each eigenfrequency corresponds to a specific eigenmode
which describes in what deformation pattern the system will move at that frequency.
Eigenfrequencies and eigenmodes are in some structural dynamics theory referred
to as “free vibration” because they are calculated without subjected to any load to
the structure. The eigenfrequencies and eigenmodes are calculated by obtaining the
non-trivial solution for the equation of motion for the system [3].

2.1.1 Equation of motion
The equation of motion can for a damped mechanical system be written as

[M] {q̈(t)}+ [C] {q̇(t)}+ [K] {q(t)} = F(t) (2.1)
where:

M = Mass matrix
C = Damping matrix
K = Stiffness matrix
q̈(t) = Acceleration dependent on time
q̇(t) = Velocity dependent on time
q(t) = Displacement dependent on time
F(t) = Load dependent on time

From the equation of motion the equation for “free vibration” can be written. This
is done by setting the load equal to zero.
In MSC Nastran solver 103 (SOL103) solves the equation for performing a normal
modes analysis. The analysis is performed only for an undamped system and the
equation solved is then

[M] {q̈}+ [K] {q} = 0 (2.2)
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As can be seen the equation is not dependent on time since no force is applied,
neither the damping of the system. Regarding that the damping is disregarded
is important to now since it assumes that the system is completely undamped. In
reality all systems have damping but it is commonly assumed that for linear systems
is very low.
To calculate the eigenvalues and eigenvectors the assumption of a harmonic solution
is introduced [4]:

{x} = {φ}sinωt

By inserting this assumption into Equation (2.2) a new equation is obtained as

(
[K]− ω2

i [M]
)
{φi} = 0 (2.3)

In the equation the non-trivial solution will give the eigenvalues ω2
i and the eigen-

vectors {φi}. From the eigenvalues the eigenfrequencies is calculated according to
(in Hz)

fi =

√
ω2
i

2π (2.4)

2.2 State-Space Modelling
A system identification is a method to build mathematical models of a dynamic
system from experimentally measured data, called a state-space model. By using
an algorithm, N4SID[2], a state space model for measured frequency response can
be developed. The algorithm utilizes both input and output data and the objective
of the method is to identify A, B, C and D-matrices in Equation 2.5 and 2.6 [2].
A state space model (SSM) is a mathematical representation of a physical system
described by a set of first-order differential equations. A general state space repre-
sentation of a linear system is defined by the following equations:

ẋ(t) = [A] x(t) + [B] u(t) + w(t) (2.5)

y(t) = [C] x(t) + [D] u(t) + v(t) (2.6)

where:
• t ∈ R

• x(t) ∈ Rn denotes the state vector
• u(t) ∈ Rm is the input or control
• y(t) ∈ Rp is the output
• A ∈ Rn×n is the dynamic matrix
• B ∈ Rn×m is the input matrix
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• C ∈ Rp×n is the output or sensor matrix
• D ∈ Rp×m is the feedthrough matrix

The model is written in the most usual case called Linear Time-Invariant (LTI
where A, B, C and D-matrices is not dependent on time. In the model w(t) and
v(t) are sources of noise[2].

2.2.1 Modal assurance criterion
When comparing experimental data and numerical results in a validation process
later in this project a modal assurance criterion (MAC), as an indicator, is used. This
analysis relies on the relation of the angle between two corresponding eigenvectors
from experiment and FEA. If the vectors are co-linear, meaning identical similar,
the angle between them should be 0◦ (or 180◦). The MAC is calculated according
to Equation (2.7).

MAC(i, j) =

((
ρXi
)T (

ρAj
))

(
|ρXi ||ρAj |

)2 (2.7)

In which:
• ρXi is the i-th experimentally obtained mode shape
• ρAj is the j-th predicted mode shape from FEA

The numerical value from Equation (2.7) is a scalar between zero (0) and one (1).
If the input vectors are co-linear the value is 1 which equals fully correlated. If they
are orthogonal to each other, meaning fully un-correlated, the MAC number is 0.
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3
Methods

The overall methodology used in this project can be divided into five sections; Finite
Element Modelling, Experimental Testing, Validation, Calibration and Application
of Model. They are performed in the same sequence as they are introduced in this
chapter and are highly dependent on each other.

3.1 Finite Element Modelling
The first part of the project was to build and develop a finite element model (FE
model) of the system. The purpose of having a FE model is to numerically simulate,
using the finite element method (FEM), the system behaviour and in a repeatable
and time effective manner elaborate with different system configurations. The mod-
elling work was performed in ANSA1, a pre-processing software. As described in
Section 2.1.1 the Nastran solver 103 was used to calculate the eigenfrequencies and
eigenvectors and the solution was later post-processed in META2.
When modelling a FE model one has to carefully consider the intention of the. For
dynamic simulations some modeling actions to consider in order to reduce mod-
elling errors can be found in MSC Nastran’s Dynamic Analysis Manual [4]. These
suggestions are:

• Use beams and plates instead of solids.
• Use RBE2 and RBE3 where they will simplify the model.
• Simplify modellings offsets and local modelling details.
• Ignore minor discontinuities such as small holes and fillets.

These are just some suggestions, please refer to the manual for a complete overview.

3.1.1 Geometry
The geometry of the system was provided by VCG. The CAD geometries were given
in IGES files (.igs) and the parts included were; connector block, steel bracket, pipe
system, TXV block and the TXV, see Figure 1.2. In order to create a FE model
where these parts are merged together the geometry was modified. Due to the
complexity of the system with small detailed parts and features the geometry was
also simplified to some extent. The goal of the geometry modification work was to

1ANSA is registered trademark from BETA CAE Systems
2META is registered trademark from BETA CAE Systems
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achieve a model manageable to apply a mesh to without considerably changing the
structure. In order to build an efficient FE model a well defined foundation (the
geometry) of the system had to be created. Evaluating the geometry need to be
done considering both the real mechanical system and the theory and practice of
FEM.
If the CAD geometry provided is a replica of the real system every change will affect
the mechanical behavior of the system. More specifically an increase of mass of
the system will give lower eigenfrequencies and higher stiffness in the system will
increase the eigenfrequencies. Thus, every change need to be carefully considered
in order to achieve a FE model that fulfills the objectives to simulate the dynamic
behavior. Also important to consider is the purpose of the work, furthermore the
simulations that are intended to be conducted. As previously stated the simulation
intention in this project is to investigate the structural dynamics of the system and
to perform an eigenvalue analysis. The system will not be subjected to any loads
were the mechanical response should be evaluated. Hence, the volume and weight
of the structure plays a more significant role than a very precise specification of its
geometry.

3.1.2 Materials

The structure mainly consists of parts made by aluminum. The pipes, connections
blocks and the TXV are all of aluminum. The only part not made by aluminum is
the bracket which is made of steel. The material properties used in the FE model
can be seen in Table 3.1.

Material E [MPa] v [−] Density [ton/mm3]
Alu EN AW 3103 69 500 0.3365 2.73E-09
Alu EN AW 6082 70 000 0.3462 2.71E-09
Steel N10130 210 000 0.3 7.85E-09

Table 3.1: Mechanical properties of the materials.

3.1.3 Short evaluation of different FE elements

To see how different FE elements affected the dynamical behavior of a structure
by a normal modes analysis a simple study was performed. A simple geometry
describing a large plate with thickness 1 mm was created and different types of
elements was applied to it. The elements 1st and 2nd order Tria, Quad, Tetra and
Hexa elements were evaluated. The model was analyzed through a normal modes
analysis in Nastran and the resulting eigenfrequencies was extracted, see Table 3.2.
The eigenfrequencies are given in Hertz (Hz) and the first 6 eigenfrequencies were
rigid body motion (rbm) and is therefore not presented.
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Mode Quad 1st Quad 2nd Tria 1st Tria 2nd Tetra 1st Tetra 2nd
1-6 rbm rbm rbm rbm rbm rbm
7 820 820 821 838 1675 846
8 1206 1213 1208 1217 2184 1266
9 1493 1500 1495 1504 2587 1546
10 2096 2107 2105 2105 3858 2229

Table 3.2: Eigenfrequencies for different meshing elements on a simple structure.

In the study it was shown that 1st order tetras produced much higher eigenvalues
compared to the other mesh elements which is due to their lack of some degrees-
of-freedom. A 1st order solid tetra element has four (4) nodes where a 2nd order
tetra element has ten (10) nodes. This results in a too stiff solution for 1st order
elements. It was decided not to use 1st order tetra elements but instead only use
2nd order elements.

3.1.4 Meshing of the structure
Also, the geometry needs to be evaluated to the intended analysis before applying
a mesh. A fairly good estimation of how the structure will behave is sufficient to
obtain prior to applying a mesh of finite elements. Different parts in the geometry
have certain characteristics that need to be addressed with specific meshing types
and techniques. Regarding what type of elements that should be used where in the
geometry the structure can be in a first step divided into two main groups, solid and
thin-walled parts. Connection blocks and the TXV are parts defined as solid while
the pipes and the bracket are defined as thin parts. Solid elements were applied to
the solid parts and shell elements to the thin parts. Dynamic analysis with solids will
produce stiffer results for thin structures, especially for 1st order elements. By using
2nd order solids more degrees of freedom are introduced, however the computational
time will increase.
The mesh was created using the batch mesh tool in ANSA. The parameters used for
creating the mesh can be seen in Table 3.3 and 3.4. For holes special requirements
were set on number of nodes to obtain smooth surfaces.

Table 3.3: Shell mesh parameters.

Shell elements Value
Meshing method General

Elements Quad
Order 1st order

Target length 2.5 mm
Minimum target length 2 mm
Maximum target length 6 mm

Distortion distance 20 %
Distortion angle 0

Table 3.4: Solid mesh parameters.

Solid elements Value
Meshing method Tetra Rapid

Order 2nd order
Maximum growth rate 1.2

NASTRAN max. apsect ratio 4
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3.1.4.1 Shell elements
In the geometry files provided by VCG the pipes were constructed with inner and
outer surfaces, forming a volume geometry. Meshing these with solid elements would
result in very small elements if the aspect ratio critera should not be violated.
Instead, the middle surface between the inner and outer surfaces was created using
the MID. SURFACE function in ANSA. By measuring the thickness of the pipe
and creating the ”mid surface”, shells could be used instead of solids to represent
the pipe.

3.1.4.2 Solid elements
Solid blocks are not well represented with shell elements, mainly due to the impor-
tance to obtain the correct mass. For a complex geometry it is difficult and very
time consuming to model the system with hexa elements where each section has to
be divided into regions to control the creation of the elements. Tetra elements were
chosen due to the benefit that they are easily defined. The main drawback is when
these are introduced to represent thin surfaces. To reduce the drawbacks of using 1st
order elements, 2nd order tetras were used which increases the degrees-of-freedom
from four (4) to ten (10), for each element.
When implementing the 2nd order tetra elements at a surface with relatively strong
curvature compared to the elements size the elements experienced a ”crack” in the
element, due to the extra node. Nastran is not able to account for this and the
analysis was unsuccessful when using such elements. Instead the solids had to be
created with 1st order tetras and later converted to 2nd order. The result from this
can be seen in Figure 3.2. The solids elements with a crack, which aren’t supported
in Nastran, can be seen in Figure 3.1.

Figure 3.1: 2nd order solid elements
with crack.

Figure 3.2: 2nd order solid elements
without crack.

3.1.4.3 Mesh quality criterion
A mesh criterion was added to evaluate the mesh quality. The criterion was obtained
from VCG and was modified with the current settings for element lengths. The
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criterion can be seen in Table 3.5.

Table 3.5: Quality criterion for mesh.

Criteria Shells Solids
Aspect ratio NASTRAN 5 NASTRAN 8
Jacobian NASTRAN 0.7 NASTRAN 0.7
Skewness - ABAQUS 0.1
Min length 1.5 mm 1.5 mm
Max length 6.5 mm 6.5 mm
Min angle quads IDEAS 45◦ -
Max angle quads IDEAS 135◦ -
Min angle trias IDEAS 20◦ -
Max angle trias IDEAS 120◦ -
Min angle quads IDEAS 45◦ -
Mid point deviation % 33.3 33.3
Mid point alignment % 33.3 33.3
Negative volume - PARTIAL
Inclomplete element - Checked

3.1.5 Connections
When assembling the parts in the FE model their connections and constraints should
be applied correctly in order to mimic the mechanical behavior of the system. This
was done in ANSA and when applying connections the intended simulation was
carefully considered. All modelling features requested have to be supported by the
solver in Nastran. In total the system contains seven different parts assembled
together by different methods.

3.1.5.1 RBE2
An effective method to use when connecting two parts is the use of rigid body
elements. One type of a rigid body element used by Nastran is called RBE2 elements.
RBE2 elements are applied between parts and connects nodes to each other. The
usage of RBE2 elements allows for loads to impart between the parts connected
which will simulate a weld rigid joint connection[6]. These connections are used
at several locations in the FE model such as between the bracket, low- and high
pressure pipe and the connection block and at the beginning of the heat exchanger.
When applying the RBE2 with a tolerance value of the distance between the parts
the created elements was set and elements were then created orthogonally to the
surfaces.

3.1.5.2 Bonded intersections
Another method of connection used in the FE model is the method of intersecting
parts. If two or more parts with the same material are connected together and no
relative motion is intended to take place the use of ”intersection” is an easy and
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simple method to use. When solving for modal analysis all loads and motion are
transmitted from one part to the adjacent one, hence it simulates a ”perfect contact”.

3.1.6 Local coordinate system
To be able to easily obtain the normal displacement to the surface local coordinate
system’s had to be created for nodes. The displacements could then be referred
to the local coordinate system instead of the global system. The local coordinate
system’s were created in ANSA and extracted in the Nastran-file. However, ANSA
do not have any way to define a local coordinate system for a set of nodes and
therefore this routine had to be scripted manually, see Appendix E. Scripting in
ANSA is performed in the programming language Python and can be implemented
in the ANSA file to perform actions using existing functions.
The script creates one point in the candidate node chosen and another two in the
nearest node on the surface. Next, the script created a node perpendicular to the
x-axis and the y-axis. The nodes obtained could then be used to create a local
coordinate system, with the z-axis in normal to the surface. This script was looped
for all nodes in a set and in that way created one local coordinate system for every
measurement candidate node.

3.2 Experimental Testing
In order to validate a FE model with the purpose of use of simulation a structural
behaviour it is important to have measured data from the system to compare with.
This is done by experimental testing where the system behaviour is measured during
excitation. Tests are performed when the system is set in motion by a shaker and
the response is measured by several accelerometers placed around the system. The
procedure of the testing is described in this section by in detail present the methods
and equipment used.

3.2.1 Pretest planning
To make a meaningful validation of a FE model it is a necessity to have obtained
test data of good quality. This is an important aspect in the work of validating a
FE model and the test results have to be trusted as a representation of the system’s
behavior. To maintain the desired quality of the results a pretest procedure was
carried out. This procedure had the purpose to evaluate the planned test setup in
order to enable that the results could be made trustworthy and useful in further
analysis. To make sure the information extracted are reliable it is important to
investigate how to measure the response by sensors. In this case accelerometers
were used. Since the occurrence of resonance will be present in the system at some
frequencies an important aspect is not to place accelerometers close to nodal lines of
the corresponding vibrational modes. If that is the case sensors would not measure
any response contribution from that particular eigenmode while the surrounding
structure is in motion.
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3.2.1.1 Method of effective independence

One method that is used for deciding where to place the accelerometers is called
Method of Effective Independence (EFI). A Matlab3 implementation of the efi-
method can be found in Appendix D.2.
Before executing this method a FE model that can be assumed to fairly well predict
the eigenmodes of the system is needed. Since the purpose of the testing is to find
the system’s normal modes the outcome from the FE model prior to this action
is to map the eigenmodes in the system. Successfully mapping the eigenmodes in
the system could be utilized when searching for optimal sensor placement using the
method of EFI. The EFI algorithm suggests an accelerometer placement setting.
The normal modes from a FEA and the number of available sensors are defined as
input to the algorithm. The resulting suggestion of placement can be seen in Figure
3.3.

Figure 3.3: Sensors placement marked by red dots.

When using the EFI algorithm candidate nodes for accelerometer placement are cho-
sen. The nodes are taken at the surface of the system and the normal displacement
is measured in the nodes. In Equation (3.1) the measured displacement response
ys(t), or output, in each candidate node is expressed by the partition of the modal
matrix Ps(t). The modal matrix comes from the FE model and is associated with
the location and direction of the candidate nodes.

ys = Psz(t) + v(t) (3.1)

In the equation v(t) represent the measurement noise and it is assumed that the
system do not have any throughput term Du from the stimuli u to the output ys.
If the measurement noise is assumed to be stationary, a good sensor placement is
obtained when the covariance matrix of the estimation error R ≡ E[(z− ẑ)(z− ẑ)T ]
is minimized. Here z is the system state and the estimate which should be close to
ẑ [2].

3Matlab is a registered trademark from MathWorks
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3.2.2 Test setup
The purpose of the experimental testing as previously described is to obtain the
natural modes of the system. The aim was to obtain a test setup as simple as
possible. Any types of constrains of the system adds up to sources of errors when
trying to capture the physical response. Thereby, the solution used was to have the
structure freely suspended in flexible threads. These threads allowed the system
to swing in frequencies far below the intended frequency spectrum applied by the
shaker. This ensured that the suspension had little influence on the response. The
test setup can be seen in Figure 3.4. The shaker was attached to the connection
block in the direction of where hoses are attached.

Figure 3.4: Test setup with accelerometers and shaker attached.

3.2.2.1 Equipment

Hardware and software used during the testing were provided by VCG. The fun-
damental piece of equipment for vibration testing is the data acquisition system
(DAQ) which is the device that sample the signals from the sensors. These signals
are processed to digital form and can later be further processed in computer soft-
ware. As for both the DAQ and the associated software used in the testing a LMS4

system, developed by Siemens, was used. This system is proven to be a suitable
choice of testing equipment within the field of structure dynamics and NVH and is
widely used at VCG.
The sensor used was a PCBModel 356A32 accelerometer [10], a 3-channel accelerom-
eter that measures vibration in x-, y- and z-axis separately. Ten accelerometers were

4LMS is a registered trademark from Siemens
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used which thus gave 30 response channels. Their frequency range is 1.0 to 4000 Hz
with a sensitivity of 10.2 mV/(m/s2) (±10%).
All accelerometers used had previously been calibrated by the Technical Research
Institute of Sweden (SP) and the sensitivity of each accelerometer was noted on the
corresponding package. The sensitivity was defined in the test settings in LMS for
each accelerometer. However, to make sure an accelerometer was working accurately
they were all checked through a calibration process before attachment. This work
was done in the LMS Test.lab software and a calibration shaker with a constant
frequency (159.2Hz) was used. The sensor was assumed to be in working condition
if the measured value from the calibration did not differ more than (±5%) from the
calibration sensitivity stated by SP. Hence, the sensitivity specified by SP was used
when defining the sensors in the LMS software.
A vibration shaker was used as excitation source in the testing, a LMS Qsources
integral shaker from Siemens [9]. The shaker has a frequency range of 20-2000 Hz
for a random signal.

3.2.3 Test settings
Several setting options in LMS need to be investigated before performing the tests.
It is important to evaluate the settings before the data collection, otherwise severe
mistakes can be made and the test data may contain errors. In the coming sections
some important settings such as resolution, windowing, averaging and overlapping
are described briefly. For a complete overview please refer to the LMS Test.lab
manual [13].

3.2.3.1 System excitation

In the experimental testing the system intended to be analyzed is excited by a force
in purpose to bring the system in motion. Different kinds of excitation techniques
can be used to set a system in motion depending on the structural configuration
and intended purpose. In a experimental vibration test procedure the excitation
method is a central part. The way a system is set in motion is highly influential
on the measured response. The desired motion or response need to be useful and
contain the right information needed when analyzing the system. In this project the
signal used during the testing was a random signal called ’White Noise’. For that
signal a frequency range is set which is then distributed randomly over the signal
cycle. The frequency range for the excitation was set to 20-1000 Hz.
Another excitation signal possible to use is called ’Period Chirp’ that can be used if
the source has difficulty to get energy into the system. When using ’Period Chirp’
the signal is continuously ramped up from the lowest to the highest frequency. At
low frequencies this creates a very powerful movement on the shaker and because
it was only glued on to a flat surface it was concerned that the shaker would fall
of by using this method. By using LMS the user also have the possibility to use,
closely related to ’White Noise’, a signal called ’Pink Noise’. This signal is similar
to ’White Noise’ but with the difference that each period contains the same amount
of energy.

19



3. Methods

It is important that enough energy is inserted into the system such that it will
trigger resonances at all frequencies of interest. The energy is influenced by the
voltage of the signal to the shaker. To evaluate that enough energy was inputted
into the system three different settings on voltage were evaluated:

• Voltage setting 1: 0.5 V
• Voltage setting 2: 1 V
• Voltage setting 3: 2 V

3.2.3.2 Signal processing
In this section some of the basics within signal processing are explained and the used
settings and their affects on the frequency response are discussed. Some settings are
coupled such as changing one will affect another, while some settings can be set
individually.
When performing a test the user can set a wide range of different settings that will
affect the way that the signal is processed. As discussed in Section. 3.2.3.1 the
signal used for exciting the system was a random signal, in the LMS system referred
to as ’White noise’. Another setting for the user to determine was the frequency
resolution of the response. The resolution will determine for how many frequencies
the response will be evaluated. Two different frequency resolutions were tested in
order to determine the optimal choices for the test.

• Resolution 1: 0.125 Hz
• Resolution 2: 0.0625 Hz

Continuing this chapter the frequency resolution, fr, of 0.125 Hz will be used to
describe the other settings.
As mentioned the exciting signal was set to 20-1000 Hz and the sampled frequency
range for the response was 0-1024 Hz. From these settings the number of frequencies
where the response is evaluated, named number of lines, could be calculated as

Number of lines = fNy
fr

= 1024
0.125 = 8192 lines

It is also known that the ”maximal useful frequency is fNy = fs/2”[8] where fNy
represents the Nyquist frequency. Since the maximal frequency sampled is 1024 Hz
the sampling frequency can be calculated as

fs = 2 ∗ fNy = 2 ∗ 1024 = 2048 Hz

Knowing the sampling frequency,fs, and the frequency resolution, fr, the number of
samples could be calculated as [8]

N = fs
fr

= 2048
0.125 = 16384 samples

. This corresponds well with the theory that at least two points are needed to sample
a sinus curve[8]. Since the number of frequency values obtained was 8192 values the
number of sample points need to be the double, 16384.
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3.2.3.3 Averaging
In summary from Section. 3.2.3.2 the sampling is performed on the response rep-
resented in the time domain producing 16384 samples in total. For these samples
a Fast Fourier Transform (FFT) is applied which reveals the frequency content in
the signal. Averaging is used to create smooth responses. It divides the time do-
main signal into blocks where the FFT is performed on each individual block and
the frequency content of each block is then averaged together for a total frequency
response. The block size, also called window size, is measured in seconds and can
be calculated as

T = N

fS
= 16384

2048 = 8 s

In the project two different settings for averaging was evaluated, the number of
averages evaluated was 15 and 30.
The averaging was of the type Linear averaging calculated as

Alinear = 1
N

N∑
i=1

ai (3.2)

3.2.3.4 Windowing and overlapping
When averaging is applied another problem occurs which is interfering with the
assumption of the FFT. Namely, the FFT assumed that the time domain response
is periodic and repeats itself infinitely. This is not the case when using several
blocks where the signal has a frequency content distributed randomly across the
whole measurement. To cope with this problem a method called windowing is used.
The objective of using a window is to get the signal to look the same at the start and
end of each block, otherwise something referred to as ’Spectral leakage’ will occur.
This is where the windowing is used, see Figure 3.5.

Figure 3.5: Time domain signal with applied window.
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In the figure, as it is shown a Hanning window is used in this project which is applied
for every measurement block, thus every 8 s. The window is in the form of a function
which is zero at the beginning and the end of each block. The function is multiplied
with the time domain signal resulting in a zero value at the start and end of the
block, hence creating a signal without discontinuities. However, if the block would
be of zero value at the start and the end the signal data will be lost at those places.
To avoid this a technique called overlapping is used. In Figure 3.6 it can be seen
that the windows are overlapping each other by 20 %, which was also the case in
this project. The overlapping makes sure that the data at the end of one block is
captured at the next coming block.

Figure 3.6: Time domain signal with applied window and 20 % overlap.

3.3 Validation
One of the main goal of this project was to build a FE model with the purpose
of simulating the dynamic behaviour of the system. As discussed in the previous
sections to successfully do so the FEA results need to be trustworthy before trying
to simulate the real behaviour. With trustworthy test data a process of creating a
mathematical representation of the measurements can be made. That can be used
to compare results from the FEA. To characterize the dynamics of the system its
frequency response functions (FRF) are utilized. This functions are representation
of the relationship between the input and the output measured in the physical tests.
Using these functions the behaviour in terms of eigenfrequencies and damping can
be extracted in post-processing. The method of how the experimental data was
transformed into a mathematical representation is described in this section.

3.3.1 System identification
With the objective to compare experimental data with numerical results a mathe-
matical representation of the experimental data is sought for. The method used in
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this project was a system identification method where so called state space models
(SSM) of test response data were created. The objective is to identify the A, B,
C and D-matrices in Equations 2.5 and 2.6. This work was done using the ident-
toolbox in Matlab. Furthermore, the system identification method used by ident is
the N4SID method. This method uses the experimentally measured FRF data when
identifying the SSMs. One SSM representing each FRF corresponding to every sen-
sor was identified. To evaluate the accuracy of the created SSMs each output of the
model was plotted and compared over its corresponding measured FRF. A visual
inspection to evaluate the fit of the representation was performed on every SSM. In
the case of a bad fit the corresponding FRF from the test data was removed and the
process was remade. A poor fit is a result of the system identification method not
being able to find a good representation of the test data. It could also indicate bad
measurements that should be removed. A fundamental quantity of a SSM is the
model order which can be defined when executing the N4SID method. The model
order is related to the number of states of the SSM. The model order is the number
of states of the model, hence how many eigenfrequencies and eigenmodes it has.
By introducing:

x = {φ}e(λt)

where:
{φ} = a vector.
λ = a constant.
Equation (2.5) can be re-written into Equation (3.3).

[A] {φ} = λ{φ} (3.3)
The Equation (3.3) has the non-trivial solution [A] {φ}i − λi{φ}i = 0 and since
[A] is an ns × ns matrix {φ}i are the eigenvectors and λi are the eigenvalues for
(i = 1, 2, ..., ns) for this equation.

3.3.1.1 Creation of state-space model
As previously mentioned the model order corresponding to how many modes a SSM
will identify has to be defined prior to the creation of a SSM. An efficient method to
use is to divide the frequency spectra into several blocks where each block contains
just a few eigenmodes. The advantage of doing so is to be able to define a lower
model order based on an anticipation of how many modes that will participate
strongly in the frequency block. The problem of having several detected modes in
a very small frequency range due to a highly defined model order can thereby be
solved. A block was chosen after a visual inspection of the FRFs. After creating a
state-space model to each block the blocks were joined by the parallel-function in
Matlab. As a final step the C and D were re-estimated by a Matlab-function called
ff2cdest.m, refer to Appendix D.3.

3.3.2 Finite element analysis
To be able to compare numerical results from the finite element analysis (FEA) the
same FRFs as given by the test data need to be produced. Thus, output from the
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FEA needs to correspond to the ones in the tests. To do this the displacements at
the same DOF as the accelerometers measured the response was extracted.

3.3.3 Modal assurance criterion
A modal assurance criterion (MAC) was used when comparing the test results to
the FEA results. The MAC was used to determine the similarity of mode shapes
captured in the physical testing and from the simulated from the FEA. The resulting
mode sets from a normal modes analysis in Nastran are compared to the mode
sets from the experimental modal analysis. Each mode is compared to another
and the MAC number for every comparison is made, this number is a number of
correlation and is between zero (0) and one (1). A MAC number of one means that
the two nodes are identical, if a perfect correlation between experimental modes and
simulated nodes exist then a matrix with diagonal values of one is obtained.

3.4 Calibration of FE model
The last step in the validation process was to use the experimental results and
calibrate the FE model. The purpose of this work is to utilize the results from the
system identification method and tune the FE model and gain a better correlation
between numerical and experimental results. A Matlab application called FEMcali
was used during this process and will be described in this section. The parameters
chosen to calibrate are presented in the end of this section.

3.4.1 FEMcali
The FEMcali application uses a created SSM of the experimental frequency re-
sponses and a parametrized FE model to match magnitude and phase between the
two. The shape of the SSM is the objective and parameterized parameters in the
FE model are tuned in order to get a good correlation of the resulting eigenmodes
and mode shapes.

The user specifies at what place and in what direction the accelerometers has mea-
sured the response to match the correct acceleration in the model to the correct
test data. This is done by extracting the degree-of-freedom (DOF) in the x-, y- and
z-direction of each grid point where an accelerometer was placed in the FE-model.
Also the specific DOF for the actuator is defined in FEMcali. To extract the DOF’s
from the FE model the Matlab-script aset2dofno.m was used, see Appendix D.6.
FEMcali is available at Mathworks which includes an user manual that explains the
settings in detail [11].

The SSMs used in the calibration were the ones which had the best fit to the exper-
imental FRFs, collected by a visual evaluation. A good fit was decided by how well
the SSM can fit to the resonance peaks and anti-resonances in the FRFs.
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3.4.2 Parameters to calibrate

The chosen parameters to parametrize in the FE model are given in Table 3.4.2.
The parameters are chosen as they are thought to influence the mass and stiffness in
the system. Therefore will the calibration process be able to increase and decrease
the eigenfrequecnies of the system.

• Young’s modulus of Alu EN AW 3103.
• Young’s modulus of Alu EN AW 6082.
• Density of Alu EN AW 3103.
• Density of Alu EN AW 6082.
• Low pressure pipe thickness.
• High pressure pipe thickness.
• Heat exchanger pipe thickness.

3.5 Application of FE Model

Finally, a numerical investigation of the system behaviour in its working environ-
ment is to be conducted. After the process of validating and calibrating the FE
model it will be used to produce numerical results of the dynamic behaviour when
mounted inside the engine room. The purpose of this analysis is to collect results
of the structural dynamics behaviour of the system and to study different mounting
arrangements.

3.5.1 Mounting arrangement

When the system is mounted in the engine room it is attached to the chassis by
the steel bracket which is bolted directly to the chassis and by the TXV which is
mounted to the HVAC unit. An investigation of how representative this arrangement
is and if a better solution should be introduced to change the transfer path of the
structural vibrations is done. Specifically a section of the low pressure pipe that
is closely aligned by the chassis covering the suspension is evaluated as a possible
additional mounting point, see Figure 3.7. There an attachment is possible without
interfering with the other structures in the engine room.
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Figure 3.7: The system mounted in a test rig.

Two main attachment solutions were modelled in ANSA and analyzed through a
normal modes analysis in Nastran. The first solution to analyze is to fix a point of
the low pressure pipe to the section of the chassis described previously. The second
solution to the test is to constrain a large section of the low pressure pipe to the
chassis, see Figure 3.8 and 3.9. All attachments to the chassis are modelled as fully
constrained in ANSA, meaning that all DOFs are constrained.

Figure 3.8: Point constraint. Figure 3.9: Section constraint.
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4.1 Numerical Results
The resulting FE model has 29,748 shell elements (1 st order Quads) and 14,196
volume elements (2 nd order Tetras). Which elements used where in the model can
be seen in Figure 4.1.

Figure 4.1: FE model, solid elements (yellow) and shell elements (purple).

The resulting eigenfrequencies from a normal modes analysis, SOL103 in Nastran,
are presented in this section. An evaluation of the sensor placement is conducted
by using the modal assurance criteria (MAC).

4.1.1 Normal modes and eigenfrequencies
From the FE model the non-rigid body eigenfrequencies were extracted, together
with the mode shapes. The first 9 eigenfrequencies from the initial model are shown
in Table 4.1.
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Table 4.1: Values of eigenfrequencies below 200 Hz from the numerical analysis.

Mode Eigenfrequency [Hz]
1 28.4
2 42.2
3 50.9
4 104.2
5 121.1
6 139.8
7 153.4
8 172.1
9 194.6

4.1.2 Sensor placement check
The sensor placement used in both in FEA and in the test set-up was evaluated
by an orthogonality check. To validate whether the number of response collecting
points was of good choice a MAC evaluation of the mode shape set from the FE
model was evaluated against itself. As seen in Figure 4.2 the results of a MAC
evaluation of the mode shapes from FEA shows good correlation, hence only small
off-diagonal elements.

Figure 4.2: Orthogonality check.

The Matlab scripts for creating the MAC plot is found in Appendix D.7 and D.8.
To be able to extract the mode shapes from the FE-model the .pch-files (punch files)
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are read. To do this a Matlab is script used which can be found in Appendix D.5.

4.2 Experimental Test
From the experimental testing acceleration response as function of frequency for
each sensor was extracted. After an individual visual inspection of them a common
trend was found, the response in the lower part of the frequency spectra (0-25 Hz)
showed an unstable behaviour. In that frequency the response was noisy showing an
oscillating behaviour. This was sought to be cause the lowest frequency of excitation
was set and limitted to 20 Hz. Since the response showed a non-linear behaviour it
was disregarded below 25 Hz.

4.2.1 Linearity
Resulting FRFs from tests executed by altered voltage setting in LMS test lab are
used to evaluate the linearity of the system. In Figure 4.3 the sum of all FRFs from
a test with the voltage settings of 0.5V, (red), 1 V (green) and 2 V (blue) is plotted
together.

Figure 4.3: Evaluation of linearity.

The result from evaluating different voltage settings showed that below 2 V the
response showed a non-linear behaviour. It was decided to use a voltage level of 2 V
for the continued testing.

4.2.2 Evaluation of test settings
Different settings was performed for frequency resolution and the number of cycles
for which the frequency response was averaged. To evaluate the impact when using
different settings the sum of FRFs were evaluated at in a frequency range of 25-
200 Hz, see Figure 4.4. In the figure curves represent different settings for averaging
and frequency resolution (voltage is 1 V for all responses):
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• Blue curve: 15 averages, 0.125 Hz frequency resolution.
• Green curve 30 averages, 0.125 Hz frequency resolution.
• Red curve: 15 averages, 0.0625 Hz frequency resolution.

For visual purposes the magnitude of the response have been multiplied with differ-
ent scalars to easier evaluate the difference in response.

Figure 4.4: Evaluation of number of averages and frequency resolution.

The results from using different averages and frequency resolution showed little
difference for the response. The practical difference was that halving the resolution
resulted in twice as long response file while doubling the number of averages doubled
the measuring time. It was decided to use a frequency resolution of 0.125 Hz to
reduce the size of the output file but use 30 averages, resulting in a test time of
≈ 194 s.

4.3 Validation and Calibration
In this section the results from the system identification process where the exper-
imental results were processed are presented. From the system identification the
best fit between numerical and experimental results was found for frequencies be-
low 200 Hz, therefore the frequency range considered in this section is in the range
25-200 Hz. These results are compared with the numerical results before and after
the calibration process. The resulting calibrated FE model parameters are pre-
sented together with a final comparison of numerical and experimental results. The
Matlab-script written to do the validation can be found in Appendix D.1.

4.3.1 System identification
The resulting normal modes was first identified by visually examining the sum of all
frequency response functions, for all 30 channels (sensors), see Figure 4.5.
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Figure 4.5: Sum of all frequency response functions.

The result from the visual observation was 9 existing eigenfrequencies in the fre-
quency interval of 25-200 Hz. To capture all visually found eigenfrequencies a state-
space model was created with the model order of 18, hence capturing 9 eigenfrequen-
cies in the same frequency interval. All frequencies found from the two methods can
be found in Table 4.2.

Table 4.2: Eigenfrequencies identified by visual observation and state-space
modelling.

Mode Visual [Hz] SSM [Hz]
1 ∼ 33 31.7
2 ∼ 42 42.3
3 ∼ 53 53.0
4 ∼ 99 99.0
5 ∼ 130 130.3
6 ∼ 144 144.4
7 ∼ 147 146.6
8 ∼ 177 176.6
9 ∼ 195 194.5

4.3.1.1 State-space models
State-space models (SSM) were created for all channels in the frequency range 25-
200 Hz. The 17 models that gave the best fit were saved and would later be used
for the calibration. State-space model sensor 1 in the x-direction (u1 -> y1) can be
seen in Figure 4.6. The remaining 16 state-space models can be found in Appendix
B.
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As can be seen in the figure there is a small deviation in the test data at 130 Hz, which
also was found when creating the state-space models for all channels (described in
Section. 4.3.1. In creation of the state-space when using the blockwise method it
was set that this peak would be disregarded. This was because the mode shape
correlation showed very low correlation for just that mode and other modes because
got distorted when they were included. In Figure 4.6 the deviation at 130 Hz between
test data and the state-space model is clear. The plot is made using a Matlab-script
that can be found in Appendix D.4.

Figure 4.6: Sensor 1 x-direction.

4.3.2 Calibration

Finally, the process of calibrating the FE model to test results was performed. The
Matlab application FEMcali was used for this purpose, introduced in Section. 3.4.

In the process of tuning FE model parameters the initial nominal parameters pre-
sented in Section. 3.1.2 were used. Six (6) parameterized model parameters together
with their corresponding nominal values and upper and lower limits of calibration
are given in Table 4.3. All parameters were assumed to have a stochastic spread
with an uniform distribution. The frequency range chosen for calibration was set to
25-200 Hz.
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Table 4.3: Calibration parameters.

Parameter Nominal value ± %
Young’s modulus Alu EN AW 3103 69 500 [MPa] 20
Young’s modulus Alu EN AW 6082 70 000 [MPa] 20
Density Alu EN AW 3103 2.73e-9 [ton/mm3] 20
Density Alu EN AW 6082 2.71e-9 [ton/mm3] 20
Low pressure pipe thickness 1.25 [mm] 20
High pressure pipe thickness 1.50 [mm] 20
Heat exchanger pipe thickness 1.00 [mm] 20

The other calibration settings used in FEMcali is stated in Table 4.4.

Table 4.4: Calibration settings.

Setting Value
Latin Hybercube sample realization 100
Max number of iterations for each parameter 100
Number of randomized starts for each parameter 5
Equalization damping level 1 %
Number of frequency steps per half-bandwidth 2.0

The resulting eigenfrequencies from the calibration can be seen in Table 4.5. In the
table the eigenfrequencies from the state-space model are compared to the numerical
results pre- and post calibration, as well as the percental difference.

Table 4.5: Eigenmodes (Hz) of the SSM and FEA pre- and post calibration.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8
SSM 31.7 42.3 52.9 99.1 144.5 146.7 176.6 194.4
PreCal 28.4 42.2 50.9 104.2 121.1 139.8 153.4 172.1
PostCal 31.2 43.2 53.5 106.5 121.8 138.2 158.5 179.9
Diff Pre/SSM 10.48% 0.21% 3.85% 4.89% 16.19% 4.70% 13.14% 11.47%
Diff Post/SSM 1.59% 2.08% 1.11% 6.96% 15.72% 5.83% 10.24% 7.45%

The table shows that the calibrated FE model give a better estimation of all eigen-
frequencies except for mode 4 and 6. The sum of deviation percentage points for
the first 8 modes has decreased from 65.72 % to 50.98 %.

As described in Section 3.3.3 the modal assurance criterion was calculated before
and after the calibration, see Figure 4.7 and 4.8.
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Figure 4.7: MAC before calibration. Figure 4.8: MAC after calibration.

Figuratively the MAC-plots shows a slight improvement for the post calibration
correlation and as comparison the average of the diagonal elements was calculated.
For the first 6 diagonal elements of the MAC the average increased from 0.8380 to
0.8587, before and after the calibraiton.

Finally, in Table 4.6 the calibrated parameters are presented together with percent-
age difference to the nominal values.

Table 4.6: Nominal and calibrated parameters.

Parameter Nominal value Calibrated value Diff %
1. Young’s modulus Alu EN AW 3103 69 500 [MPa] 77 536 [MPa] 11.56 %
2. Young’s modulus Alu EN AW 6082 70 000 [MPa] 64 464 [MPa] -7.91 %
3. Density Alu EN AW 3103 2.73e-9 [ton/mm3] 3.24e-9 [ton/mm3] 18.8 %
4. Density Alu EN AW 6082 2.71e-9 [ton/mm3] 2.46e-9 [ton/mm3] -9.23 %
5. Low pressure pipe thickness 1.25 [mm] 1.20 [mm] -4.00 %
6. High pressure pipe thickness 1.50 [mm] 1.55 [mm] 3.33 %
7. Heat exchanger pipe thickness 1.00 [mm] 1.19 [mm] 19.00 %

The calibration transfer function shows how the response from the nominal and
calibrated FE model has tuned to fit the test model, see Figure 4.9 and 4.10. In
the figures the frequency range of 25-65 Hz is shown which gave the best correlation
between mode shapes.
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Figure 4.9: Sensor 1 x-direction. Figure 4.10: Sensor 1 z-direction.

4.3.3 Validation of calibrated model
When comparing the eigenfrequencies with the SSM and both the nominal and
calibrated FE model in a wider frequency range (0-500 Hz) it could be noted that
the avergae difference (percentual) had decreased from 8.69 % to 7.48 %, see Table
4.7. In the table the 18 (non-rigid body) modes are presented in the frequency
interval.

Table 4.7: A comparison in eigenfrequencies (Hz) between nominal and
calibrated model.

Mode SSM Nominal model Diff % Calibrated model Diff %
1 31.7 28.4 10.57 31.2 1.59
2 42.3 42.2 0.26 43.2 2.08
3 52.9 50.9 3.90 53.5 1.11
4 99.1 104.2 4.81 106.5 6.96
5 144.5 121.1 16.21 121.8 15.72
6 146.7 139.8 4.68 138.2 5.83
7 176.6 153.4 13.16 158.5 10.24
8 194.4 172.1 11.52 179.9 7.45
9 221.6 194.6 12.21 195.9 11.58
10 256.2 217.5 15.12 214.4 16.30
11 304.5 260.0 14.60 265.9 12.68
12 308.6 294.0 4.73 291.8 5.44
13 327.3 298.8 8.70 309.4 5.48
14 367.5 325.1 11.54 332.9 9.40
15 392.4 361.6 7.85 367.8 6.26
16 413.2 378.4 8.42 374.3 9.40
17 436.8 425.7 2.54 435.2 0.36
18 443.7 470.2 5.63 475.6 6.71

35



4. Results

4.4 Normal Modes Analysis of Mounted System
Numerical results from simulations of the calibrated and final validated FE model
with boundary conditions for the mounted system will be presented in this section.
The extracted eigenfrequencies from a normal modes analysis can be seen in Table
4.8. The current mounting arrangement is to have the system attached to the chassis
by a bolted connection at the bracket and having the TXV mounted onto the HVAC.
The other two mounting configurations are presented in 3.5.1.

Table 4.8: Eigenfrequencies below 500 Hz of system with different mounting
arrangements.

Mode Current [Hz] Point [Hz] Section [Hz]
1 32.6 60.7 76.4
2 54.1 93.8 119.2
3 60.4 118.9 141
4 92.9 170.3 212.8
5 118.2 212.3 248.7
6 133.5 251.5 259.3
7 173.1 257 268.3
8 213.1 267.3 298.5
9 263.2 286.7 304.2
10 275.1 315.2 343.5
11 292.9 344.6 372
12 298.9 371.3 418
13 324.1 414.7 463.5
14 371.8 478.6 495.3
15 405.7
16 452.8
17 496.1
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Conclusion and Discussion

5.1 Conclusions
A validated and calibrated FE model of a part in a Volvo XC90’s A/C system have
been created. The model simulates the structural dynamics behaviour fairly well
in a frequency range of 25-500 Hz. A numerical investigation of different mounting
configurations has been conducted by using the model.

The numerical simulations predicts eigenfrequencies up to 500 Hz corresponding to
the test results quite accurately. Comparing the mode shapes does not show just as
good similarity for frequencies above 100 Hz, however the three first mode shapes
from the FEA mimic the test data very well. Poorer numerical results of higher
modes indicate poor interface modelling between the parts in the model.

5.1.1 Linearity
From the test results performed with different voltage settings the difference in
response amplitude between the three indicates how the input energy correlates to
the system response. The lowest voltage setting used was 0.5 V and from Figure 4.3
it is seen that the FRF corresponding to 0.5 V indicates a noisy response for low
frequencies. The conclusion from this observation is that not enough energy was
inserted into the system. Comparing the graphs corresponding to voltage 1 V and
2 V the response amplitudes are alike, hence the system behaves linearly. At last,
2 V shows the most steady response and was the setting used during the final test.

5.1.2 Evaluation of test settings
The set-up used for the experimental testing can be evaluated in terms of number
of averages and resolution. As could be seen in Section 4.2.2 the behaviour of the
frequency response functions did not change substantially.

As for averaging it could be seen in Figure 4.4 that when increasing the number of
averages from 15 to 30 the response functions became slightly smoother in the lower
frequency regions while at the higher (above 70 Hz) no difference could be seen. It
was concluded that using an averaging of 15 was sufficient enough to capture the
behaviour at the complete frequency spectra.

The resolution was also evaluated by comparing results of 0.125 Hz steps with
0.0625 Hz steps. It could be seen that at frequency response peaks and at anti-
resonances the response was more clearly indicated by having a lower resolution.
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However, when it came to evaluation the system’s eigenfrequencies, no difference
were seen. The conclusion was that a resolution of 0.125 Hz well enough captured
the frequency response in the system.

5.1.3 Mounted system
When adding an additional fixation point to the mounting of the system it becomes
remarkable more stiff, hence increasing the eigenfrequencies. Comparing the two
methods of fixing the system to the chassis it is seen that to use a wider area of
fixation the eigenmodes become higher and fewer in a frequency range up 900 Hz.

5.2 Discussion
A preferable starting point of a project as the one presented would be to posses a
verified FE model. Modelling and working with a FE model is an iterative process
and to achieve a fully functioning model is very time consuming. This was not
the case in this project where a model was created from scratch. Due to the time
constraints of the project the initial model was used during the pre-test planning and
the first validation process. Not having a verified model as initial source of numerical
results of the dynamic behaviour could and probably will set the validation and
calibration process in the wrong direction.

5.2.1 FE model geometry
During the process of the FE modelling the geometry was simplified to some manner.
The main reason to do so was to obtain a geometric description with easy means that
was sufficiently accurate to give a proper FE mesh. However the small changes in the
geometry has to addressed as a source of errors. The implication of simplifications
is not evaluated. One consequence of simplifying the geometry is that the mass of
the system could change which would affect the dynamic behaviour.

5.2.2 Sensor placement
A learning outcome from the project is to map the sensor locations in the FE
model with caution. When defining and applying local coordinate systems in the
FE model the mapping of axis would even with the slightest difference from the
accelerometer’s have an impact on the resulting mode shapes. This sensitivity has
introduced a source of error in the validation process. What should be considered
with caution is the difficulty to apply a coordinate system on a circular surface that
will correspond to the test setup. If the surface had been flat the sensor location
in the FE model compared to test would have smaller impact and the sensitivity
should be smaller.

5.2.3 System identification
During the system identification process a visual observation method was utilized
to ease the process. The result was that some identified frequencies from the initial
state-space model was rejected due to judgement based on plausibility. Hence, no
substantial evaluation process was conducted.
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5.2.4 Parametrization
The calibration of the model resulted in a change of both eigenfrequencies and mode
shapes representing a better fit to the experimental results. However, the calibrated
parameters 3 and 7 were changed almost to their limit of ±20% which indicates
an insufficient choice of parametrization parameters. An evaluation of the choice of
parameters to calibrate the model would be preferable.

5.3 Proposal of Future Work
The work methodology with corresponding results and conclusions presented in this
thesis has demonstrated a successful way of obtaining a validated FE model cali-
brated to experimentally collected data. Future work should be spent on further
development and refinements on the FE model with the objective to obtain more cor-
rect initial results of the dynamical behaviour. When this work is done the project
it self could be extended to also cover the real behaviour during working condition
of mounted inside the engine room.

5.3.1 Extension of the system and analysis
As an extension to the problem considered in this project the system could be ex-
tended. More components belonging to the whole A/C system mounted in a Volvo
XC90 could be conducted in future work. As for example the transfer path between
the compressor and TXV should be completed by adding the rubber hose. Also a
’Direct transient response’ analysis (solver 109)[5] should be conducted where the
time varying compressor load could be defined as input to numerical analysis.

Additionally, to simulate and mimic the real behaviour during working condition
the system has to be analyzed with internal pressure and pulsations created by the
compressor. Also the acoustics around the pipes that could affect also the structural
behaviour should be modelled for.

5.3.1.1 Change of Nastran solver
As stated in Section 2.1.1 the solution method for extracting natural frequencies
(solver 103) do not take damping into account. Nastran offers more alternatives for
simulating dynamical behaviour, one is ’Modal Complex Analysis’ (solver 111)[5].
In solver 111 it is possible to define damping as a tabular function of natural fre-
quency. However, the natural frequency values will still not consider the damping
and the effect is only taken into account in the calculation of the response (dis-
placement, acceleration, velocity). Another possibility is to use a so called ’Direct
complex eigenvalues’ analysis (solver 107)[5] where structural damping can be used
to dampening modes.

5.3.2 Mounting of system
Further analysis and experiments on different mounting solutions of the system
should be performed. A survey of existing mounting solutions of other engine compo-
nents should be performed to study already existing vibration dampening solutions
before conducting a wider evaluation.

39



5. Conclusion and Discussion

40



Bibliography

[1] Taylor, C.F. (1985) The Internal Combustion Engine in Theory and Practice.
Camebridge: MIT Press.

[2] Abrahamsson, T. (2012) Calibration and Validation of Structural Dynamics
Models. Göteborg: Chalmers University of Technology.

[3] Craig, R.R., Kurdila, A. (2011) Fundamentals of Structural Dynamics, 2nd edn.
Hoboken: John Wiley & Sons.

[4] MSC Nastran (2014). MSC Nastran 2014 Dynamics Analysis User’s Guide.
http://www.mscsoftware.com/ Jan 21 (2017)

[5] MSC Nastran (2016).MSC Nastran 2016 Quick Reference Guide.
http://www.mscsoftware.com/ Jan 21 (2017)

[6] MSC Nastran (2016) Reference Manual. http://www.mscsoftware.com/ Jan 21
(2017)

[7] Brandt, A. (2011) Noise and Vibration Analysis: Signal Analysis and Experi-
mental Procedures. [Electronic]. Hoboken: John Wiley & Sons.

[8] Heinzel, G., Rüdiger, A., & Schilling, R. (2002). Spectrum and spec-
tral density estimation by the Discrete Fourier transform (DFT), including
a comprehensive list of window functions and some new at-top windows.
http://hdl.handle.net/11858/00-001M-0000-0013-557A-5

[9] Integral Shaker. http://www.plm.automation.siemens.com/se_se/ (12 Jan.
2017)

[10] Test accelerometers. http://www.pcb.com (12 Jan. 2017)
[11] FEMcali application. https://se.mathworks.com/ (17 Jan. 2017)
[12] LMS Test.Lab Throughput Processing Tips.

http://www.plm.automation.siemens.com/se_se/ (20 Jan. 2017)
[13] LMS Test.Lab Manual. http://www.plm.automation.siemens.com/se_se/ (20

Jan. 2017)

41



Bibliography

42



A
Rubber hose response

Frequency response function for three channels on the rubbe hose subjected to a
vibration test. In Figure A.4 a state-space model has been created for one of the
frequency responses. The blue curve has model order 36, the green curve has model
order 50 and the red curve has model order 58. All curves create a fit lower than
70 %.

Figure A.1: Sensor 1 x-direction. Figure A.2: Sensor 1 y-direction.

Figure A.3: Sensor 1 z-direction. Figure A.4: State-space model for
sensor 1 x-direction.
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B
State-space models

The 16 best state-space models are shown in this Appendix. They are 17 in total,
1 is given in Section 3.4.

Figure B.1: Sensor 1 y-direction. Figure B.2: Sensor 1 z-direction.

Figure B.3: Sensor 2 y-direction. Figure B.4: Sensor 4 x-direction.
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Figure B.5: Sensor 4 y-direction. Figure B.6: Sensor 5 x-direction.

Figure B.7: Sensor 5 y-direction. Figure B.8: Sensor 5 z-direction.

Figure B.9: Sensor 6 x-direction. Figure B.10: Sensor 6 z-direction.
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B. State-space models

Figure B.11: Sensor 7 x-direction. Figure B.12: Sensor 7 y-direction.

Figure B.13: Sensor 8 x-direction. Figure B.14: Sensor 8 z-direction.

Figure B.15: Sensor 9 x-direction. Figure B.16: Sensor 10 z-direction.

V



B. State-space models

VI



C
Transfer functions from calibration

Comparison of transfer functions between nominal and calibrated FE model, state-
space model and test data as reference.

Figure C.1: Sensor 1 y-direction. Figure C.2: Sensor 2 y-direction.

Figure C.3: Sensor 4 x-direction. Figure C.4: Sensor 4 y-direction.
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C. Transfer functions from calibration

Figure C.5: Sensor 5 x-direction. Figure C.6: Sensor 5 y-direction.

Figure C.7: Sensor 5 z-direction. Figure C.8: Sensor 6 x-direction.

Figure C.9: Sensor 6 z-direction. Figure C.10: Sensor 7 x-direction.

VIII
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Figure C.11: Sensor 7 y-direction. Figure C.12: Sensor 8 x-direction.

Figure C.13: Sensor 8 z-direction. Figure C.14: Sensor 9 x-direction.

Figure C.15: Sensor 10 z-direction.
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D
Matlab scripts

D.1 our script
The main Matlab script used for creating state-space models and doing the validation.

%% Task c
clear variables;
close all;
clc
load FRF_9_10acc_SI

set(0,'defaultaxesfontsize',20)
set(0,'defaulttextfontsize',20)
set(0,'defaultfigureposition',[400 350 700 500])
set(0,'defaultlinelinewidth',1)

% F == FRD object
% H == ResponseData
% f == frequency

val = input('\n 1. Choose what sensors that will be used for validation and/or calibration:\n Type "1" to use all sensors\n Type "2" to use a calibration set of sensors\n ');
val2 = input('\n 2. Choose frequency range\n Type "1" for 25-65Hz\n Type "2" for 25-200Hz\n Type "3" for 25-500Hz\n ');
val3 = input('\n 3. Choose ssm creation method\n Type "1" to use continuous frequency range\n Type "2" to use blocks\n ');
val4 = input('\n 4. Choose what to compare with\n Type "1" for calibrated model\n Type "2" for nominal model\n ');
val5 = input('\n 5. Choose to plot test-data and state-space models\n Type "1" for "yes"\n Type "2" for "no"\n ');

if not(val==1 || val==2) == 1
error('Error input 1')

end
if not(val2==1 || val2==2 || val2==3) == 1

error('Error input 2')
end
if not(val3==1 || val3==2) == 1

error('Error input 3')
end
if not(val4==1 || val4==2) == 1

error('Error input 4')
end
if not(val5==1 || val5==2) == 1

error('Error input 5')
end

%% Read responses
H = FRF.y_values.values;
Name = FRF.function_record.name;
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% Define frequency vector
fIncr = FRF.x_values.increment;
fnVal = FRF.x_values.number_of_values;
f = (fIncr:fIncr:fnVal/(1/fIncr))*2*pi;

%For sensor 1 to 9:
%+X (Wanted direction along pipe) = -Y (on sensor) = "+X" (name)
%+Y (Wanted direction perpendicular to pipe) = +X (on sensor) = "-Y" (name)
%+Z (Wanted direction normal to pipe) = +Z (on sensor) = "+Z" (name)

%For sensor 10:
%+X (Wanted direction along pipe) = +X (on sensor) = "+X" (name)
%+Y (Wanted direction perpendicular to pipe) = +Y (on sensor) = "+Y" (name)
%+Z (Wanted direction normal to pipe) = +Z (on sensor) = "+Z" (name)

%Rearrange so that:
%H(:,1) = 1X (sensor 1, X-direction)
%H(:,2) = 1Y (sensor 1, Y-direction)
%H(:,3) = 1Z (sensor 1, Z-direction)
%H(:,4) = 2X (sensor 2, X-direction)
%H(:,5) = 2Y (sensor 2, Y-direction)
%...
%H(:,30) = 10Z (sensor 10, Z-direction)

%Sensor 1 to 10 vector positions
xInd10 = 1:3:30;
yInd10 = 2:3:30;
zInd10 = 3:3:30;

Hxyz = zeros(size(H));
xyzName = zeros(size(Name)); xyzName = num2cell(xyzName,size(xyzName));

%X-directions
Hxyz(:,xInd10) = -1.*H(:,[30 27 24 21 18 15 12 9 6 3]);
xyzName(:,xInd10) = Name(:,[30 27 24 21 18 15 12 9 6 3]);

%Y-directions
Hxyz(:,yInd10) = H(:,[28 25 22 19 16 13 10 7 4 3]);
xyzName(:,yInd10) = Name(:,[28 25 22 19 16 13 10 7 4 3]);

%Z-directions
Hxyz(:,zInd10) = H(:,[29 26 23 20 17 14 11 8 5 1]);
xyzName(:,zInd10) = Name(:,[29 26 23 20 17 14 11 8 5 1]);

Hxyz = Hxyz';
H = reshape(Hxyz,size(Hxyz,1),1,size(Hxyz,2));

%Convert from m/s^2/N to mm/s^2/N
H = H*1000;

%% Do not use blockwise state-space model method
% systemIdentification
if val3 == 1

f1 = f;
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if val == 1
H1 = H;

elseif val == 2
H1 = H([1 2 3 5 10 11 13 14 15 16 18 19 20 22 24 25 30],:,:);

end

%Identify lower and upper frequency range
if val2 == 1

indLow = find(f<25*2*pi);
indUp = find(f>65*2*pi);

elseif val2 == 2
indLow = find(f<25*2*pi);
indUp = find(f>200*2*pi);

elseif val2 == 3
indLow = find(f<25*2*pi);
indUp = find(f>500*2*pi);

end

%Remove frequencies and responses
f1(indUp) = []; f1(indLow) = [];
H1(:,:,indUp) = []; H1(:,:,indLow) = [];
H1 = sum(H1);

%Create FRD-object
F1 = frd(H1,f1);

% State space model parameters
Options = n4sidOptions;
Options.Display = 'on';
Options.EstCovar = false;
Options.N4Weight = 'CVA';
Options.N4Horizon = [90 90 90];
if val2 == 3

ssm = n4sid(F1, 36, 'Feedthrough', true, Options); %For f = 25-500Hz
elseif val2 == 2

ssm = n4sid(F1, 18, 'Feedthrough', true, Options); %For f = 25-200Hz
elseif val2 == 1

ssm = n4sid(F1, 6, 'Feedthrough', true, Options); %For f = 25-65Hz
end

end

%% Use blockwise state-space method
% systemIdentification
if val3 == 2

f2 = f;
if val == 1

H2 = H;
elseif val == 2

H2 = H([1 2 3 5 10 11 13 14 15 16 18 19 20 22 24 25 30],:,:);
end

%N4SID options
Options = n4sidOptions;
Options.Display = 'on';
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Options.EstCovar = false;
Options.N4Weight = 'CVA';
Options.N4Horizon = [90 90 90];

%Block 1, 25-65Hz, 3 eigenfrequencies
f2B1 = f;
H2B1 = H2;
indLow = find(f<25*2*pi);
indUp = find(f>65*2*pi);
f2B1(indUp) = []; f2B1(indLow) = [];
H2B1(:,:,indUp) = []; H2B1(:,:,indLow) = [];
F2B1 = frd(H2B1,f2B1);
ssmB1 = n4sid(F2B1, 6, 'Feedthrough', true, Options);

%Block 2, 80-120Hz, 1 eigenfrequencies
if val2 == 2 || 3

f2B2 = f;
H2B2 = H2;
indLow = find(f<80*2*pi);
indUp = find(f>120*2*pi);
f2B2(indUp) = []; f2B2(indLow) = [];
H2B2(:,:,indUp) = []; H2B2(:,:,indLow) = [];
F2B2 = frd(H2B2,f2B2);
ssmB2 = n4sid(F2B2, 2, 'Feedthrough', true, Options);

end

%Block 3, 140-200Hz, 4 eigenfrequencies
if val2 == 2 || 3

f2B3 = f;
H2B3 = H2;
indLow = find(f<140*2*pi);
indUp = find(f>200*2*pi);
f2B3(indUp) = []; f2B3(indLow) = [];
H2B3(:,:,indUp) = []; H2B3(:,:,indLow) = [];
F2B3 = frd(H2B3,f2B3);
ssmB3 = n4sid(F2B3, 8, 'Feedthrough', true, Options);

end

%Block 4, 200-280Hz, 2 eigenfrequencies
if val2 == 3

f2B4 = f;
H2B4 = H2;
indLow = find(f<200*2*pi);
indUp = find(f>280*2*pi);
f2B4(indUp) = []; f2B4(indLow) = [];
H2B4(:,:,indUp) = []; H2B4(:,:,indLow) = [];
F2B4 = frd(H2B4,f2B4);
ssmB4 = n4sid(F2B4, 4, 'Feedthrough', true, Options);

end

%Block 5, 280-500Hz, 8 eigenfrequencies
if val2 == 3

f2B5 = f;
H2B5 = H2;
indLow = find(f<280*2*pi);
indUp = find(f>500*2*pi);

XIV



D. Matlab scripts

f2B5(indUp) = []; f2B5(indLow) = [];
H2B5(:,:,indUp) = []; H2B5(:,:,indLow) = [];
F2B5 = frd(H2B5,f2B5);
ssmB5 = n4sid(F2B5, 16, 'Feedthrough', true, Options);

end

%Assemble state-space models
if val2 == 1 || 2 || 3

ssm = ssmB1;
end
if val2 == 2 || 3

ssm2 = parallel(ssmB1,ssmB2);
ssm2 = parallel(ssm2,ssmB3);

end
if val2 == 3

ssm2 = parallel(ssm2,ssmB4);
ssm2 = parallel(ssm2,ssmB5);

end

%Identify lower and upper frequency range
if val2 == 1

indLow = find(f<25*2*pi);
indUp = find(f>65*2*pi);

elseif val2 == 2
indLow = find(f<25*2*pi);
indUp = find(f>200*2*pi);

elseif val2 == 3
indLow = find(f<25*2*pi);
indUp = find(f>500*2*pi);

end

%Remove frequencies
f2(indUp) = []; f2(indLow) = [];
H2(:,:,indUp) = []; H2(:,:,indLow) = [];

%Create FRD object
F2 = frd(H2,f2);

%Calculate C,D matrices again
ssm = ff2cdest(ssm2,F2);

end

%% Examine phase and response
close all

if val5 == 1
if val3 == 1

Fta = frd(ssm,F2.Frequency);
Frd = F2;

elseif val3 == 2
Fta = frd(ssm,F1.Frequency);
Frd = F1;

end
opt.hold = true;
for i = 1:length(ssm)
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str = strcat('u1 -> y',num2str(i));
opt.title = {str;'Magnitude'};

figure
magphase([1 i;0 inf],Frd);
magphase([1 i;0 inf],Fta,opt);
legend('Test data','State-space')

end
end

%% Extract damping and eigenfrequencies
clear q b ef dam

[natural_freqs,damping_factors] = damp(ssm.A); % Eigenmodes and damping
ef(:,1) = round(unique(natural_freqs(:,1)./2./pi),1); %The eigenfrequencys in Hz
dam(:,1) = unique(damping_factors(:,1)); %The dampings in procent

%% Create state-space for x-,y- and z-direction separately, redcued frequency spectrum

%Calculate eigenvector matrix for test data
%Size of matrix Channels*Eigenvectors
A = ssm.A;
C = ssm.C;
B = ssm.B;
D = ssm.D;
[eVect,eVal] = eig(A);
eVal = abs(eVal);
del = 2:2:size(eVal,1);
eVal(:,del) = [];
eVal(del,:) = [];
eVal = diag(eVal)/2/pi;
[eVal,index] = sort(eVal);
eVect = eVect(:,1:2:end);
for i = 1:length(index)

newEV(:,i) = eVect(:,index(i));
end
eVect = newEV;
Z1 = C*eVect;

%Calculate eigenvector matrix for FEM data
if val2 == 2

if val4 == 1
FEM = readpunch('20_parameterized_rho_e_t_calibratedrun.pch');

elseif val4 == 2
FEM = readpunch('v4_norubber_coarsemesh_changedcoord_v2_20to280hz.pch');

end
end

%Sensors matched with nodes in ANSA
sensor = [1 2 3 4 5 6 7 8 9 10];
nModes = length(FEM.Data);
Z2 = zeros(30,nModes);
for i = 1:nModes %28 if 28 eigenvectors

R = 1;
for j = 1:10 %Looped for 10 sensors

Z2(R,i) = FEM.Data{i}(sensor(j),4); %X-direction
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Z2(R+1,i) = FEM.Data{i}(sensor(j),2); %Y-direction
Z2(R+2,i) = FEM.Data{i}(sensor(j),3); %Z-direction
R = R+3;

end
end

if val == 2
Z2_calibration = Z2([1 2 3 5 10 11 13 14 15 16 18 19 20 22 24 25 30],:);
Z2 = Z2_calibration;

end

figure
MAC = mac(Z2_calibration,Z1);
MAC(:,[9 10 11]) = [];
matplot(MAC,[0 1])
xlabel('FEA')
ylabel('SSM')
title('Post calibration')

MACdiag = diag(MAC);
MACmean = mean(MACdiag(1:6));

%% Save data for FEMcali

%Change phase by 180degrees to match FEM
C(:,:) = C(:,:).*-1;
D(:,:) = D(:,:).*-1;

% AX = A;
% BX = B;
% CX = C;
% DX = D;
% if val3 == 1
% ResponseData = H2;
% Frequency = f2;
% elseif val3 == 2
% ResponseData = H1;
% Frequency = f1;
% end
%
% save('FEMCaliSI_calibrationSet2.mat','AX','BX','CX','DX','ResponseData','Frequency')
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D.2 efi.m
Matlab implementation for the method of effective independence. The script is used for calcu-
lating the best positions for placing accelerometers.

function [indr,inds,d]=efi(V,N,trac,XYZ,dirs,dN,tpaus)
%EFI: Calculates the optimal sensor locations by use of EFfective Indedendence
%Given the mode matrix V, the N sensor locations giving the best observability
%is calculated by iterations. An index vector (indr) is calculated such that
%the partition V(indr,:) of V is associated to optimal sensor location.
%
%Inputs: V - mode matrix (nxm, m is number of modes)
% N - number of sensors in reduced sensor set (N>=m, default N=m)
% trac - if nonzero information will be given during reduction
% XYZ - nodal coordinate matrix (used if trac~=0)
% dirs - measurement direction information (1, 2 or 3)
% dN - delay number (Sensors are retained as marks on the plots
% this number of times)
% tpaus - Pause time after each iteration (Default 0)
%Outputs: indr - index of retained sensor locations
% inds - index of skipped sensor locations
% d - determinant of Fisher information matrix at each iteration
%Call: [indr,inds,d]=efi(V[,N,trac,XYZ,dirs,dN,tpaus])

%Reference: Kammer D. & Brillhart R., 'Optimal Sensor Placement for Modal
% Identification using System-Realization Methods', to appear in
% Journal of Guidance, Control and Dynamics
%Copyleft: Thomas Abrahamsson, Linkping, Sweden
% April 25, 1994 /TA
%Modified: April 27, 1994 /TA
%Modified: April 28, 1994 /TA
%Modified: April 12, 1995 /TA

% ------------------------------------------------------------------------------
% Initiate
% --------
[n,k]=size(V);
if ~exist('N'),N=k;elseif isempty(N),N=k;end
if ~exist('trac'),trac=[];end
if ~exist('XYZ'),XYZ=[];end
if ~exist('dN'),dN=10;elseif isempty(dN),dN=10;end
if ~exist('tpaus'),tpaus=0;elseif isempty(tpaus),tpaus=0;end
indr=1:n;inds=[];d=[];
symb=['yo';'go';'bo';'ko';'r.'];
rindsx=[];rindsy=[];rindsz=[];

Xwmax=1024;Ywmax=768;
% if strcmp(computer,'SGI'),
% Xwmax=1272;Ywmax=992;
% elseif strcmp(computer,'PCWIN')
% Xwmax=800;Ywmax=600;
% end

% ------------------------------------------------------------------------------
% If trace is on then initiate plot
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% ---------------------------------
if ~isempty(trac),
if isempty(XYZ),

clf
plot(indr,0*ones(n,1),'g.')
hold on,drawnow

else
xx=XYZ(find(dirs==1),1);xy=XYZ(find(dirs==2),1);xz=XYZ(find(dirs==3),1);
yx=XYZ(find(dirs==1),2);yy=XYZ(find(dirs==2),2);yz=XYZ(find(dirs==3),2);
zx=XYZ(find(dirs==1),3);zy=XYZ(find(dirs==2),3);zz=XYZ(find(dirs==3),3);
addrx=indr(find(dirs==1));addry=indr(find(dirs==2));addrz=indr(find(dirs==3));
if ~isempty(addrx),

indsx(length(addrx),1)=0;
EFIFIG1=figure;
set(gcf,'NumberTitle','Off');
set(gcf,'Position',[1 Ywmax-(420/560)*Xwmax/3-3 Xwmax/3 (420/560)*Xwmax/3]);
set(gcf,'Name',' X-direction')
plot3(xx,yx,zx,'ro')
axis('image'),vx=axis;view(90,0);[azx,elx]=view;
dx=vx(4)-vx(1);dy=vx(5)-vx(2);dz=vx(6)-vx(3);
vx=[vx(1)-dx/100 vx(2)-dy/100 vx(3)-dz/100 vx(4)+dx/100 vx(5)+dy/100 vx(6)+dz/100];
set(gca,'Visible','off');

end
if ~isempty(addry),
indsy(length(addry),1)=0;
EFIFIG2=figure;
set(gcf,'NumberTitle','Off');
set(gcf,'Position',[Xwmax/3 Ywmax-(420/560)*Xwmax/3-3 Xwmax/3 (420/560)*Xwmax/3]);
set(gcf,'Name',' Y-direction')
plot3(xy,yy,zy,'ro')
axis('image'),vy=axis;view(90,0);[azy,ely]=view;
dx=vy(4)-vy(1);dy=vy(5)-vy(2);dz=vy(6)-vy(3);
vy=[vy(1)-dx/100 vy(2)-dy/100 vy(3)-dz/100 vy(4)+dx/100 vy(5)+dy/100 vy(6)+dz/100];
set(gca,'Visible','off');

end
if ~isempty(addrz),

indsz(length(addrz),1)=0;
EFIFIG3=figure;
set(gcf,'NumberTitle','Off');
set(gcf,'Position',[2*Xwmax/3 Ywmax-(420/560)*Xwmax/3-3 Xwmax/3 (420/560)*Xwmax/3]);
set(gcf,'Name',' Z-direction')
plot3(xz,yz,zz,'ro')
axis('image'),vz=axis;view(0,90);[azz,elz]=view;
dx=vz(4)-vz(1);dy=vz(5)-vz(2);dz=vz(6)-vz(3);
vz=[vz(1)-dx/100 vz(2)-dy/100 vz(3)-dz/100 vz(4)+dx/100 vz(5)+dy/100 vz(6)+dz/100];
set(gca,'Visible','off');

end
drawnow

end
end

% ------------------------------------------------------------------------------
% Reduce number of sensors until
% N sensors are left. Update the
% incidences arrays indr and
% inds in the process
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% ------------------------------
ns=n;I=0;
while ns > N,

I=I+1;
Q=V'*V;%Form information matrix
if nargout>=3,d=[d det(Q)];end
[Psi,lam]=eig(Q);invlam=diag(1./diag(lam));
G=conj(V*Psi).*(V*Psi);Fe=G*invlam;Ed=sum(Fe')';
[Edmin,ind]=min(Ed);
inds=[inds indr(ind)];
ns=ns-1;

if ~isempty(trac),
if isempty(XYZ),

plot(inds,0*ones(length(inds),1),'k.')
plot(inds,(n-ns)*ones(length(inds),1),'y.'),pause(0)

else

if ~isempty(addrx),
indsx(length(addrx),I)=0;
ix=find(addrx==indr(ind));if ~isempty(ix),indsx(ix,I)=1;end
figure(EFIFIG1),clg,hold on,title('X'),axis(vx);view(azx,elx);
set(gca,'Visible','off');
for II=1:5,

III=II;if II==5,III=II-1;end
In=max(1,I-(III-1)*dN-dN+1):I-(III-1)*dN;
if ~isempty(In),

if ~isempty(addrx),rindsx=find(sum(indsx(:,In)')'~=0);end
if ~isempty(rindsx),

plot3(xx(rindsx),yx(rindsx),zx(rindsx),symb(II,:))
end

end
end
if ~isempty(addrx),rindsx=find(sum(indsx')'==0);end
if ~isempty(rindsx),
plot3(xx(rindsx),yx(rindsx),zx(rindsx),'ro')

end
if ~isempty(addrx),rindsx=find(sum(indsx')'~=0);end
if ~isempty(rindsx),
plot3(xx(rindsx),yx(rindsx),zx(rindsx),'y.')

end
end

if ~isempty(addry),
indsy(length(addry),I)=0;
iy=find(addry==indr(ind));if ~isempty(iy),indsy(iy,I)=1;end
figure(EFIFIG2),clg,hold on,title('Y'),axis(vy);view(azy,ely);
set(gca,'Visible','off');
for II=1:5,

III=II;if II==5,III=II-1;end
In=max(1,I-(III-1)*dN-dN+1):I-(III-1)*dN;
if ~isempty(In),

if ~isempty(addry),rindsy=find(sum(indsy(:,In)')'~=0);end
if ~isempty(rindsy),

plot3(xy(rindsy),yy(rindsy),zy(rindsy),symb(II,:))
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end
end

end
if ~isempty(addry),rindsy=find(sum(indsy')'==0);end
if ~isempty(rindsy),
plot3(xy(rindsy),yy(rindsy),zy(rindsy),'ro')

end
if ~isempty(addry),rindsy=find(sum(indsy')'~=0);end
if ~isempty(rindsy),
plot3(xy(rindsy),yy(rindsy),zy(rindsy),'y.')

end
end

if ~isempty(addrz),
indsz(length(addrz),I)=0;
iz=find(addrz==indr(ind));if ~isempty(iz),indsz(iz,I)=1;end
figure(EFIFIG3),clf,hold on,title('Z'),axis(vz);view(azz,elz);
set(gca,'Visible','off');
for II=1:5,

III=II;if II==5,III=II-1;end
In=max(1,I-(III-1)*dN-dN+1):I-(III-1)*dN;
if ~isempty(In),

if ~isempty(addrz),rindsz=find(sum(indsz(:,In)')'~=0);end
if ~isempty(rindsz),

plot3(xz(rindsz),yz(rindsz),zz(rindsz),symb(II,:))
end

end
end
if ~isempty(addrz),rindsz=find(sum(indsz')'==0);end
if ~isempty(rindsz),
plot3(xz(rindsz),yz(rindsz),zz(rindsz),'ro')

end
if ~isempty(addrz),rindsz=find(sum(indsz')'~=0);end
if ~isempty(rindsz),
plot3(xz(rindsz),yz(rindsz),zz(rindsz),'y.')

end
end

pause(tpaus)

end

end
indr(ind)=[];
V(ind,:)=[];

end
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D.3 ff2cdest.m
This Matlab script re-estimates the C- and D-matrices of the state-space models.

function SSout=ff2cdest(SSin,FRD,opt)
%FF2CEST: Re-estimate the C and D matrices of the state-space model SS by
% least-squares fitting to data
%Inputs: SSin - The state-space model with C and D-matrices to be (re-)estimated
% FRD - A FRD object with frequency response data (needs to be
% given in rad/s)
% opt - opt.Conly=true re-estimates only the C matrix
% opt.Donly=true re-estimates only the D matrix
% opt.secondorder=true gives C corresponding to 2nd order model
% If true, also the type of FRF needs to be specified. Give
% either; opt.type='receptance', opt.type='mobility' or
% opt.type='accelerance'
%Output: SSout - The the re-estimated state-space model
%Call: SSout=ff2cest(SSin,FRD,opt)

%Written: 2014-03-21, Thomas Abrahamsson, Chalmers University of Technology
%Modified: 2015-07-15, Introduced option for 2nd order model /TA
%Modified: 2015-10-02, Changed logic for 2nd order model options /TA
%Modified: 2015-10-03, Included re-estimation of D /TA
%Modified: 2015-10-23, Set NaN:s to zeros /TA

%% Initiate
if nargin<3, opt.secondorder=false;end
[A,B,C0,D0]=ssdata(SSin);
[FRF,w]=frdata(FRD);nf=length(w);
n=size(A,1);ny=size(FRF,1);nu=size(B,2);n2=n/2;
%if any(D0(:)~=0),warning('D will be set to zero');end
if opt.secondorder && abs(floor(n2)*2-n)>.1

error('Cannot be 2nd order model. Uneven number of states.')
end
if ~isfield(opt,'Conly'),opt.Conly=false;end
if ~isfield(opt,'Donly'),opt.Donly=false;end
if opt.Conly && opt.Donly, error('opt.Conly and opt.Donly cannot both be true');end
if opt.secondorder && opt.Donly
opt.Donly=false;
warning('opt.secondorder and opt.Donly cannot both be true. Setting opt.Donly=false ...')

end
if opt.secondorder && ~isfield(opt,'type')

error('opt.type needs to be given for 2nd order model')
end

%% Extract data
FreqUnit=FRD.FrequencyUnit;TimeUnit=FRD.TimeUnit;
if ~(strcmpi(FreqUnit,'rad/s') || strcmpi(FreqUnit,'rad/seconds') || ...

(strcmpi(FreqUnit,'rad/TimeUnit') && strcmpi(TimeUnit,'seconds')))
error('Unit of data in FRD object needs to be rad/s')

end

%% Compute state response
SSx=ss(A,B,eye(n,n),0);
X=frdata(frd(SSx,w));
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if opt.secondorder && (strcmp(opt.type,'mobility') || strcmp(opt.type,'accelerance'))
X=X(n2+1:end,:,:);

elseif opt.secondorder && strcmp(opt.type,'receptance')
X=X(1:n2,:,:);

elseif opt.secondorder
error('For 2nd order model opt.type must be given as either receptance, mobility or accelerance')

end

%% Set up and solve least-squares problem
FRF=reshape(FRF,ny,nu*nf);FRF=[FRF conj(FRF)];
if opt.secondorder

X=reshape(X,n2,nu*nf);X=[X conj(X)];
else

X=reshape(X,n,nu*nf);X=[X conj(X)];
end
if opt.Conly

C=real((FRF-D0*repmat(eye(nu),1,2*nf))*pinv(X));
D=D0;

elseif opt.Donly
C=C0;
D=real((FRF-C0*X)*pinv(repmat(eye(nu),1,2*nf)));

else
CD=real(FRF*pinv([X;repmat(eye(nu),1,2*nf)]));
if opt.secondorder

C=CD(:,1:n2);
D=CD(:,n2+1:end);

else
C=CD(:,1:n);
D=CD(:,n+1:end);

end
end

%% Eliminate NaN:s
[row,col]=find(isnan(C));;
C(row,col)=0;
[row,col]=find(isnan(D));;
D(row,col)=0;

if opt.secondorder && (strcmp(opt.type,'mobility') || strcmp(opt.type,'accelerance'))
C=[0*C C];

elseif opt.secondorder && strcmp(opt.type,'receptance')
C=[C 0*C];

elseif opt.secondorder
error('Unknown opt.type')

end

%% Make state-space model
SSout=ss(A,B,C,D);
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D.4 magphase.m
Matlab script for conveniently plotting the magnitude and phase of test data and state-space
models.

function [m,p]=magphase(f,frf,opt)
%MAGPHASE: Plot and calculate magnitude and phase of frf
% If called by no output arguments only a plot will be made
% No plot will be produced if output arguments are given
%
% Alternative 1:
%Inputs: f - Frequencies (in Hz) associated to frf
% frf - Frequency response function (Complex)
% opt.loglog Set to true creates a loglog plot (default linlog)
% opt.hold If true, sets figure status to "hold on" before
% plotting
% opt.grid Set to true plots a grid
% opt.ls LineStyle (Default is Matlab's plot default)
% opt.color Line color
% opt.magn If true, only plot magnitude
% opt.ax Axis setting for magnitude plot
%Output: m - Magnitude of frf
% p - Phase of frf (in degrees)
% opt - See above
%Call: [m,p]=magphase(f,frf,opt)
%
%Alternative 2:
%Inputs: [In Out; - Identifier for input channel # (In) and output
% channel # (Out)
% flo fhi] - Lower and upper frequency for plotting
% FRDorSS - FRD or SS object. If FRDorSS is a FRD object
% and has FRD.UserData.Coherence as subfield a
% coherence plot will be superimposed on figure
% opt - See alternative 1 above
%Output: m - Magnitude of frf
% p - Phase of frf (in degrees)
%Call: [m,p]=magphase([In Out;flo fhi],FRDorSS,opt)

%Modified: Nov 11, 2001 (real and imag was switched in atan2)
%Modified: April 16, 2013 changed to use angle and added opt /TA
%Modified: March 8, 2014 modified to also handle FRD objects /TA
%Modified: April 28, 2014 avoid phase flip-flops /TA
%Modified: June 29, 2015 to also treat SS objects
%Modified: July 7, 2015 to include plot title /TA
%Modified: July 11, 2015 added coherence plot /TA

if nargin<3,opt.loglog=false;opt.hold=false;end
if ~isfield(opt,'loglog'),opt.loglog=false;end
if ~isfield(opt,'hold'),opt.hold=false;end
if ~isfield(opt,'grid'),opt.grid=false;end
if ~isfield(opt,'ls'),opt.ls='';end
if ~isfield(opt,'magn'),opt.magn=false;end
if ~isfield(opt,'ax'),opt.ax=[];end
if ~isfield(opt,'title'),opt.title=[];end
if ~isfield(opt,'rad'),opt.rad=false;end
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if strcmpi(class(frf),'frd') || strcmpi(class(frf),'idfrd')
if min(size(f))==1

f=f(:)';
f(2,1)=0;f(2,2)=Inf;% Default for lower and upper frequency

end
end
if strcmpi(class(frf),'ss') || strcmpi(class(frf),'idss')

if get(frf,'Ts')>0,error('Cannot treat discrete-time state-space models');end
[Wn,zeta] = damp(frf);zetamin=min(zeta);
if min(size(f))==1

f=f(:)';
f(2,1)=0.8*Wn(1)/2/pi;% Default for lower and upper frequency
f(2,2)=1.2*Wn(end)/2/pi;

end
end

range=false;

%% Get data from FRD object
if strcmpi(class(frf),'frd') || strcmpi(class(frf),'idfrd')

if strcmpi(get(frf,'FrequencyUnit'),'rad/s')
f0=frf.Frequency/2/pi;

elseif strcmpi(get(frf,'FrequencyUnit'),'Hz')
f0=frf.Frequency;

elseif strcmpi(get(frf,'FrequencyUnit'),'rad/TimeUnit') & strcmpi(get(frf,'TimeUnit'),'seconds')
f0=frf.Frequency/2/pi;

else
error('Unknown frequency unit. Only rad/s and Hz allowed.')

end
ind=find(f0>=f(2,1) & f0<=f(2,2));
try

mrange=frf.UserData.mrange;
mrange=squeeze(mrange(f(1,2),f(1,1),ind,:));
range=true;

catch
range=false;

end
try

coh=squeeze(frf.UserData.Coherence(f(1,2),f(1,1),ind));
if max(abs(diff(coh)))<.001,coh=NaN(size(coh));end

catch
coh=[];

end
frf=squeeze(frf.ResponseData(f(1,2),f(1,1),ind));
f=f0(ind);

else
coh=[];

end

%% Get data from SS object
if strcmpi(class(frf),'ss') || strcmpi(class(frf),'idss')

if opt.hold
wlim=2*pi*get(gca,'Xlim');
w=linspace(wlim(1),wlim(2),1000);

else
w=linspace(2*pi*f(2,1),2*pi*f(2,2),1000);
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end
% if zetamin>.001 && Wn(end)/Wn(1)>2
% w=wlogspace(0.8*Wn(1),1.2*Wn(end),5,zetamin);
% else
% w=.95*Wn(1):Wn(end)/1000:1.05*Wn(end);
% end
% w=w(w<=2*pi*f(2,2));
% while length(w)>1600, w=w(1:2:end);end

FRD=frd(frf,w);
frf=squeeze(FRD.ResponseData(f(1,2),f(1,1),:));
f=w/2/pi;

end

m=abs(frf);
p=angle(frf)*180/pi;

%% Make an attempt to make phase do less flip-flop
if size(p,2)~=length(f),p=p';end
if size(p,2)~=length(f),error('Size of transfer function does not match length of frequency vector');end
for I=2:length(f)

for J=1:size(p,1)
if abs(abs(p(J,I))-180)<20;% Within 10 degrees of +-180 degrees?

if abs(abs(p(J,I-1))-180)<20
if abs(p(J,I)-p(J,I-1))>40

if p(J,I)<0
p(J,I)=p(J,I)+360;

else
p(J,I)=p(J,I)-360;

end
end

end
end

end
end

%% Do plots
if nargout==0,

if opt.rad;f=2*pi*f;end

% if ~opt.hold,axis('auto');end
if ~opt.magn, subplot(211);end
if opt.hold, hold on,else, hold off,end
if ~opt.hold,axis('auto');end

% if ~opt.hold,cla;end
if ~opt.loglog
if range

fr=[f(:) f(:) f(:)]';fr=fr(:);
mrange=[mrange NaN*zeros(size(mrange,1),1)]';
mrange=mrange(:);
hl=semilogy(fr,mrange,f,m,opt.ls);
set(hl(1),'Color',[.6 1 .6],'LineWidth',.01);
set(hl(2),'MarkerSize',4);
try set(hl(2),'Color',opt.color);catch,end

else
if isempty(coh)
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try
hLine1=semilogy(f,m,opt.ls);

catch
hLine1=semilogy(f,m);

end
try, hLine1.Color=opt.color;catch,end

else
[hl,hLine1,hLine2]=plotyy(f,m,f,coh,'semilogy','plot');
YTick=hl(1).YTick;YTick=10.^[log10(YTick(1)):log10(YTick(end))];
hl(1).YTick=YTick;
try,hLine1.LineStyle=opt.ls;catch,end
try, hLine1.Color=opt.color;catch,end
hLine2.Color=[.6 .6 .6];

end
% hl=semilogy(f,m,opt.ls);
% try set(hl(1),'Color',opt.color);catch,end

end
axis tight
ax=axis;

% expo=10^floor(log10(f(end)));
% axis([round(f(1),1,'significant') (round(f(end),1,'significant')/expo+1)*expo ax(3) ax(4)]);
% ax=axis;

else
if range

fr=[f(:) f(:) f(:)]';fr=fr(:);
mrange=[mrange NaN*zeros(size(mrange,1),1)]';
mrange=mrange(:);
hl=loglog(fr,mrange,f,m,opt.ls);,
set(hl(1),'Color',[.6 1 .6],'LineWidth',.01);
set(hl(2),'MarkerSize',4);
try set(hl(2),'Color',opt.color);catch,end

else
if isempty(coh)

try
hLine1=semilogy(f,m,opt.ls);

catch
hLine1=semilogy(f,m);

end
try, hLine1.Color=opt.color;catch,end

else
[hl,hLine1,hLine2]=plotyy(f,m,f,coh,'loglog','semilogx');
try,hLine1.LineStyle=opt.ls;catch,end
try, hLine1.Color=opt.color;catch,end
hLine2.Color=[.6 .6 .6];

end
end

% expo=10^floor(log10(f(end)));
axis tight
ax=axis;

% axis([round(f(1),2,'significant') (round(f(end),2,'significant')/expo+1)*expo ax(3) ax(4)]);
axis([round(f(1)-.49,2,'significant') round(f(end)+.49,2,'significant') ax(3) ax(4)]);
ax=axis;

end
if ~isempty(opt.ax),axis(opt.ax);end
if ~isempty(opt.title), title(opt.title),else, title('Magnitude'),end
if ~isempty(coh),Tith=get(hl(1),'Title');Tith.String=[Tith.String ' with coherence'];end
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if opt.rad, xlabel('w [rad/s]');else, xlabel('f [Hz]');end
if opt.grid, grid on,end

% if opt.hold, hold on,end

if ~opt.magn
subplot(212)
if opt.hold, hold on,else hold off,end
if ~opt.hold,cla;end
if ~opt.loglog

hl=plot(f,p,opt.ls);
set(hl(1),'MarkerSize',4);
try set(hl(1),'Color',opt.color);catch,end

else
hl=semilogx(f,p,opt.ls);
set(hl(1),'MarkerSize',4);
try set(hl(1),'Color',opt.color);catch,end
ax0=axis;
axis([ax(1) ax(2) ax0(3) ax0(4)]);

end
% v=axis;
% axis([v(1) v(2) -200 200]);

axis([ax(1) ax(2) -200 200]);
title('Phase')
if opt.rad, xlabel('w [rad/s]');else, xlabel('f [Hz]');end
if opt.grid, grid on,end
if opt.hold, hold on,end

end
end
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D.5 readpunch.m
This script is used for reading the .pch-files (punch files) that contains the mode shopes with
corresponding eigenfrequency from a Nastran SOL103 simulation.

function D=readpunch(punchfile,opts)
%% READPUNCH Reads a NASTRAN punch file
%Inputs: punchfile - Name of punch file
% opts - Optional settings
% opts.verbose=0 gives quite mode
% opts.verbose=1 gives verbose mode (default)
% opts.verbose=2 gives very verbose mode
% opts.uniform=1 for uniform data gives data in 3D matrix
% opts.uniform=0 gives data in cell structure (default)
% opts.extseout=1 reads SuperElement data put on the
% punch file by the EXTSEOUT command
% opts.clipboard=1 Used clipboard to speed up
%Output: D - Data object
% D.Header - Header to data set
% D.Data - Data set
%
%Call: D=readpunch(punchfile,opts)

%Written: 2011-12-23, Thomas Abrahamsson
%Modified: 2012-08-29, /TA, Problem with D.GRID
%Corrected: 2013-04-17, Corrected bug for reading GRID /TA
%Modified: 2013-04-17, Now reads both long and short format for GRID /TA

%% Initiate and check
fid=fopen(punchfile);
if fid==-1, error(['READPUNCH cannot find file: ' punchfile]);end
if nargin<2,opts=[];end
if ~isfield(opts,'verbose'), opts.verbose=1;end
if ~isfield(opts,'uniform'), opts.uniform=false;end
if ~isfield(opts,'extseout'), opts.extseout=false;end
if ~isfield(opts,'clipboard'), opts.clipboard=false;end

if opts.clipboard,par='no';else,par='yes';end

if opts.extseout
D=readpunch_se(fid,punchfile,opts,par);

else
D=readpunch_od(fid,punchfile,opts,par);

end

%% Terminate
fclose(fid);

% =========================================================================
function D=readpunch_od(fid,punchfile,opts,par)

KnownTypes={'ACCELERATION' 'DISPLACEMENTS' 'VELOCITY' 'EIGENVECTOR' ...
'OLOADS' 'SPCF'};
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Ch10=char(10);

%% Make room for much data
Dir=dir(punchfile);VeryLongLine=char(zeros(1,Dir.bytes));
Header=char(zeros(1,1e5));

%% Read punch file
SubCase=0;
while 1

txt=fgets(fid,82), if ~ischar(txt),break,end
if txt(1)=='$', % Read case header

SubCase=SubCase+1;EOH=0;
if SubCase>1;% Spool data

if strcmp(par, 'yes')
tmp_nam=tempname;
fid2=fopen(tmp_nam,'w+');
fprintf(fid2,VeryLongLine(1:EOL));
fclose(fid2);
if opts.uniform

D.Data(:,:,SubCase-1)=importdata(tmp_nam);
delete(tmp_nam);

else
D.Data{SubCase-1}=importdata(tmp_nam);
delete(tmp_nam);

end
else if strcmp(par, 'no')

clipboard('copy',VeryLongLine(1:EOL));
if opts.uniform

D.Data(:,:,SubCase-1)=importdata('-pastespecial');
else

D.Data{SubCase-1}=importdata('-pastespecial');
end

end
end

end
Line=1;
while txt(1)=='$'

if Line==4
Type=deblank(txt(2:72));
if ~any(strcmp(Type,KnownTypes))

error(['Unknown type: ' Type '. Modify READPUNCH!'])
end

end
Header(EOH+1:EOH+72)=[txt(2:72) Ch10];EOH=EOH+72;
txt=fgets(fid,82);
Line=Line+1;

end
D.Header{SubCase}=Header(1:EOH);
if ispc

fseek(fid,-82,'cof');% Rewind one line
elseif isunix

fseek(fid,-81,'cof');% Rewind one line
end
if opts.verbose>1, disp(Header(1:EOH)),end
EOL=0;

else % Read case data
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if txt(1)~='-'
VeryLongLine(EOL+1:EOL+71)=[Ch10 txt([1:16 19:72])];EOL=EOL+71;

else
VeryLongLine(EOL+1:EOL+54)=txt(19:72);EOL=EOL+54;

end
end

end

%% Last data set
if strcmp(par, 'no')
clipboard('copy',VeryLongLine(1:EOL));
if opts.uniform

D.Data(:,:,SubCase)=importdata('-pastespecial');
else

D.Data{SubCase}=importdata('-pastespecial');
end
else if strcmp(par, 'yes')

tmp_nam=tempname;
fid2=fopen(tmp_nam,'w+');
fprintf(fid2,VeryLongLine(1:EOL));
fclose(fid2);
if opts.uniform

D.Data(:,:,SubCase)=importdata(tmp_nam);delete(tmp_nam)
else

D.Data{SubCase}=importdata(tmp_nam);delete(tmp_nam)
end

end
end

% =========================================================================
function D=readpunch_se(fid,punchfile,opts,par)

%% Make room for much data
VeryLongLine=char(zeros(1,1e5));
Header=char(zeros(1,1e5));
Ch10=char(10);

while 1,%% Spool initial comments
txt=fgets(fid,82); if ~ischar(txt),break,end
if txt(1)~='$',break,end

end

if strcmp(txt(1:11),'BEGIN SUPER')
D.SEID=str2num(txt(12:end));

else
error('Cannot understand EXTSEOUT data')

end

while 1
txt=fgets(fid,82);
hdr=deblank(txt(1:min([end 8])));hdr(find(hdr==' '))=[];
if hdr(1)=='$',hdr='$';end
switch hdr
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case 'GRID'
rewindline(fid,txt);
EOL=0;
while 1,%% Read GRID DATA

txt=fgets(fid,82); if ~ischar(txt),break,end
if txt(1)=='$'

break
else

Str=[txt(9:24) ' ' txt(25:32) ' ' txt(33:40) ' ' txt(41:48) Ch10];
VeryLongLine(EOL+1:EOL+length(Str))=Str;EOL=EOL+length(Str);

end
end
if strcmp(par, 'no')

clipboard('copy',VeryLongLine(1:EOL));
GRIDMat=importdata('-pastespecial');
else if strcmp(par, 'yes')

tmp_nam=tempname;
fid2=fopen(tmp_nam,'w+');
fprintf(fid2,VeryLongLine(1:EOL));
fclose(fid2);
GRIDMat=importdata(tmp_nam);delete(tmp_nam)

end
end
D.GRID=GRIDMat;

case 'GRID*'
rewindline(fid,txt);
EOL=0;
while 1,%% Read GRID DATA

txt=fgets(fid,82); if ~ischar(txt),break,end
if txt(1)=='$'

break
else

Str=[txt(9:24) ' ' txt(25:40) ' ' txt(41:56) ' ' txt(57:72) ' '];
txt=fgets(fid,82); if ~ischar(txt),break,end
Str=[Str txt(9:24) Ch10];
VeryLongLine(EOL+1:EOL+length(Str))=Str;EOL=EOL+length(Str);

end
end
if strcmp(par, 'no')

clipboard('copy',VeryLongLine(1:EOL));
GRIDMat=importdata('-pastespecial');
else if strcmp(par, 'yes')

tmp_nam=tempname;
fid2=fopen(tmp_nam,'w+');
fprintf(fid2,VeryLongLine(1:EOL));
fclose(fid2);
GRIDMat=importdata(tmp_nam);delete(tmp_nam)

end
end
D.GRID=GRIDMat;

case 'CORD2C'
rewindline(fid,txt);
EOL=0;
while 1,%% Read CORD2C DATA
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txt=fgets(fid,82); if ~ischar(txt),break,end
if txt(1)=='$'

break
else

Str=[txt(9:24) ' ' txt(25:40) ' ' txt(41:56) ' ' txt(57:72) Ch10];
VeryLongLine(EOL+1:EOL+68)=Str;EOL=EOL+68;

end
end
if strcmp(par, 'no')

clipboard('copy',VeryLongLine(1:EOL));
CORD2CMat=importdata('-pastespecial');
else if strcmp(par, 'yes')

tmp_nam=tempname;
fid2=fopen(tmp_nam,'w+');
fprintf(fid2,VeryLongLine(1:EOL));
fclose(fid2);
CORD2CMat=importdata(tmp_nam);delete(tmp_nam)

end
end
D.CORD2C=CORD2CMat;

case 'CORD2R'
rewindline(fid,txt);
EOL=0;
while 1,%% Read CORD2R DATA

txt=fgets(fid,82); if ~ischar(txt),break,end
if txt(1)=='$'

break
else

Str=[txt(9:24) ' ' txt(25:40) ' ' txt(41:56) ' ' txt(57:72) Ch10];
VeryLongLine(EOL+1:EOL+68)=Str;EOL=EOL+68;

end
end
if strcmp(par, 'no')

clipboard('copy',VeryLongLine(1:EOL));
CORD2RMat=importdata('-pastespecial');
else if strcmp(par, 'yes')

tmp_nam=tempname;
fid2=fopen(tmp_nam,'w+');
fprintf(fid2,VeryLongLine(1:EOL));
fclose(fid2);
CORD2RMat=importdata(tmp_nam);delete(tmp_nam)

end
end
D.CORD2R=CORD2RMat;

case 'ASET'
rewindline(fid,txt);
EOL=0;
while 1,%% Read ASET DATA

txt=fgets(fid,82); if ~ischar(txt),break,end
if txt(1)=='$'

break
else

for I=24:16:length(txt)
VeryLongLine(EOL+1:EOL+18)=[txt(I-15:I-8) ' ' txt(I-7:I) Ch10];EOL=EOL+18;
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end
end

end
if strcmp(par, 'no')

clipboard('copy',VeryLongLine(1:EOL));
D.ASET=importdata('-pastespecial');

else
if strcmp(par, 'yes')

tmp_nam=tempname;
fid2=fopen(tmp_nam,'w+');
fprintf(fid2,VeryLongLine(1:EOL));
fclose(fid2);
D.ASET=importdata(tmp_nam);delete(tmp_nam)

end
end

case 'ASET1'
dof1=str2num(txt(17:24));thru=txt(29:32);dof2=str2num(txt(33:40));
if strcmp(thru,'THRU')

D.ASET1=dof1:dof2;
else

error('Does not recognize this type of ASET1 data');
end

case 'SPOINT'
rewindline(fid,txt);
EOL=0;
while 1,%% Read SPOINT DATA

txt=fgets(fid,82); if ~ischar(txt),break,end
if txt(1)=='$'

break
else

for I=24:16:length(txt)
VeryLongLine(EOL+1:EOL+18)=[txt(I-15:I-8) ' ' txt(I-7:I) Ch10];EOL=EOL+18;

end
end

end
% disp('Did not store SPOINT data')
case '$'

% Do nothing, it's just a comment line
case 'DMIG'

break;% Break the loop and read DMID entries
otherwise

error(['Do not understand: ' hdr])
end

end

dofind=[];
for I=1:size(D.ASET,1)

dofind=[dofind (D.ASET(I,1)-1)*6+abs(int2str(D.ASET(I,2)))-48];
end
try dofind=[dofind(:);D.ASET1(:)];catch,end

% Now the pointer should be at the DMIG card
rewindline(fid,txt);

while 1,
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txt=fgets(fid,82); if ~ischar(txt),break,end
if ~strcmp(txt(1:4),'DMIG'),break,end
DMIGtype=txt(9:16);
IFO=str2double(txt(25:32));TIN=str2double(txt(33:40));NCOL=str2double(txt(65:72));
if opts.verbose>0

hwb=waitbar(0,['Reading ' deblank(DMIGtype) ' data ...'],'Name','Reads DMIG data from Punch File');
ticdelta=NCOL/10;nexttic=ticdelta;

end
if opts.verbose>1

disp(['Reading ' deblank(DMIGtype) ' of column size ' int2str(NCOL)]);
end

if IFO==6 && NCOL~=0; %IF symmetric (IFO=6) and size known
M=spalloc(NCOL,NCOL,round(0.02*NCOL*NCOL));

end
while 1

txt=fgets(fid,82); if ~ischar(txt),break,end
if ~strcmp(txt(1:4),'DMIG'),break,end
GJ=str2double(txt(33:40));CJ=str2double(txt(49:56));dof=(GJ-1)*6+CJ;
if CJ~=0

cdofind=find(dofind==dof);
else;%CJ=0 for scalar

cdofind=find(dofind==GJ);
if isempty(cdofind),cdofind=1;end;%Undefined scalar

end
if opts.verbose>0

if cdofind>nexttic
waitbar(cdofind/NCOL,hwb);nexttic=nexttic+ticdelta;

end
end
EOL=0;
while 1

txt=fgets(fid,82); if ~ischar(txt),break,end
if txt(1)~='*'

break
else

Str=[txt(17:24) ' ' txt(33:40) ' ' txt(41:56) Ch10];
VeryLongLine(EOL+1:EOL+35)=Str;EOL=EOL+35;

end
end
VeryLongLine(find(VeryLongLine=='D'))='E';
if strcmp(par, 'no')

clipboard('copy',VeryLongLine(1:EOL));
Data=importdata('-pastespecial');

else if strcmp(par, 'yes')
tmp_nam=tempname;
fid2=fopen(tmp_nam,'w+');
fprintf(fid2,VeryLongLine(1:EOL));
fclose(fid2);
Data=importdata(tmp_nam);delete(tmp_nam);

end
end

% clipboard('copy',VeryLongLine(1:EOL));
% Data=importdata('-pastespecial');

GI=Data(:,1);CI=Data(:,2);dof=(GI-1)*6+CI;
rdofind=[];
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for I=1:length(GI)
if CI(I)~=0

rdofind(I)=find(dofind==dof(I));
else;%CJ=0 for scalar

rdofind(I)=find(dofind==GI(I));
end

end
% rdofind=find(ismember(dofind,dof));

M(rdofind,cdofind)=Data(:,3);
if ispc

fseek(fid,-length(txt),'cof');% Rewind one line
elseif isunix

fseek(fid,-length(txt)+1,'cof');% Rewind one line
end
if ~strcmp(DMIGtype,txt(9:16));% Store data and break

if IFO==6
eval(['D.' DMIGtype '=M+M''-diag(diag(M));']);

else
eval(['D.' DMIGtype '=M;']);

end
clear('M');
if opts.verbose>0,close(hwb);end
break

end
end
if ~strcmp(txt(1:4),'DMIG'),break,end

end

if opts.verbose>1
disp('Warning: Data after last DMIG data set in contiguous order of Punch File may be missing.')

end

function rewindline(fid,txt)
% Rewind one line
if ispc

fseek(fid,-length(txt),'cof');
elseif isunix

fseek(fid,-length(txt)+1,'cof');
end
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D.6 aset2dofno.m
Matlab script for extracting degrees of freedom in Nastran model at specific grid points.

function adofs=aset2dofno(f06filename,gridlist)
%ASET2DOFNO Creates list of adof indices associated to grid point dof list
% It reads a Nastran f06 file that needs to be prepared beforehand.
% Place the two PARAM lines given below in the bulk data section of
% your Nastran input file to create that Nastran f06 file
% PARAM,USETPRT,12
% PARAM,CHECKOUT,YES
%
%Inputs: f06filename - The filename of your Nastran f06 file
% gridlist - A list (vector) of grid point and dof indices as
% grid.dof, e.g. gridlist=[11.3 200.1] for 3rd dof
% of 11th gridpoint and 1st dof of 200th gridpoint
%Output: adofs - The dof indices of adofs associated with gridlist
%Call: adofs=aset2dofno(f06filename,gridlist)

%Copyleft: Thomas Abrahamsson, Chalmers University of Technology, Sweden
%Written: 2015-09-25

fid=fopen(f06filename);

testlin='U S E T D E F I N I T I O N T A B L E ( E X T E R N A L S E Q U E N C E ,
R O W S O R T )';
adoflin='A DISPLACEMENT SET';
fdoflin='F DISPLACEMENT SET';

usetfound=false;
asetfound=false;
Gdofs=[];
while 1,

lin=fgetl(fid);
if lin==-1,break,end
if length(lin)>116

if ~any(lin(17:117)-testlin),usetfound=true;end
end
if usetfound

if length(lin)>79
if ~any(lin(56:80)-adoflin),asetfound=true;end
if ~any(lin(56:80)-fdoflin),asetfound=false;end

end
if asetfound

ind=findstr(lin,'=');
if length(ind)>1

str=lin(10:122);
str=strrep(str,'-','.');
Gdofs=[Gdofs;str2num(str)'];

end
end

end
end
fclose(fid);
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[~,~,adofs]=intersect(gridlist,Gdofs,'stable');
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D.7 mac.m
Matlab script to compute the MAC-matrix using the mode matrices.

function MAC=mac(Z1,Z2,opt,depthZ2)
%MAC: Computes the MAC-matrix using the mode matrices Z1 and Z2
%Inputs: Z1 - First modal matrix containing modes as column vectors
% Z2 - Second modal matrix containing modes as column vectors. If
% depthZ2 > 1 the groups of modes are stoved on top of each
% other
% opt - 1 gives standard MAC calculation (default if depthZ2=1)
% 2 gives cosines of subspace angles
%Output: MAC - MAC-matrix
%Call: MAC=mac(Z1,Z2,opt,depthZ2)

% Copyleft: Thomas Abrahamsson, Linkping, Sweden
% Written: Oct 4, 1993
% Modified: April 16, 1994 /TA
% Modified: June 14, 1995
% Modified: June 19, 1995
% Modified: Nov 11, 2001 (real added to ensure that MAC is real also for
% complex vectors)
% Modified: Dec 12, 2013 Removed bottleneck for set opt and depthZ2
% and made MAC computations more efficient /TA

% ------------------------------------------------------------------------------
% Initiate and check
% ------------------
tol=1.e6*eps;
% if ~exist('opt'),opt=1;elseif (isempty(opt) & nargin<4),opt=1;end
% if ~exist('depthZ2'),depthZ2=1;elseif isempty(depthZ2),depthZ2=1;end
if nargin<2,
error('Too few input arguments to MAC')

elseif nargin<3
opt=1;depthZ2=1;

elseif nargin<4
depthZ2=1;

end

[n1,m1]=size(Z1);[n2,m2]=size(Z2);n2=n2/depthZ2;
if n1~=n2,

error('The row dimension of the two mode matrices must be the same')
end
if (depthZ2~=1 && opt==1),
error('Error in MAC: opt=1 is not allowed when depthZ2>1')

end

if opt==1,
% ------------------------------------------------------------------------------
% Standard MAC
% ------------
MAC=Z2'*Z1./(sqrt(diag(Z2'*Z2))*sqrt(diag(Z1'*Z1))');
MAC=(MAC').'.*MAC;

% Old, less efficient code
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% for I=1:m1,
% for II=1:m2,
% MAC(II,I)=real((Z1(:,I)'*Z2(:,II))*conj(Z1(:,I)'*Z2(:,II)))/ ...
% norm(Z1(:,I))^2/norm(Z2(:,II))^2;
% end
% end

else
% ------------------------------------------------------------------------------
% MAC using square of cosine of
% subspace angle
% -----------------------------

for I=1:m1,
for II=1:m2,

% MAC(II,I)=cos(subspac2(Z1(:,I),reshape(Z2(:,II),n2,depthZ2),tol));
MAC(II,I)=(cos(subspac2(Z1(:,I),reshape(Z2(:,II),n2,depthZ2),tol)))^2;

end
end

end

function theta = subspac2(A,B,tol)
%SUBSPAC2 Angle between two subspaces.
% SUBSPAC2(A,B,tol) finds the angle between two subspaces specified by the
% columns of A and B. If A and B are vectors of unit length, this is the
% same as ACOS(A'*B).
% If the angle is small, the two spaces are nearly linearly dependent. The
% rank of A and B will be checked using: rank(A,tol) and rank(B,tol). Rank
% deficient matrices will be substituted will lower column order matrices
% of full rank.
%Inputs: A,B - Subspace matrices
% tol - Tolerance parameter for rank determination
%Output: theta - Angle between subspaces
%Call: theta=subspac2(A,B,tol)
%See also: SUBSPACE

%Copyright: Thomas Abrahamsson, Saab Military Aircraft, Linkoping, Sweden
%Written: June 19, 1995
%Modified: June 27, 1995

% -------------------------------------------------------------------------------
% Initiate and check
% ------------------
if nargin<3,tol=eps;elseif isempty(tol),tol=eps;end
[na,ma]=size(A);[nb,mb]=size(B);
if na ~= nb

error('Row dimensions of A and B must be the same.')
end

% -------------------------------------------------------------------------------
% Calculate rank and create non-rank-deficient matrices
% -----------------------------------------------------
[U,S,V] = svd(A);U=U(:,1:ma);S=S(1:ma,1:ma);
if na ~= 1, s = diag(S); else, s = S(1,1); end
r = sum(s > tol);
A = U(:,1:r);
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[U,S,V] = svd(B);U=U(:,1:mb);S=S(1:mb,1:mb);
if nb ~= 1, s = diag(S); else, s = S(1,1); end
r = sum(s > tol);
B = U(:,1:r);

[na,ma]=size(A);[nb,mb]=size(B);

% -------------------------------------------------------------------------------
% Compute the angle between the subspaces
% ---------------------------------------
[QA,ignore] = qr(A);QA=QA(:,1:ma);
[QB,ignore] = qr(B);QB=QB(:,1:mb);
s = svd(QA'*QB);
% The max singular value is the correct one to choose
% but should have magnitude no more than 1.
theta = acos(min(min(s),1));
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D.8 matplot.m
Matlab script used to give a graphical representation of a matrix, for example a MAC.

function matplot(M,Range,XTickLabels,YTickLabels)
%MATPLOT: Shows a graphical representation of a matrix
%Inputs: M - The matrix to plot
% Range - The range of data values, defaults [min(M(:) max(M(:))]
% Range cannot be smaller than default
%Call: matplot(M,Range,XTickLabel,YTicLabel)

%Written: 2011-09-01 by Thomas Abrahamsson
%Modified: 2014-05-19, Took care of case when "matrix" is scalar /TA
%Modified: 2015-03-31, Introduced labels /TA

%% Initiate
if nargin<2, Range=[min(M(:)) max(M(:))];end
if isempty(Range),Range=[min(M(:)) max(M(:))];end
if nargin<3, XTickLabels=[];end
if nargin<4, YTickLabels=[];end

[r c]=size(M);
X=[];Y=[];Z=[];
for I=1:r

for J=1:c
X=[X,[0;1;1;0]+(J-1)];
Y=[Y,[0;0;1;1]+(I-1)];
Z=[Z M(I,J)];

end
X=[X,[0;eps;eps;0]];Y=[Y,[0;0;eps;eps]];Z=[Z Range(1)];
X=[X,[0;eps;eps;0]];Y=[Y,[0;0;eps;eps]];Z=[Z Range(2)];

end

% cm=flipud(colormap('gray'));
% cm=colormap(graymap('5',256));
cm=flipud(colormap('pink'));

% hF=figure;set(hF,'Renderer','OpenGL'); x
if r*c==1,Z=Z(1);end
hP=patch(X,Y,Z);colormap(cm);
% axis off
axis equal
ax=gca;
try

set(ax,'Box','on','Color',.94*[1 1 1],'TickLength',[0 0],'XTickLabelRotation',90);
catch
end
xt=get(ax,'Xtick');yt=get(ax,'Ytick');
set(ax,'XTick',xt(1):.5:xt(end));
set(ax,'YTick',yt(1):.5:yt(end));
xt=get(ax,'Xtick');yt=get(ax,'Ytick');

J=0;
for I=1:length(xt)

if xt(I)>0 & xt(I)<c & floor(I/2)*2==I
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J=J+1;
indx(J)=I;

end
end
J=0;
for I=1:length(yt)

if yt(I)>0 & yt(I)<r & floor(I/2)*2==I
J=J+1;
indy(J)=I;

end
end

if length(XTickLabels)==length(indx)
J=0;
for I=1:length(xt)

if any(indx==I)
J=J+1;
XLab{I}=XTickLabels{J};

else
XLab{I}='';

end
end

else
J=0;
for I=1:length(xt)

if any(indx==I)
J=J+1;
XLab{I}=int2str(J);

else
XLab{I}='';

end
end

end
if length(YTickLabels)==length(indy)

J=0;
for I=1:length(yt)

if any(indy==I)
J=J+1;
YLab{I}=YTickLabels{J};

else
YLab{I}='';

end
end

else
J=0;
for I=1:length(yt)

if any(indy==I)
J=J+1;
YLab{I}=int2str(J);

else
YLab{I}='';

end
end

end

set(ax,'XTickLabel',XLab,'YTickLabel',YLab);
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colorbar
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Python script used in ANSA to create a normal cordinate systems in a set of grid points.

# PYTHON script
import os
import ansa
from ansa import base,mesh

def main():

set = base.GetEntity(0,"SET",2)
shells = base.CollectEntities(0,set,"SHELL")

for shell in shells:
gridlist =[]
cords = base.GetNormalVectorOfShell(shell)
type = base.GetEntityCardValues(0,shell,("type","G1","G2","G3"))
g1 = base.GetEntity(0,"GRID",type["G1"])

g1cords = base.GetEntityCardValues(0,g1,("X1","X2","X3"))
gridlist.append(g1)
x=float(g1cords["X1"])*float(cords[0])
y=float(g1cords["X2"])*float(cords[1])
z=float(g1cords["X3"])*float(cords[2])
pt = base.Newpoint(float(g1cords["X1"]),float(g1cords["X2"]),...

float(g1cords["X3"]))
pt_id = base.GetEntityCardValues(0,pt,("ID",))

args = (pt,g1)
base.GeoTranslate("COPY",0,"SAME PART","NONE",float(cords[0]),...

float(cords[1]),float(cords[2]),args,keep_connectivity=True,...
draw_results=False)

pt2 = base.GetEntity(0,"POINT",pt_id["ID"]+1)
pt_crd = base.GetEntityCardValues(0,pt2,("X","Y","Z"))
pt_coords = (pt_crd["X"],pt_crd["Y"],pt_crd["Z"])

tritos = base.NearestNode(pt_coords,2)
#print(tritos[0]._id)
#g1cp=base.GetEntity(0,"GRID",nid)
g2 = base.GetEntity(0,"GRID",type["G2"])
gridlist.append(g2)
g3 = base.GetEntity(0,"GRID",type["G3"])
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gridlist.append(g3)
trias=[]
try:

type2 = base.GetEntityCardValues(0,shell,("type","G4"))
if type2["G4"]:

g4 = base.GetEntity(0,"GRID",type2["G4"])
gridlist.append(g4)

except KeyError:
trias.append(shell)

fields = {"G1":type["G1"],"G2":tritos[0]._id,"G3":type["G2"]}
cord_sys = base.CreateEntity(0,"CORD_NODES_R",fields)

for grid in gridlist:
base.SetEntityCardValues(0,grid,{"CD":cord_sys._id})
to_del = (pt,pt2)

base.DeleteEntity(to_del,True)

if __name__ == '__main__':
main()
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